- .

\ ' \ > v\'Q .
- Q— SN ' u,“"x‘"ﬁ:’;‘
‘ ’

S CYBERINFRASTRUCTURE
OF TWARE SUSTAINABILITY
AND REUSABILITY: s

- o

-

HELD 27 AND 28 MARCH 2009 et G0
p—\

o v R\ W
qv—\h .

)

3 B A" REPORT FROM AN NSF-FUNDED WORKSHOP‘ Q=0 \&

s

X



CYBERINFRASTRUCTURE
SOF TWARE SUSTAINABILITY
AND REUSABILITY:

REPORT FROM AN NSF-FUNDED WORKSHOP
HELD 27 AND 28 MARCH 2009

Editors: Craig A. Stewart, Guy T. Almes, D. Scott McCaulay, and Bradley C.
Wheeler

Contributing writers: Guy Almes', Amy Apon?, Geoffrey Brown’, Neil P. Chue Hong*,
David Lifka’, Andrew Lumsdaine®, Clifford Lynch’, Marlon Pierce®, Beth Plale®, Ruth
Pordes!?, Jennifer M. Schopf!!, Craig A. Stewart!?, Von Welch'?, Bradley C. Wheeler!*

Please cite as: Stewart, Craig A., Guy T. Almes, and Bradley C. Wheeler (eds.). 2010.
Cyberinfrastructure Software Sustainability and Reusability: Report from an NSF-
funded workshop. Published by Indiana University, Bloomington, IN. Available from:
http://hdl.handle.net/2022/6701

! galmes@tamu.edu / http://academy.tamu.edu/ / Texas A&M University / College Station, TX 77843

Zaapon@uark.edu / http://www.uark.edu/home/ / University of Arkansas / Fayetteville, AR 72701

3 geobrown@indiana.edu / http://www.cs.indiana.edu/ / Lindley Hall 330B / Indiana University / Bloomington, IN 47405
#N.ChueHong@omii.ac.uk / http://www.omii.ac.uk/ / Rm. 2409, JCMB, Mayfield Rd. | E: / Edinburgh, EH9 3JZ, UK
*lifka@cac.cornell.edu / http://www.cac.cornell.edu/ / Cornell Center for Advanced Computing / Frank H. T. Rhodes Hall / Hoy Road / Ithaca, NY 14853-3801
®lums@cs.indiana.edu / http://www.informatics.indiana.edu/ / Lindley Hall 301G / Indiana University / Bloomington, IN 47405
7cliff@cni.org / http://www.cni.org / Coalition for Networked Information / 21 Dupont Circle Ste 800 / Washington, DC 20036
# mpierce@cs.indiana.edu / http://pti.iu.edu/cgl/people/ / 2719 E 10th Street / Indiana University / Bloomington, IN 47408
?plale@cs.indiana.edu / http://www.cs.indiana.edu/ / Lindley Hall 215 / Indiana University / Bloomington, IN 47405

1 ruth@fnal.gov / http://www.fnal.gov/ / Fermilab / P.O. Box 500 / Batavia, IL 60510

' jschopf@whoi.edu / http://www.whoi.edu/ / 266 Woods Hole Road, Woods Hole, MA 02543

12stewart@indiana.edu / http://ovpit.in.edu/ / 601 Kirkwood Avenue, FH 116 / Bloomington, IN 47405-1223

1 ywelch@ncsa.uiuc.edu / http://www.ncsa.illinois.edu/ / ¢/o NCSA/U. of Illinois / 1205 W. Clark / Urbana, IL 61801
“bwheeler@indiana.edu / http://ovpit.iu.edu/ / 601 Kirkwood Avenue, FH 116 / Bloomington, IN 47405-1223



Indiana University Pervasive Technology Institute
Indiana University

2719 East 10th Street Bloomington IN 47408

535 W. Michigan Street Indianapolis IN 46202

Copyright 2010 The Trustees of Indiana University.
ISBN-13: 978-1456372897
ISBN-10: 1456372890

The text of this report is licensed under the Creative Commons Attribution 3.0 Unported License
(http://creativecommons.org/licenses/by/3.0/).

This material is based upon work supported in part by the National Science Foundation under
Grant No. OCI-0829462. This material and the creation of this report are funded in part by a
generous grant from the Lilly Endowment, Inc. to Indiana University to create the Pervasive
Technology Institute.

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and contributors and do not necessarily reflect the views of the National Science
Foundation or Lilly Endowment, Inc.



Table of Contents

1. EXECUTIVE SUMMARY 3
2. INTRODUCTION 7
2.1.  MOTIVATION AND BACKGROUND........cceetuurrreeeeiiareeeeeeieisseseeseeeaeseeeseniaseseeeeaesesesessasasseessesssssseeesansseseessensnseeeeensareeees 7
2.2.  PREPARATION FOR AND EXECUTION OF THE WORKSHOP ......uuuuuuuuvireeeeeeeeeeeeeeeeeeeeeessesessissssssssssssssssssssseeeeseeeseesssesemssssnens 10
3. DEFINITIONS AND EXISTING MODELS 11
3.1.  DEFINITIONS OF SUSTAINABILITY ......uvvvveeeeeriuereeeeeeiureeeeeeinsssesessonssssseseensssseessessssssssssssosssssessmsssssessesssssesssensssseseeesnns 12
3.2.  EXISTING MODELS FOR SUSTAINABILITY ......ceeieteeiuuusususssseeresesereeeeeeeeesesssesesensssssssssssssssssssssseesessessesssssssssssssssssssssssessens 13
4. EXEMPLARS OF SUCCESS IN CYBERINFRASTRUCTURE SOFTWARE SUSTAINABILITY ......ueeee... 15
4. 1. OPEN SCIENCE GRID.....cuuviiiiiiiureeeeeeiiteeeeeeeesiaeeeeeeeeiaseseeeesitaeeeeeeaetaseeeeeasasseeeeesasseseeeaaareseeseerraseeesannsnseseeeenrareeeeas 15
¥/ 10 & : 36 ) RN 17
G R VN 0 SRR 19
4.4, FINDINGS BASED ON EXAMPLES FROM SUCCESSES IN SUSTAINABILITY ...vvveeeeeeuuereeeeerureeeeeeeinsreeeeseenssereeesensnseseseensneeeens 20
5. CYBERINFRASTRUCTURE SOFTWARE IS INFRASTRUCTURE 21
5.1.  METRICS OF USE OF SOFTWARE AS INFRASTRUCTURE ...uvvvvvvveereeeeeeeeeeeeeeeeeeeeesessssssssssssessesssssseeeeeeseseeseesessssssssssssssssseeees 23
6. DESIGNING FOR SUSTAINABILITY AND REUSABILITY 27
6.1.  EDUCATION FOR SUSTAINABILITY ...eeeeiiiiiieeeeeieseiiisssssussssseeeseseseeeaeeeeesesssesesessssssssssssssssssssssseeeaesessessessesesssssssssssssssssseees 27
6.2. CHARACTERISTICS OF SOFTWARE DEVELOPMENT TEAMS AND PROCESSES TO CREATE SUSTAINABILITY.......cuvvveeeeeenveeeeeenns 28
7. UNDERSTANDING COMMUNITY NEEDS AS A TOOL IN SUSTAINABILITY 31
8. COMING CHANGES IN THE NATURE OF SCIENCE AND SCIENTIFIC REPRODUCIBILITY ............ 33
9. NSF FUNDING BEHAVIORS AND SUSTAINABILITY 37
10. FINAL NOTES 41
11. ACKNOWLEDGEMENTS 43
12. REFERENCES 45
APPENDIX 1: POSITION PAPERS 52
APPENDIX 2: RECOMMENDATIONS 112
APPENDIX 3: PARTICIPANTS 116
APPENDIX 4: PROGRAM 118
APPENDIX 5: POWERPOINT SLIDES 119







1. Executive Summary

The National Science Foundation’s (NSF) strategy
for 21* century innovation depends on creation

of scientific and engineering software to enable
discovery and innovation. The NSF workshop report
“Planning for Cyberinfrastructure Support” states,
“CI [Cyberinfrastructure] changes the rules and
foundations of the research endeavor across much

of NSF. CI software is a new class of artifact that
should be the target of explicit design, construction,
study, and evolution.” [1] During March of 2009,
Indiana University hosted an NSF-funded workshop
on Cyberinfrastructure Software Sustainability and
Reusability to examine the general issues of software
sustainability and consider the question “given
millions of dollars invested in software development,
how will software important to the U.S. research and
engineering communities be identified, maintained,
and supported over years to decades?”

Cyberinfrastructure software is a critical national
asset, and as the NSF pursues its strategies for 21%
century innovation, there is no time better than

the present to more thoroughly understand how to
create and implement multiple sustainable models
for software availability, usability, and provenance
management. Sustainability in this case has two
meanings: first, the need for long-term funding to
develop and maintain the software and second, the
need to create software that lives beyond the proposal
by which its creation is funded.

Commercialization is not always a viable route to
software sustainability. Alternatives such as open
source and community source models for software
creation and maintenance are proving viable for long-
term sustainability of some types of applications.
Some software critical to the U.S. national research
agenda supports a relatively small community, and
thus exists in a variety of less reliable states. When

software developed as part of federally supported
research develops a significant user base and takes
on an important role in enabling discovery, it is vital
to maintain and, where appropriate, extend such
software. The lifecycle of such software should be
conscientiously and actively planned and managed.

Sixty-five participants comprising a diverse and
international group of experts attended the workshop
Cyberinfrastructure Software Sustainability and
Reusability to discuss these and other issues.
Participants examined successful models for
sustainability, such as the Open Science Grid and
Sakai. Open source and community source software
trends were examined, presenting an alternative to
software commercialization. Open source software
management, archival, and preservation solutions
such as SourceForge and Apache were discussed

in depth, along with the problems of sustainability
for the repositories themselves. An examination of
current successful models for sustainability of NSF-
funded science and engineering software revealed
that all develop at least some of their software as
open source. Releasing software as open source is
helpful in enabling sustainability, but not sufficient to
ensure sustainability. (There are many other reasons
to open-source software, including knowledge
transfer, education, validation, and facilitating reuse.

Participants discussed development of
cyberinfrastructure software as part of a research
project and how it differs from professionally
developed commercial software. Software may
acquire status as infrastructure in at least two ways:
someone writes something so useful that it becomes
widely used within a community or across multiple
communities; or software is developed as part of

a plan to provide infrastructure. Recognizing and
addressing the transition that occurs in the first of



these cases, when existing software needs to be
evolved into infrastructure, are particularly important
and unaddressed needs.

Discussion of CI software focused on the realities
of how it is developed today: often by students with
little formal training in software development. It
became clear that projects must be planned with
sustainability and community needs in mind, rather
than created as a means to a research end for a
single researcher in a domain science. Considerable
discussion throughout the workshop centered on
the question, “How can educators assist in the
production of sustainable, reusable software through
better education in computer science and software
engineering?”

The changing relationship between software
sustainability and maintenance and the nature of
scientific reproducibility informed the discussion on
developing processes for life-cycle management of
software, software artifacts, and data. A particularly
important precursor to scientific reproducibility is the
ability to collect and manage the provenance of both
data and software, and more importantly, to manage
the relationships between the two. It is also important
that developers remember that hardware and user
interfaces evolve rapidly. As much as possible,
software should run independent of specific hardware
and should use intuitive interfaces that do not

depend upon extensive knowledge of the operating
environment.

Commercialization is often recommended as one
possible path to software sustainability in general.
However, the overarching theme of this report is the
need for the NSF to directly support some critical
CI software as research infrastructure. Among these
aspects are support for critical basic CI software
functionalities, support for important CI codes that
are foundational to other scientific research, and
support for people who write, maintain, and provide
consulting expertise about such software.

This document reflects the activities, discussions,
and consensus of the two-day workshop and
subsequent research and writing on specific points
raised at the workshop. A two-day workshop is not
a sufficient period of time to discuss, collect data,
find appropriate references, and come to consensus
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on topics as complicated as those addressed

during the course of the workshop. Therefore,

after the workshop was concluded, a small group

of volunteers formed a writing committee and
pursued detailing discussions that took place and
fleshing out analyses of topics that were brought up,
following the spirit of discussion at the workshop. A
penultimate version of this document was circulated
among all attendees at the workshop, who were
asked to endorse the document, suggest changes to
the document, or object to the document in part or
in whole. This generated suggestions that improved
the precision of the document in important ways.
More than two-thirds of the workshop attendees
(other than representatives of federal funding
agencies, who were recused from casting an opinion
on the document) voiced their endorsement of the
document, and none objected. With this outcome,

it seems fair to assert that this document represents
strong consensus of the workshop attendees.

Included in this document are 12 findings and 14
recommendations to the NSF:

Finding 1: A combination of focus on systematic
collection and definition of user requirements and
consistent application of good software engineering
practices are important in enabling the sustained
utility and sustainability of cyberinfrastructure
software.

Finding 2: Because of the importance of
reproducibility of scientific results and the challenges
in maintaining software for small scientific
communities over long periods of time, it is critical
that cyberinfrastructure software be developed and
released using an open source software license
approved by the Open Source Initiative (http://www.
opensource.org/), and that source code be managed
and archived appropriately.

Finding 3: The NSF has generally been funding
cyberinfrastructure software as if it were in the
category of ‘discovery’—funded through competitive
peer-reviewed proposals based on the review criteria
used for discovery proposals.

Finding 4: Cyberinfrastructure software is
infrastructure—in particular, in terms of NSF
strategic goal definition, cyberinfrastructure software
is research infrastructure.



Finding 5: There is some cyberinfrastructure
software that is uniquely or primarily valuable to

the NSF and NSF-funded researchers, in the same
fashion as other unique research infrastructure
funded and sustained by the NSF. A particular piece
of cyberinfrastructure software generally has a longer
lifespan than cyberinfrastructure hardware.

Recommendation 1: When funding software
research and development, the NSF should

put significant emphasis on the use of sound
software engineering practices in evaluation of
proposals and distribution of funding support.

Recommendation 2: A condition of NSF
support for creation and development of any
cyberinfrastructure software should be the
release of software under an open source
license.

Recommendation 3: Using the terminology of
the National Science Foundation’s four strategic
goals outlined in its 2006-2011 strategic plan,
the NSF should create funding mechanisms

that support the ongoing sustainability and
maintenance of cyberinfrastructure software as
Research Infrastructure, employing mechanisms
and evaluation criteria appropriate to Research
Infrastructure rather than Discovery.

Finding 6: When cyberinfrastructure software is
promoted as infrastructure (and/or there are requests
to fund it as such), software should be measured
and evaluated according to metrics relevant to

it as infrastructure per se, such as the number of
researchers who depend on use of such software. It
is appropriate for the NSF to base decisions about
whether or not to support the sustainability and
maintenance of cyberinfrastructure software, and
how much support to provide, on the basis of such
metrics. Independent assessment of quality and
impact should be strongly encouraged.

Finding 7: Much software critical to the work

of NSF-funded researchers is not developed or
maintained in a way that corresponds to its importance
to the science and engineering community. The
science and engineering research community

of the U.S. suffers from the fact that software is

not developed and maintained in a way that is

more sustainable. Behavior change on the part of

developers and funding agencies is required to make
cyberinfrastructure software more sustainable.

Finding 8: Efforts such as those documented in the
2008 Computing Curriculum to emphasize software
engineering education and the Defense Advanced
Research Projects Agency (DARPA)-funded project
to study computational science and engineering are
of considerable help in establishing basic principles
of software engineering methodology and techniques
into computationally oriented scientific disciplines.

Finding 9: The computer science, computational
science, and computationally oriented scientific
disciplines would benefit from the widespread
adoption of one or a very few standard excellent
textbooks or other learning materials in software
engineering.

Recommendation 4: The NSF should support
joint efforts with organizations such as the
Association for Computing Machinery (ACM),
the IEEE Computer Society, or Computing
Research Association (CRA), incorporating
the existing work done via DARPA support,
to facilitate development of interdisciplinary
courses and course materials on software
engineering that are appropriate both for
computational science and for engineering
students who are not computer scientists.

Recommendation 5: All researchers developing
software should do so using good software
engineering practices, even if they intend

to use the software only for themselves, but
particularly if there is reason to believe that

the software might evolve into a longer-lived
infrastructure role.

Recommendation 6: The NSF should establish
and fund processes for collecting community
requirements and planning long-term CI
software roadmaps to support community
research objectives. Such a process may be
informed by, but is distinct from, an enunciation
of grand challenge problems. When the

NSF solicits proposals for software to be
developed intentionally as cyberinfrastructure,
such solicitations should call for funding

for intensive and extensive stakeholder
requirements determination as part of funded
activities.



Recommendation 7: The scientific community
should promote scientific reproducibility. This
can be done by requiring that: the provenance of
software used in scientific research be carefully
tracked and that versions used in particular
experiments be documented in scientific
publications; software, data, and software

and data artifacts used in analyses should be
available for review along with the text of a
scientific publication as part of the peer-review
process prior to publication; and data and
software used in the development of a scientific
publication should be escrowed or archived
where they can be examined and re-verified
when needed.

Recommendation 8: The NSF should require
that data and software used in the development
of a scientific publication based on NSF-funded
research be escrowed or archived where it can
be examined and re-verified as appropriate,

in order to enable robust verification and
reproducibility of scientific findings in the face
of the cyberinfrastructure-dependent research
environment of the 21st century.

Finding 10: Hardware emulation provides an
excellent mechanism for enabling reuse of software
after the hardware on which it was originally run no
longer exists. Unresolved issues remain in terms of
emulating special purpose processors, I/O generally,
and network environments in particular.

Finding 11: User interfaces evolve rapidly over time
and older interfaces are relatively quickly forgotten.

Recommendation 9: Sustainable software
should be built with user interfaces that do

not functionally depend upon the user having
extensive knowledge of the software’s operating
environment.

Finding 12: In some cases, what researchers and
practitioners care about having sustained is not a
particular piece of software but rather a required
capability.

Recommendation 10: The NSF should

be prepared to make decisions to fund a
succession of software, over time, that
provide key required capabilities and in so
doing focus on a limited number of robust

codes maintaining a particular functionality
at any given time.

Recommendation 11: The NSF should create
a funding program to fund CI software
development, hardening, support, and
sustainability. Such a program might be
based on long-term funding for “software
centers” modeled after the existing Science
and Technology Center program.

Recommendation 12: The U.S. research
community should, when feasible, pursue the
model of collaborating within the framework
of a not-for-profit foundation as a way to
maintain and sustain cyberinfrastructure
software development and support.

Recommendation 13: The NSF should
fund empirical studies of software
sustainability efforts, so that the NSF,
other funding agencies, and the science
and engineering community generally
can learn from and build upon real-world
experience in developing and supporting
cyberinfrastructure sustainably.

Recommendation 14: The NSF should
encourage and support the flow of
information between the global open source
community, industry, and academia, focused
particularly on encouraging extensible and
interoperable CI development, through
support for development and maintenance of
software standards when appropriate.



2. Introduction

2.1.  Motivation and Background

The National Science Foundation’s (NSF) strategy

for 21st century innovation depends explicitly on the
creation of new software to enable scientific discovery.
Indeed, the rapid creation of new software is essential
for U.S. research competitiveness in today’s global en-
vironment of intellectual competition. The 2005 NSF
workshop report “Planning for Cyberinfrastructure
Software” states, “CI [Cyberinfrastructure] changes
the rules and foundations of the research endeavor
across much of NSF. CI software is a new class of
artifact that should be the target of explicit design,
construction, study, and evolution” [1]. This 2005
report summarizes key research and makes several
recommendations regarding the creation and coor-
dination of cyberinfrastructure software. Similarly,

the National Science Foundation Cyberinfrastructure
Council document “Cyberinfrastructure Vision for
21st Century Discovery,” published in 2007, discusses
the critical importance of cyberinfrastructure software,
including its hardening and maintenance [2].

“Cyberinfrastructure Vision for 21st Century Discov-
ery” [2] includes an appendix listing dozens

of workshops and reports related to cyberinfrastruc-
ture hardware and software. None addresses cyber-
infrastructure software sustainability as its primary
focus. At present, the U.S. is investing hundreds of
millions of dollars annually in networking and hard-
ware infrastructure, people, and software. The impor-
tance of software to scientific research in simulation
and data analysis is clearly recognized [3]. The NSF
has well-developed plans regarding computational
and networking infrastructure and people. There is
much less clarity on how to make the software com-
ponent of this trio sustainable over time, even though
this is critical to science and engineering research,
development, and delivery.

There are two critical aspects to sustainability. One is
sustaining the activity of software projects so that they
can continue effectively, building functionality and
supporting users over time. A second aspect of sustain-
ability is based on the recognition that sooner or later
activity on most software projects comes to an end.
For scientific research done using such software to be
reproducible, it must be possible to use the software
after active work on the project has ended.

Considering the first aspect of sustainability, when
software developed with support of the NSF or other
federal agencies garners a significant user base and
takes on an important role enabling science and
engineering discovery, it is important to maintain
such software as long as it remains valuable and,
when appropriate, extend it. In this way, software can
be refined and made more robust generally so as to
empower current and future scientists to make new
discoveries. If science performed through use of such
software is to be reproducible, then it must be pos-
sible to reuse software over long periods of time.

Much prior discussion of sustainability has looked

at commercialization and open source software as
two primary approaches to creating sustainability for
cyberinfrastructure software. Commercialization of
software developed as a result of academic research
has been for decades viewed as a beneficial vehicle
for sustainability of technology generally. The Bayh-
Dole Act [4] was created in 1980 with the goal of
enhancing technology transfer from federally-funded
research into the private sector. NSF programs such
as SBIR (Small Business Innovation Research) and
STTR (Small Business Technology Transfer) exist
specifically to promote commercialization. Several
reports since have discussed these efforts in general
including commercialization of software (e.g., [5-7]).
The NSF “Cyberinfrastructure Vision for 21 Century
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Discovery” vision document speaks specifically of
“facilitating the transition of commercially viable
software into the private sector.” The development of
the Netscape web browser and subsequent transition
of web browser technology to the private sector is
perhaps the most dramatic example of the impact

of cyberinfrastructure software commercialization.
Other important scientific software applications
developed initially within universities have been
transitioned successfully into the private sector. Many
examples of this sort of success in commercialization
are found in areas of statistical and mathematical
software (e.g., SPSS [8] and Maple [9]).

When commercialization is a viable route to software
sustainability, there can be widespread benefits to the
public research sector, private research sector, and
U.S. economy. In such cases there are also benefits
to the federal funding agencies that funded the initial
phases of a software project but are not required to
cover the ongoing costs of software maintenance as
a result of commercialization. Commercialization is
not a panacea, however. Courant and Griffiths [10]
identified significant challenges faced by academic
institutions in sustaining their use of commercial
enterprise applications, including concerns about
cost of commercialized software and the ceding of
control from academia to the commercial sector.
Also, particularly as regards cyberinfrastructure
software, some software critical to the scientific
endeavor will never be commercially viable. One
common reason is that the audience for some critical
cyberinfrastructure software is simply too small to
support a commercial software effort. Another is that
the combination of a requirement for a high rate of
change and a high tolerance for low robustness in the
software itself is not compatible with a commercial
software effort.

Alternatives to commercialization, such as the

open source movement, are emerging for long-term
support of software. An excellent general overview
of open source models is given in Weber [11]. The
commercialization of open source software has
been discussed by Karels [12]. Recent symposia
such as the International Federation for Information
Processing [13] testify to growing worldwide
attention to this phenomenon. The Open Source
Software Watch [14] provides an ongoing resource
for open source development projects. Wheeler [15]
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has reviewed recent successes and challenges of
university open source. Community source business
models have been discussed by Perens [16], Gandel
and Wheeler [17], Mann [18], and Valimaki [19].
The overarching theme to many of these articles is
that while there is great merit in the open source
and community source models, there are significant
challenges to maintaining software over the long
term through a strictly open source model.

Open source software of real value to the U.S.
scientific community and important to the U.S.
national research agenda generally exists in states
ranging from “as persistent as the next grant
supporting maintenance” to “supported by the
persistence of a very small community of volunteers”
to “exists only as code stored in SourceForge.” As of
the end of October 2009, SourceForge [20] included
a total of 158,332 projects. Of these, 142,271, or
89.9 percent, were not updated in the 12 months
prior, and 61.5 percent have not been updated in the
past five years. In one sense, SourceForge is doing a
tremendous job of housing open source projects and
preserving the availability of open source software.
However, SourceForge’s success in preserving

open source software creates a challenge for the
scientist. Within such a large collection of software,
it’s challenging to find the right tools, discover
easily which tools have robust support, or identify
which tools enjoy the greatest support among the
communities of practice and virtual organizations
that use them.

The Apache Software Foundation [21] is a

particular example of an open source software
organization that attempts a more comprehensive
management approach than repository services such
as SourceForge. SourceForge’s strength is the wide
variety of tools and services that it provides to support
open source software development. It, however, is
not very discriminating in the projects that it accepts,
and it does not enforce sunsetting or removal of
inactive projects. The Apache Software Foundation,
while providing some hosting capabilities and
infrastructure, is primarily an entity for providing
organizational support for open source software. The
foundation has a board of directors, is a 501(c)(3)
nonprofit organization, and of course has developed
the well-known Apache licenses. By requiring

its member projects to meet and uphold certain



organizational and quality standards, the foundation
has been able to promote the “Apache” brand: it is

a desirable (and obtainable) goal for an open source
effort to become a full-fledged Apache project. The
Apache Software Foundation considers the full life
cycle of software; that is, it also has policies for
handling inactive, retired, and discontinued projects,
which are moved to its graveyard. Projects moved to
the graveyard are preserved and may be reactivated,
but they are otherwise clearly distinguished from the
active projects.

The Linux operating system is maintained and
sustained by a combination of open source
community effort and commercial support through
companies such as RedHat and Novell. Other

open source tools are managed by large hardware
corporations who see support of open source tools as
a part of their corporate strategy.

Wheeler [15, 22] reviewed trends in open source
software and draws out several conclusions. One is
that economies of scale, self-interest of universities,
and effective collaborations can develop, deliver, and
support in the short-to-medium term a wide variety
of software useful in higher education. Wheeler
outlines a taxonomy of possible future scenarios for
sustainability of software within higher education.
The most effective and long-standing case examples,
however, are those tools that are of broad enough
interest to be valuable to many universities in

terms of their institutional function, such as course
management and university financial systems.

For example, the Sakai Foundation [23], which
collaboratively produces a highly successful course
management system, includes as of 2009 a total of
68 academic members and 13 industrial partners, and
is used by more than 160 academic institutions. The
Kuali Foundation [24], which is developing business
process and financial software for universities,
includes a total of 33 academic members and 10
industrial partners. Both are organized as 501(c)(3)
educational nonprofit organizations.

There are two examples of successful use of a
foundation approach to scientific software. One is
the R foundation for Statistical Computing [25],
which sustains the R statistical software package
and is supported by 32 institutions and dozens of
individuals. Another is the HUBzero Consortium

[26], a new initiative that aims to generalize, expand,
and sustain the very successful nanoHUB software
[27, 28]. The HUBzero consortium is creating a
platform that supports use of applications, access

to information, and collaboration for scientific and
educational activities. However, the types of advanced
cyberinfrastructure tools on which the most advanced
research in the U.S. depends are not likely a good
match for the models of success identified by Wheeler.

In addition to the question of how to manage long-
term sustainability of CI software of tremendous yet
narrow scientific importance, there are significant
problems as regards the related question of
reusability and reproducibility: “ten years in the
future, how do I make software program ‘x’ run?”
At a minimum this implies executing the software
on well-defined inputs. Doing this requires either
maintaining hardware platforms (in general not a
viable strategy) or providing hardware emulation
frameworks. Replicating the use of a particular
piece of software implies the ability to replicate
everything that software depends upon, ranging
from libraries and operating systems to compilers.
This raises the practical question of identifying
software dependencies—an area in which RedHat
and Debian have made excellent starts with their
package management software. This does not address
the more difficult problem of what might be called
“environmental dependencies” (e.g., databases that
a package assumes are accessible). There is a very
extensive body of research, largely from the library,
digital library, and archival communities dealing
with digital preservation, provenance, environmental
dependencies, and related matters, although much
of the work has been focused on documents (and

by extension the software used to render them)
rather than the broader area of applications and
infrastructure software preservation. The Coalition
for Networked Information [29] and research
disseminated through the Council on Library and
Information Resources [30] maintain information
covering much of this work on their web sites;
another important resource is the UK Digital Curation
Center hosted at the University of Edinburgh [31].
Still, how a researcher in the future might reproduce
scientific computations done today remains an
important problem not yet generally solved.



There are then three existing models for
sustainability while software is actively used and
serving an important role in the ongoing scientific
discovery enterprise—commercialization, open
source, and community source, none of which seems
to be an ideal solution for the problem of sustaining
cyberinfrastructure software. Commercialization may
be a solution for a narrow set of software. Production
and use of open source software may be an element
of a solution in some cases, but simply saying

“make it open source” is not a solution. Community
and foundation-based approaches are interesting

but yet without much track record overall. Given
important questions regarding cyberinfrastructure
sustainability and no obvious answers, the workshop
on Cyberinfrastructure Software Sustainability

and Reusability was proposed to and funded by

the National Science Foundation to consider these
problems.

2.2.  Preparation for and Execution of the
Workshop

Input for the workshop on Cyberinfrastructure
Software Sustainability and Reusability was solicited
in advance. Brief position papers were solicited
from the cyberinfrastructure community. A total of
20 papers were submitted. These position papers are
included as Appendix 1 of this report. Appendix 2

is a collection of all the specific recommendations
made in these submitted position papers.

The workshop Cyberinfrastructure Software
Sustainability and Reusability was held March 26
and 27, 2009, at the University Place Convention
Center on the Indiana University—Purdue University
Indianapolis campus. A total of 65 participants
attended, along with six Indiana University staff
supporting the workshop. The participants included
two representatives of the NSF.

Workshop participants were invited from a diverse
and international set of experts. In addition, several
individuals and representatives of organizations were
invited to participate in this workshop as a result of
position paper submissions. Appendix 3 of this report
is a list of the attendees. Appendix 4 is the workshop
program. Appendix 5 includes the presentations of
invited plenary speakers.

10

This document reflects the activities, discussions, and
consensus of the two-day workshop and subsequent
research and writing on specific points suggested

at the workshop. A two-day workshop is not a
sufficient period of time to discuss, collect data,

find appropriate references, and come to consensus
on topics as complicated as those addressed

during the course of the workshop. Therefore,

after the workshop was concluded, a small group

of volunteers formed a writing committee and
pursued detailing discussions that were had and
fleshing out analyses of topics that were brought up,
following the spirit of discussion at the workshop. A
penultimate version of this document was circulated
among all attendees at the workshop, who were
asked to endorse the document, suggest changes to
the document, or object to the document in part or
in whole. This generated suggestions that improved
the precision of the document in important ways.
(There were a small number of representatives from
federal agencies present at this workshop. Some of
them made suggestions regarding faculty matters

of this report and aligning the report to the actual
workshop activities. The representatives of federal
agencies were recused from offering a formal
opinion on the document itself so as to not create a
conflict of interest or any appearance thereof). In the
end more than two-thirds of the workshop attendees
voiced their endorsement of the document, and none
objected. With this outcome, it seems fair to claim
this document represents strong consensus of the
workshop attendees.



3. Definitions and Existing Models

For purposes of this workshop report, we adopt the
definition of cyberinfrastructure created for an earlier
workshop conducted jointly by the Coalition for Aca-
demic Scientific Computation and the EDUCAUSE
Campus Cyberinfrastructure committee [32] (this
definition based on one developed earlier at Indiana
University [33]).

Cyberinfrastructure consists of
computational systems, data
and information management,
advanced instruments,
visualization environments,
and people, all linked together
by software and advanced
networks to improve scholarly
productivity and enable
knowledge breakthroughs

and discoveries not otherwise
possible.

There is a particular sense in the use of the term
cyberinfrastructure that is much more narrow than
one might attach to “information technology infra-
structure” or “computer infrastructure.” One of the
reasons that definitions in computer and computa-
tional science are difficult, however, is that software
may be put to many different uses. Webster’s diction-
ary offers the following definition of infrastructure:

The first use of the term cyberinfrastructure seems

to have been in 1998 in a press briefing by Richard
Clarke, then National Coordinator for Security,
Infrastructure Protection, and Counter-Terrorism; and
Jeffrey Hunker, Director of the Critical Infrastructure
Assurance Office [35]. The use of this term really
took off, however, after its inclusion in the 2003
“Report of the National Science Foundation Blue-
Ribbon Advisory Panel on Cyberinfrastructure”
(generally referred to as the Atkins Report) [36]. The
sense of the definition is that of a suite of resources
that work together to enable discovery that is not
achievable at any given time by typical information
technology infrastructure (recognizing that today’s
cutting-edge capabilities will appear routine at some
point in the future).

Cyberinfrastructure software is the software that
enables cyberinfrastructure to function. Like
cyberinfrastructure itself, there is not a precise
definition. The focus of attention for this workshop
centered on grid middleware and other tools that are
at the core of enabling the function of the national
NSF-funded cyberinfrastructure. Middleware
(defined as “A communications layer that allows
applications to interact across hardware and network
environments” [37]), particularly grid middleware
and grid workflow management tools, are at the
center of the spectrum of what could be considered

in-fra-struc-ture [34]

1 : the underlying foundation or basic framework (as of a system or organization)

2 : the permanent installations required for military purposes

3 : the system of public works of a country, state, or region; also: the resources
(as personnel, buildings, or equipment) required for an activity
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cyberinfrastructure software. Recommendations
made in this document regarding NSF funding for
cyberinfrastructure software speak specifically and
primarily about this type of software.

To try to put some bounds on the concept as viewed
by workshop attendees, operating systems at the
base of the software stack are not cyberinfrastructure
software. Operating systems are a very special

case, and their sustainability is a focus of intense,
widespread, and largely successful attention. There
are a number of software applications that clearly
are cyberinfrastructure software—software in

this category includes software such as Condor
[38], the globus toolkit [39], Genesis II [40], MPI
library implementations (MPICH [41] and Open
MPI [42]), CACTUS [43], Pegasus [44], and data-
centric tools such as the Storage Resource Broker
(SRB) [45] and integrated Rule Oriented Data
Systems (iIRODS) [46]. The many software tools
that create the middleware stack used by the Open
Science Grid certainly constitute cyberinfrastructure
software. Math libraries are a special case, but it
seems reasonable to consider BLAS libraries (such
as GotoBLAS [47]) and fast Fourier Transforms

(such as FFTW [48]) as cyberinfrastructure software.

Repository software such as Dspace [49], Fedora

[50], and Eprints [51] could also reasonably be
considered CI software. Software such as Sakai

or R is borderline; one could argue that in many
circumstances they are indeed cyberinfrastructure
software. Programs such as Microsoft Word

[52] and WordPerfect [53] are clearly end-user
applications, not cyberinfrastructure software. Due
to the focus of this workshop, there is relatively little
attention in this report given specifically to science
codes. Indeed, a subsequent workshop on science
application codes may well be warranted.

To the extent that software developers wish to
have their software viewed as cyberinfrastructure
software, and receive funding on that basis, the
metrics and evaluation criteria set forth in this
document should be useful in justifying support for
software as cyberinfrastructure software. Suggestions
regarding education for sustainable software and
development of sustainable software contained
herein should be useful to any and all who develop
software and all who educate future software
developers of all sorts.

3.1.  Definitions of Sustainability

Webster’s dictionary offers the following definitions
of sustain and sustainability:

sus-tain [54]

to give support or relief to

to supply with sustenance : nourish

1:
2:
3 : keep up, prolong
4:

to support the weight of : prop; also : to carry or withstand (a weight or

pressure)

5 : to buoy up <sustained by hope>

6 a : to bear up under b : suffer, undergo <sustained heavy losses>

7 a : to support as true, legal, or just b : to allow or admit as valid <the court

sustained the motion>

8 : to support by adequate proof : confirm <testimony that sustains our con-

tention>

sus-tain-able [55]

1 : capable of being sustained

2 a: of, relating to, or being a method of harvesting or using a resource so
that the resource is not depleted or permanently damaged <sustainable tech-
niques> <sustainable agriculture> b : of or relating to a lifestyle involving
the use of sustainable methods <sustainable society>

12



In terms of cyberinfrastructure software, there are
several different sorts of sustainability and usability
that one might contemplate, as follows:

* Saying that a piece of cyberinfrastructure
software should be sustainable means that it
should be well maintained and kept up to date
(e.g., compiled, tested, and distributed for current
versions of operating systems).

* Saying that a piece of cyberinfrastructure
software should be reusable means that
reasonably trained scientists should be able
to discover the software, find the information
and other software upon which that software is
dependent so as to run and use it for scientific
research, and have access to test suites that
validate that the software is performing as
intended by the authors of the version one is
using. (This corresponds to one of the definitions
of sustainability presented by Jennifer Schopf
in her talk—sustainability as the “ability to
maintain a certain process or state.”)

In a software context, one may reasonably draw a
tight linkage between sustainability and reusability,
in the sense that one aspect of sustainability is
sustainability of the value of code elements and
modules through reusability—the capability to

reuse components, leveraging the initial effort in the
creation of CI software and sustaining the realization
of its value.

3.2.  Existing Models for Sustainability

A brief taxonomy of sustainability models is
presented below, modified slightly from a taxonomy
developed by Hong, presented at a JISC-sponsored
workshop on Models of Sustainability held on 3—4
December 2007 [56] and reported on in [57].

*  Open source variants
o Developers are unpaid volunteers.

o Developers are compensated by
some combination of paid-for
maintenance, book publications,
speaking, and consulting.

o Dual version open source

= A free version is developed
with limited functionality.

= A commercial version
is developed with richer
functionality.

o Development is sustained by an
institution or corporate supporters.

e Community source code sustained by a
foundation

o Developers are mostly paid by
universities that contribute their
time in lieu of alternate costs
for commercial licensing and
maintenance, and a very few
foundation staff help coordinate
distributed design, coding, quality
assurance, and release packaging
work by distributed community
participants.

