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Abstract

The use of propensity score methods for program evaluation with non-experimental data typically requires
the propensity score be estimated, often with a model whose specification is unknown. While theoretical
results suggest that estimators utilizing more flexible propensity score specifications perform better, this
has not filtered into applied research. Here, we provide Monte Carlo evidence indicating the benefits of
over-specifying the propensity score when using weighting estimators, as well as using normalized weights.
We illustrate these results with an application assessing the environmental effects of GATT/WTO mem-
bership. We find that membership has a mixed impact, and that under-fitting the propensity score yields
misleading inference in several cases.
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1 Introduction

Estimation methods utilizing the propensity score (i.e., the probability of an observation receiving a par-

ticular treatment conditional on covariates) are widely used in economics, as well as other disciplines, in

the evaluation of programs or interventions. In the majority of applications, the true propensity score is

unknown, and therefore must be estimated. Even in the case when the true propensity score is known,

Hahn (1998) and Hirano et al. (2003) show that using the true propensity score is inefficient. However,

there are few guidelines for applied researchers on how to proceed in the estimation of the propensity

score. In particular, there are two inter-related specification issues that arise when estimating the propen-

sity score in practice. First, one must decide which variables are to be included in the propensity score

model. Second, one must decide if higher order terms (and/or interaction terms) are to be included as

well. A third specification issue, the choice of the actual model itself (e.g., probit, logit, nonparametric,

etc.), is not the focus of the present paper.

As noted in Smith and Todd (2005) and the references therein, using too crude of a propensity score

specification is likely to yield biased estimates of the causal effect of the treatment. However, the inclusion

of irrelevant variables in the propensity score model may have a similar impact. Bryson et al. (2002)

argue against the inclusion of irrelevant variables on efficiency grounds; the variance of the treatment

effect estimator is likely to increase. Brookhart et al. (2006) suggest that variables related to the outcome

of interest should always be included in the propensity score specification, but variables only weakly

related to the outcome – even if strongly related to treatment assignment – should be excluded as their

inclusion results in higher mean squared error of the treatment effect estimate. Zhao (2005, p.15) argues

that while including irrelevant variables will not bias estimates of the treatment effects, over-fitting the

propensity score model (i.e., including irrelevant higher order terms) may be “counterproductive,” although

“in practice, this point may not be important.” Rubin and Thomas (1996) argue in favor of including

variables in the propensity score model unless there is consensus that they do not belong. Lastly, the

intuition behind the result in Hirano et al. (2003) that using the true propensity score is inefficient even

when it is known suggests that over-fitting the propensity score model may have little negative consequence

on the properties of treatment effect estimates in practice.

To date, the most common approach used by applied researchers to address specification issues with

respect to the propensity score is to conduct balancing tests in studies using the propensity score as a

means to implement matching or stratification estimators. If a variable is found not to be balanced, the

usual approach is re-specify the propensity score model adding (additional) higher order terms and/or

interactions (e.g. Dehejia and Wahba 1999). However, there is no single, universally accepted balancing
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test (Smith and Todd 2005). Recently, Shaikh et al. (2005) develop an alternative test for misspecification

of the propensity score, although investigating the consequences of mis-specifying the propensity score due

to over-fitting is not a goal of the paper.

In light of this background, the aim of the present paper is twofold. First, we assess whether the practical

effects of mis-specifying the propensity score model through the exclusion of relevant higher order terms

and the inclusion of irrelevant higher order terms via a Monte Carlo study. Our study focuses on two

estimators of treatment effects: the (unnormalized) inverse probability weighted estimator of Horvitz and

Thompson (1952) and the normalized inverse probability weighted estimator of Hirano and Imbens (2001).

The results indicate that in many cases over-fitting the propensity score model results in a more efficient

estimator, and in the remaining cases does no worse than the correctly specified model.1 In addition,

in cases where the estimated propensity score often takes values close to zero or unity, the normalized

estimator of Hirano and Imbens (2001) outperforms the unnormalized estimator. Since the penalty for

over-fitting is minimal, this suggests that practitioners report a set of causal estimates corresponding to

various models of propensity scores.

The second goal of this study is to illustrate these ideas with a timely application related to the impact

of membership in the World Trade Organization (WTO) on environmental quality. Using cross-country

data from the 1990s, we find a detrimental impact of WTO membership on per capita carbon dioxide

emissions, and a beneficial impact of membership on energy consumption and access to clean water. The

unfavorable effect of the WTO on per capita carbon dioxide emissions is consonant with previous research

suggesting that the WTO may impede international cooperation on global environmental issues, while

the positive effect on local measures of environmental quality is consistent with previous research on the

beneficial effects of trade openness. In addition, the application illustrates the relative costlessness of

over-fitting the propensity score model.

The remainder of the paper is as follows. Section 2 presents a brief review of the treatment effects

setup as well as the estimators analyzed. Section 3 describes the Monte Carlo study and results. Section

4 contains the WTO-environment application. Section 5 concludes.

2 Setup

Consider a random sample of N individuals from a large population indexed by i = 1, ..., N . As in the now

commonplace potential outcome framework (see, e.g., Neyman 1923; Fisher 1935; Roy 1951; Rubin 1974),

let Yi(t) denote the potential outcome of individual i under treatment t, t ∈ T . Here, we consider only the
1Similar results are found in Ichimura and Linton (2005), who use a kernel estimator to estimate propensity scores.
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case of binary treatments: T = {0, 1}. The causal effect of one treatment, say t = 1, relative to the other,

t = 0, is defined as the difference between the corresponding potential outcomes. Formally,

τ i = Yi(1)− Yi(0) (1)

and the population average treatment effect is given by

τ = E(τ i) = E[Yi(1)− Yi(0)] (2)

For each individual, we observe the triple {Yi, Ti, Xi}, where Yi is the observed outcome, Ti is a binary

indicator of the treatment received, and Xi is a vector of covariates. The relationship between the potential

and observed outcomes is given by

Yi = TiYi(1) + (1− Ti)Yi(0) (3)

which makes clear that only one potential outcome is observed for any individual. As such, estimating τ

is not trivial as there is an inherent missing data problem, and some assumptions are required to proceed.

One such assumption is unconfoundedness or selection on observables (Heckman and Robb 1985). Under

this assumption, treatment assignment is said to be independent of potential outcomes conditional on the

set of covariates, X. As a result, selection into treatment is random conditional on X and the average effect

of the treatment can be obtained by comparing outcomes of individuals in different treatment states with

identical values of the covariates. To solve the dimensionality problem that is likely to arise if X is a lengthy

vector, Rosenbaum and Rubin (1983) propose using the propensity score, P (x) = Pr(Ti = 1|Xi = x),

instead of X, as a conditioning variable.

