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1. Objectives

The purpose of this work is to construct a general methodology for the nonlinear

analysis of transcription regulatory network and thereby overcome the impediment to

progress in understanding cellular complicity.

2. Introduction

Genetics and genomics start with Gregor Mendel's discovery of the law of

heredity [1]and their rediscovery in the early days of the twentieth century. Scientists

then realized that DNA is the main hereditary material [2]and began to determine its

structure. 50 years ago, Watson and Crick's discovery of the double-helical structure

of DNA [3],is a landmark event, after which the main focus of life science changed to

elucidating the genetic code [4], developing recombinant DNA technologies [5], and

establishing increasingly automatable methods for DNA sequencing [6-7], and

eventually make the ambitious Human Genome Project (HGP) finished as least two

years ahead of expectation. The next phase of genomics is to catalogue characterize

and comprehend the entire set of functional elements encoded in the human and other

genomes, which is a more challenge for its complicity. For instance, gene and gene

products do not function independently, but participate in complex, interconnected

pathways, networks of molecular system that taken together give rise to the workings

of cells, tissues, organs and organisms [8] Qualitatively as well as quantitatively

defining these systems and determining their properties and interactions are crucial to

understanding how biological systems function [9].Yet these systems are far more
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complex than any problem that molecular biology, genetics has yet approached [8].

Image how many genes in human and how many interactions! Because of its

complicity, genomics attracts a lot people from different fields, and has become a

central and productive area of research. Biologists and chemists start with some

simple motifs to collect the information of the products of genes, and transcriptional

regulatory relationship, and make the basic bricks for the whole building. As data

accumulate, physicist and mathematician begin to analyze the properties of the

gene-transcription factor (TF) regulatory networks, and post translation reaction

networks etc. and construct models to represent the structure of these networks in

expect to understand the relationship between DNA sequence information and

nonlinear cellular responses [10].

In this report, I present an automatic approach for nonlinear analysis of gene

regulatory networks based on our transcription and translation reactions model and

our understanding of a given regulatory network. We use programs to automatically

read this information and generate ordinary differential equations that are readable by

AUTO [11]- a bifurcation analyzer, and use AUTO to give a nonlinear analysis to a

known regulatory network. We keep the whole work flow general and automatic and

then we apply this approach to E.coli. We obtained a branch of results that are not

only interesting but also of great importance in drug discovery and caner therapy.

3. Work flow

Our overall work flow is shown in Figure 1, we first define a mathematical model
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describe mRNA and TF behavior, concerning with transcription, translation, and post

translation reactions. Meanwhile we obtain the regulatory network, which we call B

matrix here, from websites and literatures [12].The B matrix tells which genes are

up/down regulated by which transcription factors, also we obtained a C matrix, which

contains the information of which genes make which transcription factors. With this

information, we can import microarray data into our KAGAN [13]program to calibrate

those parameters that will be useful in our model, we write these parameters into

different data files and used as the input of the next step. On the other hand, I

decomposed and filtered Band C matrix to be independent central Band C matrix.

Then we combine all the information and write equations into Auto, I use AUTO to

get the bifurcation result and draw the graphs. So, in a word, we make an automatic

work flow with the input of gene regulatory network and have the cell bifurcation

graph output. More detailed algorithm method is described in the next chapter.

It is worth to pointing out that this project is interdisciplinary. It evolves

bioinformatics, chemical kinetics, numerical analysis - applied mathematics and

biochemistry. In this report, I will clarify which element of the project is specifically

done by me and my colleagues.
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Figure 1 Work Flow

4. Methods

Our approach is to develop a very general cell process network and then take the

point of view that as we add more and more detailed processes, cell differentiation

and other phenomenon should emerge. Thus we propose to add TF/gene control

interactions, post translational reactions and other factors as gathered from the

literature. This is distinct from the more traditional approach whereby one restricts the

analysis to a small network and negates the majority of its interaction with the rest of

the network even though the latter certainly is strongly coupled to it. While a great

difficult of the latter is that this approach built a small network that is designed to

arrive the answer we seek and therefore is not objective, rather, we believe that the

answer should naturally follows to as much information as we have about the whole

network.

