NUCLEAR STRUCTURE STUDIES OF LIGHT-MASS RADON ISOTOPES USING THE ²⁰⁹Bi(⁶Li, xnγ) REACTIONS R.S. Tickle*, W.S. Gray*, H.C. Griffin*, and H.A. Smith, Jr.

The methods of in-beam γ -ray spectroscopy, employing the relatively energetic ⁶Li beams available at IUCF, are being used to study the proton-rich isotopes ²⁰⁹Rn and ²¹⁰Rn. Although the unique properties of (ion,xn γ) reactions have been exploited in many parts of the periodic table to study nuclei which are far from the line of stability and hence often otherwise inaccessible, little attention has been devoted thus far to the interesting region beyond bismuth.

Two points on the excitation functions for the $209_{Bi}(^{6}Li, 5n\gamma)^{210}Rn$ and $^{209}_{Bi}(^{6}Li, 6n\gamma)^{209}Rn$ fusion-evaporation reactions have been measured by bombarding self-supporting targets of ^{209}Bi with 55 MeV and 65 MeV ^{6}Li ions. In addition to measuring in-beam singles to determine the intensities of relatively prompt γ -transitions, offline measurements of target residual γ -activities were made for periods of 1-2 hours following each bombardment. While additional bombardments at other energies are still needed to complete the

Table 1. Measured cross sections for production of selected nuclei by (6 Li, xn) Reactions on 209 Bi target.

		Cross Section (mb)	
Re	action	55 MeV	65 MeV
(⁶ Li, 7n)208 _{Rn}		
(⁶ Li, 6n)209 _{Rn}	157	615
(⁶ Li, 4n) ²¹¹ Rn	182	
(⁶ Li, d3	n) ²¹⁰ At	189	185

excitation functions and hence to assign prompt γ -transitions to specific nuclides, cross sections for the ⁶Li-induced reactions have been determined from analysis of the off-line activity measurements. Some of our preliminary cross section results for 6 Li reactions on 209 Bi are shown in Table 1. At 65 MeV, which is probably close to the optimum for the 6n reaction, some 7n reaction leading to $208_{\rm Rn}$ was expected but not observed. While the y rays in the decay of ²⁰⁸Rn (24 min; 80% EC) are unknown, the γ rays are known in the decay of the daughter, 208_{At} (1.6 hr; 99% EC), but were not seen in the decay spectra. The 6n cross section was determined from the daughter ²⁰⁹At activity rather than from the parent 209Rn, where the γ branching is uncertain. At both energies the expected growth of the 209At activity was observed with no evidence for direct production of ²⁰⁹At.

The cross section for the 5n reaction cannot be determined from our decay data. The residual nuclide, 210 Rn, decays primarily by α emission to the ground state of 8.8-day 206 Po with a very weak 4% EC branch to 210 At. The γ rays associated with the EC decay of 210 Rn are unknown. However, transitions from the decay of 210 At are being produced directly. Entrance channel breakup of the 6 Li ion into α + d followed by the 209 Bi(α ,3n) 210 At reaction is the most likely mechanism. The optimum α -particle energy for this reaction is estimated to be 40 MeV from a simple semi-empirical relationship. Assuming the α particle, after breakup, carries 2/3 of the ⁶Li energy, it would have 36.7 and 43.3 MeV respectively at bombarding energies of 55 and 65 MeV. Therefore one would expect, as observed, the cross sections for the (⁶Li, d3n)²¹⁰At reaction to be similar at the two bombarding energies.

In addition to the in-beam singles and offline activity measruements, we have measured inbeam $\gamma-\gamma$ coincidences ($\sim 30 \times 10^6$ events) from $^6\text{Li} + ^{209}\text{Bi}$ reactions at 65 MeV. Using two Ge(Li) detectors at 90° with respect to the beam direction, 4-parameter ($\text{E}_1, \text{E}_2, \gamma-\gamma$ TAC, γ -RF TAC) coincidence data were recorded event by event and stored on magnetic tape. The tapes have been sorted off-line using the University of Michigan Amdahl 470v/6 computer and analysis of the results is in progress.

The bulk of the experimental work will be completed in the near future by measuring additional points on the excitation functions and by measuring γ -ray angular distributions.

^{*}University of Michigan, Ann Arbor, Michigan. 48104