I

CHARGED PION PRODUCTION IN PROTON-NUCLEUS COLLISIONS NEAR THRESHOLD

R.D. Bent, P.T. Debevec, P.H. Pile and R.E. Pollock

Charged pions produced in proton-nucleus collisions have been measured using the QDDM magnetic spectrograph facility shown in Fig. 1. The focal-plane detector array consisted of a helical multiwire proportional chamber followed by 1/8" and 1/2" thick scintillators separated by a distance of 30 cm. Pions were identified by multiparameter computer analysis of the ΔE_1 (1/8" scintillator), ΔE_2 (1/2" scintillator), two time-of-flight (RF \rightarrow ΔE_1 and $\Delta E_1 \rightarrow \Delta E_2$) and two position (helix and ΔE_2 scintillator) signals. Beam currents up to 100 na were used, and pion event rates ranged from 0.5/second for 10B to 0.2/minute for 20Bpb. A background level of \sim 1 nb/sr was achieved.

Examples of data are shown in Fig. 2. The 40 Ca spectrum shows 90 pion events obtained in a 90 minute run with an average beam current of 20 na. For 208 Pb, 30 pions were observed in a 3 1/2 hr run with an average beam current of 50 na.

Table 1 summarizes the reactions that have been measured so far. For $^{10}{\rm B}({\rm p},~\pi^+)^{11}{\rm B}_{\rm gs}$ at 154 MeV, measurements were made at laboratory angles of 25, 45 and 60 degrees. For all other cases θ_π (lab) = 25 degrees.

Table 1. Summary of (p, π) Reactions Measured with the QDDM Magnetic Spectrograph

	Bombarding		Energies		(MeV)
Reaction	152	154	156	160	164
$^{9}\text{Be}(p, \pi^{-})^{10}\text{C}_{gs}$?
$^{10}B(p, \pi^{+})^{11}B_{gs}$	x	*	x	x	*
¹¹ _B _{2.12}				x	
$^{12}C(p, \pi^{+})^{13}C_{gs}$			x	x	
40 Ca(p, π^{+}) 41 Ca _{gs}	x	*	x	x	*
$^{51}V(p, \pi^{-})^{52}Mn_{gs}$		*			
$^{90}Zr(p, \pi^{+})^{91}Zr_{gs}$		*			
208 Pb(p, π^{+}) 209 Pb _{gs}				?	
209 _{Pb} _{1.4}	2		?	х	*

- x 3-5 September 1976 Run (40 hrs)
- * 18-20 December 1976 Run (48 hrs)

Cross sections extracted from our ^{10}B and ^{40}Ca data are about 5 and 1.7 times larger than those obtained at Orsay¹⁾ and Uppsala, $^{2)}$ respectively.

Figure 2.

Preliminary analyses of the ^{10}B and ^{40}Ca (p, π^+) data have been carried out within the framework of the pionic stripping model using a plane-wave code written by J.G. Wills. $^{3)}$ The point of the plane-wave analysis was to determine qualitatively the extent to which data of this type can establish the importance of the one-nucleon (stripping) mechanism near threshold as well as the non-relativistic form of the π -N interaction. A DWBA code for (p, π) reactions is currently being developed at Indiana by Tsangarides and Wills. $^{4)}$

Positive pion production on targets heavier than 40 Ca at bombarding energies below 200 MeV and negative pion production at bombarding energies as low as 154 MeV have not been reported previously. The 208 Pb(p, $^{\pi^+}$) 209 Pb_{1.42}

reaction was observed at IUCF to have a cross section of \sim 30 nb/sr at 25° and 160-MeV bombarding energy. ³⁾ Preliminary cross sections for the $^{90}{\rm Zr}(p,~\pi^+)^{91}{\rm Zr}_{\rm gs}$ and $^{51}{\rm V}(p,~\pi^-)^{52}{\rm Mm}_{\rm gs}$ reactions at 25° and 154-MeV bombarding energy are 24 \pm 10 nb/sr and 1.5 \pm 1 nb/sr, respectively.⁵⁾

- Y. Le Bornec, B. Tatischeff, L. Bimbot,
 I. Brissaud, J.P. Garron, H.D. Holmgren,
 F. Reide and N. Willis, Phys. Lett. 49B,
 434 (1974).
- S. Dahlgren and P. Grafstrom, Physica Scripta,
 Vol. 10 (1974) 104; S. Dahlgren, P. Grafstrom,
 B. Hoistad and A. Asberg, Nuc. Phys. A227,
 245 (1974); S. Dahlgren, Priv. Comm. (1976).
- 3) Positive Pion Production by 148-to 160-MeV Protons on ¹⁰B, ⁴⁰Ca and ²⁰8Pb. R.D. Bent, P.T. Debevec, P.H. Pile and R.E. Pollock, Bull. Am. Phys. Soc. <u>22</u>, 80 (1977).
- 4) M. Tsangarides and J.G. Wills, Priv. Comm. (1976).
- 5) Positive and Negative Pion Production by 154and 164-MeV Protons on ⁹Be, ¹⁰B, ⁴⁰Ca, ⁵¹V, ⁹⁰Zr and ²⁰⁸Pb. P.H. Pile, R.D. Bent, P.T. Debevec and R.E. Pollock, Washington Meeting of the American Physical Society, 25-28 April, 1977.