

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

Accelerated Simulation of Large Scale Power System Transients

ANAS ABUSALAH

Département de Génie électrique

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor

Génie électrique

Avril 2019

© Anas Abusalah, 2019.

ii

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

Cette thèse intitulée :

Accelerated Simulation of Large Scale Power System Transients

présentée par Anas ABUSALAH

en vue de l’obtention du diplôme de Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Houshang KARIMI, président

Jean MAHSEREDJIAN, directeur de recherche

Ilhan KOCAR, membre et codirecteur de recherche

Omar SAAD, membre et codirecteur de recherche

Sébastien DENNETIÈRE, membre

Mario PAOLONE, membre externe

iii

DEDICATION

To my parents, wife, son and siblings…

iv

ACKNOWLEDGEMENTS

To my main supervisor Prof. Jean Mahseredjian for all the support and encouragements throughout

my PhD studies. This work won’t be possible without your supervision and input, I would like to

thank you for allowing me to work under your supervision and giving me the trust and friendship

during the past four years.

To my co-supervisor Mr. Omar Saad, your support and dedication kept me going at times of

despair. I want to thank you from the bottom of my heart for all the help you offered me and without

your hands on experience this work will not be the way it is now.

To my co-supervisor Prof. Ilhan Kocar, I would like to thank you for all the discussion and advices

your offered me during my studies.

To all organizations involved in this project EDF, IREQ, OPAL-RT, Polytechnique Montreal and

RTE for giving me the opportunity to work on this challenging project and for all financial support

you offered me during the past four years.

To all my friends and colleagues whom I met at Polytechnique Montreal during my studies, to all

students, post docs and research associates. Thank you all for all special moments we spent together

in the lab and for being true friends.

To my brothers Issam and Mohammad and my sisters Lama and Shurouq for encouraging me and

keeping me in your thoughts throughout my PhD studies.

To my wife and son who have been so patient along this journey, I would like to thank you from

the bottom of my heat for being there for me whenever I needed any kind of support.

To my parents, My father Ahmad Abusalah, your advice, guidance and words were inspiring to me

and I only dream of one day being as great and you are. My mother Wafaa Mousa, you raised me

with the entire world kindness and love, and I owe it all to you for being the person I am today. I

want to thank you both for keeping me in your prayers and never letting me down at any time.

v

RÉSUMÉ

Le temps de simulation est un paramètre crucial de l’analyse des transitoires dans les réseaux

électriques et il est en train de devenir l’un des facteurs les plus importants pour mesurer les

performances et la fiabilité des logiciels. Actuellement, la vitesse et les performances des

processeurs ont atteint un point où l’accélération de gain en vitesse et d’opérations en virgule

flottante peut être réduite en se concentrant uniquement sur l’aspect vitesse des processeurs

individuels. Au contraire, la recherche en informatique et le développement de matériel

informatique tendent de plus en plus à rendre les processeurs parallèles plutôt que plus rapides.

D'autre part, la simulation des systèmes électriques devient de plus en plus complexe avec

l'introduction de modèles complexes tels que les énergies renouvelables, les composantes de

réseaux intelligents et l'électronique de puissance. En outre, la demande de puissance sans cesse

croissante et l’augmentation de la zone de couverture des réseaux de distribution d’énergie

contribuent à l’augmentation de la taille des réseaux de distribution d’énergie et ralentissent encore

plus la simulation électromagnétique transitoire de ces réseaux.

De nombreux -logiciels de simulation de type EMT effectuent actuellement leurs opérations de

manière séquentielle en utilisant un seul - processeur, plutôt que tous les processeurs de la machine.

Ce comportement entraîne un temps de simulation long et introduit des difficultés pour simuler des

réseaux de systèmes d'alimentation plus avancés et complexes. Ce type de délai devient un obstacle

lorsque de grands réseaux, réels ou existants, sont utilisés. Par exemple, simuler le réseau d'Hydro-

Québec doté d'une matrice de taille 41555 × 41555 et contenant un grand nombre de dispositifs de

commutation et des éléments non linéaires nécessite 1765 secondes pour simuler une seconde avec

un pas de temps de 50us.

 La programmation parallèle multithread est maintenant disponible dans les compilateurs

modernes. Elle peut être utilisée pour améliorer de manière significative les performances des

calculs EMT. La recherche actuelles dans ce domaine est principalement appliqué à des systèmes

moins complexes qui nécessitent l'intervention de l'utilisateur pour le découpage parallèle et

manque de généralisation pour toute topologie rencontrée dans les études réels. Cette thèse

développe une méthode de parallélisation entièrement automatique applicable aux systèmes à

grande échelle avec des topologies arbitraires sans aucune intervention de l'utilisateur.

vi

Cette thèse présente les avancées existantes dans le domaine de l'accélération de la simulation des

transitoires électromagnétiques et met en évidence les différentes approches adoptées pour obtenir

une simulation plus rapide de l'EMT. L'accent est principalement mis sur le threading à travers le

processeur exclusivement sur les ordinateurs de bureau modernes utilisés quotidiennement par les

ingénieurs.

Ce document portera principalement sur le threading exclusivement via le processeur. Dans cette

thèse, deux approches sont adoptées pour améliorer les performances et le temps de calcul de la

simulation EMT. La première approche est axée sur la recherche d’un solveur simple, rapide et

efficace, qui servira de base à ce travail de recherche. Ce solveur est entièrement étudié et

personnalisé pour éviter tout calcul inutile qui n’est pas nécessaire pour les simulations de type

EMT. Différents solveurs linéaires de matrices creuses sont considérés dans cette thèse. Ces

solveurs sont traditionnellement divisés en deux catégories, les solveurs directs et itératifs. Dans

cette étude, l’accent sera mis sur la sélection du meilleur solveur direct parmi KLU et SuperLU

deux solveurs basés sur l’utilisation de l’ordonnancement de degrés minimum,.

La deuxième approche pour obtenir une accélération de la simulation EMT consiste à appliquer

une technique de calcul parallèle au processus de simulation et à permettre à différentes tâches

d'être résolues en parallèle sur différents processeurs. De nombreuses techniques de parallélisation

sont étudiées pour trouver la plus performante avec le moins de modifications possibles du code

du solveur et exigeany le moin de temps d’implémentation . De nombreux standards de

programmation multithreading sont pris en compte, tels que le multithreading C ++ 11 et le

standard OpenMP.

Le nouveau solutionneur proposé (SMPEMT) est validé et testé sur un large éventail de points de

repère. Cette validation est effectuée à l'aide du logiciel de simulation EMT EMTP-RV en tant que

support de test. Tous les résultats des tests SMPEMT sont comparés aux résultats de l'EMTP et la

vitesse de la simulation et le gain d'accélération sont également vérifiés.

vii

ABSTRACT

Simulation time is a crucial parameter in power system transient analysis. The simulation needs

for electromagnetic transients are continuously increasing. The electromagnetic transient (EMT)

type tools are now also used for the simulation of slower electromechanical transients in large scale

power systems. The EMT approach for power system analysis is the most accurate approach, but

it suffers from computation performance issues. Research on this aspect is currently of crucial

importance. Research is timely and should increase the application range of EMT-type tools. In

fact very fast EMT-type tools can have a major impact on the simulation and analysis of modern

power grids with increased penetration of renewables.

Currently, computer processor speed and performance reached a point where not much speed gain

and floating-point operation acceleration can be achieved by only focusing on the speed aspect of

individual processors. Rather, the trend in computer research and hardware development is

becoming more and more focused on making processors parallel rather than faster.

Many EMT-Type simulation packages currently perform their operations sequentially by using

only one CPU core rather than all machine processors. This behaviour results in long simulation

time and introduces major difficulties when simulating large and complex power grids. This type

of delay becomes a show stopper when large, real and existing networks are used.

Multithreaded parallel programming is now available in modern compilers. It can be used to

significantly improve the performance of EMT computations.

Current research in this field has been mostly applied to less complicated systems and requires user

intervention. This thesis develops a fully automatic parallelization method that is applicable to

large scale systems with arbitrary topologies.

This PhD thesis presents existing progress in the field of electromagnetic transient simulation

acceleration and highlights the different approaches that are adopted to achieve faster EMT

simulation. The focus is mainly on threading through CPU exclusively on modern desktop

computers used by engineers on daily basis.

In this thesis, two approaches are adopted to improve EMT simulation performance and

computation time. The first approach is focused on finding a sparse solver that is fast and efficient

viii

to act as a baseline for all computations. This solver is studied throughout and customized to

improve performance for EMT computation needs.

The second approach to achieve acceleration is by applying parallel computation techniques on the

computation process and allow different tasks to be solved in parallel on different processors.

Parallelization techniques are studied to find the best performing parallelization technique with the

least changes to the solver code and minimum implementation time.

The outcome of research is a new parallel solver, named SMPEMT. It is demonstrated and tested

on practical large-scale benchmarks.

ix

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

RÉSUMÉ .. V

ABSTRACT ...VII

TABLE OF CONTENTS .. IX

LIST OF TABLES ...XII

LIST OF FIGURES .. XIII

LIST OF SYMBOLS AND ABBREVIATIONS.. XVIII

CHAPTER 1 INTRODUCTION ... 1

1.1 Thesis Outline .. 3

1.2 Contributions .. 4

1.3 Literature review .. 5

1.3.1 Modified-Augmented-Nodal Analysis (MANA) ... 6

1.4 Parallelization and network tearing .. 12

1.4.1 Block Triangular Format (BTF) ... 12

1.4.2 METIS .. 16

1.4.3 SSN and MANA ... 18

1.4.4 Scotch ... 18

1.4.5 Bordered Block Diagonal matrix ... 20

1.4.6 Compensation Theory .. 20

x

1.5 Sparse Matrices .. 28

1.5.1 Sparse Matrix representation .. 30

1.6 Sparse Solvers .. 36

1.6.1 SuperLU ... 36

1.6.2 KLU .. 42

1.6.3 EMTP-MDO solver .. 58

1.6.4 Threading ... 62

CHAPTER 2 IMPLEMENTATION OF SPARSE SOLVER PACKAGE FOR EMT

SIMULATION 66

2.1 Selecting a Sparse Solver ... 67

2.2 KLU Interface .. 70

2.3 Pivot validity test .. 74

2.4 Partial factorization .. 76

2.5 Parallel KLU Implementation .. 82

2.5.1 Shared memory Model ... 82

2.5.2 Distributed Memory Model .. 84

2.6 Load balancing ... 88

CHAPTER 3 TESTING AND RESULTS .. 90

3.1 SMPEMT testing and validation .. 91

3.1.1 Hydro-Quebec Full network (HQ-L) ... 92

3.1.2 T0-Grid ... 98

3.1.3 T1-AVM Grid .. 105

3.1.4 T2-AVM Grid .. 111

3.1.5 IEEE14 ... 116

xi

3.1.6 IEEE7000 ... 118

3.1.7 IEEE39 ... 121

3.1.8 IEEE118-GMD ... 128

3.2 Results analysis .. 132

CHAPTER 4 CONCLUSION AND RECOMMENDATIONS .. 135

4.1 Thesis summary .. 135

4.1.1 Sparse matrix package for EMTs (SMPEMT) ... 135

4.2 Future work .. 137

REFERENCES .. 139

xii

LIST OF TABLES

Table 1.1 Matrix (1.47) nonzero elements order .. 31

Table 1.2 Elimination graph nodes weight ... 61

Table 2.1 Solver comparison timings (s), EMTP solution, Single-Core .. 67

Table 2.2 Reluctance based transformer model case =Ax b solution time 70

Table 3.1 Testing platform ... 91

Table 3.2 HQ-grid sparse matrix solution timings for 1s simulation and t =50 s 95

Table 3.3 T0-DM sparse matrix solution timings for 1s simulation and t =50 s 101

Table 3.4 T1-Grid sparse matrix solution timings for 1s simulation and t =50 s 108

Table 3.5 T2-Grid sparse matrix solution timings for 1s simulation and t =50 s 114

Table 3.6 IEEE14 sparse matrix solution timings for T=1s and t =50 s 117

Table 3.7 IEEE7000 sparse matrix solution timings for 1s simulation and t =50 s 120

Table 3.8 T2-Grid sparse matrix solution timings with BBD (s) ... 121

Table 3.9 IEEE39- Grid sparse matrix solution timings for T=1s and t =50 s 124

Table 3.10 IEEE118- Grid sparse matrix solution timings for T=400s and t =50 s 131

Table 3.11 Testing cases performance summary ... 134

xiii

LIST OF FIGURES

Figure 1.1 Ideal transformer model unit ... 8

Figure 1.2 MANA Formulation Example .. 9

Figure 1.3 Discretized inductance model for time domain MANA solution 10

Figure 1.4 BUS1 branches discretized model .. 11

Figure 1.5 An example of a matrix in BTF form ... 13

Figure 1.6 An example of a matrix in BDF .. 13

Figure 1.7 BTF format test case ... 15

Figure 1.8 Sparsity pattern of matrix A of circuit shown in Figure 1.7 15

Figure 1.9 BTF Sparsity pattern of matrix A of circuit shown in Figure 1.7 15

Figure 1.10 IEEE-1138 network ordered by METIS ... 17

Figure 1.11 Scotch example - matrix graph ... 19

Figure 1.12 Doubly bordered block diagonal (DBBD) .. 20

Figure 1.13 Separation of two networks using the compensation method 21

Figure 1.14 Two networks N1 and N2 connected through wires in network N3. 23

Figure 1.15 Compensation based equivalent of network in Figure 1.14. 24

Figure 1.16 Small scale circuit with CP transmission line ... 29

Figure 1.17 Non-zero pattern of matrix for the circuit of Figure 1.16. .. 29

Figure 1.18 Types of Supernodes T1, T2, T3 and T4 respectively .. 38

Figure 1.19 SuperLU matrix example .. 38

Figure 1.20 SuperLU Example L matrix (symbolic version) ... 39

Figure 1.21 SuperLU Example U matrix (symbolic version)... 39

Figure 1.22 L + U - I of matrix A (symbolic) .. 40

xiv

Figure 1.23 T1 Supernodes of matrix A ... 40

Figure 1.24 Nonzero pattern of x when solving Lx=b .. 43

Figure 1.25 L̂i and Û i non-zero pattern allocation ... 44

Figure 1.26 Analysis of 1st column of matrix (1.68) ... 47

Figure 1.27 Analysis of 2nd column of matrix (1.68) .. 49

Figure 1.28 Analysis of 3rd column of matrix (1.68) .. 51

Figure 1.29 Analysis of 4th column of matrix (1.68) ... 53

Figure 1.30 Analysis of 5th column of matrix (1.68) ... 54

Figure 1.31 Matrix A elimination graph ... 60

Figure 1.32 1st elimination step of matrix A graph .. 61

Figure 1.33 2nd elimination step of matrix A graph .. 61

Figure 1.34 3rd elimination step of matrix A graph ... 62

Figure 1.35 4th elimination step of matrix A graph ... 62

Figure 1.36 Parallel implementation initialization phase ... 64

Figure 1.37 Parallel implementation Execution ... 65

Figure 2.1 Top view of Reluctance based transformer model case (Contributed by EDF) 68

Figure 2.2 Reluctance based transformer model case matrix sparsity pattern 69

Figure 2.3 Reluctance based transformer model case EMTP permutation for Matrix A 69

Figure 2.4 Reluctance based transformer model case KLU permutation of matrix A 70

Figure 2.5 ISO_C_BINDING types declaration .. 72

Figure 2.6 KLU symbolic declaration using ISO_C_BINDING ... 73

Figure 2.7 ISO_C_BINDING functions declaration syntax .. 73

Figure 2.8 ISO_C_BINDING declaration of KLU_ANALYZE function 74

xv

Figure 2.9 Pivot validity test flow chart ... 75

Figure 2.10 Cells to BTF blocks mapping ... 77

Figure 2.11 Sample circuit for demonstrating partial factorization ... 79

Figure 2.12 Shared memory OpenMP model ... 84

Figure 2.13 KLU_unit type declaration ... 85

Figure 2.14 Distributed model OpenMP design ... 87

Figure 3.1 Hydro-Quebec case top view .. 92

Figure 3.2 HQ-L matrix A before BTF ... 94

Figure 3.3 HQ-L matrix A after BTF .. 94

Figure 3.4 SMPEMT HQ-L Grid simulation time and gain ... 95

Figure 3.5 HQ-L Grid fault location .. 96

Figure 3.6 HQ-L grid line L7016 voltage drop - phase A .. 97

Figure 3.7 HQ-L grid Generator Mercier_A1 real power .. 97

Figure 3.8 HQ-L grid Generator Hydrocanyon_A real power ... 98

Figure 3.9 T0-Grid top view .. 99

Figure 3.10 T0-Grid matrix A before BTF .. 100

Figure 3.11 T0-Grid matrix A after BTF ... 101

Figure 3.12 SMPEMT T0-Grid simulation time and gain for DM model 101

Figure 3.13 T0-DM Grid fault location .. 102

Figure 3.14 Line ADAPA TO GOKCE voltage drop - phase A .. 103

Figure 3.15 Generator CAYIR TPP CAYIRHAN U1 real power ... 104

Figure 3.16 Generator CAYIR TPP CAYIRHAN U2 real power ... 104

Figure 3.17 T1-AVM Grid top view .. 106

xvi

Figure 3.18 T1-AVM Grid matrix A before BTF permutation. ... 106

Figure 3.19 T1-AVM Grid matrix A after BTF permutation ... 107

Figure 3.20 SMPEMT T1-Grid simulation time and gain for AVM model 108

Figure 3.21 T1-AVM fault location ... 109

Figure 3.22 T1-Grid line ADAPA TO CAYIR voltage drop - phase A 110

Figure 3.23 Generator CAYIR TPP CAYIRHAN U2 real power ... 110

Figure 3.24 T2-AVM Grid top view .. 112

Figure 3.25 T2-AVM Grid matrix A before BTF permutation .. 113

Figure 3.26 T2-AVM Grid matrix A after BTF permutation ... 113

Figure 3.27 SMPEMT T2-Grid simulation time and gain for AVM model 114

Figure 3.28 Line ADAPA_TO_CAYIR voltage drop - Phase A ... 115

Figure 3.29 SM CAYIR TPP CAYIRAN U2 real power .. 115

Figure 3.30 IEEE14-Grid matrix A before BTF permutation .. 117

Figure 3.31 IEEE14-Grid matrix A after BTF permutation ... 117

Figure 3.32 Line PI15 voltage drop - phase A ... 118

Figure 3.33 IEEE7000-Grid matrix A before BTF permutation .. 119

Figure 3.34 IEEE7000-Grid matrix A after BTF permutation ... 120

Figure 3.35 SMPEMT IEEE7000-Grid simulation time and gain .. 120

Figure 3.36 IEEE39-Grid top view .. 123

Figure 3.37 IEEE39-Grid matrix A before BTF permutation .. 124

Figure 3.38 IEEE39-Grid matrix A after BTF permutation ... 124

Figure 3.39 SMPEMT IEEE39-Grid simulation time and gain .. 125

Figure 3.40 IEEE39 fault location .. 126

xvii

Figure 3.41 Line 03-04 voltage drop - phase A ... 127

Figure 3.42 Power Plant 10 real power .. 127

Figure 3.43 Single line diagram of IEEE-118 Grid ... 129

Figure 3.44 IEEE118-Grid matrix A before BTF permutation .. 130

Figure 3.45 IEEE118-Grid matrix A after BTF permutation ... 130

Figure 3.46 SMPEMT IEEE118-Grid simulation time and gain .. 131

Figure 3.47 A network with a limiting block ... 133

Figure 3.48 A network with a perfect distribution of blocks ... 133

xviii

LIST OF SYMBOLS AND ABBREVIATIONS

EMT: Electromagnetic transient

MANA: Modified augmented nodal analysis

EMTP: Electromagnetic transient program

BTF: Block triangular form

BDF: Block diagonal form

AMD: Approximate Minimum Degree

COLAMD: Column Approximate Minimum Degree

A : Matrix with no permutation

Â : Matrix with BTF permutation

CPU: Central processing unit

GPU: Graphical processing unit

TVMs: time-varying models

ITVM: iterative time-varying method

CSC: Compressed Column Format

CSR: Compressed Raw Format

NNZ: non-zero element

NE: Network equations

NM: Non-linear models

TVM: Time-varying models

BDF: Block diagonal Format

HQ: Hydro-Quebec

MDO: Minimum degree ordering

xix

FLCC: First left changed column

FLDC: First left dynamic column

SMPEMT: Sparse matrix package for EMTs

IBP: In block permutation

NFPO: Number of floating-point operations

DFS: Depth first search

KLU-FF: KLU Full Factorization technique

KLU-RF: KLU Re-Factorization technique

1

CHAPTER 1 INTRODUCTION

The circuit based electromagnetic transient (EMT) simulation approach is a powerful approach for

studying power transmission and distribution grids. The range of applications of EMT-type tools

varies from very fast transients to slower electromechanical transients. Typical studies include

switching transients, lighting transients, HVDC transmission, wind generation and

electromechanical transients from small to very large-scale systems. EMT simulation is also used

in the design and sizing of power network components such as insulation levels and energy

absorption capabilities. EMT-type simulation tools are subdivided into two main categories: off-

line and real-time. The main goal of performing off-line is to perform simulations on generic

computers that are easily available to engineers. Real-time simulation tools are capable of

generating results in synchronism with a real-time clock. Such tools have the advantage of being

capable of interfacing with physical devices and maintaining data exchanges within the real-time

clock. The capability to compute and interface within real-time, imposes important restrictions on

the design of such tools. Current off-line EMT-type simulation tools remain more accurate than the

real-time counterparts. They are also capable of solving much larger power grids and maintain

higher accuracy. Nevertheless, research on the acceleration of off-line tools is also applicable to

the eventual acceleration of real-time tools. Convergence of these tools into a single environment

is inevitable in the near future.

Instead of using EMT-type tools in time-domain, it is also possible to simulate large power grids

through phasor-domain computations. Phasor-domain tools are also referred to as transient stability

(TS) tools. The TS approach can be very fast, especially when solving very large-scale systems,

but it suffers from important accuracy issues. This is becoming nowadays an important issue with

the increased usage of power electronics-based components (wind generation, HVDC,

photovoltaics...) in modern power systems. In fact, in more and more applications, the much more

accurate EMT-type methods and models are called to replace the usage of TS-type simulation and

modeling. This trend will subsist, and EMT-type tools will receive wider and wider acceptance in

practical applications, especially when they become capable of much higher efficiency for

networks of very large dimensions.

This thesis presents the implementation of a parallel sparse matrix solver used for improving the

computational speed of EMT-type tools. The new approach contributes in enhancing the overall

2

quality of EMT simulation by reducing the simulation time while maintaining the simulation

accuracy and reliability. Unlike other solvers published in the literature that are demonstrated by

repeating a small network multiple number of times, the proposed approach can be generalized and

is valid on any power system network. The proposed new method is also capable of automatically

parallelizing networks of arbitrary topologies without any user intervention.