We process the whole work flow in answering 5 questions: 1. How to construct
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our Band C matrix. 2. How to construct a reasonable cell model to describe mRNA

and TF behavior. 3. What is KAGAN and mirocarray data. 4. How to decompose and

filter the original Band C matrix. 5. What is AUTO.

4.1 How to construct our Band C matrix.

We have a script that can automatically search from literature and database for

Gene - TF regulatory information to arrive at a putative, albeit incomplete and likely

error - prone regulatory networks, which we call Band C matrix here. The B matrix

is a Gene * TF dimensional matrix and the element of the matrix are 0, I, -1, which

means this Gene is non-regulate, up-regulate, down-regulate by that TF respectively.

Some of the proteins will dimerize with another one or two proteins before it can

work as a TF, in these cases we use 2 or 3 to indicate their dimerization and higher

order complexing. We labeled the Gene and TFs from the first to last, and now we

have a 984 Genes and 144 TFs B matrix for E.coli K12, which consists 1/3 of the

whole regulatory network. See Figure 2 as an example of B matrix. The C matrix

contains three columns, the first column is the TF index number, the second column is

the index of the gene that makes this TF, and the third column is the name of that gene.

See Figure 3 as an example. In our 144 TFs database, 116 of which are made by those

Genes in our known regulatory network, and 28 of which are made by other genes

that we have no idea. The regulatory information is obtained from Ecocyc and

Regulon DR [12],by my group mates Kranthi, Frank, Leshin, AI, Tim and organized

by Lisa.
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Figure 3 An example of C matrix

4.2 How to construct a reasonable cell model to describe mRNA and TF

behavior

Gene regulation is considered here to be a Markov process involving the

attachment/detachment of transcription factors (TFs) to sites on each gene while the

dynamicsof high-populationspecies (e.g. TFs) are treatedvia chemicalkinetics.Let
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It be the probability that site j on gene i is occupied. It is assumed that site ij can

only be occupied by a unique TF labeled nij. Each site is considered to be independent

so that the Markov dynamics take the form

dP
~=k+T (l-P)-k~P

dt l) "ij l} l} l}

where T is the concentration of TF nq. Let bq indicate the nature of the
~ l} l}

regulation of gene i by TF nij due to sitej:

{

+ 1, up regulation

bij = -1, down regrlation

0, no regulation

Introduce a function tp (P,b) such that

{

P,b=+1

tp= 1-~b=-11,b - O.

Assuming that a gene is most conducive for transcription if its up-regulating sites are

occupied and its down regulating ones are not, the probability that gene i is conducive,

e; , is given by

N(;)

e =TI tp (P ,bq ).I l} l}

j=l

where N(i) is the number of sites on gene i. With this it is assumed that the dynamics of

the cellular RNA content R; for the single RNA type assumed to be associated with

gene i (e.g. splicing is ignored) is given by

~j = kimax [RP] {ej + t;i}/ (1 + t;; ) - A;R;

where kimax is the maximum rate, ( is a small parameter that allows a minimal rate

of transcription even if gene i is not optimally conducive and [RP] is the concentration

539

(1)

(2)

(3)

(4)

(5)
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of intra-nuclear or intra-bacterial RNA polymerase, while Ai is a rate coefficient for

RNA degradation. To complete the model we assume that NTFtranscription factors

each arise either out of the translation of a specific gene or the complexing of other

TFs and factors. Let TF n be translated via gene In , or from a dimerization of other

TFs and factors, the latter having net rate w" for the n-th TF. Then the following

simple model is adopted

d;, = anRr" - 13J" + w"(I,~) - U"

for rate factors an, 13",and set ~ of concentration of other factors. When a TF is a

single translated protein, W11= 0; when it arises out of dimerization or other

complexing then a11= 1311= 0 ; this allows for a rather general structure to the model.