Given knowledge of the propensity scores and sufficient overlap between the distributions of the propen-

sity scores across the t = 1 and t = 0 groups (typically referred to as the common support condition, see

Dehejia and Wahba (1999) or Smith and Todd (2005)), the average treatment effect can be estimated in

a number of ways (D’Agostino (1998) and Imbens (2004) offer summaries). Here, we focus on the inverse

probability weighted estimator of Horvitz and Thompson (1952), given by

τ = E
[

Y · T
P (X)

− Y · (1− T )
1− P (X)

]
(4)

We refer to (4) as the unnormalized estimator. A sample estimate of τ can be computed using estimated

propensity scores as follows:

τ̂ =
1
N

N∑

i=1

[
YiTi

P̂ (Xi)
− Yi(1− Ti)

1− P̂ (Xi)

]
(5)

Alternatively, Hirano and Imbens (2001) propose an estimator that assigns weights normalized by the sum

of propensity scores for treated and untreated groups, instead of assigning equal weights of 1/N to each
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observation. Their estimator is given by

τ̂norm =

[
N∑

i=1

YiTi

P̂ (Xi)

/
N∑

i=1

Ti

P̂ (Xi)

]
−

[
N∑

i=1

Yi(1− Ti)
1− P̂ (Xi)

/
N∑

i=1

(1− Ti)
1− P̂ (Xi)

]
(6)

The advantage of estimator in (6), which we refer to as the normalized estimator, is that the weights

sum to unity within each group (Imbens et al. 2005). In addition, Imbens et al. (2005) show that

the normalized estimator is asymptotically equivalent to the unnormalized estimator and therefore is

asymptotically efficient.

This exposition shows that researchers face two issues in practice. First, since the propensity score

is typically unknown, this must be estimated, and theory offers little guidance. In fact, even when the

propensity score is known, using the true propensity score is inefficient in general (Robins and Rotnitzky

1995; Rubin and Thomas 1996; Hahn 1998; Hirano et al. 2003). Second, practitioners must decide between

the unnormalized Horvitz and Thompson (1952) estimator and the normalized Hirano and Imbens (2001)

estimator. Hirano et al. (2003) show that the estimator in (6) achieves the semiparametric efficiency bound

when the propensity scores are estimated using a Series Logit Estimator (SLE) (see Geman and Hwang,

1982) and propose a feasible variance estimator.

To help inform applied researchers, we assess the practical performance of the two estimators, (5)

and (6), as well as various specifications of the propensity score. With respect to the latter, we focus in

particular on whether it pays to over-specify the propensity score equation. We now turn to our Monte

Carlo study.

3 Monte Carlo Study

To compare the two estimators, as well as assess the benefit to over-specifying the propensity score equa-

tion, we simulate the treatment assignment based on a number of different, and increasingly difficult for

estimation, true models, and then compare the performance of the estimators in (5) and (6). For each of

the true models, we simulate 1,000 data sets. Each data set contains three variables for each of the 1,000

observations: Ti, a binary indicator of the treatment received, Yi, the outcome, and a single covariate, Xi.

X is randomly drawn from a U [0, 1] distribution. Simulation of the treatment assignment and outcome

are discussed below.

3.1 Treatment Assignment

To simulate treatment assignment, we first simulate the true propensity score, Pi, for each observation,

and then draw Ti from a Bernoulli distribution with parameter Pi. The propensity scores are simulated
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from nine distinct settings, ranging from continuous, smooth and monotone to non-continuous and non-

monotone. Thus, we compare the performance of the causal estimators using models for which SLE would

be expected to perform well (e.g. when propensity scores are simulated using a logit model), as well as

more difficult models (e.g. non-continuous propensity scores). The nine settings are:

1. Logit specification:

Pi =
exp(Ai)

1 + exp(Ai)

where Ai is

(a) Flat: Ai = 0

(b) Linear: Ai = −3 + 6Xi

(c) Quadratic & Symmetric: Ai = 2.5− (2.5(1− 2Xi))2

(d) Quadratic & Non-Symmetric: Ai = 2.5− (2.5(1− 1.5Xi))2

(e) Fourth degree: Ai = −2.5 + 4.5X4
i

2. Peak

(a) Symmetric:

Pi =





0.05 + 1.8Xi if Xi < 0.5

1.85− 1.8Xi if Xi ≥ 0.5

(b) Non-Symmetric:

Pi =





0.05 + 1.125Xi if Xi < 0.8

4.55− 4.5Xi if Xi ≥ 0.8

3. Step

(a) Monotonic

Pi =





0.33 if Xi < 0.33

0.50 if Xi ∈ [0.33, 0.67)

0.67 if Xi ≥ 0.67

(b) Non-Monotonic:

Pi =





0.50 if Xi < 0.33

0.90 if Xi ∈ [0.33, 0.67)

0.10 if Xi ≥ 0.67
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While the relationships between the propensity scores and covariate are continuous and smooth in all

the logit specifications, Specifications 1a, 1b, and 1e represent monotonic relationships and Specifications

1c and 1d are non-monotonic. In addition, Specification 1e is also asymmetric. Specifications 2a and 2b,

on the other hand, represent non-smooth, but continuous, relationships, while Specifications 3a and 3b

represent non-continuous relationships. The propensity scores are presented in Figure 1. Note that all

specifications satisfy the common support condition.

3.2 Outcome Equation

Outcomes are simulated using the following specification:

Yi = β1 + β2Ti + β3Xi + β4TiXi + εi, (7)

where εi ∼ N(0, σ2). To decide on the values of the parameters, we use the data from Lalonde (1986).

Specifically, we estimate (7) using this data, where X represents the first principal component of the set of

the covariates used in Deheija and Wahba (1999). The values of β = {βj}4
j=1 are [2.54, -1.67, -2.47, 1.96],

and σ2 = 0.25.

3.3 Estimation and Evaluation

3.3.1 Estimation

For each data set, we estimate the propensity scores using a SLE. Following Hirano et al. (2003), we

estimate the propensity scores as

P̂ (x) =
exp [RK(X)′δ̂K ]

1 + exp [RK(X)′δ̂K ]

where RK(X) is a vector of length K with the jth element equal to RK
j (x) = X(j−1), j = 1, . . . ,K, and

δ̂ is the vector of maximum likelihood estimates. For each true model, we use K = 1, . . . , 10. Hence, we

estimate ten logit models with increasing degree of polynomial in the logit function.

