3) F. Petrovich and W.G. Love, Los Alamos Workshop, 1980 , and references therein.
4) Papers by F.A. Brieva and H.V. v. Geramb in Microscopic Optical Potentials (ed. H.V. v. Geramb), Springer-Verlag Lecture Notes in Notes in Physics, Vol. 89, 1979. H.V. v. Geramb, Table of Effective Density and Energy Dependent Interactions for Nucleons, Part A, I. Inst. Exp. Physik, Hamburg.
5) M.I.T.-Bates (unpublished).
6) H. Miska, B. Norum, M.V. Hynes, W. Bertozzi, S. Kowalski, F.N. Rad, C.P. Sargent, T. Sasanuma, and B.L. Berman, Phys Lett. 83B, 165 (1979).
7) B. Norum, M.I.T. thesis (unpublished) 1979; B. Norum et al., to be published.
8) IUCF, Expt. No. 60.

ANALYZING POWER MEASUREMENTS FOR THE EXCITATION OF STATES IN ${ }^{28}$ Si and ${ }^{24} \mathrm{Mg}$ BY INELASTIC SCATTERING OF POLARIZED PROTONS

T.E. Drake, R. Sobie and S. Yen

University of Toronto, Toronto, Ontario, Canada
A.D. Bacher, G.T. Emery, W.P. Jones, D.W. Miller, H. Nann, C. Olmer, and P. Schwandt Indiana University Cyclotron Facility, Bloomington, Indiana 47405
W.G. Love
University of Georgia, Athens, Georgia, 30602

F. Petrovich

Florida State University, Tallahassee, Florida 32303

Analyzing powers $A_{y}(\theta)$ for the excitation of states in ${ }^{28} \mathrm{Si}$ and ${ }^{24} \mathrm{Mg}$ with excitation energies up to 16 MeV have been measured with a $135-\mathrm{MeV}$ polarized proton beam. The scattered protons were detected with the QDDM magnetic spectrograph at angles between 25° and 65° with an overall resolution of about 70 keV . Results for the $6^{-}, \mathrm{T}=1(14.35 \mathrm{MeV}), 6^{-}, \mathrm{T}=0$ (11.58 $\mathrm{MeV})$, and $5^{-}, \mathrm{T}=0(9.70 \mathrm{MeV})$ states in ${ }^{28} \mathrm{Si}^{1}$, whose predominant configurations are all $\left(d_{5 / 2}\right)^{-1}\left(f_{7 / 2}\right)$, are shown in Fig. 1, where they are compared with the results of DWIA calculations using the t-matrix effective interaction derived by Love from the free nucleon-nucleon scattering data. ${ }^{2}$ The cross section for the 6^{-}, $T=1$, state is due mainly to the tensor direct term in the interaction, while that for the 6^{-}, $\mathrm{T}=0$, state $i s$ due mainly to tensor and spin-orbit exchange terms, and that for the $5^{-}, \mathrm{T}=0$, state is due mainly to spin-orbit and central interaction terms. The $A_{y}(\theta)$ results for the 6^{-}states are sensitive to interference both between the central and spin-orbit parts and between the spin-orbit and tensor parts of

Figure 1. Analyzing powers, $A_{y}(\theta)$, for the $135-\mathrm{MeV}$ (\vec{p}, p^{\prime}) excitation of (a) the $6^{-}, T=0$, state at 11.58 MeV , (b) the $6^{-}, T=1$, state at 14.35 MeV , and (c) the $5^{-}, T=0$, state at 9.70 MeV . The experimental data are compared with results of DWIA calculations using the Love t-matrix.
the t-matrix. For the 5^{-}state, on the other hand, the calculated result for A_{y} is predominantly sensitive to central-spin-orbit interference, and the change of sign of A_{y} near 40° is rather well correlated with the change of sign in the central part of the t-matrix at the corresponding momentum transfer, as given by the Love interaction.

The differential cross sections and analyzing powers for the lower-lying states of ${ }^{28} \mathrm{Si}$ and ${ }^{24} \mathrm{Mg}$ have also been measured. In ${ }^{24} \mathrm{Mg}$, for example, the excitation of states in the $K=0$ and $K=2$ bands can be compared to calculations using the Chalk River pro-jected-Hartree-Fock wave functions. The remarkable agreement between theory and experiment for inelastic
electron scattering ${ }^{3}$ allows a detailed study of the proton scattering mechanism. The totally anomalous shape of the electromagnetic form factor for the $4_{1}{ }^{+}(\mathrm{K}=0)$ state in ${ }^{24} \mathrm{Mg}$ is well reproduced in the differential cross section for (p, p^{\prime}).

