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Introduction - Atom-centered Density Matrix Propagation (ADMP)1,S,6is a

relatively new development in the field of ab-initio molecular dynamics. The most

attractive feature about this method is that it is computationally inexpensive

compared to other common molecular dynamics algorithms, such as Bom-

Oppenheimer Molecular Dynamics (BOMD). This is because BOMD has a

computational scaling problem. The size of the system it can analyze is limited, since

it must solve an expensive eigenvalue problem the Schrodinger equation via the

Self-Consistent Field (SCF) approximation (for a review, see reference 9). In BOMD,

this expensive problem must be solved every time the nuclei move in order to

calculate the new electronic energy ofthe system. ADMP, on the other hand, solves

for the electronic energy only once and propagates this energy via the density matrix

along with the nuclei. Thus, the computational time scales linearly with the size of the

problem, making ADMP faster than BOMD.1

Another attractive feature of ADMP is that it uses atom-centered basis functions

to calculate electronic energies. Another method that has a similar scaling, the Carr-

Parrinello method2,uses sines and cosines (plane waves) as basis functions to

describe the electrons. Atom centered basis sets, i.e. Gaussian bell curves, are

intuitively smarter choices for molecular systems, since the electron density increases

closer to and decreases further from the nucleus. Since Gaussians exhibit the same

boundary conditions, a small number are required to accurately represent the electron

density. On the other hand, a large combination of plane waves is needed for a similar

description.

ADMP and BOMD, however, are not able to describe all types of dynamics
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encountered in chemistry. One thing they lack is an ability to handle dynamics that

can only be explained with full quantum mechanics. Proton tunneling, for example, is

a purely quantum effect that can play an important role in the evolution of a system. It

is completely overlooked by ADMP. This is due to the classical nature of ADMP,

which will be explained in the following section. The reasons why BOMD neglects

these effects will also be discussed in section II. However, improvements have

recently been made to allow both molecular dynamics schemes to account for

quantum effects by allowing a quantum particle to be propagated via the full Time-

Dependent Schrodinger Equation (TDSE). This new method is called wavepacket ab-

initio molecular dynamics3,since it propagates the quantum particle as a wavepacket.

This scheme, however, is not completely general. In particular, it will currently only

propagate a particle along one dimension, limiting the scope of the methodology. The

purpose of this C500 project has been to generalize the method to full dimensionality.

The rest of this report is divided into the following parts: section II gives the

necessary theory behind ADMP and wavepacket ab-initio molecular dynamics,

section III explains the theory of the C500 project and discusses the results and

difficulties, and section IV ends the report with conclusions and future directions.

Section II-We will start the theoretical discussion with the TDSE:

in ~ IfI(r,R;t)= H lj/(r,R;t),at (1)

where H is the nuclear-electron Hamiltonian and lj/(r,R;t)is the function that

describes the system at time t. The TDSE can be approximated by breaking it into

three parts:
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ili ~ 1f/1(~M;t) = HI 1f/1(~M;t) ,at
(2)

ili ~ If/z(Rc;t)= Hz If/z(Rc;t),at (3)

ili ~ 1f/3(r;t) = H3 1f/3(r;t) ,
at

(4)

where If/Iis the quantum particle with position ~M, If/zrepresents the nuclei with

position Rc and 1f/3represents the electrons and r denotes their position. This

approximation is only valid if each subsystem acts independently. These equations

are coupled in the sense that each system interacts with the others in an average way

via the Time-Dependent Self-Consistent Field Method (TDSCF)9.This means that HI

is defined as

< If/z 1f/3IH Ilf/z 1f/3>. (5)

Hz and H3are defined in a similar manner.

To propagate the nuclei, we would enforce the classical limit (Ii 0) on (3),

which gives rise to the Hamilton-Jacobi equation4,another form of Newton's F = ma.