The contribution U11arises from the complexing ofTFs to the Ng gene:

Ng N(I)

{ }
= :T I-P. - ~P

U11 L2)'1111ij k1) 11ij( 1)) k1) 1)
i~l j~l

where (j is I or 0 depending on whether n =n.. or n *- nH ' respectively.
1111ij 1) 1)

In the above model a number of assumptions were made including

. T", as it effects the occupation probability 0 i is assumed to be a

concentration and not a thermodynamic activity; and

. For eukaryotic cells the factors kimax and an depend on intra-nuclear

nucleotide and cytoplasmic amino acid levels respectively, whose time

variation can be ignored, the analogous situation for bacterial cell; and

similarly for [RP].

The above model yields rapidly responsivecontrol if the rate constants k; and k:

540

(6)

(7)
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are large. Let Q.. =e / k~ . Then in the limit k~ large
I} I} I} I}

QT ,I} 'uP=
l QT

I} + ..11.
I} Y

This is the limiting case considered by Sayyed-Ahmad et al. (2004) in their

microarray analysis approach.

To implement the above model for analysis via the AUTO software, we wrote a

program that automatically writes the above differential equation as a file. In addition

the parameters kimax,[RP],Ai'k; ,k; ,all,,oll must be provided as must the matrix b

and the vector I that is our Band C matrix.

The model supports a great richness of multiple steady-states, periodic and other

nonlinear dynamical system behaviors. Objective is to develop a methodology for

automating the discovery of these phenomena. The straightforward approach is to

write a program, which automatically write a file for input to AUTO [11]which is a

bifurcation analyzer The input is the set of model parameters and the matrices band

L determining the structure of the regulatory control system. Before applying the

approach to E.coli, consider the nature of the steady states problem and the potential

of the system to support a myriad of distinct states.

The structure of the model allows for gene simplification when the system is at

steady state. Under that condition

QT
I} IlUP. =

1 Q TI} +..11 I} U

As seen from (1). This implies that VIl in (6) vanishes and hence

{

W =0 if a =,0 =0

T"=all'~I" / fJll' a"" an~ fJll"* 0
(10)

541

(8)

(9)
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This implies that either T" is given by the equilibrium relation (w" = 0), or is

obtained from the steady state balance oftranslation and degradation.

In the simplest case where all TFs are monomers (i.e. one gene and without

dimerization) that we obtain:

1:, = r" [e I" + Sd (11)

r" = a"k~ax[RP]/ /3"AI" (12)

Thus the problem reduces to solving N TF equations for N TF I and involves the

N TF parameters [. This greatly simplifies the analysis and will be referred to as the

reduced problem henceforth.

The reduced problem can be decomposed further in terms of the simple motifs,

self-regulating gene can be solved independently, i.e. for a single site,

self-upregulating gene one has

T = r
[

QT + S
]I+QT

(13)

which can be solved exactly. Similarly for a two site self-upregulating case

T-r
[(

QIT

)(

Q2T

)
+s

]I+QIT I+Q2T
(14)

This also can be solved analytically as can mix two sites cases (i.e. one up and the

other down). For the single site, or the symmetrical, the obvious fundamental

, , . ,

[(

T'

)

///

]
variables are T =QT and r = Qr, i.e. T = r 1+ T' + S for the m

symmetric site case.

Two gene motifs also lend themselves to analytical solution in the reduced problem.

For gene 1and 2, suchthat ~ up-regulate G2 and T2 down regulate G1 we have
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T =[

[
QI~ + I'

]Z Z I + QI~ ':>I
(15)

~ = [I
[

I + (1
]1+ QZTZ

(16)

which can also be solved analytically, and similarly for other two and three gene

motifs. Finally "follower" genes (controlled by genes in the motifs) can be obtained

from TFs involved in the motifs. More complex cases involving the common dimmer

TFs can also be solved analytically.

If there are M * basic motifs, which support multiple (i.e. 2 stable) steady states,

that the system can support 2 M' distinct states. This underlies the richness of the

cellular problem.

4.3 What is KAGAN and microarray data

KAGAN (KAryote Genome ANalyzer) is a software package that receives raw

time series microarray data, the list of factors that regulate each gene, and yields the

timecourse of thermodynamic activities within the nucleus or prokaryotic cell.