The variance is computed as in Hirano et al. (2003, p. 1172). Specifically,

V̂ =
1
N

N∑

i=1

(ψ̂i + α̂i)2, (8)

where

ψ̂ =
YiTi

P̂ (Xi)
− Yi(1− Ti)

1− P̂ (Xi)
− τ̂ ,

and

α̂i = −
[

1
N

N∑

i=1

(
YiTi

P̂ (Xi)2
+

Yi(1− Ti)
(1− P̂ (Xi))2

)
RK(Xi)

]′
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×
(

1
N

N∑

i=1

RK(Xi)RK(Xi)′
)−1

RK(Xi)(Ti − P̂ (Xi)).

3.3.2 Evaluation

To evaluate the performance of the estimators, we report the average bias, mean squared error (MSE),

estimated variance, and percent coverage of the 95% confidence interval. In addition, we compute two

measures of fit of the estimated propensity scores to the true propensity scores, namely, mean integrated

squared error (MISE)

MISE =
1
M

M∑

j=1

[
P̂ (Zj)− P (Zj)

]2

and sup-norm

SUP = sup
z∈[0,1]

|P̂ (Zj)− P (Zj)|

where P (·) and P̂ (·) are the true and estimated propensity scores, respectively, evaluated at a grid of M

points in [0, 1] interval (M equals 100 in the study). Lower values of both measures represent a better fit.

Finally, we report the semiparametric efficiency bound for each true model; see the appendix for derivation.

3.4 Results

The results are presented in Table 1. Panel I contains the results using Specification 1a for the propensity

score. Here, the true propensity score is flat, implying treatment is random (independent of X). This

specification provides a nice check as we expect all models to perform equally well. The results are as

expected; the biases are small and equal for both causal estimators, τ̂ and τ̂norm, and the MSEs, as well as

the variance estimator, converge to the efficiency bound. However, some interesting results are observed

even in this case. First, both measures of fit of the estimated propensity scores are minimized when the

correct model is used (logit with zero degree polynomial), but MSEs and variance are higher than in over-

fitted models. As a result, the coverage rate is above 95% in the first column, and above the rest of the

estimated models. This result is closely related to the findings in Hirano et al. (2003), since the estimated

propensity score using zero degree polynomial is exactly the true propensity score.

The results for the linear model (Specification 1b) are presented in Panel II, and are similar to Panel

I. Specifically, biases and MSEs are high in the under-fitted model, but settle down quickly, with little

penalty in terms of MSE and coverage rates for over-fitting. In addition, there is little difference between

the unnormalized and normalized estimators.

Panel III contains the results for the symmetric quadratic model (Specification 1c). Here, the results are

very surprising, indicating equally good performance in under-fitted, correct, and over-fitted models. This
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arises because the true propensity score is symmetric. To see this, suppose that the marginal distribution

of X is U [0, 1] and the propensity score is symmetric about E[X], which is 1/2. Further, note that when

the estimated propensity score is constant across observations (i.e. we utilize a zero degree polynomial),

(4) is equivalent to the simple difference in means estimator, given by

τ̂ s =
1

N1

N∑

i=1

YiTi − 1
N0

N∑

i=1

Yi(1− Ti) (9)

where N1 (N0) is the size of the treatment (control) group. The first component in (9) is the mean

of the T = 1 observations, and will have mean (and converge in probability to) E[Y |T = 1]. Now,

E[Y |T = 1] = E[E[Y |T = 1, X]|T = 1] =
∫

E[Y |T = 1, X = x]p(x|T = 1)dx, where p(x|T = 1) is the

conditional density of X given T = 1, which by Bayes’ rule is p(x|T = 1) = p(T = 1|x)p(T = 1)/p(x).

Since E[Y |T = 1, X = x] = (β1 + β2) + (β3 + β4)x, it follows that

E[Y |T = 1] =
∫

(β1 + β2) + (β3 + β4)xp(x|T = 1)dx

= (β1 + β2) + (β3 + β4)
∫

xp(x|T = 1)dx

= (β1 + β2) + (β3 + β4) E[X|T = 1].

Furthermore, since p(T = 1|x) is symmetric about 1/2, it follows that p(x|T = 1) is symmetric about 1/2.

Thus, E[X|T = 1] = 1/2 = E[X] and E[Y |T = 1] = (β1 + β2) + (β3 + β4) E[X] = E[Y (1)]. A similar

argument follows for the T = 0 case. As a result, the simple estimator in (9) is unbiased and consistent in

this case.2

The results are markedly different for the asymmetric quadratic model (Specification 1d); results are

shown in Panel IV. The biases and MSEs are very high for under-fitted models (columns 1 and 2), with

low penalty, in terms of MSE, for over-fitted models. In addition, the estimator using normalized weights

performs better in the over-fitted models in terms of biases, MSEs, and coverage rates.

The results for the final logit specification, polynomial of forth degree (Specification 1e), are not sur-

prising; results are given in Panel V. First, relatively extreme under-fitting (columns 1 and 2) leads to

very poor performance by both estimators. Second, there is little penalty for over-fitting the propensity

score. Finally, there is little difference between the unnormalized and normalized estimators in over-fitted

models.

The remaining results pertain to data simulated from non-logit true models. As a result, there is

no correct model. Results for the symmetric peak model (Specification 2a) are given in Panel VI. As

in the previous symmetric specifications (1a and 1c), we find little substantive differences across models.
2The authors are indebted to Keisuke Hirano for this argument.
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However, the biases, MSEs, and coverage probabilities improve using with the normalized estimator due to

a large number of estimated propensity score close to zero or unity. On the other hand, in the asymmetric

peak model (Specification 2b), we find obvious benefits to over-fitting the propensity score, as well as little

substantive difference between the unnormalized and normalized estimators (Panel VII).

The final set of results uses data simulated using non-continuous propensity scores. Results for the

monotonic step function (Specification 3a) are shown in Panel VIII, and indicate that all models, as well as

both estimators, perform equally well with the exception of the zero degree polynomial logit model. More

interesting results arise with the non-monotonic (asymmetric) step function (Specification 3b); results are

displayed in Panel IX. First, there is little penalty in terms of bias and MSE for over-fitting, particularly

with the normalized estimator. Second, the benefits of using the normalized – relative to the unnormalized

– estimator are extremely pronounced: biases and MSEs are lower in most models. This occurs due to the

fact that one-third of the true propensity scores are close to zero, and normalized weights attenuate the

effect of the small values of the estimated propensity scores in the denominator.

In sum, the results of the Monte carlo study yield three salient implications. First, there is almost

no penalty for over-fitting the propensity score model and often a large penalty for under-fitting. Since

in practice researchers rarely know the true form of the propensity score, it appears prudent to over-fit.