The new method presented in this thesis is based on the KLU sparse matrix solver which is

currently the most suitable for circuit-based simulation methods [1]. The solver is programmed

using parallelization algorithm that can automatically detect independent parts of the sparse matrix

separated by the natural decoupling available in transmission line/cable models. This decoupling

technique can be detected without any user intervention and pre-determination of different

subnetworks.

Due to the iterative process required for solving nonlinearities in various models, this thesis also

contributes modifications into the KLU solver for improving its performance when repetitive

matrix refactorizations are requested.

The proposed new approach is demonstrated using an EMT-type software (i.e EMTP) that uses a

fully iterative solution method for all nonlinear models [2]. It remains however applicable to any

EMT-type software tool that uses sparse matrices. A modular sparse matrix package can be

replaced easily by the package elaborated in this thesis.

3

1.1 Thesis Outline

This thesis is divided into four chapters that are summarized below.

Chapter 1: Introduction

This chapter introduces the concept of EMT simulation and the modified-augmented nodal analysis

(MANA) approach used in the EMTP simulation package to form its sparse matrix [3]. This

approach is explained in detail and illustrated with an example. In addition, different sparse solvers

are introduced in this chapter including the minimum degree ordering (MDO) based approach used

in EMTP [4]. These solvers are used and compared to select the fastest package and enhance it as

it will be demonstrated in the following sections.

In the second part of this chapter, different methods such as BTF, MDO, SSN and Compensation

theory are introduced as well.

The last part of this chapter discusses different threading algorithms used in implemented the multi-

threaded sparse solver used in this thesis.

Chapter 2: Implementation of Sparse Matrix Package for EMTs

In this chapter the approaches used to accelerate the simulation process are explained and the

implementation of a new sparse solver that is customized only for EMT-type simulations is

introduced and explained. In addition, a comparison between the new sparse solver and other

already existing ones is presented and discussed.

Chapter3: Test Results

In this chapter, different benchmarks used in the process of validating the new sparse solver will

be presented. These test cases consist of real and existing networks with complex models, including

nonlinearities and power-electronics converters for wind generator applications. Each network’s

topology is described with related matrices and complexity level. Computational timings are used

to demonstrate the advantages of the approach presented in this thesis.

The results of each test case are analyzed and studied. The acceleration rate (gain) for each case

will be looked at in depth and compared with other cases. Observations and limitations will be

address herein as well.

4

 Chapter 4: Conclusion and Future work

This chapter provides a quick summary of the overall work done throughout this PhD work and it

highlights the main milestones that were achieved during this project. In addition, it provides

recommended future work.

1.2 Contributions

In this thesis the multithreading approach used for programming a parallel sparse solver is based

on the OpenMP standard and the use of distributed memory design. Thanks to this design an

efficient parallel solution is achieved, and the effect of overhead timings is kept at minimum. This

parallel model design minimizes shared memory between different threads and allows each thread

to store its own data on its own designated memory. This approach makes it easier for all threads

to fetch and write data to memory without the need to communicate with the master thread or any

other threads for that matter.

Another noticeable contribution in this thesis is the fact that the proposed method is tested on

realistic large-scale network benchmarks. Parallelization is achieved without any user intervention.

Such practical networks allow to derive more realistic conclusions on the potential gains in EMT-

type solver parallelization.

5

1.3 Literature review

The computing time reduction for the simulation of electromagnetic transients[2][5] (EMTs) is a

crucial research topic. The EMT-type[5] simulation methods are circuit based and can use very

accurate models for an extended frequency range of power system phenomena. This qualifies them

as being of wideband type. In fact, the EMT approach is applicable to both slower

electromechanical transients and much faster electromagnetic transients. The computation of

electromechanical transients can be achieved with EMT-type solvers for very large networks [6]

and requires significant computing time when compared to phasor-domain approaches, but even

for smaller networks, the computing time can become a key factor due to numerical integration

time-step constraints or model complexity level. More and more challenging simulation cases are

created for studying modern power systems, those include, for example, HVDC systems and wind

generation[7].

There are several techniques for improving computational performance in EMT-type solvers. Such

techniques include improvements in model performance using, for example, average-value

models[8] for power-electronics based systems or circuit reduction [9]. Network reduction can be

also achieved using frequency domain fitting[10], or through dynamic equivalents[11]. Other

approaches include usage of multiple time-steps[12], waveform relaxation [13] and combinations

of different methods [14]. An important problem in network solution parallelization methods, such

as[15], is that user intervention is required for setting the network separation locations and task

scheduling. The user should be aware of the case details in order to best allocate the separation

locations and optimize the performance of the parallel solution. It is also necessary to program

network topology analysis and, in some methods such as in [16], analysis can be used for automatic

task scheduling.

A more direct path towards computational speed improvement in EMT-type numerical methods is

through efficient sparse matrix solvers and parallelization. This chapter introduces different types

of sparse solvers used in general circuit analysis. These solvers are currently implemented in

different simulation tools and each has its own advantages and disadvantages. Moreover, parallel

computation concept will be discussed, and different parallel programming techniques will be

introduced. These techniques will be used in this thesis to implement the EMT customized sparse

6

solver. In addition, different ordering techniques will be discussed such as AMD, COLAMD, BTF

and METIS.

This work targets off-line simulation methods and presents CPU-based parallelization for

conventional multi-core computers using a sparse matrix solver, named KLU [1].

1.3.1 Modified-Augmented-Nodal Analysis (MANA)

The modified-augmented-nodal analysis (MANA) method is briefly recalled in this section.

The traditional approach for the formulation of main network equation is based on nodal analysis.

The network admittance matrix
nY is used for computing the sum of currents entering each

electrical node and the following equation results from classical nodal analysis.

n n nY v = i (1.1)

where,
nv is the vector of node voltages and the members of

ni holds the sum of currents entering

each node. It is assumed that the network has a ground node at zero voltage which is not included

in (1.1) . Since the network may contain voltage sources (known node voltages), equation (1.1)

must be normally partitioned to keep only the unknown voltages on the left hand side

     
     
     

' ' '

n ns n n

sn ss s s

Y Y v i
=

Y Y v i
 (1.2)

  = −n n n ns sY v i Y v (1.3)

where '

nY is the coefficient matrix of unknown node voltages 
nv , '

ni holds the sum of currents

entering nodes with unknown voltage, ns nY Y and relates to known voltages
sv . It is noticed that

T
'

n n s
v = v v   [20].

Equation (1.3) has several limitations. It does not allow, for example, to model branch relations

instead of nodal relations and it assumes that every network model has an admittance matrix

representation, which is not possible in many cases. This is where the modified augmented nodal

analysis comes into play. The MANA formulation method [20][21][22] is a relatively new

approach to formulate network equations. This method offers several advantages [3] over classical

7

nodal analysis. Its formulation is recalled here to relate to material presented in the following

sections. In MANA the system of equations is generic and can use different types of unknowns in

addition to voltage. Equation (1.3) is augmented to include generic device equations and the

complete system of network equations can be rewritten in the more generic form as seen in (1.4).

N N NA x = b (1.4)

In this equation n NY A , Nx contains both unknown voltage and current quantities and Nb

contains known current and voltage quantities. The matrix NA is not necessarily symmetric and it

is possible to directly accommodate non-symmetric model equations. Equation (1.4) can be written

explicitly as

n c n n

r d x x

Y A v i

A A i v

     
=     

    
 (1.5)

where the matrices rA , cA and dA (augmented portion, row, column and diagonal coefficients)

are used to enter network model equations which are not or cannot be included in nY , xi is the

vector of unknown currents in device models, xv is the vector of known voltages,  N n xx = v i
T

and  N n xb i v
T

= [23].

It is emphasized that the system in (1.5) is non-symmetric and can also accommodate generic

equations, such as

1 2 3 4k m x y zk v k v k i k i b+ + + + = (1.6)

Where the terms on the left contribute coefficients (jk) into the A matrix for voltage (jv) and

current (ji) unknowns, and zb is a cell in the b vector. This equation allows integrating directly

source and switching equations. For example, an ideal switch can be represented by

 0k m s kmkv kv k i− − = (1.7)

When the ideal switch is in closed position, 1k = and 0sk = . When the ideal switch is open, 0k =

and 1sk = . It is also possible to model non-ideal switches by setting 1k = and replacing sk by

8

high and low resistance values. Other, models, such as ideal transformers with tap control can be

easily accommodated [3].

Single phase and three-phase transformers can be built in EMTP using the ideal transformer unit

shown in Figure 1.1. It consists of dependent voltage and current sources. The secondary branch

equation is given by

2 2 1 1

0k m k mv v gv gv− − + = (1.8)

Where, g is the transformation ratio. This equation contributes its own row into the matrix rA

whereas the matrix cA contains the transposed version of that row. It is possible to extend to

multiple secondary windings using parallel connected current sources on the primary side and

series connected voltage sources on the secondary side. Leakage losses and the magnetization

branch are added externally to the ideal transformer nodes.

Three-legged core-form transformer models or any other types can be included using coupled

leakage matrices and magnetization branches.

Figure 1.1 Ideal transformer model unit

The MANA formulation (1.4) is completely generic and can easily accommodate the juxtaposition

of arbitrary component models in arbitrary network topologies with any number of wires and

nodes. It is not limited to the usage of the unknown variables presented in (1.5) and can be

augmented to include different types of unknown and known variables. The MANA formulation is

conceptually simple to realize and program [23][24].

In order to provide a better understanding of the MANA formulation, the following example

illustrates a simple circuit with its MANA formulation. Figure 1.2 illustrates the example circuit

1k 2k

1m 2m

2 2k mg i−

2 2k mi

()1 1k mg v v−
+

-

9

structure with all its components names and ratings. The analysis of this circuit starts by forming

the submatrix
nY that contains the admittance matrix of the MANA main matrix.

Figure 1.2 MANA Formulation Example

In order to find the time domain system of equations using the MANA formulation, the linear

components of the circuit above (i.e inductors and capacitors) need to be discretized for a given

integration time step t using a numerical integration method. Although any discretization rule can

be used, the trapezoidal rule technique has been used herein to discretize nonlinear model of the

circuit into linear representation. The inductor equation shown in (1.9) is discretized into a linear

format shown in (1.10), this discretization allow to model the inductor as shown in Figure 1.3.

Similarly, the capacitor equation can be discretized in a similar fashion as well.

km
km

di
v L

dt
= (1.9)

2 2t t t t t tkm km km km

t t
i v v i

L L − −

 
= + + (1.10)

10

 Figure 1.3 Discretized inductance model for time domain MANA solution

Equation (1.11) shows the MANA formulation of the circuit shown in Figure 1.2. The equation of

each node has been written by replacing the inductors and capacitors connected to it by their

discretized model. Node 1 for example (which represents BUS 1 in Figure 1.2), has L, C and RL

branches connected to it in addition to the current source
1si . Hence, replacing the L, C and RL

branches with their discretized model produces the node junction shown in Figure 1.4 where R1,

R3 and R4 represent the resistors in the discretized model of L1, C1 and L2 respectively.

s1 h61 h12111 12 16

221 22 24

333

442 44

5

661 66

Vs

SW1

SW2

i +i -i -vy y 0 0 0 y 0 0 0

vy y 0 y -2 0 0 0 0

v0 0 y 0 0 0 0 0 0

v0 y 0 y 0 0 0 0 0

v =0 -2 0 0 2 0 0 0 0

vy 0 0 0 0 y 1 0 0

i0 0 0 0 0 1 0 0 0

i0 0 1 0 1 0 0 1 0

i0 0 0 0 0 0 0 0 1

  
  
  
  
  
  
  
  
  
  
  

−   
  

   

1 2

h10

s2 h12 h20 h24

h30 h30

h24

h61

s

i

i +i -i -i

-i -i

i

0

-i

v

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1.11)

11

Figure 1.4 BUS1 branches discretized model

Hence, the value of
11y shown in equation (1.11) is the summation of R1, R2, R3 and R4

admittances that can be calculated using the following equation:

6

11 33

2 0.8 10 1

2 2 102 6 10
0.05

t
y

t

t

−

−−

  
= + +

   
+



In a similar manner all quantities in the
nY part of the MANA matrix can be found as follows:

12 3

1

2 2 10
0.05

y

t

−
= −

 
+



16 32 6 10

t
y

−

−
=

 

22 11

1

0.5
y y= +

21 12y y=

24 42 32 6 10

t
y y

−

−
= =

 

6

33 3

2 1 10 1

2 19.72 10
22.61

y
t

t

−

−

 
= +

 
+



44 24y y= −

BUS1
+

R1

+

R2

+

R4

+

i61 +
R

3

+

is1

+

i10

+

i1
2

12

66 16y y= −

61 16y y=

The terms on the right of (1.11) are the contributions from independent current sources and history

current sources resulting from component discretization (inductances and capacitances).

In the current project, EMT simulation is solved at each time step after updating A for switches

position changes, transformer tap changes or any other modifications in model equations (including

nonlinear devices). For nonlinear models (NMs), the NEs must be solved iteratively to achieve an

accurate simultaneous solution. This is done by linearizing each model at each operating point and

solving iteratively [3]. Model linearization results into a Norton equivalent with the Norton

resistance contributing changes into the A matrix and the Norton current contributing updates into

the b vector.

It means that at each time-point it is necessary to resolve (1.11) iteratively until convergence for

all nonlinear models is achieved.

For time-varying models (TVMs), such as switches or transformer tap positions, it is also possible

to update A iteratively without advancing to the next time-point. This accuracy option, marked as

iterative time-varying method (ITVM), allows achieving a simultaneous solution for the

determination of all changes and dependencies between models at the same time-point. This

process also includes the sequential re-calculation of control system equations [3].

1.4 Parallelization and network tearing

In order to be able to solve power systems in parallel, the network system of equations needs to be

subdivided into multiple subnetworks. This division process allows distributing different parts of

the network on different CPU cores and solving these subnetworks independently. Several schemes

can be used to achieve this goal. A list of known methods is presented in this section.

1.4.1 Block Triangular Format (BTF)

The block triangular formulation of a matrix is an approach specialized in permuting the matrix by

putting as much non-zero elements of the matrix along the diagonal [25]. This reordering allows

13

the flexibility of partially decoupling the matrix into different submatrices and allows the solving

of these submatrices separately. Figure 1.5 shows a generic representation of the block triangular

format with blocks
iiA aligned along the diagonal and some off-diagonal elements ijA . These off

diagonal blocks/elements arise due to light links between different parts of the matrix such as block

11A and
33A that are linked through

13A block, and
22A and

55A that are linked through
25A

block. In this thesis all cases used have no off-diagonal elements in them thanks to the time domain

decoupling produced by transmission lines. Although, the parallelization of matrices shown in

Figure 1.5 is still feasible, it involves more restrictions and complications.

Figure 1.5 An example of a matrix in BTF form

Another type of block triangular form that is more interesting for parallelization and mainly used

herein, is the type where there are no off diagonal blocks/elements. This type of format is called

block diagonal form BDF since all matrices elements are aligned along the matrix diagonal and the

rest are zeros as can be seen in Figure 1.6 [25].

Figure 1.6 An example of a matrix in BDF

14

In order to transform a matrix into the BTF form, the KLU package uses a special technique that

is based on Duff and Reid’s algorithm [25]. This algorithm finds any matrix BTF form (if

applicable) by finding all strongly connected vertices of the matrix. It starts by preparing the matrix

adjacency graph which guides the algorithm by moving from one graph vertex to another. Then a

depth first search is launched starting from a random vertex and tries to visit/reach the maximum

number of graph vertices of which there exists a path.

The design of KLU BTF algorithm uses a user-built stack that keeps track of all visited and

unvisited vertices and avoids many run time errors such as stack over flow and memory shortage.

The algorithm uses depth first search (DFS) topology that is based on a recursive algorithm to find

all possible strongly connected vertices in the graph and keeps track of all visited and non-visited

vertices. Once all connected vertices are labeled as visited, those vertices (nodes) form a block in

the BTF form and the DFS algorithm begins again starting from an arbitrary non-visited vertex.

The vertex graphs are explored and all efforts to try all combinations of connections is exhausted.

The following example gives a better visualization of how the BTF algorithm calculates strongly

connected regions of the matrix. It is noticed here that the transmission line models are of

distributed parameter type. In fact, any such model, either with constant parameters or with

frequency dependent parameters, offers an important property for parallelization. The line (or

cable) model provides a delay between its left (k-side)) and right (m-side) hand sides. This means

that the k-side network can be solved completely independently from the m-side network without

any approximation. This well-known property is the key ingredient used in this thesis for delivering

parallelization. Nevertheless, the independent subnetworks created by transmission lines, must be

found automatically.

The sparsity pattern of the matrix of the network shown in Figure 1.7 is presented in Figure 1.8,

and the BTF version of this matrix is presented in Figure 1.9. The BTF method can automatically

derive the block-diagonal (BD) without any user intervention as long as the case has at least one

transmission line implemented in it.

15

Figure 1.7 BTF format test case

Figure 1.8 Sparsity pattern of matrix A of circuit shown in Figure 1.7

Figure 1.9 BTF Sparsity pattern of matrix A of circuit shown in Figure 1.7

+ AC1

230kVRMSLL /_0

+

RL1

1/1

+
R2

1

+

Rn1

CP+

TLM1

400

+
R

11

+
L

1

1
m

H

16

In order to facilitate the differentiation between a BTF ordered matrix with a non-ordered matrix,

the “hat” symbol is used from now on to represent all BTF ordered matrices (i.e Â). In addition,

the second digit in the BTF block index will be dropped due to the fact that all cases used herein

have no off-diagonal blocks and both digits used to refer to a BTF block in this case are the same

(i.e Â i refers to block i in the BTF ordered matrix Â). The BTF ordering is similar to graph

traversal ordering that is based on a depth first algorithm to find all decoupled subnetworks and

used in [16]. This ordering tries first to decouple the network based on the presence of the existing

transmission lines and detect each subnetwork by the end of traversal, and at the same time they

apply a heuristic calculation on the time cost for each component type (R, machine, inductance,

etc...) in the subnetwork to make the simulation fit to real time simulation. Based on the execution

cost, it can decide to join several subnetwork in one cpu and put this in one matrix if the resolution

will fit in one step.

In KLU solver package, the BTF ordering is followed by another ordering that aims at reducing

the L̂i and Û i matrices fill-in. There are three ordering techniques that are already implemented

in KLU package which are AMD, COLAMD and a user pre-defined ordering. This step plays a

major role in reducing computational load during KLU numerical solution by reducing the number

of floating-point operations required to solve the system. This type of ordering will be discussed

in the coming sections.

1.4.2 METIS

METIS is an efficient algorithm that allows the partitioning of a matrix into multiple submatrices

that are either independent of each other or share elements with other submatrices with all shared

elements aligned along the submatrices boarders. An advantage of METIS is the feasibility of

increasing the degree of parallelism with the existence of only one partitioned matrix in the system.

METIS is specialized in partitioning large-scale irregular graphs or meshes and providing a

permutation that provides an efficient partitioning as well as a reduction of fill-in of L̂i and Û i

factors [26].

Unlike other traditional ordering techniques that work on the graph directly to provide a portioning

by one step operation, and hence provide a low quality and less efficient partitioning, METIS is

17

based on multi-level graph partitioning technique that adopts a totally different technique that

works on the graph and reduces the size of the graph as much as possible, by collapsing graph

vertices and edges and partitioning the small graph and re-ordering it to produce the partitioning

of the original graph [26]. Figure 1.10 shows matrix A of the IEEE1138 bus system ordered by

METIS algorithm.

Figure 1.10 IEEE-1138 network ordered by METIS

Not only METIS can provide a high-quality portioning over other ordering techniques, it is

considered one of the fastest ordering techniques that can provide its partitioning results in one or

two orders faster that other traditional algorithms. Moreover, METIS ordering contributes in

reducing the fill-in of L̂i and Û i factors without the need of using other techniques to do this task.

METIS has the ability to produce more blocks along the diagonal compared to BTF. This

phenomenon is due to the fact that METIS does not require a complete decoupling of blocks like

BTF, but rather it can still reorder a block (that BTF was not able to partition) into sub-blocks and

align all shared elements between these sub-blocks along the matrix or block border.

However, given the types of problems this thesis deals with, and the fact that BTF blocks are totally

independent of each other, the use of METIS becomes less significant for cases that have multiple

transmission lines that allow decoupling the case in time domain into relatively small independent

regions. The importance of this ordering technique arises when a large-scale case with no

18

transmission line in its structure (or have very few of them) is being studied. Using Metis in this

case helps introduce some degree of parallelization into the solution. In addition, this partitioning

technique can help reduce the effect of large limiting blocks that prevent parallel simulation as will

be seen in chapter 3. In addition, different fill-in reduction techniques that were tested herein (such

as AMD) were found to be more efficient and produce around 15% less fill-in compared to METIS.

1.4.3 SSN and MANA

Another parallelization approach can be achieved through the combination nodal or MANA

equations with state-space equations. This approach, name state-space nodal (SSN), is explained

in [27]. The basic principle is that the network is separated (cutting) into state-space groups that

are solved independently in parallel and combined through MANA equations.

Although the SSN method is perfectly accurate, it has two drawbacks. First the network separation

locations must be determined manually. Another problem is that the usage of state-space equations

is typically inappropriate for solving large scale grids. Other complications arise when the state-

space equations must be reformulated for nonlinear models and time-varying models.

1.4.4 Scotch

Scotch [28] is yet another sparse matrix package that focuses on solving graph theory-based

problems using divide and conquer approach. It is used in wide range of applications and not

limited to electrical or power circuit problems, this package is based mainly on nested dissection

approach to permute the application sparse matrix into a format that allows certain degree of

parallelization. The nested dissection starts by forming the matrix undirected graph in which the

vertices represent rows and columns of the matrix, and an edge/connection in the graph represents

a nonzero entry in the sparse matrix. Once the graph is formed, the nested dissection algorithm

uses a divide and conquer strategy on the graph in order to remove a set of vertices to result in two

new graphs that are independent of each other. This algorithm uses a recursive technique that

partitions the graph into subgraphs by selecting barriers or separators that consist of small set of

graph vertices. The removal of these separators creates independent subgraphs. Applying

factorization and solving the matrix parts that represent the new sub-graphs can be done

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Sparse_matrix

19

independently and in parallel. The results of the two new graphs can then be combined to find the

overall matrix results.

In order to better understand the nested dissection ordering, the following matrix shown in Figure

1.11 gives an example of a matrix graph (mesh) that is ordered by nested dissection. In this figure,

the graph is partitioned into four subgraphs (A, B, D and E) by three different separators (C, F and

G). The matrix shown in equation (1.12) is a representation of the matrix after being reordered.

Figure 1.11 Scotch example - matrix graph

AC

BC

CA CB CC

DF

EF

FD

AG

BG

CG

DG

EG

FGF

GA GB GC GD GE G G

AA

BB

DD

EE

F

F

G

E F

S

S

A

S

S

S S S

S

S

S S S

S

S

S

S

S

S

S S S S S S

S

S

= S

 
 
 
 
 
 
 
 
 
 
 

 (1.12)

Equation (1.12) shows the matrix after being ordered by nested dissection. All black elements in

the matrix represent sub-graphs created after adding the separators, and all blue and red elements

represent elements that are located across the separators (C, F and G) and they are linking different

black blocks together.

