#

neutron channels. As noted by Gray, Tickle and Bent 1 the two proton pick-up in the Zr region using the (6 Li, 8 B) reaction is useful in studying the proton configurations of the ground state and first excited 0 states. They assume a simple direct, singlestep cluster transfer and have calculated the cross sections using a finite range DWBA code. They find good agreement between calculation and experiment for two-proton transfer to the specific states. Our data represent inclusive total cross sections for two-proton transfer to all bound and neutron unstable states of 91 Y. Although the α -transfer reaction is possible it is not expected to contribute greatly to the Y isotope production.

The most interesting feature of the data in Fig. 1 is the steeply rising excitation function of ⁹²Y corresponding to the (⁷Li, ⁸B) reaction or two-proton

transfer from the target in conjunction with one neutron pick-up to the target. A second possible mechanism could be the double charge exchange (DCE) reaction (pp \rightarrow nn) with subsequent neutron emissions. Further analysis of the data is required before we can estimate the yield of 93 Y, the DCE product.

Further work is planned at lower energies, in particular at about 60 and 75 MeV, in order to obtain a consistent set of data between the BNL and IUCF results. Later, when higher energy 7 Li beams become available ($\rm E_{Li}$ > 100 MeV), we hope to observe a marked increase in the cross sections of the very neutron rich Y isotopes.

 R.S. Tickle, W.S. Gray and R.D. Bent, "Studies in the Zr Region using the (⁶Li, ⁸B) Two proton Pick-up Reaction." IUCF Report 121 (1979). Also see this annual report.

SEARCH FOR 3p-3h STATES IN THE A=12 AND 16 SYSTEMS WITH THE ($^6\mbox{Li,t}$) AND ($^6\mbox{Li,}^3\mbox{He})$ REACTIONS

H. Nann, A.D. Bacher, G.T. Emery, C.C. Foster, D.L. Friesel,
W.P. Jones and C. Olmer
Indiana University Cyclotron Facility, Bloomington, Indiana 47405

There has been a great deal of interest, both experimental and theoretical, in the location of three particle-three hole (3p-3h) states in $^{12}\text{C-}^{12}\text{B}$ and $^{16}\text{O-}^{16}\text{N}$. We started to search for these states with the (^{6}Li ,t) and (^{6}Li , ^{3}He) reactions on ^{9}Be and ^{13}C at 99 MeV bombarding energy. Due to the momentum mismatch between the entrance and exit channels and due to the geometrical coefficients in the structure amplitude, the transfer of a $(d_{5/2})_{J=13/2}^{3}$ cluster is favored. Hence, final states with a configuration of [(target)_J 18 ($^{4}\text{S/2}$) $^{3}\text{J=}13/2$] are expected to be strongly excited.

Figure 1 shows spectra of the $^{13}C(^{6}Li,t)^{16}O$ and

 13 C(6 Li, 3 He) 16 N reactions. States in 16 O at 6.13, 11.25, 14.40, 14.80, 20.80 and 24.80 MeV and states in 16 N at 7.65, 9.81, 11.21, 11.81 and 14.00 MeV are the most strongly populated. Analog pairs of states in 16 N- 16 O are clearly seen.

A simple weak-coupling calculation using the method of Bansal-French-Zamick^{1,2} predicts the centroid of the 3p-3h states with T=0 in 16 O of the form 13 C(1/2⁻,g.s.) \times 19 F(13/2⁺,4.6) at around 15 MeV and those with T=1 at around 20.5 MeV. This is approximately what is observed. The state at 20.80 MeV has a counterpart in 16 N and therefore should have very likely T=1, whereas the states at 14.40 and 14.80 MeV have

no counterparts, suggesting a T=0 assignment.

- 1) R. Bansal and J.B. French, Phys. Lett. <u>11</u>, 145 (1964).
- 2) L. Zamick, Phys. Lett. 19, 580 (1965).

<u>Figure 1</u>. Spectra for (6Li , 3He) and (6Li ,t) reactions on ^{13}C at 15°. The energies in MeV of various strongly excited states are noted.