F.D. Becchetti*, W.W. Jacobs, J. Jänecke*, and D.J. Overway*

We have begun a study of the ($^6\text{Li,d}$) $\alpha\text{-transfer}$ reaction at high bombarding energy. The reactions ^{12}C ($^6\text{Li,d}$) ^{16}O and ^{208}Pb ($^6\text{Li,d}$) ^{212}Po have been investigated thus far and rather complete data obtained for the former (Figs. 1 and 2). One observes a more selective population of " α -cluster" levels in ^{16}O (e.g. 6.9 MeV 2 +, 10.4 MeV 4 +, Fig.1) than is observed with ($^6\text{Li,d}$) at lower bombarding energies 1,2). Also the angular distributions to α -cluster levels are much more forward-peaked (Fig.2) including a large enhancement at θ =0°. The study of $^{12}\text{C}(^6\text{Li,d})^{16}\text{O}$ is of particular interest in that the α -widths of the J^{π} = 1⁻ levels at E_{χ} = 7.1 MeV and 9.6 MeV (Fig.1) are important in stellar helium fusion 2 , 3). The data at E(Li) = 90 MeV should greatly help to clarify some anomalies observed at lower bombarding energies 2)

including the $\alpha\text{-decay}$ width of the 9.6 MeV 1 $\bar{}$ level.

Limited data have also been obtained for ^{208}Pb ($^6\text{Li,d}$) ^{212}Po . A ground state cross section of about 0.15 µb/sr is observed at θ =11°. There appears to be considerable α -transfer strength (22 µb/sr) to excited levels in ^{212}Po at $E_{_{X}}$ = 2.2 to 3.0 MeV (Fig. 3). These may correspond to certain preferred high-spin levels with "stretched" configurations. Unfortunately contaminant buildup is a problem for heavy targets. Improvements of the targets and spectrometer vacuum system are planned and should permit further work on ^{208}Pb and other heavy nuclei.

*Department of Physics, University of Michigan, Ann Arbor, MI 48109

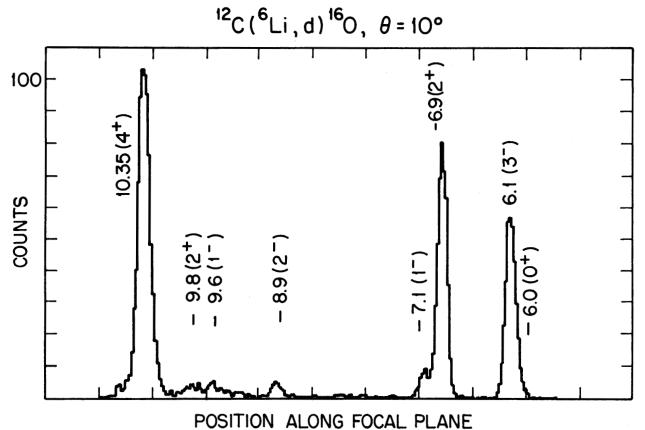


Figure 1. Portions of a deuteron spectrum from $^{12}C(^6L_{\rm C},d)^{16}0$ in the vicinity of the 0+(6.0 MeV), 2+(6.9 MeV) and 4+(10.4 MeV) a-cluster rotational band in $^{16}0$. Note strength to 2+(6.9 MeV) and 1- (7.1 MeV) levels relative to 2- (8.9 MeV) level. The latter is not allowed in a simple direct a-transfer.

- F.D. Becchetti, Proc. 3rd Conf. on Clustering (Winnipeg, 1978) p. 308 and references cited therein.
- F.D. Becchetti, J. Jänecke and C.E. Thorn, Nucl. Phys. A305 (1978) 313.
- P. Dyer and C.A. Barnes, Nucl. Phys. <u>A233</u> (1974) 495.

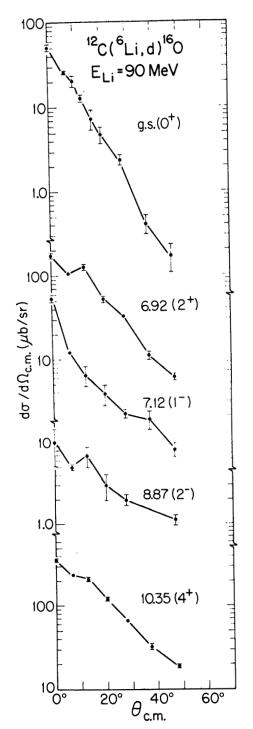


Figure 2. Experimental angular distributions. The curves shown connect data points and have no theoretical significance.

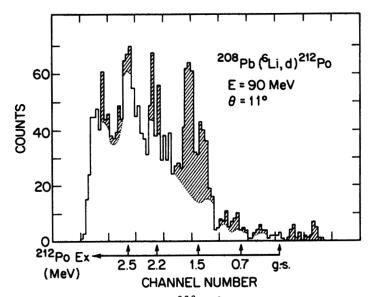


Figure 3. Spectrum from $^{208}\text{Pb}(^6\text{Li,d})^{212}\text{Po}$. The shaded regions represent contributions from contaminants in the target, mainly $^{12}\text{C}(^6\text{Li,d})$ and $^{16}\text{O}(^6\text{Li,d})$.