Software packages that could be used to provide input to KAGAN include PAINT

(developed at Thomas Jefferson University), which gives gene/transcription factor

interactions, but does not give the sense, up/down, of the regulation because PAINT is

simply a sequence analysis package. The results of KAGAN are provided graphically

in terms of the predicted timecourse of transcription factor activities. The latter

provides information that can be used to detect errors in the gene control network. For

example, if a gene is upregulated by one transcription factor and unaffected by all
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others then a change in transcription factor activity should be well correlated with a

mIcroarray response for that gene; if this is not the case, the network requires

correction.

KAGAN is built on an entropy maximization principle. Entropy is a quantitative

measure of uncertainty. It is used in our methodology to provide a framework for

data/cell model integration. The information theory approach of Sayyed-Ahmad et al.

(2003) and a transcription kinetic model similar to that in Weitzke and Ortoleva (2003)

[14]are used. More details of the methodology and technician could be found in Ref

[15].

DNA microarrays are a new technology that allows the whole genome to be

monitored on a single chip so that a better picture of the interactions among thousands

of genes can be observed simultaneously [16],Recently, this technique has been widely

used in many fields of life science. It has already yielded many discoveries in the field

of gene discovery, disease diagnosis, drug discovery, and toxicology research [17]

KAGAN combined cDNA microarray with a transcription kinetic modeling through

information theory, and get more information about the gene regulatory networks than

obtained preciously [i5]. for example, as we said before, our gene regulatory network

is incomplete, using the cDNA microarray with information theory, we can not only

get most probable gene-TF relationship for those we were not sure, but also expend

our previous regulatory network as well, further more, KAGAN yield rate and

equilibrium constants for the transcription factors and RNA degradation reactions.

So we input our raw cDNA microarray and gene regulatory network, run in
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KAGAN and get a more convinced gene regulatory network as well as calibrated

parameters that are required by our model.

4.4 How to decompose and filter the original Band C matrix

The original Band C matrix contains as much information about the regulatory

network as we know. According to the model we showed above, it is possible that we

can construct a whole set of equations to describe the behavior of a single rnRNA or

TF as well as the entire rnRNAs and TFs, however the network we have consist of

several sub networks which are apparently independent and therefore should be more

efficiently analyzed separately, thus I wrote a program to decompose and filter the

original network. I eliminated those irrelevant genes and TFs, and decomposed the

original whole matrix to be a smaller sub-network that is independent of others. An

Algorithm to do this is to consider the whole B matrix as a 'tree' in data structure.

Those non-zero elements shows that gene and TF somewhat related, and those zero

ones indicate that they are not related. I start from a gene and find out those non-zero

elements in this particular row, which means we are trying to find out those TFs that

relate to this gene, and then set all those TFs as been visited, the next step is to start

from one of those visited TFs, and begin to search for non-zero elements in that

colunm, so on and on until we visit all the genes and TFs that are direct or indirect

related. I can manage this simply with the information of B matrix and use the

algorithm of traversal of the 'tree'. A visualization of the structure is shown on line at

http://fan.gotdns.org/cgi-bin/gene.pl and we just need to upload the B matrix file and
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will get the visualized structure we need. (this work is done by my group mate

Jianmiao Fan) The result shows that the E.coli gene regulatory network have a major

sub network and some smaller independent networks, which is corresponded to

another network structure analysis of E.coli regulatory network published in

Bioinformatics that shows the whole network could be decomposed to a primary

network and some small sub-networks [18].Compare the result we got to the result

from literature, as shown in Figure 4, we can see, that the topology of the two graphs

are almost the same, although they come from different database.

23

,
1',"

"""

., . 4)...

Figure 4, topology of regulatory network, the left is obtained from our database, while the

right is from Jiterature [18].

Actually, the primary B matrix, in out case, we have 889 genes and 116 TFs,

which is still large, however the fact is although those genes and TFs are somewhat

related, only those genes that make TFs will get a feedback and will contribute the

nonlinear behavior to the whole system. See our model in detail, if a gene does not
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make any TFs, its dynamics is determined by those TFs that regulate it, without

giving any feed back, and of course they will not affect the whole system, so those

genes could be eliminated, and will not change the nonlinear behavior of the whole

system. I have written a program to decompose and filter those networks, the input

files are the original Band C matrixes, and the output files are the decomposed and

filerred Band C matrixes, whose structure could be seen in Fig 5. We also rearranged

the index of the genes and TFs. After decomposing and filtering the network, we get a

67 genes * 71 TFs central network. We know that 60 of 71 TFs are made by those

genes that are listed in a total 67 genes, and for those we do not know which gene

makes them, I put them as constants.