This means the nuclei are classical particles and are treated as such. The electronic

portion, 1f/3,is treated by assuming a stationary state approximation of the

wavefunction, i.e. space-time separation.4This allows the electronic energies to be

calculated via the Time-Independent Schrodinger Equation (TISE), Hlf/3 = E1f/3. Using

these two equations, one classical and one quantum, BOMD propagates the system

according to the algorithm discussed in the previous section.

ADMP, however, works differently. It is an extended Lagrangian scheme,

similar to the CP method. Lagrangian dynamics is an alternate formalism of normal
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Newtonian mechanics. The difference is that Lagrangian equations allow for

constraints. The Lagrangian we use is the kinetic energy minus the potential energy

(L = T-Y). It can be shown, see refs. 1 and 5, that in ADMP,

L = Y;Tr[yTMY] + Y;Tr[(g'l. W g'l.)2] - E(R,P) - Tr[A(PP - P)], (6)

where M and Y represent the nuclear, i.e. classical, mass and velocity; g and W are

the fictitious mass tensor5.6and density matrix velocity, which describe the electronic

degrees of freedom; E is the potential energy, which depends on the nuclear positions,

R, and the density matrix, P; and the last term is a Lagrange multiplier which

constrains the density matrix to be idempotent, i.e. p2= P, and so that the trace ofP is

the number of electrons. These two conditions are known as N representabilty, and if

they are met, then there exits an N-particle wavefunction for P. It can be shown via

extensive derivations which will not take place here but can also be found in refs. 1

and 3, that

M d2R - <
I

8E({Rc,P},RQM)
I I

>- - - !fit p !fit
dt2 8Rc

(7)

I d2P \I; <
I

8E({Rc,P},RQM)
I

- [AP+PA-A] l!fIt>.IIY'- g '= - !fit Rc
~ dt2 8P

(8)

The gradient of the potential energies 8E( {Rc,P},RQM) d 8E( {Rc,P},RQM), an are
8Rc 8P'

averaged over !fit, the quantum system. Careful inspection of these two equations will

reveal that equation (7) is F = ma, since the negative gradient of the potential energy

is force. Equation (8) is similar in form, since g is the fictitious electron mass and P is

similar to the electronic position, but the content is quantum mechanical. The last



6 627

tenn of equation (8) is the N representability constraint. Because equations (7) and (8)

compute classical trajectories, ADMP cannot account for quantum effects.

Whether quantum wavepacket dynamics is being perfonned with ADMP or

BOMD, one equation, (2), remains untouched:

. a h2 - 2
In - IfII(~M;t) = [-- N RQM + E({Rc,P},~M)] IfII(~M;t).

at 2MQM
(9)

The energy functional, E({Rc,P},~M), depends on the coordinates of all three

subsystems. It can be represented by any single particle method, including all Density

Functional Theory (DFT) functionals, or other fonnalisms like Hartree-Fock (HF) or

semiempirical methods. More explicitly, it is

E = Tr[hP + 'li G(P)P] + Exc+ VNN, (10)

where h is the one electron matrix and G is the two-electron matrix for HF methods

but the coulomb potential for DFT methods. Excis the DFT exchange correlation

functional ( in HF, Exc=0), and VNNis the nuclear repulsion. 1Equation (9) is used to

propagate one particle, i.e. proton or electron, and the rest of the system is propagated

according to the ADMP or BOMD equations.

The quantum system is propagated according the solution of equation (2):

. a iHlt iHlt
In - exp{--} tp(RQM;O)= HI exp{--} tp(~M;O),at h h (11)

iHlt iHlt .
where exp{ --} tp(~M;O) = tp(RQM;t)and exp{ --} IScalled the quantum

h h

propagator. The propagator is an operator that moves the system in time. It is this

propagator that we use to evolve the quantum subsystem in our new method and it is
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the approximation of this propagator that comprises the majority of the theory behind

the methodology.