1) A.D. Bacher, G.T. Emery, W.P. Jones, P. Schwandt, S. Yen, R. Sobie, T.E. Drake, W.G. Love, and F. Petrovich, Eighth Intern. Conf. on High Energy Physics and Nuclear Structure, Absts. of Contrib. Papers (1979), p. 76.
2) W.G. Love, in The (p, n) Reaction and the NucleonNucleon Force, ed. by C. Goodman, S. Austin, S. Bloom, J. Rapaport, and G.R. Satchler (Plenum, New York, 1980), p. 23.
3) H. Zarek, S. Yen, B.O. Pich, T.E. Drake, C.F. Williamson, S. Kowalski, C.P. Sargent, W. Chung, B.H. Wildenthal, M. Harvey, and H.C. Lee, Phys. Lett. 80B, 26 (1978).

> SPIN-ORBIT EFFECTS IN THE EXCITATION OF PROTON AND NEUTRON STATES IN THE (p,p') REACTION AT $160 \mathrm{MeV}, 120 \mathrm{MeV}$, AND 95 MeV $\begin{gathered}\text { Alan Scott, F. Todd Baker, M.A. Grimm, J.H. Johnson, V. Penumetcha, } \\ \text { R.C. Styles, J.A. Mowrey, and W.G. Love } \\ \text { University of Georgia, Athens, Georgia } 30602\end{gathered}$ W.P. Jones and J.D. Wiggins

Large differences in the shapes of measured differential cross sections were found earlier ${ }^{1}$ for the excitations of the 4_{1}^{+}proton state in ${ }^{90} \mathrm{Zr}$ and the 4_{1}^{+} neutron state in ${ }^{92} \mathrm{Zr}$. To obtain a good fit to the data for this proton state in ${ }^{90} \mathrm{Zr}$ with purely collective calculations, an enhanced spin-orbit contribution $\left(B_{4}^{S O} / B_{4}=1.25\right)$ was required, but no satisfactory fits were found for this neutron state in ${ }^{92} \mathbf{Z r}$. Collective fits to the data for the $2_{1}^{+}, 4_{1}^{+}, 6_{1}^{+}, 8_{1}^{+}$proton states in ${ }^{90} \mathrm{Zr}$ showed ${ }^{2}$ the increasing dominance of the spinorbit contribution as the multipolarity increased. Recent calculations show the cross sections for the 2_{1}^{+}, $4_{1}^{+}, 6_{1}^{+}$, and 8_{1}^{+}states in ${ }^{90} \mathrm{Zr}$ to be underpredicted in the DWIA by factors of $30,10,3$, and 2 respectively when only the $\left(g_{g / 2}\right)^{2}$ valence terms are included for
the central, spin-orbit and tensor amplitudes, ${ }^{3}$ suggesting the need for core polarization amplitudes similar in magnitude to those required at lower energies. ${ }^{4,5}$ These DWIA calculations showed the relative importance of the spin-orbit part of the t-matrix increased in this sequence as the multipolarity increased. ${ }^{3}$ The dominance of the spin-orbit contributions for the 8_{1}^{+} state in ${ }^{90} \mathrm{Zr}$ is shown in the DWIA and collective calculations of Figures $1(a)$ and $1(b)$ respectively.

Large spin-orbit effects at this energy ($E_{p}=160 \mathrm{MeV}$) clearly suggested the need for (p, p^{\prime}) asymmetry measurements. Analyzing power data have been obtained at 14 angles from 16° to 44° for the $2_{1}^{+}, 4_{1}^{+}$, $5_{1}^{-}, 3_{1}^{-}$, and 2_{2}^{+}states in ${ }^{90} \mathrm{Zr}$ and for the $2_{1}^{+}, 4_{1}^{+}, 3_{1}^{-}$, $2_{2}^{+}, 2_{3}^{+}$, and 5_{1}^{-}states in ${ }^{92} \mathrm{Zr}$, and at 8 angles from 26°