20

Comparing this ordering technique with other ordering techniques, it is found that the nested

dissection ordering is only applied to symmetric matrices, and that is a condition that can’t be met

and guaranteed in many EMT simulation tools including EMTP.

1.4.5 Bordered Block Diagonal matrix

This ordering scheme is a methodology that permutes the power system network matrix A into a

doubly bordered block diagonal (DBBD) or a single bordered block diagonal (SBBD). Figure 1.12

shows the typical structure of a DBBD permuted matrix [29].

Figure 1.12 Doubly bordered block diagonal (DBBD)

It can be seen from Figure 1.12 that a doubly bordered block diagonal form is similar to a block

upper triangular form but has non-zeros on the sub diagonal region. These nonzero elements found

in the lower section of the diagonal form a horizontal strip resembling a border. The same thing

applies for nonzero elements above the diagonal, these elements form a vertical strip that resemble

a vertical border. Many ordering techniques can be used to produce DBBD permuted matrix such

as METIS and nested dissection [26].

Generically speaking, when a complete network or a network portion does not contain delay-based

transmission line models, it will not be possible to create a BD matrix for its equations. It can be

demonstrated that for such cases, it is possible to derive a BBD matrix as seen in following

compensation theory section.

1.4.6 Compensation Theory

The Compensation method theory is presented in [31]-[33] and it was used in [34]. The application

described in [34] is for the solution of nonlinear models in an EMT-type code. The limitations that

this method may encounter for solving nonlinearities, or in general, are described in [35]. It is

21

shown in [35] that the compensation method although very powerful, is not conformable to the

topological proper-tree and therefore has topological limitations. The hybrid analysis method [36]-

[38] has been shown in [40] to be more general than the Compensation algorithm. The work in

[35][39] relates the more general hybrid analysis to the Compensation method.

Despite the limitations of the Compensation method for solving nonlinear systems, it will be used

below to demonstrate how it links to other methods in the literature and how it can be used to

decouple networks when transmission line delay-based decoupling is not possible.

The basic idea of the Compensation method is illustrated in Figure 1.13. In this figure the dash line

shows cutting through wires. It is assumed that a linear or nonlinear network N2 is connected to

network N1 through one or more wires. In some publications [34] it is assumed that N2 can contain

only (one type of) nonlinear component, but N2 can actually contain any number of nonlinear

components and it fact it can contain complete arbitrary (except for cases explained in [35])

networks. In the following, it will be assumed that N2 is actually a grid with any number of

components. N2 can be purely linear.

Figure 1.13 Separation of two networks using the compensation method

Let us assume the wires (n̂ wires) connecting N2 to N1 are connected to a set of nodes N̂ in N1.

It can be written that for any time-point solution

ˆ ˆˆ
final

N NN 
= +v v v (1.13)

where
N̂

v is the solution vector of node voltages for N1 when it is disconnected from N2,
N̂

v is

the solution found from the contributions of currents entering N1 through n̂ wires and ˆ
final

N
v is the

final solution through the superposition theorem. In this presentation, it is assumed that N1 does

N1 N2

22

not contain any nonlinearities, whereas N2 may contain nonlinear components that require

iterations for an accurate solution. It can be further shown that

N̂
 =v Z i (1.14)

where Z is an impedance matrix relating the currents entering the set of nodes N̂ to the

contributions on voltages
N̂

v . By using an incidence matrix, the branch voltages in N2 are related

by

ˆ
ˆ finalT

n N =v A v (1.15)

where ˆ
nA is the nodal incidence matrix for the nodes in N2. If all the n̂ wires are connecting from

node to ground, then ˆ
nA becomes unitary and diagonal. By combining equation (1.13), (1.14) and

(1.15)

ˆˆ T
th n   = +v v A Z i (1.16)

where ˆ thv is the vector of Thevenin voltages as found from N1. It is apparent that the Thevenin

impedance matrix ˆ
thZ is given by

ˆˆ T
th n =Z A Z (1.17)

and consequently

ˆˆ th th = +v v Z i (1.18)

Finally, it is noted that the currents i and voltages v are related through a function Φ that could

be linear or nonlinear:

(), 0  =Φ v i (1.19)

If Φ is nonlinear then (1.18) must be solved using iterations and the Newton method.

The vector ˆ thv is time-dependent and must be found at each time-point solution. The matrix ˆ
thZ

may also have time-dependency due to switching devices in N1.

In Figure 1.13 it is assumed that N1 includes coupled (no delay-based transmission lines) networks.

It is however possible that N1 contains decoupled networks or wires are used to connect separate

networks. Let us assume that there are now two networks in N1 and N2 that are connected together

23

using the circuit of network N3. In that case the new representation of relations between networks

is shown in Figure 1.14.

Figure 1.14 Two networks N1 and N2 connected through wires in network N3.

The MANA formulation of network equations for Figure 1.14 is given by

     
     

=     
         

k

m

1 c 1 1

2 c 2 2

3 3k m d

A 0 S x b

0 A S x b

x bS S S

 (1.20)

In the above system, 1A is the matrix of N1, 2A is the matrix of N2, the S matrices are the

connecting matrices from network N3. It is possible that some off-diagonal S matrices are nullified

due to disconnection between N1 and N2. Equation (1.20) is generic and allows N3 to contain

longitudinal impedances, but for the following text and without any lack of generality, it is assumed

that the impedances in N3 are simply zero, meaning that N1 and N2 are interconnected through

ideal wires. For ideal wires, equation (1.20) becomes

T T

     
     

=     
        

1 k 1 1

2 m 2 2

3k m

A 0 S x b

0 A S x b

x 0S S 0

 (1.21)

The Compensation based solution of (1.20) (or (1.21)) can proceed as follows at each solution

time-point. First it is necessary to solve with switches open (cutting the wires) by using

N1 N3

N2

24

    
     =
    
        

1 1 1

2 2 2

3

A 0 0 x b

0 A 0 x b

0 0 1 i 0

 (1.22)

In this way the unknowns 
1x and 

2x are found before compensation and =3 3x i for the wire

currents (zero in this solution stage). From the found vectors 
1x and 

2x it is possible to directly

extract the network Thevenin voltages ˆ th1
v and ˆ th2

v , respectively. Then using current injection

method in 
1b and 

2b for each network, it is possible to derive the Thevenin impedances. In the

following equations the double-primed vectors signify the current injection method for finding the

Thevenin impedances ˆ
th1

Z and ˆ
th2

Z (column-by-column process):

 =

 =

1 1 1

2 2 2

A x b

A x b
 (1.23)

At this stage it is possible to solve for the wire currents 3i with

ˆ ˆ ˆ ˆth th th th
 + = −
 1 2 1 23Z Z i v v (1.24)

The above relation is illustrated in Figure 1.15 and it is assumed that the wire currents are oriented

from left to right. It is also assumed that the coefficient matrix resulting in (1.24) is not singular.

Figure 1.15 Compensation based equivalent of network in Figure 1.14.

After solving for 3i in (1.24), it is now possible to solve for the contributions (1x and 2x) of 3i

on N1 and N2:





= −

= −

1 1 k 3

2 2 m 3

A x S i

A x S i
 (1.25)

Finally, we can apply superposition (compensation) to find

+

+

+

+

25





= +

= +

1 1 1

2 2 2

x x x

x x x
 (1.26)

The above procedure must be applied at each solution time-point. Any number of networks can be

used and interconnected using wires (or impedances). Equations (1.23) and (1.25) can be solved in

parallel. If there is any topological change in N1 or/and N2, it is necessary to recalculate ˆ
th1

Z or/and

ˆ
th2

Z . This is an important limitation and can become computationally very intensive with power-

electronics based systems.

The above solution steps can be explained and performed differently. Equation (1.21) can be

rewritten as follows

ˆ

ˆ

ˆ

    
    

=     
          

11 1

2 2 2

3 3 3

b1 0 S x

0 1 S x b

0 0 S i b

 (1.27)

with

1−=1 1 kS A S (1.28)

1ˆ −=1 1 1b A b (1.29)

1−=2 2 mS A S (1.30)
1ˆ −=2 2 2b A b (1.31)

T T= +3 k 1 m 2S S S S S (1.32)

ˆ ˆ ˆT T= +3 k 1 m 2b S b S b (1.33)

From (1.24) and (1.32) it is seen that

ˆ ˆ
th th= +

1 23S Z Z (1.34)

From (1.24) and (1.33) it is apparent that

ˆ ˆ ˆth th= −
1 23b v v (1.35)

because ˆ
1b is actually 

1x in (1.22). The same applies for ˆ
2b and 

2x . It is noted that the coefficients

of T
mS are negative (ideal switch equations) and that explains the corresponding negative sign in

(1.35). Finally, it is clear from (1.27), (1.25) and (1.26) that

1 1



− − = − + = +1 1 k 3 1 1 1 1x A S i A b x x (1.36)

26

1 1



− − = − + = +2 2 m 3 2 2 2 2x A S i A b x x (1.37)

The approach derived with (1.27) is actually called MATE (Multi Area Thevenin Equivalent)

[40][41]. As proven above with (1.36) and (1.37), and contrary to what is written in the literature,

MATE is not a new theory or approach, it is in fact the Compensation method that was available

in the literature much before!

The formulation of (1.20) indicates that if it is possible to find the bordered-block-diagonal matrix

of a network, then it is possible to solve it in parallel even when distributed-parameter lines are not

available. That solution uses the Compensation method (or MATE). Any number of networks can

be separated (cut) and solved. The above illustration was made for two networks N1 and N2.

But there is a fundamental flaw in this approach. In a typical network, the networks N1 and N2

may encounter topological changes and require recalculating 3S in (1.34), which is

computationally inefficient and even catastrophic if repetitive switching occurs due to power-

electronics converters, for example. Moreover, all of the above is assuming linear networks and

becomes inapplicable for practical problems with nonlinearities. It is possible in theory to extend

the above Compensation based network tearing to include nonlinearities, but that may result into

significant computational inefficiencies and annihilate the gains due to parallelization.

As a final demonstration, one can notice that the presentation given for (1.27) is simply the

symbolic solution of (1.21). The steps are written here for convenience:

ˆ=3 3 3S i b (1.38)

ˆ= − +1 1 3 1x S i b (1.39)

ˆ= − +2 2 3 2x S i b (1.40)

The solution order is

1. solve in parallel: equation (1.29) for ˆ
1b and (1.31) for ˆ

2b

2. solve for ˆ
3b with (1.35) (the two parts of this equations can be calculated in parallel and

then combined).

3. use (1.38) to find 3i

4. solve (1.39) in parallel with (1.40).

27

In reality it is not possible to implement symbolic matrix inversions in actual software codes, as

shown in (1.28)-(1.31). This is obvious for power system software developers. In fact LU

decomposition must be used for solving (1.21) by re-writing it as follows

13

23

31 32 33 33

       
       

=
       
              

1 1 1 1

2 2 2 2

3 3

L 0 0 U 0 U x b

0 L 0 0 U U x b

L L L 0 0 U x b

 (1.41)

where the coupling matrices in L and U are resulting from the interconnecting switch equations.

It is noted that 33L and 33U are not zero even if =dS 0 (ideal wires). The purpose here is to

implement the solution of (1.41) in parallel. This can be done by realizing that

31 32 33

     
     

=
     
          

1 1 1

2 2 2

3 3

L 0 0 y b

0 L 0 y b

L L L y b

 (1.42)

The solutions of 1y and 2y are found in parallel. The solution of 3y can be found from

33 31 32= − −3 3 1 2L y b L y L y (1.43)

At this stage we have

13

23

33

     
     

=
     
          

1 1 1

2 2 2

3 3

U 0 U x y

0 U U x y

0 0 U x y

 (1.44)

The solution of 3x is found from the last set of equations in (1.44):

33 =3 3U x y (1.45)

Once 3x is known, it is possible to solve for 1x and 2x in parallel since

13

23

= −

= −

1 1 1 3

2 2 2 3

U x y U x

U x y U x
 (1.46)

This idea of parallelization outlined above is also said to be based on diakoptics [42][43]. It has

been discussed in [42][43] (also other publications) and recently re-used also in [19]. It is the same

idea as in (1.38)-(1.40).

Contrary to what is said in [19] it is obvious that LU decomposition was and must be used to solve

(1.21). In addition, as it is said in [19], it is not necessary to derive the 3kL and 3kU (for 1,...3k =

in this case) matrices explicitly, since these matrices can be found directly from a sparse matrix

28

solver. Moreover, it is again emphasized that the time-consuming LU decomposition must be

repeated in the presence of switches and nonlinearities. This important aspect is not considered in

[42] and it will be even more inefficient with the approach proposed in [19] for finding 3kL and

3kU .

In the above theory, there are no restrictions in the number of interconnected networks. One

fundamental issue to be automate the derivation of (1.21). Switches can be inserted manually for

parallel computations, but ideally it should be done automatically. It is possible to use tools like

METIS to find bordered-block-diagonal matrices (as shown in (1.21)), but there are no

demonstrations on the capabilities for arbitrary topology networks. The work in [19] uses the trivial

duplication of a small network and no conclusions can be derived from such work.

The efficiency of bordered-block-diagonal formulation depends on the contents of the borders. The

larger borders may require too many operations (see (1.43) and (1.45)-(1.46)). The resulting

sparsity patterns must be analysed. In conclusion, significant further research is needed before

applying this approach for practical systems.

Finally, it has been shown above that the Compensation method is also indirectly related to the

formulation and solution of (1.21).

1.5 Sparse Matrices

Matrices in general have different types and different usage in many scientific fields. Sparse matrix

is a term used to represent matrices with high number of zeros among its elements. These types of

matrices appear in many scientific applications such as power systems, thermodynamics and

different types of physical modelling.

A typical power grid matrix is typically more than 98% sparse. This means that most elements in

the matrix are zero.

Sparse matrices possess specific characteristics that can be exploited to accelerate the solution

process of very large-scale linear algebra problems. Sparse matrices require less storage memory.

Using sparse matrices can dramatically improve the computational speed of large-scale linear

29

algebra problems. In fact, it is essential to apply sparse matrices for solving large scale power

systems in an EMT-type method.

Several packages are available for solving sparse matrix problems.

A simple electrical circuit, its sparse matrix (MANA formulation) and its sparsity pattern are shown

below in Figure 1.16 and Figure 1.17.

Figure 1.16 Small scale circuit with CP transmission line

6 6

6

0.5 10 0 0 0.5 10 1

0 0.50205 0.5 0 0

0 0.5 2.5 0 0

0.5 10 0 0 1.0016 0

1 0 0 0 0

A=

− −

−

  − 
 

− 
 −
 
−  
 
 

 (1.47)

Figure 1.17 Non-zero pattern of matrix for the circuit of Figure 1.16.

CP+ 400

TLM1
+

1

R1

+

1
m

H

L
1

+

Rn2

+

1

R
2

+

1/1

RL1

+

230kVRMSLL /_0

AC1

30

1.5.1 Sparse Matrix representation

Sparse matrices can be presented is many different formats depending on the application they are

used in. Different types of applications have different requirements in terms of ordering of matrix

elements and representation in memory. One of these presentations is the classical way of matrix

presentation that is stored in memory as a two-dimensional array. This type is often used in dense

matrix memory storage and applications. However, adapting such a storage topology results in

waste of memory resources due to the high number of zeros that will be stored, and the expanding

of cache segments required for access during solution.

Other representations exist to reduce memory storage and consider only the non-zero elements in

the matrix. The following two sections provide details about two sparse matrix representations that

are often used in circuit analysis. These two storage techniques reduce the size of memory required

to store sparse matrices.

1.5.1.1 Compressed Column Format

The compressed column (CSC) format allows storing a sparse matrix using three single

dimensional vectors that include only nonzero elements in the sparse matrix and their locations. To

fully represent each element location three vectors are used. Let the sparse matrix be A , the size

of the matrix A is n n and the number of nonzero elements in A is nnz .

Let the three vectors representing A be PA , iA and XA ; where:

PA : 1n+ long integer vector that contains indices of the starting nonzero elements of each column.

This first element of this vector ((0)PA) is zero and the last element (()P nA) is nnz .

iA : nnz long integer vector that stores the row number of each nonzero element in A .

XA : nnz long vector that stores the numerical values of all nonzero elements in A in the same

sequence they are listed in iA .

The matrix shown in (1.47) is used herein to illustrate the concept of CSC format. In order to better

understand the explanation in this section, the non-zero elements of the matrix have been numbered

in a sequential manner as shown in Table 1.1.

31

 Table 1.1 Matrix (1.47) nonzero elements order

Element Number Element

0 (0,0)A

1 (3,0)A

2 (4,0)A

3 (1,1)A

4 (2,1)A

5 (1,2)A

6 (2,2)A

7 (0,3)A

8 (3,3)A

9 (0,4)A

10 (0,0)A

The PA vector is formed by listing the sequential number of each column’s first nonzero element.

For example, (2)PA is the sequential number of the first nonzero element of column 2 which is

according to Table 1.1 is equal to 4. Hence PA is equal to the vector shown in (1.48).

32

0

3

5

7

9

10

P

 
 
 
 
 
 
 
 
 

A = (1.48)

iA vector is formed by listing the row number of all (1.47) nonzero elements in the same sequence

they are listed in Table 1.1. For example, (6)iA is the row number of the sixth element (2,2)A

which is in this case row number 2. Therefor the vector
iA is formed as shown in (1.49).

0

3

4

1

2

1

2

0

3

0

i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A = (1.49)

Vector XA stores the numerical values of all nonzero elements in matrix (1.47). The ordering of

elements listed in XA is done in the same sequence as iA .

33

6

6

6

0.5 10

0.5 10

1

0.50205

0.5

0.5

0.5

0.5 10

1.0016

1

X

−

−

−

 
 
−  
 
 
 
 −
 

− 
 
 
 − 
 
 
  

A = (1.50)

1.5.1.2 Compressed Row Format

The compressed row (CSR) format is similar to CSC in terms of methodology, however, the

sequence of listing the non-zero elements is by rows instead of columns. This format lists the

numerical values of all non-zero elements in
XA , the column number (not row as CSC) of all non-

zero elements in iA and the index of starting nonzero element of each row PA . Equations (1.51)

to (1.53) provide the CSR presentation of matrix (1.47).

0

3

5

7

9

10

P

 
 
 
 
 
 
 
 
 

A = (1.51)

34

0

3

4

1

2

1

2

0

3

0

i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A = (1.52)

5

5

5

2.5 10

2.5 10

1

1.0266

1
=

1

1

2.5 10

1.0016

1

X

−

−

−

 
 
−  
 
 
 
 −
 

− 
 
 
 − 
 
 
  

A (1.53)

The computational performances of the above two sparse matrix representations are similar and

one can use any one of them to code any sparse solver algorithm. However, it is very crucial when

using an open source solver to know what representation the solver is expecting as an input,

otherwise the solution results given by that solver will be wrong.

1.5.1.3 Solving a Sparse matrix

Solving a sparse matrix is the same as solving a dense matrix in terms of general steps and topology.

Both types of matrices need to be factorized to two factors that have similar size as the original

matrix and differ in structure from each other. These two factors are the upper factor U and lower

factor L . Equations (1.54) and (1.55) show the structure of a system of equation before and after

factorization.

35

 Ax = b (1.54)

       
       
       
       
       
       
             

1,1 1,1 1,2 1,3 1,n 1 1

2,1 2,2 2,2 2,3 2,n 2 2

3,1 3,2 3,3 3,3 3,n 3 3

n,1 n,2 n,3 n,n n,n 5 5

L 0 U U U U x b

L L U U U x b

L L L U U x = b

L L L L 0 U x b

 (1.55)

It can be seen from (1.55) that the upper factor (U) has nonzero elements only above the diagonal;

whereas the lower factor (L) has nonzero elements under the diagonal line. Solving the system

shown in (1.55) is done in two steps: Forward and backward substitution. During the forward

substitution the equation shown in (1.56) is solved. While in the backward substitution the system

shown in (1.58) is solved.

     
     
     
     
     
     
         

1,1 1 1

2,1 2,2 2 2

3,1 3,2 3,3 3 3

n,1 n,2 n,3 n,n 5 5

L 0 y b

L L y b

L L L y = b

L L L L y b

 (1.56)

Where:

1,1 1,2 1,3 1,n1 1

2,2 2,3 2,n2 2

3,3 3,n3 3

n,n5 5

U U U Uy x

U U Uy x

U Uy x

0 Uy x

    
    
    
    =
    
    
        

 (1.57)

36

     
     
     
     
     
     
         

1,1 1,2 1,3 1,n 1 1

2,2 2,3 2,n 2 2

3,3 3,n 3 3

n,n 5 5

U U U U x y

U U U x y

U U x = y

0 U x y

 (1.58)

1.6 Sparse Solvers

In order to achieve a higher speed of EMT simulation a suitable and efficient solver package must

be used. Accelerating the performance of any EMT simulation package starts by selecting a solver

that is in line with the matrix structure of that EMT simulation package. In this section, a brief

presentation of three sparse solvers is given and supported with different types of examples. These

sparse solvers are KLU [1], SuperLU [44], and the minimum degree ordering based solver that is

currently used in EMTP [4].

1.6.1 SuperLU

SuperLU [45][46] is a sparse solver package that is proven to be efficient and reliable when solving

different types of sparse matrices in different applications such as fluid dynamics, structural

mechanics, chemical process simulation, circuit simulation, electromagnetic fields and so on [45].

The SuperLU package is an open source solver that is available online for download. In order to

find the solution of a system of equations, SuperLU performs the following steps:

1. Minimize the number of fill-in elements in matrices L and U . This step is used to manipulate

the matrix and permute it in such a way that it reduces the number of non-zero elements in L

and U factors, and hence reduces overall solution time. SuperLU offers the use of many

techniques that are integrated inside the package and can reduce fill-in in quick and reliable

manner without affecting the solution quality or numerical stability [46].

2. Once the fill-in ordering is determined, SuperLU runs a symbolic algorithm to define the non-

zero pattern of L and U factors. This algorithm helps in allocating all fill-ins that are

introduced in L and U factors and estimating the size of memory storage the problem in hand

requires before even starting the numerical step [45]. The nonzero pattern found in this step is

used during the numerical factorization in order to find the numerical coefficients of L and U

37

factors. All other elements that are flagged as non-zero in this step will not be calculated and

will be treated as zeros.

3. Allocate all memory required for factorization work and for storing L and U matrices.

SuperLU package uses the compressed row storage CRS format to store sparse matrices as seen

in section 1.5.1.2.

4. Numerically factorize the matrix A into L and U . This step is the most time-consuming step

among all other tasks and operations in the package. It starts by running a symbolic analysis on

the permuted A matrix (permuted in step 1) and determining the location of all Supernodes

(explained below) [45].