,
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Figure 5, the central independent regulatory network.

4.5 What is AUTO

AUTO is a continuation and bifurcation software for ordinary differential

equations [11].It was developed by Eusebius 1. Doedel etc. It is quite powerful to solve

Algebraic Systems, Ordinary DifferentialEquations,Parabolic PDEs and show the
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steady states, bifurcation points, and Hopf bifurcations, which is well suited for

nonlinear system analysis of cell. We use AUTO to search for nonlinear behavior such

as multiple steady states, and bifurcations of limit cycles, in our gene regulatory

network. The AUTO software requires two input files: the constant file "r.xxx" and

equation file "xxx.f', ("xxx" stands for a user-select name of the file, for example,

"xxx" could be gene, and those two files could be "r.gene", and "gene.f' to indicate

different problems) the former defines the computation conditions for a particular

problem, such as the dimension of the system, the boundary conditions, the free

control parameter, the region of the free control parameter that is required to compute,

the number of bifurcation points we want to find, the tolerance and continuation step

size etc. The later file defines the mathematical form of the problem and contains the

Fortran subroutines FUNC, STPNT, BCND etc. which specifies the mathematical

equations, the starting point variable values and parameter values, and the boundary

condition respectively etc. AUTO requires the starting point a steady state of the

system, we call it an initial steady state, thus it can trails out along the steady state

bifurcation graph. In order to make this point, Al wrote a script that could read our B

and C matrix, and automatically generate equations that describe gene and TFs

dynamics according our model, and then create "gene.f' file, "r.gene" file, and

another Fortran file "steady.f90" as well, the last file is used to calculate the initial

steady state using Monte Carlo Method, that is to say, I randomly generate a set of

values indicate the concentrations of those RNAs and TFs, and then let it run for a

long time until the system goes to steady state, I think it is the initial steady state, and
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write this set of values in a file which is readable by AUTO, thus everything is

prepared, and the whole work flow is automatic.

In answering the above 5 questions, it is obvious that I integrate several elements

to arrive at an approach to the analysis of complex gene regulatory networks:

. automated literature and database searches to arrive at a putative, albeit

incomplete and likely error-prone, regulatory networks;

. a microarray analysis methodology (KAGAN) that allows one to use time

series data to correct errors in, fill in gaps of and expand the putative

regulatory network;

. a Markov/chemical kinetic model of the gene transciption regulatory

networks;

. scripts to automatically transform the above information into a format

acceptable to nonlinear phenomenon discovery package AUTO; and

. analysis of the network by AUTO to identify multiple steady states or

dynamical attractors in the cellular network.

With the above information and analysis, we are able to generate an automatic

methodology to identify multiple steady-states, periodic and other nonlinear

dynamical system behaviors, which may be related to cell differentiation or other key

cellular phenomena. Since we have a relative complete regulatory network for E.coli,

we apply this methodology to E.coli.

5. Results and discussion
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5.1 Test the methodology

I first tested the approach to some simple and known results motifs, in order to

make sure that the whole work flow works.

Motifs are small, overrepresented topologically distinct regulatory interaction

patterns (sub graphs), which have been considered as the basic bricks of the whole

regulatory network [18].Researches show that bacterium like E.coli exists different

types of motifs, such as the auto-regulation, feed back loop, and feed forward loop etc.