Specifically, in cases where the true propensity score is symmetric (and not flat), there is little benefit

(and little cost) to over-fitting. Conversely, in all asymmetric cases, with the exception of an asymmetric,

non-continuous, and monotonic, propensity score (Specification 3a), over-fitting is beneficial. Second, when

a relatively large number of estimated propensity scores lie close to zero or unity, the normalized estimator

performs better, performing relatively poorly only when propensity scores are under-fitted. Thus, over-

fitting in combination with the normalized estimator seems wise. Finally, whether or not the true propensity

score is continuous or not does not appear to affect the performance of the different estimators and different

models used to estimate the propensity score. Based on these results, practitioners ought to use the

normalized estimator and provide a series of estimates using increasingly sophisticated specifications of the

propensity score model. We illustrate this approach with a timely application assessing the environmental

effects of the GATT/WTO.

4 Application

4.1 Motivation

Copeland and Taylor (2004, p. 7) state that “for the last ten years environmentalists and the trade policy

community have engaged in a heated debate over the environmental consequences of liberalized trade.”
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Given the stakes involved, Taylor (2004, p. 1) argues that this constitutes “one of the most important

debates in trade policy.” The debates become even more heated when one focuses on the interplay between

the WTO and the environment, as evidenced by the political demonstrations at the WTO Ministerial

Meetings in Seattle in 1999. As noted on CNN’s website3: “Opponents of the WTO claim it puts too much

control into the hands of government and big business. They believe international trade agreements do not

often take into account the impact on the health and safety of workers, the damage to the environment and

the welfare of poorer nations.” On the other hand, Mark Vaile, Australia’s trade minister told CNN in the

same article: “On both the labor standards and the environment there are very clear and demonstrable

benefits that can flow from improved trade and trade liberalization across the world to those sectors –

particularly in the developing world.” Weinstein and Charnovitz (2001, p. 147) state: “[T]he WTO has

started to develop an environmental conscience. With only a few tweaks, it can turn greener still... The

organization is in fact developing constructive principles for accommodating both trade and environmental

concerns.”

In large part, the disagreement between WTO proponents and environmentalists stems from the com-

plex relationship between trade and the environment in general, and the WTO and the environment in

particular. Specifically, there are a number of avenues via which the WTO may affect the environment.

First, the WTO may increase the volume of trade through the relaxation of barriers to trade, and the

increase in trade may help or harm the environment. With respect to the impact of the WTO (and its

predecessor, the GATT) on trade, Rose (2004a, 2004b, 2005) finds surprisingly little significant associa-

tion between the WTO and liberal trade policy and only moderate evidence on expanded trade volumes.

Moreover, even if the WTO does liberalize trade, the impact of trade on the environment is also not clear.

Recent evidence in Antweiler et al. (2001), Frankel and Rose (2005), Chintrakarn and Millimet (2006),

and others find little, if any, evidence of a detrimental effect of trade on various measures of environmental

quality.4

Second, several provisions in the WTO may impede a country’s ability to unilaterally enact trade-

related measures designed to protect the environment.5 The pillars of the WTO framework – the principles

of Most Favored Nation (MFN) and national treatment – require that any advantage extended one WTO

member country be extended to ‘like products’ from all member countries and that imported goods be

treated no less favorably by internal taxes and domestic regulations than ‘like’ domestic products. Relevant

for environmental policy, WTO dispute settlement rulings typically fail to consider differences in process
3See http://www.cnn.com/SPECIALS/2000/globaljustice/seattle.html.
4See Copeland and Taylor (2004) for a review of the literature.
5See Bernasconi-Osterwalder et al. (2006) for an excellent summary of the relevant jurisprudence.
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and production methods (PPMs) in determining likeness. Thus, countries have been unable to discriminate

against goods on the basis of non-product related PPMs (Atlhammer and Dröge 2003). This is particularly

relevant for environmental policy since many trade-related environmental measures discriminate on the ba-

sis of characteristics of the producer which fail to alter the final product. That said, Article XX allows for

a number of exceptions, including trade restrictions “necessary to protect human, animal, or plant life”

or “relating to the conservation of exhaustible natural resources”. However, exceptions are limited by the

chapeau of Article XX, requiring trade measures to not constitute “a means of arbitrary or unjustifiable

discrimination between countries where the same conditions prevail, or a disguised restriction on interna-

tional trade”. In practice, prior to the US-Shrimp/Turtle 21.5 (2001) dispute resolution, whereby a revised

U.S. ban on shrimp imports from countries not adequately protecting against the accidental killing of sea

turtles in the harvesting of shrimp was upheld after a previous U.S. ban had been determined to violate

the chapeau, environmental policies focused on non-product related PPMs had been deemed inconsistent

with the WTO; now the door is open (Bernasconi-Osterwalder et al. 2006). DeSombre and Barkin (2002,

p. 17) state: “The recent ruling on the shrimp/turtle issue represents the first time that a DSM [Dispute

Settlement Mechanism] ruling has clearly supported a breach of international trade rules for the purpose

of environmental protection.” Thus, while complex, there is room in the WTO provisions for unilateral

trade restrictions on the basis of non-product related, environmentally hazardous PPMs.

Third, the WTO provisions discussed above may impede the efficacy and/or viability of multilateral

environmental agreements (MEAs) in two ways (Atlhammer and Dröge 2003). First, MEAs typically rely

on the voluntary cooperation of countries to abide by a treaty’s obligations. In the event of non-compliance,

trade restrictions are a useful enforcement mechanism. However, if the offending party is a WTO member,

such restrictions may be disallowed. Second, trade restrictions on countries opting not to sign or ratify

a particular MEA may limit free-riding, but again may not be allowed under the WTO system. Thus,

WTO provisions may make it much more difficult to get an MEA adopted, or to enforce an existing MEA.

Eckersley (2004, p. 27) investigates these claims, arguing that the threat of challenges under the WTO has

had a “chilling effect” on MEA negotiations and imposition of trade restrictions under existing MEAs.

Finally, the WTO may provide a framework, as argued in Bagwell and Staiger (2001a, 2001b), to handle

issues such as a ‘race-to-the-bottom’ or ‘regulatory chill’ in environmental (or labor) standards. Specifically,

countries can potentially compensate domestic import-competing firms for higher (lower) domestic (foreign)

standards by raising tariffs so that market access remains constant. In the end, then, the impact of the

GATT/WTO on the environment is a priori ambiguous, and requires empirical analysis.
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4.2 Data

The data are at the country-level and come from Frankel and Rose (2005); thus, we provide only limited

details.6 We analyze five measures of environmental quality: per capita carbon dioxide emissions, the

average annual deforestation rate from 1990 – 1996, energy depletion, rural access to clean water, and

urban access to clean water. We employ three covariates in the first-stage propensity score equation,

following Frankel and Rose (2005): real per capita GDP, land area per capita, and a measure of the

democratic structure of the government. Finally, we supplement the data from Frankel and Rose (2005)

with an indicator of whether the country is a GATT/WTO member. In the analysis, we use observations

from 1990 (prior to the WTO) and 1995 (after the creation of the WTO). Table 2 provides summary

statistics and descriptions of the variables.