The use of Supernodes allows to create dense nodes (regions) in the matrix in order to use

packages such as BLAS level 2 that is suitable for dense matrices. Supernodes have many types

and take many forms. Figure 1.18 shows different types of Supernodes that may be encountered

in a matrix.

The dense nodes shown in Figure 1.18 represent Supernodes that may occur in different

formats. The Supersnode T1 shown in Figure 1.18 - (a) illustrates a dense matrix that is full

(with all elements in the Supernode being nonzero) and nonzero elements along the columns

of L and rows of U . T2 shown in Figure 1.18 - (b) illustrates a Supernode that has a dense

L matrix along the diagonal that is full and non-zero elements scattered in the off-diagonal

columns of L . However, no non-zero elements exist in the rows associated with U . T3

shown in Figure 1.18-(c) illustrates a Supernode that has a dense L matrix along the diagonal

that is full with non-zero elements scattered in the off-diagonal columns of L and a full U

block with no off-diagonal elements along its rows. The last type of Supernode T4 is shown

in Figure 1.18 - (d) where full L and U blocks can be found along the diagonal. The L has

non-zero elements scattered along its columns and a stretch of non-zero elements scattered in

the columns associated with the full part of U [45][46].

38

Figure 1.18 Types of Supernodes T1, T2, T3 and T4 respectively

The following example [46] provides a better understanding of the concept of Supernodes.

Let us take the matrix A shown in Figure 1.19 in its initial form without any ordering

Figure 1.19 SuperLU matrix example

39

According to the SuperLU steps mentioned above, the matrix undergoes symbolic analysis

that applies a fill-in reduction ordering and it determines the L and U non-zero patterns.

Figure 1.20 and Figure 1.21 show the L and U matrices and their non-zeros pattern. The

Supernode allocation uses a special matrix that is called the filled matrix, to find all possible

Supernodes. According to [46], the filled matrix can be found by (1.59).

-F L U I= + (1.59)

where I is an identity matrix of size n n subtracted from L and U in order to remove all

elements along the diagonal. According to the type of Supernode selected (T1, T2, T3 or T4),

the SuperLU algorithm finds all possible Supernodes in the matrix F . Figure 1.20 and Figure

1.21 below show the sparsity pattern of L and U of matrix A , Figure 1.22 shows the sparsity

pattern of matrix F , and Figure 1.23 shows all Supernodes of type T1 that were found in the

matrix F .

 Figure 1.20 SuperLU Example L matrix (symbolic version)

 Figure 1.21 SuperLU Example U matrix (symbolic version)

40

Figure 1.22 L + U - I of matrix A (symbolic)

Figure 1.23 T1 Supernodes of matrix A

Based on the type of Supernode selected, SuperLU runs a search technique that explores all

possible Supernodes that fits all criteria of the selected Supernode type. In Figure 1.23 for

example, the Supernode that was selected is T1 and as can be seen in the figure there are five

Supernodes found in the matrix. The first Supernode is a 2 2 node with scattered non-zero

elements along the columns and rows corresponding to this full Supernode. Once the

Supernodes are determined, they are treated as dense matrices for storage and computation.

SuperLU uses different types of left looking algorithms that factors the matrix A into L and

U . Depending on the user selection or the degree of Supernodes density, different types of

standard dense matrix-vector multiplication kernels are used such as level 2 BLAS and level 3

BLAS. This algorithm treats the Supernode and its corresponding columns/rows as single

41

elements and a call to BLAS algorithm will expand these elements into their actual structure

and perform the appropriate computation on them to find the actual L and U . This algorithm

is proven to be very efficient in factorizing dense matrices and sparse matrices with less than

90% sparsity [46].

5. The last step of SuperLU solution is performing a backward and forward substitution to find

the results. This step uses the traditional substitution techniques that is based on the L and U

factors found in step 4 and the right hand vector of the system.

42

1.6.2 KLU

KLU [1] is a sparse matrix solver that employs hybrid ordering mechanisms and elegant

factorization to solve any sparse system. It has been tested on several simulation packages and

proven to be a fast and reliable solver especially when solving circuit analysis problems. It is based

on Gilbert-Peierls’ algorithm [47] with partial pivoting that aims at computing the nonzero pattern

of the L̂i and Û i factors and the numerical values in a total time of))((LUflopsO . This technique

consists of two major stages, the symbolic analysis and the numerical analysis. Throughout this

thesis all the cases listed herein have only blocks along the diagonal without any off diagonal

nonzero elements. This is mainly due to the fact that all subnetworks separated by a delay-based

transmission line are strongly connected and the strongly connected subnetworks are decoupled

from each other. This means that the matrix A in its block triangular format (BTF) has N number

of blocks along its diagonal as can be seen in (1.60):

ˆ 0 0 0 0

ˆ 0 0 0

ˆ ˆ 0 0

ˆ 0

ˆ

1

2

3

4

5

A

0 A

A= 0 0 A

0 0 0 A

0 0 0 0 A

 
 
 
 
 
 
 
 
 

 (1.60)

The KLU solver will be applied to each diagonal block Â i separately and they can be solved in

parallel due to the fact that their solution is independent of each other.

1.6.2.1 KLU Symbolic Analysis

During the symbolic analysis, block Â i will be analyzed to find its nonzero pattern. This analysis

is becoming more and more challenging with the integration of partial pivoting in the sparse solver.

The nonzero pattern of L̂i and Û i factors is hard to predict with a dynamic pivoting order that

keeps changing and for that reason this symbolic stage is being computed and updated every time

a pivot for Â i is updated.

The Gilbert-Peierls’ algorithm uses graph theory to calculate the nonzero pattern of L̂i and Û i

43

[47] which is based on finding the reachability of any nonzero element of Â i . The reachability

calculation starts by assuming the lower factor L̂i to be equal to a unity matrix and then starts

processing the block Â i in sequence order column by column. As seen in Figure 1.24, if block Â i

column k (shown at the right side of Figure 1.24) has a nonzero element at row j and factor L̂i

has a non-zero element at element (,)i j then the element at row i of column k must be non-zero.

By applying this algorithm, the location of all non-zero elements in L̂i and Û i can be determined

before the numerical step even starts, and the calculation of L̂i and Û i elements will be only for

those nonzero elements found during this symbolic stage.

Figure 1.24 Nonzero pattern of x when solving Lx=b

Once the locations of non-zero elements of each column are determined, the non-zero elements

numerical values are determined as shown in Figure 1.25.

44

Figure 1.25 L̂i and Û i non-zero pattern allocation

The simple circuit example shown in Figure 1.16 is used in section 1.6.2.2 to illustrate KLU

symbolic analysis in a very detailed manner.

1.6.2.2 KLU Numerical Analysis

Once the nonzero pattern is found, a left looking numerical factorization with partial pivoting is

conducted to calculate the factors L̂i and Û i numerical values. The matrix Â i now becomes:

ˆ ˆ ˆA L Ui i i= (1.61)

In equation (1.61), L̂i and Û i contain the upper and lower factors of BTF diagonal blocks

respectively. It is worth mentioning that KLU solver has two types of factorization, namely Full-

Factorization (KLU-FF) and Re-Factorization (KLU-RF).

During the KLU-FF, a symbolic analysis is done on the matrix to determine the non-zero pattern

of L̂i and Û i (as seen in section 1.6.2.1), followed by numerical analysis involves a partial

pivoting to select the pivot of each column being factorized.

KLU-RF on the other hand, assumes that the non-zero pattern of L̂i and Û i calculated in the

previous iteration and the pivoting order of the previous iterations are still valid and can be used.

The KLU-RF function only updates the numerical values of Û i and L̂i based on the changes to

block Â i .

45

In order to fully understand both the symbolic analysis of KLU and KLU-FF, the system of

equations of Figure 1.16 circuit is written for a given operating condition of Rn2. This system was

built using the MANA approach discussed earlier.

6 6
1

2

3

6
4

5

-2.641830.5 10 0 0 0.5 10 1

3.467190 0.50205 0.5 0 0

187794.20 0.5 2.5 0 0

0.014970.5 10 0 0 1.0016 0

01 0 0 0 0

x

x

x

x

x

− −

−

  −     
     

−     
     =−
     
−      
        

 (1.62)

After running BTF symbolic analysis, the vector shown in (1.63) was calculated to be the row

permutation vector that is used to sort the rows to obtain BTF form.

1

4

5

2

3

P

 
 
 
 =
 
 
  

 (1.63)

This vector determines the location of each row in the permuted matrix. For example, (2) 4P =

means that row 4 in A will be row 2 in the Â . Hence the row permutation matrix of A is shown

in (1.64). The permutation matrix (1.64) is formed by reallocating the diagonal elements of a given

identity matrix column to the row number indicated in (1.63). For example, second column’s

diagonal element is moved to the forth row since (2) 4P = .

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

A =P

 
 
 
 
 
 
  

 (1.64)

The column permutation is the transposed version of the matrix shown in (1.64) as can be seen in

(1.65) and (1.66).

A A
T

C P= (1.65)

46

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

A =C

 
 
 
 
 
 
  

 (1.66)

The following equation shows the permuted version of system (1.62):

 Â=A AAP C (1.67)

6 6

6

0.5 10 0.5 10 1 0 0

0.5 10 1.0016 0 0 0

ˆ 1 0 0 0 0

0 0 0 0.50205 0.5

0 0 0 0.5 2.5

− −

−

  − 
 
−  
 
 

− 
 − 

A= (1.68)

The matrix given in (1.68) is factorized and solved below with pivot tolerance equal to 0.01 and

all pivots elements are initially assumed to be along the diagonal of Â as shown in (1.69).

1

2

3

4

5

PPivot

 
 
 
 =
 
 
  

 (1.69)

PivotP shown in (1.69) indicates that the pivot of column 1 is located at row 1, the pivot of column

2 is located at row 2, the pivot of column 3 is located at row 3 and so on. The factorization starts

by assuming that both L̂ and Û are equal to an identity matrix as shown in (1.70) and (1.71)

1 0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

L (1.70)

47

1 0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U (1.71)

Since KLU is a left looking solver and it factorize the matrix Â one column at a time, the

factorization process is done in the following five steps:

1. Factorizing the 1st column of matrix (1.68):

The factorizing process starts by finding the location of non-zero elements in 1L̂ and 1Û

as follow:

6

6

1 0 0 0 0 0.5 10

0 1 0 0 0 0.5 10

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

−

−

  
  
−   
   =
  
  
     

Figure 1.26 Analysis of 1st column of matrix (1.68)

In the above symbolic analysis, the launch of the maximum reach from row 1, 2 and 3 of

the right hand side was not able to find any non-zero elements below the diagonal elements,

and was not able to introduce any non-zero elements into 1L̂ and 1Û other than the already

non-zero valued elements in row 1, 2 and 3. Hence, the location of non-zero elements of

1L̂ and 1Û are shown in (1.72) and (1.73):

1

0 0 0 0

1 0 0 0

ˆ 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 

 
 = 
 
 
  

L (1.72)

48

1

0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

U

 
 
 
 =
 
 
  

 (1.73)

The calculation of the numerical values of 1L̂ and 1Û is done by solving the system

shown in (1.74).

6
1

6
2

3

4

5

1 0 0 0 0 0.5 10

0 1 0 0 0 0.5 10

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

x

x

x

x

x

−

−

    
   
−    
    =
   
   
        

 (1.74)

The symbolic analysis of column 1 above found that only
1x ,

2x and
3x are non-zero

elements, hence the system of equations in (1.74) is only solved for
1x ,

2x and
3x . This

solution results in 6

1 0.5 10x −=  , 6

2 0.5 10x −= −  and
3 1x = .

Applying partial pivoting on the solution of (1.74) starts by finding the largest element in

the x vector and comparing it with the element stored at the pivot location. Using the

assumption used at the beginning of this example, the assumed pivot is stored at element

(1)x and the largest element in x is found to be (3)x . Testing the pivot criteria on both

pivot candidates ((1)x and (3)x) as shown in (1.75) it turns out that the pivot of column 1

must be replaced with the element of row 3.

 (3) (1)x >xp (1.75)

This change in pivoting order updates PivotP as shown in (1.76) and the rows of system of

equations shown in (1.68) are permuted according to the new PivotP as shown in (1.77).

49

3

2

1

4

5

PPivot

 
 
 
 =
 
 
  

 (1.76)

6

6 6

1 0 0 0 0

0.5 10 1.0016 0 0 0

ˆ 0.5 10 0.5 10 1 0 0

0 0 0 0.50205 0.5

0 0 0 0.5 2.5

−

− −

 
 
− 
 
  − 
 

− 
 − 

A= (1.77)

Using the formulation in Figure 1.25 1L̂ and 1Û are calculated to be:

6

6

1

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−

−

 
 
− 
 
 = 
 
 
  

L (1.78)

1

1 0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U (1.79)

2. Factorizing the 2nd column of matrix (1.68):

6

0 0 0 0 0

1 0 0 0 1.0016

0 1 0 0 0.5 10

0 0 0 1 0 0

0 0 0 0 1 0

−

   
   

   
   = − 
   
   
      

Figure 1.27 Analysis of 2nd column of matrix (1.68)

50

The launch of maximum reach from row 2 and 3 of the right-hand side was not able to find

any non-zero element below the diagonal of the second column and hence it was not able

to add any fill-in. Hence, the non-zero elements of 2L̂ and 2Û are:

2

0 0 0 0

0 0 0

ˆ 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 = 
 
 
  

L (1.80)

2

0 0 0 0

0 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 


 
 =
 
 
  

U (1.81)

In order to find the numerical values of 2L̂ and 2Û the system shown in (1.82) is solved

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 1.0016

0.5 10 0 1 0 0 0.5 10

0 0 0 1 0 0

0 0 0 0 1 0

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    
    
        

 (1.82)

The above system of equations in (1.82) is only solved for 2x and 3x . This solution results

in 2 1.001575x = and 6

3 0.5 10x −= −  . Applying partial pivoting on the results of (1.82) it

can be seen that element 2x is larger than all other elements in x , hence the existing pivot

is valid.

 Using the formulation shown in Figure 1.25, 2L̂ and 2Û are calculated to be:

51

6

6 6

2

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0 1

−

− −

 
 
− 
 
 =  − 
 
 
  

L (1.83)

2

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U (1.84)

3. Factorizing the 3rd column of matrix (1.68):

0 0 0 0 0

0 0 0 0

1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

   
   
 
   
   = 
   
   
      

Figure 1.28 Analysis of 3rd column of matrix (1.68)

In the above analysis, the launch of the maximum reach from row 3 wasn’t able to find any

non-zero elements below the diagonal element of the 3rd column. Hence, the non-zero

elements of 3L̂ and 3Û are:

3

0 0 0 0

0 0 0

ˆ 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 =   
 
 
  

L (1.85)

52

3

0 0 0

0 0 0 0

ˆ 0 0 0 0

0 0 0 1 0

0 0 0 0 1

U

  
 


 
 = 
 
 
  

 (1.86)

In order to find the numerical values of 3L̂ and 3Û the system shown in (1.87) is solved.

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 0

0.5 10 0.4992223 10 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    
    
        

 (1.87)

The above system of equations in (1.87) is only solved for 1x , 2x and 3x . This solution

results in 3 1x = . Applying partial pivoting on the results of (1.87) it can be seen that

element 3x is larger than all other elements in x hence the existing pivot is valid.

Using the formulation shown in Figure 1.25 3L̂ and 3Û are calculated to be:

6

6 6

3

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0 1

−

− −

 
 
− 
 
 =  − 
 
 
  

L (1.88)

3

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U (1.89)

53

4. Factorizing the 4th column of matrix (1.68):

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 1 0 0.5021

0 0 0 0 1 0.5

   
   
 
   
   =  
   
   
   −   

Figure 1.29 Analysis of 4th column of matrix (1.68)

In the above analysis, the launch of the maximum reach from row 4 and 5 failed to find any

non-zero elements below the diagonal elements and was not able to introduce any other

non-zero elements into 4L̂ . Hence, the non-zero elements of 4L̂ and 4Û are:

4

0 0 0 0

0 0 0

ˆ 0 0

0 0 0 0

0 0 0 1

 
 
 
 
 =   
 

 
  

L (1.90)

4

0 0

0 0 0

ˆ 0 0 0 0

0 0 0 0

0 0 0 0 1

   
 

 
 
 = 
 

 
  

U (1.91)

In order to find the numerical values of 4L̂ and 4Û the system shown in (1.92) is solved.

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 0

0.5 10 0.4992223 10 1 0 0 0

0 0 0 1 0 0.50205

0 0 0 0 1 0.5

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    
    
    −    

 (1.92)

The symbolic analysis of this column found that only elements 4x and 5x are non-zero,

54

hence the above system of equations in (1.92) is only solved for 4x and 5x only. This

solution results in 4 1.0266x = and 5 1x = − . Applying partial pivoting on the results of

(1.92) it can be seen that element 4x is larger than all other elements in x hence the existing

pivot is valid.

Using the formulation shown in Figure 1.25, 4L̂ and 4Û are calculated to be:

6

6 6

4

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0.9959034 1

−

− −

 
 
− 
 
 =  − 
 
 
 − 

L (1.93)

4

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 0.50205673 0

0 0 0 0 1

 
 
 
 =
 
 
  

U (1.94)

5. Factorizing the 5th column of matrix (1.68):

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 0.5

0 0 0 1 0.5

   
   
 
   
   =  
   

 −   
      

Figure 1.30 Analysis of 5th column of matrix (1.68)

The above symbolic analysis was able to determine that rows 4 and 5 of column 5 of 5L̂

and 5Û will be non-zero entries. Hence, the non-zero elements of 5L̂ and 5Û are

55

5

0 0 0 0

0 0 0

ˆ 0 0

0 0 0 0

0 0 0

 
 
 
 
 =   
 

 
   

L (1.95)

5

0 0

0 0 0

ˆ 0 0 0 0

0 0 0

0 0 0 0

   
 

 
 
 = 
 

  
  

U (1.96)

In order to find the numerical values of 5L̂ and 5Û the system shown in (1.97) is solved.

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 0

0.5 10 0.4992223 10 1 0 0 0

0 0 0 1 0 0.5

0 0 0 0.9959034 1 2.5

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    

−    
    −    

 (1.97)

Using the symbolic analysis above it was found that only elements 4x and 5x are non-

zero; hence, the above system of equations in (1.97) is solved for these two elements only.

This solution results in the following x vector.

1

2

3

4

5

0

0

0

0.5

2.0020483

x

x

x

x

x

   
   
   
   =
   

−   
     

 (1.98)

Applying partial pivoting on the results of (1.98) it can be seen that element 5x is larger

than all other elements in x , hence the existing pivot is valid.

Using the formulation shown in figure 4, 5L̂ and 5Û are calculated to be:

56

6

6 6

5

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0.9959034 1

−

− −

 
 
− 
 
 =  − 
 
 
 − 

L (1.99)

5

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 0.50205673 0.5

0 0 0 0 2.0020483

 
 
 
 =
 

− 
  

U (1.100)

In order to verify the above factorization, one can multiply L̂ and Û to obtain Â .

6

6 6

1 0 0 0 0

0.5 10 1.0016 0 0 0

ˆ ˆ 0.5 10 0.5 10 1 0 0

0 0 0 0.50205 0.5

0 0 0 0.5 2.5

−

− −

 
 
− 
 
 =  − 
 

− 
 − 

LU (1.101)

The second step of the numerical analysis stage is the solution step that performs forward and

backward substitution in order to obtain the results of vector x̂ [1]. This step is summarized below

for the above example:

1

6

2

6 6

3

4

5

1 0 0 0 0 187785.9

0.5 10 1.0016 0 0 0 3.471719

0.5 10 0.5 10 1 0 0 -2.64183

0 0 0 0.50205 0.5 0.002821

0 0 0 0.5 2.5 0

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    

−     
    −    

 (1.102)

1

2

3

4

5

187785.9

3.471719

ˆ ˆ -2.64183

0.002821

0

x

x

x

x

x

   
   
   
   =
   
   
     

LU (1.103)

57

1

6

2

6 6

3

4

5

1 0 0 0 0 187785.9

0.5 10 1 0 0 0 3.471719

0.5 10 0.4992223 10 1 0 0 -2.64183

0 0 0 1 0 0.002821

0 0 0 0.9959034 1 0

y

y

y

y

y

−

− −

    
    

− 
    
     = − 
    
    
    −    

 (1.104)

Where

1 1

2 2

3 3

4 4

5 5

1 0 0 0 0

0 1.001575 0 0 0

0 0 1 0 0

0 0 0 0.50205673 0.5

0 0 0 0 2.0020483

y x

y x

y x

y x

y x

    
    
    
    =
    

−    
        

 (1.105)

The solution of equation (1.105) results in:

5
1

2

3

4

5

1.8779 10

3.5656

2.7357

0.0028

0.0028

y

y

y

y

y

   
  
  
   = −
  
  
     

 (1.106)

Substituting equation (1.106) in (1.105) yields to the following equation:

5
1

2

3

4

5

1 0 0 0 0 1.8779 10

0 1.001575 0 0 0 3.5656

0 0 1 0 0 2.7357

0 0 0 0.50205673 0.5 0.0028

0 0 0 0 2.0020483 0.0028

x

x

x

x

x

    
   
   
    = −
   

−    
        

 (1.107)

5
1

2

3

4

5

1.87785 10

3.56000

-2.7357

0.0070

0.0014

x

x

x

x

x

   
  
  
   =
  
  
     

 (1.108)

58

KLU uses a scaling algorithm to scale all elements of L̂ and Û factors based on a predefined scale.

This scaling topology helps reduces the size of numbers used throughout the calculation and

increases accuracy. However, throughout this research project it was found that the scaling

algorithm did not add much advantages for the selected applications, but it rather increased

computation time and code complexity with no valid reason.

1.6.3 EMTP-MDO solver

From the above two sections on SuperLU and KLU, it can be noticed that these two solvers have

two types of matrix permutations, namely fill-in reduction permutation and structural permutation.

The first type of permutation is specialized in reducing the fill-in elements in L and U factors,

hence reduces the computation time for factorization and substitution steps. The other type of

permutation is specialized in permuting the structure of A in order to allow for some degree of

parallelization. For example, in the case of BTF permutation, in context of this thesis this

permutation decouples all strongly connected regions of the matrix forming multiple submatrices

that are fully independent of each other. This approach allows numerical steps to work on different

submatrices in parallel and assign each or a group of submatrices to a specific processor to reduce

computation time [48].

Unlike SuperLU and KLU, EMTP-MDO [4] has only one permutation that is the fill-in reduction

permutation. This permutation is based on the minimum degree ordering technique. The minimum

degree ordering is a generic technique works on reducing the fill-in of L and U by re-ordering

the matrix rows and columns based on different nodes connectivity. Various minimum degree

algorithms exist in the literature such as basic minimum degree (which is used in EMTP-MDO),

approximate minimum degree (AMD) [49][50] and column approximate degree (COLAMD)

[51][52]. It was proven in [1] that AMD gives the best performance for circuits matrices. AMD

finds a permutation vector P to reduce the fill-ins in Cholesky factorization and apply it on the

matrix A as follow: PAP
T

. AMD assumes no numerical pivoting within its scope and all its

ordering is purely symbolic. COLAMD on the other hands produces a column permutation vector

Q to reduce the fill-in of L and U and it applies it on matrix A as follow: T
Q AQ .