* Funding agency support

o A software project is sustained
by a variety of interlocking and
intermingled grants—the “grant
mosaic” model of federal funding.

o “Flagship codes” are so important
that it is appropriate to have ongoing
federal funding for a particular major
software application or software
suite.

o Funding of specific work is built
into a project budget, and based
on user needs and distribution of
tokens—e.g., HECToR CSE [58].

e Commercial software

13
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4. Exemplars of Success in Cyberinfrastructure Software Sustainability

As ways to ground discussion of software sustain-
ability in real experience, participants at the Cyberin-
frastructure Software Sustainability and Reusability
workshop discussed several exemplars of success

in software sustainability. Among the exemplars
discussed were the software used by the Open Sci-
ence Grid (OSG), MyProxy, and Sakai, which are
described in greater detail below. These three proj-
ects represent three different sustainability models
as discussed in Section 3.2. OSG is most akin to a
group of user communities who have collectively
selected a set of software of value to them and is
sustaining that set via support from supporting
funding agencies. MyProxy represents support by a
development team under the “grant mosaic” model.
Finally, Sakai represents a community code sustained
by a foundation and used by a group of universities
and colleges, all of whom have interests and needs
largely in common. (Other good examples of soft-
ware sustainability successes are described in some
of the position papers included in Appendix 1, such
as the description of the sustainability and transition
from SRB to iRODS included in the position paper
by Reagan Moore, Arcot Rajasekar, Mike Wan, and
Wayne Schroeder.)

4.1.  Open Science Grid

The Open Science Grid Consortium [59] provides a
multidisciplinary collaboration in support of the com-
puting needs of long-lived physics, as well as other
domain science communities across the Department
of Energy (DOE) and NSF. The Open Science Grid
(OSG) builds, tests, documents, distributes, and sup-
ports more than 60 software packages for its users.
The requests and requirements of the user communi-
ties determine what software is included. Their lack
of use of and need for the software determines when

software is removed. The Open Science Grid Con-
sortium thus sustains an entire software suite, rather
than one or a few particular applications or codes.

The OSG strives to not do software development
outside of utilities to support the distribution, instal-
lation, and configuration of the integrated collections
of software components needed by the users. The
software modules are developed by external groups
and include common open source software (e.g.,
Apache [21]), computer science/engineering devel-
oped middleware (e.g., Condor [38], GUMS [60]),
and peer infrastructure developed software (e.g.,
EGEE gLite [61]).

The OSG Consortium separates the software into two
layers:

* The first is the Virtual Data Toolkit (VDT)
[62] and is system-agnostic. That is, it does not
contain specific configuration required to be
part of a specific distributed system (community
system, campus or national grid).

* The second layer is the OSG software stack [63],
which adds configuration information specific to
OSG, such as the specific Certificate Authorities
trusted by the OSG Consortium.

If there is software deemed useful to include in the
OSG software stack and it needs a small amount
of extension in its functionality, robustness, or
scalability, the OSG may inject short-term effort to
help the software provider do this work.

The OSG Consortium follows the process below for
the life cycle of a software component:

* Collect needs and capability requests from user
communities, including prioritizing and assessing
the common needs.
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e Validate the software for robustness,
completeness, documentation, and impact on
existing software modules.

e Assess the Consortium’s ability to integrate, test,
and provide front-line support for the software.

* Include the software in a (development and
then production) release of the software stack.
This results in the software becoming part of
the build, test, integration, and documentation
environments.

e Plan for a security audit of the software.

* Revisit the use of and need for the software
at each major release of the software stack to
understand whether it is approaching end-of-life.

Based on the OSG’s experience, they have made
several design decisions about the software stack:

*  Binary distributions. The OSG Consortium has
found that building all of the different software is
both complex and slow, so they prefer to do this
on behalf of users. While this can be performed on
a user’s computer, it is complex and error-prone.

*  Configuration tools. The OSG Consortium
provides tools for configuring the software to
work together in specific scenarios. For example,
they provide configuration tools and files to install
specific web applications into Tomcat, to connect
Tomcat with Apache, and to configure specific
security settings across Tomcat and Apache.

*  Packaging of Installation Sets. The OSG
Consortium is transitioning to packaging and
distribution based on native packages such as
RPM Package Manager. This will better match
the user needs for ease and commonality of
installation and configuration with the other
software they use. To date they have been using
Pacman [64], a user-level tool that supports
non-root installations, multiple installations, and
support for a hierarchy of software caches for
different subsets of the available packages.

*  Release Management. The OSG Consortium
follows a process of well-defined production
releases of the software. Site administrators and
user communities can take a while to upgrade to
new versions of the software, especially if they
are in the middle of a long production run. The
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OSG Consortium maintains support for older
releases as needed by the users—though they
prefer to support only two major releases at any
time. The OSG Consortium supports a security
patch and “minor bug” release and installation
process for fixes that must be delivered quickly.
In these cases, they rely on less testing. The OSG
Consortium assesses the risk of reduced testing
versus not getting the patch out and installed, and
adjusts the testing accordingly.

Integrated Build and Testing. The OSG
Consortium has a rich system for integrated
build and testing of the software to better ensure
that the solutions provided by the software will
perform well in terms of performance and impact
on the systems on which they run, and for the
users they support. Each software component

is built for all the platforms they support. The
OSG Consortium relies on the NSF Middleware
Initiative (NMI) Build and Test Facility at the
University of Wisconsin—Madison [65] and the
Metronome software [66] to manage builds. To
support the goal of smoothly integrating software
for users, the Consortium sometimes patches the
software to provide bug fixes or features needed
by OSG stakeholders.

Integrated System Testing. This provides end-
user testing in scenarios that are as close to
production as possible. The OSG Integration
Testbed (ITB) is a grid of 10-20 sites. Each

site donates a small number of computers

and storage to provide a production-like
environment to run grid jobs. End users who
have scientific applications that need to be run
do the testing. This process helps fix problems
before the software is released to production,
gives confidence to users that the software really
works, and assures virtual organizations (VOs)
and production grid sites that it is safe to upgrade
to the new version. This involvement from the
community in testing the software has proven to
be invaluable.

Open source is a requirement. The OSG
Consortium uses only software that is open
source and buildable from source on their
systems. This is necessary to reduce the risk if
the software developer will no longer support the
package. If the software is still in use by OSG



communities, they follow a process to find effort
to support it either internally or as a contribution
from the members of the OSG Consortium.

Key lessons: The Open Science Grid Consortium
maintains a software stack based on use of Open
Source codes. The components of the software

stack are selected and integrated on the basis of the
common needs of more than one user community
(and virtual organization). The OSG Consortium
minimizes the extent to which they develop software,
and has an extensive software integration, testing,
and distribution system. The OSG Consortium uses
only open source software and is prepared to support
and maintain such software if necessary. The value
of this approach is demonstrated by the adoption of
the stack by projects other than the OSG Consortium
itself. Technical leadership is demonstrated by the
willingness of the external software development
groups to accept requirements from OSG and
contribute components to the software stack.

4.2. MpyProxy

MyProxy [67] is an open source software package

that provides an authentication service, primarily for
computational grids and other cyberinfrastructure
utilizing public key infrastructures. It was developed
at the National Center for Supercomputing
Applications (NCSA) in 2000 and has now been
sustained for a decade. It has found broad adoption
across the NSF, DOE, and international communities,
including EGEE [61], EU DataGrid [68], Earth
System Grid [69], FusionGrid [70], LHC Computing
Grid [71], NASA Information Power Grid [72], NCSA
[73], NEESgrid [74], NERSC [75], Open Science Grid
[59], and TeraGrid [76]. It has also had significant
features contributed by developers from the European
DataGrid, University of Virginia, and Lawrence
Berkeley National Laboratory, as well as alternate

(to the initial C-based implementation) language
implementations in Python, Java, PHP, and Perl.

MyProxy is a clear success story for sustained
software. The MyProxy team offers the following
reasons for its success:

*  Clear, user-driven goals. MyProxy was
originally developed to solve a single well-
defined problem: allow web portals to be used
with Public Key Infrastructure (PKI)-based

grids. Additions to MyProxy over the years
have been selected based on well-defined and
justified needs of the user community (and were
often contributed by that community) and lack
of disruption. This means carefully scrutinizing
suggested changes and contributions and
understanding their value and their disruptive
impact before deciding if they should be
incorporated.

Strong, consistent technical leadership. MyProxy
has benefited greatly by having a strong
technical lead (Jim Basney) throughout its life,
coordinating community contributions, ensuring
the consistency of its architecture and processes,
and minimizing any change-related disruption to
the community.

Rapid prototyping and evolutionary design.
MyProxy was designed and developed quickly
by a small team to fill an existing specific user
need rather than by, for example, a standards
committee working on a broad architectural
problem. MyProxy has subsequently evolved
based on user demand to solve a range of
problems. While not excluding the possibility
that other approaches may have worked, the
approach of starting simply and evolving with
careful scrutiny worked well for MyProxy.

Excellent software engineering practices.

o Software engineering, documentation,
bug tracking, nightly builds, and
regression tests. These fundamentals
are necessary, and not to be forgotten,
but also not sufficient for sustaining
software.

o Maintaining backward compatibility
and avoiding change for the sake of
change. There is often great social
pressure to adopt new technology
trends (e.g., web services, REST) or
be seen as antiquated. The MyProxy
team has avoided re-implementation
and other changes in protocol or
application programming interface
(API) when that change didn’t
bring an obvious benefit to the
user community. This contributed
significantly to the fact that MyProxy
has been remarkably backward
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compatible over its 10-year lifetime.

o Maintaining compatibility with
underlying libraries, protocols and
standards. Any software of reasonable
complexity will rely on underlying
libraries and standards. Balanced
with the avoidance of jumping to
new technologies for the sake of
new technologies is maintaining
compatibility with libraries and
standards the software depends on.
Maintaining releases and vulnerability
fixes of those libraries and standards
is often tedious work, but necessary
to maintain trust and usefulness to the
community.

Dissemination and community understanding.
Presentations, publications, and web presence
make sure software is familiar to and understood
by user communities. Much like commercial
products, name recognition is valuable to making
users feel comfortable with software.

Review and Accreditation. Somewhat specific to
security-oriented software, the fact that software
has received external scrutiny and accreditation
makes user communities (and in particular their
operational security staff) more comfortable.
MyProxy received a security assessment from
the University of Wisconsin (via Bart Miller
under NSF/NPACI funding) as well as having
several of its deployments accredited by the
International Grid Trust Federation [77].

Responding promptly and predictably to security
vulnerabilities. Related to the previous point,
quick, effective responses to security issues

are critical for maintaining user confidence.
Predictable responses and coordination are
important, particularly for large production
deployments that typically want quick responses
to vulnerabilities in conjunction with advance
warning of public announcements of those
vulnerabilities.

Encouraging collaborative software
development. Releasing the software as
open source is only the first step to fostering
collaboration and contributions. A simple,
stable, documented software design with an

open source implementation in a well-known
language enables community members to
modify the software to meet their needs. An
open development process that is responsive to
and appreciative of community contributions
encourages community members to contribute
back their changes. If the software is too
complex or cutting-edge or frequently changing
in fundamental ways, it is too difficult or time-
consuming for external developers to participate.
Stable, documented protocols (e.g., [78]) and
APIs encourage developers to incorporate
existing software in their work. Leveraging
existing, well-defined standards (e.g., Transport
Layer Security) and software (e.g., OpenSSL)
aids in fostering collaboration.

*  Funding with emphasis on maintenance. While
MyProxy’s open source status has resulted in a
number of contributions from the community,
the core maintenance of MyProxy has been
made possible only by maintenance-focused
funding. Maintaining software requires a great
deal of familiarity with the software, requiring an
investment in learning by personnel that makes
maintaining staff critical. A typical problem in
the research community is that maintenance
funding is difficult to find. Many current funding
mechanisms reward software creation, but not
maintenance, resulting in proliferation of software
that quickly quits being maintained and becomes
hard to use. MyProxy funding has included a
variety of National Science Foundation sources,
including NCSA, the National Laboratory for
Applied Network Research (NLANR), the NSF
Middleware Initiative (NMI), the Strategic
Technologies for Cyberinfrastructure Program
(STCI), and the TeraGrid. Funding was also
provided by NASA IPG.

Key lessons: A combination of excellent software
engineering practices, strong technical leadership,
and funding for sustainability and maintenance have
enabled MyProxy to be highly valuable and widely
used. MyProxy has benefitted from the need for and
existence of an accreditation process certifying the
functionality of the software, as well as from effective
efforts to disseminate information about the software
and its use.



4.3. Sakai

Sakai [23] is a learning and collaboration software
environment distributed as open source and
supported by a community source license. The
Sakai Project was launched in early 2004 to create

a collaboration and learning environment that could
supersede then-current course management systems
for education and incorporate collaboration tools
for researchers. The project was initially funded

by a $2.4M grant from the Andrew W. Mellon
Foundation and $2.6M of in-kind staff investments
from Indiana University, the University of Michigan,
Massachusetts Institute of Technology, and Stanford
University. The project developed several new
models for software development that blended
elements of directed development and open source
models, though the software code itself was always
distributed under a fully open license (first a BSD-
style Educational Community License (ECL) 1.0,
then the ECL 2.0 that is nearly identical to Apache
save for lesser patent assertions).

By 2009, Sakai was in production use at many
colleges and universities around the world. It had

evolved a thriving developer community and a dozen

Sakai Commercial Affiliates. The software scaled to

production use in serving institutions of over 100,000

users and developed a pipeline of innovative tools to
add on to the core release. Language ports include
Japanese, Chinese, Spanish, and many others. New
tools are exposed to the community as “Contrib,”
meaning they are available for use or improvement.
Tools that mature, demonstrate production quality

at one or more institutions, and garner community
interest are promoted to “Provisional.” Provisional
tools can then be promoted to the Core Sakai release
that goes through a community-based quality
assurance process before release.

While the Sakai software remains freely available to
anyone, the Sakai Project initiated the Sakai Partners
Program in 2004 with 19 additional institutions that
agreed to pay $10,000 per year ($5,000 for small
schools) to help sustain the software and community.

Before the end of the Mellon grant in 2005, Sakai
followed Apache and created the Sakai Foundation
Inc. as a legally incorporated, not-for-profit, 501(c)
(3) tax exempt organization to sustain the software.
The foundation now has over 81 members from

universities and commercial affiliates, and has
distributed nine major releases of the software since
August 2004. The Sakai Foundation operates by a
members-elected board, an executive director, and
a few staff who help coordinate member activity,
quality assurance, and communications.

The Sakai model has been imitated and improved
upon by the Kuali Foundation [24], which develops
administrative system software for higher education.
The practices of Sakai have demonstrated a

path to core infrastructure for collaboration and
learning environments for hundreds of colleges

and universities around the world. It is a far less
expensive option than commercial alternatives, and
has proven to win in head-to-head comparisons [79].

The Sakai community attributes its success to several
lessons that were learned in the rapid genesis of the
project.

e Sakai’s launch software was in production use
at the University of Michigan in the first year of
the project and at Indiana and other sites in year
two. The first 24 months of the project yielded
four major releases with rapid improvement. The
momentum was essential to establish confidence
for institutional adoption relative to more mature
and well-financed commercial options.

* Deep engagement with commercial firms and
treating them as valued and equal members of
the Sakai community were critical in driving
adoption, as commercial firms often led in
marketing and essential communications about
Sakai. They also contributed design and code,
and helped redefine what had otherwise become
a zero-sum vendor game.

e Sakai adopted the licensing practices of the
Apache Foundation, with guidance from
Brian Behlendorf, for Contributor Licensing
Agreements to the Sakai Foundation and then
unified licensing for redistributing the code.

e Sakai developed community processes that
balanced inclusiveness, resources, timing,
and quality in all core processes of design,
development, quality assurance, documentation,
and distribution.
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Key lessons: Creating a lightweight coordination
mechanism—the Sakai Foundation—was essential

to provide a means to aggregate broad community
resources and engagement to evolve the software.

The aggregation of independent efforts across a core
group of key contributing institutions created sufficient
scale in effort and speed in implementation to enable
early practical successes in use. Managing the Sakai
brand to be a globally recognized brand of quality
helped draw additional resources and adoption.

4.4.  Findings Based on Examples from
Successes in Sustainability

From the examples above, from presentations and
discussion at the workshop on Cyberinfrastructure
Software Sustainability and Reusability (see
Appendix 5), and from position papers submitted in
advance, it is possible to draw two initial findings
regarding cyberinfrastructure software sustainability:

Finding 1: A combination of focus on systematic
collection and definition of user requirements and
consistent application of good software engineering
practices are important in enabling the sustained
utility and sustainability of cyberinfrastructure
software.

Finding 2: Because of the importance of
reproducibility of scientific results and the challenges
in maintaining software for small scientific
communities over long periods of time, it is critical
that cyberinfrastructure software be developed and
released using an open source software license
approved by the Open Source Initiative (http://www.
opensource.org/), and that source code be managed
and archived appropriately.
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5. Cyberinfrastructure Software Is Infrastructure

The focus of this report, and the workshop on which advance the frontiers of knowledge, emphasizing

it was based, is cyberinfrastructure software related areas of greatest opportunity and potential benefit
to the mission of the National Science Foundation. and establishing the nation as a global leader in
The NSF’s strategic plan, National Science fundamental and transformational science and
Foundation Investing in America’s Future: Strategic =~ engineering.” Similarly the NSF strategic plan
Plan FY 2006-2011 [80], sets out four interrelated describes “research infrastructure” as “Build[ing]
goals: discovery, learning, research infrastructure, the nation’s research capability through critical

and stewardship, depicted in Figure 1. investments in advanced instrumentation, facilities,

] ) ) cyberinfrastructure and experimental tools.”
In particular, the NSF strategic plan describes

“discovery” as “Foster[ing] research that will

NSF VISION: Advancing discovery, innovation,’and education beyond the frontiers of
current knowledge, and empowering future generations in science and engineering.

MISSION: To promote the progress of sci ce; to advance the national health,
prosperity, and welfare; to secure tional defense (NSF Act of 1950)

l l l l ! !

Strategic Goals

Discovery Learning Research || giawardship
InfraStru cture | Supporting excellence

Advanced instrumentation | in S&E research and
and facilities education

Advancing frontiers H S&E workforce and =
of knowledge scientific literacy

A
A\

Cross-Cutting Objectives

Investment Priorities (by Strategic Goal)

Figure 1. Graphical depiction of the NSF vision and mission, including for strategic goals [80].
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As discussed by Neil P. Chue Hong in his talk

at the workshop, one aspect of the creation of
cyberinfrastructure software is the research and
development of new software, creating new
functionality or substantially improving on
functionality already available. That is very much
a ‘discovery’ process and rightfully funded as
such through traditional peer review by the NSF
or other funding agencies. It is to be expected that
software research and development efforts funded
by the NSF as a discovery process will routinely
produce software that is of great general value, and

particularly valuable as cyberinfrastructure software.

Indeed, we see routinely that software created

via NSF-funded research grants is of tremendous
value to science and engineering research in the
U.S. and globally. Open source software may
deliver value to commercial entities in ways not
initially anticipated, such as use of Condor for cycle
scavenging in commercial settings [81]. However,
the development of software as a research project is
fundamentally different than the transition of such
a research project through hardening to systematic
longer-term support and maintenance of such
software as cyberinfrastructure, and both efforts are
important. As one rule of thumb holds, if developing
software takes x amount of effort, hardening it for
wide distribution will take approximately 3x effort
and maintaining it will take 9x effort [82]. Studies
cited in [83] suggest that the ongoing maintenance
costs (as a proportion of total staff effort over a
period) range between 49% and 75% depending on
the industry. (A variety of very good references on
software support are available at [84]).

When new software has been developed and its
scientific value proved, and funding is requested
for ongoing maintenance, improvement, and
sustainability, then the basis for peer review and
funding decisions for software should shift from
the quality of the research to both the quality

of the software itself and to the quality of the
research the software can help enable. When this
happens, software efforts clearly shift from being a
discovery process to being a process of provisioning
infrastructure.

The two findings presented below follow
directly from the definitions of infrastructure, the
NSF’s depiction of its roles in four categories,
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and examination of solicitations for software
development from the NSF in recent years.
Both were strongly supported by discussion at
the workshop on Cyberinfrastructure Software
Sustainability and Reusability:

Finding 3: The NSF has generally been funding
cyberinfrastructure software as if it were in the
category of ‘discovery’—funded through competitive
peer-reviewed proposals based on the review criteria
used for discovery proposals.

Finding 4: Cyberinfrastructure software is
infrastructure—in particular, in terms of NSF
strategic goal definition, cyberinfrastructure software
is research infrastructure.

Similarly supported by discussion at the workshop,
as well as points made earlier in this report, is the
following finding:

Finding 5: There is some cyberinfrastructure
software that is uniquely or primarily valuable to

the NSF and NSF-funded researchers, in the same
fashion as other unique research infrastructure
funded and sustained by the NSF. A particular piece
of cyberinfrastructure software generally has a longer
lifespan than cyberinfrastructure hardware.

The first two recommendations in this workshop
report derive directly from the first five findings and
the exemplars of success described earlier:

Recommendation 1: When funding software
research and development, the NSF should

put significant emphasis on the use of sound
software engineering practices in evaluation of
proposals and distribution of funding support.

Recommendation 2: A condition of NSF
support for creation and development of any
cyberinfrastructure software should be the
release of software under an open source
license.

Release of software as open source is a requirement
under some specific solicitations from the NSF

and other funding agencies (such as the DOE’s
Scientific Discovery through Advanced Computing
(SciDAC) [85]). As global collaborations become
more and more critical to solving major science and



engineering problems, open source facilitates such
efforts. Global collaborations must, of necessity,
seek common solutions. However, as discussed by
Neil P. Chue Hong, there are a variety of forms of
“free,” and open source software tends to be of the
form “free like a free puppy.” Text cannot do justice
to Dr. Hong’s delivery of this analogy, but the key
points are that open source software projects and
puppies share the following characteristics: both are
often interesting and engaging at first sight; there
are long-term costs; need love and attention; may
lose charm after growing up; occasional cleanups
are required; and many are ultimately abandoned.
The release of software as open source is helpful in
enabling sustainability, but not sufficient to do so
particularly because open source software released in
isolation of other activities only ensures accessibility
of the source code. Availability of software as open
source does not ensure the capability to execute it,
availability of the environment required for it to
function, or possession of knowledge required to
use it. This observation and the findings already
described lead directly to a third recommendation—
the most important specific recommendation in this
entire report:

Recommendation 3: Using the terminology of
the National Science Foundation’s four strategic
goals outlined in its 20062011 strategic plan,
the NSF should create funding mechanisms

that support the ongoing sustainability and
maintenance of cyberinfrastructure software as
Research Infrastructure, employing mechanisms
and evaluation criteria appropriate to Research
Infrastructure rather than Discovery.

5.1.  Metrics of Use of Software as Infrastructure

A key question that arises is how to measure

the extent to which software is and functions

as infrastructure. NSF has not in the past had

a comprehensive approach to evaluation of
software projects, and yet measurement of past
accomplishments and understanding of future plans
are essential in gauging the value of a particular piece
of software as cyberinfrastructure. The workshop
participants developed the following set of metrics
to determine the extent to which cyberinfrastructure
software functions as infrastructure:

*  Audience of users.

o Consider the current number of
distinct users and expected rate of
growth of users.

o Consider the potential user community
and expected growth of potential user
communities.

o Consider what percentage of that
community (from outside the
immediate project team) uses the code.

o Consider both direct and indirect users
(e.g., other code that depends on this
code, and how widely that other code
is used).

*  Group of creators.

o Determine the size of the community
that is expected to contribute to and
maintain the code.

o Determine the breadth of the
community that will continue to
validate and then test the code.

* Licensing terms.

o The software license selected should
offer the greatest opportunity for
collaboration within the research
community over the anticipated
life cycle of a particular project and
beyond the life of a project.

*  Reusability.

o Determine what aspects of the
software build upon existing resources
that also comply with appropriate
licenses as identified above.

o Decide where a particular software
package falls within the Reuse
Readiness Levels [86] defined by the
Goddard Space Flight Center Earth
Science Data Systems Software Reuse
Working Group.

o Determine current or anticipated use
of identifiable (reusable) components
and dependencies.

*  Best practices in software engineering.

o Ongoing development and
maintenance of the code should be
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managed within a formal software
development plan, including
milestones and metrics, and based
on current best practices in software
development.

o Independent reviews and audits of
software development should be
conducted.

*  Functionality of software.

o A test suite should be distributed
with the software to ensure that it is
installed and functioning correctly.

o In addition to simply running,
software should function well.

o Software should make efficient use of
hardware resources.

o In the case of parallel software,
software should scale well.

e Scientific outcomes.

o Determine what scientific outcomes
the software has enabled.

o Determine what publications the
software has enabled, along with
levels of citation and impact ratings
for these publications.

o Determine what major awards (e.g.,
Nobel Prizes) the software has enabled.

To consider cyberinfrastructure software as
infrastructure implies that it is appropriate to measure
it as such, using the criteria identified above and
others as appropriate. These criteria may be set out in
a tabular format as shown on page 25.

Finding 6: When cyberinfrastructure software is
promoted as infrastructure (and/or there are requests
to fund it as such), software should be measured
and evaluated according to metrics relevant to

it as infrastructure per se, such as the number of
researchers who depend on use of such software. It
is appropriate for the NSF to base decisions about
whether or not to support the sustainability and
maintenance of cyberinfrastructure software, and
how much support to provide, on the basis of such
metrics. Independent assessment of quality and
impact should be strongly encouraged.
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A proper and independent assessment of impact
should be a formal and well-funded activity so that
the assessments would stand up to standards of
scientific review and security and process auditing.



Audience

Current

Annual growth rate

Number of users?
Potential user community?

What percentage of the potential user com-
munity (outside of project team) uses the
software?

What other user communities use this soft-
ware?

Creators

Size of community expected to contribute
and maintain software

Size of community that will test and validate
code

License terms

What license terms are used?

Reusability

What is the current Reuse Readiness Level?

What are current and anticipated uses of
software components?

What aspects of the software depend on other
software?

Module

Depends on

License terms of software

depended on

Best practices in software engineering

Is there a formal software development plan?
If so, what software development methodol-
ogy is used?

Are there independent reviews and audits of
software development?

If so, how often?

Software functionality

Is a test suite distributed with the software to
verify proper installation and functionality?

Describe the software’s efficiency, including
parallel scaling efficiency if appropriate.

Scientific outcomes

What publications have been enabled by this
software?

What major awards have been enabled by
this software?
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6. Designing for Sustainability and Reusability

Much discussion at the workshop on
Cyberinfrastructure Software Sustainability and
Reusability focused on the realities of how CI
software is developed today. Much of the coding for
cyberinfrastructure software is done by students who
have little formal training in software development,
and in many cases the development of software

is only a means to a research end in a domain
science. Discussion about design for reusability

and sustainability at the workshop included two
major threads—one was about education for
sustainability and reusability and the other was
about characteristics of code development teams
that promoted sustainability and reusability.

One conclusion from a breakout session was

that the cyberinfrastructure and computational
science research community must be engaged and
encouraged to produce “transition-ready” software.
This idea, other discussions in the workshop, several
presentations, and discussion in breakout sessions are
consistent with and lead to the following finding:

Finding 7: Much software critical to the work

of NSF-funded researchers is not developed

or maintained in a way that corresponds to

its importance to the science and engineering
community. The science and engineering research
community of the U.S. suffers from the fact that
software is not developed and maintained in a way
that is more sustainable. Behavior change on the part
of developers and funding agencies is required to
make cyberinfrastructure software more sustainable.

6.1.  Education for sustainability

Considerable discussion throughout the workshop
on Cyberinfrastructure Software Sustainability and
Reusability centered on the question, “How can

educators assist in the production of sustainable,
reusable software through better education in
computer science and software engineering?”’

The Association for Computing Machinery (ACM)
and IEEE Computer Society Computer Science
Curriculum 2008 [87] emphasizes the increased
importance of education in software engineering
principles and techniques. Software engineering is
the discipline concerned with efficiently building
software systems that satisfy the requirements of
users and customers, and is concerned with all
phases of the software life cycle. The Curriculum
emphasizes including the study of matters such as
basic release management, basic source control
principles, and best practice for developing software
in teams. The Curriculum recommends a minimum of
31 core hours of instruction in software engineering
for computer science and engineering majors,
including coverage of software design; use and
design of APIs, tools, and environments including
source control and configuration management;
validation and testing; and other core topics. In
addition, software engineering is regarded as a
subject applicable to the development of software

in any computing applications domain. The report
makes particular mention of the perceived benefits by
industry of employing students who had contributed
to open source software projects or who had other
major software development experience. A Defense
Advanced Research Projects Agency (DARPA)-
funded project to study Software Engineering

for Computational Science and Engineering [88]
emphasizes the importance of software engineering
in the context of computational science, and has
resulted in a number of relevant publications [89-98].

More generally, the consensus of workshop attendees
was that graduates should matriculate with the
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following concepts and skills (essential for computer
science students, and highly desirable for students

in domain sciences that make extensive use of
cyberinfrastructure):

e  Graduating students should understand that they
will be developing code for a particular purpose
and someone else will be using it. Similarly, they
should have skill in reading and working with
other people’s code.

e  Graduating students should understand that they
will be developing code as part of a team and
will need to interact directly with users. Students
should be able to collaborate with team members
and end users, and be proficient in bi-directional
communication.

e Graduating students should have skill in
gathering requirements and understanding scope
(and managing against scope creep).

*  Graduating students should be able to work
in, and with, a modular framework for code
development and when needed create modular
code structures from scratch.

*  QGraduating students should have experience
with version control, understanding code
dependencies, and backtracking.

*  QGraduating students should have experience with
testing.

Curriculum in software engineering should include
best practices for software engineering. As mentioned
earlier, use of best practices does not imply there

is universal agreement on one best way to engineer
software. Rather, there are several current contenders
for best practices; use of one and awareness of the
existence of others are extremely important.

Students who deal with software in computationally
intensive sciences, but who are not programming
students themselves, should be required to take a
course in the basics of software management such
as Software Carpentry [99, 100]. This course covers
important and critical basic matters such as version
control. Much as a large fraction of the increase in
life expectancy in the past 200 years is based on
very simple measures such as ensuring clean water
and sanitation [101], uniform use of very basic

and widely agreed-upon best practices in software

28

engineering would enable considerable improvement
in overall scientific practice related to software
engineering. Discussions at and after the workshop
led to two clear findings:

Finding 8: Efforts such as those documented in the
2008 Computing Curriculum to emphasize software
engineering education and the Defense Advanced
Research Projects Agency (DARPA)-funded project
to study computational science and engineering are
of considerable help in establishing basic principles
of software engineering methodology and techniques
into computationally oriented scientific disciplines.

Finding 9: The computer science, computational
science, and computationally oriented scientific
disciplines would benefit from the widespread
adoption of one or a very few standard excellent
textbooks or other learning materials in software
engineering.

Recommendation 4: The NSF should support
joint efforts with organizations such as

the Association for Computing Machinery
(ACM), the IEEE Computer Society, or
Computing Research Association (CRA),
incorporating the existing work done via
DARPA support, to facilitate development of
interdisciplinary courses and course materials
on software engineering that are appropriate
for computational science and for engineering
students who are not computer scientists.

6.2.  Characteristics of software development
teams and processes to create sustainability

Through many discussions of the characteristics of
programming teams and team behaviors, several
consistent threads emerged. There was clear consensus
that the following behaviors characterize leader and
team behaviors and software development processes,
engendering sustainability over the long run:

*  The project should be planned with sustainability
in mind. While this may involve many aspects
of project management, particularly important
aspects include the following:

o There should be a project manager, and
the project manager should have a vision
for the project and for good architecture.



o A formal plan for personnel resources,
including succession plans for project
leaders, should exist. Ideally, a software
project should be so well documented
and planned that it is portable—that is, it
could be picked up from one group and
moved to a different group for continued
maintenance and/or development.

o There should be a documented needs
analysis and evidence of evaluation of
existing codes on which to build.

o There should be plans for software
adoption as well as software
development.

Everyone on the project should start off their
involvement knowing they are developing
software intended to be sustainable over the long
haul—which implies that it will be someday
sustained by people other than those doing
coding at any particular time.

Some specific software development
methodology should be used. While best
practices in software architecture and
development may change over time, workshop
attendees concurred that the biggest quality
difference is between software developed
within some specific development methodology
and coding done without reference to some
development methodology. Software should

be developed within some reasonable software
development and testing practice, and any of
the widely recognized software development
methodologies in use today are better than
development in absence of a software
development methodology. Key characteristics of
software methodologies include:

o Code development must include use of a
source control management system.

o A project should employ an open,
transparent architecture. It should
be easy to comprehend and easy to
assimilate by new leadership. This
openness should cover all aspects.

o Risk should be evaluated and managed;
cyberinfrastructure software should
generally be lower risk, which is counter
to the current preference of many
researchers.

o Code should be clearly documented with
up-to-date and accurate documentation
of the software itself and dependencies
on other software.

o Software should be maintained and
released with some sort of schedule
and formal release procedure, including
management of provenance of the
code. Schedules for releases should be
based on estimations of effort required,
resources available, and statements of
improvements needed. There should be a
commitment to correct bugs in previous
releases back to a certain version (at least
one version back from current). There
should similarly be a formal process and
plan for ending the time during which
the code is formally maintained.

o Whenever possible, software should
comply with relevant standards and be
vendor agnostic.

¢ Software should be developed with clearly
documented Application Program Interfaces
(APIs).

*  There should be a plan for promoting adoption
of the software as well as the development of the
software.

o The project should include ongoing
evaluation of the software. Formal
surveys of users of the software—
including questions about the software
itself, software support by the group
supporting it, and solicitation of
suggestions for improvements and new
features—should be included as part of
such a survey.

There was considerable discussion of those behavior
characteristics that do not promote sustainability. A
general behavior offered as a stereotype—perhaps
sometimes unfair but not always—is the academic
researcher who wants to jump into coding to solve
some research problem and publish as quickly as
possible. There was clear agreement that designing
for sustainability begins with the project leader
responsible for a software project. A critical early
decision point is whether a software developer (or
developer team leader) is developing for her/himself
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alone, or intends to develop a tool with a broader
user base. Of course, critical problems arise when
someone intends to develop tools for themselves and
then the software turns out to be of much broader
use. Therefore, there was consensus on the following
general recommendation on software development:

Recommendation 5: All researchers developing
software should do so using good software
engineering practices, even if they intend

to use the software only for themselves, but
particularly if there is reason to believe that
the software might evolve into a longer-lived
infrastructure role.

This recommendation is perfectly consistent with
text in the NSF “Cyberinfrastructure Vision for

21% Century Discovery,” [2]: “NSF will promote

the incorporation of sound software engineering
approaches in existing widely-used research codes
and in the development of new research codes.” This
recommendation goes against the natural tendency
to just dive into a problem and start coding. We

are, quite specifically, suggesting that extra effort

be invested early in structuring any code. This is
done in the belief that the net impact on individual
researchers and on the science and engineering
community will be positive. It is, going back to the
software carpentry analogy, more than a bit like
ensuring that beams in a house under construction be
squared up before they are nailed in place. Whether
such a house is used by one or many, the initial effort
is in the long run worthwhile. So it is with good
software structure and development practices.
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7. Understanding Community Needs as a Tool in Sustainability

Software may acquire status as infrastructure in at
least two ways: someone writes something so useful
that it becomes widely used within a community

or across multiple communities; or software is
developed as part of a plan to provide infrastructure.
Both middleware and application software may
acquire status as CI software infrastructure. For
example, middleware such as Condor or Globus are
clearly middleware and CI software infrastructure.
However, applications such as mathematics libraries,
Sakai, Kuali, and LS-DYNA [102] may well be
viewed as cyberinfrastructure software by segments
of their user community. Throughout the workshop
there was clear consensus on the value of and

need for more focus on the gathering of needs and
requirements as part of the software development and
maturation process.

Indeed, while Recommendation 5 says in essence
that the concept of good ideas without good software
engineering is not sustainable, the opposite is also
true—good software engineering practices with
insufficient input from the researchers who will use
the software is also not sustainable.

A focus on community needs runs through the
success stories described in section 4. Other
examples of current projects with a focus on
community inputs include CaBIG [103], iPlant [104],
and the Ocean Observatories Initiative [105]. These
grants include the collection of community input

as an activity funded explicitly within the grants

that support cyberinfrastructure software. While it

is too early to determine the long-term success of
any of these projects, we believe the focus on NSF-
funded elicitation of community needs constitutes an
example that should be replicated whenever possible.
Investment early on in defining community needs
formally should result in software that better meets

community needs overall, and better effectiveness in
use of funds available to support the national science
and engineering research community that depends
upon cyberinfrastructure software.

Recommendation 6: The NSF should establish
and fund processes for collecting community
requirements and planning long-term CI
software roadmaps to support community
research objectives. Such a process may be
informed by, but is distinct from, an enunciation
of grand challenge problems. When the

NSF solicits proposals for software to be
developed intentionally as cyberinfrastructure,
such solicitations should call for funding

for intensive and extensive stakeholder
requirements determination as part of funded
activities.
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8.  Coming Changes in the Nature of Science and Scientific Reproducibility

There was considerable discussion of the relationship
between software sustainability and maintenance

on the one hand and the nature of scientific research
as regards software and reproducibility on the other
hand. This discussion was informed particularly by

a talk by Clifford Lynch, who contended that we are
facing “fundamental methodological change in the
practice of science” [106—108].

Lynch described at some length new steps taken

by Science in 2006 following the submission and
subsequent retraction of two fraudulent scientific
papers. An external committee studied the process
through which the fraudulent papers were vetted.
Science followed a review process similar to that of
other scientific journals, but the process was flawed.
The committee recommended that Science strengthen
its review procedures, particularly for papers of
high public interest, those presenting unexpected
results, and those that are potentially controversial.
Some actions Science subsequently considered

for high-risk papers include implementing higher
standards for including primary data, requiring clear
specification of author roles, and intense evaluation
of digital images. Additionally, Science committed
to developing criteria for a “risk assessment”
template. This level of review may be successful for
the rare case of scientific fraud. Much less onerous
emotionally, and perhaps more difficult, are detecting
and dealing with the impact of errors in software
functionality created without ill intent and not noted
by the software creators or users at the time a result
based on that software is published.