[19],among which auto-regulation is the most common case, and studies shows that it

consists half of the regulatory motifs for E.coli [20].An auto-regulation means a gene

makes a TF (gene is transcribed to be mRNA, which is then translated into protein,

this protein is a transcription factor, we call this process as gene makes a TF), which

regulate - either up or down regulate the transcription of this gene. As for our central

regulatory network, we found that 60 of total 71 TFs could be found that are made by

those genes in the B matrix, and 53 of which have the behavior of auto-regulation,

this number consists 71% of the total genes we have in the central network. For

example, gene phoB makes TF ArcA-Phosophorylated that up regulate the

transcription of gene phoB, gene fur makes TF Fur that down regulate the

transcription of gene fur. We take gene phoB and TF ArcA-Phosophorylated and get a

small Band C matrix, to test the work flow.

The dynamic of this one gene one TF system could be described by these two

equations:

Q *T
dR = K *( + S) - A * R
dt max 1+ Q* T
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dT = a *R - 13 *T
dt

We set value of Kmax'Q, A, a, 13,t; as 1.0, 1.0, 2.0, 2.0, and 0.02 respectively. We

solve the above equations in Mathematic and get the normalized RNA concentration -
Kmax graph below (see Figure 6 left). Also, we get a solution from AUTO, and show

the result in Figure 6 right. Compare two graphs, although we got from different ways,

(the former is analytical, and the later is AUTO) they look the same, which means the

work flow that we explained above works well.

8

6 / CJ)
a
£:
a.
<{ 5
Z
a::
E

4

2

--~ 0 .

10 0
4 102 4 6 8

Kmax

Figure 6,Test of the work flow, the left is obtained from mathematics, and the
right is obtained from AUTO

5.2 Application to E.coli

As we said before, we have a relatively complete regulatory network of E.coli,

which contains 984 genes and 144 TFs, and we have 100 mRNA microarray data, so,

we take these microarray data and run it in KAGAN, we get the equilibrium constants

-- Q values for 100 genes and 16 TFs, I then put the whole matrix into my

decomposition and filtering program and get a central network of 67 genes and 71
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TFs. Unfortunately, we do not have the microarray data for those mRNAs that

correspond to the genes in our central network, so, for those gene-TF equilibrium

constants - Q values, I take the average value of those we know. I set Km.x,A,a,fJ

as free control parameters, and write the equations into AUTO according our model.

The result of AUTO is rich and exciting, here I show some of the most important

results.

(1). I recorded the steady state of all single mRNA and TF versus the changing of

free parameters, as for example, the K m.x value. It is possible for us to see the

behavior of all the single mRNAs and TFs, which implies that if we are interested in a

certain mRNA or TF, we can directly see the nonlinear behavior: does it have multiple

steady states, limit cycles, bifurcations etc.? I take gene rcp for example. Gene crp has

been studied from 1980s [21],and is considered a very important gene in bacteria,

because A) the product of gene crp is TF CRP-cAMP, which regulates over 260 gene

transcription in E.coli, among those genes, many of them are response to glucose

levels. Research shows that high levels of glucose reduce the levels of cylic AMP

(cAMP) within the cell, and conversely, glucose starvation leads to an increase in

cAMP levels allowing a molecule of cAMP to bind to CRP [22].B)The complex of the

regulation of crp gene expression by CRP-cAMP attracts a lot interests [21,23,24].The

crp gene is regulated autogenously, which means the product of gene crp up regulated

the expression of itself. Protein CRP and RNA polymerase bind to the crp regulatory

region simultaneously, which suggests a different mechanism for transcriptional

repression of the crp gene by CRP-cAMP from that of a typical operator-repressor
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model [21] Figure 7 shows the bifurcation diagram of mRNA crp, and TF

CRP-cAMP, both of them shows a clear S-shape, which is not surprising, because TF

CRP-cAMP is the product of mRNA crp, so its dynamical behavior should follow that

of the mRNA crp, however the S-shape does means a lot, as is shown in the picture,

the increase of RNA polymerase activity causes a slightly increase of mRNA crp level

and TF CRP-cAMP level, but when the activity reaches point a, both the mRNA level

and TF level will suddenly jump up to point b, which is a quite different steady state,

after that, when the RNA polymerase activity decrease, the mRNA level and TF level

will not drop down to point a, but will decrease slowly until it reaches point c. This

kind of hysteretic behavior is typical and considered important for life systems,

because it makes the whole system robust to the fluctuation of the surroundings,

which means the system is willing to keep what it was until the disturbance of the

circumstance reaches to a certain limit point like a and c here.