The basic minimum degree ordering is based on selecting a node with minimum number of

connected edges and factorizes the column or row that corresponds to that node [29]. This

59

technique performs a symbolic elimination on the non-zero structure of the system. During this

stage, a pivot element is chosen from those un-eliminated diagonal entries. The symbolic

elimination results in a permutation array that is used to permute the system main matrix A into

the pivoting order found during this stage. The permuted A matrix is solved in three steps,

symbolic factorization, numerical factorization and forward-backward substitution.

During the symbolic factorization, the nonzero structure of the rows of L and U factors is

determined based on the structure of the permuted matrix A . Once the nonzero pattern of L and

U is found, the numerical values of all L and U coefficients are calculated. The last step in the

solution stage is to perform a backward and forward substitution to find the solution of x based on

the right hand side b and using the L and U factors generated in the first two steps.

Therefore, the application of parallel computation with the EMTP-MDO solver is not feasible due

to the fact that the minimum degree ordering technique does not permute the matrix into any kind

of block diagonal format but rather reduces the fill-in of L and U factors. Even if a structural

permutation technique is applied to obtain the BTF form of A , the numerical solver has to be re-

coded or changed to adapt to data structure needed by the added permutation.

The following example illustrates how minimum degree ordering technique works to find the best

permutation topology that contributes to a maximum reduction of fill-ins. The system of equations

shown in (1.62) is used herein.

In order to find the minimum degree ordering of the matrix shown in (1.62) one can use an

elimination graph that is basically an undirected graph of the matrix A , that is

(,)G V E= (1.109)

Where, G is the undirected graph of the matrix shown in (1.62), V represents graph’s G nodes

and E is the edges between different nodes in G . The elimination graph as can be seen in Figure

1.31 has n vertices, where n is the size of matrix A , and each vertex represents a column/row.

The elimination graph can be established by adding a connection between any vertex with all other

vertices that are adjacent to it. For example, vertex 1 is adjacent to vertices 4 and 5 through elements

(0,3)A and (0,4)A .

60

The minimum degree ordering technique starts by eliminating the node with minimum weight,

which is the node with the least number of connections or the minimum number of adjacent nodes.

In case of multiple nodes having similar weight, the selected node is chosen randomly. At start, the

node weight is evaluated as shown in Table 1.2. This table shows the weight of nodes in the

elimination graph shown in Figure 1.31. Since this is a small case, all nodes order varies between

one and two and the elimination process is very simple and straightforward. The first node to be

eliminated will be node 3 and the graph becomes as shown in Figure 1.32. The nodes are evaluated

again and the node with the minimum weight is eliminated and the remaining nodes order is

reevaluated once again. This process in repeated until the graph’s last node is eliminated. Figure

1.33 to Figure 1.35 show the changes in elimination graph. In [49] a more complex example is

given where the weight of the nodes changes during the elimination process and the tracking and

storing of all new established edges becomes challenging. Larger graphs use a modified and

simpler way of handling the nodes elimination process. This approach is based on creating Quotien

graphs of the matrix as shown in [49].

Figure 1.31 Matrix A elimination graph

61

 Table 1.2 Elimination graph nodes weight

Node weight

1 2

2 1

3 1

4 1

5 1

Figure 1.32 1st elimination step of matrix A graph

Figure 1.33 2nd elimination step of matrix A graph

62

Figure 1.34 3rd elimination step of matrix A graph

Figure 1.35 4th elimination step of matrix A graph

1.6.4 Threading

Different parallel algorithms have been proposed in order to apply parallel computation on EMT

simulations in different real-time simulation tools [16]-[18] and in off-line applications [5][15][53].

Most of these proposed algorithms are based on some user intervention and/or user defined network

partitioning as in [19][27] where the user has to define the location where the network can be

partitioned, or using external packages to link all subnetworks as in [15]. Such partitioning

technique requires the user to have full knowledge of the system in order to make an informative

decision on the best partitioning location that guarantees the highest computation gain. Such

decisions become very complicated for large power systems. Other proposed parallel techniques

are based on the use of graphical processing units GPU [54]. This approach efficiency decreases

with the increased size of the power network being analyzed and makes it not suitable for handling

practical problems. Problems arise when repetitive matrix factorizations are needed.

In this project, the threading implementation is meant to be automated and the program will be

self-sufficient to determine the feasibility of threading and assigning the location of threading and

task distribution. The threading part will be done on an already existed sparse solver (KLU) and it

will be mainly based on two threading techniques, the OpenMP and C++11 threading.

63

1.6.4.1 OpenMP

OpenMP is a thread programming tool used in the implementation of parallel processing [55] in

Windows computing environment. It is a high-level threading technique that requires the user to

define different segments of the code where parallel processing is required using one of OpenMP

pragma notations. The compiler will launch, control, synchronize and terminate threads without

much extra effort to be made by the user. Using the OpenMP implementation requires minimum

changes to the sequential code as opposed to other threading techniques.

In KLU the symbolic analysis is done in a pure sequential fashion. However, when it comes to

numerical analysis parallelizing the factorization and the forward-backward substitution is

essential to convert the KLU code to a parallel solver given that the network that is being solved

can be solved in parallel or has at least one delay-based line in it. Parallelizing the factorization

process was done by surrounding the factorization loop that factorizes all blocks of BTF matrix

with a pragma bracket that will guarantee a parallel execution of that loop, and in a similar manner

the forward-backward substitution can be parallelized. The assignment of each bock to a specific

thread requires defining a special mapping that is given to OpenMP before starting the parallel

segment. In addition, distinguishing between thread specific variables and threads shared variables

is critical to avoid any overlap between different threads and to avoid any kind of race conditions

during OpenMP threads synchronization.

In the OpenMP parallel version of sparse solver, each thread has a set of private variables that are

exclusive for each thread and can be accessed only by the thread that owns them. However, there

are a set of variables mainly used for statistical purposes that are common between all threads such

as the number of non-zero elements in L and U.

Given that the KLU algorithm was written in C, the link between the Fortran code based EMT

simulation package and the KLU solver was done using the ICO_C_BINDING standard [55]. This

standard allows for interchange calls from Fortran to C and vice versa as will be seen in Chapter 2.

1.6.4.2 C++11 Threading

Unlike OpenMP, using C++ multithreading is a low-level implementation which requires the user

to manage all threads from the moment threads start until the moment threads finish. If a Fortran

64

based EMT simulation package is used, the Fortran-C++ threading lifecycle is divided into 3

phases: initialization, execution and finalization.

During the initialization phase, the number of threads required and the matrices A and b arrays

are passed to the initialization function (init()) where the symbolic analysis of BTF and the

launching of all worker threads (threads that do factorization and triangular solving for an assigned

block) take place. In order to avoid the overhead of creating threads every time the solver is being

called, a thread pool is created by storing the thread handles in a global vector for later use. Once

the threads are created the initialization function is blocked until all worker threads indicate that

they have started up and ready to execute iterations.

The signaling mechanism between the initialization function and the worker threads is

implemented via an atomic integer that gets incremented by one whenever a starting thread is

initialized and ready, after which the worker threads move into the BLOCKED state waiting for a

signal to run the numerical analysis code. The C++ main thread performs a busy-wait until all

threads are ready, then it returns control to FORTRAN. Illustration of this phase is shown in Figure

1.36.

Figure 1.36 Parallel implementation initialization phase

During the execution phase, the C++ main thread signals to all worker threads to start executing

the iteration code, and then waits for all threads to finish running numerical analysis on their

assigned blocks. The start signaling is implemented via a condition variable and a lock. Once the

worker threads are notified of the signal (by the operating system), they transition from the

BLOCKED state into the RUNNING state.

65

Figure 1.37 Parallel implementation Execution

Worker threads execute the numerical analysis process, and signal to the main thread that they’ve

finished via a semaphore. After which, the worker threads go back again to the BLOCKED state

waiting for another start signal. Once all worker threads are finished, the main thread returns

control to EMT package to prepare for the next time step / iteration.

The last phase of the process is the finalization phase. It is a phase required to terminate worker

threads and to release any resources allocated by the C++ subsystem. It starts by invoking a

termination function (finish()) from FORTRAN into C++ main thread. The C++ main thread then

sets an exit flag and awakes the worker threads. The worker threads check the flag and exist.

This approach was implemented and integrated with EMTP, and different test scenarios were used

to validate its performance; However, the EMT simulation acceleration obtained with this approach

was not considerable and the complexity that involved in implementing this parallel design was

another reason that let to drop it as a viable parallel implementation option of KLU.

66

CHAPTER 2 IMPLEMENTATION OF SPARSE SOLVER PACKAGE

FOR EMT SIMULATION

The objective of this chapter is to deliver the implementation of a new sparse matrix solver in an

EMT-type tool for the solution of electrical network (power) equations. The implementation will

be performed into EMTP [1] using an available code interface.

In addition to the power network equations, EMTP uses a separate solver for its control system

equations [3]. The control system part is not considered in this thesis since its solution procedures

fall into another category [56].

Before proceeding, it is important to recall that the network equations in EMTP are solved using

the MANA formulation. Also, it is recalled that EMTP uses a fully iterative solver. At each time-

point EMTP solves a set of equations similar to (1.54). It is recalled here for convenience:

 A x bt t t= (2.1)

where the vector bt contains independent sources and history terms resulting from device model

discretization, the matrix At is actually the Jacobian matrix [3]. At each time point the above

system is solved using the LU decomposition of At . If a nonlinear function changes its operating

segment or an ideal switch changes its position, it becomes necessary to update At and

consequently its factorization. This process is essential for maintaining an accurate solution for

network but is also creates significant extra computational load.

After each time-point solution of (2.1), it is necessary to use the solution vector xt for updating all

model history terms preparing the solution for the next time-point. Analysis has demonstrated that

when accounting for all solution procedure, the main computation burden is the iterative solution

in network equation (2.1). Improving its performance through the usage of a better sparse matrix

solver and through parallelization, is the main research objective of this thesis.

As a first step, this chapter presents the selection of a new sparse matrix solver. The second step is

the parallelization of the solution process for gaining more computational performance.

The new sparse matrix solver is named Sparse Matrix Package for EMTs (SMPEMT).

67

2.1 Selecting a Sparse Solver

In the previous chapter three sparse solver packages have been introduced, namely SuperLU, KLU

and EMTP-MDO existing sparse solver (MDO). The three solvers were briefly introduced to

explain the underlying programming techniques. The objective here is to conduct numerical tests

for actual systems. A variant of the Hydro-Quebec grid is used to perform tests with EMTP.

The size of the Hydro-Quebec A matrix is 41797x41797 with 99% sparsity and 169369 non-zero

entries. The simulation interval was chosen to be 1 s with a time-step of 50 s . The network

contains nonlinearities and the average number of iterations per time-point is equal to 2.07.

The computation time of solving equation (2.1) for different solvers are presented in Table 2.1.

 Table 2.1 Solver comparison timings (s), EMTP solution, Single-Core

 MDO-EMTP KLU Solver SuperLU solver

Time Domain solution 1048 1216 5340

Number of KLU-FF - 68532 -

Number of KLU-RF - 57543 -

As seen from the above table, the MDO-EMTP solver is apparently the fastest among the three

selected packages running on a single CPU core. This phenomenon is due to the heavy computation

involved in the numerical analysis of both KLU solver and SuperLU solver. However, after

studying the algorithms of various packages, it was found that the KLU package has significant

potential of improvement for EMT-type solution. In addition to the fact that other circuit-based

simulation packages demonstrated the potential of the KLU method [1][57].

The most useful features with the KLU package are:

1. The existence of BTF partitioning technique in KLU that is implemented as part of the

solver package.

2. The data structure used in storing L̂ and Û matrices.

3. The existing ordering techniques can be replaced easily with a user defined alternative.

4. The code structure and code documentation.

5. The separation of different tasks in different C functions.

6. The minimization of a potential stack overflow run time error during BTF permutation

calculation. This is mainly due to the fact that the stack used in all recursive calls in the

package are allocated on the heap and have more memory backup compare to other stack

68

memory given by the compiler.

7. The lower fill-in produced during factorization compared to the other two packages.

8. KLU performance is proven to be better that other solvers with matrices with high sparsity

degree.

9. The use of an efficient left looking factorization technique that reduces floating-point

operations during numerical factorization.

10. The existence of re-factoring technique (KLU-RF) that can significantly speed-up the re-

factorization process due to a time-domain varying A matrix.

Figure 2.1 shows a test case that was used to compare the ordering results of produced by KLU

and EMTP-MDO solvers. This case represents Reluctance network based transformer model. The

case consists of one block due to the fact that it does not include any transmission line, and it has

many nonlinear devices such as non-linear resisters. From the Figure 2.2, Figure 2.3 and Figure

2.4 it can be seen that KLU solver was able to produce an ordering that results in less fill-in compare

to EMTP-MDO and this will result in less factorization and solution time for L̂ and Û .

Figure 2.1 Top view of Reluctance based transformer model case (Contributed by EDF)

n1

n
2

B
o
u
n
d
a
ry

2
_
T
y
p
e
A

D
E

V
1

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
3

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
4

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
5

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
6

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
7

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
8

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
9

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
1
0

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
1
1

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
1
2

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
1
3

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
1
4

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
1
5

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
1
6

n
1

n2

Boundary2_TypeA

DEV17

n
1

n2

n
3

Boundary_TypeA

DEV18

n
1

n2

n
3

n4

TypeA

DEV19

n
1

n2

n
3

n4

TypeA

DEV20

n
1

n2

n
3

n4

TypeA

DEV21

n
1

n2

n
3

n4

TypeA

DEV22

n
1

n2

n
3

n4

TypeA

DEV23

n
1

n2

n
3

n4

TypeA

DEV24

n
1

n2

n
3

n4

TypeA

DEV25

n
1

n2

n
3

n4

TypeA

DEV26

n
1

n2

n
3

n4

TypeA

DEV27

n
1

n2

n
3

n4

TypeA

DEV28

n
1

n2

n
3

n4

TypeA

DEV29

n
1

n2

n
3

n4

TypeA

DEV30

n
1

n2

n
3

n4

TypeA

DEV31

n
1

n2

n
3

n4

TypeA

DEV32

n
1

n2

n
3

n4

TypeA

DEV33

n
1

n2

n
3

Boundary_TypeA

DEV34

n
1

n2

n
3

Boundary_TypeA

DEV35

n
1

n2

n
3

n4

TypeA

DEV36

n
1

n2

n
3

n4

TypeA

DEV37

n
1

n2

n
3

n4

TypeA

DEV38

n
1

n2

n
3

n4

TypeA

DEV39

n
1

n2

n
3

n4

TypeA

DEV40

n
1

n2

n
3

n4

TypeA

DEV41

n
1

n2

n
3

n4

TypeA

DEV42

n
1

n2

n
3

n4

TypeA

DEV43

n
1

n2

n
3

n4

TypeA

DEV44

n
1

n2

n
3

n4

TypeA

DEV45

n
1

n2

n
3

n4

TypeA

DEV46

n
1

n2

n
3

n4

TypeA

DEV47

n
1

n2

n
3

n4

TypeA

DEV48

n
1

n2

n
3

n4

TypeA

DEV49

n
1

n2

n
3

n4

TypeA

DEV50

n
1

n2

n
3

Boundary_TypeA

DEV51

n
1

n2

n
3

Boundary_TypeA

DEV52

n
1

n2

n
3

n4

TypeA

DEV53

n
1

n2

n
3

n4

TypeA

DEV54

n
1

n2

n
3

n4

TypeA

DEV55

n
1

n2

n
3

n4

TypeA

DEV56

n
1

n2

n
3

n4

TypeA

DEV57

n
1

n2

n
3

n4

TypeA

DEV58

n
1

n2

n
3

n4

TypeA

DEV59

n
1

n2

n
3

n4

TypeA

DEV60

n
1

n2

n
3

n4

TypeA

DEV61

n
1

n2

n
3

n4

TypeA

DEV62

n
1

n2

n
3

n4

TypeA

DEV63

n
1

n2

n
3

n4

TypeA

DEV64

n
1

n2

n
3

n4

TypeA

DEV65

n
1

n2

n
3

n4

TypeA

DEV66

n
1

n2

n
3

n4

TypeA

DEV67

n
1

n2

n
3

Boundary_TypeA

DEV68

n
1

n2

n
3

Boundary_TypeA

DEV69

n
1

n2

n
3

n4

TypeA

DEV70

n
1

n2

n
3

n4

TypeA

DEV71

n
1

n2

n
3

n4

TypeA

DEV72

n
1

n2

n
3

n4

TypeA

DEV73

n
1

n2

n
3

n4

TypeA

DEV74

n
1

n2

n
3

n4

TypeA

DEV75

n
1

n2

n
3

n4

TypeA

DEV76

n
1

n2

n
3

n4

TypeA

DEV77

n
1

n2

n
3

n4

TypeA

DEV78

n
1

n2

n
3

n4

TypeA

DEV79

n
1

n2

n
3

n4

TypeA

DEV80

n
1

n2

n
3

n4

TypeA

DEV81

n
1

n2

n
3

n4

TypeA

DEV82

n
1

n2

n
3

n4

TypeA

DEV83

n
1

n2

n
3

n4

TypeA

DEV84

n
1

n2

n
3

Boundary_TypeA

DEV85

n
3

n
1

M2

M1

n2

M4

M3

Boundary_TypeS_M

DEV86 n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV87

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV88

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV89

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV90

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV91

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV92

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV93

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV94

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV95

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV96

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV97

n
1

n2

n
3

n4

TypeA

DEV98

n
1

n2

n
3

n4

TypeA

DEV99

n
1

n2

n
3

n4

TypeA

DEV100

n
1

n2

n
3

n4

TypeA

DEV101

n
1

n2

n
3

Boundary_TypeA

DEV102

n
3

n
1

M2

M1

n2

M4

M3

Boundary_TypeS_M

DEV103 n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV104

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV105

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV106

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV107

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV108

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV109

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV110

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV111

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV112

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV113

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV114

n
1

n2

n
3

n4

TypeA

DEV115

n
1

n2

n
3

n4

TypeA

DEV116

n
1

n2

n
3

n4

TypeA

DEV117

n
1

n2

n
3

n4

TypeA

DEV118

n
1

n2

n
3

Boundary_TypeA

DEV119

n
3

n
1

M2

M1

n2

M4

M3

Boundary_TypeS_M

DEV120 n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV121

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV122

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV123

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV124

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV125

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV126

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV127

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV128

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV129

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV130

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV131

n
1

n2

n
3

n4

TypeA

DEV132

n
1

n2

n
3

n4

TypeA

DEV133

n
1

n2

n
3

n4

TypeA

DEV134

n
1

n2

n
3

n4

TypeA

DEV135

n
1

n2

n
3

Boundary_TypeA

DEV136

n
3

n
1

M2

M1

n2

M4

M3

Boundary_TypeS_M

DEV137 n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV138

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV139

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV140

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV141

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV142

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV143

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV144

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV145

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV146

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV147

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV148

n
1

n2

n
3

n4

TypeA

DEV149

n
1

n2

n
3

n4

TypeA

DEV150

n
1

n2

n
3

n4

TypeA

DEV151

n
1

n2

n
3

n4

TypeA

DEV152

n
1

n2

n
3

Boundary_TypeA

DEV153

n
3

n
1

M2

M1

n2

M4

M3

Boundary_TypeS_M

DEV154 n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV155

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV156

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV157

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV158

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV159

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV160

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV161

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV162

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV163

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV164

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV165

n
1

n2

n
3

n4

TypeA

DEV166

n
1

n2

n
3

n4

TypeA

DEV167

n
1

n2

n
3

n4

TypeA

DEV168

n
1

n2

n
3

n4

TypeA

DEV169

n
1

n2

n
3

Boundary_TypeA

DEV170

n
3

n
1

M2

M1

n2

M4

M3

Boundary_TypeS_M

DEV171 n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV172

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV173

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV174

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV175

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV176

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV177

n
3

M11

n4

n
1

M22 M2

M1

n2

M4

M3

M44

M33

TypeS_M

DEV178

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV179

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV180

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV181

n
3

M11

n4

n
1

M22 M2

M1

e
2
2

e
2

n2

e
1

e
1
1

M4

M3

M44

M33

TypeS_EM

DEV182

n
1

n2

n
3

n4

TypeA

DEV183

n
1

n2

n
3

n4

TypeA

DEV184

n
1

n2

n
3

n4

TypeA

DEV185

n
1

n2

n
3

n4

TypeA

DEV186

n
1

n2

n
3

Boundary_TypeA

DEV187

n
1

n2

n
3

Boundary_TypeA

DEV188

n
1

n2

n
3

n4

TypeA

DEV189

n
1

n2

n
3

n4

TypeA

DEV190

n
1

n2

n
3

n4

TypeA

DEV191

n
1

n2

n
3

n4

TypeA

DEV192

n
1

n2

n
3

n4

TypeA

DEV193

n
1

n2

n
3

n4

TypeA

DEV194

n
1

n2

n
3

n4

TypeA

DEV195

n
1

n2

n
3

n4

TypeA

DEV196

n
1

n2

n
3

n4

TypeA

DEV197

n
1

n2

n
3

n4

TypeA

DEV198

n
1

n2

n
3

n4

TypeA

DEV199

n
1

n2

n
3

n4

TypeA

DEV200

n
1

n2

n
3

n4

TypeA

DEV201

n
1

n2

n
3

n4

TypeA

DEV202

n
1

n2

n
3

n4

TypeA

DEV203

n
1

n2

n
3

Boundary_TypeA

DEV204

n
1

n2

n
3

Boundary_TypeA

DEV205

n
1

n2

n
3

n4

TypeA

DEV206

n
1

n2

n
3

n4

TypeA

DEV207

n
1

n2

n
3

n4

TypeA

DEV208

n
1

n2

n
3

n4

TypeA

DEV209

n
1

n2

n
3

n4

TypeA

DEV210

n
1

n2

n
3

n4

TypeA

DEV211

n
1

n2

n
3

n4

TypeA

DEV212

n
1

n2

n
3

n4

TypeA

DEV213

n
1

n2

n
3

n4

TypeA

DEV214

n
1

n2

n
3

n4

TypeA

DEV215

n
1

n2

n
3

n4

TypeA

DEV216

n
1

n2

n
3

n4

TypeA

DEV217

n
1

n2

n
3

n4

TypeA

DEV218

n
1

n2

n
3

n4

TypeA

DEV219

n
1

n2

n
3

n4

TypeA

DEV220

n
1

n2

n
3

Boundary_TypeA

DEV221

n
1

n2

n
3

Boundary_TypeA

DEV222

n
1

n2

n
3

n4

TypeA

DEV223

n
1

n2

n
3

n4

TypeA

DEV224

n
1

n2

n
3

n4

TypeA

DEV225

n
1

n2

n
3

n4

TypeA

DEV226

n
1

n2

n
3

n4

TypeA

DEV227

n
1

n2

n
3

n4

TypeA

DEV228

n
1

n2

n
3

n4

TypeA

DEV229

n
1

n2

n
3

n4

TypeA

DEV230

n
1

n2

n
3

n4

TypeA

DEV231

n
1

n2

n
3

n4

TypeA

DEV232

n
1

n2

n
3

n4

TypeA

DEV233

n
1

n2

n
3

n4

TypeA

DEV234

n
1

n2

n
3

n4

TypeA

DEV235

n
1

n2

n
3

n4

TypeA

DEV236

n
1

n2

n
3

n4

TypeA

DEV237

n
1

n2

n
3

Boundary_TypeA

DEV238

n
1

n2

n
3

Boundary_TypeA

DEV239

n
1

n2

n
3

n4

TypeA

DEV240

n
1

n2

n
3

n4

TypeA

DEV241

n
1

n2

n
3

n4

TypeA

DEV242

n
1

n2

n
3

n4

TypeA

DEV243

n
1

n2

n
3

n4

TypeA

DEV244

n
1

n2

n
3

n4

TypeA

DEV245

n
1

n2

n
3

n4

TypeA

DEV246

n
1

n2

n
3

n4

TypeA

DEV247

n
1

n2

n
3

n4

TypeA

DEV248

n
1

n2

n
3

n4

TypeA

DEV249

n
1

n2

n
3

n4

TypeA

DEV250

n
1

n2

n
3

n4

TypeA

DEV251

n
1

n2

n
3

n4

TypeA

DEV252

n
1

n2

n
3

n4

TypeA

DEV253

n
1

n2

n
3

n4

TypeA

DEV254

n
1

n2

n
3

Boundary_TypeA

DEV255

n
1

n2

Boundary2_TypeA

DEV256

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
5
7

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
5
8

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
5
9

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
0

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
1

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
2

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
3

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
4

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
5

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
6

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
7

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
8

n1
n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
6
9

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
7
0

n1

n
2

n3

B
o
u
n
d
a
ry

_
T
y
p
e
A

D
E

V
2
7
1

n1

n
2

B
o
u
n
d
a
ry

2
_
T
y
p
e
A

D
E

V
2
7
2

pDEV1

+

Vsine

230 /_0

AC1

+R
L
C

1k R
2

V
M

+

V
M

?v

m
1

SIG1SIG1 SIG3SIG3 SIG6SIG6 SIG9SIG9 SIG12SIG12 SIG15SIG15 SIG18SIG18 SIG21SIG21 SIG24SIG24 SIG27SIG27 SIG30SIG30 SIG33SIG33 SIG36SIG36 SIG39SIG39 SIG49 SIG49SIG42SIG42