We currently have no way (as Clifford Lynch put

it) to “walk the cat backwards” and deal with the
domino effect that takes place when software is
documented to have some sort of problem or produce
some sort of incorrect result. In a very different

ethical context, we have processes for dealing with
the domino effect of a paper being withdrawn as a
result of falsification of data. Clifford Lynch laid out
a set of recommendations indicating that we should
develop processes for review of software, software
artifacts, and data to prevent problems, and also to
enable reanalysis of data when software is determined
to have had some sort of fault. In particular, the
following recommendations were made:

Recommendation 7: The scientific community
should promote scientific reproducibility. This
can be done by requiring that: the provenance of
software used in scientific research be carefully
tracked and that versions used in particular
experiments be documented in scientific
publications; software, data, and software

and data artifacts used in analyses should be
available for review along with the text of a
scientific publication as part of the peer-review
process prior to publication; and data and
software used in the development of a scientific
publication should be escrowed or archived
where they can be examined and re-verified
when needed.

It is particularly important for scientific
reproducibility to manage the preservation and
provenance of data and software together. It should
be noted that provenance collection is still an active
research area though the provenance community is
making rapid strides for instance through agreement
on an Open Provenance Model [109]. In this regard,
a stronger form of the above recommendation can be
made specifically for NSF-funded research:

Recommendation 8: The NSF should require
that data and software used in the development
of a scientific publication based on NSF-funded
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research be escrowed or archived where it can
be examined and re-verified as appropriate,

in order to enable robust verification and
reproducibility of scientific findings in the face
of the cyberinfrastructure-dependent research
environment of the 21st century.

Here we are making a recommendation that applies
to cyberinfrastructure software, but is also applicable
beyond cyberinfrastructure software to any science
application software. Because of the complexity

of cyberinfrastructure software, it may be that
reproducibility of the underlying cyberinfrastructure
software is the more difficult part of the problem

to solve. Examples of current efforts to enable the
archiving and reuse of cyberinfrastructure-based
research include nanoHUB [110], Programmableweb.
com [111], and myexperiment.org [112]. Indeed, the
NSF-funded DataNet program may develop some of
the technology needed to begin creating something
akin to a national system of “libraries of scientific
data, software, and data artifacts.”

Another issue related to reproducibility is the fact
that software generally outlives hardware; thus, a
particular piece of software may well be available
long after the end of the life span of the particular
system for which it was written. Long-term
preservation of software can be achieved without the
original hardware by either emulating the original
hardware or migrating the software to a contemporary
hardware/software platform. The latter strategy
requires a high ongoing expense to port programs
and libraries as well as access to the required source
code. In contrast, hardware emulation is a proven
technology with broad applicability.

Hardware emulation simulates a hardware platform,
including the processor and input/output (I/0)
devices, in such a way that an operating system and
application software can perform as if executing

on the hardware itself. Instruction-set simulation
does not typically impose a significant performance
burden. Techniques such as on-the-fly translation
of instructions have been successfully implemented
with excellent performance [113] and form the basis
of at least one x86 “clone” [114]. In fact, prior to
recent additions to the x86 architecture to support
virtualization, some instruction-set translation was
required to support x86 guests on x86 hosts [115].
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Virtualization provides an additional layer of
abstraction. For example, the Amazon Elastic
Compute Cloud (EC2) [116] utilizes virtualization to
deliver compute services, and many IT organizations
utilize virtualization to deliver core services such

as email and web servers. Virtualization software is
available both in open-source and commercial forms.
Examples of commercial virtualization platforms
include VMWare [117], Xen [118], and Parallels
[119], while open-source tools include Qemu

[120], Bochs [121], and Plex86 [122]. In practice,
virtualization is a special case of emulation in which
the processor instruction sets of the emulation
platform (host) and the emulated machine (guest) are
sufficiently well matched that little instruction-set
simulation is required. The fundamental challenge for
implementing virtualization is in emulating the I/O
devices such as graphics and networking hardware.
A good summary of some of these issues is available
in [123].

While emulation is a viable and widely deployed
technology that can provide reproducibility of
results (other than performance analyses per se),
there are two fundamental limitations—technical
and social—that must be addressed in the context
of software sustainability. First, as noted above, the
“difficult” issue with emulation is preserving the
I/O mechanisms including networking. All existing
virtualizations provide a core set of relatively generic
video, storage, and networking devices. Software
that depends upon specific and unusual I/O devices,
for example, programs that directly access high-
performance graphics processing units, are not
supported by existing emulation platforms and are
unlikely to be in the future. This is because such
devices achieve their performance through special-
purpose hardware that cannot be simulated with
reasonable performance. However, such hardware
dependencies also make this software difficult

to port to new platforms. Also, the ever-growing
use of highly parallel machines raises significant
reproducibility problems that become much more
severe in emulation or virtualization situations.

As regards the social limitation, many programs
implicitly rely upon contemporary user interfaces
for access. For example, it is unlikely that many
users today remain facile in their interaction with
MS-DOS. A possible solution for sustaining legacy



software is to utilize scripts in an emulation to
simplify this interaction for contemporary users
[124].

This discussion leads directly to two findings and one
recommendation:

Finding 10: Hardware emulation provides an
excellent mechanism for enabling reuse of software
after the hardware on which it was originally run no
longer exists. Unresolved issues remain in terms of
emulating special purpose processors, [/O generally,
and network environments in particular.

The chances of future reproducibility of software are
increased by developing software to use well-defined
and portable APIs rather than accessing platform
specific hardware directly. This will not always

be possible, for example in cases of extremely
performance-intensive applications or novel
architectures.

Finding 11: User interfaces evolve rapidly over time
and older interfaces are relatively quickly forgotten.

Recommendation 9: Sustainable software
should be built with user interfaces that do

not functionally depend upon the user having
extensive knowledge of the software’s operating
environment.

A final point on software: it is clear that data have a
life cycle. Software does as well. Attention tends to
focus on the early parts of the life cycle, when the
software is still actively being used, maintained, and
enhanced. It is equally important to pay attention to
the latter part of the life cycle, when use is tapering
off and eventually ends, and to ensure that at this
point software is archived in appropriate ways and
for appropriate lengths of time (though, as with data,
not necessarily in perpetuity).
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9. NSF Funding Behaviors and Sustainability

Throughout the workshop on Cyberinfrastructure
Software Sustainability and Reusability there were
discussions of what it is that is valuable to sustain.
There are at least three types of entities that are
valuable to sustain over time as part of software
sustainability and reusability: functionality, software,
and people.

For example, authentication and file transfer are
treated largely as capabilities. Researchers on
average care more about getting the tasks done than
about how they are done. Discussion in plenary and
breakout sessions supported the following finding
and recommendation:

Finding 12: In some cases, what researchers and
practitioners care about having sustained is not a
particular piece of software but rather a required
capability.

Recommendation 10: The NSF should be
prepared to make decisions to fund a succession
of software, over time, that provide key required
capabilities and in so doing focus on a limited
number of robust codes maintaining a particular
functionality at any given time.

It was suggested at the workshop that the NSF
should be prepared to fund fewer experimental
discovery projects in computer science software
development and make fewer but larger awards,
driving computer scientists more toward creating
one solution to solve community needs by
writing software for the community of users
more and writing software as a matter of personal
experimentation less. While certain challenges
inherent in this approach were noted, there was
also a good bit of support for this general approach.
This is consistent with one of the key conclusions
of Neil P. Chue Hong’s talk—that increasing

utilization of a particular piece of software is a key
to sustainability.

Drawing specifically from the talks by Neil P. Chue
Hong and Brad Wheeler, it is possible to identify an
order in the development of software—not one that
is universally followed, but one that characterizes the
development of software:

* Funding as a research project
* Heroic research

* Everyday research

*  Production use

* Sustainability (through a variety of possible
means)

A clear undercurrent in discussions throughout the
workshop was the belief that commercialization is
not a viable path for sustainability of many sorts of
cyberinfrastructure software critical to U.S. national
competitiveness and NSF-funded science and
engineering research. The general success rate of past
efforts to commercialize such software—in some
cases software well engineered and heavily used in
scientific research—supports this. Some software
essential to the NSF mission must be sustained by
paths other than commercialization.

Other entities beyond software functionality must be
sustained over the long run to support an innovative
and effective national cyberinfrastructure. It is a
common observation that graduate students and
postdoctoral fellows are often used to write code

as a seemingly cheaper alternative to professional
programmers—cheaper perhaps in the short run and
perhaps not in the long run, due to the costs over the
long haul of using code not well engineered and not
designed for reusability. In fact, it is very difficult
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to measure the real cost of software development
because much cost is hidden in the use of students
and postdoctoral fellows to write code. One of

the entities that the U.S. science and engineering
community should sustain and maintain is expertise
in the science and engineering software development
community. Craig Stewart testified at a hearing of the
House Science and Technology Committee in July
2008 [125], on behalf of the Coalition for Academic
Scientific Computation (CASC), and spoke
specifically on this point. Stewart said:

“Without strong, continued, and
consistent investment in networking and
information technology (NIT), the U.S.
will not have the administrative and
technical leadership to support consistent
and directed change. Government
investment in NIT will be of greatest
value if there is consistency in levels

of investment over time. The men and
women who execute the national NIT
agenda represent a tremendous store of
experience, skill, and knowledge. The
uniform experience of CASC members
is that when there are strong variations
in funding in specific areas of NIT

over time, lean times for particular

areas of research in NIT cause skilled
professionals to leave public sector

NIT research. This means that years

of investment by the government in
developing a knowledge and experience
base in individuals who desire to pursue
a career in the public service sector are
lost to the public sector, not to return
even when funding for particular areas

is subsequently restored. U.S. global
competitiveness, innovation, and
homeland security are thus best served by
consistent and strong investment in basic
NIT research; advanced NIT facilities

to support advanced research and
development in science, engineering, and
technology; and research in developing
and delivering the next generation of such
advanced NIT facilities.”
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There was also clear and unambiguous emphasis
throughout discussion at the workshop on the value
of support for use of software, by knowledgeable
experts, as a key part of sustaining software. There
are three intertwined concerns: supporting the
sustainability of software itself; supporting the

use of said software; and supporting professional
code developers and support personnel. The

report “Understanding Infrastructure: Dynamics,
Tensions, and Design” [126] was the final report of
an NSF-funded workshop on “History & Theory
of Infrastructure: Lessons for New Scientific
Cyberinfrastructures.” This report states, “robust
cyberinfrastructure will develop only when social,
organizational, and cultural issues are resolved

in tandem with the creation of technology-based
services. Sustained and proactive attention to these
concerns will be critical to long-term success.”

Direct support from NSF for cyberinfrastructure
software seems well within scope of NSF activities
described in the “Cyberinfrastructure Vision for
21% Century Discovery” [2], which includes within
its mission for cyberinfrastructure the following
activities:

*  “Provide the science and engineering
communities with access to world-class CI tools
and services, including those focused on: high
performance computing; data, data analysis and
visualization; networked resources and virtual
organizations; and learning and workforce
development.

e “Provide a sustainable CI that is secure, efficient,
reliable, accessible, usable, and interoperable,
and that evolves as an essential national
infrastructure for conducting science and
engineering research and education.

*  “Create a stable but extensible CI environment
that enables the research and education
communities to contribute to the agency’s
statutory mission.”

Such direct support by the NSF would also be within
the letter and spirit of recommendations made in the
2000 President’s Information Technology Advisory
Committee report on open source software and high
end computing [127].



While the issues of sustaining software, sustaining
personnel and organizational expertise, and support
for software are necessarily conflated to a significant
extent, it is possible to make one recommendation
that addresses sustainability of functionality,
software, people, and usability:

Recommendation 11: The NSF should create
a funding program to fund CI software
development, hardening, support, and
sustainability. Such a program might be based
on long-term funding for “software centers”
modeled after the existing Science and
Technology Center program.

Using the example of the Commissioned Software
Programme of the Open Middleware Infrastructure
Institute (OMII) discussed by Neil P. Chue Hong,
such centers could manage effort and priorities in
part on the basis of “effort tokens.” A token implies
the application of a certain amount of effort on the
part of the software development program, with
funding built into the budget to fulfill such promises.
Effort tokens are then awarded by the funding agency
to users of the software. This approach drives a
user-centric focus to the maintenance, sustainability,
and further development of software. This approach
would offer improved predictability of funding for
personnel and expert support for users, in addition to
sustainability of cyberinfrastructure software itself.

At the same time, support from the NSF cannot

be the only vehicle for sustaining software.
Cyberinfrastructure development projects can likely
benefit from the foundation community model

used widely as regards operating system software
development, the Sakai and R foundations, and

the promising start of the HUBzero consortium.
Foundations create entities, separate from individual
projects, that can exhibit considerable longevity.
There is the initial cost of creating a charter,
organizing documents, and establishment of a

legal entity. At the same time, such a foundation
established as a legal entity may have a higher
likelihood of being sustainable as a result of the
existence of and ability to interact with a foundation
rather than ad hoc interactions among a population of
loosely related projects. This leads to the following
recommendation:

Recommendation 12: The U.S. research
community should, when feasible, pursue the
model of collaborating within the framework of
a not-for-profit foundation as a way to maintain
and sustain cyberinfrastructure software
development and support.

Early examples of a foundation approach, rooted in
the common interests of collaborating institutions

of higher education, have been promising. New
foundations built around specific themes may follow
the promising examples of the Apache, R, Sakai, and
HUBzero organizations. Such foundations would not
necessarily have to run their own code repositories;
new foundations might conceivably use the Apache
foundation software repository for that purpose.

More ambitiously, it might be possible that
universities could band together to create a more
general programming foundation. Many speakers
and participants at the workshop made note of the
fact that the scientists who develop software as part
of their research activities may not want to take

on the role of ongoing software maintainers and
supporters. A more general university collaboration
could create something like the ‘Educore’ service
proposed by Fuchs [128]. Specifically, Fuchs called
for a collaborative university-funded organization
that would “...coordinate the development and
maintenance of open source for the benefit of higher
education.” Such an organization would provide
scientists who create innovative and useful software
an organization that could take on the ongoing
software sustainability and support tasks.

Recommendations 12 and 13, and Fuch’s suggestion
for an ‘Educore’ program, are all consistent with text
included in the NSF “Cyberinfrastructure Vision for

21% Century Discovery,” [2] specifically:

“The software provider community will be a

source for: applied research and development of
supporting technologies; harvesting promising
supporting software technologies from the research
communities; performing scalability/reliability tests
to explore software viability; developing, hardening
and maintaining software where necessary; and
facilitating the transition of commercially viable
software into the private sector. It is anticipated that
this community will also support general software
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engineering consulting services for science and
engineering applications, and will provide software
engineering consulting support to individual
researchers and research and education teams as
necessary.”

Last, and definitely not least, it is important to
recognize that software sustainability is in some
sense still a national and international social,
scientific, and financial experiment. As discussed at
the workshop, and particularly as recommended by
Clifford Lynch, a final recommendation arises for the
NSF as regards funding:

Recommendation 13: The NSF should fund
empirical studies of software sustainability
efforts, so that the NSF, other funding agencies,
and the science and engineering community
generally can learn from and build upon real-
world experience in developing and supporting
cyberinfrastructure sustainably.

Such studies should specifically address return on
investment, and may well need to take place over
the course of several years so as to have sufficient
perspective and data to allow the correct, long-term
conclusions to be drawn.
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10. Final Notes

There was considerable discussion throughout the
workshop of position papers submitted in advance,
presentations, and ideas brought up in discussion.

Each presenter’s slides are included in Appendix 5.

All of the position papers submitted in preparation
for the workshop on Cyberinfrastructure Software
Sustainability and Reusability are included as part
of Appendix 1. The recommendations contained
in each position paper are collated as Appendix

2. Ultimately it was not possible to have a
comprehensive discussion of each position paper

and the recommendations each contained. However,

an online poll was taken during the course of the
workshop to ascertain which recommendations
workshop participants viewed as most important.

The 10 most popular recommendations from the
position papers were as follows:

1. A free flow of information between the global

open source community, industry, and academia
should be created. Extensible and interoperable

CI development should be encouraged.

2. The NSF should establish evaluation criteria
and funding mechanisms that support
software development, release, and life-cycle
improvement. This is particularly critical for
relatively lower-use software that is essential
to the nation’s eScience objectives but which
may not initially have a broad user base or

immediate commercial potential. Funding should

be provided to support software development

technologies including repositories user mailing

lists, bug-tracking, and testing.

3. Funding agencies should award grants to
software development after the research phase
is done, to sponsor long-term sustainable
development.

10.

The open source community software should
be supported through investments of time from
developers and monies from grants.

The NSF should permit funding for software
incubation, development, and support to be
included in future CI proposals, in particular
those proposals that are directed at the
development of community-oriented CI products
such as, but not limited to, innovative parallel
libraries, domain-specific grid “stacks,” storage
management, collaboration tools, visualization
(including remote visualization), and portal
components.

Advance discussions on software interoperability
and dissemination should be aggressively
encouraged.

The same level of detailed oversight should

be used for software licensing/development
awards as is used for hardware procurement and
installation.

The NSF should invest heavily in infrastructure
that facilitates collaboration for researchers and
sharing of data tools and results.

Agencies should strive to create user and
developer communities around software, as
they are just as important as the actual software
development project.

Software infrastructure projects in particular
should use the open source model.

All of these recommendations are addressed

either explicitly or implicitly in recommendations
already stated in this workshop report except
two—the number 1 and number 6 most supported
recommendations. Thus, a final recommendation in
this workshop report embodies the sense of both of
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these recommendations, and discussion related to
them during the course of the workshop:

Recommendation 14.: The NSF should
encourage and support the flow of
information between the global open-source
community, industry, and academia, focused
particularly on encouraging extensible and
interoperable CI development, through
support for development and maintenance of
software standards when appropriate.

Finally, at the workshop and in subsequent discussion
of draft reports via email there were several
important themes and in some cases interesting
discussions which garnered significant support but
not general consensus. Among these points were the
following:

*  Workshop participants expressed
interest in additional reports and/or
workshops on the particular issues
of domain science codes and their
sustainability.

e Workshop participants expressed
interest in additional reports and/or
workshops on the particular role of
international collaborations as a tool
toward software sustainability, and
other approaches to sustainability
of interest in communities beyond
the NSF and the U.S. science and
engineering community.

* There was considerable discussion
of much stronger recommendations
about computer science and/or
software engineering requirements
for students in domain sciences.
Workshop participants were not able
to arrive at general consensus on a
stronger wording, however.
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A Framework for NSF Cyberinfrastructure Software Oversight

By: David A. Lifka (litka@cac.cornell.edu)

Director, Cornell Center for Advanced Computing

Adj. Associate Professor, Computing and Information Science, Cornell University

Introduction

To become a national TeraGrid resource provider an
institution must be able to demonstrate the intellectual
merit and the broader impacts that will result from the
availability of their proposed computational, visual-
ization or data analysis resource. Intellectual merit for
most TeraGrid resource providers to date has been re-
lated to providing resources of unprecedented compu-
tational scale in order to enable world class research
never before possible. In order to accomplish this
goal, budgets have predominantly focused more on
systems acquisition and operations than on maximiz-
ing the availability of software, tools and new usage
paradigms. As a result, the users of TeraGrid resources
are a relatively modest-sized community of “super-
scientists” that are not only leaders in their respective
fields, but outstanding computational scientists and
computer programmers. These super-scientists have
made great breakthroughs over the past two decades
due their high level of technical sophistication and the
availability of national resources. Unfortunately, their
level of computing expertise is not typical of many
scientists and engineers in our country. A renewed
focus by the national HPC community on software
needs and new usage paradigms has the potential to
bring the benefits of high-performance computing to
many more scientists and engineers and, consequent-
ly, increase the impact of TeraGrid resources on U.S.
scientific insight and discovery.

As the nation prepares for the TeraGrid “eXtreme
Digital” future, establishing an independent, unbiased
national software oversight committee focused on
meeting the requirements of a much broader national
science community could revitalize the nation’s inter-
est in computational science and enable researchers
to secure maximum advantage from the world class
resources to be deployed.
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Critical Considerations

Software budgets are typically based on a resource
provider’s best attempt to provide a balanced solution
for the general user community. As a result, common
tools needed by many researchers are often not avail-
able on TeraGrid resources. The gating cost factors for
software include:

Licensing Costs: Pricing models for commercial soft-
ware are often prohibitive especially when applied to
the scale of TeraGrid resources.

Support & Maintenance Costs: Both commercial
and Open Source Software (OSS) solutions have on-
going software and maintenance costs. Relying on the
TeraGrid community to provide support for special-
ized packages has significant staffing implications.
Relying on the community for support and mainte-
nance can produce mixed results in terms of timeli-
ness, quality, and sustainability.

Development Costs: Funding the development of
software is expensive in terms of direct cost or staff
time and often fraught with risk. When funds are
awarded for the installation of a large-scale TeraGrid
resource, there are well-defined acceptance criteria
with specific milestones and metrics of success that
must be met before payment is made. The same level
of detailed oversight is needed for software licensing/
development awards.

Research Impact: Cost often is the primary factor
when deciding what software will be available on a
TeraGrid resource. Often this means that the best tool
for a specific research domain is not available. This
leads to lost opportunity or delayed discovery as re-
searchers are impaired from doing their work in the
most efficient manner and from leveraging the avail-
able national resources. Considering many research-



ers are funded by the NSF and other agencies, this lost
opportunity cost, although difficult to measure, may
be significant. Without a macroanalysis of software
needs and a focused and efficient effort on meeting
them, the “software gap” will remain unaddressed.

Sustainability: There are three strategies for sustain-
able software development. Funding with clear deliv-
erables can make any of these strategies a viable op-
tion for delivering or developing the software needed
by science and engineering researchers.

1. Open Source Community Development: This is
popular in the TeraGrid community, but it requires
significant subsidies from funding agencies. To ensure
the satisfaction of the target user community, the deci-
sion process to fund these efforts needs to be trans-
parent and include metrics of success and deliverable
milestones based on user requirements in order to fos-
ter community confidence in the process.

2. Support and Maintenance-Based Business Mod-
els: Companies offering support and maintenance for
community developed software has become a viable
business model. Market competition and commercial
incentives can produce a better user experience and,
at the same time, sunset software that is inferior or no
longer relevant.

3. Commercialization: To survive in today’s market,
the commercialization of a software package requires
a very sound business model. The software must have
broad applicability in order to create a volume market,
or, it must be focused enough to provide a unique and
superior capability for a niche market.

Ensuring Competitiveness: Competition is impera-
tive if end users are to be well served. Careful consid-
eration of software requirements, development dead-
lines, and the necessity of long-term maintenance and
support is essential when deciding whether to fund a
new software development project. Research institu-
tions, open source communities, and commercial de-
velopers may all be viable competitors for providing
software solutions depending upon the project scope,
deliverables, and availability of funding.

Role of a National Software Oversight Committee

A National Software Oversight Committee should be
established to: (1) investigate, analyze, and articulate

the issues outlined in the previous section; (2) orga-
nize and conduct detailed studies on national research
software needs; and, (3) recommend research software
to be procured or developed by the following groups,
including basic details on feature-functionality and
need/availability time-lines:

* National Science Foundation

* Other Federal funding agencies

* TeraGrid XD management

* TeraGrid XD resource providers

* Research software developers

* Commercial software vendors

* Open Source Software developers

* Open Source Software service providers

Membership

Membership must include adequate representation of
all stakeholders including funding agencies, a diver-
sity of research disciplines, and advisors from com-
mercial software vendors.

Executive Committee: 10-12 representatives, 1 per
major research field or area of expertise including, but
not limited to, engineering, physics, life sciences, so-
cial sciences, biology-medical, nanotechnology, com-
puter science, and digital libraries. Members should
be respected leaders in their fields with a solid un-
derstanding of state-of-the-art software and hardware
systems (both commercial and open source) as ap-
plied to their field.

Ex-Officio Members: 1-2 representatives each from
NSF-OCI, NIH, DOE, DoD-Modernization, and
NASA

Advisory Members: Representatives from the soft-
ware development and support industry as required by
the executive committee. These representatives can
provide realistic market and cost analyses that will be
essential to the committee in order to generate sound
guidance.
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Terms and Funding

Executive Members will serve multi-year terms that
will match the terms of TeraGrid XD initiatives.

NSF funding will be provided for:
* Travel: to attend meetings and conferences
* Effort: 1-2 months per year

* Materials & Supplies: Market analysis reports and
other sources of information.

Focus Areas and Responsibility

The Oversight Committee members will be respon-
sible for providing clear and detailed analyses of cur-
rent state-of-the-art research methods with a focus on
the shared and discipline-specific software require-
ments of a diverse national research community.

Current Software Availability: The Committee will
maintain a web-based TeraGrid software index that
details the software available on all TeraGrid resourc-
es by discipline and resource. Feature-functionality,
limitations and support information will be provided
for each software package.

User Requirement Analysis: The Committee will
perform in-depth investigations of state-of-the-art
software, tools and usage paradigms for a broad port-
folio of research disciplines. Data will be collected,
studied, and validated. Reports will be generated that
provide data on the most popular software packages
per discipline along with the associated costs, required
or recommended platforms, and specific metrics that
were used to rank one package over another.

Data sources will include, but not be limited to:

» Usage data and user requests from TeraGrid users
and the management of TeraGrid resources

» Researchers from diverse scientific disciplines, who
do not currently use TeraGrid resources or feel limited
by the availability of software, the support for their
usage model, or the level of readily-available consult-
ing support required for them to make effective use of
their application on a TeraGrid resource.
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* Commercial and OSS software provider informa-
tion, including feature functionality and licensing and
maintenance costs.

* A user blog where users can share their thoughts,
requirements and experiences in real time.

Recommendations and Requirements

Based upon budget availability, required feature-func-
tionality, and the size of the user community, the Over-
sight Committee will make recommendations for the
acquisition and support of various software libraries
and tools. In the event that a critical software library
or tool is missing, inadequate, or the licensing is cost
prohibitive, the Committee will make recommenda-
tions to the various funding agencies to fund its devel-
opment, support and maintenance. These recommen-
dations will include detailed requirements, including:

» Compatibility, portability, scalability and integration
with required security models

« Deliverable milestones, metrics of success, and eval-
uation procedures

* How best to foster competition to ensure breadth and
diversity in the software development community and
generate new innovations

* Sustainability models to ensure long-term availabil-
ity of the software after the initial funding.

Benefits of a National Software Oversight
Committee

* FEngage authorities from diverse research
communities to analyze the software needs
and requirements for TeraGrid resources. Ef-
fectively meeting these needs will attract new
classes of users to TeraGrid and broaden the
scientific discovery impact of TeraGrid re-
sources

e Development of clear requirements, specifi-
cations, milestones, and metrics of success to
guide the entire

* software development community (engaging



research, open source, and commercial soft-
ware expertise)

Hard data, including costs, feature-function-
ality, scalability, interoperability, and secu-
rity to enable the community to make well-
informed software recommendations

A transparent decision-making process for all
TeraGrid software, including reasons for ac-
quisition, development funding, or exclusion
from the software portfolio

Renewed software industry interest and com-
petitiveness by providing unbiased cost and
feature functionality analyses.
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A view on scientific software sustainability

Ewa Deelman
Ann Chervenak
USC Information Science Institute

Science today is pushing the boundaries of hardware
capacity and software capabilities. Applications such
as those developed as part of the Southern California
Earthquake Center (SCEC) project, the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO),
and many others are making use of leadership-class
clusters to simulate earthquakes, to search for gravi-
tational waves, and to conduct other computationally
and data-intensive analyses.

Through the NSF ITR program there were many
scientific partnerships developed that fostered both
computer science and domain science advances. In
astronomy, new computational methods were devel-
oped to provide scalable solutions to science grade
mosaic generation. In gravitational-wave physics,
new data management techniques were developed to
handle scientific data spread across millions of indi-
vidual files. In earthquake science, new optimization
techniques were developed to handle workflows with
hundreds of thousands of individual tasks. As a result,
new computational methods are supporting computa-
tional sciences in ways not possible earlier.

Although new, research-based, software is often the
foundation of computational science advances, appli-
cations are sometimes reluctant to embrace new tech-
nologies. In some cases, applications are worried that
there may not be funding for long term sustainability
of software. They are reluctant to make their scientific
progress dependent on software that may not be sup-
ported adequately for at least five to ten years. As a
result, computational sciences may not get the benefit
of the latest software innovations, and this situation
may reduce the pace of scientific discoveries.

For the same reason, it is sometimes difficult for sci-
entific software providers to attract new users and
enhance software capabilities through the under-
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standing of new requirements and challenges. Only
through a partnership and close collaboration between
software developers and scientists can advances be
made both in computer science and domain sciences.
One of the NSF programs that recognize the value
of scientific software to domain sciences is the OCI
SDCI program. It primarily funds development and
maintenance of software that is used in a number of
scientific disciplines. SDCI funds the Pegasus work-
flow management project ISI among others. OCI also
supports the development and maintenance of Globus
grid computing middleware at ISI. Although SDCI
and other OCI programs provide funding for a number
of software components that are used daily in a variety
of scientific domains, it is not clear whether this fund-
ing will be sustained in the long run.

One possible approach to providing sustainability for
scientific software is for applications and software pro-
viders to form partnerships and make the case to the
funding agencies that continued maintenance, support,
and development of software is necessary to maintain
the pace of advancements across scientific domains. It
is imperative that software development teams and sci-
entists work together to justify the necessity of specific
software components and to make those components
more sustainable, since it is unrealistic to expect that
funding agencies will indefinitely support the develop-
ment and maintenance of software that has not been
proven essential to scientific communities. Important
responsibilities of software development groups in-
clude developing robust software based on good en-
gineering practices and using existing commercial and
open source tools as well as standards when appropri-
ate. Such practices reduce the cost of software devel-
opment and maintenance, making it easier for funding
agencies to justify continuing support.



Some may argue that industry should take over sci-
entific software and commercialize it. However,
this model is often not possible. Scientific software
is often continuously developed and enhanced as
the understanding of application needs evolve, or as
these need change over time because of the possible
software enhancements. The software solutions also
evolve over time because the problems that applica-
tions have are not straightforward and require research
and experimentation. Thus, such software is typically
not well suited to be handed off for production by in-
dustry. Often it is simply too expensive to commer-
cialize the software given the relatively small number
of potential users. Scientific applications are typically
not a high volume, high-profit endeavor. Their value
is more related to societal benefits rather than direct
monetary profits, and thus often these applications
need to be supported by government funding agencies
for the benefit of national scientific competitiveness.

Today, funding agencies understand the importance of
provisioning and maintaining high performance hard-
ware and providing funds for the hardware support and
maintenance. We believe that the same level of support
should be given the scientific software that enables ap-
plications to run efficiently on that hardware.

Contact author: Ewa Deelman, deelman@isi.edu
3/1/2009
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“After the Dance: The Hope for CI Software Sustainability”
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1. Texas Advanced Computing Center, University of Texas at Austin, Texas
2. National Center for Supercomputing Applications,
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The Computational Chemistry Grid (CCG, http://
www.gridchem.org) was a NMI Deployment project-
ed funded by the Office of Cyberinfrastructure (OCI)
at the NSF. The primary contribution of the CCG was
a computational chemistry oriented science gateway
called GridChem. GridChem provides an intuitively
familiar desktop portal to serve end-to-end require-
ments for computational chemistry communities. The
GridChem client is deployed as a Java Web Start ap-
plication while the GridChem middleware service le-
verages a mature service oriented architecture to ag-
gregate complete control over a user’s VO under a set
of common interfaces. Over the past year, GridChem
has been among top Science Gateways in the TeraGrid
in terms of total SU’s consumed burning over 500K
SU’s in 2008 alone.

We are commenting as an organization that has de-
veloped and sustained a highly utilized, success-
ful software project both inside and outside of NSF
governance. We speak primarily from our experience
developing user facing technologies and middleware
that has been adopted and reused in support of other
projects active today. In this paper, we share our ex-
periences sustaining our software and conclude with
recommendations for how to better sustain federally
funded projects in the future. While our opinions very
well may apply to simulation codes and HPC librar-
ies, unless specified, we are not specifically referring
to them.

The Blessing and the Curse

GridChem was born out of a need in the computa-
tional chemistry community for easier ways to con-
duct experiments using the most widely used software
packages in the country. From the beginning of the
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project, our user base grew steadily. Because we had
people using the software regularly, we were able to
interact with them and adjust our development road-
map according to their emerging needs. As a result,
were have benefitted from increasing adoption and
utilization even beyond the end of the project.

We are now 6 months past the end of the project and
our user count, number of jobs, and total consumed
SUs all continue to rise. This is both a blessing and
a curse. On the one hand we are pleased with the in-
creased usage and adoption of our software. On the
other hand, we do not have the funding to respond to
many of the new opportunities to increase the reach
of the software to new communities, applications do-
mains and compute models.

Sustaining vs. Maintaining

One question we had to answer early on in the proj-
ect was whether we wanted to sustain or maintain the
software over time. Imagine taking your child to your
family physician and him asking you if he should keep
your child healthy or alive. It’s the difference between
actively living and merely existing. We believe how
one answers that question reveals a subtle, but distinct
point about what one is trying to accomplish.

Webster’s Dictionary defines maintain as follows:

“to keep in an existing state: preserve from failure or
decline”

Maintaining software, then, is the process of keeping
it working. It does not speak to relevance. It does not
speak of context. It simply implies that it continues to
do perform the same task over time.



Webster’s Dictionary defines sustain as follows:

“to give support or relief to.”

Sustaining software, then, speaks of an ongoing com-
mitment to keep the software relevant. It speaks of vi-
tality. It implies that in times of change, support and/
or relief are provided to help the software stay as rel-
evant tomorrow as it is today.

In the context of GridChem, attempting to simply
maintain the software would essentially be a death
sentence. Our goal was never to maintain the project,
but to create a sustainable tool that could remain rel-
evant and useful over time. We wanted the software
to have value to researchers and students in years to
come even as the underlying technology changed.

To that end, we sought to leverage as much existing
infrastructure as possible. Our initial focus was to
adopt as much of the common national CI as possible.
We soon discovered that there was not a generally ad-
opted solution that could satisfy our most basic needs.
Simple functionality to perform things like account-
ing, file, job and identity management, and resource
monitoring were either not in place, did not exist, or
did not perform well enough to leverage in a produc-
tion setting. As a result, we spent considerable time in
the first year filling in the gaps and creating the glue
needed to put together a reliable, comprehensive mid-
dleware infrastructure.

We were not alone in our conclusion. We found this to
be a common problem across may different projects.
It seems that the developer community as a whole set
out in parallel to solve these problems on their own
time scales, for their own projects. As a result, there
are several good solutions to many of these problems
today. TeraGrid, OSG, OGCE and the DoE have done
great works in providing stable reusable solutions for
many of their needs. However, there is still no widely
supported solution for what we feel are basic tasks.
Additionally, it’s important to note that multidisci-
pline and cross discipline activities are part of cur-
rent science and engineering research. Things that we
never felt were needs of the research community are
now becoming expected capabilities to today’s scien-
tists. Engaging these emerging communities for when
developing a national CI will become absolutely es-
sential to the long term goals of the NSF.

Finding a Lifeline

As we stated, our goal was to sustain GridChem, not
simply maintain it. In today’s landscape there is no
clear path for keeping good software sustained. With
limited funds available at the national level, creating
useful tools is not enough. Neither is creating highly
utilized production solutions. Truthfully, those are both
expected outcomes of any funded software project —
and rightfully so. Good work is expected. Exceptional
work is appreciated. The only real opportunity for Grid-
Chem to live on was through partnership and adoption.

The GridChem you see today is a project on its 3rd life.
The original GridChem project was built on the ideas
from an internally funded project at NCSA dubbed the
Quantum Chemistry Remote Job Monitor. The formal
GridChem project was funded through an NMI De-
ployment award from 2004-2007. In the Fall of 2007,
the project was granted two no-cost extensions to run
through the fall of 2009. During this time our focus
shifted from aggressively increasing core functionality
to hardening the middleware and client for increased
production use, with limited funding. We also made a
strong push during this time to increase awareness and
evangelize GridChem to the community.

As of this writing, that work has resulted in two ad-
ditional funding sources. The first is through inclusion
on Cyber Resources and Facilities award out of the
Chemistry Research Instrumentation and Facilities
(CRIF) program at NSF. This is mainly to for small
extensions to the client and middleware to support a
slightly different execution model for the awardees.
The second is through the TeraGrid Advanced User
Services division to add much-requested parameter-
ization and workflow support to the software.

A Value-base Culture

We believe that GridChem continues to thrive as a
project because of the initial decision we made to sus-
tain the software, rather than to maintain it. This at-
titude produced design and partnership decisions that
resulted in a tool that has value to everyone who uses
it. From the newest student to the seasoned researcher,
GridChem meets them each at their needs. It enhances
the process of conducting experiments thus allowing
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them to focus on their science rather than their com-
putational needs.

In the end, the question of which software to support
and who should do so almost seems too simple to an-
swer. The mission of the NSF is clear.

“To promote the progress of science; to advance the
national health, prosperity, and welfare; to secure the
national defense....”

Software that meaningfully advances that cause will
always have a place. Software that does not, will not.

Moving Forward

Having reflected on our experiences developing Grid-
Chem and participating in the developer community,
we have several suggestions as NSF moves forward.

1. Define and standardize a national CI. Fund a per-
manent group to oversee this and provide high level
training to the advocacy groups in EOT.

2. Expose the national CI as a platform. The develop-
ment community can accelerate both the quality and
adoption of technology if they can build upon a stable
platform that exposes the underlying resources as
core services as services. In doing so, developers can
focus less on glue and adaptors and more on value-
added services and tools that meet researchers at their
existing comfort level using common interfaces.

3. Build a self-propagating software feedback loop
into future CFP. This will create is a persistent review
process for funded projects that will evaluate their
place in the national CI.

4. Fund hardening extension for projects showing
promise and wide adoption. Model the apache foun-
dation’s mentorship process to ensure best practices.

5. Provide resources and funding to encourage com-
munity development. Mature CI software requires a
community to develop and mature the code. Creating
this environment will lead to a stronger overall CI.

