

*Supported by NSF Grants PHY 78-07754 and PHY 78-22774

 G. Anderson, M. Areskoug, H.A. Gustafsson, G. Hylten, B. Schroder, and E. Hagebo, Z. Phys. <u>A293</u>, 241 (1979).

A STUDY OF THE DECAYS OF 194,195,196Pb

K. Hicks^{*}, T. Ward and J. Wiggins^{**} Indiana University Cyclotron Facility, Bloomington, Indiana 47405

C. Fields and F. de Boer*** Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309

Decay properties of 1^{94} , 1^{95} , 1^{96} Pb have been studied using singles and coincident γ -ray spectroscopy. Sources were produced by the 95 MeV 1^{97} Au(⁶Li,xn) reactions. No direct evidence for the decay of a low-spin isomer of 1^{95} Pb was observed. Several new levels were observed in 1^{95} , 1^{96} Tl, and are interpreted in terms of a rotational model. The low-lying states of the odd Tl nuclei are especially interesting in view of their proposed¹,² oblate deformation. States of fairly high spin in these nuclei can be studied by observing the γ -rays following the β /EC decay of the isomeric 13/2⁺ levels³ of the odd Pb nuclei.

The decay of the $13/2^+$ isomer in 195 Pb has been investigated by several groups.¹,²,⁴,⁵ High-spin states of 195 Tl have also been studied using in-beam γ -ray spectroscopy.¹,² These studies are summarized in a recent compilation,⁶,⁷ which includes a preliminary report of the decay of 195 Bpb. Levels in 194 ,¹⁹⁶Tl populated by 194 ,¹⁹⁶Pb decay have been known for some time.

The present study is an extension of our previous

work⁸ on ¹⁹⁷Pb decay, with one of the major goals being the clarification of the relative importance of the ¹⁹⁵mpb \rightarrow ¹⁹⁵gpb decay branch. The results of the present experiment are shown in Figs. 1 and 2. Fig. 1 shows the decay of 15 min ¹⁹⁵mpb (13/2⁺) where the most interesting features of the decay are the population of the 9/2⁻[505]_p band, the three

quasiparticle bands and the 13/2⁺[606]_p band. In Fig. 2 the state at 755 keV in the decay of ¹⁹⁶Pb was established and the low-lying structure identified and characterized in terms of the Nilsson configurations. No new transitions were observed in the decay of ¹⁹⁴Pb; however, a more precise half-life measurement was performed.

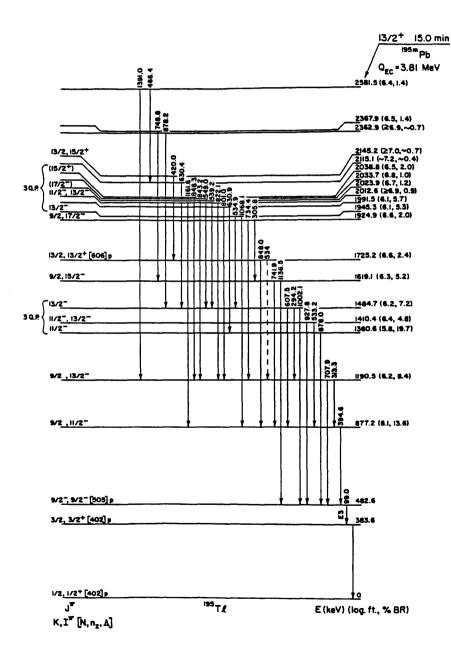
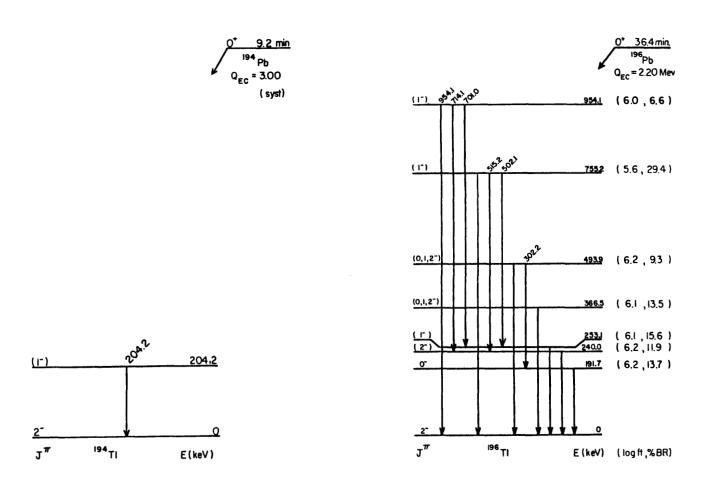



Figure 1. Decay scheme of 195mPb (13/2⁺) based primarily on previous in-beam and decay studies and substantiated in this study.

Figures 2(a) and 2(b). Decay schemes of ¹⁹⁴Pb(9.2m) and ¹⁹⁶Pb(36.4m).

*Present address: Nuclear Physics Laboratory University of Colorado, Box 446, Boulder, CO 80309

**Present address: Laboratory for Nuclear Science Massachusetts Institute of Technology Cambridge, MA 02139

***Present address: Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309

- J.O. Newton, F.S. Stephens, and R.M. Diamond, Nucl. Phys. <u>A236</u>, 225 (1974).
- R.M. Lieder, A. Neskakis, M. Müller-Veggian, Y. Gono, C. Mayer-Böricke, S. Beshai, K. Fransson, C.G. Linden and T. Lindblad, Nucl. Phys. <u>A299</u>, 225 (1978).

- 3) M.R. Schmorak, Nucl. Data Sheets 31, 283 (1980).
- P.K. Hopke, H. Hubel, R.A. Naumann, E.H. Spejewski, and A.T. Strigachev, Nucl. Phys. <u>A184</u>, 497 (1974).
- J.L. Weil and B.D. Kern, Bull. Am. Phys. Soc. <u>22</u>, 996 (1977).
- 6) B. Harmatz, Nucl. Data Sheets 23, 607 (1978).
- 7) C.M. Lederer and V.S. Shirley, <u>Table of Isotopes</u> (7th ed., 1978).
- K.H. Hicks and T.E. Ward, Nucl. Phys. <u>A349</u>, 29 (1980).