Well, although RNA rcp and TF RCP-cAMP show a beautiful S-shape graph, it is

not always the case that all the mRNAs or TFs should be an S-shape, in fact different

mRNAs or TFs show quite different behaviors. Fig 11 shows several kinds of mRNAs

and TFs, where mRNA cspA shows a straight line, mRNA gadX shows a curve,

mRNA uxuR shows a big S-shape, and mRNA cbl shows a complex graph. The

bifurcation diagrams show the number of steady states one can hold for a given

physical condition, for instance, RNA cspA shows a single steady state as the change

ofRNA polymerase activity, while RNA uxuR could be one or three steady states.



Page 24 Kun Qu 554

1.6

1..4~~

12
c:
g 1.0.
~
~ QS'-'c:
8 0.6
«Z
a:: Q4E

0.2

Qo.

-Q2

c

R'Apj)lTffil38 a:;;\ity

4~ I CW-<PlVP1

6 3
'E
~
c:
1J 2
c:
0'-'
LL>-

+

d
a

R'A pjYfT'B'E8 a:;;\ity

Figure 7 the bifurcation diagram -- S-shape of mRNA crp and TF CRP-cAMP
versus RNA polymerase activity

0.012,~

0"0

0

e 0008

~
8 0006"
Z
cr 0.00'
E

0002

0.000

0.30, ~
0.25

0

"§ 0.20

~
8 0.15
"Z" 010E

0.05

0.00

2

RNA pOlym""e act"'ty

2

RNA poI"""""se activily

I9illI
05

0

~ 0.'

i
8 0.3"
Z
cr 0.2
E

"

2

RNA polym.ca" "Ii'''y

0.8" ~

c 06

~
~
c 0.4
8"z"
E 0.2

0.0

1 2 3

RNA polyme,ase activ;ty

Figure 8, bifurcation diagrams for mRNA cspA(left above), gadX(right above), uxuR(left

below) and cbl(right below).

(2). I recorded the steady state of normalized total RNA content. I use L2
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normalization, which is defined as the square root of the sum of the square of all RNA

levels. See:

N

L2 = J2)mRNA(i))2 where N is the number ofmRNA.
i~1

To show the normalized concentration of the total RNA contents is meaningful,

because the total RNA level represents the cell states. Those RNAs, together with TFs,

determines the protein level, glucose level etc. and eventually determines the cell

behavior. The result of this normalized content is shown in Figure 9, which is much

more complicated than a single mRNA or TF. Actually, the diagram contains several

bifurcation points, which comes to be the fact that E.coli cell do exist multiple steady

states as the different values of RNA polymerase activity, and I have a quite fine

structure of this phenomena.

E.Coli Gene Regulation BifurcationStructure
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Figure 9, Transcription/translation regulatory network of E.coli shows
bifurcation fine-structureas a functionof RNApolymerase activity
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(3). I changed the free parameter to RNA degradation rate A, TF creation

rate a and degradation rate j3 to see how the bifurcation diagram changes with the

increase of those values, which means the nonlinear behavior versus A , a and j3 .
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Figure 10 E.coli Gene Regulation Bifurcation Structure, the X-axis is the RNA degradation

rate A , and the Y-axis is the normalized mRNA total contents, Actually, this graph contains a

lot loops and bifurcation points when the A value is between 0.5-1.75.
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and the Y-axis is the normalized mRNA total contents.
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Figure 12 E.coli Gene Regulation Bifurcation Structure, the X-axis is the IF

degradation rate f3 , and the Y-axis is the normalized mRNA total contents.

Meanwhile, I get the data for the bifurcation diagram of single mRNA and TF as I

did for RNA polymerase activity Kmaxhowever I am not going to show these graphs

here in order to save space.

