THE ${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{n})^{20} \mathrm{Na}$ REACTION AT 120 MeV
R.P. DeVito, C.C. Foster, and C.D. Goodman Indiana University Cyclotron Faciltiy, Bloomington, Indiana 47405
T.N. Taddeucci

Ohio University, Athens, Ohio 43701
Sam M. Austin and Aaron Galonsky
Michigan State University, East Lansing, Michigan 48824
U.E.P. Berg

Justis-Liebig University, Giessen, West Germany

Differential cross sections have been measured for the reaction ${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{n})^{20} \mathrm{Na}$ at 120 MeV covering the angular range $0^{\circ}<\theta_{\mathrm{cm}}<38^{\circ}$. The target was a gas ce11, developed for the IUCF beam swinger, containing isotopically enriched ${ }^{20} \mathrm{Ne}$ gas. Neutron time-of-flight (TOF) spectra were measured simultaneously along 0° and 24° flight paths of 102 m and 80 m respectively. At each angle ylelds were also measured for an empty cell. Peak areas were extracted using the program FITIT. Background peaks are determined from the empty cell runs while the slope of the background is determined from the ${ }^{20} \mathrm{Ne}$ spectra (ce11 background + wraparound). Cross sections are normalized using the ${ }^{12} C(p, n)^{12} N$ (g.s.) transition (CO gas) as reported by Rapaport et al. ${ }^{1}$ In addition a check was made using the solid target ${ }^{7} \mathrm{Li}$ and ${ }^{12} \mathrm{C}$ data. These targets are also used as a velocity calibration.

Figure 1 shows the angular distribution in the center-of-mass frame for the first 1^{+}state in ${ }^{20} \mathrm{Na}$. This state is the analog of the strong M1 state seen in ${ }^{20} \mathrm{Ne}\left(e, e^{\prime}\right)$. The curve is the result of a DWBA calculation using Chung-Wildenthal ${ }^{2}$ wavefunctions and the full (complex) Love-Franey ${ }^{3} 140-\mathrm{MeV}$ force. The calculation reproduces the data very well with no adjustments.

The isovector M1 operator mediating (e,e') reactions has both orbital current and spin

Figure 1. Angular distribution for the ${ }^{20} \mathrm{Ne}(p, n){ }^{20} \mathrm{Na}$ $\left(0.95 \mathrm{MeV}, 1^{+}\right)$reaction at 120 MeV . The curve is a DWBA calculation using the Chung-Wildenthal transition densities and the Love-Franey 140 MeV t-matrix interaction.
contributions while in the analog (p, n) reaction near 0° only the spin-flip interaction will contribute.

Since the tensor interaction, the spin-orbit
interaction and the $\mathrm{L}=2$ transition densities are small near $q=0$, we have approximately ${ }^{4}$

$$
\begin{aligned}
& B(M 1, q) \approx g\left(\frac{e h}{2 M c}\right)^{2}\left|\frac{1}{2} g_{s}^{l} \rho_{10}^{s l}(q)+g_{\ell}^{l} \rho_{10}^{\ell 1}(q)\right|^{2} \\
& \frac{d \sigma}{d \Omega} \approx 8 \pi\left(\frac{\mu}{2 \pi h^{2}}\right)^{2} \frac{k_{f}}{k_{i}} 3\left|v_{l}^{c}(q) \rho_{10}^{s 1}(q)\right|^{2}
\end{aligned}
$$

where $\rho_{10}^{s 1}(q)$ and $\rho_{10}^{l 1}(q)$ are the momentum representations of the spin and orbital current transition densities, $v_{l}^{c}(q)$ is the Bessel transform of the effective interaction and g_{s}^{l} and g_{l}^{l} are the spin and orbital g-factors. Comparison of $B(M 1)$ values and (p, n) cross sections will determine the current and spin contributions to the M1 isovector excitation.

In the case of ${ }^{20} \mathrm{Ne}\left(e, e^{\prime}\right)$ at 180° only one strong M1 transition ($\mathrm{J} \pi=1^{+}, \mathrm{T}=1$) has been observed below 20 MeV excitation. Our measurement of σ_{pn} for the $\mathrm{T}_{\mathrm{z}}=+1$ analog leads to a determination of the spin transfer matrix element consistent with the Chung-Wildenthal ${ }^{2}$ wavefunctions and consistent with that determined for the $\mathrm{T}_{\mathrm{z}}=-1$ analog from the ${ }^{20} \mathrm{Ne}\left(\pi^{-}, \gamma\right)^{20} \mathrm{~F}$ work of Martoff et al. 5