The first step towards representing the propagator is to approximate it using a

kinetic reference symmetric split operator approach:3

iHlt iVt iKt iVt 3
exp{--} = exp{--} exp{--} exp{--} + 0 (t)

11 211 11 211 '
(12)

where K is the kinetic energy operator in equation (9), V is the potential energy

operator and the final term arises because the error inherent in this form of the

operator scales as 0 (t\ i.e. as a cubic function ohime. This error arises since K and

V do not commute. The potential energy part of the propagator is trivial to represent

if the potential is local, as its matrix representation is diagonal in the coordinate

representation. The kinetic energy portion of the propagator, known as the free

propagator, is not diagonal in the coordinate representation. Thus, a suitable

approximation must be found.

The free propagator can be calculated by a number of methods, including

using fast Fourier transforms to represent it in the momentum representation, where it

is diagonal, and implementing Feynman path integrals.3However, we represent it

with an analytical banded Distributed Approximating Functional (DAF)7for reasons

that will soon become clear. The free propagator is represented analytically as3:

fR 'QM <RQMIexp{ iK~tQM} IR'QM> Ip(R' QM;t)

= ~exp{ (RQM-R'QM)2 }I( a(O) )2+1
a(O) 2a( MQM)2 n=O a( MQM)

(_!)n ~(27trl/2H2n(RQM - R'QM) Ip(R 'QM;t),
4 n! ha(MQM)

(13)

where
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{a(MQM)}2 = a(O) 2 + iMQMh
MQM .

(14)

This expression comes from the familiar expression of the free propagation of a

Gaussian function,3

iK~tQM X2 a(O) X2exp{ } exp{- }= exp{- }~ ~ ,~, ? , ., ~ ,. , ? (15)

and from the fact that Hermite functions can be generated from Gaussians:

X2 dn X2
H 2n(X) ex p {- -} = (-IY - exp{--} .

2a2 dXn 2a2
(16)

Equation (13) is in a continuous form. In order to implement it in a feasible

algorithm, it must be discretized. Thus, the evolution of the wavepacket, lp(~M;t), is

i J 2 M /2

(R
i . A

) - ~x" { (R QM - R QM) ," (
a(O)

)
2+1

q> QM,HLlt -- L,.exp - 2 J L,.
a(O) J 2a(MQM) n=Oa(MQM)

(-.!i ~(21tr1/2 H2n(RiQM-RJQM )q>(RJQM;t).
4 n! ..{ia(MQM)

(17)

It is this form of the propagator that the DAF approximates. This particular

propagation takes place along a one dimensional grid (a line) with spacing of ~x. M

and a are parameters that, when chosen correctly, will give the DAF an optimum

accuracy.3Now that the form of the DAF propagator is known, one can see why this

choice of approximation provides some advantages. In particular, the elements of the

DAF matrix depend only on ( RiQM - RJ QMi. This means we only need to store the

first row of this matrix, since it contains all of the information we need. Another

advantage is that the scaling of the DAF propagation scheme is 0 {(2W+1)(N- W )

- W2},where N is the number of grid points and W depends on the choice of the
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parameters M and cr.2Because N does not depend on W, the scaling goes as 0 (N),

i.e. linearly, for large grids.

Section III - Since the propagation discussed in section II of this work is one-

dimensional, the multidimensional propagation must be derived. We will only present

a three-dimensional scheme since it is the most useful and, by using it as a model, the

derivation of a multi-dimensional scheme can easily be extrapolated. It is this portion

of the C500 project that has been taken close to completion.