6. Leverage the local expertise of MSI in stabilizing
the national Cl and making them more useful to the
general public. Incentivize this participation through
awards of system time and collaborative extensions.

62

7. Leverage virtualization to ease deployment and
maximize ROI. Providing personalized, or customized
VO’s for users and developers allows them to work
from a position of stability. They know their sandbox
is consistent with a well-configured production envi-
ronment, so they can focus on their code rather than
the environment.

8. Aggressively encourage advance discussions on
software interoperability and dissemination. Includ-
ing this in the CFP and the review process will en-
courage greater awareness of the national CI as well
as better design in the early stages.

9. Create a free flow of information between the glob-
al open-source community, industry, and academia.
Work with them to aid the tech transfer. Leverage lo-
cal and state expertise and resources to make it hap-
pen. Extensible and interoperable CI development
should be encouraged.

10. It is time to plan for multidisciplinary science and
engineering cyberinfrastructure now to ensure maxi-
mum benefit for the research progress as all useful re-
search is multidisciplinary in nature.



Corporate, Customer, and Academic Open Source Communities
for Next Generation Software
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Abstract

The NSF is looking both at models of how to build
sustainable cyberinfrastructure software as well as
specific software that will benefit its goals like provid-
ing communities with access to a “world class high
performance computing (HPC) environment.”! Red
Hat Enterprise MRG, a high performance distributed
computing platform which integrates Messaging, Re-
altime, and Grid capabilities, provides both an open
source model of how academic researchers, custom-
ers, and corporations can collaborate as well as pow-
erful software infrastructure which can help the NSF
meet its next-generation cyberinfrastructure goals.

Introduction

Red Hat Enterprise MRG (Messaging, Realtime,
Grid), is a platform for high performance distributed
computing. It is innovative not only for the capabili-
ties it provides but also for the collaborative and dis-
ruptive processes through which Red Hat has created
and fostered this platform.

Each of the components in MRG —messaging, real-
time, and grid—provides class-leading and powerful
capabilities in and of itself. MRG Messaging provides
messaging performance that is up to 100 times faster?
than other messaging software and delivers many ca-
pabilities built into it that developers have tradition-
ally have had to build on top of messaging software.
MRG Realtime provides workloads on Linux ex-
tremely deterministic realtime performance and runs
everything from command-and-control systems for

US Navy warships to the fastest financial trading sys-
tems. MRG Grid provides a high-end scheduler that
supports both traditional HPC workloads as well as
utility or cloud models of computing; it can schedule
and manage any workload, from sub-second calcula-
tions to server applications to HPC jobs across any
computational resource, from local grids to remote
grids to idle resources to virtual machines to private
clouds to public clouds like Amazon EC2. Further-
more, the combination of Messaging, Realtime, and
Grid technologies in MRG provide new capabilities
like robust and scalable management infrastructure or
low latency grid scheduling.

Beyond providing innovative capabilities for high
performance distributed computing, however, Red
Hat Enterprise MRG also provides good models of
how NSF-funded researchers, end-users, and technol-
ogy companies can collaborate to build sustainable
cyberinfrastructure software.

Creating Open Standards and Open Source
with Customers

MRG Messaging is open source software and also im-
plements a new open messaging standard, Advanced
Message Queuing Protocol (AMQP)*. When Red Hat
first entered the messaging market, it was dominated
by a handful of expensive and proprietary software
products, and these products were highly specialized
and uninteroperable due to the lack of a messaging
protocol standard. This meant that many customers
often bought multiple messaging products and de-

1 NSF’S CYBERINFRASTRUCTURE VISION FOR 21ST CENTURY DISCOVERY (http://www.nsf.gov/od/oci/CIv40.pdf)

2 http://www.redhat.com/mrg/messaging/features/#aio
3 http://amqp.org
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ployed them in architectural silos, which was both ex-
pensive and complex.

Thus, when Red Hat began its work on messaging
software, it did not just create an open source messag-
ing implementation as this would not have addressed
the core problem in the messaging space: even though
messaging software is fundamental to distributed
computing, the lack of an open standard for messag-
ing was severely stunting the growth of a messaging
ecosystem. Instead, Red Hat teamed with one of its
customers, JP Morgan Chase (JPMC), to create an
open protocol standard around messaging, AMQP.

JPMC, like many other banks, had developed its own
messaging software to meet its high-end messaging
requirements. However, JPMC had also written down
the specification of its work, and this proved to be a
good starting point for creating an open messaging
protocol standard. Red Hat and JPMC created a le-
gal contract to form the AMQP working group, which
would develop this new standard as AMQP in an
open and [Punencumbered manner. Then, they started
bringing in many additional companies to collaborate
in this working group.

AMQP now has strong participation from not just
leading technology providers but also messaging end-
users. The AMQP working group includes vendors
like Red Hat, Cisco, and Microsoft to ensure good
adoption and proliferation for AMQP-compliant prod-
ucts. But, it also includes high-end messaging users
like JPMC, Goldman Sachs, Credit Suisse, Deutsche
Borse, and Twist Innovations. Each of these users is
actively contributing to the AMQP specification to
ensure that AMQP will meet its needs for everything
from performance to architecture to management.
This ensures that AMQP will be a powerful but also
practical standard.

This open and collaborative process between ven-
dors and users has also extended to implementations
of AMQP. Red Hat engineers started Apache Qpid*,
an open source implementation of AMQP and an up-
stream project for creating Red Hat Enterprise MRG.
Just as the AMQP working group sees participation

both from vendors and users, so the Qpid project has
committers and contributors from both companies and
customers.

The combination of an open standard like AMQP, cus-
tomer-provider partnerships, and open source has led
to a wide range of innovations in the marketplace. For
example, there is now a hardware ecosystem develop-
ing around AMQP and the messaging space, so hard-
ware devices will inter-operate with and complement
messaging software with new capabilities. There is a
robust software ecosystem building around AMQP.
Many open source projects for things ranging from
virtualization management to security infrastructure
to Linux itself are incorporating AMQP. And, with
both Red Hat and Microsoft’s participation in AMQP,
there is emerging true inter-operability between the
Linux and Windows environments. All of this is fos-
tered by a broad, cooperative community around open
standards and open source.

Academic and Corporate Collaboration for HPC
and Cloud Computing

MRG’s Grid scheduler is based on Condor®, a proj-
ect created by the University of Wisconsin Madison
and funded by the NSFE. Condor powers Open Science
Grid, an NSF-funded research grid, as well as many
of the world’s largest HPC grids. Red Hat has signed a
strategic agreement with the University of Wisconsin
(UW) around Condor which does two things: it made
Condor open source under an OSI-approved license,
and it established a development partnership between
UW and Red Hat. For example, Red Hat has an engi-
neering team on-campus at UW, working side-by-side
with the Condor researchers there.

This partnership between UW and Red Hat is adding
many innovative capabilities to Condor and also ex-
panding significantly Condor’s reach from research
environments to enterprises. For example, Red Hat
has focused on adding many capabilities which en-
terprises require for deployment but which are not
paramount for academia. These enhancements range
from new graphical management tools to enterprise

4 http://qpid.apache.org/
5 http://www.cs.wisc.edu/condor/
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maintainability to concurrency limits on scarce re-
sources like software licenses. Furthermore, Red Hat
has also focused on advancing Condor towards utility
and cloud models of computing by adding capabilities
like libvirt virtualization support and Amazon EC2 in-
tegration. Many enterprises are now looking at MRG
and Condor for building private clouds and moving to
cloud computing.

Red Hat has also incorporated the AMQP messaging
community into the Condor community. For example,
Red Hat has developed an AMQP messaging-based
job submission capability which enables Condor to
schedule and execute sub-second calculations. Fur-
thermore, the management infrastructure which Red
Hat wrote for MRG is AMQP-based and provides an
extremely scalable eventing-based architecture.

Beyond advancing Condor into the enterprise commu-
nity, Red Hat’s partnership and work around Condor is
also feeding enterprise innovation back to the research
community. For example, Red Hat has recently part-
nered with academic researchers to submit a proposal
for implementing the next generation of TeraGrid®, an
NSFfunded research grid shared across multiple part-
ner sites. This proposal will build upon open-source
Red Hat Enterprise MRG and leverage capabilities
like AMQP messaging and Condor grid scheduling
for next generation HPC research.

Conclusion

Red Hat’s collaborative work with customers, enter-
prises, and academic researchers in Red Hat Enter-
prise MRG has produced a class-defining, powerful
platform for high performance distributed comput-
ing. Its robust and open capabilities around Messag-
ing and Grid, and its Realtime performance deliver
many of the requirements the NSF seeks around its
cyberinfrastructure vision. Perhaps more importantly,
though, Red Hat’s open source collaborative approach
to MRG has delivered new open standards for in-
teroperability and ecosystems, has open sourced and
brought NSF-funded grid technology to enterprises,

has fed enterprise-led innovations back to academia,
and has brought together organizations ranging from
investment banks to public universities to technology
companies to develop and benefit from these advance-
ments together.

6 http://www.teragrid.org
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Creating Sustainable, Coherent HPC Software
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The software that the high performance comput-
ing community has come to depend on comes from
a diverse range of sources, often tasked with solv-
ing problems that may not directly be related to
high performance computing, and is assembled
into unique combinations, not only on a per plat-
form family basis, but also unique to each instan-
tiation of a computing platform. We would like to
suggest that some of goals that went into designing
one essential (and now ubiquitous) component of
high performance computing, MPI, should be con-
sidered in devising a strategy to raise the quality of
the software environment being used in high per-
formance computing. The hope is by considering
these goals, and by understanding the processes by
which current hpc software is developed and sup-
ported (including the funding models involved), we
can not only increase the quality and consistency of
HPC software across platforms and sites, but also
improve the ability of our users and application de-
velopers to optimally use the HPC platforms being
deployed across the nation, and indeed, the world.

The software that we depend on for our high perfor-
mance computing endeavors is quite different from
what is typically provided on a typical personal work-
station. For instance, one vendor (eg, Microsoft, Ap-
ple) may be responsible for a large cross section of
the system code that is running on this system; in this
position, the single vendor can in a sense unilaterally
declare how other codes (drivers, application codes,
and so on) are encouraged and or allowed to interact
with the operating system. In distinct contrast, HPC
software often comes from a variety of sources, some
customer driven, some community driven, some com-
mercial, some open source, and is expected to support
what quite often is a one-off combination of hardware
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assembled to provide a particular HPC platform. The
burden of making this combination of software work
properly is typically shared between a system integra-
tor and a particular HPC site, in some combination
of responsibilities. Upgrades to the software stack is
typically fraught with peril, as the burden to prove that
the more or less ad-hoc assemblage of parts continues
to work as expected often shifts to the site providing
the HPC capabilities, with some degree of assistance
from the integrator. Validation tests and methodolo-
gies to assure that the software “stack” continues to
perform as expected are rare and incomplete, leaving
the burden of finding issues with the software assem-
bly ultimately to the users.

As a result, it is somewhat surprising perhaps that we
have been as successful as we have been in provi-
sioning HPC resources for well over 20 years (for the
NSF-funded supercomputing centers), with the large
number of scientific breakthroughs that have occurred
as a result of high performance computing through the
years. In part it is due to the sheer determination of
both system providers and the HPC sites; but one side
consequence of these determined efforts to achieve
success in the face of adversity is that systems and
sites often function in a manner akin to feudal barons,
which is not terribly friendly to users and less friendly
to software developers trying to layer functionality on
top of HPC platforms, including application ISV. The
latter have retreated from time to time to the relative
safety of desktop platforms, where the numbers of
achievable licenses is large, and the software stack,
well, is managed in a fairly coherent fashion.

In order to improve this situation, we would like to
consider comments by Bill Gropp, in his recent Fern-
bach award address at SCO8, when he was considering
how to improve MPI. In order to consider the issue
of improving MPI, Bill asked an important question:



“Is MPI the Least Common Demoniator Approach?”
He asserted that indeed this is not the correct term to
apply to MPI, rather, MPI sought to be the “Great-
est Common Denominator”. This distinction, argued
Gropp, was critical as it changes how we make im-
provements. Something that is our “Least” common
denominator leads to improvements by simply choos-
ing a better approach — ie, it is hard to not do bet-
ter than the “least”. “Greatest” implies directly that
improvements require changing the rules: either a)
the available architecture support (“Denominator”),
the scope (“Common”), or the goals (what is indeed
“Greatest”?). Given this, Gropp argued that one can
look for improvements, for MPI, for instance, in a
some of the following ways. If one wants to change
the common, for instance, by giving up on ubiquity or
portability, one could more easily accommodate nich-
es such as GPUs, FPGAs, etc. This could be good, but
has potential costs such as placing one’s efforts on the
fringe, or falling off the commodity curve, or mak-
ing changes in the wrong layer of abstraction (e.g.,
what impact should GPUs have on the message pass-
ing layer?)

If one wants to change the denominator, one needs to
consider the base of features that are considered to be
on every system. This may happen with new function-
ality being pioneered in the DARPA HPCS project,
we will need to see if this shift comes to pass.

And finally, one can change the goals by expanding or
contracting the meaning of “greatest”. This could be in
the area of distributed data structures, for instance, or
support for concurrent activities — as a couple of ideas
to consider for inclusion in the “greatest” contract.

So, with HPC software: can we identify the greatest
common denominator? At the moment I believe we
would be hard pressed to clearly identify the three
components. As far as “greatest” is concerned, across
a multitude of supercomputing sites there is little
impetus to consider greatest. Indeed, in one project
where commonality was sought after as an initial proj-
ect goal (the NSF-funded distributed terascale facility,
DTF), greatest unwound until the only requirement is
a simple registration capability. All other components
and capabilities are considered “optional”. Granted,
user demand for a number of the capabilities has made
a large number of capabilities de-facto greatest, but
the unwinding was spearheaded through an argument

based on increasing architectural diversity as DTF
morphed into a heterogeneous distributed capability.

As far as the denominator goes, can we inventory
what features we assume are present on our HPC re-
sources? Has this grown or shrunk as the field has pro-
gressed? Understanding our assumptions in this case
can make our job easier for provisioning software, as
being able to effectively use the common features will
become more obvious as a design goal.

Finally, we need to have the discussion regarding what
needs to be ubiquitous and portable across our diverse
resources, and indeed how to handle unique and dif-
ferentiating features. Handled correctly, we should be
able to lower the amount of pain involved in moving
between platforms — for application developers, for
independent software (application) developers, and
for developers of advanced tools that, for successful
adoption of the tools to enable science and engineer-
ing, need to effectively work across a multitude of
platforms with a minimum of “one-off” modifications
to handle a class of platforms (or worse) — individual
site modifications to an instance of a platform.

Not only do we need to consider these issues wrapped
up in the “greatest common denominator” for HPC
software, we need to consider how we fund such ac-
tivities. Currently, HPC software is a highly lever-
aged activity in the broadest sense. Some activities
are funded through relatively narrow, focused agency
grants (e.g., the NSF SDCI program, which had one
round of funding to date). Others are funded through
the business model of an ISV, e.g., CFD codes, Com-
putational Chemistry codes and so on; closely related
are improvements to codes contractually obligated by
ISV customers. Some components are off-shoots of
research efforts, either in the application or enabling
technology arenas. In either case, the transition from
a research prototype to a robust software component
is an arduous task that often is difficult to fund, not
to mention technically difficult to achieve. Some
components come from hardware vendors, as part
of a strategic investment to help their core business
(which quite often is not HPC!); others come from the
open source community — which brings up another
issue: who drives software maintenance and feature
improvements. Looking across these diverse activities
that bring HPC software to fruition — one can see that
some codes are driven by the development commu-
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nity (such as open source software); some are driven
by customers, and some are driven by research agen-
das. This results in software that is being pushed in di-
rections that at times may be orthogonal to achieving
optimal performance (in a broad sense of the word)
in the HPC arena. In order to improve the coherence
of our HPC software activities, it is important to rec-
ognize the “crazy-quilt” of funding that keeps the ac-
tivity going, to understand what the implications of
this funding model are, and finally, to recognize that
improving our state of the art in this field will require
sustained and directed investment to not only address
the gaps in funding, but to move to inject coherence
across projects, platforms and sites.

In conclusion, we have identified a number of short-
comings in our current models of provisioning HPC
software and sites. We suggest a philosophical model
or framework to motivate improvements to the state
of HPC software, ie, the consideration of the “Great-
est Common Denominator” across the HPC software
space. Finally, we acknowledge that current software
funding models are impeding progress in HPC soft-
ware and that deliberate efforts to fund software aimed
at raising the state of high performance computing is
essential to providing a greatly improved environment
for not only other software developers in the ecosys-
tem, but for our ultimate customers: our end users.
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This position paper is in response to the call for papers
from NSF for Cyberinfrastructure Software Sustain-
ability & Reusability Workshop. The author of this pa-
per takes the position of supporting open source com-
munity software through investments of time from
developers and monies in the form of grants from gov-
ernment agencies. Without these investments, many
different types of open source community software
programs have become difficult to build or maintain.
This paper purposes a simple solution to this problem:
Pay developers to maintain, port, and test open source
community software thru the resources of a local, re-
gional, and/or national center.

The Current Landscape

Open source community software has been a staple
of many of the applications High Performance Com-
puting users utilize in their research. It is safe to say
that without open source community software readily
available for users to integrate into their applications,
many advancements done with HPC research would
not have happened in the time frame that they did.
This availability of open source community software
has fostered growth and expansion of many different
applications and will continue to do so if and only if
these codes are maintained and made portable to dif-
ferent platforms. Currently this is not entirely the case.

Some of the more popular open source software has
matured over the years and become more streamline
to build and maintain since many individuals made
the initial investment of time and money. As a result,
many of these software programs are now much easier
to build than when they were first released and can be
built on many different platforms due to the testing
done by developers.

However, this scenario is only a small percentage of
overall available open source software in the HPC
community. The norm is much of the opposite. Many
open source software programs are often difficult to
build and maintain due in most part to a lack of in-
vestment in porting open source programs to different
platforms. A good example of this is a piece of open
source software named ECEPPAK.

The instruction of ECEPPAK state this program was
been built and tested on two types of systems: An IBM
AIX system and an SGI IRIX system. Since these
systems are unique to their respective companies,
many other HPC users cannot utilize this software
without the help of either the developer or trained op-
erational staff at a local, regional, or national center.
Many times, the developer is no longer employed at
the institution where the software originated and no
one at the institution maintains the software there, so
the software ends with the employment of the devel-
oper. Additionally, operational staff at a center either
do not have the time or the training to port code to
their system(s). This is an affective death blow to what
could have been an otherwise popular piece of soft-
ware among HPC users.

A Model to Follow

So what is the answer to keeping open source code
alive, portable, and maintainable? A possible working
model is the open source software GotoBLAS devel-
oped by Kazushige Goto of TACC. He has, accord-
ing to the TACC FAQ website, developed “the fastest
implementations of the Basic Linear Algebra Subrou-
tines.” Goto is employed by TACC, a regional HPC
center and a part of TeraGrid, and continues to de-
velop GotoBLAS for different platforms and architec-
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tures. While he is the sole developer of this software,
many centers could use the same model and employ
inhouse developers to both develop and maintain open
source software. At the very least, give many develop-
ers accounts on their systems to allow for porting and
testing of open source software.

As a result of Goto’s hard work, many other open
source software programs almost require the system
have GotoBLAS installed in order to build their soft-
ware. Since GotoBLAS gives the best performance,
many open source developers recommend using Go-
toBLAS but still package a version of BLAS in their
open source software. Software that still come with
their own version of BLAS, may have been developed
on systems that did not have GotoBLAS installed and
therefore could not test with GotoBLAS but know
GotoBLAS should give the best performance.

Summary

The sustainability of open source software can be
achieved by funding developers to maintain and port
open source software and by allowing developers ac-
cess to many different platforms and systems located
in local, regional, and national centers. The NSF can
lead the way to software sustainability by using the
model used by TACC.
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Examining Preservation and Reconstruction of Existing Simulation
Software To Understand Software Sustainability

Peter Bajcsy and Kenton McHenry, NCSA, UIUC

Abstract: This position paper reports on the exami-
nation of preservation and reconstruction of existing
simulation software and summarizes the lessons-
learnt from the perspective of long-term software
sustainability. We have studied the problem of re-
execution and reconstruction of the simulation soft-
ware components used in the Crandon Mine decision
process. The software, data and metadata needed by
the software came from multiple agencies. Our study
leads to a set of recommendations related to long-term
software preservation and Cyberinfrastructure soft-
ware sustainability and reusability.

Introduction: In the current digital era, two trends
have been observed. First, there is an increasing
amount of digital information that is generated, pro-
cessed and reused in almost every aspect of our life.
For example, decision making processes have become
less paper based and more digital information based
than ever before. Second, the underlying technologies
supporting work with digital information have been
changing more rapidly than any other technology [8].
These changes include not only computer hardware
and operating system software but also data formats,
networking capabilities, and application software
(e.g., simulation software, data viewers or document
editors). Following these two trends in the context of
decision processes, there is a need to investigate how
to deal with preservation and reconstruction of deci-
sion processes that are supported by Cyberinfrastruc-
ture including digital information, scientific software,
and networking capabilities.

When it comes to preservation and reconstruction of
decision processes, one finds himself at the crossroad
of multiple types of records about the decision pro-
cess. First, there are records prepared in the past and
the corresponding decision processes that are being
analyzed today. Second, there are records about deci-

sion processes that are being prepared today and will
be analyzed in the future. Third, there are theoretical
and experimental studies of how records could be pre-
pared tomorrow so that the corresponding decision
processes could be fully reconstructed in the future.
Our work analyzes decision processes as being docu-
mented today with the goal of understanding how the
decision processes could be documented in the future
to improve preservation and reconstruction.

In general, we formulate the preservation and recon-
struction problem using Cyberinfrastructure as fol-
lows. Given a computer assisted decision process that
is represented by digital data, software and related
documents, networking capabilities for accessing data
repositories and computational resources, record man-
agement practices and the socioeconomic environ-
ment, we investigate the preservation and reconstruc-
tion methodologies that have to be in place in order
to reconstitute the decision process later in time. This
general definition of the problem incorporates the key
research areas for information technology (software,
scalable information infrastructure, high end com-
puting, socioeconomic impact and management and
implementation of federal information technology re-
search) as identified by the PITAC committee [8].

The general problem is too complex to be solved di-
rectly and might be sub-divided into multiple sub-
problems addressing challenges associated with
preservation of only one component and one type of
Cyberinfrastructure. Therefore, we narrowed down
our focus to problems associated with only the reex-
ecution of scientific simulation software, and explored
the challenges of re-execution in the context of the
Crandon Mine decision process.

71



Previous work: In the past decade, there has been an
increased awareness of software preservation issues
[5][6]. Communities of scientists and organizations
have become concerned about preserving movies,
video games and even web content [11][15]. For ex-
ample, the Computer History Museum in Mountain
View, CA, [9] has established a software preservation
group' and started to define software selection criteria
[10][11]. The Internet archive [12] is another organi-
zation that began providing archival services for the
browsing of past web page contents using the way-
back machine [13]. Some organizations, like the Soft-
ware Preservation Society [14] started to specialize
in the preservation of computer game software. The
common goal of the above community and agency ef-
forts, as well as our goal, is to establish preservation
acceptance procedures for software of any kind so that
the software can be re-executed in the future.

In the process of raising awareness, several basic and
intriguing questions about software preservation have
been posed: what socioeconomic or technical factors
influenced the development and adoption of specific
types of software[6], why preserve certain pieces of
software such as computer games|[ 1], and what should
we save[5] [2]? Some of these questions and certain
aspects of preservation could be addressed by going
through reconstruction projects. The reconstruction of
Charles Babbage’s Difference Engine No. 2 in 2002
[3]1[4] with no contemporary original is such an exam-
ple. Similar to [7], our work can be viewed as a recon-
struction project where the goal is to understand the
preservation and reconstruction requirements while
attempting to re-execute simulation software support-
ing a particular decision process, such as the Crandon
Mine decision process.

The problem studied and the outcomes: The prob-
lem is motivated by understanding the process of
transferring digital information about decision pro-
cesses from any federal agency to NARA. One such
example is the case of the Crandon Mine Project [16]
which spanned 24 years and involved multiple agen-
cies and stakeholders. The project approval decision
process required understanding of the environmental,
ecological, hydrological, cultural and financial im-
pacts. The decision makers from multiple domains
obtained some understanding of the above by run-

ning simulation programs and analyzing their outputs.
For example, there was a need to assess protection of
groundwater resources. All simulation programs be-
came one part of the decision process together with
input data and parameter files. In our work, the goal
is to explore a set of criteria for accepting simulation
studies to the National Archives. The objective of
the acceptance criteria is to enable reconstructions of
these simulation studies in the future from the digital
information preserved today.

The term “reconstruction” here refers to the re-
execution of the Crandon Mine Project simulation
software with the associated meta-data and input
data set to recreate the stored outputs. The simula-
tion utilized several applications. ANNIE, a user
interface designed and developed to assist the user
in all aspects of hydrologic modeling and analyses,
could be executed and interacted with. However, it
was not clear what interactive inputs were used to
setup the simulation parameters (.wdm file). The key
simulation software, HSPF, was not available in the
archives we had. With regards to data, files were se-
lected for the reconstruction according to the user
manual (files with extensions uci, wdm, plt, exs, and
ech). Using the data was difficult as we encountered
inconsistencies in file naming and incompleteness
in the input data. For example, there were missing
wdm, plt, and/or exs files. In a nutshell, although we
found subsets of required data files they did not meet
the requirement of the software during execution.

Preliminary Recommendations: Base on our Cran-
don Mine specific reconstruction effort, we concluded
that at least the following steps have to take place be-
fore a successful re-execution of the simulation soft-
ware could be achieved:

e Verify input and output files by testing with in-
cluded software for possible format corruption

* Include a batch file or a shell script for setting
up the environment variables

¢ Document the platforms and data that the soft-
ware was tested with.

* Define acceptable differences between provid-
ed output files and the output files obtained by
software re-execution.

1 See http://community.computerhistory.org/scc
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Further, before preservation the software should be
re-executed by starting with a bare bones system, and
following the installation and execution instructions
to reproduce results. It would be beneficial to estab-
lish forms specific to software acceptance that would
provide an inventory of record context and content, as
well as a software execution trail (e.g., last accessed,
last executed). It has been suggested that the use of
forensic tools [17] could be used to recover some of
this information. It is apparent that filling the software
context and content forms might be an extra burden
for agencies using software, managing software ver-
sions and preserving the software. We foresee soft-
ware sustainability and reusability in automating the
information gathering that would have to be entered
otherwise into the software context and content forms.
The automation could be accomplished by designing
self-describing workflow environments such as Cy-
berintegrator> where the data sets, software and ex-
ecutions are automatically annotated. While there are
many perspectives on the problem of software sus-
tainability and several approaches, there is a need for
complete information in terms of binary executables,
inputs, outputs to compare to, and adequate documen-
tation to allow for future re-execution.
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FEDORA PROJECT, Fedora Electronic Lab in
Research & Development environment

Chitlesh Goorah, Fedora Electronic Lab Architect
Email: chitlesh@fedoraproject.org

ABSTRACT

This paper entails how the Fedora Project encourages
R&D in advanced electronics design through its Fedora
Electronic Laboratory (FEL) platform. Fedora has
opted a different approach in the development of such
high-end hardware design and simulation platform.
This approach focuses mainly on providing open-
source EDA solutions to meet several high-end design
flows and methodologies, rather than the traditional
opensource method: random packaging process.

INTRODUCTION

There are many opensource Electronic Design Auto-
mation tools on the internet. These EDA tools include
advanced scientific know-how of the semiconductor
industry, brought by many people from various coun-
tries. In order to design hardware for the real life,
these EDA software should fit into a particular de-
sign flow and ensure interoperability. Otherwise, this
knowledge is useless for real life situations. On the
other hand, this scientific knowledge is incorporated
under various software languages. Thereby, it is also
very difficult for the end-user to maintain such design
flows, along with an EDA Consortium compatible op-
erating system.

FEL strives to lighten the work load of the electronic
design community who should only care about their
cutting edge technologies rather than wasting time on
software deployment. Hence, the Fedora Project in-
corporates and prepares those opensource EDA tools
into its EDA portfolio that meets the current Semicon-
ductor industry’s trend along with an EDA Consor-
tium compatible operating system, Fedora.
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Fedora Project models a Semiconductor design cen-
ter as its user base to provide the best portfolio for
Micro-Nano Electronic Engineering design flows
with opensource software. With such a model, both
the Semiconductor industry and R&D facilities have
for free and without any registration full access to this
electronic engineering portfolio. The latter covers the
following fields:

* Verilog code generation.

* Analog/Digital ASIC design and circuit simu-
lations.

*  Modeling, PCB design and HDL synthesis.
*  Post tape-out chip testing facilities.
* Embedded Systems Development.

e Verification means for hardware description
languages (VHDL and Verilog).

e Standard cell libraries supporting up to a fea-
ture size of 0.13 _m.

* Extracted spice decks which can be simulated
with any spice simulators.

* Interoperability between various packages
in order to achieve different design flows.

RESEARCH & DEVELOPMENT
ENVIRONMENT

* The Research & Development environment
(either academic or industry oriented) has es-
tablished strong ties with the major EDA ven-
dors. These EDA vendors have resources to
improve their software in terms of



* runtime and advanced algorithms (routing,
retiming, parasitic capacitance calculations)

* inclusion of a new industry standard

e characterized standard cell libraries of differ-
ent technologies

Despite those advantages, the end-user experiences
‘Vendor Lock Down’ whenever the design project
requires interfacing with a simulator from a differ-
ent vendor or even home-made scripts. FEL strives to
provide the appropriate design tools which support in-
dustry standard data formats in order to eliminate the
so-called ‘Vendor Lock Down’ issue.

Although the Fedora Project is a non-profit organi-
zation, FEL shares the same difficulties the big EDA
vendors are facing. While many EDA vendors also
use opensource tools (GNU Toolchain, Java, Tcl/Tk,
Perl,...) to build their software, Fedora as the linux
distribution is a perfect ground for their development,
since it is an EDA Consortium compatible OS. The re-
searcher thereby has a better design experience by co-
hosting opensource EDA tools and commercial EDA
tools. Hence, the home-made and project dependent
scripts created by the researcher do not suffer from
obsolete optimizations and functions of different com-
pilers or interpreters.

Since the last two years, Fedora Electronic Lab has
been improved to support hardware design for the fol-
lowing applications:

* Academic and Research
e Automobile

e Defense/Space

e Medical

The user-base is thus expanded to fit different re-
searchers’ needs. While the design and simulation
tools proposed under the FEL umbrella are used to
design vending machines, RISC processors, consum-
er products, thick film circuits and different types of
pixels, FEL is a reliable option for R&D department
to consider.

Researchers can use FEL as a testbench for their hard-
ware algorithms. Since the EDA software is open-

source, researchers don’t have to rewrite the whole
simulator in order to verify their specific hardware
algorithms. They can also use Fedora as a collabora-
tive development platform with other researchers of
different institutions with Fedora’s VOIP solutions.
Researchers can share, backup and retrieve their mea-
surement data securely together with opensource ver-
sion control systems.

AN OPENSOURCE EDA COMMUNITY BUILDER

FEL was spinned from an opensource software com-
munity with the same values of the Fedora Project.
It bridges both opensource hardware and opensource
software communities. Subsequently, maintaining a
community around FEL is subjected to deal with cul-
ture clashes between the communities being bridged.

Our approach with FEL is to build a community
around opensource EDA solutions with opensource
software. This differs from the old-fashioned open-
source software community’s method which pro-
poses only opensource EDA software. This old-fash-
ioned method downplays the value of the opensource
EDA community as it does not interface with the
field applications. This defeats the purpose of being
an EDA provider.

Our approach with FEL though is to find first EDA so-
lutions from field-proven problems. These EDA solu-
tions will eventually lead to a proper set of opensource
EDA software that meets the demands of the field-
proven problems. Researchers not only receive EDA
portfolios from FEL but also a community that can
listen to their real-life problems with EDA software.

* To build such a community both inside and
outside FEL requires a robust infrastructure
as a model to follow. Such a model should
help the FEL developer-base to fix all the
mentioned bottlenecks and to focus on FEL’s
roadmap alone. Fedora’s current infrastruc-
ture serves FEL with many facilities in terms
of

¢ marketing
* packaging maintenance and release

¢ software optimizations and security

75



The only problem is the targeting userbase is not the
same as regular Fedora userbase. FEL’s userbase may
not visit linux tradeshows and thus the value of the
opensource EDA solutions are not properly conveyed
to the right userbase. Since FEL holds the responsibil-
ities of doing the marketing of its upstream projects,
new ways need to be found. That said, it is impera-
tive to line up FEL marketing with those of big EDA
vendors. One of the opensource software community
clashes FEL ignores is competition with other linux
distributions. Hence we have a clear roadmap for our
milestones which in return also helps the userbase
achieving the design sign-offs quickly.

CONCLUSION

Fedora Electronic Lab has proved that advanced
electronic design is possible with opensource EDA
software. While its userbase focuses on “technology-
to-product” transition, the Fedora Project continues
to sustain both the opensource EDA community and
EDA solutions for the best electronic design experi-
ence. The EDA portfolio supported by Fedora Elec-
tronic Lab will help its users to achieve their goals.
This new approach of EDA software deployment was
well greeted by several academic institutions in India,
France and United States. The next release Fedora 11
Electronic Lab will push the quality barrier higher
than the previous releases.

ABOUT FEDORA ELECTRONIC LAB

Fedora’s Electronic Lab[1] is a sub-project of the Fe-
dora Project[2] dedicated to support the innovation
and development of opensource EDA community.
This ambitious sub-project provides a complete elec-
tronic laboratory setup with reliable open source de-
sign tools in order to keep engineers and researchers
in pace with current technological race.
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Fedora Project — UAF Geophysical Institute

Dr. Jef Spaleta

This paper summarizes my personal thoughts on how
the Fedora Project can serve as a model for the NSF
to follow to sustain the development and widespread
use of a diverse ecosystem of scientific software in an
open and transparent manner. The NSF’s role would
parallel the one which Red Hat currently plays in the
Fedora Project, by making key investments and setting
project direction, while leaving room for community
to grow the project in new ways. I’ve been selected to
write this paper from the Fedora perspective in part
because, as a scientific researcher and Fedora contrib-
utor, I straddle both the science and software develop-
ment communities. In the following discussion I focus
on two aspects of the Fedora project structure I feel
are most relevant to the CI Software Sustainability
Workshop goals and NSF’s core mission.

The Fedora Project

The Fedora Project is a global partnership of free
software community members, managed by Red Hat,
which makes key infrastructure and resource invest-
ments to build collaborative space and incubate in-
novative new technologies, some of which may later
be integrated into Red Hat products. These technolo-
gies are developed in Fedora’s collaborative space and
produced under an open source license from incep-
tion to allow their study, adoption and modification by
other projects. The largest of the many free software
creations of the Fedora Project is the Fedora distri-
bution, a Linux based operating system that provides
users with access to the latest free and open source
software, in a stable, secure and easy to manage form.
The Fedora distribution itself is composed of many
individual software components, each with their own
developer communities outside of the direct control
of the Fedora Project or Red Hat. The Fedora Project

is structured to act as a conduit between the needs of
software users and the interests of software develop-
ers, where both groups benefit from the integration ef-
forts that produce the Fedora distribution.

The Fedora Project is more than just software, though.
It is a community of contributors with a variety of
skill sets, who work to advance the interests of the free
culture movement. It’s never enough to produce the
better technology. There is a need to engage and edu-
cate users of that technology to efficiently spread the
benefits of innovation. The inclusive nature of the Fe-
dora Project aids immensely as it gives non-computer
programmers a way to directly impact the success of
the project to educate and to put the technology inno-
vations into the hands of a growing number of people.
Just as a science literate society can make better use
of science innovation, we find that a society literate in
the open development process can make better use of
the open innovation being produced.

All the components of the Fedora distribution and the
Fedora Project’s infrastructure services are open and
made available under OSI approved licensing. This
is done to ensure that Fedora always remains free for
anybody, anywhere, to use, modify and distribute.
This is important to the collaborative process, both
internally to Fedora and externally for projects that
Fedora draws from. The Fedora Project is composed
of hundreds of individual contributors, and draws on
the work of thousands of developers from individual
open source projects. The adherence to OSI approved
licensing makes it possible for people to build on the
work of others while limiting the complications as-
sociated with licensing restrictions. Public sector in-
stitutions, corporate interests and private individuals
can all contribute to extending the value and build on
each others work because they all have equal access
to use the technologies the Fedora Project provides.
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Private-public collaborative partnerships, such as cut-
ting-edge science and technology research, that rely
on common software to form the basis of that collabo-
ration become more difficult and more costly when
the software licensing terms discriminate between cat-
egory of collaborators.

This focus on open, collaborative development makes
Fedora a center for innovation in free and open source
software. The Fedora community contributes every-
thing it builds back to the free and open source world
and continues to make advances of significance to the
broader community, as evidenced by the regular and
rapid incorporation of its features into other Linux
distributions. Regardless of which Linux distribution
you use, you are relying on code developed within the
Fedora Project. The NSF could choose no better goal
than to take as strong a leadership role in collaborative
science innovation as the Fedora project takes in the
open collaborative software ecosystem. The key as-
pects of the Fedora Project which make it a successful
partnership between community and business inter-
ests, its open collaborative nature, could equally ben-
efit the NSF’s mission to act as a catalyst for scientific
innovation which maximizes the return on investment
to the American public.

