HIGH-SPIN STATES AND SPIN-COUPLED QUADRUPOLE VIBRATIONAL STATES IN NUCLEI EXCITED VIA (p,n) REACTIONS B. Anderson, * A. Baldwin, * J. Knudson, * R. Madey, * T. Witten, * C. Foster and G. Walker We have obtained neutron spectra at several angles from 0 to 24° from the (p,n) reaction on targets of 12 C, 16 O, 24 Mg, 28 Si, and 40 Ca at 61.9 and 135 MeV incident proton energies. Also we have data over the same angular range for 12C at 119.8 MeV and 12 C and 16 O at 160 MeV. Neutron energy spectra at four angles from the $^{12}C(p,n)^{12}N$ reaction at 135 MeV are presented in Fig. 1. The state at about 5.5 MeV of excitation in 12N remains strongly excited at 240 and is identified as a high-spin state complex of the type predicted by Moffa and Walker. 1 The identification of this state is in excellent agreement with the identification by Donnelly et al. 2 of the analog state at 19.5 MeV of excitation in 12 C by inelastic scattering. Also we identified high-spin state complexes in the $^{16}0(p,n)^{16}F^{3}$ and the $^{28}Si(p,n)^{28}P^{3}$ reactions. At the largest angle available (viz, 240), the calculations of Moffa and Walker predict that these complexes still contain contributions from lower-spin states. Now we plan to extend these measurements out to about 60° with the beam-swinger facility in order to minimize the low-spin state contributions to the complexes. Our preliminary results reveal a broad bump at about 12 MeV of excitation in ¹²N which may be the spin-flip component of the giant dipole resonance. These measurement, limited to forward angles, did not have large enough momentum transfers to most Figure 1 strongly excite spin-coupled quadrupole vibrational states. We will be better able to search for this strength with the larger momentum transfer measurements possible with the beam-swinger facility. ## *Kent State University - P.J. Moffa and G.E. Walker, Nucl. Phys. <u>A222</u>, 140 (1974). - 2) T.W. Donnally, et al., Phys. Rev. Letters $\underline{21}$, 1196, (1968). - 3) this report, p. 112.