SIG2

SIG2

SIG4

SIG4

SIG51SIG51

SIG7

SIG7

SIG54SIG54

SIG10

SIG10

SIG58SIG58

SIG13

SIG13

SIG62SIG62

SIG16

SIG16

SIG66SIG66

SIG19

SIG19

SIG70SIG70

SIG22

SIG22

SIG74SIG74

SIG25

SIG25

SIG78SIG78

SIG28

SIG28

SIG82SIG82

SIG31

SIG31

SIG86SIG86

SIG34

SIG34

SIG90SIG90

SIG37

SIG37

SIG94SIG94

SIG40

SIG40

SIG98SIG98

SIG43

SIG43

SIG102SIG102

SIG46

SIG46

SIG114SIG114SIG106SIG106

SIG48

SIG48

SIG52

SIG52

SIG55

SIG55

SIG117SIG117

SIG59

SIG59

SIG120SIG120

SIG63

SIG63

SIG124SIG124

SIG67

SIG67

SIG128SIG128

SIG71

SIG71

SIG132SIG132

SIG75

SIG75

SIG136SIG136

SIG79

SIG79

SIG140SIG140

SIG83

SIG83

SIG144SIG144

SIG87

SIG87

SIG148SIG148

SIG91

SIG91

SIG152SIG152

SIG95

SIG95

SIG156SIG156

SIG99

SIG99

SIG160SIG160

SIG103

SIG103

SIG164SIG164

SIG107

SIG107

SIG168SIG168

SIG111

SIG111

SIG180SIG180SIG172SIG172

SIG113

SIG113

SIG118

SIG118

SIG121

SIG121

SIG183SIG183

SIG125

SIG125

SIG186SIG186

SIG129

SIG129

SIG190SIG190

SIG133

SIG133

SIG194SIG194

SIG137

SIG137

SIG198SIG198

SIG141

SIG141

SIG202SIG202

SIG145

SIG145

SIG206SIG206

SIG149

SIG149

SIG210SIG210

SIG153

SIG153

SIG214SIG214

SIG157

SIG157

SIG218SIG218

SIG161

SIG161

SIG222SIG222

SIG165

SIG165

SIG226SIG226

SIG169

SIG169

SIG230SIG230

SIG173

SIG173

SIG234SIG234

SIG177

SIG177

SIG246SIG246SIG238SIG238

SIG179

SIG179

SIG184

SIG184

SIG187

SIG187

SIG249SIG249

SIG191

SIG191

SIG252SIG252

SIG195

SIG195

SIG256SIG256

SIG199

SIG199

SIG260SIG260

SIG203

SIG203

SIG264SIG264

SIG207

SIG207

SIG268SIG268

SIG211

SIG211

SIG272SIG272

SIG215

SIG215

SIG276SIG276

SIG219

SIG219

SIG280SIG280

SIG223

SIG223

SIG284SIG284

SIG227

SIG227

SIG288SIG288

SIG231

SIG231

SIG292SIG292

SIG235

SIG235

SIG296SIG296

SIG239

SIG239

SIG300SIG300

SIG243

SIG243

SIG312SIG312SIG304SIG304

SIG245

SIG245

SIG250

SIG250

SIG253

SIG253

SIG315SIG315

SIG317SIG317

SIG318SIG318

SIG319SIG319

SIG320SIG320

SIG257

SIG257

SIG322SIG322

SIG325SIG325

SIG327SIG327

SIG329SIG329

SIG331SIG331

SIG346

SIG346 SIG261

SIG261

SIG334SIG334

SIG337SIG337

SIG339SIG339

SIG341SIG341

SIG343SIG343

SIG361

SIG361 SIG265

SIG265

SIG350SIG350

SIG353SIG353

SIG355SIG355

SIG357SIG357

SIG359SIG359

SIG362SIG362

SIG378

SIG378 SIG269

SIG269

SIG366SIG366

SIG369SIG369

SIG371SIG371

SIG373SIG373

SIG375SIG375

SIG393

SIG393 SIG273

SIG273

SIG382SIG382

SIG385SIG385

SIG387SIG387

SIG389SIG389

SIG391SIG391

SIG277

SIG277

SIG398SIG398

SIG401SIG401

SIG403SIG403

SIG405SIG405

SIG407SIG407

SIG281

SIG281

SIG410SIG410

SIG413SIG413

SIG415SIG415

SIG417SIG417

SIG419SIG419

SIG434

SIG434 SIG285

SIG285

SIG422SIG422

SIG425SIG425

SIG427SIG427

SIG429SIG429

SIG431SIG431

SIG449

SIG449 SIG289

SIG289

SIG438SIG438

SIG441SIG441

SIG443SIG443

SIG445SIG445

SIG447SIG447

SIG450SIG450

SIG466

SIG466 SIG293

SIG293

SIG454SIG454

SIG457SIG457

SIG459SIG459

SIG461SIG461

SIG463SIG463

SIG481

SIG481
SIG297

SIG297

SIG470SIG470

SIG301

SIG301

SIG486SIG486

SIG305

SIG305

SIG490SIG490

SIG309

SIG309

SIG502SIG502SIG494SIG494

SIG311

SIG311

SIG316

SIG316

SIG323

SIG323

SIG505SIG505

SIG507SIG507

SIG508SIG508

SIG509SIG509

SIG510SIG510

SIG335

SIG335

SIG512SIG512

SIG515SIG515

SIG517SIG517

SIG519SIG519

SIG521SIG521

SIG348

SIG348

SIG536

SIG536 SIG351

SIG351

SIG524SIG524

SIG527SIG527

SIG529SIG529

SIG531SIG531

SIG533SIG533

SIG363

SIG363

SIG551

SIG551 SIG367

SIG367

SIG540SIG540

SIG543SIG543

SIG545SIG545

SIG547SIG547

SIG549SIG549

SIG380

SIG380

SIG568

SIG568 SIG383

SIG383

SIG556SIG556

SIG559SIG559

SIG561SIG561

SIG563SIG563

SIG565SIG565

SIG395

SIG395

SIG583

SIG583 SIG399

SIG399

SIG572SIG572

SIG575SIG575

SIG577SIG577

SIG579SIG579

SIG581SIG581

SIG411

SIG411

SIG588SIG588

SIG591SIG591

SIG593SIG593

SIG595SIG595

SIG597SIG597

SIG423

SIG423

SIG600SIG600

SIG603SIG603

SIG605SIG605

SIG607SIG607

SIG609SIG609

SIG436

SIG436

SIG624

SIG624 SIG439

SIG439

SIG612SIG612

SIG615SIG615

SIG617SIG617

SIG619SIG619

SIG621SIG621

SIG451

SIG451

SIG639

SIG639 SIG455

SIG455

SIG628SIG628

SIG631SIG631

SIG633SIG633

SIG635SIG635

SIG637SIG637

SIG468

SIG468

SIG656

SIG656 SIG471

SIG471

SIG644SIG644

SIG647SIG647

SIG649SIG649

SIG651SIG651

SIG653SIG653

SIG483

SIG483

SIG671

SIG671
SIG487

SIG487

SIG660SIG660

SIG491

SIG491

SIG676SIG676

SIG495

SIG495

SIG680SIG680

SIG499

SIG499

SIG692SIG692SIG684SIG684

SIG501

SIG501

SIG506

SIG506

SIG513

SIG513

SIG695SIG695

SIG697SIG697

SIG698SIG698

SIG699SIG699

SIG700SIG700

SIG525

SIG525

SIG702SIG702

SIG705SIG705

SIG707SIG707

SIG709SIG709

SIG711SIG711

SIG538

SIG538

SIG726

SIG726 SIG541

SIG541

SIG714SIG714

SIG717SIG717

SIG719SIG719

SIG721SIG721

SIG723SIG723

SIG553

SIG553

SIG741

SIG741 SIG557

SIG557

SIG730SIG730

SIG733SIG733

SIG735SIG735

SIG737SIG737

SIG739SIG739

SIG570

SIG570

SIG758

SIG758 SIG573

SIG573

SIG746SIG746

SIG749SIG749

SIG751SIG751

SIG753SIG753

SIG755SIG755

SIG585

SIG585

SIG773

SIG773 SIG589

SIG589

SIG762SIG762

SIG765SIG765

SIG767SIG767

SIG769SIG769

SIG771SIG771

SIG601

SIG601

SIG778SIG778

SIG781SIG781

SIG783SIG783

SIG785SIG785

SIG787SIG787

SIG613

SIG613

SIG790SIG790

SIG793SIG793

SIG795SIG795

SIG797SIG797

SIG799SIG799

SIG626

SIG626

SIG814

SIG814 SIG629

SIG629

SIG802SIG802

SIG805SIG805

SIG807SIG807

SIG809SIG809

SIG811SIG811

SIG641

SIG641

SIG829

SIG829 SIG645

SIG645

SIG818SIG818

SIG821SIG821

SIG823SIG823

SIG825SIG825

SIG827SIG827

SIG658

SIG658

SIG846

SIG846 SIG661

SIG661

SIG834SIG834

SIG837SIG837

SIG839SIG839

SIG841SIG841

SIG843SIG843

SIG673

SIG673

SIG861

SIG861
SIG677

SIG677

SIG850SIG850

SIG681

SIG681

SIG866SIG866

SIG685

SIG685

SIG870SIG870

SIG689

SIG689

SIG882SIG882SIG874SIG874

SIG691

SIG691

SIG696

SIG696

SIG703

SIG703

SIG885SIG885

SIG887SIG887

SIG888SIG888

SIG889SIG889

SIG890SIG890

SIG715

SIG715

SIG892SIG892

SIG895SIG895

SIG897SIG897

SIG899SIG899

SIG901SIG901

SIG728

SIG728

SIG916

SIG916 SIG731

SIG731

SIG904SIG904

SIG907SIG907

SIG909SIG909

SIG911SIG911

SIG913SIG913

SIG743

SIG743

SIG931

SIG931 SIG747

SIG747

SIG920SIG920

SIG923SIG923

SIG925SIG925

SIG927SIG927

SIG929SIG929

SIG760

SIG760

SIG948

SIG948 SIG763

SIG763

SIG936SIG936

SIG939SIG939

SIG941SIG941

SIG943SIG943

SIG945SIG945

SIG775

SIG775

SIG963

SIG963 SIG779

SIG779

SIG952SIG952

SIG955SIG955

SIG957SIG957

SIG959SIG959

SIG961SIG961

SIG791

SIG791

SIG968SIG968

SIG971SIG971

SIG973SIG973

SIG975SIG975

SIG977SIG977

SIG803

SIG803

SIG980SIG980

SIG983SIG983

SIG985SIG985

SIG987SIG987

SIG989SIG989

SIG816

SIG816

SIG1004

SIG1004 SIG819

SIG819

SIG992SIG992

SIG995SIG995

SIG997SIG997

SIG999SIG999

SIG1001SIG1001

SIG831

SIG831

SIG1019

SIG1019 SIG835

SIG835

SIG1008SIG1008

SIG1011SIG1011

SIG1013SIG1013

SIG1015SIG1015

SIG1017SIG1017

SIG848

SIG848

SIG1036

SIG1036 SIG851

SIG851

SIG1024SIG1024

SIG1027SIG1027

SIG1029SIG1029

SIG1031SIG1031

SIG1033SIG1033

SIG863

SIG863

SIG1051

SIG1051
SIG867

SIG867

SIG1040SIG1040

SIG871

SIG871

SIG1056SIG1056

SIG875

SIG875

SIG1060SIG1060

SIG879

SIG879

SIG1072SIG1072SIG1064SIG1064

SIG881

SIG881

SIG886

SIG886

SIG893

SIG893

SIG1075SIG1075

SIG1077SIG1077

SIG1078SIG1078

SIG1079SIG1079

SIG1080SIG1080

SIG905

SIG905

SIG1082SIG1082

SIG1085SIG1085

SIG1087SIG1087

SIG1089SIG1089

SIG1091SIG1091

SIG918

SIG918

SIG1106

SIG1106 SIG921

SIG921

SIG1094SIG1094

SIG1097SIG1097

SIG1099SIG1099

SIG1101SIG1101

SIG1103SIG1103

SIG933

SIG933

SIG1121

SIG1121 SIG937

SIG937

SIG1110SIG1110

SIG1113SIG1113

SIG1115SIG1115

SIG1117SIG1117

SIG1119SIG1119

SIG950

SIG950

SIG1138

SIG1138 SIG953

SIG953

SIG1126SIG1126

SIG1129SIG1129

SIG1131SIG1131

SIG1133SIG1133

SIG1135SIG1135

SIG965

SIG965

SIG1153

SIG1153 SIG969

SIG969

SIG1142SIG1142

SIG1145SIG1145

SIG1147SIG1147

SIG1149SIG1149

SIG1151SIG1151

SIG981

SIG981

SIG1158SIG1158

SIG1161SIG1161

SIG1163SIG1163

SIG1165SIG1165

SIG1167SIG1167

SIG993

SIG993

SIG1170SIG1170

SIG1173SIG1173

SIG1175SIG1175

SIG1177SIG1177

SIG1179SIG1179

SIG1006

SIG1006

SIG1194

SIG1194 SIG1009

SIG1009

SIG1182SIG1182

SIG1185SIG1185

SIG1187SIG1187

SIG1189SIG1189

SIG1191SIG1191

SIG1021

SIG1021

SIG1209

SIG1209 SIG1025

SIG1025

SIG1198SIG1198

SIG1201SIG1201

SIG1203SIG1203

SIG1205SIG1205

SIG1207SIG1207

SIG1038

SIG1038

SIG1226

SIG1226 SIG1041

SIG1041

SIG1214SIG1214

SIG1217SIG1217

SIG1219SIG1219

SIG1221SIG1221

SIG1223SIG1223

SIG1053

SIG1053

SIG1241

SIG1241
SIG1057

SIG1057

SIG1230SIG1230

SIG1061

SIG1061

SIG1246SIG1246

SIG1065

SIG1065

SIG1250SIG1250

SIG1069

SIG1069

SIG1262SIG1262SIG1254SIG1254

SIG1071

SIG1071

SIG1076

SIG1076

SIG1083

SIG1083

SIG1265SIG1265

SIG1267SIG1267

SIG1268SIG1268

SIG1269SIG1269

SIG1270SIG1270

SIG1095

SIG1095

SIG1272SIG1272

SIG1275SIG1275

SIG1277SIG1277

SIG1279SIG1279

SIG1281SIG1281

SIG1108

SIG1108

SIG1296

SIG1296 SIG1111

SIG1111

SIG1284SIG1284

SIG1287SIG1287

SIG1289SIG1289

SIG1291SIG1291

SIG1293SIG1293

SIG1123

SIG1123

SIG1298SIG1298 SIG1311

SIG1311 SIG1127

SIG1127

SIG1300SIG1300

SIG1303SIG1303

SIG1305SIG1305

SIG1307SIG1307

SIG1309SIG1309

SIG1140

SIG1140

SIG1328

SIG1328 SIG1143

SIG1143

SIG1316SIG1316

SIG1319SIG1319

SIG1321SIG1321

SIG1323SIG1323

SIG1325SIG1325

SIG1155

SIG1155

SIG1330SIG1330 SIG1343

SIG1343 SIG1159

SIG1159

SIG1332SIG1332

SIG1335SIG1335

SIG1337SIG1337

SIG1339SIG1339

SIG1341SIG1341

SIG1171

SIG1171

SIG1348SIG1348

SIG1351SIG1351

SIG1353SIG1353

SIG1355SIG1355

SIG1357SIG1357

SIG1183

SIG1183

SIG1360SIG1360

SIG1363SIG1363

SIG1365SIG1365

SIG1367SIG1367

SIG1369SIG1369

SIG1196

SIG1196

SIG1384

SIG1384 SIG1199

SIG1199

SIG1372SIG1372

SIG1375SIG1375

SIG1377SIG1377

SIG1379SIG1379

SIG1381SIG1381

SIG1211

SIG1211

SIG1386SIG1386 SIG1399

SIG1399 SIG1215

SIG1215

SIG1388SIG1388

SIG1391SIG1391

SIG1393SIG1393

SIG1395SIG1395

SIG1397SIG1397

SIG1228

SIG1228

SIG1416

SIG1416 SIG1231

SIG1231

SIG1404SIG1404

SIG1407SIG1407

SIG1409SIG1409

SIG1411SIG1411

SIG1413SIG1413

SIG1243

SIG1243

SIG1418SIG1418 SIG1431

SIG1431
SIG1247

SIG1247

SIG1420SIG1420

SIG1251

SIG1251

SIG1436SIG1436

SIG1255

SIG1255

SIG1440SIG1440

SIG1259

SIG1259

SIG1452SIG1452SIG1444SIG1444

SIG1261

SIG1261

SIG1266

SIG1266

SIG1273

SIG1273

SIG1455SIG1455

SIG1285

SIG1285

SIG1458SIG1458

SIG1301

SIG1301

SIG1462SIG1462

SIG1317

SIG1317

SIG1466SIG1466

SIG1333

SIG1333

SIG1470SIG1470

SIG1349

SIG1349

SIG1474SIG1474

SIG1361

SIG1361

SIG1478SIG1478

SIG1373

SIG1373

SIG1482SIG1482

SIG1389

SIG1389

SIG1486SIG1486

SIG1405

SIG1405

SIG1490SIG1490

SIG1421

SIG1421

SIG1494SIG1494

SIG1437

SIG1437

SIG1498SIG1498

SIG1441

SIG1441

SIG1502SIG1502

SIG1445

SIG1445

SIG1506SIG1506

SIG1449

SIG1449

SIG1518SIG1518SIG1510SIG1510

SIG1451

SIG1451

SIG1456

SIG1456

SIG1459

SIG1459

SIG1521SIG1521

SIG1463

SIG1463

SIG1524SIG1524

SIG1467

SIG1467

SIG1528SIG1528

SIG1471

SIG1471

SIG1532SIG1532

SIG1475

SIG1475

SIG1536SIG1536

SIG1479

SIG1479

SIG1540SIG1540

SIG1483

SIG1483

SIG1544SIG1544

SIG1487

SIG1487

SIG1548SIG1548

SIG1491

SIG1491

SIG1552SIG1552

SIG1495

SIG1495

SIG1556SIG1556

SIG1499

SIG1499

SIG1560SIG1560

SIG1503

SIG1503

SIG1564SIG1564

SIG1507

SIG1507

SIG1568SIG1568

SIG1511

SIG1511

SIG1572SIG1572

SIG1515

SIG1515

SIG1584SIG1584SIG1576SIG1576

SIG1517

SIG1517

SIG1522

SIG1522

SIG1525

SIG1525

SIG1587SIG1587

SIG1529

SIG1529

SIG1590SIG1590

SIG1533

SIG1533

SIG1594SIG1594

SIG1537

SIG1537

SIG1598SIG1598

SIG1541

SIG1541

SIG1602SIG1602

SIG1545

SIG1545

SIG1606SIG1606

SIG1549

SIG1549

SIG1610SIG1610

SIG1553

SIG1553

SIG1614SIG1614

SIG1557

SIG1557

SIG1618SIG1618

SIG1561

SIG1561

SIG1622SIG1622

SIG1565

SIG1565

SIG1626SIG1626

SIG1569

SIG1569

SIG1630SIG1630

SIG1573

SIG1573

SIG1634SIG1634

SIG1577

SIG1577

SIG1638SIG1638

SIG1581

SIG1581

SIG1650SIG1650SIG1642SIG1642

SIG1583

SIG1583

SIG1588

SIG1588

SIG1718

SIG1718

SIG1591

SIG1591

SIG1721

SIG1721

SIG1653SIG1653

SIG1595

SIG1595

SIG1724

SIG1724

SIG1656SIG1656

SIG1599

SIG1599

SIG1727

SIG1727

SIG1660SIG1660

SIG1603

SIG1603

SIG1730

SIG1730

SIG1664SIG1664

SIG1607

SIG1607

SIG1733

SIG1733

SIG1668SIG1668

SIG1611

SIG1611

SIG1736

SIG1736

SIG1672SIG1672

SIG1615

SIG1615

SIG1739

SIG1739

SIG1676SIG1676

SIG1619

SIG1619

SIG1742

SIG1742

SIG1680SIG1680

SIG1623

SIG1623

SIG1745

SIG1745

SIG1684SIG1684

SIG1627

SIG1627

SIG1748

SIG1748

SIG1688SIG1688

SIG1631

SIG1631

SIG1751

SIG1751

SIG1692SIG1692

SIG1635

SIG1635

SIG1754

SIG1754

SIG1696SIG1696

SIG1639

SIG1639

SIG1757

SIG1757

SIG1700SIG1700

SIG1643

SIG1643

SIG1760

SIG1760

SIG1704SIG1704

SIG1647

SIG1647

SIG1716SIG1716

SIG1763

SIG1763

SIG1708SIG1708

SIG1766

SIG1766

SIG1649

SIG1649

SIG1719SIG1719 SIG1722SIG1722 SIG1725SIG1725 SIG1728SIG1728 SIG1731SIG1731 SIG1734SIG1734 SIG1737SIG1737 SIG1740SIG1740 SIG1743SIG1743 SIG1746SIG1746 SIG1749SIG1749 SIG1752SIG1752 SIG1755SIG1755 SIG1758SIG1758 SIG1761SIG1761 SIG1765SIG1765

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

69

Figure 2.2 Reluctance based transformer model case matrix sparsity pattern

Figure 2.3 Reluctance based transformer model case EMTP permutation for Matrix A

70

Figure 2.4 Reluctance based transformer model case KLU permutation of matrix A

Table 2.2 Shows the sparse matrix solution time for 1 second simulation of the case shown in

Figure 2.1. It can be seen from the table that the difference between the two solvers are huge and

the effect of fill-in reduction and an efficient ordering is important in computation time

optimization.