Fedora as a Model for the NSF

There are some strong parallels between the Fedora
project and the NSF’s mission as expressed in the four
NSF principle foundations of discovery, learning, in-
frastructure and stewardship. Ultimately Fedora aims
to grow and sustain the ecosystem of open source de-
velopment, driving forward software innovation from
which everyone can benefit and on which they can
continually build. The NSF’s mission is to similarly
advance science innovation. The NSF can and should
use the Fedora Project as a blueprint for policy and
infrastructure, and as a starting point for an NSF man-
aged initiative. Although the NSF goal of managing
resources for highly collaborative and innovative sci-
ence will undoubtedly present challenges foreign to
the Fedora Project itself, the Fedora Project’s approach
to solving challenges should still be very relevant.
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Open Infrastructure Investments Targeting
Enhanced Collaboration

The most critical aspect of the Fedora Project’s success
is openly developed infrastructure services that aid in
all stages of the open source software development
process. Red Hat invests into Fedora infrastructure,
which lowers the barrier on collaboration for the entire
Fedora community. Some of that infrastructure is used
in building and distributing Fedora software, but the
services maintained by the Project also include a raft of
collaborative hosting services at Fedora Hosted (http://
fedorahosted.org) for software development not neces-
sarily tied to the distribution itself. Fedora Hosted pro-
vides hosting and support services for individual soft-
ware projects, which lowers the burden on individuals
starting a new development effort. In addition, the Fe-
dora project maintains infrastructure for communica-
tion such as mailing lists, collaborative documentation
(wiki), and a Voice-over-IP (VoIP) service.

These infrastructure investments lower the barriers
towards collaboration, but the fact that they are open
source projects also encourages individual contribu-
tors to extend these services as new needs are identi-
fied. For example, the Fedora translation community
has built and integrated a new translation service,
Transifex, to better meet their own needs. This work
has even spawned a separate private business effort,
independent of Red Hat, to further the development of
the translation technology (http://www.indifex.com).

The success enjoyed by the Fedora Project clearly
demonstrates the need for the NSF to invest heavily in
infrastructure that facilitates collaboration for scien-
tific researchers and the sharing of data, tools, and re-
sults. An open high performance computing infrastruc-
ture is one area in which targeted NSF investments
could effectively mimic the Fedora Project approach,
and even potentially coordinate with the software de-
velopment ongoing in Fedora. Another potential area
of significant overlap is the establishment of an NSF
coordinated collection of open data visualization and
analysis tools that encourages the establishment of a
extensible, best of breed data analysis toolkit.

There are however other challenges unique to the
NSF’s mission with no existing Fedora infrastructure
parallel, but in which an emphasis on lowering barri-
ers to collaboration still applies. One such challenge



is data archiving. The NSF may need to invest in a
long-term, centralized data hosting repository, and to
develop a set of client policies for data submission
and retrieval. This repository would lower the barrier
to collaborative science using NSF funded datasets,
and ensure the accessibility of data beyond the fund-
ing horizon of the initial collection effort. Different
virtual observatory initiatives could then be built en-
compassing subsets of the information stored in this
repository. Such a repository could host primary data,
and associated analysis results with appropriate attri-
bution histories accounting for each step of the collab-
orative process for use in publications and other com-
munications. This repository may be able to leverage
the growing experience with distributed version con-
trol systems in use now in the open source software
ecosystem, which produce authoritative attribution
records for highly collaborative work.

Managing Competition and Diversity

To a large extent, Fedora does not attempt to micro-
manage what individual contributors work on in an ef-
fort to pick winning technologies. Because of the way
Fedora is structured, the project is able to accommo-
date a wide diversity of software at most levels of the
Fedora distribution. Most community member work
on what they want to work on for whatever reasons
they choose, and individuals software components die
out or flourish based on interest. Good ideas cross-
pollinate at the cost of having multiple implementa-
tions that duplicate effort to some extent. A key set of
Fedora staff keep the processes moving and the col-
laborative infrastructure operating, but for most part
contributors work on the pieces of technology they
find most compelling, whether its for personal rea-
sons or they are being paid by their employer to do
the work.

Over time, the NSF may develop a preference for one
technology over another to build on when choosing
to fund additional tool development or to integrate
tools into a cohesive framework. What software
components to fund directly can be a complicated
assessment involving an understanding of project
momentum and overall health. Even if such a prefer-
ence is established, when possible, it is appropriate
to leave room in the shared infrastructure for com-

peting ideas or alternative implementations to exist
even if they are not a funding priority. Alternative
approaches can be fertile ground for new ideas, even
when code reuse is preferred.

But its not always the case that different, competing
software projects can work side-by-side in an integrat-
ed way. For these cases Fedora has developed a fea-
turing process associated with the timebased releases
which let us evaluate how and when major changes
are introduced. A committee of elected Fedora com-
munity members review the feature requests for ap-
plicability and impact. If the NSF were to commit to
an integrated software deliverable such and analysis
toolkit or a HPC reference platform the feature review
used in the Fedora distribution release process might
apply to the NSF effort.

Summary

In summary, I believe that Fedora Project makes for
a worthwhile reference model for organizing a sus-
tainable, highly collaborative project that incorporates
diverse community interests and pays dividends for
both public and private sector contributors. I have so
far highlighted only two aspects of the Fedora Project
structure that the NSF could use as a blueprint in its
own efforts to manage a sustainable ecosystem for sci-
entific software development . There are other aspects
of the Fedora Project, such as the governance model
and the time-based release cycle, that the NSF could
adapt to serve its own goals but would require addi-
tional discussion beyond the space provided for here.
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Long-term Sustainability for Cyberinfrastructure Software:
Lessons from the Library Community

MacKenzie Smith, Associate Director for Technology, MIT Libraries
February, 2009

Introduction

The U.S. cyberinfrastructure initiative and its prede-
cessors have produced a wealth of new software and
related technologies for large-scale e-science research,
but their long term sustainability and value is still un-
clear. Much of this software is expensive to design,
produce, support, maintain, and use, and adoption can
be very slow due to a variety of factors including com-
plexity of use and difficulty reaching and supporting
the tens of thousands of individual researchers who
are potential adopters.

Software sustainability includes at least three dimen-
sions: initial development and ongoing innovation;
maintenance and support over time; outreach and suc-
cessful deployment to the intended audience of sci-
entists and engineers. If any one of these dimensions
is missing or fails then the entire endeavor fails, but
funding today tends to focus only on the first dimen-
sion and not enough planning or resources are applied
to the others. In fact, the “last mile” problem of reach-
ing individual scientists and engineers with innovative
technology appears to be the biggest stumbling block
to long-term sustainability.

These dimensions apply to software that is centrally
managed or distributed, visible to researcher end us-
ers or not. Even software that is centralized and invis-
ible to its end users needs to have measurable value to
those users to attract the resources required for ongo-
ing support and maintenance. However the different
dimensions work best in different modes. For exam-
ple, software development can be either centralized
or decentralized, outreach and support to end users
is best done locally, but community management and
support is best achieved with a centralized model. The
solution to cyberinfrastructure sustainability needs to
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recognize the hybrid and flexible nature of the overall
system, and fund the distinct parts differently.

The Example of Institutional Repositories

Starting in the year 2000, research universities began
producing and deploying “institutional repository”
enterprise systems to capture, describe, manage, and
curate digital research output (primarily research pub-
lications but also including multimedia and research
data assets). Institutional repositories, like much cy-
berinfrastructure, combine off-the-shelf components
(databases, search engines, markup languages and
processing tools, Webbased data visualization tools,
etc.) with features unique to the research enterprise.
Since the common software is typically maintained by
other sectors with similar needs and more resources —
finance, energy, transportation — the design goal for
institutional repositories was to minimize the amount
of software that requires ongoing maintenance by the
research community.

The major institutional repository platforms — cur-
rently DSpace, Fedora, and EPrints — are completely
open source software and have achieved a remarkable
degree of adoption in the past six years. Almost every
research university or other research-generating orga-
nization in the world runs one of these repositories,
typically at the research library with support from the
institution’s I'T department.

What caused the broad adoption of these systems in
the research community?

Ensuring support for scientific and engineering com-
munity standards (e.g. for data encoding); brand rec-
ognition and confidence in the software producers;



ease-of-use and availability of support, training, and
documentation of the software; ability to customize
and improve software as necessary; ability to switch
to newer products over time. But the most important
factor was identifying exactly the “market” for the in-
frastructure and how to reach it, and putting more re-
sources into the outreach and support than the original
software development by several orders of magnitude.

The sustainability strategy for institutional reposito-
ries addresses all three dimensions described above:

* For DSpace and Fedora, small, independent and non-
profit foundations were created to support the user
community. These foundations provide coordination
of development and maintenance work throughout
the user community and represent the community in
various settings, e.g. policy efforts, standards groups,
external communities of supporting software such as
database and search engine software.

* New software development and innovation is funded
with new money, typically by an institution that uses
the software but not necessary the original developer.
In some cases, groups of institutional users form to
jointly develop new software (e.g. for a new version
or major new feature).

* Ongoing user support and maintenance are provided
by the user community so that the cost and risk are
distributed widely.

* End user outreach and support is provided by the
software users (typically research library staff) who
also measure the use of and value to the end users of
the software, to justify ongoing investment.

Recommendations to the NSF

The model of small, lightweight, independent organi-
zations to manage software communities has proven
effective for some components of cyberinfrastructure.
Since such organizations are typically not the source
of software development or maintenance itself, a
sustainable ecology of stakeholders can develop that
include commercial entities contributing to the over-
all health of the community. Judicious open source
software licensing can make this easier to encourage.

The organization coordinates activities throughout the
community to insure that institutions who wish to in-
novate can reach a target audience to test the idea and
get help with and adoption of the new software.

If the scope of such organizations is broadened to in-
clude other distributed and reusable components of
cyberinfrastructure; if these organizations directly
support the individual institutions that, in their turn,
support individual researchers, this would create a
flexible organization to sustain cyberinfrastructure
software indefinitely into the future. Since such or-
ganizations could represent a wide range of software
systems and wouldn’t depend on software sales or
government funding for operating revenue, they could
avoid over-zealous promotion of solutions that don’t
meet researchers’ needs. In fact their survival would
depend on their effectiveness at meeting researchers’
needs over time, since they would be measured by ser-
vice to scientists rather than software development.

Finally, such organizations would be able to market
the cyberinfrastructure software to sectors outside
scientific research with common needs (e.g. financial,
energy, transportation) to create an even richer eco-
system to support the software going forward. For all
major existing cyberinfrastructure that has achieved
true sustainability (e.g. the Internet and the Web) this
cross-sector utility was clearly a key to success.

NSF funding should focus on new development and
innovation, but coordinated with the community man-
agement organizations to discourage the phenomenon
of reinventing the wheel. Additional, separate funding
could support outreach and training to adopting in-
stitutions and to end user researchers. By decoupling
these two, we would hope to achieve both continued
innovation and improved adoption and sustainability
of at least some of that work.
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Open Source Development as a Pathway to Sustainability

Dick Repasky and Rich Knepper
Pervasive Technology Institute, Indiana University, Bloomington, IN, USA

There are multiple paths to sustainability, and no one
path fits all projects. To match paths with projects one
must understand for each path to sustainability the
conditions under which it will succeed as well as those
under which it will fail and then ascertain which types
of projects will flourish on that path. In this position
paper, we open a discussion of sustainability through
the open source method of software development
by reviewing literature on the method and by asking
which types of funded projects are amenable to it.

Open source is as much of a method of software de-
velopment as it is a type of license, and it is the devel-
opment process that must be sustainable. Briefly, soft-
ware is developed by a distributed group of loosely
organized volunteers, usually without financial com-
pensation. The method has produced some innovative,
highly successful software, and it has piqued the inter-
ests of both economists (e.g., Lerner and Tirole, 2002)
and organizational scientists (e.g., von Hippel and von
Krogh, 2003), who ask why it works and how it fits
into the conceptual frameworks of economic theory
and organization science, respectively. Two issues
emerge: why participate, and what are the sources of
leadership and vision that keep projects focused? Peo-
ple participate because they need the software and are
willing to invest in it, because they wish to gain expe-
rience to enhance career prospects, because they wish
to flaunt skills to attract potential employers or inves-
tors, and because they enjoy the work. Leadership and
vision usually come from project founders or small
groups of senior developers. To be sustainable, proj-
ects must attract a sufficient pool of developers and
retain developers long enough to maintain continuity.

For cyberinfrastructure projects, we assert that the pri-
mary motivating factor that will sustain open source
projects is need for the product and willingness to
invest in it. Case studies clearly indicate that need
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and willingness to invest have been sufficient to mo-
tivate some projects. However, it is not yet possible
to evaluate objectively the suitability of open source
development for individual projects because bounds
on the conditions under which need and willingness to
invest are sufficient to sustain projects have not been
explored.

We also assert that a major hurdle to be overcome is
the transition from being a supported project to an in-
dependent project. We discuss two aspects of the tran-
sition: maintaining the community of developers and
the cessation of external support.

The ideal transition is one in which the community
of developers is unperturbed, a transition that is pos-
sible only if projects embrace open source develop-
ment very early. The later that projects move to open
source development, the greater the change that the
development community undergoes, and the greater
the chance that the community disintegrates. The most
extreme transition is one in which the original devel-
opment team abandons a project, say when funding
runs out, and a new open source team must form to
sustain the project.

Which types of cyberinfrastructure projects are ame-
nable to open source development early in life? We
assert that the open source path to sustainability is
better suited to infrastructure projects than it is to re-
search projects. The goal of infrastructure projects is
to create something useful that will indeed be used,
and there is no reason to delay the process of build-
ing a distributed community of developers. Indeed,
infrastructure projects should benefit from the efforts.
The goals of research projects on the other hand are
to demonstrate concepts and the abilities of research-
ers. Researchers tend to be secretive about their work,
especially the source code, until they have mined it for



publications, and then when they have finished with
it, they are ready to abandon the work and move on
to something else. That is, they are prone to open up
their work to the open source software development
process only very late, under conditions that we be-
lieve are least favorable to sustainability through open
source. Pathways to sustainability other than open
source are probably better suited to research projects.
Funding agencies that wish to pursue open source for
research projects might pursue it through grants that
are awarded after research has been completed, with
the understanding that only the concepts will have
been demonstrated and that codes will need to be re-
written from scratch because researchers routinely
sacrifice principles of software engineering for speed
in demonstrating concepts.

The second aspect of the transition from a support-
ed project to a project that is sustained through open
source development is the change from being sus-
tained by funding to being sustained by contributions
of effort. The questions are: what conditions are nec-
essary for independence and what further develop-
ment do funding agencies want to support? From the
viewpoint of a project more funding for longer periods
of time should always be better because the project
should be able to produce more functionality sooner
than with less funding. Agencies that seek to maxi-
mize the amount of cyberinfrastructure produced, on
the other hand, are likely to favor early independence.
We view funding decisions as policy decisions to be
made by the agencies. Nevertheless, we encourage
agencies to develop clear policies and guidelines re-
garding their criteria for independence and the cessa-
tion of support for projects that are to be sustained by
open source development.
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Open Source Writ Large:
Advantages of a Foundation Community Model for Cyberinfrastructure

Rich Knepper and Dick Repasky
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Open Source software (OSS) presents a number of
unique benefits to the Cyberinfrastructure (CI) com-
munity. These include include low costs for soft-
ware distribution after initial development, ability to
alter software to fit new requirements, accessibility
of source code even after projects end, and a collab-
orative model of development. In addition, OSS is
adaptable in that code can be changed to meet new
requirements, even at a different institution by a dif-
ferent development team, and the source code is not
subject to intellectual property restrictions that would
make it unavailable when a vendor company fails or is
acquired by another company. We identify two types
of community development around OSS projects:
the project centered community and the foundation
community. The project centered community is the
traditional model of OSS development in which de-
velopers and users participate in a single project. The
project leads (usually one person or a small group) at-
tempts to attract users and developers in an effort to
build a community centered around that project. As
a result, the environment of OSS projects developed
in this way varies significantly. Foundation commu-
nity development creates groups of projects around an
area of interest (for example the Apache Foundation
is centered around “providing web services”), provid-
ing a framework around which new projects enter the
foundation via an acceptance process and potential
participants have a better understanding of how proj-
ects work based on their familiarity with other proj-
ects in the foundation. For the NSF, using the foun-
dation community model for OSS development may
result in increasing the number of sustainableCI soft-
ware initiatives. We propose that the foundation mod-
el for community development may have substantial
benefits for the development of CI software, and note
that some of the characteristics of the foundation com-
munity model require forethought and engagement on
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the part of those who would make use of this type of
software development.

Open Source Software can specifically benefit the CI
community in a number of ways. The NSF funds soft-
ware development and purchases for CI and as a gov-
ernment agency it is accountable for reducing costs
as much as possible; sponsoring the creation of OSS
allows for the NSF to budget for development and
maintenance, rather than relying on vendors’ promises
that licensing fees will not change and reduce lockin
to vendor licenses. Additionally, the highly special-
ized nature of Cyberinfrastructure software projects
often means that contracting or purchasing software
is prohibitively expensive. The collaborative nature of
OSS development meshes with that of the CI commu-
nity, in which both projects and software development
is geographically and institutionally distributed, deci-
sion making and communication is asynchronous, and
partnerships and confederations are the rule. Finally,
different versions of the same software can be devel-
oped concurrently and exchanged between teams to fit
varying needs at different institutions, and pieces of
code can be exchanged and reused for different proj-
ects that have similar needs.

The foundation community is demonstrated best
by foundations such as the Apache Foundation, the
Mozilla Foundation, and the Free Software Founda-
tion. The Apache Software Foundation (ASF) was
created in order to provide software for web services.
The ASF is a loosely governed body that determines
which projects are included and provides a common
set of rules and member roles, operational infrastruc-
ture, and principles for development (described as
“The Apache Way”): collaborative software devel-
opment; commercial friendly standard license ; con-
sistently high quality software; respectful, honest,
technical based interaction; faithful implementation



of standards; security as a mandatory feature'. The
foundation prides itself on functioning as a meritoc-
racy —potential members with access to change the
source code must demonstrate both ability and con-
formance to the Foundation’s principles—and as a
“do-ocracy” initiatives are pursued by those willing
to carry them out and coordination is achieved via
consensus gathering.

This foundation community model provides a number
of benefits over the project centered community. Most
importantly, several characteristics of the foundation
community create stable expectations for potential
participants. A foundation for open source software
typically defines a standard license or set of licenses
for software to conform to, acommon problem or issue
to address (web services in the case of the ASF, tools
for an operating system in the case of the Free Soft-
ware Foundation), governance structures and organi-
zational culture that all members accept. The founda-
tion and its projects are known quantities and various
projects operating under a given foundation may be
expected to have similar means of communication,
dispute resolution, and requirements for membership.
Some foundations provide physical infrastructure for
projects. By making use of a common infrastructure
and reducing redundant systems, projects that are part
of foundations can take advantage of economies of
scale. Finally, a foundation such as the ASF becomes
a known entity for potential contributors. A project
that is part of the Apache project carries some cachet
by working under the aegis of a larger project that is
well known and accepted as an accomplished and ef-
fective project. Furthermore, organizations that estab-
lish themselves have inertia. While individual projects
may come and go, the foundation becomes an institu-
tion, and users, developers, and sponsors all have set
expectations about the projects associated with it.

Cyberinfrastructure development projects can benefit
specifically from the foundation community model of
OSS development. CI projects using this model are
more likely to be sustainable because of the stability
that is ensured by interacting with a foundation rath-
er than a population of loosely related projects. By
sponsoring or working with foundations that address
a given problem or issue, CI organizations are able

to identify and address specific questions outside the
general OSS project population. Finally, foundations
create entities separate from individual projects that
can exhibit considerable longevity. When projects are
no longer relevant, the areas of interest that they ad-
dress often remain and developers and users can move
to new projects handled by the overarching founda-
tion with relatively little difficulty, rather than seeking
new suppliers for software.

The NSF has a number of routes to encourage the es-
tablishment of foundations for Open Source CI soft-
ware. NSF can actively seek to create (via funding
initiatives) foundations in order to address specific
questions or issues. In doing this, it is important to un-
derstand that the basic principles of the organization
(such as “The Apache Way”) are as crucial to establish
as goals and metrics for assessment —which means
that there are requirements of the means of software
development as well as ends, for sustainability’s sake.
The establishment of a foundation, determination of
governance structure, creation of boards, decisions
on basic licenses and principles requires considerable
engagement on the part of the funding agency, if this
is the route to be taken. The question or issue of inter-
est (“web services”, “tools for an operating system”)
may have substantial influence on the effectiveness of
the organization. The ASF has a central problem that
is rather tightly defined, and certainly of interest to
multiple parties, some of which are prepared to con-
tribute considerable resources to the area of interest.
In contrast, the central problem of the Free Software
Foundation is somewhat more diffuse and of necessity
broadens the scope of the organization and the entities
involved in projects.

Another route to encourage sustainable development
of CI software would be to contribute to individual
projects which are part of an existing foundation, or
to stipulate membership in a foundation as a condi-
tion of funding. This reduces considerably the amount
of engagement required on the part of the granting
agency in comparison to creating a wholly new foun-
dation, while retaining benefits conferred by founda-
tion membership. Furthermore, if proposal authors are
able to secure a letter of commitment from an existing
software foundation, this smooths the proposal pro-

1 Apache Software Foundation. “How the ASF Works.” http://apache.org/foundation/howitworks.html accessed 2/19/2009.
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cess and both the proposers and the granting agency
have some assurances about the quality and expected
longevity of the software for development.

We believe that the foundation community model can
contribute to the sustainability of CI software by pro-
viding the benefits of establishing a known entity (lon-
gevity, name recognition and notoriety), setting stable
expectations, economies of scale, and concentration
of similar efforts under an umbrella organization. It is
essential to note that successful foundations have sig-
nificant cultural components and that a considerable
amount of thought needs to go into those components,
if the organization is to be truly sustainable. In addi-
tion, the area of interest is also of crucial importance
to the scope and boundaries of the organization and
the contributors which it can consider attracting.
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Sustainable cyberinfrastructure software: perspectives and priorities.

23 March, 2009

The Coalition for Academic Scientific Computation
(CASC - http://www.casc.org/) is an educational
nonprofit 501(c) (3) organization with more than 50
member institutions. CASC members represent many
of the nation’s most forward-thinking universities and
computing centers dedicated to enabling and support-
ing the use of advanced cyberinfrastructure to acceler-
ate scientific discovery for national competitiveness.
CASC institutions contribute to medical discoveries
and healthcare, global security, economic vitality, and
the development of a diverse and well-prepared 21st
century workforce.

CASC herein presents two recommendations regard-
ing steps that should be implemented so that sustain-
able software for cyberinfrastructure and computa-
tional science can be incubated, developed, published
and supported to best serve the NSF mission and U.S.
national interests.

The mission of NSF can be described as “...promot-
ing achievement and progress in science and engi-
neering and enhancing the potential for research and
education to contribute to the Nation” [1]. Inarguably,
the transfer of research outcomes and their supporting
technologies to both the broader research community
and toward economic development opportunities is a
major contribution to the nation. Among all of the ar-
eas of science supported by NSF, high performance
computing (HPC) is acknowledged as a key factor in
accelerating research [2] as well as economic devel-
opment [3]. HPC can reduce the time required to gain
scientific insight into a problem, help to design new
drugs and medical devices, simulate a process that is
otherwise impossible to understand or model, design
new consumer products, and lead to the discovery of
new processes and phenomenon.

Sustainable cyberinfrastructure (CI) software is a criti-
cal enabler of HPC for both research and economic
development [4]. Unfortunately, we observe that much
of cyberinfrastructure and computational science soft-
ware developed under NSF-funded projects has limit-
ed impact beyond fundamental research. By their very
nature, the cyberinfrastructure and computational sci-
ence research areas routinely generate software.

However, this software is utilized by only a small
number of individuals — typically the principal inves-
tigator, a small group of students and perhaps a few
collaborators. Consequently, we believe that much of
the value of that software is never harvested and the
potential benefits for both research communities and
for economic development are never realized.

There are many reasons for this state of affairs. For ex-
ample, many researchers seek answers to specific sci-
entific questions, and the code they develop is a means
to that end. In such instances, software is considered
as “disposable” rather than a “deliverable.” Second,
many researchers, including very ‘expert’ HPC users
and researchers, are not trained in software engineer-
ing techniques. Third, many research codes are only
expected to be used a relatively few times, and tak-
ing the time to modify these codes so that they are
reasonably easy to understand is generally considered
orthogonal to the primary line of scientific inquiry.
Fourth, taking the time to transition code from “user-
hostile” to “user-friendly” takes considerable time,
usually requires extensive testing, and is, in many cas-
es, not funded under current NSF practices. Fifth, in
some cases, NSF supports custom software develop-
ment when commercial applications are available (and
in certain instances, superior), but the licensing terms
(costs, proprietary code, etc.) for commercial software
prohibit adoption by research and education institu-
tions. Finally, while there are numerous open-source
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software repositories, for example Source-Forge [5],
the Apache Software Foundation [6], Code Haus [7],
and Google Code [8], the cyberinfrastructure software
development community has not broadly adopted the
use of such repositories, at least in part due to over-
all maturity of the software and various licensing is-
sues. Despite these hindrances, the NIH has recently
demonstrated an ongoing commitment to software
developed under NIH funding [9] and is reaping the
benefits of that investment.

The Council on Competitiveness (CoC) has recog-
nized the importance of HPC in the private sector with
its HPC initiative since 2004, focusing on gaining an
understanding of how HPC can be used across the
private sector to drive productivity and competitive-
ness. In July 2005, the CoC and Ohio Supercomputer
Center (OSC) hosted a workshop on the “Evaporation
of the HPC Application Software Market,” encourag-
ing independent software vendors, public and private
sector HPC users, HPC vendors, and public sector
funders of HPC R&D to create a framework for action
to stimulate the creation of needed HPC application
software [10]. Participants discussed the challenges
of maintaining and creating HPC application software
suitable for a competitive, corporate “production” en-
vironment, the state of the ISV application software
market, and the role of government, universities and
national laboratories to help accelerate development
of new and/or updated code. Subsequently, a CoC/
DARPA “Study of Independent Software Vendors
(ISVs) Serving the High Performance Computing
Market” found that the business model for HPC ap-
plication software is fast disappearing, as there is an
increasing need for expensive, long-term develop-
ment of highly scalable codes [11]. While industry
has shown enthusiasm in adopting cloud computing
and high throughput models, the lack of scalable ap-
plication software is preventing more aggressive use
of HPC by industry, and seriously impeding industrial
and national competitiveness.

The programs sponsored by NSF regularly generate
research software in every area of science and engi-
neering. In order to reap greater benefit from this soft-
ware, NSF sustainable cyberinfrastructure software
policies should be created or re-evaluated in terms
of transfer and sustainability to the broader research
community as well as for economic development pur-
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poses. In doing so the NSF should avoid the tempta-
tion of implementing unfunded mandates to its grant-
ees or propose models that do not reflect a realistic
long-term approach to software sustainability.

Two complementary efforts should be considered.
First, the research community must be engaged and
encouraged to produce “transition ready” software.
Second, crossdisciplinary software efforts must be un-
dertaken to discover, develop, harden, and adapt some
research codes into production codes for broader sci-
entific use and for economic development.

Recommendation #1: the cyberinfrastructure and
computational science research community must
be engaged and encouraged to produce ‘‘transi-
tionready” software. The term “transition-ready”
software is meant to refer to software that is ready
to be handed to the broader community, perhaps in
nominally useful form, so that the software can be
preserved in order to consider it for further devel-
opment effort. Transition-ready software will likely
lack the robustness, user interface and portability of
production software, but should represent a build-
able, testable, adequately formatted and documented
software project. For example, transition-ready could
include an associated set of manual pages that allows
for meta-data that is associated with the code. In the
open source community this is commonly done by
embedding comments in the code and then using
automated tools to extract the comments in order to
form rudimentary manuals. Using JavaDoc [12] for
example, comments are extracted, massaged, and
semi-automated standardized document pages are
produced from comments that were manually insert-
ed into the code. When the software pages are gener-
ated in html they can, in turn, be accessed across the
web during discovery processes launched to deter-
mine what codes are available to perform a particu-
lar task, and where those codes are made available.
We note that this approach is simplistic, and will not
work on extremely large codes that are sometimes
developed by the HPC community.

We believe a logical approach for the NSF is to en-
gage the cyberinfrastructure and computational sci-
ence research community in creating transition-ready
software, since the original research team must per-
form the early steps of research code transfer. We
acknowledge the difficulty of asking researchers to



take on software transition in addition to their primary
research mission, but only the original research team
understands the discipline, the algorithm, the imple-
mentation and the success criteria of the research code.

Additional software transition funding could be
provided as part of an individual program’s solici-
tation and proposal review, provided that adequate
mechanisms could be developed for proposing and
reviewing development plans. This funding could be
provided on an optional basis, providing the opportu-
nity for the research team to apply for supplemental
funding to create transition ready software. Addition-
ally, cross-disciplinary programs could be created for
proposing and evaluating software transition projects.
Further, the NSF should also consider funding for tool
and standards development for the cyberinfrastruc-
ture and computational science community to develop
transition-ready software. Such efforts could include
training on software development and code expecta-
tions. Finally, the NSF should also consider funding a
full program dedicated to software maintenance, fol-
lowing the example set by NIH.

Recommendation #2: the NSF should support a
modest number of sustainable software develop-
ment teams and a national repository of HPC
software. Crossdisciplinary software efforts must
be undertaken to discover, develop, harden, and
adapt select research codes into production code
for broader scientific use and for economic devel-
opment. These interdisciplinary software develop-
ment teams should be focused on both discovering and
developing new, public domain, highly scalable codes
that will have broad scientific and engineering impact.

In particular, we feel that the scientific and industrial
communities would benefit greatly from: (1) a reposi-
tory of non-classified, nonproprietary, open source,
scalable codes developed using new and existing fed-
erally funded software and algorithms - a good exam-
ple of a parallel effort, albeit closed, in the DoD can
be found in the CREATE program [13] sponsored by
the High Performance Computing Modernization Pro-
gram Office; (2) integrated test and validation tools
that can be uniformly applied to software sustained in
the repository and a comprehensive suite of published
benchmarks that can be applied to any emerging ar-
chitecture that will also promote good code design;
(3) software transfer support to mature successful re-

search codes for transition to the private sector; and
(4) outreach teams to work with academia and indus-
try to identify key HPC software gaps which have
not been addressed adequately by either party and are
critically important to solving challenging problems,
or to meeting contemporary business needs.

To begin this process, we recommend conducting a
national CI review and assessment. Pending the re-
sults of the study, the NSF should work in partnership
with other federal research agencies as well as key
players in the open source and commercial domains,
to establish a “best practices” standard of what con-
stitutes National CI quality code. Further, the team(s)
that springs from this review should establish and
serve as gatekeeper to a national code repository, en-
suring that existing gaps are filled and a cohesive na-
tional CI suite is maintained. At times the teams will
have to do the hardening of code when the original
developer is not available. Other times they will over-
see the hardening process. In the end, accountability
to the standard must be held by developers and the
team(s) alike to ensure that the national CI moves for-
ward as a whole.

We suggest that funding for the above recommenda-
tions be provided in three ways. First, the NSF should
build significant software funding into the budgets of
grants to resource providers or competitively selected
CI software development teams working in partner-
ship with regional centers or resource providers, to de-
velop software that can be successfully deployed. This
will guarantee that the solutions produced are hard-
ened, tested, and production-ready. It also produces an
environment where natural selection of the best tools
will prevail and remain up-to-date. Second, funds for a
hardening of tech transfer should be allocated as nec-
essary for an initial period of three years, with reduced
ongoing funding. Lastly, the EOT budget should be
increased and utilized to educate researchers on the
established “best practices.”

The benefits of these recommendations will be felt in
the first- and second-tier centers, as well as minority
serving institutions. The lessons learned and the tools
produced from the competitive review process will
reduce redundancy and development time, thereby in-
creasing the overall science output of the community
by keeping researchers focused more on their science
and less on their computational software.
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NSF recognition and support for such these activities
is directly in line with the NSF mission and would
have a dramatic impact on the success rate of cy-
berinfrastructure and US computational research as
a whole.
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Sustainable Cyberinfrastructure Software for:
Data-Aware Distributed Computing

Tevfik Kosar, Louisiana State University

Scientific applications and experiments are becom-
ing increasingly complex and more demanding in
terms of computational and data requirements. Large
experiments, such as high-energy physics simula-
tions, genome mapping, and climate modeling gen-
erate data volumes reaching hundreds of terabytes
per year. Data collected from remote sensors and
satellites, dynamic data-driven applications, digital
libraries and preservations are also producing ex-
tremely large datasets for real-time or offline pro-
cessing. To organize and analyze these data, scien-
tists are turning to distributed resources owned by
collaborating parties or national facilities to provide
the computing power and storage capacity needed.
But the use of distributed resources imposes new
challenges. Even simply sharing and disseminating
subsets of the data to the scientists” home institutions
is difficult and not yet routine — the systems manag-
ing these resources must provide robust scheduling
and allocation of storage resources, as well as effi-
cient and reliable management of data movement.

Although through the use of distributed resources
the institutions and organizations gain access to the
resources needed for their large-scale applications,
complex middleware is required to orchestrate the
use of these compute, storage, and network resourc-
es between collaborating parties, and to manage the
end-to-end processing of data. The majority of exist-
ing research and development efforts has been on the
management of compute tasks and resources, as they
are widely considered to be the most expensive. But,
as the famous quote attributed to Seymour Cray “4
supercomputer is a device for turning computebound
problems into I/O-bound problems” states, the man-
agement of data resources and data flow between the
storage and compute resources is now becoming the

main bottleneck for especially large-scale data-inten-
sive applications.

Traditional distributed computing systems closely
couple data handling and computation. They con-
sider data resources as second class entities, and
access to data as a side effect of computation. Data
placement (i.e., access, retrieval, and/or movement
of data) is either embedded in the computation and
causes the computation to delay, or is performed by
simple techniques which do not provide the same
privileges as compute jobs. The inadequacy of tradi-
tional distributed computing systems in dealing with
complex data handling problem in our new data-rich
world requires a new paradigm called data-aware
distributed computing.

In this new paradigm, data placement activities should
be represented as full-featured jobs in the end-to-end
workflows, and they should be queued, managed,
scheduled, and optimized via specialized data-aware
schedulers. As part of this new paradigm, a set of new
tools should be developed for mitigating the data bot-
tleneck in distributed computing systems, which will
provide capabilities such as planning, scheduling, re-
source reservation, job execution, and error recovery
for data movement tasks; integration of these capabili-
ties to the other layers in distributed computing such
as workflow planning, resource allocation, and stor-
age management; and optimization of data movement
tasks via dynamically tuning of underlying protocol
transfer parameters.

Most important software to sustain and maintain in
support of the NSF mission:

NSFs ‘Cyberinfrastructure Vision for 21st Century’
states “The national data framework must provide
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for reliable preservation, access, analysis, interop-
erability, and data movement [3].” The data-aware
distributed computing paradigm will especially ad-
dress these important issues, and advances in this area
promise to enable a wide range of new high-impact
applications and capabilities, which is closely aligned
with the NSF report on ‘Research Challenges in Dis-
tributed Computing Systems’ [2].

Similarly, the DOE Office of Science report on ‘Data
Management Challenges’ says “Although many mech-
anisms exist for data transfer, research and develop-
ment is still required to create schedulers and planners
for storage space allocation and the transfer of data
[4].” And, according to the ‘Strategic Plan for the US
Climate Change Science Program (CCSP)’, one of
the main objectives of the future research programs
should be “Enhancing the data management infra-
structure”, since “The users should be able to focus
their attention on the information content of the data,
rather than how to discover, access, and use it [1].”
This statement by CCSP summarizes the ultimate goal
of many cyberinfrastructure efforts initiated by NSF,
DOE and other federal agencies, as well the research
direction of several leading academic institutions.

We believe that the “data—aware distributed comput-
ing” paradigm will be a big step forward to reach this
goal. It will not only impact computer science research
by changing the way computing is performed, but it
will also dramatically change how domain scientists
perform their research by facilitating rapid analysis
and sharing of raw data and results. Future applica-
tions will be able to rely on this new transformative
paradigm to manage data movement and storage reli-
ably, efficiently and transparently. The impacted ap-
plication areas will include all traditionally compute
intensive disciplines from science and engineering,
as well as new emerging computational areas in the
arts, humanities, business and education which need
to deal with increasingly large amounts of data.

Early Examples of Data-aware
Distributed Computing:

One of the earliest examples of data-aware distributed
computing is the Stork data scheduler (www.stork-
project.org). Stork implements techniques specific to
queuing, scheduling, and optimization of data place-
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ment jobs, and provides a level of abstraction between
the user applications and the underlying data transfer
and storage resources. Stork introduced the concept
that the data placement activities in a distributed com-
puting environment need to be first class entities just
like computational jobs. Later, this novel idea was
also acknowledged by the strategic reports of federal
agencies. The DOE Office of Science report on ‘Data
Management Challenges’ defined data movement and
efficient access to data as two key foundations of sci-
entific data management technology [4]. The DOE
report also said: “In the same way that the load reg-
ister instruction is the most basic operation provided
by a CPU, so is the placement of data on a storage
device... It is therefore essential that at al [ levels data
placement tasks be treated in the same way comput-
ing tasks are treated” and referred to the Stork data
scheduler [5].

Another project based on the same idea is the Peta-
Share distributed data archival, analysis and visu-
alization system (www.petashare.org). PetaShare
storage network links nine Louisiana research institu-
tions, leveraging 40 Gbps Louisiana Optical Network
Initiative (LONI) infrastructure to make the intercon-
nections and fully exploiting high bandwidth low la-
tency optical network technologies. PetaShare makes
use of data-aware storage and scheduling technolo-
gies to transparently and efficiently enable more than
fifty senior researchers and two hundred graduate and
undergraduate research students from ten different
disciplines to perform multidisciplinary research. Ap-
plication areas supported by PetaShare include coastal
and environmental modeling, geospatial analysis, bio-
informatics, medical imaging, fluid dynamics, petro-
leum engineering, numerical relativity, and high en-

ergy physics.

Last year, researchers from around the world came
together at the first international workshop on data-
aware distributed computing (DADC’08) to discuss
this new computing paradigm and its impact on large-
scale complex applications (www.cct.Isu.edu/~kosar/
dadc08). DADC’08 was held in conjunction with
HPDC’08 and explored especially the problems in
data aware scheduling, resource allocation, metadata
collection, workflow management, and visualization.
The distributed computing and data management
communities joined forces in an effort to generate pro-



ductive conversations on the planning, management,
and scheduling of data handling tasks and data storage
resources. The second DADC workshop will be held
this year as part of HPDC’09.

