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The experimental charge density difference Elastic scattering measurements of d + 206~b at 

between 206~b and 205~1 measured by electron scattering 79.4 MeV and 3~e+205~1 at EHe=78.4 MeV have also been 

has been interpreted by Cavedon et al. ,l as evidence made to obtain the appropriate optical potentials. 

for 30% quenching of the single-particle 3~112 Optical model analyses have been carried out using the 

strength. It is however expected that the code GOMFIL.~ Different shapes have been used for the 

fragmentation of the 3s112 strength in 2 0 5 ~ 1  plays an optical potential to obtain optimum fits to the elastic 

important role in the interpretation of the electron scattering data. Non-relativistic kinematics has been 

scattering data.2 We have therefore undertaken a study used throughout. The optical-model parameters are 

of the 206Pb(i,3He)205T1 reaction to extract listed in Tables I and 11. Analysis of the 

spectroscopic strengths for the transitions in 206Pb(i,3He)20 5 ~ 1  reaction data has been carried out 

205~l. to obtain the angular distributions of differential 

The 206Pb(:, 3He)205T1 reaction has been studied cross sections and analyzing powers for seventeen 

at Ed = 79.4 MeV using the QDDM magnetic spectrometer. transitions; spin-parity assignments have been made for 

Table I. Optical-Model Parameters for Deuteron Elastic Scattering from 206Pb at 79.4 MeV 1 set Type / v o a0 ws 
(MeV) (fm) (fm) (MeV) 

Table 11. Optical-Model Parameters for 3He Elastic Scattering from 205T1 at 78.4 MeV 

(MeV) 

Set 

(MeV) (MeV) 

27.37 

30.60 * 
I (fm) 

WS (Shallow) 

WS(deep) 

WS(shallow) 

(fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) (MeV.fm3) (mb) 



I all the transitions. Table 111 lists the excitation generate the distorted waves. The bound state wave 
i 
I 
I energies and spin-parity assignments as compared to the functions for the states in 2 0 5 ~ 1  have been generated 
I 

1 previous values .4 using the standard well-depth method and the parameters 

~ DWBA calculations have been carried out using the are listed in Table IV. The root-mean-square (RMS) 

~ exact finite range code FRUCK~ .5 The bound state form radii obtained from this method are 5.377 fm, 5.528 fm, 

~ factor for 3 ~ e  has been obtained from a fit to data on 5.490 fm, and 6.073 fm for the lowest 3~112, 2d312, 

elastic electron scattering. Different combinations 2d512, and 1hll12 orbits, respectively. These values 

of optical potentials both in entrance and exit are in good agreement with the RMS radii obtained from 

channels listed in Tables I and I1 have been used to Hartree-Fock (HF) calculations7 employing the Skyrme 

I Table 111. Energy Levels of 2 0 5 ~ 1  

Nuclear Data Sheets 

(Ref. 4) 

Our Experiment 

206Pb(a, 3He)205T1 



206 Pb (d. 3 ~ e )  2 0 5 ~ ~ ;  Ed = 79.4 MeV interaction SGII from Van Giai and ~ a ~ a w a . ~  The combi- 

Figure 1. Comparison of differential cross- 
section and analyzing-power measurements for the 
transitions to the 0.0-M~V (R= 0) , 0.202-MeV 
(R = 2), 0.618-MeV (A = 2), and 1.486-MeV (A = 5) 
states of 205~1 with exact finite range DWBA 
calculations. 

nation of potentials used here are D2 for deuterons and 

and H2 for 3~e. Non-locality parameters of 0.54 and 

0.25 have been used for deuterons and 3 ~ e  respectively 

As is evident from the figure the DWBA fits to the 

experimental data are quite good. The spectroscopic 

strengths for the 3s112 (R=O) transitions deduced from 

this experiment are listed in Table IV and are compared 

with the values from other related experiments. 

Our results yield a 3s112 proton occupation 

number n(206)=1.34 in reasonable agreement with other 

results. If we use the ratio n(206)/n(208) = 0.84 from 

Ref. 9, we arrive at n(208)=1.6 which indicates 

depletion of the strength by only 20% in 208~b 

and 33% in 206~b. 
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Table. IV. Spectroscopic Strengths for the 3s112 Hole States in 2 0 5 ~ 1  a 

(MeV) 
Our Experi- Electron (e,e1p) (ds3He) 

ment Ed=79.4 MeV Scattering Ed=52 MeV 
(Ref. 10) (Ref. 2). (Ref. 9) 

aBound state parameters are ro=1.2675 fm, a0=0.81 fm, VSo=6:O MeV, 
r,o=l .l fm, and as0=0.65 fm (see Ref. 9) ; Vo is adjusted to match 
the separation energy of the excited state. 
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The radial form factors for single-nucleon and hence the spectroscopic factor (viz., the 

transfer reactions satisfy an inhomogeneous normalization factor of the transfer form-factor), are 

Schrodinger-like equation1 that incorporates both known to depend sensitively on the RMS radii. 

mean-field and many-body aspects of the interaction Attempts are being made to obtain SM potentials by 

responsible for transfer.  ust tern^ and Rae3 have making fits to more extensive data. The radial wave 

proposed an approximation scheme that retains the functions predicted by these potentials will be 

simplicity of a one-body Schrodinger equation while compared with those deduced from magnetic electron 

accounting for the main many-body corrections. The scattering13 and will also be tested by their 

method consists in introducing a shell-model (SM) application to single-nucleon transfer reactions at 

potential for the motion of the transferred nucleon in intermediate energies. 

the field of the core nucleus plus a surface-peaked 
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