In addition to the ground state $\left(\mathrm{J} \pi=2^{+}\right)$and the first Ml state, at least three more peaks are observed in the spectra. The transition strength and angular distributions for states at $E_{x}=1.29 \mathrm{MeV}$ and $\mathrm{E}_{\mathrm{x}}=1.79 \mathrm{MeV}$ (see Fig. 2) indicate that these states are spin-flip $\Delta \mathrm{L}=1$ transitions. DWBA calculations can rule out a 0^{-}assignment but can not distinguish between 2^{-}and 1^{-} in the angular region measured. Based on the assignment given to the apparent $\mathrm{T}_{\mathrm{Z}}=-1$ analogs, 5 a $J \pi=2^{-}$ assignment is assumed. A broad peak with its centroid at 5.58 MeV excitation appears to be a combination of $\Delta \mathrm{L}=0$ and $\Delta \mathrm{L}=1$ strength. The apparent analog in ${ }^{20} \mathrm{~F}$ was given a tentative 2^{-}assignment. 5 The Chung-Wildenthal calculations predict additional MI transition strength in this energy region. Estimates

Figure 2. Angular distribution for the ${ }^{20} \mathrm{Ne}(p, n){ }^{20} \mathrm{Na}$ (1.79 MeV) reaction at 120 MeV . The curves are DWBA calculations assuming $J \pi=2^{-}$(solid line) and $J \pi=1^{-}$ (dashed line).
based on the observed 2^{-}and 1^{+}angular distributions give values for the 1^{+}cross sections consistent with the expected strength.

The simultaneous description of the $B(M 1)$ values and the (p, n) cross sections for ${ }^{20} \mathrm{Ne}$ provide evidence of 1^{+}states with constructive interference and states with destructive interference of spin and orbital-recoupling transition densities. Further work is in progress.

1) J. Rapaport, et al., Phys. Rev. C 24, 335 (1981).
2) B.H. Wildenthal and W. Chung, in The (p, n) Reaction and Nucleon-Nucleon Force, eds. C.D. Goodman, et al. (Plenum, New York 1980); W. Chung and B.H. Wildenthal (unpublished).
3) W.G. Love and M.A. Franey, Phys. Rev. C 24. 1073 (1981).
4) F. Petrovich, W.G. Love, and R.J. McCarthy, Phys. Rev. C 21, 1718 (1980).
5) C.J. Martoff, et al., Phys. Rev. Lett. 46, 891 (1981).

STUDY OF HIGHER ISOSPIN COMPONENTS OF GAMOW-TELLER STRENGTH IN Ni (p, n) REACTIONS

N. Anantaraman, S.M. Austin, G.M. Crawley, A. Galonsky and H. Toki Michigan State University, East Lansing, Michigan 48824
B.D. Anderson, A.R. Baldwin, C. Lebo, R. Madey and J.W. Watson
Kent State University, Kent, Ohio 44242
C.C. Foster
Indiana University Cyclotron Facility, Bloomington, Indiana 47405
A.G.M. van Hees
Queen's University, Kingston, Canada K7L 3N6

A recent high-energy inelastic proton scattering study on the even Ni isotopes reported the observation of peaks that are believed to be the T_{0} and $T_{0}+1$ components of the M1 resonance. 1 Here T_{0} is the isospin of the target ground state. Motivated by this, we undertook a study of the (p, n) reaction on the even Ni isotopes to excite the analogues of these states, as well as the dominant $T_{0}-1$ component. The T_{0} and $T_{0}+1$ components are expected to be populated more weakly in general, partly as a result of isospin coupling geometry.

The measurements were performed using a $134-\mathrm{MeV}$ proton beam. The $0^{\circ}(p, n)$ spectra for the four targets are shown in Fig. 1. The energy resolution is about 400 keV . The ${ }^{58} \mathrm{Cu}$ spectrum is similar to those measured by Rapaport et al. ${ }^{2}$ at 120 and 160 MeV . The ground-state isobaric analogue state (IAS) occurs at excitations of $0.2,2.5,4.6$, and 6.8 MeV , respectively, in $58,60,62,64 \mathrm{Cu}$. By adding to the IAS energies the T_{0} and $T_{0}+1$ excitation energies observed in (p, p^{\prime}), the positions of these isospin components in the (p, n) spectra can be predicted. The comparison between the predicted and observed positions is shown

In Table I. Based on this comparison, we tentatively make the isospin assignments indicated in Table I to. some of the (p, n) peaks. The $T_{o}+1$ level is not observed in ${ }^{64} \mathrm{Cu}$, probably because it is too weak.

The remaining broad structures in the spectra, at excitations above 5.5 MeV , are given the isospin

Figure 1. Spectra of neutrons from the (p, n) reaction on $58,60,62,64 \mathrm{NL}$.