Recommendation:

In its ‘Cyberinfrastructure Vision for 21st Century’,
NSF already acknowledges the importance of tech-
nologies for reliable and efficient data movement, ac-
cess, and analysis. We believe that NSF should give
very high priority to support and maintain software
in these areas since “In the future, U.S. international
leadership in science and engineering will increas-
ingly depend upon our ability to leverage this reser-
voir of scientific data captured in digital form [3].”
The advancement in data-aware distributed comput-
ing will capitalize NSF’s investments on TeraGrid,
DataNets and other large-scale cyberinfrastracture
and computational science efforts; and will directly
impact scientific iscovery and economic development
in the nation. It will greatly strengthen a broad range
of research, engineering, and development activities
by facilitating the efficient access, processing, stor-
age, and sharing of crucial digital data. The number of
workshops and forums on this new computing para-
digm should be increased, which will help the scien-
tists, engineers and software developers start thinking
about totally new scenarios where applications, simu-
lations and experiments are closely coupled with large
amounts of observational and empirical data, which
would revolutionize science, not just in the new sce-
narios but in the way it will bring the computational,
theoretical, and experimental scientists together who
do not normally interact.
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We submit this position paper on software sustain-
ability based on our nearly 15 years of experience
in designing, developing, distributing and deploying
cyberinfrastructure software that is being used across
the world. The Data Intensive Cyber Environment
(DICE - previously called the Data Intensive Comput-
ing Environment) Group has developed the Storage
Resource Broker (SRB) and integrated Rule-Oriented
Data Systems (iRODS) software. These data grids
support data virtualization and data sharing across
heterogeneous storage systems.

* What kinds of software are most important to
sustain and maintain in support of the NSF mis-
sion? What are the criteria that should be used to
decide on priorities for sustainability and mainte-
nance?

Scientific research is based upon the ability to com-
pare theory and simulations with experimental and
observational data. The data are assembled in refer-
ence collections to enable comparison of future analy-
ses with the current state-of-the-art understanding.
The reference collections are published for use by the
entire scientific discipline. This process is used by all
science disciplines to document scientific progress
and facilitate exchange of knowledge.

The scale of the science research questions has grown
massively, both in terms of the number of research-
ers who collaborate, the cost of the equipment needed
to conduct experiments, the cost of the sensors that
take observations, and the size of the reference col-
lections. Large projects minimize cost by promoting
the rapid sharing and publication of research results to
minimize the amount of effort invested in unproduc-
tive areas. Cost minimization examples include auto-
mation of sensor data rates by dynamically compar-
ing current observations with prior observations. Data
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rates are only increased when significant events are
detected. Reference collections are migrated to more
cost effective hardware, and data administration tasks
are automated. Current data scales are measured in
petabytes and hundreds of millions of files. Projects
(experiments, observatories, simulations) are growing
in scale to collections with 100 petabytes of data.

Software environments that help minimize cost enable
the investigation of a larger number of research ques-
tions, and have the highest priority for sustainability
and maintenance. In particular, cyberinfrastructure
software is needed that manages shared collections for
the research teams, manages data distribution for large
experiments, manages real-time sensor data streams
for observatories, and builds digital libraries of sim-
ulations results. The cyberinfrastructure software
organizes distributed data into collections, enables
large-scale data analysis across distributed data, and
enables longterm preservation of the reference collec-
tions. The technology that provides these capabilities
is a data grid. Data grids form a key component of
cyberinfrastructure.

* What models for sustainability and maintenance
of software exist, independent of federal funding,
that can be applied effectively to the cyberinfra-
structure software that supports NSF researchers
and the NSF mission?

We find that there are four important aspects to soft-
ware sustainability:

1. Expanding the User base,
2. Extensibility and Adaptability of the software,

3. Organic software development with a strong user-
feedback loop



4. Transition to a stable base such as a software foun-
dation or industrial support.

User Base:

The importance of a sustainable user base cannot
be over emphasized for a software system. Also in
the case of open source software, an expanding user
base is very much needed in the initial stages (first
few years), and a sustained user base during the core
development and “dig in” phase (next few years). The
user base will need a stable software maintenance and
support in the follow-on years after major develop-
ment have been completed.

In a scientific research setting, as promoted by NSF,
one of the best ways to make sure that software is
adapted by an expanding user community is to pro-
vide tools or services that:

a. do not interfere with their research,

b. provide a much needed solution to a cyberinfra-
structure problem

c. are easy to learn and use,

d. provide an expanding array of features that
helps their scientific endeavor.

A system that is very easy to install, administer and
use will lead to wider adoption by a broader audience.
Any roadblocks at these levels will take away pre-
cious time and frustrate the scientists who will walk
back to their suboptimal, but tried and true solutions.
As scientists start using a new system, they will prob-
ably adopt only the minimal set of features that they
need to solve a specific problem that they are facing.
But as time goes on, the adoption of more involved
features that help in advancing their research will be-
come easier once they know and trust the system.

At these stages, to minimize frustration, one needs
strong user support for multiple levels of expertise
(not just at computer science levels). Financial sup-
port for such user liaison should be built into a system
development process model.

Extensibility and Adaptability of software:

Any software that is widely applied will be exten-
sible. One size never fits all. Building a system that
can work from a small-scale to enterprise levels will

be more useful. This will also allow for a scientist to
start using the system at a small level and expand their
usage among colleagues locally, and then globally.

Adaptation also has another aspect. Since problems
are nuanced for each discipline, the software should
be easily “changeable” to meet the needs of multiple
disciplines. If this is not the case, one will be left with
a software package that is the least common denomi-
nator and not useful to anyone in a significant manner.

Adaptability also means that a scientist can build
their solution using the various building blocks that
are provided by the software package. A lego-block
type approach with service-orientation concepts is a
very good paradigm for such adaptation. But the key
should be that the integration should be easy to per-
form and intuitive to the end user.

Organic Software Development:

Normal software development follows the “cyclic” or
“waterfall” approaches with separate stages for design
and development. Usually in these approaches, the end
user is brought in only at the very end. The end user
is exposed to a “complete” product and an immense
amount of time is spent in educating the client in the
usage of the product. Moreover, since the design goals
were set probably 4 or 5 years earlier, by the time the
product is rolled out technological advancement may
make some if not all parts obsolete,

and moreover integration with an advanced set of sys-
tems may need more time and adaptation than is pos-
sible.

We have found that this approach, though useful in
an industrial setting, does not work well in a scien-
tific arena. What is needed is an organic approach
with the end user in the loop. We propose a design
model where a small set of key features are developed
in a short period of time (may be 6 months) and then
thrown open to the scientists to use, test and give feed-
back. The system may not be complete, it might be a
bit frustrating, but the fast turnaround feedback will
be useful in the design and development of the next
short cycle. The end user can make quick suggestions
of what they want (probably new goals) and how thing
can be improved and these can be plowed into the next
short cycle. In this manner, the user is involved con-
tinuously in the large-scale design. The short-cycle

95



organic design paradigm has the end-user involved
continuously, can roll and adapt with the punches as
technology changes under their feet and can become
self-sustainable as it moves with a shifting goal.

Transition after maturity:

Any software that is deployed after a life-cycle of de-
velopment and adaptation needs to be supported for a
longer time for sustainable usage. In a scientific set-
ting with open source software, such a sustainability
model can come from either an industrial adaptation
(with support for industrial strength software) or a
software foundation - independent of the development
team - where it can be maintained and sustained.

Moreover, this also relieves the designers from sup-
porting the software for long periods of time. They
can move on to developing cyberinfrastructure that
can be a major extension to the current system — such
as a complete redesign and paradigm shift - and be
more productive. Financial support for such founda-
tions needs to be built into the longterm goals of the
system development. A large user base is a key to get
such long-term support.

Our Experience:

The DICE team has more than 50 person-years of
software development and deployment experience in
cyberinfrastructure. In our approach to software de-
velopment, we have adopted the above approaches.
The SRB was built as a virtualization middleware for
large-scale data sharing. Even before the word ‘data
grid’ was coined several releases of the software were
issued for adoption in the wide-spread NPACI part-
nership. Key features of software sustainability built
into SRB includes:

- short organic development cycles with user-feed-
back based design changes

- modular design that made changes very easy for the
developers

- very easy to install and administer. The installation
can be done in minutes and we had one SRB adminis-
trator take care of 15 data grids!

- very easy to use. We provided tools that are intuitive
and known: Unix commands that have a familiar struc-
ture, SRB Explorer that is similar to Windows Explor-
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er), a web-based tool for ease of use and a set of useful
Java classes for easily building domain-specific portals.

- integration with a large number of peer software to
extend the usability of SRB. SRB was able to integrate
with nearly 30 different types of software systems by
the time its major development cycle ended.

- being vendor agnostic and platform-independent.
Even though the system was developed using the C
language (chosen because of the speed needed) the
system was coded so that plug and play of any number
of vendor product becomes easy (we saw integration
times in terms of days)

- user support - our whole team was geared to help-
ing the user. Our rule-of-thethumb was that the user
gets a reply within a few hours and a solution within
a day or so unless it is new feature development. We
worked closely with the users to debug as well as
design new features.

- wide use of software engineering tools - CVS, con-
tinuous build testing, NMlItestbed validation, mailing
lists, bugzilla and wiki.

SRB is still being used and supports more than 3 Pet-
abytes of data all over the world.

One of the main outcomes of several years of SRB
development is that we saw a need for a major para-
digm shift. The user requests for new features became
overwhelming even for a modular system such as
SRB. Hence, we wanted to build a new system that is
more adaptive and changeable (preferably by the us-
ers themselves). The outcome of this is the NSF sup-
ported iRODS middleware system.

In iRODS, we coupled a client-server peer-to-peer
system that has data and trust virtualization as in SRB
with policy-virtualization using a server-side rule en-
gine. In iRODS, a user can form rules that can be fired
based on triggers and perform complex workflows at
the data site. The building blocks for these rules are
called micro-services which have well-defined inter-
faces and can be easily chained together to form rules
and workflows. An intriguing aspect of the iRODS
rule systems is its ability to “clean up” on failures.
This is possible because the rules themselves have a
recovery section that is defined when the rules are de-
fined and executes on failure. This helps in not only



trying alternate rules but also makes sure that the sys-
tem is not left in an unstable state.

In iRODS, we have adopted the same organic short-
cycle design. Through user feedback, design goals can
be changed even when following a very broad strategy.
The user base in iRODS is not passive. Because of the
case of development of rules and micro-services, the
users themselves shape and adapt their iRODS system
to fit their needs. Many of these rule sets as well as
micro-services are becoming part of our releases, after
an initial test and review. The mantra of ease of use is
also part of the iRODS development, as we provide
familiar tools and extension for accessing data.

Adaptation of some useful interfaces such as Fedora,
Dspace, PAWN and such are making the system us-
able by a wide audience.

We have also formed a non-profit foundation for man-
aging long-term viability of the iRODS independent
of the development team. We hope to attract other de-
velopers and users to this foundation and take charge
of sustainability of the software system.

* What role should the NSF and other funding
agencies have in sustaining funding for important
software? How can federal agencies best coordi-
nate and achieve efficiencies of scale?

Agencies should provide funding for core devel-
opment and for applications of the software across
scientific domains. Support is also needed for main-
tenance, hardening, testing and documentation after a
core development period. Further support should be
through community buy-in and from usage in large-
scale funded and self-funded projects.

* Are there dangers that heavy support of one
particular open source system will stifle diversity
of research? How should one choose software to
sustain? How should one scale back when a par-
ticular system no longer seems promising but still
has significant use? How does this support model
compare to commercial systems where support is
not guaranteed? Do open source systems require
more or less operational support than commercial
products?

Funding should be diversified to ensure multiple ap-
proaches are explored. However, no system should be

supported that is not capable of interoperability with
other solutions. If it is possible to migrate collections
between solutions, then the best solution (most cost
effective and having the required features) will be
self-selected by the user community. Software must
be widely used if it is to become generic infrastruc-
ture, Within the academic community, open source
software is strongly preferred because it can be modi-
fied to meet project specific requirements, is freely
available, and is able to rapidly evolve to incorporate
new methodologies. However, open source software
is a doubleedged sword. The maintenance and sup-
port costs require the development of local expertise
in running the software. This is a labor cost, but it is
ameliorated by the transfer of expertise from the de-
veloper to each institution that uses the software. Open
source software is a knowledge transfer mechanism
that promotes enrichment of expertise at participating
sites. Thus it is widely used in academia.

* How can new strategies for sustainability of open
source and community source software be em-
ployed to help advance NSF goals?

Research now is conducted at an international scale.
Software systems are needed that are used in sup-
port of international research collaborations. There is
a corresponding commitment to international devel-
opment collaborations. Data collections now are as-
sembled on a global basis, with observation sources
scattered around the world, researchers distributed
across multiple continents, and software developers
distributed across many countries. In particular, data
grids are deployed as national infrastructure that tie
together academic and research institutions within a
nation. The development expertise to meet the wide
range of demands resides in the participating nations.

The iRODS data grid contains contributions from de-
velopers in Europe, the US, the Far East, and Aus-
tralia. These include clients for accessing the data
grid, security extensions to improve interactions with
grid software, micro-services for data manipulation,
and structured information resource drivers for spe-
cific data formats. Sustainability becomes easier when
the software becomes a de facto standard used across
multiple communities and nations.
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The Next Generation Research Grid (NGRG)
[Killeen2008] will require maintenance (and obsoles-
cence) of existing software as well as development of
software to bring new capabilities. For example, the
NGRG vision calls for “pathways for the integration
of a wide range of cyberinfrastructure (CI) resources
and new providers”. Achieving this goal necessitates
an increase in the number of applications, grid ser-
vices and resource providers (RPs). As a consequence,
grid software infrastructure and NGRG policies will
have to support an increasingly diverse set of services
and service lifecycle models (such as those required
by throughput computing or for interactive access).

In our experience, writing reusable software is more
than making source code available; reusability must
be constantly considered during software develop-
ment. Similarly, sustainable software is more than
software maintenance (or “open source”); sustainabil-
ity comes from active communities of users, develop-
ers and experts both external and internal to the soft-
ware development process. We believe that the NSF
should foster the creation of sustainable grid infra-
structure software by focusing on the following areas
(1) grid infrastructure standards, (2) interoperability
testing, (3) software incubation and (4) software prod-
uct development.

Standards are defined for various layers of the data
communication protocol stack (IEEE 802 standards
for ethernet, IETF standards for IP, W3C standards for
web services, the Globus Alliance and the Open Grid
Forum for grid services). Support for standards being
developed in the Open Grid Forum should be a major
emphasis for NSF. This support could come in a vari-
ety of ways such as requiring OGF standard compli-
ance (or development) as part of NGRG services or
programs targeted at standards generation.
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Recommendation: The NSF should provide ongo-
ing funding for a diverse CI standards team fo-
cused on developing and promulgating standards
for the emerging cyberinfrastructure. These stan-
dards should cover national, regional and campus
cyberinfrastructure.

In order to create sustainable software, the TeraGrid
Planning Process identified a need for “dedicated tes-
tbeds” [Killeen2008] for NGRG services. A natural
analogy comes from the wireless LAN industry, in
which there is a standards body (IEEE 802.11) and an
industry consortium (the WiFi Alliance). Despite the
efforts of their authors, many standards contain some
ambiguity. Implementers make assumptions when
faced with these ambiguities. In these cases, testing is
necessary to ensure that multiple implementations of
a specification interact correctly. Interoperability tests
have been discussed and published, but there exists no
standing organization to develop comprehensive in-
teroperability tests and certify testing results. This is a
critical area as the grid computing space expands with
standards such as those proposed as a logical next step
for the commercial “cloud computing” space [Arm-
brust2009].

Recommendation: The NSF should provide fund-
ing for a CI interoperability team. This interoper-
ability team should be charged with cooperatively
generating a suite of tests, acceptable test out-
comes, and metrics that can be used for standard
certification covering national, regional and cam-
pus cyberinfrastructure.

We have found it useful to categorize software de-
velopment activities as either software incubation or
software product development. Informally, we use
“software incubation” to describe time-limited soft-
ware development projects of modest scale. In typi-



cal software incubation projects, the application’s
author is its primary user, the application need only
run for a limited amount of time on a limited num-
ber of systems. Similarly, we use “software product
development” to describe products that are to be
ongoing, widely distributed, larger projects. These
projects must address many other factors including
testing, error handling, performance, scaling, stan-
dards conformance, multi-platform support, docu-
mentation, tutorials, and installation.

Recommendation: The NSF should permit funding
for software incubation, development, and support
to be included in future CI proposals, in particular
those proposals that are directed at the develop-
ment of community-oriented CI products such as,
but not limited to, innovative parallel libraries, do-
main-specific grid “stacks”, storage management,
collaboration tools, visualization (including remote
visualization), and portal components.

Many publicly visible software development proj-
ects are carried out in the open source (or community
source) communities, e.g., Linux, Apache, Python and
Eclipse. These projects have developed similar online
collaboration/feedback mechanisms (e.g., source con-
trol repository, mailing lists, bug tracking, wiki, chat)
functions bundled in applications like SourceForge.
However, technology alone is not enough to create
a successful open source project. In addition to the
technical infrastructure, successful open source proj-
ects [Fogel2007] exhibit a number of similar traits,
include (1) intersection of personal and professional
interests for developers, (2) passionate or charismatic
lead developers (such as Linus Torvalds or Guido van
Rossum), (3) low barrier to entry (simple, established
mechanisms for project installation, collaboration
and contribution) and (4) active user and developer
communities. If NSF wants to see such communities
develop around critical NGRG capabilities, it must
establish funding and evaluation mechanisms for all
aspects of software development.

Recommendation: The NSF should establish eval-
uation criteria and funding mechanisms that sup-
port software development, release, and life-cycle
improvement. This is particularly critical for rel-
atively lower-use software that is essential to the
nation’s escience objectives but which may not ini-
tially have a broad user-base or immediate com-

mercial potential. Funding should be provided to
support software development technologies includ-
ing repositories, user mailing lists, bug-tracking,
and testing. Further, NSF should consider develop-
ing mechanisms to allow intellectual property val-
ue to accrue to some software development activi-
ties outside of the open-source community.
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Sustaining Capabilities Not Codes By Architecting for Innovation

James D. Myers, Robert E. McGrath
National Center for Supercomputing Applications (NCSA)
University of Illinois, Urbana-Champaign

1. Introduction

It is important in considering sustainability to ask
what needs to be sustained. Specifically, is it software
products, or the capabilities enabled by that software?
In this position paper, we argue that sustaining capa-
bilities and architecting to enable change are often
the better choice, particularly when one considers
the costs and consequences of maintaining a specific
software product. Further, these approaches are not in-
dependent — software products architected to support
change are themselves more maintainable.

There are a wide range of technical and social issues
that influence the relative merit of these alternatives.
In our experience as part of the community develop-
ing scientific cyberinfrastructure, it is very rare to see
specialized software products re-used across projects.
Though there are exceptions, even successful prod-
ucts are often more successful in spawning new varia-
tions and competing products than they are in becom-
ing ubiquitous themselves:

 Later products can incorporate components that
were not available to the original developers and
can add/evolve general capabilities to better support
specific communities,

* Variants may integrate better with other communi-
ties’ existing infrastructure than the initial product,

» Communities can consider the combination of CI
developers familiar with their domain and the avail-
ability of support as arguments in favor of compet-
ing products, and

* Funding for maintenance is often more readily
available as part of developing more advanced ca-
pabilities.
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While all of these issues can be addressed with ad-
ditional funding, which may be a necessary part of
the solution, it is also worth noting that these issues
are not as relevant if the goal is to maintain capabili-
ties rather than products and if software is designed
to support migration to new products over time. Con-
sider the case of NCSA Mosaic and httpd in the early
days of the WWW. Clearly investment by NSF and
other agencies was critical to create these initial free
implementations of the Web protocols. However, the
success of the Web has been driven by the Web’s open
HTTP and HTML standards and the availability of
multiple browser and server implementations rather
than the continuing viability of the initial implemen-
tations. Once the idea of the web caught on, support
for Mosaic per se was not so critical.

While the Web can be dismissed as unique, there are
numerous other examples where standard interfaces
and protocols, particularly those that provide end-user
extensibility, have lead to long-term sustainability of
capabilities. In the following sections, we explore the
idea of sustaining capabilities in more detail, discuss
its application to scientific cyberinfrastructure, and
conclude with a discussion of how this reframes the
discussion of sustainability and leads to different ap-
proaches to achieving long-term sustainability of sci-
entific cyberinfrastructure.

2. Architecting for Innovation

HTTP and HTML are two examples of a class of stan-
dards that cleanly separate how something is done
from what is being done. HTTP defines how one can
GET and PUT blocks of content across the Internet
but does not constrain what they are or how they are
generated. HTML specifies page formatting but not
what you can discuss on the page. XML similarly
standardizes syntax but does not constrain content,



and service-oriented architectures have an analogy
with HTTP (quite direct for RESTful services). The
Internet itself is designed this way, with TCP/IP speci-
fying how to route packets not what they can contain.
Other examples of this approach in today’s CI include
the Pluggable Authentication Module API [4] and Java
Authentication and Authorization Service (JAAS)
(http://java.sun.com/products/jaas/). These abstract
APIs insulate applications and services from both the
specific authentication technology deployed and the
administrative policies at various locations. They de-
fine the handshakes required between users, applica-
tions, and authentication services required to perform
authentication but keep details of how authentication
is performed out of applications. This enables applica-
tions to be reused in different security environments
and for communities of users to upgrade to new au-
thentication services over time without involvement
of application developers. An application could be de-
ployed using usernames and passwords at one site and
Grid credentials at another (or at a later date) with no
changes to the application software itself.

All of these standards encourage creativity “at the
edges,” and they have supported continuing evolu-
tion and expansion of capabilities over years and, for
some, over decades. For the web, the separation of the
means to reference, link, and format resources from
the content being conveyed was the critical design
principle that led to reusable browsers and servers
and empowered web users and developers to innovate
without the need for, or the expectation of, central co-
ordination. The challenge in developing sustainable
scientific CI can be framed in similar terms: designs
should separate scientific concerns and operational
concerns from the base capabilities and capability in-
teractions required.

3. Designing Scientific Cyberinfrastructure for In-
novation and Sustainability

Clearly many of the approaches outlined above have
been adopted in scientific cyberinfrastructure projects
with very positive results. To a significant degree, it
has become possible to assemble off-the-shelf com-
ponents for web interfaces (e.g. portals and wikis),
web services, and collaboration tools to support sci-
entific communities. While this has been a significant
step forward, it has not eliminated the difficulties in
sustaining systems. As has been discovered by many

NSF-funded cyberinfrastructure projects, choices
made in terms of security, data and metadata stor-
age, and computational processing model often add
dependencies that make it very difficult to integrate
software across projects or to incrementally advance
infrastructure despite the similarities in, for example,
the use of web services and portal standards.

We have argued elsewhere that these issues are not
fundamental limits on how much interoperability can
be achieved but are instead indications of where ad-
ditional extensible standards are needed [2, 3]. They
also suggest that, due to the nature of scientific work
and the distributed, non-hierarchical, overlapping na-
ture of scientific communities, that the scientific cy-
berinfrastructure community is tackling issues that
have not yet been addressed by the larger business-
oriented community. Specifically, we have argued
elsewhere that standardization of workflow represen-
tation, provenance, and data andmetadata representa-
tion a) are possible if done in the extensible style of
the standards outlined above and b) would, in com-
bination with broader use of standards such as JAAS
in security, significantly increase software reusability
and the ability to maintain capabilities while upgrad-
ing individual software components over time.

A critical point in these arguments is that it is a false
dichotomy to think that one can only standardize ei-
ther the lowest common denominator of functionality
or a superset of capabilities that can cover all require-
ments. Clearly standards such as those listed above do
neither, e.g. XML does not specify a standard way to
represent chemical or mathematical information, nor
does it prevent development of such standards; it sim-
ply standardizes a syntax and consequently software
tools and interfaces, for managing hierarchical infor-
mation. In the same way, efforts such as the Open Prov-
enance Model (OPM) initiative are standardizing just
the core concepts of causal chains of data ‘artifacts’
and processes, leading to increased interoperability
of provenance tracking systems without limiting how
granular or detail provenance information can be [1].
We see the combination of semantic web and content
management standards the same way; they provide a
common abstraction for coordinated management of
data and metadata in open distributed environments
without constraining what metadata or data can be
handled or specifying details of replication/caching/
data distribution strategies. Software such as NCSA’s
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Tupelo (http://tupeloproject.org), iRODS (http:/www.
irods.org), and the semantic wrappers used in bioin-
formatics are all variations on this theme.

4. Sustaining Cyberinfrastructure

One of the drivers towards these approaches that we
have seen are NSF’s large, operations-oriented proj-
ects, particularly the proposed environmental obser-
vatories (OOI, NEON, WATERS). These projects
have had significant community input and explicitly
address the need to build an infrastructure that can be
sustained, and sustained costeffectively, for 30 years
or more. Invariably, these discussions have lead to
approaches that incorporate ‘loosely-coupled’, ‘in-
novation-at-the-edges’, ‘scalable-not-scaled’ designs
that incorporate ideas such as those above as well as
virtual machine infrastructures, ‘enterprise bus’-style
event processing, and other elements. Further, many
of these projects have seen a need to coordinate across
projects, both to support scientific inquiry across proj-
ects and to create a standards-based market that would
allow additional aspects of their infrastructure to be
commoditized. In particular, there has been consen-
sus at workshops including the “Cyberinfrastructure
for Environmental Observations, Analysis, and Fore-
casting: A Cyberinformatics Forum” (http:/www.
cyberobservatories.net/events/workshops/20080505/)
held last spring recommending the creation of a Fed-
eration of Environmental Observatory Networks
(FEON) as a coordinating body that could pursue
standardization and advocate for the type of exten-
sible standards discussed here.

We believe that, with the coinage of the term cyber-
infrastructure and the pursuit of longterm efforts such
as NEES, the environmental observatories, DataNet,
and others, NSF is shifting into an era where lifecycle
costs of software capabilities, rather than just devel-
opment costs or the return on investment calculated
only from the reuse of a particular software product,
become a dominant concern. This in turn argues for
increased support of activities to support interoper-
ability, for development of reference implementations
rather than one-size-fits-all solutions, and, most criti-
cally, additional means such as FEON for operations-
oriented efforts to have input on decisions concerning
support and hardening of software. Such an overall
approach might, as discussed in the FEON work-
shops, lead to a standard for data and metadata backup
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that could become a means for projects to outsource
their back-up data stores to each other or to commer-
cial providers as well as an export mechanism for data
from multiple projects to be integrated by third parties
to support cross-disciplinary research. Workflow and
provenance standards could likewise increase interop-
erability incrementally and enable projects to migrate
to newer research, open source, or commercial work-
flow systems over time.

As noted earlier in this position paper, the approach
we’re arguing for is not at odds with a call for increased
support for sustaining software products. More atten-
tion and funding is needed to support sustainability.
However, too much emphasis on maintaining specific
projects and trying to encourage/enforce their reuse is
essentially an effort to create an artificial monopoly
which can then lead to well known consequences; while
monopolies can create initial efficiencies, they can lead
to stagnation and higher long-term costs as well. A bal-
anced approach providing additional support for main-
taining software that also supports the development of
extensible standards and input from operations-orient-
ed projects on where commoditization is appropriate
stands the best chance of maximizing the long-term re-
turn on NSF’s cyberinfrastructure investments.
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Sustaining Software for Long-Lived Science Stakeholders
of the Open Science Grid

Ruth Pordes for the Open Science Grid Consortium, ruth@fnal.gov, March 2009

The Open Science Grid Consortium provides a multi-
disciplinary collaboration in support of the computing
needs of long-lived physics, as well as other domain
science, communities across DOE and NSF. The soft-
ware systems are developed through collaboration
across computer science and information technology
groups with the internationally scoped science com-
munities. For the large physics experiments, CS and
IT provide common and reusable capabilities and the
communities themselves provide domain specific soft-
ware closest to the user applications. Clearly the com-
puting and software environments evolve significantly
in functionality and characteristics over the lifetimes
of their use. Within the Consortium, the user commu-
nities depend on and share technologies through the
OSG’s Virtual Data Toolkit distribution and support
(a joint team at the University of Wisconsin Madison
and Fermilab). They have access to a common build
and test environment Metronone (from the University
of Wisconsin Madison) and use the OSG Integration
Grid for integration and testing. There is heavy reli-
ance on open source technologies such as Condor as
well as general toolkits such as Apache/Tomcat and
databases such as mysql. The needs and experiences
of our stakeholders in this environment drive our rec-
ommendations below:

How long is software sustained and how should this
be prioritized?

This is best to be user community driven. When there
are scientists who are interested in the data, prior-
ity is attached within the community to maintain the
mechanisms to use it. “Scientific interest” includes the
broad range of science, historical record and educa-
tional study, as well as the interest in new data with
increased depth, breadth and accuracy.

What should be the role of government agencies?

Despite large scale and long-lived investments in
software development and research we have not yet
achieved the goals of universal, usable, robust, se-
cure, software frameworks and toolkits for scientific
computing. It is ever more important to have a coor-
dinated approach across the sponsoring agencies and
across international boundaries. Cross-agency and
cross-government involvement is essential to address:
definition and agreement on metrics and processes for
validation and auditing of the needs and priorities; a
comprehensive community-based vision, architec-
ture and prioritization for software capability and (1)
evolution; attention to re-use and evolution of exist-
ing codes; and reduction in inefficiencies of multiple-
implementations of the same thing.

What programs and studies are needed to provide the
knowledge, research and implementations?

As the amount of software increases with time the
long-term support, management of maturity, and evo-
lution of the codes becomes ever more important.
Attention is needed to avoid duplication of effort. A
coherent strategy is required in order to hope to cover
the complete set of needs. A coordinated approach to
cost-effective software development becomes crucial.
In depth thought and knowledge are needed to aug-
ment the “develop it and they can use it” approach. In
summary:

* Collection of requirements and prioritization of
common needs across all communities.

* Systematic assessment of software development risk
and maturity management.
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* Auditing of design and code quality and security.

 Implementation of validation models processes and
tools.

* Understanding of and response to of software aging.

* Planning for software end of life.

A significant investment in human training and need-
ed expertise needed must also be sustained in parallel
with the software. Scientists emphasize that support
from technical software and IT experts are crucial to
their ability to successfully leverage computational
methods for their research.
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This is an abridged version of a white paper submitted to
the National Science Foundation Office of Cyberinfrastructure, September, 2008.

1. Introduction

In the 17 years since the development of Mosaic, the
world has undergone a tremendous transformation.
The internet is a fundamental component of modern
life. Millions rely on it for travel arrangements, bank-
ing, news, shopping, and much more. The internet has
had a tremendous impact on the conduct of science as
well — an impact we can feel today and one which will
surely be felt even more in the coming decades.

In order for scientists to benefit from the develop-
ments of the information age, they must have infra-
structure they can rely on to assemble the tools nec-
essary to perform research in today’s environment.
This infrastructure includes not only a growing num-
ber of individual components like high performance
computers, high speed networks, sensor networks
and databases, but also an infrastructure overlay
which assembles these components so that scientists
can use them productively.

Many scientists today develop their own infrastruc-
ture, assembling the components they need. The
NSF’s Information Technology Research (ITR) pro-
gram is one recent program where scientists apply
technology and assemble the components of cyberin-
frastructure to address the most challenging domain
science questions.

The TeraGrid Science Gateways program works with
many such groups who are interested in incorporating
high-end compute and data resources into their own
infrastructure. Our work has uncovered similarities in

approach to building infrastructure amongst develop-
ers from widely varying domains. We have seen signif-
icant increases in research productivity through the use
of gateways, but have also seen limitations to that pro-
ductivity without a long-term funding model for suc-
cessful gateways and the infrastructure they provide.

We believe a single NSF-wide program to develop
coordinated, sustainable infrastructure is critical in
this area. Without it, we will not see the sustained in-
crease in research productivity possible through the
use of gateways.

2. Problem Description

There have been a number of NSF reports citing the
need for improved cyberinfrastructure — both to in-
crease scientific productivity and to enable new tech-
niques and discoveries. These reports are listed at the
end of this document. A full discussion of the recom-
mendations and their relationship to the development
of science gateways is included in the unabridged ver-
sion of this paper [1].

Through work in the TeraGrid Science Gateways proj-
ect, we have had the opportunity to work with a num-
ber of groups and have observed many similarities in
underlying tasks. For example most gateways must
develop solutions for data management, authentica-
tion, execution management, accounting, user work-
spaces, collaboration tools, visualization and usage
statistics.
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As these projects develop in isolation there can be
quite a bit of duplication of effort. For example there
are similarities between accessing radar data and in-
corporating it into workflows that include simulations
on supercomputers and accessing seismogram data
and doing the same. Developers enabling access to
digital data returned from a telescope have much in
common with developers providing access to digital
data from an electron microscope. Those providing
access to data from the sea floor have much in com-
mon with those providing access to data from Antarc-
tic. Without a common infrastructure, development of
unique tools and techniques that can provide results
for the near-term result.. These often do not lead to
growth or stability for advancing the building blocks
of cyberinfrastructure.

3. Benefits of a Coordinated, Sustainable Gateway
and Infrastructure Program

We think there is great potential in the development of
an agency-wide science gateways program to provide
fundamental next generation capabilities for the na-
tion’s scientists. A coordinated, far-reaching program
can: 1) reduce duplication of effort, 2) increase conti-
nuity of development, 3) contribute to a diverse work-
force, 4) enable scientists to study complex multi-
disciplinary problems, and 5) meet NSF’s strategic
goals of discovery, learning, research infrastructure,
and stewardship.

3.1 Increased scientific productivity and enhanced
problem-solving opportunities

Science gateways and the infrastructure on which
they rely will allow scientists to study more complex
problems productively. Transformative science today
is often not easy to accomplish by isolated research
groups in a single laboratory or office. In many fields,
advanced tools and environments are necessary for
the most pioneering work. Talented gateway develop-
ers who can create and assemble the right tools and
environments will free scientists to focus on challeng-
ing interdisciplinary scientific problems, assemble the
best research teams regardless of location and provide
mechanisms for others beyond the research team to
bring new perspective.
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Gateways make it possible to conduct leading edge re-
search, using the most advanced tools and assembling
the most capable teams to address the most challeng-
ing problems. Decoupling gateway development from
and middleware development provides scientists with
a certain level of continuity while allowing develop-
ers to take advantage of new hardware and software
infrastructure developments.

3.2 Lowered costs through less duplicated effort

A coordinated, long-term science gateway and infra-
structure program would reduce duplication of effort
we witness today. We recommend a 10-year program
to develop, deploy and operate persistent science
gateways with a review at 5 years. Such a program
must also shift focus from research explorations to
infrastructure deployment and the incorporation of ro-
bust system engineering practices this implies. While
persistent gateways must be designed to facilitate
research on the frontier and truly meet the needs of
their defined user communities, the act of building the
gateway itself should not be research but instead a true
infrastructure deployment project.

Sustained funding must include a very important
determination of which projects to fund. We recom-
mend that a sustainable program be initiated through
a detailed cross-directorate and perhaps multi-agency
study. Such a study might begin with directorate and
agency workshops to understand the most pressing
needs in different domains and identify common in-
frastructure needs. Biologists view the Protein Data
Bank as indispensible to their work. Workshops would
help uncover similar fundamental needs in other do-
main areas. Some needed infrastructure may consist
of curated data collections. Others might also involve
simulation, visualization and analysis capabilities.
Some might provide collaboration tools or workspac-
es that allow scientists to store and share results. Still
others might allow researchers to generate and store
complex workflows or access instruments, sensor or
radar data that have limited exposure today.

Merit review and regular evaluation and assessment
are critical in any persistent program. Criteria to eval-
uate success must be factored into a long-term gate-
way and infrastructure program.



3.3 Increased workforce development

The nation needs to make use of an evolving, diverse
workforce to maintain global leadership in science
and engineering. Diversity here refers both to the
makeup of the workforce as well as skill sets of the
workforce. Development of science gateways address
both of these. There is considerable interest in the use
of gateways by educators, particularly those in remote
locations and those who are not located at traditional
research institutions. Students and educators at these
sites can gain access to cutting edge cyberinfrastruc-
ture through science gateways. In addition, gateway
developers themselves have highly valuable cross-
disciplinary skills. As scientists rely more heavily on
gateways there will be an increased need for this type
of skill set.

3.4 Improved public perception of the value of science

Because of their online availability, gateways can pro-
vide access to cutting edge cyberinfrastructure and
domain specific educational tools. A November, 2006
study by the Pew Internet and American Life Project
entitled “The Internet as a Resource for News and In-
formation about Science” found that 87% of internet
users use the resource for research, half of all internet
users have been to a site that specializes in scientific
content and that those who use the internet to gain
scientific information are more likely to believe that
scientific pursuits have a positive impact on society
[2]. The existence of gateways with information to fit
a variety of interest levels can improve public percep-
tion of the value of funding science.

4.0 Conclusions

Sustainable science gateways have many benefits,
both for scientists and the population at large. Gate-
ways, however, must rely on a robust infrastructure
to be successful. This infrastructure includes airtight
software - for workflow development, visualization,
grid computing, etc. Without a foundation of reliable
infrastructure, it is impossible to develop reliable gate-
ways. Without reliability, gateways will never be seen
as indispensible tools that scientists use to increase
productivity and focus on the most challenging sci-

ence problems. Software sustainability is extremely
important to a successful science gateway program.
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The iPlant Collaborative Position Paper
Submitted to: Indiana University
Re: Cyberinfrastructure Software Sustainability and Reusability Workshop

The iPlant Collaborative requests consideration to participate in the NSF-sponsored Cyberinfrastructure
Software Sustainability and Reusability Workshop to be held March 25 — 27, 2009, in Indianapolis at
Indiana University.

What is the iPlant Collaborative?

The iPlant Collaborative (iPlant) was funded in Feb-
ruary 2008 by NSF as a project to “create a new type
of organization — a cyberinfrastructure collaborative
for the plant sciences” — that seeks to transform the
way plant biologists answer Grand Challenge ques-
tions and collaborate in the data-laden and cross-dis-
ciplinary research environment in which we now live.