Table 2.2 Reluctance based transformer model case =Ax b solution time

Solver Time (second)

EMTP-MDO 5560

KLU 75

2.2 KLU Interface

Since EMTP computational engine is written in FORTRAN, and the KLU package is coded in C,

it is necessary to establish an interface between both programming languages for allowing calls

into the KLU solver. This work is also applicable to other EMT-type simulation tools [5] that are

written in Fortran.

71

In order to establish such an interface, the ISO_C_BINDING module is used to provide Fortran

with access to different C types and functions. KLU has also three user defined types namely

KLU_common, KLU_symbolic and KLU_numeric. The KLU_common consists of different

tuning parameters that are used in defining how the solver runs and the type of ordering package

used in the symbolic analysis, KLU_symbolic consists of variables related to the symbolic analysis

of KLU and other techniques such as the column ordering permutation vector Pc and row

permutation vector PR and KLU_numeric contains all variables related to numerical factorization

and solution. Other than user defined types, ISO_C_BINDING provides an interface between

Fortran and conventional C types such as int, double, float and all other types including pointer

types. Figure 2.5 shows different FORTRAN types with their corresponding C variable types; for

example, the type int in C matches the type INTEGER in FORTRAN. In order to map the two

variables in an ISO_C_BINDING interface, the Name constant types shown in Figure 2.5 is used.

Figure 2.6 and Figure 2.7 give an example of how this mapping is done in defining

ISO_C_BINDING interface for a user defined type and a function.

The syntax of declaring a user defined type using ISO_C_BINDING is shown in Figure 2.6. This

declaration will allow the use of KLU types (i.e KLU_symbolic) in different FORTRAN modules.

72

Figure 2.5 ISO_C_BINDING types declaration

73

Figure 2.6 KLU symbolic declaration using ISO_C_BINDING

The declaration of functions using ISO_C_BINDING is different than variables. It consists of

adding a special section in the interface file that encapsulates all function declarations and their

argument types. Figure 2.7 shows the syntax of ISO_C_BINDING function declaration, this

declaration lists the function name, its arguments and it defines the name of the function in the C

based code. The interface then imports the type mapping of all arguments used in the function and

includes a list of arguments with their types. This standard is used in Figure 2.7 to build the

interface for KLU_SOLVER_ANALYZE.

Figure 2.7 ISO_C_BINDING functions declaration syntax

74

Figure 2.8 ISO_C_BINDING declaration of KLU_ANALYZE function

2.3 Pivot validity test

In order to improve the performance of the KLU solver, it was necessary to make modification in

its code. As explained above, the KLU-RF technique of the KLU solver assumes that the non-zero

pattern of ˆ
iL and ˆ

iU calculated in the previous KLU-FF and the previous pivoting order are still

valid. Therefore, by making such an assumption the symbolic analysis during the numerical

factorization and the computation of the partial pivoting order can be skipped. The KLU-RF

function updates the numerical values of ˆ
iL and ˆ

iU to reflect any changes in the matrix Âi .

However, KLU-RF technique does not involve any pivot validation, and it blindly uses the old

non-zero pattern and the old pivoting order without any verification. This practice increases the

risk of introducing numerical instability and producing inaccurate results.

The first added feature to KLU in this thesis is called the “pivot validity test”. It deals mainly with

how KLU decides on whether conducting a KLU-FF on a certain block Âi or KLU-RF is required.

The pivot validity testing is an added feature that allows the KLU solver to be able to make an

informative decision on whether a KLU-FF or KLU-RF is needed. Pivot validity testing criterion

is based on verifying that the element stored at the location of each column’s pivot is greater than

all other elements belonging to the same column by at least the user defined tolerance. The use of

tolerance avoids calculating a new pivoting order if the new candidate pivot is slightly greater than

the previously calculated one. Equation (2.2) shows the pivot validity testing verification criterion.

This test is performed on every column of block Âi . In case any column of Âi fails to satisfy this

criterion, block Âi is deemed ineligible for KLU-RF and a KLU-FF is needed.

75

p new olda a (2.2)

Where, p is the pivot testing criteria, newa is the new pivot element candidate and olda is the old

pivot element. The pivot tolerance plays a major rule in controlling the acceleration gain of

SMPEMT. This is due to the fact that this tolerance ratio determines the number of times KLU-FF

is executed as opposed to KLU-RF. The higher p results in increasing number of iterations use

KLU-FF compare to lower p .

Figure 2.9 shows a flow chart presentation of the sequence of pivot validity testing implemented in

KLU during an EMT type simulation process.

Figure 2.9 Pivot validity test flow chart

76

From the above figure, it can be seen that a KLU-FF is essentially needed at the beginning of

simulation to calculate the non-zero patterns of ˆ
iL and ˆ

iU and finding the first pivoting order.

Once the first solution of (2.1) is completed, KLU-RF becomes the default factoring algorithm

used during KLU numerical stage. If an invalid pivot is spotted, the KLU-RF function is terminated

for the block Âi and a KLU-FF will start to calculate a new ˆ
iL and ˆ

iU non-zero pattern and pivot

order.

It is important to highlight the fact that this feature allows to have a sort of hybrid factorization

technique during the same time step solution. Given that BTF blocks are independent of each other,

the fact that one block failed the pivot validity test does not necessary mean that all other blocks

will fail the test. There could be a scenario where some blocks are updating their ˆ
iL and ˆ

iU

numerical elements using KLU-RF technique and other blocks are calculating ˆ
iL and ˆ

iU from

scratch using KLU-FF.

2.4 Partial factorization

A second feature added in this thesis to the KLU solver is called “Partial Factorization”. To reduce

the computational cost of KLU-RF for Âi even further, it is possible to apply partial KLU-RF. In

a given system of equation (2.1), it is possible to determine the cells that are occupied by NMs and

TVMs. Those dynamic cells may change between solution time-points and during iterations at a

given time-point. These changes require the KLU-RF of Âi . A mapping can be derived to

determine the BTF block number that contains each dynamic cell and the column number within

BTF blocks that contains these cells.

ˆ
c if = →A A (2.3)

_
ˆ () (())c c c invi i=A A P (2.4)

Let f in equation (2.3) be a mapping between A columns indices and Â column indices. This

mapping is based on the column permutation vector Pc found during KLU symbolic analysis. The

77

conversion of column indices into BTF indices requires the calculation of the inverse column

permutation vector _Pc inv .

M : i→A (2.5)

A similar mapping can be drawn between each matrix cell and the BTF blocks they belong in Â .

Let (2.5) be the mapping between matrix A nonzero elements and the BTF blocks i they belong

to in Â . Figure 2.10 shows the mapping procedure between these two sets. The mapping involved

two nested loops that go over all matrix cells (the outer loop) and all BTF blocks (the inner loop).

The outer loop runs from 1 to the total number of non-zeros (nnz) and passes column index of each

cell to the inner loop. The inner loop runs from 1 to the number of blocks (nblocks) looking for the

block the cell belongs to. In Figure 2.10, vector R represents block boundaries vector where ()iR

is the starting row of block i and (1)i +R is the starting row number of block 1i + , and vector

BTFR has the BTF block number of each non-zero element in A .

Figure 2.10 Cells to BTF blocks mapping

The matrix Âi is reordered using AMD and can be written as

ˆ
i

 
=  
 

cc cd

dc dd

P P
A

P P
 (2.6)

Where, the subscripts c and d mean constant and dynamic respectively. The c columns do not have

any dynamic parts, but the d columns contain at least one dynamic cell and may have zero or more

dynamic cells in the following columns.

78

In the left-looking algorithm, the columns of ˆ
iL are derived one-by-one by solving for each column

of Âi . If, for example, the lower matrix decomposition of Âi is stopped at its first dynamic column

then

ˆ p

i

 
=  
 

cc

dc dd

L 0
L

P I
 (2.7)

Where L̂
p
i is a partially computed lower-triangular matrix, Lcc is a lower-triangular matrix, Pdc

and Lcc contain the columns of the static part of L̂
p
i and Idd is the identity matrix. Once ddP is

determined (status of time-varying devices or iterative Norton equivalent) at a given solution time-

point, the calculation process is continued until the replacement of Idd to obtain
'

Li from L̂
p
i . The

upper-triangular matrix
'

Ui is calculated within the calculation process of
'

Li . For (2.7), the partial

upper matrix factorization is available up to the constant columns

 
=  
 

p
i

ccU
U

0
 (2.8)

In the above approach it is not necessary to restart the partial KLU-RF process for the complete set

of columns of ddP . Better efficiency can be gained, if partial KLU-RF is applied by restarting from

the first left modified column mdj in ddP . As before, since KLU is a left-looking solver, all

unchanged columns to the left of mdj can maintain the previous contributions to the ˆ
iL and ˆ

iU

factors. In addition, given the fact that not all the elements in the right hand side vector b are

dynamic, the forward substitution can start from the top changed element of b and the results of

the skipped part can be retrieved from the previous iteration.

It is also possible to apply a permutation technique that forces ddP to contain only NMs and TVMs

(similar idea in [34]). But such an approach interferes with the AMD ordering and creates extra

fill-ins which hinder the performance gains. It was tested and was not retained for this thesis.

The following example shows the application of partial factorization feature on the simple electric

circuit shown in Figure 2.11.

79

Figure 2.11 Sample circuit for demonstrating partial factorization

The BTF permuted MANA matrix for the circuit shown in the above figure is shown in equation

(2.9). At the start of simulation, the nonlinear resistor Rn1 is equal to 1 Ohm (initial linear slope

position) and the contribution of this resistance in the Â matrix appears at the diagonal element

ˆ (3,3)A .

1 1

2

3

1.2500 1.0000 0.25000

1.000 1.83333 0.33333 0

0.2500 0.33 3333 01.58 333

SV I

V

V

− −     
     
− − =

     
     − −     

 (2.9)

The KLU-FF of system (2.9) is performed in equations (2.10) to (2.19). The following steps

demonstrate a summarized KLU-FF process (for detailed procedure of KLU-FF refer to section

1.6.2.2).

1. KLU 1st column factorization:

1 1

2 2

3 3

1 0 0 1.2500 1.2500

0 1 0 1.000 1.000

0 0 1 0.2500 0.2500

x x

x x

x x

         
         

= −  = −
         
         − −         

 (2.10)

1

1 0 0

ˆ 0.8000 1 0

0.2000 0 1

L

 
 

= −
 
 − 

 (2.11)

+
4

R1

+
3

R2
+

1

R3

+

2

R
4

+

Rn1

+ AC1

80

1

1.2500 0 0

ˆ 0 1 0

0 0 1

U

 
 

=
 
  

 (2.12)

2. KLU 2nd column factorization:

1 1

2 2

3 3

1.0000 0 0 1.0000 1.0000

0.8000 1.0000 0 1.83333 1.03300

0.2000 0 1.0000 0.3333 0.53300

x x

x x

x x

− −         
         
− =  =
         
         − − −         

 (2.13)

2

1 0 0

ˆ 0.8000 1 0

0.2000 0.5161 1

L

 
 

= −
 
 − − 

 (2.14)

 2

1.2500 1.000 0

ˆ 0 1.0333 0

0 0 1.000

U

− 
 

=
 
  

 (2.15)

3. KLU 3rd column factorization:

1 1

2 2

3 3

1.0 0 0 0.2500 0.2500

0.8000 1.0 0 0.33333 0.13333

0.2000 0.5161 1.0 1.58333 1.60214

x x

x x

x x

− −         
         
− =  =
         
         − −         

 (2.16)

3

1.0 0 0

ˆ 0.8000 1.0 0

0.2000 0.5161 1.0

L

 
 

= −
 
 − − 

 (2.17)

3

1.25000 1.000 0.250

ˆ 0 1.0333 0.1333

0 0 1.6021

U

− − 
 

=
 
  

 (2.18)

The fully factorized system of (2.9) is shown in (2.19)

1 1

2

3

1 0 0 1.25 1 0.25

0.8 1 0 0 1.0333 0.533 0

0.2 0.5161 1 0 0 1.257 0

SV I

V

V

− −       
       
− − =
       
       − −       

 (2.19)

Once the system in (2.19) is solved and the simulation moves to the next time step, the nonlinear

resistor in Figure 2.11 may change to another value. In this example and for the sake of illustrating

81

the partial KLU-RF concept, it is assumed that Rn1 value changes from 1 ohm to 2 Ohms. The

MANA matrix in (2.9) changes and it becomes as shown in (2.20).

1 1

2

3

1.2500 1.000 0.2500

1.000 1.8333 0.3333 0

0.2500 0.33 3 01.083 3

SV I

V

V

− −     
     
− − =

     
     − −     

 (2.20)

A comparison between (2.9) and (2.20) shows that the change in Rn1 only affects element ˆ (3,3)A

and hence column and row 3 only. The partial KLU-RF feature can detect the first left change

column (FLCC) in Âi and starts the factorization process from that changed column. In this

example, the first left change column is column number 3. In order to factorize this column

successfully, the lower and upper matrices resulted from the factorization of (2.9) up to the second

column (shown in equations (2.14) and (2.15) are retrieved. The factorization of (2.20) can be

achieved by only factoring the third column with the new element at ˆ (3,3)A .

1 1

2 2

3 3

1 0 0 0.2500 0.2500

0.8000 1 0 0.33333 0.13333

0.2000 0.5161 1 1.08333 1.10213

x x

x x

x x

− −         
         
− =  =
         
         − −         

 (2.21)

1.0 0 0

ˆ 0.8000 1.0 0

0.2000 0.5161 1.0

L

 
 

= −
 
 − − 

 (2.22)

1.2500 1.000 0.2500

ˆ 0 1.0333 0.5333

0 0 1.10213

U

− − 
 

= −
 
  

 (2.23)

1 1

2

3

1.0 0 0 1.2500 1.000 0.2500

0.8000 1.0 0 0 1.0333 0.5333 0

0.2000 0.5161 1.0 0 0 1.10213 0

SV I

V

V

− −       
       
− − =
       
       − −       

 (2.24)

From the above example, it can be seen that the partial factorization process allows to save

computing time since it avoids the lengthy operations for recalculating the full ˆ
iL and ˆ

iU matrices

from scratch. The computational impact will depend effectively on the locations of the nonlinear

component columns. The Impact is maximized when all nonlinear component cells are located at

the far-right part of Âi . It is also obvious that the impact is more important for very large-scale

systems with nonlinear components. It is worth mentioning that in the above example the diagonal

82

pivots assumed at the beginning of KLU-FF continue to be valid throughout the 3 columns

factorization. Applying partial KLU-RF involved continued validation of pivot for each column

being factorized, and if at any point an invalid pivot is found the partial KLU-RF process is halted

and a KLU-FF is performed on that particular block.

2.5 Parallel KLU Implementation

The second approach of achieving faster EMT simulation is by applying parallel computation on

the enhanced version of KLU presented above. In this project the OpenMP multithreading

technique is applied on different parts of KLU such as KLU-FF, KLU-RF and forward-backward

substitution.

Throughout this thesis, two different parallel sparse solver techniques were implemented and

tested. The two approaches are presented in this section.

2.5.1 Shared memory Model

The shared memory design of OpenMP is mainly based on keeping the matrix A received by the

simulation package (i.e EMTP) as one matrix that is allocated on one sequential segment of the

memory and using this matrix in the solution of (1.4). All BTF blocks in this model are

concatenated in one matrix and accessing these blocks requires the knowledge of the starting and

ending column/row of each block.

In KLU, the symbolic analysis is done in a pure sequential fashion due to the fact that it is done

only once at the beginning of simulation (0t =). However, when it comes to numerical analysis,

parallelizing the solution of different blocks is essential to convert the KLU code to a parallel

solver, given that the network that is being solved can be solved in parallel because it has at least

one delay-based line model in it. KLU-FF process can be done in parallel allowing the Full-

factorization of different blocks to be done simultaneously. similarly, KLU-RF and the backward-

forward substitution steps can each be done in parallel as well.

In the shared memory model, parallelizing the factoring process (KLU-FF and KLU-RF) was done

by surrounding the factorization loop, that loops over BTF blocks, with a pragma bracket that will

guarantee a parallel execution of that loop. In a similar manner the backward/forward substitution

83

step can be parallelized. Using shared memory model requires the distinguishing between thread

specific variables and threads shared variables and the proper distribution of blocks on different

threads. This concept it crucial to avoid any overlap between different threads, and to avoid any

kind of race conditions during OpenMP thread synchronization.

Figure 2.12 shows a flow chart of the shared memory OpenMP design. From the flow chart it can

be seen that the three parallel regions in this OpenMP model are launched and joined locally within

their SMPEMT functions. These three regions are defined by two black bold horizontal lines that

represent the launch and join points of threads. For example, in KLU-FF function, OpenMP

launches threads at the beginning of KLU-FF loop and joins them when the last block is fully

factored. The same concept applies for the KLU-RF and backward and forward substitution

functions. The KLU-FF and KLU-RF can run on the same thread and three parallel regions are

using threads that are launched and kept for further usage in an OpenMP thread pool.This process

of launching and joining threads at different locations within the solver increases threading

overhead and introduces further delays in the computation speed with the increased number of

threads.

84

Figure 2.12 Shared memory OpenMP model

2.5.2 Distributed Memory Model

The second design of OpenMP implementation is based on the distributed memory concept. This

model uses matrix A to create another set of matrices that are fully independent in terms of

equations and memory storage. These new matrices are created based on the BTF permutation

found during the symbolic analysis of A . A new data type is created to fully represent the new

matrices both symbolically and numerically. Figure 2.13 shows the user defined type KLU_unit

85

used to represent different sub-matrices. If the user of SMPEMT solver requested the launch of 4

threads, and the size of the matrix A and the circuit being solved support this number of threads,

four instances of KLU_unit will be created with each one of them representing part of A .

Figure 2.13 KLU_unit type declaration

In Figure 2.13, klu_unit_common is a variable of type KLU_Common that stores KLU control

parameters of the submatrix represented by KLU_UNIT, klu_unit_symbolic is a variable of type

KLU_Symbolic that stores the symbolic parameters of the submatrix represented by KLU_UNIT

(such as permutation vectors and different statistics variables), klu_unit_numeric is a variable of

type KLU_Numeric that stores the numerical quantities of the submatrix represented by KLU_Unit

(such as the matrices L̂i , Û i and the solution vector x̂). The variables n, nnz, klu_unit_Ax,

klu_unit_Ai, klu_unit_Ap, klu_unit_X and klu_unit_B are a representation of the submatrix being

represented by KLU_UNIT. All other variables in Figure 2.13 are used to provide two ways

mapping between KLU_UNIT submatrix and the matrix A .

Solving the system of equation in (1.54) using the distributed memory algorithm requires running

symbolic analysis on the matrix A . This symbolic analysis will find the BTF permutation of A

and determine the load balancing to achieve best parallelization possible (see section 2.6). A new

86

function called KLU_submatrix_creation was created to form the new matrices and allocate all

necessary memory required to store KLU_unit elements. The creation of KLU_unit instances is

done in parallel in order to make sure that each thread uses its own memory and hence its own

cache line to store and manipulate data. This practice allows to minimize thread conflicts and

enhances the ability of each thread to fetch data faster and more efficiently.

The distributed memory algorithm is shown below:

1. First call to SMPEMT:

a. Perform symbolic analysis on A .

b. Create new matrices ˆ
iA by concatenating BTF blocks of A .

c. Launch a parallel SMPEMT call for all KLU_unit objects

d. Go to step 2

2. First KLU_unit call to SMPEMT:

a. Perform symbolic analysis

b. Perform KLU-FF to find L̂i and Û i .

c. Backward and Forward substitution to find x̂i .

d. Go to step 4.

3. Not First KLU_unit call to SMPEMT:

a. Perform KLU-RF using existing nonzero pattern and pivoting with pivot validity testing

i. Invalid pivot found: go to step 2.b

b. Go to step 4.

4. Copy the values in x̂i back to x .

87

Figure 2.14 Distributed model OpenMP design

In this thesis, two solvers will be used that are based on SMPEMT, namely SMPEMT1 and

SMPEMT2. The first solver (SMPEMT1) has only the pivot validity test implemented in it;

whereas SMPEMT2 has all features discussed above (pivot validity test and partial factorization)

implemented. This practice allows for better understanding of the effect of each feature on

different test benchmarks and gives more insight of the advantages and disadvantages of all added

feature.

88

2.6 Load balancing

Parallelization is applied to blocks found from BTF permutation, that is for each ˆ
iA matrix. Since

there is a limited number of CPU cores and the computing gains are limited by the largest network

blocks, it is necessary to apply a balancing technique for the given number of cores. An algorithm

that is based on different approaches has been implemented.

In the first approach a pre-programmed method allows to estimate the number of floating-point

operations for the solution of each block (iNFPO). The following formula is used for a matrix

block of n n :

()
1

1 1

2 3 () 2 ()
−

= =

 
= + + + 

  
 

jn

i

j m

NFPO Llen m Llen j Ulen j n (2.25)

Where j and m are the indices of ˆ
iA columns, Llen and Ulen are the counts of non-zeros in L̂i and

Û i respectively. This formula accounts for the LU-factorization based on the initial ˆ ˆL Ui i nonzero

patterns. It also accounts for the backward-forward substitution step. Equation (2.25) was derived

by considering the operations of KLU solvers factorization line by line and accounting for any step

to produce accurate and efficient load balancing.