4.3 Results

The results are presented in Table 3. For each outcome, we estimate 19 specifications to assess the impact

of over-fitting the propensity score equation. Specification (1) includes only a constant in the propensity

score equation. Each successive specification then adds the variable listed in the second column. Thus,

specification (4) includes a constant and a linear term for each of the three covariates. Specification (7)

((10)) includes a constant as well as linear and squared (and cubic) terms for each of the three covariates.

Finally, specification (19) corresponds to a third order linear approximation. Within each specification, we

display the unnormalized and normalized treatment effect estimate, as well as the standard error.7

For per capita carbon dioxide, the various results indicate three salient findings. First, there are large

differences between the unnormalized and normalized estimates in all specifications except for (1); the

unnormalized estimates are typically twice as large and are therefore much more likely to be statistically

significant. Second, there are large differences in both the unnormalized and normalized estimates when

moving from a linear specification of the propensity score to adding higher order terms. However, over-

fitting – even relative to specification (5) that includes a quadratic term for only one of the three covariates

– does not qualitatively alter the results. Thus, while there is little benefit in this case to over-fitting, there

is no cost either. Finally, in terms of the actual point estimates, we find moderately statistically significant

evidence that GATT/WTO membership raises per capita carbon dioxide emissions (τ = 1.69; τnorm = 0.91;

standard error = 0.52). This is consistent with the results in Frankel and Rose (2005) assessing the impact

of trade openness on per capita carbon dioxide, as well as the argument that the GATT/WTO framework

may explicitly or implicitly deter MEAs, since international cooperation is required to limit carbon dioxide
6The authors are grateful to Andrew Rose for making the data available (http://faculty.haas.berkeley.edu/arose/).
7For all estimated models there was a sufficient overlap in the distribution of propensity scores for treated and controls.
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emissions give that it is purely a global externality.

In terms of deforestation, there are two primary examples of the interplay between the GATT/WTO

and environmental quality. In the dispute Japan - Tariff on Imports of Spruce, Pine, and Fir (SPF)

Dimension Lumber, a Japanese tariff that applied to specific types of dimension lumber was found to be

permissible under the GATT. More recently, Canada has disputed U.S. policies designed to protect the

U.S. lumber industry from allegedly subsidized Canadian lumber in US - Softwood Lumber. Recently, the

WTO Appellate Body has upheld U.S. anti-dumping rates, but a WTO panel also held that the U.S.

countervailing duty determination does not conform to WTO requirements.

Turning to the results, we find that the use of the choice of normalized or unnormalized estimator has

substantially less impact than for per capita carbon dioxide. On the other hand, the exact specification of

the propensity score does have a substantial effect on inference. Specifically, entering each covariate linearly

in the propensity score equation (specification (4)) yields statistically insignificant effects of GATT/WTO

membership on deforestation (τ = 0.18; τnorm = 0.11; standard error = 0.18). Adding quadratic and

cubic terms for each covariate, but excluding any interactions (specification (10)) also yields insignificant

estimates (τ = 0.22; τnorm = 0.20; standard error = 0.15). However, adding interactions between the

linear terms yields statistically significant effects (τ = 0.26; τnorm = 0.30; standard error = 0.14), whereas

moving to the third order linear approximation (specification (19)) yields statistically insignificant estimates

(τ = 0.24; τnorm = 0.22; standard error = 0.15). Thus, we conclude that there is no evidence that

GATT/WTO membership accentuates the annual rate of deforestation. Interestingly, the changes in

inference across the various specifications is solely due to a change in the estimate; the standard errors are

essentially constant. This confirms the results from the Monte Carlo study: there is no efficiency loss from

over-fitting the propensity score.

The next set of results pertain to energy depletion, where a larger value indicates greater energy con-

sumption. As with the previous outcomes, we find that there are important differences across the unnor-

malized and normalized estimates, as well as across the various propensity score specifications. Moreover,

the efficiency of the estimates are not hindered by over-fitting the propensity score. Specifically, we find a

moderately statistically significant effect of GATT/WTO membership on energy conservation when fitting

a third order linear approximation (specification (19)) and using the normalized estimator (τ = −1.65;

τnorm = −1.85; standard error = 1.04), as well as when we omit all interactions, but include third order

polynomials for each covariate (specification (10)) (τ = −2.10; τnorm = −2.27; standard error = 1.06).

However, only including some linear interactions makes the normalized estimate statistically insignificant;

for example, see specification (13) (τ = −1.80; τnorm = −1.43; standard error = 1.02). In the end, using

the normalized weights and over-fitting the propensity score indicates a statistically significant, beneficial
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impact of GATT/WTO membership on energy use, consonant with Frankel and Rose’s (2005) analysis of

trade openness.

In terms of rural and urban access to clean water, we initially note two salient findings. First, the

unnormalized estimates are much larger than the corresponding normalized estimates. For rural (urban)

access, the unnormalized estimates are roughly 1.5 to 2.5 (five to six) times as large. Second, unlike for the

previous three outcomes, the variance of the estimates does vary, sometimes quite substantially, across the

various specifications. For instance, the standard error increase by roughly 270% (225%) from specification

(17) to (19) for rural (urban) water access. This may be attributable to the smaller sample of countries for

which data on clean water access are available, combined with the fact that water access is time invariant in

1990 and 1995 (see Table 2). Thus, the relative costlessness of over-fitting depends crucially on the sample

size and the variation in the outcome. That said, we find a statistically significant effect of GATT/WTO

membership on rural and urban access to clean water using the unnormalized estimator, and moderately

statistically significant effects on rural access to clean water using the normalized estimator, across the

majority of specifications. For example, in the cubic specification (specification (10)), we find statistically

significant effects (rural: τ = 16.94; τnorm = 9.48; standard error = 4.92; urban: τ = 16.59; τnorm = 2.74;

standard error = 5.95).

5 Conclusion

While the use of propensity score methods in the estimation of treatment effects in non-experimental

settings is proliferating, little practical guidance exists for researchers in terms of how one ought to specify

the propensity score model. The perception appears to be that, although under-specifying propensity scores

will yield inconsistent estimates, over-specifying propensity scores is inefficient at best, and inconsistent

at worst. However, this perception need not be correct. Using a Monte Carlo study and two weighting

estimators, we find little penalty to over-fitting propensity scores, and in fact find numerous cases where

over-specifying the model proves beneficial. A secondary result of our analysis is that the normalized

version of the Horvitz-Thompson estimator performs as well as, and sometimes better than, the original

Horvitz-Thompson estimator. As a result, we recommend that researchers report a number of estimates

corresponding to different levels of polynomials used to estimate propensity scores.