Grand Challenges in the plant sciences are research
questions that are currently intractable with conven-
tional approaches. For example: What are the genet-
ics of species range limits? How do we improve crop
yield under environmental stress? Which genes and
pathways have an effect on ecophysiological behavior
of plants? The iPlant Collaborative focuses on using
cyberinfrastructure development as one way to re-
solve such questions.

The identification of grand challenge questions is a
community-driven effort. Of the nine workshops pro-
posed to the Board of Directors, five were supported
and held at Biosphere 2 in Arizona between Octo-
ber and December 2008. These community-driven
workshops were designed to identify specific grand
challenge problems where cyberinfrastructure could
be designed, developed, and applied to significantly
advance our knowledge of plant biology. The topi-
cal focuses of the workshops included the evolution
and development of plants, the tree of life, modeling
the growth of plants, the adaptation of plants to their
environment, and associating plant genotypes with
phenotypes. In total, iPlant hosted nearly 250 plant
scientists, computer scientists, educators, and indus-
try leaders representing over 130 institutions, corpo-
rations, and interest groups in the five workshops.
Another 50+ community members participated in the
workshops remotely.

iPlant also sponsored a brainstorming workshop in
January 2009 on the cyberinfrastructure required
to address Grand Challenges in the plant sciences.
More than 40 cyberinfrastructure community experts
described their experiences building cyberinfrastruc-
ture and advised iPlant on lessons learned and pitfalls
to avoid. The issue of sustainability was a cogent and
frequently mentioned topic during the workshop, as
numerous participants representing both grant-fund-
ed projects as well as commercial and research en-
terprises were also grappling with how to meet this
challenge.

Self-forming Grand Challenge Teams from the com-
munity are now working on collaborative project pro-
posals to develop Discovery Environments (DE)--the
cyberinfrastructure needed to address and solve the
team’s grand challenge. Ultimately, iPlant’s goal is
to address the cyberinfrastructure needs of different
grand challenges ranging from the molecular, cellular,
and developmental to the organismic, ecological, and
evolutionary plant sciences.

At its core, iPlant is a community-building and educa-
tional enterprise. Grand Challenge Teams and iPlant
core staff will work together, using the cyberinfra-
structure we are building, to educate the next gen-
eration of plant scientists. The iPlant Collaborative’s
core staff is located at the University of Arizona, Cold
Spring Harbor Laboratory, University of North Caro-
lina at Wilmington, Arizona State University, and Pur-
due University.

The iPlant Collaborative’s Cyberinfrastructure
Development Goals

The cyberinfrastructure (CI) developed by iPlant will
provide the community with two main capabilities to
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enhance research and education: 1) access to world-
class physical infrastructure, such as persistent storage
and computer power via local and national resources,
and a platform that promotes interaction, communi-
cation, and collaboration in the community and that
advances the understanding and use of computational
thinking in plant biology.

The cyberinfrastructure framework consists of a com-
prehensive combination of hardware (campus cluster
and TeraGrid-based resources, primary and secondary
data repositories, and advanced visualization facili-
ties), software (open source, developed by a distrib-
uted team of developers and programmers), network
fabric, and a multidisciplinary team of experts. Dis-
tinct Discovery Environments (DE) will consist of
community collaboration spaces, novel mathematical
and computational approaches, semantic data analysis/
discovery tools, an underlying cyberinfrastructure for
access, analysis, and collaboration, and both feedback
processes and social network analyses for studying,
evolving, and refining the DEs.

The iPlant Collaborative’s CI Development Process
The group currently developing the cyberinfrastruc-
ture for iPlant consists of three sub-teams: CIT (Core
Infrastructure), EA (Enterprise Architecture) and IST
(Integrated Solutions). CIT is responsible for the ba-
sic infrastructure for the collaborative, which includes
compute and storage platforms, systems software, re-
lational databases, virtualization and authentication/
authorization. The EA team is establishing a founda-
tional environment for application development and
support, including software for collaboration, scien-
tific workflows, semantic data integration, metadata
management, name services, vocabularies, ontologies,
data/text mining, grid and web service middleware.
IST is responsible for assisting in the design and de-
velopment of Discovery Environments. Each DE is a
software platform custom-designed to help biologists
in the community address and solve a Grand Challenge
(GC) problem. It provides both a virtual meeting place
for a GC team, and it allows the team to access the un-
derlying physical infrastructure. In particular, a DE al-
lows GC team participants to access relevant data sets,
integrate across them to identify connections, visualize
them in ways that allow the ‘big picture’ to appear, ma-
nipulate the data with analytic tools, and share results
by facilitating computational steering.
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The Sustainability Challenge for the iPlant
Collaborative’s CI

At the conclusion of the iPlant Collaborative project,
it is envisioned that huge repositories of both software
and data will be available for the plant sciences com-
munity. To properly ensure these systems continue to
be used after iPlant ends and to possibly engage third
parties to continue the effort, the following policies
have been enacted:

Components: As much as possible, all software devel-
oped will consist of components, which at most lev-
els, will allow the insertion or deletion of systems into
the architecture. This standard applies to all levels of
the iPlant internal software architecture, from middle-
ware to the use of the Model-View-Controller (MVC)
paradigm for all Discovery Environment work.

Engagement: The CS and CISE community will be
actively engaged and encouraged to participate and/
or collaborate with the iPlant scientific and develop-
ment teams.

Education and Outreach: EOT will be a key and inte-
gral component of all CI developed by iPlant. Train-
ing the next generation of plant scientists in the use of
iPlant tools should foster improved community adop-
tion of the tools.

Life Cycle Management: We will establish a working
group composed of 20-25 volunteers from thecom-
munity. This group will be tasked with developing
policies and mechanisms for data and software reten-
tion, archiving, and retirement. All of these issues fall
under the general topic of information life cycle man-
agement (ILM).

Software: To encourage the widest distribution of the
software iPlant produces, we will distribute all novel
software under the Academic Free License version
3.0 (http://www.opensource.org/licenses/afl-3.0.php),
which allows software to be reused, modified, and
redistributed provided that attribution of the original
work is maintained. Much of our software will depend
on third-party components, however, and other licens-
es may apply to these dependencies. We will make ev-
ery effort to use open source, third-party components
whenever technically feasible, and will provide the
community with visible alerts in cases in which we
have been unsuccessful in doing so.



Integrated Data: All datasets that we produce by a
process of integration of third-party data will be dis-
tributed under the Creative Commons 3.0 “by” li-
cense (http://creativecommons.org/licenses/by/3.0/),
which allows the data to be copied, redistributed, and
adapted provided that attribution of the original da-
taset is maintained. In some cases, additional third-
party restrictions will apply to the dataset. Whenever
possible, we will avoid using restricted datasets due
to the complexity of redistributing derivative works,
but when unavoidable, we will alert the community to
these restrictions.

Novel Data: Datasets derived by grand challenge
teams will be released under terms of the “Fort Lau-
derdale data sharing agreement” (http://www.well-
come.ac.uk/assets/wtd003207.pdf) in which data
producers release data publicly as soon as it is qual-
ity-control checked to assure high quality, and data
users agree to cite the data producers and to respect
the producers’ rights to publish comprehensive anal-
yses of the data in peer-reviewed papers. To assist
the community in determining how to cite the data
and which analyses the data producers are planning
to publish, each grand challenge team will publish
a “marker paper” describing the project, its citation
policy, and its proposed analyses, at a stage when
the initial project planning is mature, but before sub-
stantial work has been completed. Following publi-
cation of these analyses, the datasets will be made
available without publication restrictions under the
Creative Commons “by” 3.0 license (http://creative-
commons.org/licenses/by/3.0/legalcode). Agreement
with these data release terms will be a precondition
for community member participation.

Community Software Contributions: All contributions
in the form of software code and algorithm imple-
mentations that are contributed by the community for
iPlant projects shall be accepted utilizing the agree-
ment model and licensing templates adopted from the
Apache Software Foundation (ASF). The “Contributor
License Agreements” (CLA) (http://www.apache.org/
licenses/#clas), defines the terms under which intellec-
tual property has been contributed to the collaborative
and would be applicable to individual contributors,
academic and industry groups, and their employees.
Software applications and documentation that are
donated to iPlant projects by individuals or corpora-

tions will adhere to ASF “Software Grant Agreement”
(SGA) (http://www.apache.org/licenses/#grants).
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11. Create a free flow of information between the global open-source community, industry,
and academia. Extensible and interoperable CI development should be encouraged. (4.45)

22. The NSF should establish evaluation criteria and funding mechanisms that support
software development, release, and life-cycle improvement. This is particularly critical for
relatively lower-use software that is essential to the nation’s escience objectives but which
may not initially have a broad user-base or immediate commercial potential. Funding should
be provided to support software development technologies including repositories, user mail-
ing lists, bug-tracking, and testing. (4.35)

44. Funding agencies should award grants to software development after the research phase
is done, to sponsor long term sustainable development. (4.33)

1. Support open source community software through investments of time from developers
and monies from grants. (4.26)

21. The NSF should permit funding for software incubation, development, and support to be
included in future CI proposals, in particular those proposals that are directed at the devel-
opment of community-oriented CI products such as, but not limited to, innovative parallel
libraries, domain-specific grid”’stacks,” storage management, collaboration tools, visualiza-
tion (including remote visualization), and portal components. (4.22)

10. Aggressively encourage advance discussions on software interoperability and dissemina-
tion. (4.18)

28. The same level of detailed oversight should be used for software licensing/development
awards as is used for hardware procurement and installation. (4.17)

50. NSF should invest heavily in infrastructure that facilitates collaboration for researchers
and sharing of data tools and results. (4.17)

16. Agencies should strive to create user and developer communities around software, as
they are just as important as the actual software development project. (4.13)

43. Software infrastructure projects in particular should use the opensource model. (4.11)
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* Support open source community software
through investments of time from developers
and monies from grants.

* Have local, regional and national centers pay
developers to maintain, port and test open source
community software.

* Allow open source software developers access
to HPC machines.

* Define and standardize a national CI. Fund a
permanent group to oversee this and provide high
level training to the advocacy groups in EOT.

* Expose the national CI as a platform.

* Build a self-propagating software feedback
loop into future CFP.

* Fund hardening extension for projects show-
ing promise and wide adoption, use the Apache
foundations mentorship process to ensure best
practices.

* Leverage the local expertise of MSI in stabiliz-
ing the national CI and making them more useful
to the general public. Incentivize this participa-
tion through awards of system time and collab-
orative extensions.

* Leverage virtualization to ease deployment and
maximize ROL

* Aggressively encourage advance discussions
on software interoperability and dissemination.

* Create a free flow of information between the
global open-source community, industry, and
academia. Extensible and interoperable CI de-
velopment should be encouraged.

e It is time to plan for multidisciplinary science
and engineering cyberinfrastructure now to ensure
maximum benefit for the research progress as all
useful research is multidisciplinary in nature.

* Components: As much as possible, all software
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developed should consist of components, which
at most levels, will allow the insertion or dele-
tion of systems into the architecture.

* EOT should be a key and integral component
of all CI.

* Applications and software providers should
form partnerships and make the case to the fund-
ing agencies that continued maintenance, sup-
port, and development of software is necessary
to maintain the pace of advancements across
scientific domains.

* Agencies should strive to create user and devel-
oper communities around software, as they are
just as important as the actual software develop-
ment project.

* The NSF should foster the creation of sustain-
able grid infrastructure software by focusing on
the following areas (1) grid infrastructure stan-
dards, (2) interoperability testing, (3) software
incubation and (4) software product development.

* The NSF should provide ongoing funding for
a diverse CI standards team focused on develop-
ing and promulgating standards for the emerg-
ing cyberinfrastructure. These standards should
cover national, regional and campus cyberinfra-
structure.

* Support for standards being developed in the
Open Grid Forum should be a major emphasis
for NSE.

* The NSF should provide funding for a CI
interoperability team. This interoperability team
should be charged with cooperatively generat-
ing a suite of tests, acceptable test outcomes, and
metrics that can be used for standard certification
covering national, regional and campus cyberin-
frastructure.

* The NSF should permit funding for software
113
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incubation, development, and support to be in-
cluded in future CI proposals, in particular those
proposals that are directed at the development of
community-oriented CI products such as, but not
limited to, innovative parallel libraries, domain-
specific grid “stacks,” storage management, col-
laboration tools, visualization (including remote
visualization), and portal components.

* The NSF should establish evaluation criteria
and funding mechanisms that support software
development, release, and life-cycle improve-
ment. This is particularly critical for relatively
lower-use software that is essential to the na-
tion’s escience objectives but which may not
initially have a broad user-base or immediate
commercial potential. Funding should be provid-
ed to support software development technologies
including repositories, user mailing lists, bug-
tracking, and testing.

* The NSF should consider developing mecha-
nisms to allow intellectual property value to
accrue to some software development activities
outside of the open-source community.

* NSF should adopt a foundation community
model to support software projects (as demon-
strated by the Apache Foundation).

* NSF should actively seek to create software
foundations and encourage NSF funded software
projects to become a member of such foundations.

* A new paradigm, called data-aware distributed
computing, is needed and NSF should give a
high priority to support and maintain software
in the areas of reliable and efficient data move-
ment, access, and analysis.

¢ Establish an independent, unbiased national
software oversight committee focused on meet-
ing the requirements of a much broader national
science community.
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* The same level of detailed oversight should
be used for software licensing/development
awards as is used for hardware procurement
and installation.

* Support and Maintenance-Based Business
Models (companies offering support and main-
tenance for community developed software)
should be explored.

* Establish a National Software Oversight
Committee that

* investigates, analyzes, and articulates Li-
censing Costs, Support & Maintenance Costs,
Development Costs, Research Impact, Sus-
tainability.

e organizes and conducts detailed studies on
national research software needs.

e recommends research software to be pro-
cured or developed by stake stakeholders.

* Cyberinfrastructure software is needed that
manages shared collections for the research
teams, manages data distribution for large exper-
iments, manages real-time sensor data streams
for observatories, and builds digital libraries of
simulations results.

* Financial support for foundations needs to
be built into the long term goals of the system
development.

» Agencies should provide funding for core
development and for applications of the soft-
ware across scientific domains. Support is also
needed for maintenance, hardening, testing and
documentation after a core development period.
Further support should be through community
buy-in and from usage in large-scale funded and
self-funded projects.

* Funding should be diversified to ensure mul-
tiple approaches are explored. However, no
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system should be supported that is not capable of
interoperability with other solutions.

* NSF should consider that sustaining capabili-
ties and architecting to enable change are often
the better choice than sustaining specific soft-
ware products.

* Designs to develop sustainable scientific CI
should separate scientific concerns and opera-
tional concerns from the base capabilities and
capability interactions required.

* Increase support of activities to support in-
teroperability, for development of reference
implementations rather than one-size-fits-all
solutions.

* Setting goals for software sustainability and its
priorities should be user community driven.

* Take a Cross-agency and cross-government
approach when it comes to defining and agree-
ing on metrics and processes for validation and
auditing of software projects.

* Make significant investment in human train-
ing to support scientists when using open source
software.

* Sustainable software projects should attract
sufficient developers and retain those long
enough to maintain continuity.

* Software projects should embrace the open
source development model early on in the devel-
opment cycle.

e Software infrastructure projects in particular
should use the open source model.

* Funding agencies should award grants to software
development after the research phase is done, to
sponsor long term sustainable development.

* Agencies should have clear policies and guide-
lines for how and when project will have to be

maintained independently and without funding.

* Community management and support should
be achieved with a centralized model, forming
small organizations that coordinate activities
throughout the user community.

* NSF funding should focus on new development
and innovation, but coordinated with the com-
munity management organizations to discourage
the phenomenon of reinventing the wheel. Ad-
ditional, separate funding could support outreach
and training to adopting institutions and to end
user researchers.

* Such organizations would be able to market the
cyberinfrastructure software to sectors outside
scientific research with common needs (e.g. fi-
nancial, energy, transportation) to create an even
richer ecosystem to support the software going
forward.

* Develop and provide infrastructure that helps
in all stages of the open source software devel-
opment process.

* NSF should invest heavily in infrastructure that
facilitates collaboration for researchers and shar-
ing of data tools and results.

* If possible, when funding software develop-
ment leave room in the shared infrastructure for
competing ideas to exist.

* We recommend a 10-year program to develop,
deploy and operate persistent science gateways
with a review at 5 years. Such a program must
also shift focus from research explorations to in-
frastructure deployment and the incorporation of
robust system engineering practices this implies.

* We recommend that a sustainable program be
initiated through a detailed cross-directorate and
perhaps multi-agency study.

* Use RedHat Enterprise MRG.
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Appendix 4: Program

Cyberinfrastructure Software and Sustainability Workshop

Program Agenda, March 26-27, 2009

Wednesday, March 25th

Check-in and Informal Reception

Thursday, March 26th

Welcome, goals overview, & brief self introductions by participants — Brad Wheeler

Software as Cyberinfrastructure: Experience and Perspective from the NSF — Jennifer
Schopf

“An Industry View of the Software Sustainability Challenge” — Brad Wheeler
Break

Agenda bashing on structure & topics for the breakout sessions — Craig Stewart
Open Discussion

Lunch

Breakout sessions & discussion of submitted papers:

How can funding agencies encourage PIs to produce sustainable, reusable software?

How can educators assist in the production of sustainable, reusable software
through better education in computer science and software engineering?

How can we develop software so that it is inherently reusable?

What options other than NSF are there for funding software infrastructure?
Break
Reports from breakout sessions

Dennis Gannon “Can we build community application frameworks for science that
leverage commercial products?”

Break
Meet & greet, cash bar

Dinner

Friday, March 27th
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Neil P. Chue Hong “Cultivating Sustainable Software for Research”

Clifford Lynch “Software and the Long Haul: Software Design, Adoption, Evolution
and Curation in a Cyberinfrastructue Context”

Break
Breakout sessions & discussion of submitted papers:

Models and recommendations regarding evaluation and adoption of software by VOs
Models and recommendations regarding long term support of software

Discussion of software sustainability, open source software, and value to
small schools & MSIs

Box Lunch and discussion

Sanjiva Weerawarana — Title TBA

Wrap up, identification of areas of consensus, areas of lack thereof, discussion of writing plans
Thank yous

Adjournment

Bistro Lobby

Room 118
Room 118

Room 118
10:30am
Room 118
Room 118
Bistro Lobby

Room 118
Room 226

Room 232
Room 236
3:00pm

Room 118
Room 118

5:00pm
Bistro Lobby
Scholars Hall

Room 118
Room 118

10:30am
11:00am-
12:00pm
Room 226
Room 232
Room 236

Room 118
Room 118
Room 118
Room 118
Room 118

6-8pm

8:30am
9:00am

9:45am

10:50am
11:00am
12:00pm
1:15pm-
3:00pm

3:15pm
4:00pm

5:30pm
6-8pm

8:30am
9:30am

12:00pm
1:00pm
1:30pm
2:45pm
3:00pm
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An ‘Industry’ View of the
Sustainability Challenge

Dr. Brad Wheeler
Vice President for IT, Dean, & Professor
Indiana University

Professor of Information Systems
IU Kelley School of Business
bwheeler@iu.edu
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“There is only one proven method of
assisting the advancement of pure
science — that of picking men of genius,
backing them heavily and leaving them to
direct themselves.”

Letter to the New York Times, 13 Aug 1945

James Bryant Conant
® President, 1933-1953
Harvard University

“... a new age has dawned in scientific and engineering
research, pushed by continuing progress in computing,
information, and communication technology, and pulled
by the expanding complexity, scope, and scale of
today’s challenges.

The capacity of this technology has crossed thresholds
that now make possible a comprehensive
“cyberinfrastructure” on which to build new types of
scientific and engineering knowledge environments and
organizations...” (p.es-1)

CYBERINFRASTRUL
FOR 2151 CenTury Di

Report of the National Science Foundation Blue-
Ribbon Advisory Panel on Cyberinfrastructure, 2003
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RESEARCH PROJECTS

Cartoon concept - Copyright © 2007 by Sidney Harris

“I think you should be more explicit here in step two."

The software artifact is an essential component of

Cyber Infrastructure

of, relating to, or the system of public works of a country,
involving computers or state, or region ; also : the resources (as
computer networks personnel, buildings, or equipment)
required for an activity

...and it is a troublesome artifact!

Merriam-Webster Online Dictionary
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Software Sustainability Chasm

Release .1 - 2.0:

Concept & Enhancing & Documenting
Incubation Distributing QA, Licensing

Grant Funded Work

Release 2.1 — 4.0:

Concept & Enhancing & Documenting
Incubation Distributing QA, Licensing

???7? Funded Work

Release 4.1 — R.I.P

Concept & Enhancing & Documenting
Incubation Distributing QA, Licensing

???7? Funded Work

Our ‘Derivatives’ Day?

Sustaining
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Sustainability Models

Code <= Coordination €-> Community




Coordination

Community

The Code

Linux and Apache have delivered the
Code ...can Cl tools and applications?




'
+

From: The EDUCAUSE CIO Constituent Group Listserv On Behalf of
Sent: Thursday, November 18, 2004 4:57 PM

“Dear Mr. Ellison,

...we are not interested in migrating to Collaboration Suite and find
ourselves locked out of an upgrade path for our Calendar services. If
Oracle is unwilling to sell and support Calendar as a standalone
service we will be forced to migrate to one of the competing
calendaring systems. This would be unfortunate both because Oracle
Calendar is a quality product that has served us well, and because of
what it says about Oracle's willingness to listen to and accommodate
the needs of its higher education customers.

VI BB B E EEED

We are formally requesting that Oracle commit to maintaining the
standalone version of Oracle Calendar in rough parity with the
collaboration suite calendar component. We would appreciate a
response to this request by January 10, 2005, even if it is not

technically feasible to deliver the updated stand-alone version in that

timeframe.

% @ From
Knoop, Peter RE:
Bill Crosbie Re:
Moore, Kathleen E RE:
jimeng@umich.e... RE:
Moore, Kathleen E RE:
Diana L Perpich Re:
Moore, Kathleen E RE:
Jim Eng Re:
Diana L Perpich Re:
Knoop, Peter RE:
Clay Fenlason Re:

Jim Eng RE:
Moore, Kathleen E RE:

Knoop, Peter RE:
Moore, Kathleen E

John Leasia Re:

Clay Fenlason Re:

Sincerely...”

“Shortest Path”
Rapid Requirements Discussions

Subject

Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool
Re-ordering Resources in Tool

Re-ordering Resources in Tool

RE: Re-ordering Resources in Tool

Received

Mon 6/12/2006 6:15 PM
Mon 6/12/2006 4:05 PM
Mon 6/12/2006 3:22 PM
Mon 6/12/2006 3:13 PM
Mon 6/12/2006 2:42 PM
Mon 6/12/2006 2:23 PM
Mon 6/12/2006 2:04 PM
Mon 6/12/2006 1:55 PM
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Code Evolution?

*Quality?

Questions of Coordination

Questions of Community

*Feature development?
+Cost (TCO)?

Release 1.0 Release 2.0

i ?
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Code Forking?
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Code

Coordination

Community

The Coordination

Linux and Apache have demonstrated
successful models of coordination...

can Cl Tools and applications?

Coordination Models

Creating
Software

Sustaining
Software

Commercial

Coordination
Closed IP Ownership

Community

Coordination
Open IP Ownership

Licensing
Fees

Maintenance
Fees

Community
Source
Projects

Bundled IP & Support Unbundled IP & Support

Partnering
Organizations

+ Commercial
Support
Options




Oregon State University (OSU)
Indiana University Foundation (IUF)

Kuali Financial Systen
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Kathleen McNeely, Chair (IU)
Rich Andrews (UC)

Dick Barber (RG)

David Brower (MSU)

Kathy Cutshaw (UH)
Kathleen Egami (UH)

Joan Hagen (1U)

Kymber Hom (UA)

Henry Ito (UH)

David Lyons (N)

Mark McGurk (UA)

Phil McKown (1U)

Arthur Mintz (CU)

Cathy Salino (CU)

Vince Schimizzi (MSU)
Claire Tyson (DC)

Mardi Leonard, Support (IU)
Mary Vega, Support (IU)

Project Organization

Kuali Board

Brad Wheeler, Chair_Indiana University (1U)

Bruce Alexander
Mike Allred

Lee Belarmino
Joanne DeStefano
Charles Ingram
David Lassner

University of California (UC)

Comell University (CU)
University of Arizona (UA)
University of Hawaii (UH)

James Morley NACUBO (N)

Barry Walsh, Executive Director
Chris Coppola

Indiana University (IU)
The rSmart Group (RG)

Michigan State University (MSU)

San Joaquin Delta College (DC)

Extended Board

Jim Thomas (IU)

David Brower (MSU)

David Gift (MSU)

Sally Jackson (UA)

David Koehler (CU)

Brian McGough (IU)

Kathleen McNeely (IU)

Sue Menditto (N)

Liz Taylor (UA)

John Robinson (RG)

David Lyons, Special Advisor (N)
Julie Dreesen, Project Coordinator (1U)

Project Staff

Development Staff

Phil McKown, Project Analyst (IU)
Scott Heise, Quality Assurance (IU)
Scott Cooley, Documentation (MSU)
Kymber Homn, Testing Coordinator (UA)

32 Technical Staff Members
Lead Architect, Development Managers,
Configuration Manager, Quality Assurance Manager,
Lead Developers, DBA/Developers, Developers

Kuali Technical Council

Brian McGough, Chair (IU)
Arlene Allen (UC)

Andrew Hollamon (UA)
Aaron Godert (CU)

Mark Mara (CU)

Ralph Olstad (DC)

Cathy Tan (MSU)

Wes Price (UH)

Phil McKown, Support (1U)
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Chart of Accounts

Bill Overman, Lead (1U)

Floyd Roman (UA)
Johanna Valdez (UA)
Pat Kane (CU)

Vince Schimizzi (MSU)
Claire Tyson (DC)

Kymber Hom (UA)
Alayna Robyns-Voutsas (UA)
Steve Lutter (CU)

Tammy-Lu Vandevender (UH)
Bill Overman (1U)

Audree Baxter (MSU)

Greg

Jerry

Liz Taylor, Lead (UA)
Steve Lutter, Lead (CU)
Johanna Valdez (UA)
Marcia Page (CU)
Russel Miyake(UH)
Kathy Cutshaw (UH)

Workflow Dennis Nakamura (UH)
Wayne Fujishige (UH)
Damon Dorsey. Lead (IU) Chris Shelton (IU)

Damon Dorsey (IU)
Steve Ueboerroth (MSU)

Deppong (MSU)

Bill Sperber (MSU)
Claire Tyson (DC)

McLean (DC)

Joan Hagen, Lead (IU)
Vince Schimizzi, Lead (MSU)
Sterling George, Lead (IU)
Dick Barber, Analyst (RG)
Arthur Mintz, Analyst (CU)
Kymber Horn (UA)

Pat Kane (CU)

Jerry McLean (DC)

Claire Tyson (DC)
Wendall Ho (UH)

Dennis Nakamura (UH)
Damon Dorsey (IU)

Claire Tyson (DC)
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Shelley Pierce, Lead (DC)
Theresa Cain, Analyst (IU)
Alan Blumberg (UA)
Nancy Abbott (CU)

Kevin Hanaoka (UH)
Anna Jensen (1)

Gilbert Kurado (UH)

Boyd Shumaker (MSU)

(UA)

Arthur Mintz, Analyst (CU)
Wes Buchanan (CU)
Mike Wong (UH)

Sterling George (IU)
Jullanna Douches (MSU)
Sharon Underwood (DC)

Jennifer Foutty, Lead (IU)
Marilyn Kisters, Analyst (IU)
Ted Nasser (UA)

Tom Hogan (CU)

Dennis Butts (CU)

Emily Jorgenson (UH)

Mike Wong (UH)

Tammy-Lu Vandevender (UH)

Accounts

Budget

Charlie Sinex (IU)
Lorelei Meeker (IU)

Steve Keucher, Lead (IU)
Susan Parrish, Analyst (IU)
Jim Florian (UA)

Mike Whalen (CU)

Raquel Puentes (DC)
Dennis Nichino (UH)

Bob Nagao (UH)

| |Ann Rhodes (MSU)

Anna Jensen, Lead (10]
Kathy Cochard, Analyst (IU)
Mark Barton (UA)
Kymber Horn (UA)
Diane West (CU)
Rayna King (CU)
Cathy Salino (CU)
Galen Kuramoto (UH)
Wendall Ho (UH)
Teresa West (IU)

Mary Nelson (MSU)
Mary Vergano (DC)

Pat Lynn (MSU)
Boyd Shumaker (MSU)
Maria Bernardino (DC)

Contracts & Grants

Jerry McLean (DC)

Jim Becker, Lead (1U)
Bethany Davis, Analyst (IU)
Galen Kuramoto (UH)

Dan Evon (MSU)

Imelda Mora (DC)

Sharon Underwood (DC)
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Phase I - October 2006 Phase IT - March 2008 Purchasing /
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i General Ledger Copial Acsats Suzanne Zimbardo, Lead Cathy Sawo; Lead (CU)

Can we capture economies of scale in software creation and
maintenance? The SBillion question...

Lifecycle
System
Costs/
Effectiveness

Functional
Partnership
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/d Dysfunctional
Partnership

Number Participating

pturing Industry Leverage
sLearning how to partner

*Synchronizing project/
discipline investments

*IT architecture discipline

*Creating effective consortia

«Common

licensing




Code

Coordination

Community

The Community

Linux and Apache have cultivated
worldwide, sustaining communities ...
can applications?

Licensing Shapes a Community

G PL/ GNU “Viral/Copyleft”
* Code

— Open source
— Use without fee

* Derivative works

— MUST have same license
rights
* Open source
* Use without fee
* Allow derivative works

Open-0Open “Bsp style”
* Code

— Open source
— Use without fee

e Derivative Works
— Any license..

“Birkenstocks and Wingtips: Open Source Licenses,”
EDUCAUSE REVIEW, Jan/Feb 2005.




Licensing

GPL License “‘open-open” licensing Commercial “closed”

“Birkenstocks”

Free software,

Public good philosophy
<%

License

“Wingtips”
Capitalist,
< Private good philosophy

A hole....Need for a Hybrid Model...
Community Source

See http://opensource.org
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“The Pub...the Place Between
the Cathedral and the Bazaar”




Community Source:

The distinguishing feature of the Community
Source Model is that many of the investments of
developers' time, design, and project
governance come from institutional contributions
by colleges, universities, and some commercial
firms rather than from individuals. (wikipedia)

Home “Techies” “The Suits” Proprietary
Grown Open Source Open Source Commercial

Code:

Coordination:

Community:




Resource Allocation Problem

Leverage




Discussion Questions

Is a semi-benevolent dictator essential ? Should
there be a basis of power/authority?

How do distributed communities ensure the
“other stuff” gets done...beyond coding?

Are we in a transition model of software
production or moving towards the best path
forward?

EduCore Concept




An ‘Industry’ View of the
Sustainability Challenge

Dr. Brad Wheeler
Vice President for IT, Dean, & Professor
Indiana University

Professor of Information Systems
IU Kelley School of Business
bwheeler@iu.edu




Pure Commercial Software

/Shareholders }
*Desire to maximize profit
*Make most decisions so as to
maximize profit
*Have final say in terms of
developer priority - usually
\priorities have to do with profit /
/Commercial Developers \
*Understand critical link
between revenue and paycheck
*Focus is on stability of
software rather than on
features - as such features

change slowly
*Do not even know /

\takehoiders /

D = Most Powerful in Structure

=)

Communication between Stakeholders
and Shareholders is in the form of large
checks.

@takeholders

*Expect that because so much money is
being paid that there is some form of
indemnification in return (no one was ever
fired for buying Cisco)

*Are willing to pay handsomely so as to be
able to get good nights sleep

«Tell end users that they are using the best
product that money can buy

«Can resist end-user demands for change
Qecause company is unwilling to change

4

There is almost no direct communication
between stakeholders and developers
because then the developers might
actually start changing (and breaking)
the software.

Adapted from Chuck Severance

Pure Open Source Software

ﬁpen Source Developers

*Type 1: Passionate individual who finds \
work on this software interesting

*Type 2: Paid consultant whose job it is to get
a open-source software to pass test suites so
as to show that there is an open-source
reference implementation

*Teams formed based on personal time and
motivation or a commercial venture with a
short-term agenda

«Effort level ebbs and flows depending on
commercial needs of the moment
*Performance and reliability are second-order

issues

*Cool features and programming chops rule
the day (and night)

\

@eholders
*Love the notion that they have “free”

software and source code.

*Hate the fact that there is no one to call - “if
it breaks you get to keep both pieces”

*Look at open source solutions at a moment
in time and make a yes/no decision based
on state of the software at the moment of
analysis

*Must self-indemnify by keeping lots of staff
with questionable grooming habits “in case”
something goes wrong.

*Once open source is chosen, may find it
hard to sleep at night.

*Probably won't get to keep the savings
form the open source decision beyond this
fiscal year.

-

There is virtually no communication at all between Stakeholders and
Developers because they operate in completely orthogonal areas of the
space-time continuum and if they ever ran across one another - they would
not even recognize that they were in the same species.

Adapted from Chuck Severance




Commercial In The Middle (Small)

ﬂpen Source

Developers

«If a developer from
commercial support

pat them on the back.
*Performance and
reliability take a back
seat to fun stuff

\

*Nothing really changes

house has chops, we let
them fix a few bugs and

N

4

ﬂ)mmercial Support Houses
*Money for nothing is a nice
Business Model

*Keep a small stock of talented
folks fed

*Most of the time you are totally
bored playing multi-player
EINES

*Some of the time, you jump on
a plane and put out a fire at a
customer site

*Once in a great while you get
sued, go out of business, wait a
few weeks and start a new

Qsiness

@akeholders \

*Have someone to call

«Tell their management and
users that we have
indemnification

«Since this is commercial and it
is paid for, it must be good (aka
Ostrich)

*Secretly know that the
indemnification only goes so far
*Works best when stakeholder
does not think too much about
their situation.

*Pretty safe for smaller
organizations because no one is

ever really fired for bad
kecisions /

Adapted from Chuck Severance

Commercial In The Middle (Large)

Gpen Source

Developers
*Not really the main
event

guys

*Thanks for the bug fixes

N

4

@)mmercial Support

Houses

*We write this software

«lt is fast and reliable

*We are professional
developers who will be around
for a while

*We have decided that
publishing source is good
marketing

*We have decided that giving
software away to cheapskates
is better than having them
steal the software or use
something else.

Start them off free, move
them toward the pay stuff

«If they don’t pay enough

voluntarily, use F.U.D. to
increase revenue.

\

4

Stakeholders

*Really have someone to call
Indemnification is real and has
a very clear price

*A decision can be made based
on the value of a good night’s
sleep.

«If the company engages in
constant F.U.D. operations you
bite the bullet, pay the ransom,
grit your teeth and hope for
something better to appear
someday.

«If the company uses F.U.D.
sparingly and keeps prices

reasonable - this can be very
ktable. J

This configuration usually lasts less than 10 years in the honeymoon state. At about 10 years,
the number of Vice Presidents exceed the number of actual workers. To keep up the Lamborgini
payments prices must rise, but then stakeholders switch to the free versions, so the company
upps its F.U.D. campaign intensity. This either tends toward pure commercial or has a blow-out.

Adapted from Chuck Severance




Community Source

Secondary Stakeholders
At least the core
developers have to be
responsible for reliability
and performance

*The core developers have
a boss who can be
complained to

+Can pay some money to
Core to get
“indemnification”

*Can contribute to the Core
“in kind”

*Can join the core with
enough commitment

«Can pay Commercial
Support for “extra

Open Source Developers
*Can participate in the
process based on
contributions and chops

Core Stakeholders

«It turns out that they actually have
a lot of money and programmers
«If they pool resources, we would
be instantly larger than many small
commercial R&D operations.
+Tired of writing big checks, and
begging for features

*Form coalition of the “committed”
*Get quite excited when
developers start doing what they
are told.

*Must learn that this is harder than
it looks - must gain company-like
skills.

*Actually responsible for both the
development and production of the
software.

Issues:

Commercial Support
*At least the core
developers have to be
responsible for reliability
and performance

*The core developers have
a boss who can be
complained to

*Can pay some money to
the Core for some
“indemnification”

*Can make money from
secondary stakeholders

Core Developers

*Work for the stakeholders
so they want to make the
Stakeholders happy

How can this be kept stable after founders reduce commitment?
If successful, what stops this from going commercial?

What is the right license for the IP produced as part of the Core?
What types of software is appropriate for this? Payroll software?

Adapted from Chuck Severance




Sustainable Software as
Cyberinfrastructure:
Experience and Perspective from the NSF

Dr. Jennifer M. Schopf
National Science Foundation
Office of CyberInfrastructure

March 25, 2008
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S8 What Does Sustainability Mean?

“Ability to maintain a certain process or state”

In a biological context

» Resources must be used at a rate at which they
can be replenished

In a software context

» Creating software that can be used in broad
contexts (reuse)

» Funding models that encourage long-term support
(beyond normal NSF grants)
Note: I'm defining software VERY broadly — everything

in your environment, middleware, tools, numerical
libraries, application codes, etc.)




One Future:
Software As Infrastructure

NSF should fund software sustainably the
same way it does other infrastructure.
» Same as telescopes, colliders, or shake tables
» Line items in the directorate budgets
» Constant or growing over time, reliably
» Factor in “maintenance” and “replacement”
> Eligible for programs like MRI and ARI

Software is around even longer than hw
» Hardware refresh ~3 years
» Software can grow over decades

» (what's the right funding ratio of sw to hw in a
large-scale CI project?)

COAT
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Eeeegy However, if software is viewed as
Du<d/ -
s infrastructure by NSF...

PIs must also treat it as such

> Reliable, robust, reproducible, production-quality
software

» Reporting requirements (including uptime, usage
statistics, and safety/security reporting)

» Formal planning approach- including scheduling/
estimation, requirements development,
deployment plans, risk assessment, etc.

» Teams with "professional engineering"
backgrounds

Change in culture for both development

groups and funders




Note:

This is not more money
» More money isn't a solution here

This is spending the money we have wiser

The Question:

Is it right, is it realizable, and if so, how?
These are hard questions!

