nucleus.

In conclusion, we observed strong excitation of a 0 flw stretched state in the ⁴⁸Ca(p,n)⁴⁸Sc reaction at 160 MeV, namely, the 7⁺ state at 1.096 MeV, with a $(\pi f_{7/2}, \nu f_{7/2}^{-1})$ major configuration; however, we found no evidence for 1 flw stretched states based on $(\pi g_{9/2}, \nu f_{7/2}^{-1})^{8^-}$ or $(\pi f_{7/2}, \nu d_{5/2}^{-1})^{6^-}$ configurations. The excitation of stretched states of the 0 flw type should prove to be a useful tool for studying the isovector-tensor term of the effective nucleon-nucleon interaction.

- W.G. Love in <u>The (p,n) Reaction and the Nucleon-Nucleon Force</u>, ed. by C.D. Goodman et al. (Plenum, <u>New York, 1980</u>), p. 23.
- R.A. Lindgren, W.J. Gerace, A.D. Bacher, W.G. Love, and F. Petrovich, Phys. Rev. Lett. 42, 1524 (1979).

- 3) R.S. Henderson, B.M. Spicer, I.D. Svalbe, V.C. Officer, G.G. Shute, D.W. Devins, D.L. Friesel, W.P. Jones, and A.C. Attard, Aust. J. Phys. <u>32</u>, 411 (1979).
- 4) G.S. Adams, A.D. Bacher, G.T. Emery, W.P. Jones, R.T. Kouzes, D.W. Miller, A. Picklesimer, and G.E. Walker, Phys. Rev. Lett. 38, 1387 (1977).
- 5) A.D. Bacher, G.T. Emery, W.P. Jones, D.W. Miller, G.S. Adams, F. Petrovich, and W.G. Love, Bull. Am. Phys. Soc. <u>32</u>, 945 (1978); and to be published.
- B.D. Anderson, M. Ahmad, A.R. Baldwin, A. Fazely, R. Madey, J.W. Watson, and C. C. Foster, Bull. Am. Phys. Soc. <u>25</u>, 729 (1980).
- 7) P.J. Moffa and G.E. Walker, Nucl. Phys. A222, 140 (1974).
- 8) T.W. Donnelly and G.E. Walker, Ann. Phys. (N.Y.) 60, 217 (1970).
- 9) C. Gaarde, J.S. Larsen, M.N. Harakeh, S.Y. van der Werf, M. Igarashi, and A. Muller-Arnke, Nucl. Phys. <u>A334</u>, 248 (1980).
- 10) J. Raynal and R. Schaeffer, Computer code DWBA70.
- P. Schwandt, A. Nadasen, P.P. Singh, M.D. Kaitchuck, W.W. Jacobs, J. Meek, A.D. Bacher, and P.T. Debevec, IUCF Technical and Scientific Report for Feb. 1, 1977 to Jan. 31, 1978, p. 79.

MEASUREMENT OF THE 1/E DEPENDENCE OF THE ⁷Li(p,n)⁷Be TOTAL REACTION CROSS SECTION

<u>T.E. Ward</u>, C.C. Foster, and G.E. Walker Indiana University Cyclotron Facility, Bloomington, Indiana 47405

> J. Rapaport Ohio University, Athens, Ohio 43701

The excitation function, $\sigma(E)$, of the ⁷Li(p,n)⁷Be reaction was measured in the intermediate energy range of 60-199 MeV using activation techniques and γ -ray spectroscopy. This method has been used to measure the total cross section at energies of 25-44 MeV by Shery et al.¹) and at 120 MeV by Goulding et al.²) to calibrate large volume neutron detectors. Details of the experimental procedure can be found in the IUCF 1979 annual report.³) A summary of the results is given in Table 1. The total errors estimated for these measurements range from 8 to 14%.

The measured^{1,4)} excitation function, $\sigma(E)$, of

the ⁷Li(p,n)⁷Be total reaction cross ssection is observed to vary inversely with the incident proton energy, E, from 25 to 200 MeV. A theoretical analysis, assuming the PWIA with an energy-independent, very-short-range interaction, using harmonic oscillator wave functions and neglecting exchange effects, yields a 1/E dependence for the summed inelastic scattering differential cross section to a particular state. This result implies that $\sigma(E) = 725.3$ (1/E) - 0.295 with σ in millibarns, E in MeV and a determinant coefficient of 0.998.

Further, it implies that the interaction strength

MEASURED CROSS SECTION (10 ⁻²⁷ cm ²)	PROTON ENERGY E _p (MeV)	MEASURED CROSS SECTION (10 ⁻²⁷ cm ²)
12.00±1.03	119.4	5.29±0.45
11.28±1.58	138.6	4.99±0.43
10.78±1.02	143.9	4.97±0.43
8.09±0.71	156.7	4.56±0.42
7.46±1.00	174.5	3.50±0.36
7.29±0.77	199.1	3.46±0.35
	MEASURED CROSS SECTION (10 ⁻²⁷ cm ²) 12.00±1.03 11.28±1.58 10.78±1.02 8.09±0.71 7.46±1.00 7.29±0.77	$\begin{array}{c} \mbox{MEASURED} \\ \mbox{CROSS SECTION} \\ \mbox{(10^{-27} cm^2)} \\ \mbox{Ep}(MeV) \\ \hline \mbox{I12.00^{\pm}1.03} \\ \mbox{I19.4} \\ \mbox{I1.28^{\pm}1.58} \\ \mbox{I38.6} \\ \mbox{I0.78^{\pm}1.02} \\ \mbox{I43.9} \\ \mbox{8.09^{\pm}0.71} \\ \mbox{I56.7} \\ \mbox{7.46^{\pm}1.00} \\ \mbox{I74.5} \\ \mbox{7.29^{\pm}0.77} \\ \mbox{I99.1} \\ \hline \end{array}$

 $\frac{Table \ 1.}{7L1(p,n)^7} Be \ (g.s. + 0.429 \ MeV) \ reaction.$

function $(V_{\tau}^2 + 2.36 V_{\sigma\tau}^2)$ is independent of incident proton energy. Using recently reported determinations⁵) of V_{τ} and $V_{\sigma\tau}$ at 24.8, 35 and 45 MeV, $(V_{\tau}^2 + 2.36 V_{\sigma\tau}^2) = 537 \text{ MeV}^2$ is obtained. Figure 1 is a plot of $|V_{\tau}|$ and $|V_{\sigma\tau}|$ versus E. The solid curves were calculated using this relation and experimental values⁵,6) of $(V_{\sigma\tau}/V_{\tau})^2$ at 24.8, 35, 45, 80 and 120 MeV. The dashed curves are based on a reasonable extrapolation of the observed energy dependence⁶) of $(V_{\sigma\tau}/V_{\tau})^2$.

A manuscript of this work is presently in preparation and will be submitted for publication.

- S.D. Schery et al., Nucl. Instr. Methods <u>147</u>, 399 (1977).
- 2) C.A. Goulding et.al., Nucl. Phys. A331, 29 (1979).
- 3) IUCF Scient. and Techn. Report 1979, p. 28.
- C.C. Foster et al., Bull. Am. Phys. Soc. <u>24</u>, 828 (1979).
- 5) S.A. Austin et al., preprint (1980).
- J. Rapaport et al., Bull. Am. Phys. Soc. <u>24</u>, 830 (1979).