Illustrating this approach, we address an important question in the international arena: Does the WTO

hinder environmental improvement? Using data from the 1990s, we find that the WTO is beneficial in

terms of the environmental measures analyzed that are local in nature, and detrimental in terms of those

that are global. Moreover, these results are sensitive to the specification of the propensity score model,

14



thus confirming the benefits of comparing the results across numerous propensity score specifications.

Open questions still remain, however. Additional research is called for to further assess the effects

of over-specifying the propensity score model through the inclusion of irrelevant variables. In particular,

there are two types of irrelevant variables: irrelevant higher order terms of relevant variables and variables

that are irrelevant at all orders. Aside from the flat propensity score specification, our Monte Carlo study

focuses only on the former. As such, future work should aim to offer guidance to applied researchers with

respect to the latter.
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A Asymptotic Variance Bound

From Theorem 1 in Hirano et al. (2003):

V = E

[
(τ(X)− τ)2 +

σ2
1(X)

p(X)
+

σ2
0(X)

1− p(X)

]

where p(x) is the true propensity score evaluated at x, τ(x) = E[Y (1) − Y (0)|X = x], and σ2
j (x) =

V [Y (j)|X = x], j = 0, 1.

Our data generating process is:

Yi = β1 + β2Ti + β3Xi + β4TiXi + ei,

where X ∼ U [0, 1] and ei ∼ N(0, σ2).

Thus

Yi(0) = β1 + β3Xi + ei

Yi(1) = Yi(0) + β2 + β4Xi.

Therefore

σ2
0(x) = σ2

1(x) = σ2

τ(x) = E[Y (1)− Y (0)|X = x] = β2 + β4x

τ = E[Y (1)− Y (0)] = β2 + β4 E[X] = β2 + 0.5β4.

From the expressions above

E(τ − τ(X))2 = E(β4(X − 0.5))2 = β2
4 E(X − 0.5)2 = β2

4V (X) = β2
4/12.

Hence

V =
β2

4

12
+ σ2 E

[
1

p(X)

]
+ σ2 E

[
1

1− p(X)

]
.
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Figure 1: Propensity Scores Specifications
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Table 1.  Monte Carlo Results

0 1 2 3 4 5 6 7 8 9
I.  Flat Propensity Score
1000 x Bias -0.62 0.88 0.88 0.87 0.87 0.89 0.86 0.87 0.84 0.91

Bias (normalized) -0.62 0.87 0.88 0.88 0.88 0.90 0.88 0.89 0.86 0.91
MSE 1.97 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.33 1.32
MSE (normalized) 1.97 1.31 1.32 1.31 1.32 1.32 1.31 1.32 1.32 1.32
Estimated Variance 2.06 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32

Propensity MISE 0.0002 0.0005 0.0007 0.0010 0.0012 0.0014 0.0017 0.0019 0.0021 0.0023
  Score SUP 0.01 0.03 0.05 0.07 0.08 0.10 0.11 0.12 0.13 0.13
Coverage Unnormalized 0.967 0.954 0.953 0.953 0.951 0.951 0.950 0.950 0.947 0.949
  Rates Normalized 0.967 0.955 0.953 0.953 0.952 0.951 0.950 0.950 0.948 0.949
II.  Linear Propensity Score
1000 x Bias -536.38 1.50 0.10 0.60 0.32 0.48 0.47 -0.84 -1.21 -2.98

Bias (normalized) -536.38 -1.13 -0.71 0.66 -0.07 0.03 -1.43 -2.53 -4.05 -6.27
MSE 289.33 3.30 2.90 2.81 2.88 2.94 2.95 2.98 3.02 3.01
MSE (normalized) 289.33 3.61 3.23 2.88 2.98 3.19 3.04 3.16 3.16 3.18
Estimated Variance 1.65 3.45 2.92 2.92 3.67 6.02 4.14 14.68 8.07 3.40

Propensity MISE 0.1287 0.0027 0.0027 0.0029 0.0030 0.0031 0.0032 0.0034 0.0035 0.0036
  Score SUP 0.49 0.07 0.08 0.08 0.09 0.09 0.10 0.11 0.11 0.12
Coverage Unnormalized 0.000 0.959 0.947 0.952 0.947 0.947 0.942 0.938 0.933 0.934
  Rates Normalized 0.000 0.952 0.935 0.946 0.944 0.955 0.943 0.937 0.931 0.927
III.  Quadratic (Symmetric) Propensity Score
1000 x Bias -0.49 -1.87 -1.54 -4.00 -0.41 -1.06 -3.82 -6.65 -8.25 -9.61

Bias (normalized) -0.49 -0.18 0.02 0.37 0.55 0.50 0.41 0.02 -0.02 -0.08
MSE 3.32 1.45 5.89 5.96 3.46 3.54 3.43 3.32 3.30 3.34
MSE (normalized) 3.32 1.44 3.23 3.28 3.26 3.13 3.11 3.00 2.97 2.97
Estimated Variance 3.15 1.38 8.07 8.38 7.15 27.66 13.01 7.19 6.15 4.11

Propensity MISE 0.1042 0.1041 0.0005 0.0006 0.0007 0.0008 0.0009 0.0011 0.0012 0.0013
  Score SUP 0.56 0.58 0.04 0.05 0.05 0.06 0.07 0.07 0.08 0.08
Coverage Unnormalized 0.941 0.942 0.966 0.960 0.962 0.951 0.954 0.952 0.946 0.939
  Rates Normalized 0.941 0.944 0.989 0.989 0.965 0.955 0.959 0.962 0.967 0.965
IV.  Quadratic 2 (Asymmetric) Propensity Score
1000 x Bias -595.14 -24.72 -1.78 -2.05 -2.52 -3.66 -4.52 -6.19 -7.78 -9.02

Bias (normalized) -595.14 429.98 -1.44 -1.91 -2.01 -2.12 -2.25 -2.79 -3.15 -3.34
MSE 357.05 10.43 5.00 4.17 3.29 3.36 3.48 3.44 3.54 3.53
MSE (normalized) 357.05 192.02 3.36 3.35 3.12 3.10 3.16 3.19 3.18 3.16
Estimated Variance 2.63 19.72 6.73 6.12 9.99 8.78 23.74 5.59 4.43 4.46

