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Stone and others (USGS, 2001) mapped structure contours for the tops of each of 20 individual units in intersecting and overlapping 
glacial morphosequences in Berrien County, Michigan (1,350 km  ), as part of the mapping program of the Central Great Lakes 
Geologic Mapping Coalition (CGLGMC). We have developed a methodology to translate this detailed morphostratigraphy first into a 
solid three-dimensional geologic model, and then into a three-dimensional block of data that can be used as input to a finite-difference 
groundwater-flow model. The technique involves a hybrid approach involving geographic information systems (GIS), three-
dimensional information visualization software (3DIVS), and customized data-processing code. The methodology begins by converting 
Stone’s structure contours (they are attributed vector contours) for each individually mapped unit into a raster surface at a defined grid 
resolution (200 m x 200 m). The top of the geologic model is the surface topography (digital elevation model), which is also used to 
derive the drainage network that is an important boundary condition in the groundwater-flow model. The bottom of the geologic model 
is the bedrock topography, which was also mapped and contoured by Stone (USGS, 2001). Stone constructed his structure contour 
model such that the bottom of each map unit is described by the surface contours of the unit that lies immediately below it. Complex 
interrelationships dictate that the tops of a number of individually mapped units are sometimes required to describe the bottom 
surfaces of laterally more extensive units. Once all of the requisite raster grids have been derived, they can be manipulated to provide 
input that is necessary for development of a detailed solid geologic model using 3DIVS. GIS software and custom code are also used 
to assign hydrogeologic attributes to the elements of the final three-dimensional finite-difference geologic model. 

I. Because the water table data 
layer has elevation attributes at 
the same resolution as the 
ground-surface topographic layer, 
the two surfaces can be 
intersected to show surface 
ponding, seeps, and areas of 
ground-water contribution to 
surface water bodies. 
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Preparation of Boundary Condition Datasets

Preparation of Geologic Surface Data Sets
The surficial geologic mapping completed by the Central Great Lakes Geologic Mapping Coalition is the basis for the geologic model used in 
this groundwater modeling project. Several steps are required in the conversion of the two-dimensional geologic mapping to a three-
dimensional geologic model.

I. Morphostratigraphic Unit Surface Contours. Byron Stone (USGS) deconstructed 
the surficial geologic mapping into separate morphostratigraphic units. He then 
identified the extent of each unit, the shape and configuration of the unit, and its 
elevation. Each unit was provided to the CGDA groundwater modeling team as a 
georeferenced vector GIS data layer (shapefile), with attributed contour lines that 
represent the elevation of the top of the morphostratigraphic unit. The example 
shown below is for a deltaic unit in the southeastern corner of the county. 

 

II. Creation of Raster Surfaces for each Morphostratigraphic Unit. 
Using utilities in GIS software (ESRI ArcGIS), the unit surface contours 
are converted to raster surfaces at the model resolution (200m x 200m).

III. Raster unit surfaces 
stacked in three-
dimensions from 
bedrock surface to the 
ground surface. This 
view resembles the 
surficial geologic map 
for Berrien County by 
the CGLGMC.

IV. Conceptual depiction of "virtual well field." This is the method by which the 
morphostratigraphic units are converted from surfaces to three-dimensional volumes. This 
figure shows the regular X-Y grid imposed on the domain, and the variable Z-direction grid 
spacing. 

V. Custom computer code is used to identify the elevation of each morphostratigraphic 
unit surface encountered in each "virtual well." Then, custom programming assigns a 
code to each grid cell in the three-dimensional array that represents the geologic model. 
The 3-D array is then imported into 3-D information visualization software (3DIVS, in this 
case, C Tech's Environmental Visualization System software package). 

I. Upper boundary is ground-surface topography, and lower boundary is 
bedrock-surface topography. The elevation data were converted to 
digital elevation models (DEMs) using GIS utilities. 

II. The perennial stream network provides 
fixed-head boundary conditions in the model. The 
flow chart below shows the steps to create the 
stream network using Hydrology Tools in the Spatial  
Analyst extension of the ESRI ArcGIS software 
package.

 

 
  

 

Using GIS software to convert model output to visual images in order to assess model results.These examples 
show the ability of GIS software to visualize the water-table surface, which is a resultant output data set 
generated by the solution of the steady-state groundwater model of Berrien County, Michigan. 

II. This image (top) shows areas where the water table 
intersects the ground surface. These areas can be 
compared with known areas of perennial streams, 
lakes, and wetlands (right image) to evaluate model 
performance. Areas that are not modeled correctly are 
calibration targets for future model improvement.

 

 

 

 

 

The figures below show the output stream 
network used as a boundary condition in the 
current version of the groundwater flow model. 
Challenges arise to establish a representative 
perennial stream network using a spatial 
resolution that will also represent the geologic 
conditions and allow computational efficiency.
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Contoured tops of 
morphostratigraphic units and 
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(georeferenced vector files –
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Digital Elevation Model of each 
morphostratigraphic unit at the 

same grid resolution 
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“well field;” each “well” contains 
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