One way to move forward is for PIs to start
down this path

> Prove to the rest of the community (and funding
agencies) this should be true




Outline

We can have successes:
» NMI program (MyProxy)
> Lessons Learned
» SDCI's going forward
Encouraging Sustainable Software
» Education and Provenance
» Community Approach (and Task Forces)

Asking the Hard Questions

NMI: NSF Middleware Initiative

Established in 2001 to define, develop and
support an integrated national middleware
infrastructure

“Making it possible to share scientific
resources ranging from telescopes,
supercomputing systems and linear
accelerators to databases, directories and
calendars.”

~$12M 2001, amount varied yearly




Something That Worked:
MyProxy (Welch, Basney; NCSA)

Started at NCSA, 2000

» Provide an online credential repository for Grid
portals and Globus Toolkit (GT)

> Initial development from NLANR and NASA CORE,
then NASA IPG provided first “sustaining” funding
to support MyProxy for their use

July 2002-June 2005 NMI funding

» NMI Grids Center (used NMI Build and Test)

» Funded testing, hardening, documentation,
packaging activities, bug fixes (and tracking)

> Release process definition (and inclusion on GT)

> Some development of additional features

MyProxy (cont.)

Subsequent funding from
» TeraGrid: Support its use in the project
> NSF Dependable Grids ITR: MyProxy's failover
functionality
Additional development and support from
» European DataGrid, U. Virginia, LBNL, and others
» Open source (and open contribution)




MyProxy Today

» EGEE, EU DataGrid, Earth System Grid,
FusionGrid, LHC Computing Grid, NASA
Information Power Grid, NCSA, NEESgrid, NERSC,
Open Science Grid, and TeraGrid.

MyProxy Usage:

» TeraGrid: 21,744 requests from 775 users in July

2008

» WLCG: 230,000+ requests/day

MyProxy: What Can We Learn?

Satisfied a clear user need from the start
> Expanded organically to satisfy user

Built and maintained user confidence

» Clear mechanism for users to communicate with the
development team, and good documentation

Maintained stability

» Each release has always been backwards compatible
Coherent architecture, simple software design and
open source

» Basic prototype was stable and usable

» Coordinated new features and contributions

» External modifications and contributions cost effective

Long-term support commitment from NCSA




My Proxy Extras

Today, MyProxy is distributed as part of the
Globus Toolkit, the NMI GRIDS Center,

Univa Globus Enterprise, and the

Virtual Data Toolkit. MyProxy is used in many
large grid projects, including the
Computational Chemistry Grid,

Earth System Grid, EGEE, FusionGrid,

LHC Computing Grid, Open Science Grid, and
TeraGrid.

MyProxy recently underwent a security
analysis by an independent third party:
http://www.ncsa.uiuc.edu/News/

Additional Lessons Learned

End-user Involvement
» Understanding user needs is VERY hard

» Having a member of the user community work
closely with the dev team is key

> Most end users are not administrators

Saying no (especially to features you *think*

someone might like)

» Over-selling, over-hyping software consistently
backfires

> “It's better to make half a product than a half-a$
$ed product” — Get Real, 37signals




Additional Lessons Learned

Scope of the software plays a role
» Do something, but not too big or too much

» When it gets to be too complicated to be easily
understood, well, no one understands it or uses it

Smaller can be better

» If you can only get funding for adding features,

eventually you end up with something huge and
unsupportable

A Harder Question:
How to Choose What to Support

“Everything should be made as simple as
possible, but not simpler.” —A. Einstein
If we treat software as infrastructure, we

have to pick *what* software to support
» What is the REAL core of CI?

» How do we have a coherent architecture?
Will also need “exit strategy” as well

» Eg. make it attractive for someone else (industry)
to support




COAT

s SDCI: Software Development for
¥ Cyberinfrastructure (FY07)

HPC, Data, and Middleware target areas defined
2 types of proposals

» New dev't — show compelling case for new
software dev

» Improvement and Support - original software
must have a track record of use and impact

Required characteristics for proposals

» Multiple application areas and expected usage

» Awareness/distinction among alternatives

» Project plan with proof-of-concept and metrics

> Open source and use of NMI Build and Test facility
» Demonstration in first 2 years

..but

What else can we do to encourage and
support sustainable software?

OUTLINE

Encouraging Sustainable Software
» Education and Provenance
» Community Approach (and Task Forces)




(D

-@% Teach Production Software
Engineering

\A
4

Al

One university’s Software Engineering course
» Systems analysis. Benefit/cost analysis.
» Project scheduling, management, and control.
» Requirements Specification document.
» Development platforms. Prototyping.
» Human factors. User interface design.

» Detailed Design document. Configuration
management. Program documentation.

» Documentation. Installation. User training.
» Software metrics. Cost estimation.

Individual project developed during course of
semester in addition

..but

This doesn't address fundamental issues
needed to work in a production environment

» Working with a team — everything is more
complex, from communication to version control

» Working with end users — changing specifications,
documentation, hand holding, negotiation

» Operations — deployment, performance criteria,
interoperabilty

» Working to deadline — release requirements,
tracking bugs, saying No!




Teaching Sustainable Software

Care and feeding of production software
» Understanding software life cycle

Version control- software and practices
Test (and build) frameworks

Release management
» Process for pushing a version out the door

Documentation and communication
Bug tracking
Feature development with user interactions

¥ Some University’s Do Teach These

UCSD’s SE course walks through Agile
techniques

» Work in a team with end users

» Version control and release cycles

» Weighing when to add features or harden

But how many computational scientists would
take this course?




Carnegie Mellon’s Software Engineering
Institute (SEI)

http://www.sei.cmu.edu/

Software Provenance

Reproducible results are a requirement for

basic science

» In computational science, the science is in the
code

Software must be reliable and consistent

Version tracking, metadata, environment
tracking is critical

Currently — a vast majority of computational
science applications cannot be run by another
researcher, and results cannot be reproduced

24




What can NSF do to encourage
sustainable building of software?

Educating Our Community:
A Recent Failing

Sent in proposal to a program
» Review panel told this program supported code
hardening, broadening uptake
Proposal for sustaining support for large
software base with wide community uptake
» Primarily funding to support NSF users
» Small amount of additional functionality that was
end-user requested
Reviewers recommended only the new
development portion of the proposal be
funded, not the on-going support of the user
base




Educating Our Community:
A More Distant Failing

Another PI told me about the following
reviewer comments (over the last 5 years)

» Why is so much effort spent on release cycles
instead of developing new features?

» Why are you spending so much money on
full-time developers when you could hire 3 grad
students for the same cost?

» Where is the novel research in the development
proposed? This is engineering, not science

COAT
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& Educating Our Community (cont)

Annual project reports
» Meant to be a way to update PM project progress
» NSF provides simple template pre-defined (and
pre-filled in with previous year response)
For me to be able to know if a project can be
applied to another area or re-used
» User base (and involvement)
» Web pages for information (and accessibility)
» Open source license
» Metric of “re-use quality”




Task Forces: Community
Involvement in Implementing Vision

OCI community groups to help address holes
in vision document not yet addressed

» And a new vision document is needed in a few
years

Get additional community input into OCI
programs

Get deeper integration with NSF directorates,
other agencies

General Strategies

Timelines: 12-18 months

Co-organized by NSF PD and ACCI member

» Membership from ACCI, community, other
agencies (DOE, EU, etc.)

» Involvement of NSF: OCI + other

Workshop(s) and Recommendations
We then go back and develop programs

Areas: Software, Campus Bridging,
Education/Workforce development, HPC, Data
and Visualization, Grand Challenges and VOs




Current List of TFs

TF1 Software (A.Patra)

» Tools, compilers, appl frameworks, debuggers ...

» Software for comprehensive CI environments
include networks, grids, clouds, datanet, etc

» Community frameworks and toolkits for solving
complex problems that may include all the above

» Also: sustainability!

TF2 Campus Bridging (J.Schopf)

» What can we do to better integrate campus
environments into regional/state/national CI

» Networking, software stacks ,socio-political, etc.
> Also: sustainabilty!

Current Task Forces

TF3: Edu/WF development (J.Angle)

» Developing people who can do all this, from cs to
sociology

» K-20: Cyberlearning, teaching computational
science and collaborative skills

» REU and up: grad, postdoc, CAREER awards,
computational science curriculum development

» Also: sustainability!
TF4 HPC/computing (R.Pennington)

» More focused on the "hardware environment"
roadmap, including petascale, exascale, grids,
clouds

> Also: sustainabilitv!




Current Task Forces

TF5 Data/Viz (J. Stoffel)

» Going beyond DataNet, what do we need to do
about the new data-driven science

> Also: sustainability!

TF6 VOs and Grand Challenges (B. Schneider)

» Next generation grand challenge communities that
may span disciplines, may use all the above to
solve very complex problems.

» And... (wait for it) sustainabilty!

N
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2 Learning from Others:
- NASA Reuse WG

Reuse Readiness Levels (RRLs) assess the maturity of sw products
for potential reuse
: No reusability; the software is not reusable
: Initial reusability; software reuse is not practical
: Basic reusability; might be reusable- skilled users, substantial risk
: Reuse is possible; might be reused- most users, substantial risk
5: Reuse is practical; could be reused- most users, reasonable risk
6 Software is reusable; can be reused- most users, may be some risk
7 Software is highly reusable; can be reused- most users, minimum risk
8 Demonstrated reusability; has been reused by multiple users
9 Proven reusability; is being reused by many classes of users over a
wide range of systems

2
»
\A

4

http://esdswg.gsfc.nasa.gov/WG/REUSE/index.html




Learning from Others: OMII:
Open Middleware Infrastructure Institute

Initial problem —provide hardening and
sustainable funding for UK eScience program
Grant awarded in 2 parts

> Integration and packaging (similar to VDT)

» Coherent hardening of software in community

¢ Defined engineering process, open source license,
code availability, etc.

Pro: Engineering integration by project office

Con: Effort required far exceeded resources;
Early intervention needed for better results

Neil Chue Hong will address this in part tomorrow

85

Sustainable Software Policies?

Many groups defining policies to preserve
data artifacts

» Data must be made publicly accessible

> Data has to be stored in a national archive, etc.

What about preservation of software?

» Publicly accessible (more than a nod to open
source)

» Testing results available
» Required demonstrations
» Required end-user vouching?




Can we...

Define metrics of use

Define metrics of production software not
research software

Capture requirements on the software
process (not requirements on functionality
itself)

Make use of professional developers more
common place and accepted?

How do we deal with the academic versus
production software conflict? How do we
reward sustainable software?

What if we're successful?

An effect of successful software reuse is the
software stack grows

» e.g. GSI-OpenSSH on top of OpenSSH on top of
GSI on top of OpenSSL

» Dependencies can cause vulnerabilities and risk




Other Funding Models

Paying a license for commercial software
> TG can pay $50k because it relies on some sw

» Find way to "tax" the community appropriately
e Internet2 Model

Develop and move to commercial support

» Initial development of the Basic Linear Algebra
Subroutines (BLAS) with NSF/DOE money

» Subsequent sustainability by vendor adoption/
licensing and a small residual funding from DOE

Wrapping Up:
What can be done within OCI and
across NSF

Requirements in solicitations
Mechanisms to check to see if software
actually works

» More than just build and test (although that’s a
good start)

And within NSF:

» Longer term programs, industrial participation,
working with DOE, and other approaches

More money is NOT the answer

We need to change the culture of building
and supporting sustainable software




Some Questions
We Can Try to Answer

How can funding agencies encourage PIs to produce
sustainable, reusable software?

How can educators assist in the production of sustainable,
reusable software?

What are approaches that have worked well (or pitfalls to avoid)
from our own track records?

How can we encourage software written for one discipline to be
able to be reused in another?

What's the right ratio of software to hardware funding in a
large-scale CI project?

How should NSF decide what software to support?
How do we build in rewards for producing sustainable software?
How do we provide metrics for sustainability?

More Information

More Information
» Jennifer Schopf
¢ jms@nsf.gov
» Campus Bridging Task Force
e Jennifer Schopf (or Craig Stewart)
» Software Task Force
e Abani Patra (apatra@nsf.gov) (or David Keyes)

Thanks to:

» Neil Chue Hong, Ian Foster, Peter Fox, Miron Livny, Steven
Newhouse, Ed Seidel (and the rest of OCI), Craig Stewart,
Kevin Thompson, Alisdair Tullo, Von Welch




Cultivating Sustainable Software for Research
the Perspective from OMII-UK

Cyberinfrastructure Software and Sustainability Workshop
26-27 March 2009
Neil Chue Hong
Director, OMII-UK

mo“ omii-uk
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Discussion’s been “what if”

e Whatif

—There had been a large scale cross-funder
cyber-infrastructure initiative?

—There was funding for software
development that was separate from
researche

—There was a group set up to take the
software outputs of the programme and
support continued development?

UK e-Science

e-Science

‘e-Science is about global collaboration in key
areas of science, and the next generation of
infrastructure that will enable it.’

‘e-Science will change the dynamic of the
way science is undertaken.’

John Taylor
Director General of Research Councils
Office of Science and Technology

GGF5 Edinburgh

From presentation by Tony He




Investment in e-Infrastructure

« A shared resource Science & innovation
. That enables science, .
research, engineering, investment framework

medicine, industry, ...

« It will improve UK / 2004 - 20 14

European / ...
productivity
» Lisbon Accord 2000 July 2004

» E-Science Vision SR2000 -
John Taylor

\ gg\%'?.:fa'a"eenr;t " Womrreasuey D S

» Sections 2.23-2.25 Crndn Yy W A ” L 9
. Always there ' ik
» c.f. telephones, transport,

power Gordon Brown Charles Clarke Patricia Hewitt
. OSI re po rt Chancellor of the Secretary of State for Secretary of State for
» www.nesc.ac.uk/documents/ Exchequer Education and Skills Trade and Industry

OSI/index.html

Embracing Research
Diversity

e Thriving Community
« All disciplines & all
Research Councils o —
« Industry & Academia biatechnology ad biological sclences
 Many universities &
research institutes

« Productive
collaboration

(Sl ) science & Technology

_ Facilities Council

EPSRC iSRG
Engineering and Physical Sciences RE SEARICH

Research Council COUNCIL

d Medical NATURAL
(‘) Arts & Humanities Research ENVIRONMENT
N\ Research Council M RC Council RESEARCH COUNCIL




UK e-Science Budget

(2001-2006)
Total: £213M + £100M via JISC

EPSRC Brealgdown

HPC (£11.5M)
15%

Applied (£35M)
45%

ontributions £25M
Source: Science Budget 2003/4 — 2005/6, DTI(OST)

Slide from Steve Newhouse

History

2004 OMII * IBM-Southampton partnership
* Software engineering and QA process
* Ingest pipeline and managed programme
* Middleware product focused
*  OMII WSI-based stack and distribution

20060 OMIlI UK ¢ Southampton-Manchester-Edinburgh partnership
* Software engineering and QA process
* Ingest pipeline and contributed programme
* User relevance and adoption focus
* “pick and mix” components

* Collaboration and partnerships

Web: www.omii.ac.uk Email: info@omii.ac.uk




Three “S’s”: Software, Support, Sustainability
|

Infrastructure  Component Solution e-Science
Provider Provider Provider End User
4 P

o' open middleware

mil infrastructure institute
y

www.omii.ac.uk
£, omii-uk

Software Solutions
for e-Research

4

Web: www.omii.ac.uk Email: info@omii.ac.uk

OMII-UK Users

Users
- = i
Applied Technologists Providers
Research
Domain /\‘
Casual User Intensive User | Assemblers Builders Assemblers Builders Vo Resource  Helpdesk & System
(Novice (Expert of domain of domain of generic of generic Manager s Owners Training Administrators
or or Components/  Components/  Components/ Components/
L Infrequent) Focused) Services/Tools Services/Tools Services/Tools Services/Tools
L . U JU
Y Y NG
Applied e-Researchers Technology Specialists e-Infrastructure Providers
Applied Technology Specialists e-Infrastructure
e-Researchers (domain & generic) Providers

Web: www.omii.ac.uk Email: info@omii.ac.uk




skeptical
unread unaware but ready

Choose
your Target remote unknown

. Heroic Everyday Production Commerecial

Funding Research Research Use Exploitation

Business intelligence for research

Community development and consultancy
Information dissemination : website, keynotes, tutorials, other training
Evaluation of existing external software, dissemination of best practice
Evaluation of standards, dissemination of best practice
Commissioning software
Development & implementation of standards
Integration & customization of existing external & internal software
Software hardening, reliability, scalability

Software Repository

Project specific technical and managerial consultancy

Community
Building Technical support and advice

* Foundation Improving ease of installation
Services

* Responsive
Development

Improving ease of use




OMII-UK: Software Development

‘Taverna:effortless
for s__aentlsts

e (=]

Support and Helpdesk

Project OMII-UK

Tite ©® Keyword © Number © A B
% omii-ul —
www.omii.ac.uk

{2} Project Home My Dashboard
Iﬁ Create Query

|>

Project Totals Numara FootPrints 8.0

a Global Query

Welcome to Numara FootPrints | There are no Global Queries at this time

Open 8 Active 92
£} Address Book Closed 600 Reguest 0

Internal Solution 0  Solution 31 Wisit "My Preferences" to see new

options such as:

q Search

© Customizable "My Dashboard"

[, Reports ® ‘l(;aubet::dlaovroeutvand/cvlhpse 439 queries in Q3 ‘08
[T Flashboard ® Do o diit, 418 resolved within

Descriptions
Click to see What's new in 8.0

base period

(TSI All Queries B %, Refresh Displaying 1 - 20 of 723 Queries - 3

m Knowledge Base

E‘E My Preferences

1630 Normal Weijian Fang ¥ 09/05/2008 Resolued FW: NGS repository al
1629 MNormal Design and Dey ¥ 09/05/2008 Open signature is not truested D
l Logout 1628 Normal  Design and Dev ¥  07/05/2008 Resolved E::tbi:fc’?;”s‘"h ]
1627 Normal Christopher Brc ¥ 30/04/2008 Closed test 1 D
¢ MNew on
1620 [} Mormal  Meil Chue Hong %  06/05/2008 Closed S il

Web: www.omii.ac.uk Email: info@omii.ac.uk




Engaging Research engage
with e-Infrastructure > Sra——

e 53 interviews
o 36 face-to-face
o 17 telephone
* 60 people
* 24 institutions

* Triage process to
identify
development
projects and best
practice

What's the issue?




What's the issue?

“Sustainabllity is not an
Issue for CS researchers,
we want others to fake the
software over subject to IP
Issues”

What's the issue?

“Sustainabillity Is a big issue,
we are producing
complex tools we want to
continue to use but it's nof
clear how they'll be
sustained”




What's the issue?

« How do we ensure that software which
has users can continue to support them=<

- In particular how do we help software
survive the transition from creation to
through adoption to widespread use and

beyond?¢

« Some examples from OMII-UK
experiences

Software development
comes in stages

(I AN [ I |




Software development
comes in stages

» An idea to solve a problem

Idea ) Prototype Understand the functionality

n Prototype ) Research
m Prototype Research )Suppor’red

Scaling to work for others

Allow others
to participate

Commissioned Software Programme

* Identify gaps in functionality or quality required from
community

* Scaling from one user to a small group of users, one
set of developers to many developers

* Criteria for judging CSP development:
o the demand for the software is understood

o the number of potential users has been increased by the
work done

o the use of the software has contributed to a measurable
increase in the research outputs

o the community participation around the software has
increased

Web: www.omii.ac.uk Email: info@omii.ac.uk




Commissioned Software Programme @ Q1 ‘08

Supporting <"1 Evaluathng <"1 Developing

BPEL
Designer
KNOOGLE vic RAPID GiidBs
Broker

App Rep

Open Grid
Manager

. EH
N

fﬁ?l omii-uk

Web: www.omii.ac.uk Email: info@omii.ac.uk

Commissioned Software Programme @ Q3 ‘08

Supporting <"1 Evaluathng <"1 Developing

BPEL
Designer

IcT
GridSAM

GridBS

RARID Broker

i
i
CAOEE

KNOOGLE vic PAG

RAT ST RAVE
App Rep

Open Grid
Manager

CHHEE
. HE

[

Commissioned Software Projects progress through
the software lifecycle

fﬁ?l omii-uk

Web: www.omii.ac.uk Email: info@omii.ac.uk




GridSAM — History & OMII-UK Involvement

ICENI: Imperial College e-Science Networked Infrastructure Jun 04
Key GGF paper: JOML feeding into .
JSDL OGF standard development Grid3AM3
EMMU: Effective Multi-Userand 1| __——— e Internal
Multi-Job Resource Utilisation :’_ GridSAM GridSAM2 Development |CTGridSAM
|
|
|
! H
| ) *) 9 ) - ))
[ [ o [ I I i I I '
Jan 01 an 02 Jan 03 lI |Jan 04 Jan 05 Jan 06 Jan Jan 08 |
o -~ —— —oanils )_.z'/f /.x-""' / | -
Oct 00 i — : ~  Aug 04 \ “Dec 08
Nov 01 Nov 03 | Sep 04 Mar 06 Mar 07 | Jul 08
EMMU project: JDML adoption GridSAM project: GridSAM2 project: Internal ICTGridSAM project:
Create general into ICENI Provide simple to compliance with Development: improve stability,
job description : install & use JSDL emerging OGSA- support for institutional usability, & support
language (JDML) + e ol job submission web BES & evolving deployments & open for production-
implementation Jun 03 service JSDL standards development on level environments
e-Science Gap Analysis: SourceForge
robustness of software

Apr 08

GridSAM3 project:
improve user job reporting
& standards support

key requirement

Phase 1: Internal Development

Phase 2: Sponsored Development
initial development & implementation

ease of user installation, stability,
documentation, developer training,
adherence to emerging key standards

Phase 3: Community
Development
driven by end-user requirements

Web: www.omii.ac.uk Email: info@omii.ac.uk

GridSAM — Releases & Additional Value

‘ . ’ L GridSAM3: improve user job reporting
Evaluations Internal Publications & standards support

GridSAM: GridSAM2: compliance with Internal Development: |CTGridSAM: usabiiity, stability, support

a JSDL-consuming web service OGSA-BES & JSDL standards institutional deployments  for production-level environments

H 1
Jlﬂﬁ v) Dgﬁ u X2 ) @7 ¢ Y ‘9
| | Sep 06 | Sep 07 [ Aug 08 I
Jan 05 Jan 06 Jan 07 Jan 08 Sep 08
Sep 04 \i y | e Dec 08
06105 Nov 06 May 07 Sep 0o " Ded o
Selected GE v2.0: improved | v2.0.1: OGF Ve v 2
Releases . atnm.lorisation HP(':F.' s-uppon PBS/LSF support, JSDL SPMD support
Improved data HPCP support across
| staging & job PBS, SGE & Condor
Feb 07 management Enhanced job reporting
Mar 05 Support for use within Soton I
CORE/ORBS project May 08 N Nov 08
e - — — Working with Working to provide
Additional Sep 05 Jun 06 Jul 06 Jul 07 UCL to provide on Soton iSolutions
Value Training Training at Training at Training at AHE/GridSAM on teaching cluster
at NeSC NCeSS ISSGC ISSGC LG egoniclster

Web: www.omii.ac.uk

Email: info@omii.ac.uk




GridSAM — Publications & Enabled Activities

@  Research Publications GridSAM3: improve user job reporting & standards support

GridSAM: GridSAM2: compliance with _|"'_e"‘P| Development: |CTGridSAM: usability, stability, support
a JSDL-consuming web service OGSA-BES & JSDL standards institutional deployments  for production-level environments

X ) ¢ > 3 20

T T T 1 )
f [ g ! ) I . u I _J U l
Jan 05 Sep 05 | Jan 06 / Jan 07 ~. Jan 08 e g ¥
i s Sep 06 Mar D7 Sep 07 Oct 0 %
Sep 04 pcorputtonsl Nov 05 e =5 = S Dec 08 _
y at UCL ——( Suc il RealityGrid: NEKTAR/ ImmunoGrid: A5
] Helped towin | performance | Molecular dynamic Vortonics: Human immune =
Sep 05 HPC Analytics | gualuation for | simulation of HIV-1 | | Simulation of || system simulations EMAAS:
Selected = Ct ge, isti P across blood flow in across NGS, Bioinformatics
Publications | pyor e | SuperComputing | quantum NGS, CSAR, human arterial || TeraGrid, DEISA, || micro-array data
-mechanical | HPCx & TeraGrid network CINECA analysis
across UCL & By 4
Imperial clusters Ciror J ‘ L ‘
Apr 07 May 08 Jun 08 Jul 08
—_— Ve
Enabled Dec 05 Apr 06 Jun 06 Deployed at Deployed within 2 deployments Deployed within
o gy ) BeSC providing Chinese Drug within Chinese Imperial EMAAS
Activities | First 0GSA-BES Deployed on Deployed access to NGS Discovery Grid automotive micro-array
interop test China National | within NIEeS core sites project industry analysis portal
Grid R&D

mo" omii-uk
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OMII-UK on the Campus

* Rolling out AHE/Campus
Grid Toolkit to UCL

Research Computing users

Imperial College
London

o rolling in contributions from

IC, ICT and Oxford

o Looking to repeat this at
NWGrid, University of Edinburgh
(ECDF) and Kings College London

mo" omii-uk

Web: www.omii.ac.uk Email: info@omii.ac.uk




Linking and Querying of

) engage
Ancient Texts

Engaging research with
e-Infrastructure

* Investigating commentary
on inscriptions and papyri
* Develop framework for

linking up diverse data
sources

* Gabriel Bodard, Charlotte
Rouche

* 4 different databases
now linked as joins
rather than unions
allowing new epigraphic
approaches

There isn't a single best
model for sustainability




The Long Tail

“Given a large enough availability

of choice, a large population of

Head customers, and negligible stocking
and distribution costs, the selection
and buying pattern of the
population results in a power law
distribution curve, or Pareto
distribution, instead of the
expected normol dlSTI’IbUTIOﬂ

l ong Tail curve”

Products

Popularity

Comparing Apples and
Oranges?

@ pownLoapcov amazon.com.
N




Comparing Apples and Books!

Storage lifespan: Storage lifespan:
~12 months ~ 50 years

Which one is closer to the lifespan of software?

Popularity

The Long Tail in Software

“Given a large enough availability of
choice, a large population of

Head customers, and negligible stocking and
distribution costs, the selection and

buying pattern of the population results
in a power law distribution curve, or
Pareto distribution, instead of the
expected normal distribution curve”

I Long Tail
is required to prevent decay

Products




Popularity

The Long Tail (yet again)

» large enough availability of choice
— requires a comparable marketplace

Head ° large population of customers
— requires a growing total community of
users
* negligible stocking and distribution
COsts
— requires efficient use of resources and
tfechnology

Long Tail

Products

Open Source software is free...

Free as in speech... free as in beer, or...




Free as in Puppy...

* Long term costs

« Needs love and
attention

* May lose charm
after growing up

« Occasional clean-
ups required

* Many left

abandoned by
their owners

How to embed e-Infrastructure
in the research process?

What do you think e-
Infrastructure is and what should
it be?

To what extent is the use of e-
Infrastructure essential to your
research?

How would you use e-
Infrastructure in the future?

Do researchers need a clearly
defined ICT environment and
tool suite?

What would be needed to truly
embed the use of e-
Infrastructure in your work
across the whole research
lifecycle?

Workshop identified:

I.  There is no single common e-
Infrastructure

Ease of use is the initial barrier
Dealing with complexity is
complex

Trust is important

Open development is necessary
Give credit for digital creation
Attitudes must be changed

bl

N o U

~70 attendees (developers, Pls,
managers, researchers and funders)

http://www.nesc.ac.uk/technical papers/UKeS-2009-01.pdf




Classification of Open Source Business Models
|

* Development Model
o ([vendor|community|mixed]/[open source|hybrid])
* Licensing Strategy
o (Dual | Open-Core | Open and Closed | Single |
Assembled | Closed)
* Revenue Trigger

o Commercial License, Subscriptions, Service/Support,
Embedded Hardware, Embedded Software, Software as a
Service (SaaS), Advertising, Custom Development, Other
Products and Services

* http://blogs.the45 | sroup.com/opensource/
2009/03/12/a-classification-of-open-source-business-

strategies/

mo“ omii-uk
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Sustainability Models for Research Software

* Grant Mosaic

* Flagship (e.g. CCPs: DL_POLY)

* Institutional (e.g. Subject repositories, CNX)

* Fully Costed (e.g. HECTOR CSE Support)

* Mixed Enterprise / Consultancy (e.g. SugarCRM)
* Foundation (e.g. Sakai, R)

e T-shirt

UK e-Science Core Programme: Business Models for Sustainability (2007)
http://www.jisc.ac.uk/media/documents/programmes/einfrastructure/day2_breakoutbusinessmodels.pdf

mo“ omii-uk
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Grant Mosaic model

You manage to divert some of your
researchers / grad students to do
software development on each
project grant

e.g almost all research software
Pros: “easy” to get funded

Cons: hard to get external
contributors,

Flagship model

Where the software is so important for
research that core development is
easy for funders to justify

E.g. CCPs (DL_POLY etc)

Pros: provides long term sustainability
for software as long as it needs it

Cons: it doesn't scale




Institutional Model

Software is so useful and prestigious
that an individual institution support
and integrate into their general
infrastructure

e.g. Repositories, CNX

Pros: institutions can provide one of the
longest term sustainability routes

Cons: silos, difficulty in open
governance

Fully costed model

Software development is costed as
parts of grants at proposal stage

— “software support credits”

— E.g. HECTOR Distributed CSE Support

Requires a change in the funding and
a change in attitudes within research
groups (I could do that myself)




Consultancy model

Where you have good set of basic
features but people want more
customisation

E.g. Most CMS software
Pros: Diverse income sfreams

Cons: only works for certain sorts of
software, with a large enough
community

Foundation model

There is a central point of coordination
and governance. People pay money
to have influence.

E.g. Sakai

Pros: very good at harnessing
community contributions

Cons: requires effort to set up, needs
to be at the right level




Taverna Workbench

* Initially funded through e-Science myGrid project
(2001-2005)

* Directly funded through OMII-UK (2006-2010)

o Plus marketing, outreach, legal and networking
* Platform funding (2009-2014)
* caBIG subcontract
* Eli Lilly development

e 40,000+ downloads of
Taverna |.x

* Take up in other domains,
e.g. astronomy

@ J
O .
m.' omii-uk Taverna user Interface with a workflow diagram and the result panel displaying a protein structure,

Web: www.omii.ac.uk Email: info@omii.ac.uk

OGSA-DAI

* Initially funded through e-Science Core Programme
(2002-2005)

* Directly funded through OMII-UK (2005-2010)

 Additional funding for EC deployments
o NextGRID, OMII-Europe

e Contributions from

o Austria, Brazil,
Germany, Japan,
Russia, UK

mo“ omii-uk

Web: www.omii.ac.uk




@4 m——— DAME: Grid based tools and
N Infer-structure for Aero-Engine
Diagnosis and Prognosis

-
=
= XTO

=% | Engine Model

weerd Case Based Reasoning

Signal Data Explorer
L | -
— ‘ ‘ CARMEN
| CODE ANALYSIS, REPOSITORY & MODELLING FOR E-NEUROSCIENCE
D broaden I Slide from Jim Austin

The $5m question: staff vs software

* Can we prioritise software sustainability over
staff retention?

o skilled staff availability to work on projects

* Why get a grant for $3m that builds on
someone else’s software when you can get a
grant for $5m to build your own!?

mo“ omii-uk
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Increasing participation is the
key to long term sustainability

engage
So what do people say? ggggg

If I run it on my own
machine then it’s always
going to be available

Current tools and
methodologies work
well if you have the right
people

| feel ignorant of the
benefits of e-Science [...]
no documentation above
the basic level

Sustainability is a big issue, we are
producing complex tools we
want to use but it’s not clear

how they’ll be sustained




ENGAGE preliminary, non- engage
empirical qualitative finding R/ e
People will tend to
prioritise ease of use,
support and continued

development over a
complete feature set

This requires a sustainable
community around the
software and trust by the
users in the e-Infrastructure
providers (and vice-versa)

The Four Levels of e-Science Enlightenment

* 1) Resources: Providing access
to a larger and wider diversity

e 2) Automation: Repeatability
and management of experiments

* 3) Collaboration: Intra + cross
disciplinary networks
.+ 4) Participation: Increasing
access to a wider set of users;
increasing knowledge in a domain

fh°l| omii-uk
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“Give a man a fish, and you feed him for a day.
Teach a man to fish, and you feed him for life.”

K
-~

Sustainable communities
demonstrate 4 key factors:
- cohesion and identity

- tolerance of diversity

- efficient use of resources
- adaptability to change

"Teach a man to fish, and you introduce
another competitor into the overcrowded
fishing industry.

Give a man a fish, and you

stimulate demand for your proqgg“"_

Participation Inequality aka “90-9-1”

1% Creators

9% Editors

90% Audience

(cc) Jake McKee & 90-9-1.com

mo“ omii-uk
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National Grid Service

,’iNGS National Grid Service

* Funded by EPSRC and
the JISC

* Coherent electronic
access for UK
researchers to all
computational and data
based resources and
facilities required to carry
out their research,
independent of resource
or researcher location

57

,i NGS Growth

National Grid Service

 Partners
Z __——
4 /
N
=

58




National Grid Service

;iNGS Growth

« Affiliates

20

N A ST KF S ESEE S EF S KF S S S &
W R W WP O W RPN o O of W@ W
> a % o IS Q\ S & RS DA

59

National Grid Service

,iNGS Lessons Learnt

» Have a clear description of benefits

« Aim for minimal overhead for member
sites (affiliate rather than partner as first
step, with clear process for upgrade)

» Provide good central support for site
contacts

» Supporting Campus Champions will be a
good way of spending the underspend...

60




A typical e-Science project organisation?

2090389 2820258

Steering Group l I I I l I

Investigators
l ‘ Project Managers 10 partners

Researchers
Developers

182020243

Students

th" omii-uk
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Smart Growth through Collaboration

* How do you turn users into

collaborators into ¥ OMII-UK NEWS

wwwomiiacuk  June2008

contributors? Access Grid learns to dance

* Moving from a single team at :
a single organisation to more
diverse, sustainable
development

* Improve availability and
visibility
celebrate success in the
community

th" omii-uk
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OMII-UK Services

Understand demand * Community outreach

* Increase potential users ¢ Improve quality of
experience + code

* Increase research * Identify projects and
outputs domains

* Increase community * Governance,
participation transparent

development,
communication

mo“ omii-uk
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Creating a2 Community

* Who are the users of the software?
Why do they use it?
What do they value from it?

What is their relationship between
developers and users?

What do people want to do!?
- not how can they use what we’ve got to do it

mo“ omii-uk
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Helping establish communities

* Communities require more than functional
software

documentation and training

- guaranteed long-term support
stable APIs as well as interoperable standards

sharing of best practice and issues

* Clear understanding of the requirements that
make them a distinct community

mo“ omii-uk
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Leveraging Infrastructure

* Prevent defects rather than just fix

* Use technology to lower effort

* Keep code shippable to aid collaboration

* Improve design continually and cost-effectively
* Make it easy for new developers

* Consistent pace that balances short- versus
long-term requirements
- a frequent release cycle keeps people engaged

mo“ omii-uk
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Governing Sustainably

» Copyright

° LicenSing . §e§socheas;tH§aEadvlsoryservice
* Value

* Decisions

* Trust

* Create a governance model that makes it easy to
contribute, easy to make decisions and maintains
quality, whilst being able to adapt to change

* Be prepared to make the gradual transition from
benevolent dictatorship to democratic meritocracy

mo“ omii-uk
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The trade-offs of a larger community

“Connected, distributed systems, from

| power grids to business firms to even
entire economies, are both more fragile
and more robust than populations of
isolated entities.”

Duncan J. Watts
Professor of Sociology
Columbia University

* Sometimes the thing that kills
software is that the community
becomes too fragile
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Community Engagement and Communication

* Training, tutorials, advice

* Beta-Testers and Tech Previews
e User Forums, User Advocates

* Mailing Lists, IRC, online forums

« Different ways of understanding community
needs and gathering feedback

. Multilple approaches from multiple skill bases to
attack a common problem

* Make people feel a part of the team, and the
team will grow
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PALs (Product/Area Liaisons)

Eyes and ears in
the community

Funding for travel

Priority access

Reporting in
return
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Can we still consider
traditional notions of software?

The light, coloured areas of the map represent places where it's faster to use public transport than to drive if you
want to get to work in central Edinburgh by 9AM (centred on postcode: EH1 2QL)

oy -
/- l:u!nb.Llrgu

g Edinburgh University
Duddingston
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UK Industrial IT Projects

“Today, only 30 percent of

government IT projects and programs

are successful. We want 90 percent by

2010/11"

— Joe Harley, CIO UK Dept. Work and
Pensions

£12.7bn

National Programme for IT (NPfIT), three

suppliers have walked away

Free Is a hard price to beat

What happens if universities just give
away their researche

Save £160m a year just on journals.

Imagine what we could save if we
actually band together

http://www jisc.ac.uk/publications/
publications/
economicpublishingmodelsfinalreport.
ASPX




Software as a shared facility

* Community involvement is the route to long-term
sustainability

o but grow a community too large and it lacks cohesion

* OMII-UK tries to identify and generate synergies
amongst different groups
o identify specialisms which are useful across disciplines
o create benefit without diluting community vision
o provide networking and sharing of best practice
o help with the unglamourous/specialist work

* Centralise software sustainability as a facility?

th" omii-uk

Web: www.omii.ac.uk Email: info@omii.ac.uk

| O omii-ul |
Thank You! My S




EPSRC Software Sustainability

|

* Provide a research infrastructure which will aid the long term
sustainability of software which enables high quality research.

o Development of software to an acceptable quality for wider
deployment, through the application of additional software
engineering to prototype software delivered by UK research
projects.

o The maintenance of software which enables high quality research,
through the management of a repository for selected software.

o Community outreach and promotion to ensure effective uptake of
the services that the infrastructure will provide.

o Engagement with the international community, for e.g. through the

dissemination of e-research software, establishing best practice and
standards, providing internationally recognized codes
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How the customer explained it How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the project was What operations installed
documented

How the customer was billed How it was supported What the customer really

needed
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