R.E. Marrs, * R.E. Pollock, and W.W. Jacobs

Angle-integrated (p, π^+) cross sections on several lp-shell targets have been measured over the energy range $0.5 \stackrel{<}{\sim} T_p - T_{threshold} \stackrel{<}{\sim} 10$ MeV by detecting μ^+ decays. For heavier targets, (p, π^+) inclusive cross sections at energies well above threshold are surprisingly different from previous (p, π^0) measurements.

Inclusive (p,π^+) cross sections have been measured near threshold at the Indiana University Cyclotron Facility by stopping the pions in or near the target and counting energetic positrons from $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay. The positrons were detected in plastic Cerenkov counters between 1 μs long beam bursts. Figure 1 shows the measured $^{16}O(p,\pi^+)^{17}O$ excitation function for energies extending downward to the π^+ Coulomb barrier, where only the ^{17}O ground state contributes. Similar measurements were obtained for 9Be , ^{11}B , ^{12}C , ^{13}C and ^{14}N . Previous $^{16}O(p,\pi^+)^{17}O(g.s.)$ angular distribution measurements at $^{16}O(p,\pi^+)^{17}O(g.s.)$ angular distribution

Figure 1. Inclusive $^{16}O(p,\pi^+)^{17}O$ cross section as a function of proton energy in the lab. Solid curve is a Coulomb factor.

obtain a total cross section, 1) which is included in Fig. 1 to extend the ground-state excitation function over a larger energy range.

The energy dependence of the angle-integrated (p,π^+) cross section to a specific final state near threshold should be dominated by the phase space and barrier penetration of the outgoing pion. The solid curve in Fig. 1 is the (arbitrarily normalized) expression $\sigma(p,\pi^+)\alpha(k_\pi/k_p)S(k_\pi)$ where $\hbar k_\pi$ and $\hbar k_p$ are the barycentric momenta; and $S(k_\pi)=2\pi\gamma/(\exp(2\pi\gamma)-1)$, with $\gamma=Z(e^2/\hbar^2c^2)\,\frac{E_\pi}{k_\pi}$, is the usual Coulomb factor which approximately accounts for the pion penetrability. The measured ground-state cross sections for all of the light targets have an energy dependence consistent with this expression near threshold.

In order to study the A dependence of inclusive (p,π^+) cross sections, additional targets were run at two fixed beam energies. The results are grouped in

Figure 2. Inclusive (p,π^+) cross sections at nearly constant (± 1 MeV) energy-above-threshold.

Fig. 2 according to excess energy above threshold. In addition to the errors shown, there is a normalization uncertainty of about 10%. The broken lines in Fig. 2 represent the measured A dependence of inclusive (p,π^0) cross sections on many of the same targets at two different beam energies. The obvious decrease of the (p,π^+) cross sections for heavier targets must be due in part to the π^+ Coulomb barrier. However, it is more difficult to explain why the (p,π^+) cross sections are so much larger than the (p,π^0) cross sections for the lighter targets. For example, charge symmetry requires $\sigma(p,\pi^+)/\sigma(p,\pi^0)=2$ for the $^{40}\text{Ca}(p,\pi)$ reaction to $T^{-\frac{1}{2}}$ final states in mass 41, but the experimental ratio at approximately 16 MeV above threshold is roughly 5 even with no Coulomb corrections.

- P.H. Pile, Ph.D. thesis, Indiana University, 1978 (unpublished).
- A.D. Bacher, P.T. Debevec, G.T. Emery, M.A. Pickar, K. Gotow, D.A. Jenkins, and P.L. Roberson, Indiana University Cyclotron Facility Technical and Scientific Report, November 1975 - January 1977 (unpublished), p. 31.

^{*}Present address: TRIUMF, University of British Columbia, Vancouver, B.C., V6T 1W5, Canada