Propensity MISE 0.0880 0.0157 0.0004 0.0005 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012
  Score SUP 0.66 0.24 0.05 0.06 0.06 0.07 0.08 0.09 0.09 0.10
Coverage Unnormalized 0.000 0.986 0.953 0.952 0.953 0.946 0.946 0.942 0.938 0.933
  Rates Normalized 0.000 0.073 0.985 0.967 0.956 0.958 0.951 0.951 0.953 0.949
Notes: MSE = mean squared error; MISE = mean integrated squared error; SUP = sup norm.  Estimated variance uses formula from Hirano et al. (2003). Asymptotic variance bound is 1.32 (Panel I);  
2.49 (Panel II); 2.85 (Panel III); 2.85 (Panel IV).  1,000 simulations used for each column.  See text for further details.
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Table 1 (cont.).  Monte Carlo Results

0 1 2 3 4 5 6 7 8 9
V.  Fourth Order Propensity Score
1000 x Bias -278.61 279.32 26.01 1.69 1.27 1.34 1.12 0.33 -0.32 -1.12

Bias (normalized) -278.61 40.49 -6.97 0.08 1.15 1.15 1.38 1.48 0.80 0.18
MSE 79.61 95.34 4.07 2.89 2.93 2.90 2.93 2.97 2.97 2.97
MSE (normalized) 79.61 6.79 3.05 2.97 2.96 2.88 2.92 2.97 3.01 2.97
Estimated Variance 2.09 111.54 3.66 2.99 3.07 3.12 3.29 9.11 3.22 3.34

Propensity MISE 0.0462 0.0068 0.0008 0.0005 0.0006 0.0007 0.0008 0.0010 0.0011 0.0012
  Score SUP 0.65 0.24 0.07 0.05 0.06 0.06 0.07 0.08 0.09 0.09
Coverage Unnormalized 0.000 0.996 0.937 0.951 0.946 0.944 0.948 0.947 0.953 0.952
  Rates Normalized 0.000 1.000 0.958 0.942 0.945 0.947 0.947 0.944 0.949 0.945
VI.  Peak (Symmetric) Propensity Score
1000 x Bias 1.89 1.51 51.79 51.37 21.31 21.01 18.26 17.71 9.66 8.57

Bias (normalized) 1.89 2.38 2.69 2.64 2.33 2.48 2.71 2.75 2.43 2.03
MSE 2.45 1.21 5.24 5.29 2.44 2.41 2.87 2.98 2.35 2.22
MSE (normalized) 2.45 1.21 2.09 2.13 1.90 1.88 2.23 2.31 2.09 2.07
Estimated Variance 2.50 1.26 2.86 3.08 1.90 1.89 12.97 25.70 16.97 2.17

Propensity MISE 0.0664 0.0667 0.0036 0.0038 0.0027 0.0029 0.0019 0.0020 0.0019 0.0021
  Score SUP 0.46 0.47 0.16 0.16 0.13 0.13 0.10 0.10 0.10 0.10
Coverage Unnormalized 0.956 0.959 0.859 0.870 0.925 0.918 0.945 0.948 0.941 0.937
  Rates Normalized 0.956 0.959 0.971 0.971 0.954 0.951 0.960 0.957 0.952 0.953
VII.  Peak 2 (Asymmetric) Propensity Score
1000 x Bias -269.69 12.96 56.75 -20.55 10.38 10.87 2.96 2.94 2.57 -0.79

Bias (normalized) -269.69 81.38 -17.88 -23.09 -12.53 -13.74 -9.91 -6.02 -5.76 -4.66
MSE 75.06 1.77 7.11 2.30 2.26 2.27 1.92 2.05 2.24 2.00
MSE (normalized) 75.06 8.19 2.67 2.28 2.17 2.27 2.04 2.03 2.05 2.00
Estimated Variance 2.23 1.58 10.42 1.91 2.93 3.86 2.15 4.82 40.96 2.36

Propensity MISE 0.0665 0.0404 0.0134 0.0052 0.0020 0.0021 0.0020 0.0019 0.0020 0.0021
  Score SUP 0.46 0.66 0.31 0.19 0.13 0.13 0.12 0.11 0.12 0.11
Coverage Unnormalized 0.000 0.933 0.990 0.932 0.963 0.956 0.953 0.953 0.946 0.946
  Rates Normalized 0.000 0.471 0.978 0.931 0.954 0.950 0.952 0.949 0.946 0.950
Notes: MSE = mean squared error; MISE = mean integrated squared error; SUP = sup norm.  Estimated variance uses formula from Hirano et al. (2003).  Asymptotic variance bound is 2.85 (Panel V); 
1.96 (Panel VI); 1.96 (Panel VII).  1,000 simulations used for each column.  See text for further details.
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Table 1 (cont.).  Monte Carlo Results

0 1 2 3 4 5 6 7 8 9
VIII.  Step (Monotone) Propensity Score
1000 x Bias -222.99 1.21 1.34 -0.77 -0.74 -0.36 -0.34 0.14 0.08 -0.35

Bias (normalized) -222.99 1.40 1.68 -0.86 -0.82 -0.33 -0.37 0.37 0.27 -0.26
MSE 51.68 1.37 1.37 1.36 1.37 1.37 1.37 1.39 1.39 1.38
MSE (normalized) 51.68 1.40 1.37 1.36 1.36 1.37 1.37 1.39 1.39 1.38
Estimated Variance 1.98 1.40 1.40 1.39 1.39 1.40 1.40 1.40 1.40 1.40

Propensity MISE 0.0188 0.0024 0.0026 0.0025 0.0027 0.0028 0.0030 0.0028 0.0030 0.0028
  Score SUP 0.18 0.10 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.14
Coverage Unnormalized 0.001 0.952 0.953 0.951 0.953 0.954 0.956 0.957 0.956 0.955
  Rates Normalized 0.001 0.953 0.954 0.951 0.950 0.952 0.954 0.957 0.957 0.956
IX.  Step 2 (Non-Monotone) Propensity Score
1000 x Bias 265.03 -158.92 88.60 598.09 35.58 145.28 -32.42 -7.27 -82.26 -99.81

Bias (normalized) 265.03 -73.83 -79.98 -124.15 -38.46 -42.91 -14.86 -15.17 -7.67 -2.10
MSE 72.41 27.31 17.01 2138.43 5.40 28.99 5.36 7.81 12.79 16.62
MSE (normalized) 72.41 6.88 11.31 33.53 4.36 5.99 3.25 4.38 3.70 3.57
Estimated Variance 2.30 2.36 79.34 4.03E+08 4.34 27.79 4.92 8129.52 15.49 16.69