Th d
. .

b
. .

h th fr {
iUtQM

} T 1
.

e envatIon eglns WIt e ee propagator, exp . 0 genera lze
h

the scheme into three dimensions, the direct product form of the propagator is used

{
iUtQM

} {
iKxLltQM

} {
iK y!:!:.tQM

} {
iKzLltQM

}exp = exp - exp - exp -
h h h h'

(18)

where KxJy/zis the momentum operator along the x/y/z-axis. This splitting can be done

in an exact manner since all three operators commute. The continuous form of the

operator is

qJ(Rx,Ry,Rz;t +!:!:.t)=

fdRx'<Rxl exp{- iKx~tQM}IR'x> fdRY'<Ryl exp{- iKy~tQM}IR'y>

fdRz'<Rzl exp{ iKz~tQM} IR 'z> qJ(R'x,R 'y,R 'z;t). (19)

It is easy to see that each dimension of this equation is the continuous form of

equation (17). Thus, equation (19) is approximated by:

qJ(R1x,Rmy,Rnz;t +!:!:.t)= DAFxl,i DAFYmj DAFzn,k qJ(RiX,IVy,Rkz;t), (20)

where each DAF is calculated according to equation (17). Although the derivation of

the multi-dimensional propagation scheme is relatively straight forward, the actual

implementation is not.
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The fIrst hurdle in implementing a higher-dimensional methodology is to

write an algorithm that generates a multi-dimensional grid. This grid is laid out

according to the researcher's specifIcations (i.e. orientation, length, grid spacing, etc).

The challenge posed, and the challenge met, was to make this grid completely general

to size, spacing, and dimensionality. After the grid was laid out, the new propagation

algorithm needed to be written and tested for accuracy.

Table I. The propagation error computed according to 1:(CPDAF-CPExact)2.The appropriate 0-
value was chosen for each value ofM for maximum accuracy.

M=lO
(- 2 pts)
M=60
(-5 pts)

~t=0
0.02608

7.652xlO-ll
.018397

1. 807x 10-9

~t=1O
0.02610

8.219xlO-ll
.018402

1.812xlO-9

Table I displays the results of the propagation of a proton along a 100 x 100 x

100 grid - the wavepacket is propagated over one-million points! Because we have

chosen to represent the wavepacket as a Gaussian, measuring the accuracy of the

propagation is straight-forward, since the analytical answer is well known (equation

(15)). t (~25 attoseconds), along with the other variables in equations (17) and (15) is

in atomic units. The fIrst and third rows show the error of the propagation according

N

to I (cp(i)DAF-cp(i)Exacti,where the summation takes place over all of the grid

points. The second and fourth rows show the error summed over all but the fIrst two

and fIve grid points along each dimension. It can be seen from the data that the bulk

of the errors occur in the fIrst few points for M = 60 and M = 10, which is expected

due to the banded nature of the propagator (i.e. the fIrst few points are expected to be

less accurate). The second column shows that the propagation is stable over 0.25
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femtoseconds. Further tests demonstrating stability over longer time scales (-10

picoseconds) are currently underway.

The final step is to successfully enter the code into a development version of

Gaussian03.8This presents its own set of challenges, since the insertion of a small

algorithm into a large program requires that changes are made in both the new and

old portions of the code. To date, this insertion has been partly successful. The

multidimensional grid algorithm works well. Including the propagation scheme is

currently in progress.

Section IV - Considerable progress has been made towards generalizing

quantum wavepacket dynamics to higher dimensions. The new multi-dimensional

grid algorithm functions both in and out of Gaussian. The propagation scheme has

been shown to be accurate.

Once the full scheme functions properly, tests will be performed to show

accuracy and to ensure that energy is conserved during the propagation. Suitable

applications, such as an electron transfer through a molecular wire, will then be

treated to demonstrate the power of this novel method. Finally, one last adjustment

must be implemented before the method is feasible for large grid sizes.

In order to properly move the quantum particle, the potential energy felt by

the quantum particle must be calculated at every grid point. This calculation quickly

becomes a bottleneck when both grid size and dimension increase. In order to avoid

this potentially large computational expense, a multi-dimensional interpolation

scheme must be implemented that will allow points to be left out during these
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calculations. To date, a one-dimensional scheme has been implemented and is being

tested.
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