In summary, we use our methodology and get some of the most important results

concerning the relationship between the gene regulatory network and nonlinear cell

behavior. My data shows how the steady state as characterized by total mRNA

contents as well as single mRNA and TF behave as the change of RNA polymerase

activity K max' RNA degradation rate A., TF creation rate a, and TF degradation rate f3 ,

so a true case is that we get a 4 dimensional space for steady state diagram. These

results at lease contain two quite valuable applications: A) theoretical study of the

nonlinear behavior of gene transcription and RNA translation dynamical reaction

network.B) the bifurcationdiagramof the total mRNAcontentssuggest an approach
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to characterizing a cell steady state, and may provide a method for developing

strategy to avoid transitions from a normal cell state to abnormality. The latter is

especially important to cancer therapy, which is trying to discover new drug target to

block some of the mRNAs or proteins' concentration exceed some certain limit value.

Since we have a method to make the network in more detail, we believe that we

will be able to explain how these bifurcation and S-shape come from, as far as we get

adequate information about the regulatory network. Also I did some work in trying to

explain, for instance, I tried to change the model to consider those dimerized TF as

normal TF, and did not find any of those nonlinear behaviors, which suggest

dimerization or high complexing may play an important role in nonlinear cell

behavior, though we need more evidence to support this argument.

5.3 Stochastic and uniqueness of regulatory networks

As I said above, our gene regulatory network is incomplete so how could we

convinced others that our result is accurate enough, in other words, how accurate our

results are? In order to answer this question, I take a small test. Suppose we have a

model Y =B *X , where B is a 1000*200 matrix, and the elements of B is 0, 1 or -1,

X is a 200* I column, and Y is the product of these two matrixes, which is a 1000*1

column. If the true value of column Y, X, and Bare Y_star, X_star and B_star

respectively, and then we set X unchanged and randomly change part of the B matrix,

for each changed B matrix, we have a Y column value, which is different from Y_star.

I define an error E as

1

1000

E = . I (Y(i) - Y _star(i)Y
i=!

(the Lz norm) which indicates the difference
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between column Y and its true value Y star.

Then I randomly change the B matrix 15,000 times and get 15,000 different E,

the maximum E, is called Emax, and the minimum E is called Emin. I then divided 10

average segments from Emin to Emax, and counted the number of tries that have an

error between each section. We got a histogram shown in Figure 13, where we

changed 1% of the matrix that is 2000 elements. The same kind of histogram could be

obtained when we change 0.01% to 10% of the matrix, but both Emax and Emin

would increase as the increase of the changing percentage, as shown in Figure 14.

These results could be reduced to two points: 1) both the absolute error and relative

error are inclined to stay at the average with a statistical bell shape to both sides

instead of going to the extremes of minimum or maximum error. 2) the more

uncertainty the matrix has the larger error will be. We believe the same kind of

behavior would happen in our gene regulatory network analysis, so the answer to how

much information we have to know or when is a critical point that we can say that our

result is accurate enough depend on how accurate is the experimental measurements.

The more accurate experimental measurements requires a more comprehensive

understanding of the network, otherwise, a roughly construct network could give us

enough confidence to our results because the experimental measurements take up the

majority ofthe error.
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Conclusion

In conclusion, we developed a general methodology for nonlinear analysis of

gene transcriptional regulatory network. We proposed a reasonable model to describe

the transcription and translation reaction dynamics and constructed an automatic work

flow for this nonlinear analysis. I applied this methodology to E.coli and got some

quite interesting results, which not only prove that E.coli regulatory network do exist

nonlinear behavior but also got a fine structure of these behaviors as well. The results

contain the bifurcation information of the total RNA contents as well as that of every

single mRNA and TF. I also selected different control parameter to see how a cell

behaves in changing with different free parameter. At last, I discussed the critical

point problem, to see how convincible our results are. We believe our methodology is

of great importance to understand the relationship between the DNA sequence and the

nonlinear cellular behavior, when we applied this general methodology into a real

human cell system. Consider, even for a system as simple as E.coli, our method

discovered multiple distinct steady states followed from the E.coli genome, and

therefore, one can reasonably expect that when we turn to the human genome with its

25,000 genes we should expect of a multiplicity of steady states which reflect the

many distinct human cell types that follow from the same genome, further more, the

discover of RNA and protein bifurcations that are controlled by some physical

conditions will be quite useful in drug discovery and cancer therapy.
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