Propensity MISE 0.1069 0.0832 0.0361 0.0329 0.0194 0.0166 0.0123 0.0105 0.0102 0.0099
  Score SUP 0.41 0.49 0.43 0.47 0.42 0.45 0.40 0.40 0.40 0.40
Coverage Unnormalized 0.000 0.058 0.995 0.998 0.938 0.892 0.939 0.974 0.963 0.960
  Rates Normalized 0.000 0.717 0.916 0.971 0.937 0.971 0.975 0.985 0.992 0.997
Notes: MSE = mean squared error; MISE = mean integrated squared error; SUP = sup norm.  Estimated variance uses formula from Hirano et al. (2003).  Asymptotic variance bound is 1.40 (Panel VIII); 
2.50 (Panel IX).  1,000 simulations used for each column.  See text for further details.
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Table 2.  Summary Statistics
Variable Mean Standard N Description

Deviation
Per Capita CO2 3.82 4.73 232 Carbon dioxide emissions, industrial, in metric tons

per capita
Deforestation 0.68 1.28 223 Annual deforestation, average percentage change,

1990 - 1995
Energy Depletion 3.13 7.43 223 In percent of GDP, equal to the product of unit

resource rents and the physical quantities of fossil 
fuel energy extracted

Rural Water Access 51.2 27.42 137 Access to clean water, percentage of rural
population, 1990 - 1996

Urban Water Access 76.28 21.76 140 Access to clean water, percentage of urban
population, 1990 - 1996

GATT/WTO (1 = Yes) 0.78 0.41 232 Member country of GATT/WTO
Real GDP Per Capita 7302.91 7468.41 232 Real (1990) gross domestic product divided by 

population
Polity 3.17 6.85 232 Index, ranging from -10 (strongly autocratic) to 10

(strongly democratic)
Area Per Capita 51.60 89.56 232 Land area divided by population
Source:  Environmental indicators and country-level controls are from Frankel and Rose (2002, 2005); GATT/WTO membership data are from
Rose (2004a, 2005).  N  = number of observations.  Observations from 1990 and 1995.  See http://faculty.haas.berkeley.edu/arose/. 



Table 3.  Impact of GATT/WTO Membership on Environmental Quality

Additional Standard HIR Standard
Specification Variable τ τ norm Error τ τ norm Std Error τ τ norm Error

(1) constant 1.56 1.56 0.58 -0.03 -0.03 0.20 -4.57 -4.57 1.54
(2) x1 0.94 0.42 0.64 0.18 0.12 0.18 -3.49 -4.16 1.33
(3) x2 0.82 0.27 0.71 0.19 0.13 0.18 -3.50 -4.16 1.33
(4) x3 0.87 0.33 0.69 0.18 0.11 0.18 -3.09 -3.69 1.20
(5) x1

2 1.72 1.03 0.53 0.21 0.27 0.15 -2.10 -1.60 1.14
(6) x2

2 1.77 1.06 0.50 0.21 0.26 0.15 -2.19 -1.76 1.14
(7) x3

2 1.78 1.05 0.49 0.21 0.21 0.15 -2.22 -2.18 1.07
(8) x1

3 1.77 1.04 0.50 0.21 0.23 0.15 -2.14 -1.94 1.06
(9) x2

3 1.74 1.02 0.51 0.22 0.21 0.15 -2.09 -2.20 1.07
(10) x3

3 1.75 1.02 0.50 0.22 0.20 0.15 -2.10 -2.27 1.06
(11) x1*x2 1.75 1.01 0.49 0.24 0.29 0.14 -1.99 -1.52 1.06
(12) x1*x3 1.75 1.01 0.50 0.26 0.33 0.14 -1.71 -1.12 0.96
(13) x2*x3 1.77 1.04 0.48 0.26 0.30 0.14 -1.80 -1.43 1.02
(14) x1

2*x2 1.80 1.04 0.47 0.25 0.22 0.14 -1.76 -2.08 1.10
(15) x1

2*x3 1.79 1.03 0.46 0.25 0.20 0.14 -1.72 -2.22 1.10
(16) x2

2*x1 1.79 1.03 0.47 0.25 0.20 0.14 -1.72 -2.22 1.09
(17) x2

2*x3 1.78 1.00 0.48 0.25 0.20 0.14 -1.72 -2.22 1.09
(18) x3

2*x1 1.69 0.86 0.52 0.25 0.21 0.14 -1.68 -1.97 1.06
(19) x3

2*x2 1.69 0.91 0.52 0.24 0.22 0.15 -1.65 -1.85 1.04
Notes: The propensity score equation in specification (1) contains only a constant.  Each specification after that includes the variables from the previous specification plus the additional 
variable.  x1 is real GDP; x2 is area per capita; and, x3 is a measure of polity.  See text for further details.
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Table 3 (cont.).  Impact of GATT/WTO Membership on Environmental Quality

Additional Standard Standard
Specification Variable τ τ norm Error τ τ norm Error

(1) constant 8.85 8.85 5.09 2.14 2.14 4.54
(2) x1 10.08 6.24 5.64 5.72 -1.64 6.38
(3) x2 12.29 7.72 5.24 7.94 -0.95 6.37
(4) x3 12.35 8.01 5.29 6.93 -1.59 6.20
(5) x1

2 17.12 10.24 4.67 16.55 3.18 5.27
(6) x2

2 17.11 8.79 4.63 17.91 2.49 5.27
(7) x3

2 17.31 9.58 4.62 17.49 2.86 5.53
(8) x1

3 17.27 9.55 4.64 17.51 2.86 5.60
(9) x2

3 16.88 9.54 4.88 16.55 2.84 5.96
(10) x3

3 16.94 9.48 4.92 16.59 2.74 5.95
(11) x1*x2 16.90 9.08 4.93 17.71 2.90 5.43
(12) x1*x3 16.71 8.73 4.86 17.74 2.66 5.33
(13) x2*x3 15.74 8.93 8.73 15.95 2.69 8.18
(14) x1

2*x2 15.69 8.06 6.79 18.12 3.34 6.17
(15) x1

2*x3 17.04 7.25 4.91 21.11 3.12 5.46
(16) x2

2*x1 17.14 7.34 4.88 21.34 3.07 5.63
(17) x2

2*x3 18.35 8.09 4.74 22.52 3.25 5.66
(18) x3

2*x1 18.87 7.48 11.24 24.19 3.87 9.79
(19) x3

2*x2 18.51 7.64 12.77 23.01 3.72 12.68
Notes: The propensity score equation in specification (1) contains only a constant.  Each specification after that includes the variables from the previous specification plus the additional 
variable.  x1 is real GDP; x2 is area per capita; and, x3 is a measure of polity.  See text for further details.
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