The above equation consists of two nested summations, the outer summation of (2.25) goes

through all the block’s columns while the inner summation calculates the floating points operations

needed to KLU-RF column j and solving it. The main tasks equation (2.25) accounts for are

calculating the solution for a sparse lower triangular system used to find L̂i and Û i , finding the

numerical elements of L̂i and backward and forward solution. As can be seen in section 1.6.2, the

results of solving a sparse lower triangular system for column j requires the use of nonzero

elements in the columns prior to j (m j) in L̂i and that accounts for the term ()
1

1

2
j

m

Llen m
−

=

 in

equation (2.25); whereas the calculation of L̂i numerical values contributes by ()Llen j floating

points operations as seen in the last line of Figure 1.25 pseudocode. Finally, the calculation of

backward and forward substitution costs 2 () 2 ()Llen j Ulen j n+ + floating points operations.

In the second approach, the number of non-zeros in each block (iNNZ) is available from its

nonzero pattern. However, for all the test cases presented in this paper, using iNNZ was less

89

efficient than using iNFPO .

The blocks are assigned to cores using the number of available cores (CN) and the factor

/=d Ck NFPO N , where NFPO is the total number for the entire system of equations. Since the

number of blocks N could be higher than CN , it is necessary to verify the limiting dk for each

assignment. If a given core is assigned a block with iNFPO less than dk then it can contain

additional blocks until dk is reached or exceeded. This is basically a packing procedure for

populating available cores.

If a block’s iNFPO falls below a minimum size, then it must be packed into an assigned core since

threading for such a block can become inefficient. The same is applicable using iNNZ instead of

iNFPO .

90

CHAPTER 3 TESTING AND RESULTS

In this chapter, different cases with different sizes and topologies are tested and validated. The new

implemented solvers SMPEMT1 and SMPEMT2 are used in addition to the solver already exists

in EMTP (EMTP-MDO). The new solvers are tested with single thread and multithread in order to

validate the performance under all circumstances and scenarios.

When it comes to EMT simulation, speed is not the most important factor to look at. The accuracy

of simulation results must be fully maintained in the new implemented solver under both single

threaded and multithreaded execution. The accuracy of SMPEMT1/2 was verified for all

benchmarks used in this chapter by calculating the difference error percentage between

SMPEMT1/2 and EMTP-MDO waveforms. The percentage error has been calculated between the

two sets of results using equation (3.1).

2

2
%

f f
e

f

−
= (3.1)

where:

%e : percentage error between SMPEMT1/2 and EMTP-MDO

f : results vector produced by SMPEMT1/2 solver

f : results vector produced by EMTP-MDO solver

In addition to the above quantitative measure, few signals of each test case were used to compare

the results of both solvers visually. These signals produced by both solvers were plotted and

overlapped to visually realize any differences along the simulation period.

SMPEMT1 and SMPEMT2 solver ability to provide simulation acceleration and flexibility to

different EMT cases can clearly be seen herein. In the following few sections further validations

of the new proposed solver is given with emphasis of the main advantages and the few limitations

the solver has.

91

3.1 SMPEMT testing and validation

The modified KLU solver named SMPEMT was tested on a wide range of cases and benchmarks.

The aim was to test the developed new solvers on realistic power grid cases. In addition, different

scenarios were considered to stress numerical limitations and examine solver stability and

accuracy. These scenarios involve faults, large numbers of nonlinear models and the use of wind

generators with power electronics converters. In addition, the distributed memory design of

OpenMP was used in all cases and has been validated.

In order to draw a clear conclusion about each test case and fully understand each scenario the

following is given for each benchmark:

• A brief description of the case.

• A listing of the benchmark main components.

• A plot of the network sparsity pattern before and after BTF permutation.

• Simulation timing results for EMTP, KLU, SMPEMT1 and SMPEMT2.

• Simulation acceleration plot (both in seconds and acceleration gain).

• Results description and discussion.

All tests were run on a machine that has the specifications listed in Table 3.1.

 Table 3.1 Testing platform

Test Platform: HP DL360

Processor Model Intel Xeon CPU E5-2650 v4

CPU frequency 2.20 GHz

Number of physical processors 12 / cluster

Number of logical processors 24 / cluster

Memory 32.0 GB

Windows 10

92

3.1.1 Hydro-Quebec Full network (HQ-L)

This test case is an upgraded version of the one presented in [6]. It is based on the actual Hydro-

Quebec grid (HQ-grid). A top view of the test case is presented in Figure 3.1.

Figure 3.1 Hydro-Quebec case top view

The summary of the case main components is:

• RLC branches: 27530;

• PI/RL coupled branches, 3-phase: 860

• CP Lines/Cable: 1354 phases

• Ideal transformer units (for 3-phase transformers): 6294

• Ideal switches: 3663

• Zinc-Oxide Arresters: 174;

• Nonlinear inductances (transformer magnetization): 4452

• Synchronous generators (with excitors and governors): 349;

VT NH

MA

vt_nh_ma

ny

province_quebec

ontario

nb

93

• Loads: 4452

HQ-L Simulation data:

• Simulation time: 1 s

• Simulation time step: 50 s

• Pivot tolerance p : 0.01

• Average number of iterations per time step: 2.07

• Total number of iterations: 41400

• Matrix A size: 41797×41797

• Number of nonzero elements (nnz) in A : 169369

• Sparsity percentage: 99%

• Total number of BTF of Blocks: 217

• Biggest block size: 2898×2898

• Smallest block size: 3×3

The sparsity pattern of HQ-L network matrix A is shown in Figure 3.2, and the BTF version of

the matrix is shown in Figure 3.3.

94

Figure 3.2 HQ-L matrix A before BTF

Figure 3.3 HQ-L matrix A after BTF

 shows the solution of equation (1.4) timing using different solvers and different number of threads.

It is apparent that the KLU method alone does not have performance gains as seen in section 2.1.

This is due to many reasons including the heavy computation operations used in KLU factorization

process and the fact that KLU-FF is applied to all blocks without the improvements of SMPEMT1

0 1 2 3 4

x 10
4

0

1

2

3

4

x 10
4

nz = 169369

0 1 2 3 4

x 10
4

0

1

2

3

4

x 10
4

nz = 169369

95

and SMPEMT2. For this case, SMPEMT2 and SMPEMT1 gave very close timings since some

dynamic elements can be found in the far-left segment of the matrices Â i
.

 Table 3.2 HQ-grid sparse matrix solution timings for 1s simulation and t =50 s

 Number of cores

Solver 1 2 4 8 12 13 14 15 16

EMTP 1048

KLU 1216

SMPEMT1 296 133 82 47 34 36 37 38.5 39

SMPEMT2 285 126 77 43 31 32 32.5 32.5 34

The computational gain against existing EMTP solver is 1048/31=33.8 with 12 cores. The gain

over the standard single-core KLU solver is 1216/31=39 with 12 cores.

Performance plots are presented in Figure 3.4. The maximum gain over the single core SMPEMT2

version is 9.2 and there are no significant gains after 12 cores. This is mainly due to the limitation

imposed by the largest block, increased memory exchange and thread management costs which

increase with the number of threads. The overall computation time including the solution of

equation (2.1), the control solution, steady-state solution and updating matrix A and vector b

drops from 1976 seconds (when using EMTP solver) to 404 seconds (when using SMPEMT2,

parallel control solver and 16 threads topology).

Figure 3.4 SMPEMT HQ-L Grid simulation time and gain

In order to validate the results of SMPEMT, three signals were selected to determine the accuracy

of the solution. The first selected signal is the voltage (phase A) drop across line L7016 located in

the province of Quebec and it was chosen in particular due to its distance proximity to a fault that

96

is located between L7016 and L 7046A transmission lines. The fault event in this test case is a (3-

phase-to-ground) fault that is triggered at t = 0.5s as can be seen in Figure 3.5.

Figure 3.5 HQ-L Grid fault location

The second signal is the real power of synchronous machine Generator Mercier_A1 located in the

province of Quebec in the Laurentides region, and the third signal is the real power of the

synchronous machine Hydrocanyon_A located in the province of Quebec in the Quebec City

region. The comparison of the three signals are shown in Figure 3.6 to Figure 3.8. In these figures,

the red waveform represents the result of EMTP-MDO solver, and the blue is SMPEMT solver. It

can be seen from the figures that both results are matching and a complete overlap between the two

curves is achieved (including during the fault effect period). The error percentage between both set

of waveforms are found to be 92.67 10− , 102.93 10− and 91.57 10− for the three signals

respectively.

97

Figure 3.6 HQ-L grid line L7016 voltage drop - phase A

Figure 3.7 HQ-L grid Generator Mercier_A1 real power

98

Figure 3.8 HQ-L grid Generator Hydrocanyon_A real power

3.1.2 T0-Grid

This case is a realistic 400 kV, 50 Hz network. It is designed with high integration of renewable

sources to stress numerical accuracy and stability. It includes 72 synchronous generators modeled

with their exciters and governors. There is a total of 10 wind parks with aggregated wind

generators. These generators of DFIG type are simulated with their controllers that are based on

reactive power control mode. The DFIG converters are given two modeling options: Detailed

model (DM) and average value model (AVM) [58]. The DM includes nonlinear IGBT models

which require iterations and significantly increases computational burden. In the AVM controlled

sources are used to represent average converter behavior and sufficient accuracy can be achieved

when studying grid performance issues. The details of this benchmark are listed in [59].

The top view of T0-Grid is shown in Figure 3.9, where the green boxes represent sub-transmission

networks at 154 kV with wind generation, and the yellow boxes represent only sub-transmission

networks with no wind turbines. In addition to the above, the network has the following contents:

• RLC branches: 2319; PI/RL coupled branches, 3-phase: 595

99

• CP Lines/Cable: 174 phases

• Ideal transformer units (for 3-phase transformers): 6294

• Controlled switches (converter switches): 190

• Ideal switches: 254

• Nonlinear resistances (used for IGBT models): 270

• Nonlinear inductances (transformer magnetization): 564

• Loads: 1029

Figure 3.9 T0-Grid top view

T0-Grid Simulation data

• Simulation time: 1 s

• Simulation time step: 10 s

• Pivot tolerance p : 0.01

• Average number of iterations per time step: 6.23

CP+

COP_to_HALKA

125.00

CP+

HAMIT_to_HALKA

147.00

CP+

COP_to_UMRAN

62.00

CP+

UMRAN_to_GEBZE_1

32.00

CP+

UMRAN_to_GEBZE_2

32.00

CP+

BABA_to_HAMIT

25.00

CP+

HAMIT_to_COP

22.00

CP+

HALKA_to_OSMAN

225.00

CP+

GEBZE_to_ADAPA_1

87.00

CP+

GEBZE_to_ADAPA_2

87.00

CP+

ADAPA_to_OSMAN

66.00

CP+

ADAPA_to_CAYIR

136.00

CP+

CAYIR_to_SINCA

136.00

CP+

OSMAN_to_SINCA

172.00

CP+

OSMAN_to_EREGL

44.00

CP+

SINCA_to_KAYAB

202.00

CP+

OSMAN_to_CANKI

206.00

CP+

CANKI_to_KAYAB

216.00

CP+

ADAPA_to_GOKCE

100.00

+

R
e

a
c
to

r_
O

S
M

A
N

5
.7

4
5

4
2

8
8

0
3 +

R
e

a
c
to

r_
C

A
N

K
I

5
.7

4
5

4
2

8
8

0
3

CP+

SINCA_GOLBA

34.00

+

R
e

a
c
to

r_
S

IN
C

A

3
.4

5

C
P

+

G
O

K
C

E
_

G
O

L
B

A

1
6

8
.0

0

C
P

+

U
R

G
U

P
_

S
IN

C
A

2
6

6
.0

0

+

C1_URGUP

9.6458e-005
+

C2_URGUP

9.6458e-005
CP+

URGUP_ELBIS

202.00

CP+

GOLBA_KAYSE_1

271.00

CP+

GOLBA_KAYSE_2

271.00

+

C2_KAYSE

9.0946e-005

+

C1_KAYSE

9.0946e-005

CP+

BURSA_ADAPA

154.00

CP+

BALIK_BURSA

109.00

CP+

BURSA_TUNC

75.00

CP+

TUNC_SEYIT

42.00

CP+

SEYIT_GOKCE

116.00

CP+

ERZIN_ELBIS

186.00

+

C_ERZIN

9.6458e-005

+

BYPASS

-1|1E15|0

CP+

ADANA_ERZIN

80.00

CP+

SEYDI_ADANA

350.00

+

C_SEYDI

9.6458e-005

CP+

SEYIT_SEYDI

385.00

CP+

OYMAP_SEYDI

85.00

CP+

BALIK_SOMA

65.00

CP+

ALIAG_SOMA

82.00

CP+

ALIAG_IZMIR

46.00
CP+

IZMIR_SEYIT

287.00

C
P

+

Y
E

N
IK

_
IZ

M
IR

1
8

2
.0

0

C
P

+

Y
A

T
A

G
_

IZ
M

IR

1
4

6
.0

0

CP+

YENIK_YATAG

40.00

CP+

KEMER_YATAG

47.00

YATAG
 TPP

YATAG_TPP

YENIK
 TPP

YENIK_TPP

KEMER
 TPP

KEMER_TPP

SOMA
 TPP

SOMA_TPP

SEYIT
 TPP

SEYIT_TPP

TUNC
 TPP

TUNC_TPP

CAYIR
 TPP

CAYIR_TPP

L
F

L
o

a
d

_
S

E
Y

D
I

2
0

0
M

W

1
0

0
M

V
A

R

4
0

0
k
V

R
M

S
L

L

 HAMIT
NGCCPP

HAMIT_NGCCPP

CP+

ERZIN_ANTEP

121.00

CP+

ELBIS_KEBAN

170.00

ELBIS
 TPP

ELBIS_TPP

+

C1_KAYAB

9.0946e-005

+

C2_KAYAB

9.0946e-005

+

C3_KAYAB

9.0946e-005
CP+

KAYAB_to_SIVAS

167.00

CP+

SIVAS_to_KANGA

61.00

KANGA
 TPP

KANGA_TPP

CP+

KANGA_KEBAN

139.00

CP+

KAYSE_KEBAN_1

271.00

CP+

KAYSE_KEBAN_2

271.00

C
P

+

A
N

T
E

P
_

to
_

K
A

R
A

K

2
5

2
.0

0
C

P
+

K
A

R
A

K
_

to
_

K
E

B
A

N
_

1

8
5

.0
0

C
P

+

K
A

R
A

K
_

to
_

K
E

B
A

N
_

2

8
5

.0
0

+

R
e

a
c
to

r_
G

O
L

B
A

3
.4

5 +

R
e

a
c
to

r_
K

A
Y

S
E

2
.3

+

R
e

a
c
to

r_
K

E
B

A
N

1
.1

5

+

R
e

a
c
to

r_
B

A
B

A

6
.9

6
4

1
5

6
1

2
5

GOKCE
 HPP

GOKCE_HPP

OYMAP
 HPP

OYMAP_HPP

+

R
e

a
c
to

r_
S

E
Y

IT

4
.6

+

R
e

a
c
to

r_
S

E
Y

D
I

2
.3 +

R
e

a
c
to

r_
A

D
A

N
A

4
.6

+

R
e

a
c
to

r_
K

A
R

A
K

4
.7

KARAK
 HPP

KARAK_HPP

+

L
1

2
.3

KEBAN
 HPP

KEBAN_HPP

+

R
e

a
c
to

r_
K

A
Y

A
B

1
.1

5

+

R
e

a
c
to

r_
U

R
G

U
P

4
.6

C
P

+

K
A

Y
A

B
_

to
_

A
L

T
IN

1
0

3
.0

0

C
P

+

K
A

Y
A

B
_

to
_

C
A

R
S

A

1
2

6
.0

0

CP+

ALTIN_to_CARSA

95.00

CP+

CARSA_to_HUGUR_1

19.00

CP+

CARSA_to_HUGUR_2

19.00

ALTIN
 HPP

ALTIN_HPP

HUGUR
 HPP

HUGUR_HPP

PI

+YENIK_KEMER_PI

F

F
a

u
lt
1

T

SB

BTS

S B

SB

H C

HC

H

H

YK YT

YY

C H

CH

U G

UG

UG

H

AL100

H

EL100

H

K100

H

CAY100

H

OY100

H

ER50

H

KAR50

H

KEB50

L
F

1
0

0
M

W

5
0

M
V

A
R

4
0

0
k
V

R
M

S
L

L

L
o

a
d

_
E

R
E

G
L

H

CAN50

H

ADA150

H

AN200

U G

SG

S K

SK

IA

AI

OA

AO

+

BRKm

+

BRKk

BABA

HALKA

CANKI

CAYIR

HAMIT

COP
KANGA

OYMAP

V1:0.89/_-16.3
SEYDI

ADANA

KARAK

KEBAN

SIVAS

URGUP

KAYAB

ALTIN

KEMER

TUNC

SEYIT

BURSA

SOMA
BALIK

YENIK
YATAG

CARSA HUGUR

UMRAN GEBZE

ELBIS

KAYSE

V1:0.92/_-18.0
ERZIN

EREGL

V1:0.88/_-24.1

ANTEP

V1:0.86/_-19.3
SINCA

GOLBA

IZMIR

ALIAG

OSMAN

V1:0.87/_-23.1

ADAPA

CB_ADAPA CB_GOKCE GOKCE

100

• Total number of iterations: 799174

• Matrix A size: 4703×4703

• Number of nonzero elements (nnz) in A : 25117

• Sparsity percentage: 99%

• Total number of BTF of Blocks (nblocks): 28

• Biggest block size: 573×573

• Smallest block size: 3×3

Figure 3.10 T0-Grid matrix A before BTF

101

Figure 3.11 T0-Grid matrix A after BTF

 Table 3.3 T0-DM sparse matrix solution timings for 1s simulation and t =50 s

 Number of cores

Solver 1 2 4 8 12 13 14 15 16

EMTP 1241

KLU 2120

SMPEMT1 720 380 229 151 157 157 161 161 165

SMPEMT2 675 360 210 141 99 99 101 105 112

Figure 3.12 SMPEMT T0-Grid simulation time and gain for DM model

 shows the solution of equation (1.4) timing using different solvers and different number of threads.

A gain of 1241/151=8.2 is recorded over EMTP when SMPEMT1 is used with 8 threads and no

102

further gain is noticed with the increase number of threads. This is mainly due to the largest block

that imposes limitation on further distribution of computation loads on additional threads, and acts

as the bottle nick that takes the biggest computation time and forces all other threads to perform a

busy wait while its computation is being finalized. However, a gain of 1241/99=12.5 was recorded

when SMPEMT2 is used. This difference between the two solvers (SMPEMT1 and 2) is mainly

due to the usage of partial factorization and the location of the first left dynamic column (FLDC).

The gain of SMPEMT1 with 8 threads is 720/151=4.7 compared to SMPEMT1 with 1 thread, while

SMPEMT2 achieved 675/99=6.8 with 12 threads compared to 1 thread.

The overall computation time including the solution of equation (2.1), the control solution, steady-

state solution and updating matrix A and vector b drops from 2943 seconds (when using EMTP

solver) to 578 seconds (when using SMPEMT2, parallel control solver and 16 threads topology).

The studied event in this test case is a (phase-a-to-ground) fault on the transmission line

ADAPA_to_GOKCE connected between the lines ADAPA and GOKCE as can be seen in Figure

3.13.

Figure 3.13 T0-DM Grid fault location

103

The fault occurs at 1 s, the phase-a breaker on the left of the line receives the opening signal at

1.08 s and the one on the right at 1.1 s. The phase-a breaker on the left recloses at 1.48 s and the

one on the right at 1.5 s. The reclosing is unsuccessful and all breakers (all left and right phases)

receive the opening signal at 1.56 s to isolate the line. Figure 3.14 shows two waveforms of phase

A voltage drop across line ADAPA_to_GOKCE calculated by EMTP-MDO and SMPEMT

solvers. Figure 3.15 and Figure 3.16 show real power comparison of two synchronous machines

located close to the fault. Calculation of the error percentage between the EMTP-MDO and

SMPEMT solvers at 1.01t = second is found to be 103.8 10− , 82.67 10− and 101.37 10− for the

three signals respectively.

Figure 3.14 Line ADAPA TO GOKCE voltage drop - phase A

104

Figure 3.15 Generator CAYIR TPP CAYIRHAN U1 real power

Figure 3.16 Generator CAYIR TPP CAYIRHAN U2 real power

105

3.1.3 T1-AVM Grid

The T1-Grid is another version of the Turkish grid that uses the average model converters. This

case simulates the effect of a fault inserted between buses CAYER and ADAPA. This case shown

in Figure 3.17 uses wind turbine as part of its generations and includes the following main

components:

• RLC branches: 594

• PI/RL coupled branches, 3-phase: 6

• CP Lines/Cable: 58

• Ideal transformer units (for 3-phase transformers): 141

• Ideal switches: 213

• Synchronous generators (with AVRs and governors): 33

• Loads: 105

A top view of T1-Grid is shown in Figure 3.17, and the exact location of the fault can be seen in the

same figure. Figure 3.18 and Figure 3.19 show matrix A sparsity pattern before and after BTF

permutation.

106

Figure 3.17 T1-AVM Grid top view

Figure 3.18 T1-AVM Grid matrix A before BTF permutation.

L
F

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
H

A
M

IT

CP+

125.00

COP_to_HALKA

CP+

147.00

HAMIT_to_HALKA

CP+

62.00

COP_to_UMRAN

L
F

2
0
0
M

W

1
0
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
C

O
P

CP+

32.00

UMRAN_to_GEBZE_1

CP+

32.00

UMRAN_to_GEBZE_2

CP+

25.00

BABA_to_HAMIT

CP+

22.00

HAMIT_to_COP

L
F

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
U

M
R

A
N

L
F

3
0
0
M

W

1
5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
G

E
B

Z
E

CP+

225.00

HALKA_to_OSMAN

CP+

87.00

GEBZE_to_ADAPA_1

CP+

87.00

GEBZE_to_ADAPA_2

CP+

66.00

ADAPA_to_OSMAN

L
F

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
H

A
L
K

A

CP+

136.00

ADAPA_to_CAYIR

CP+

136.00

CAYIR_to_SINCA

CP+

172.00

OSMAN_to_SINCA

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
O

S
M

A
N

CP+

44.00

OSMAN_to_EREGL

CP+

202.00

SINCA_to_KAYAB

CP+

206.00

OSMAN_to_CANKI

CP+

216.00

CANKI_to_KAYAB

L
F

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
C

A
N

K
I

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
E

R
E

G
L

CP+

100.00

ADAPA_to_GOKCE

+

5
.7

4
5
4
2
8
8
0
3

R
e
a
c
to

r_
O

S
M

A
N +

5
.7

4
5
4
2
8
8
0
3

R
e
a
c
to

r_
C

A
N

K
I

CP+

34.00

SINCA_GOLBA

L
F

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
S

IN
C

A

+

3
.4

5

R
e
a
c
to

r_
S

IN
C

A

C
P

+

1
6
8
.0

0

G
O

K
C

E
_
G

O
L
B

A

C
P

+

2
6
6
.0

0

U
R

G
U

P
_
S

IN
C

A

+

9.6458e-005

C1_URGUP

+

9.6458e-005

C2_URGUP

CP+

202.00

URGUP_ELBIS

CP+

271.00

GOLBA_KAYSE_1

CP+

271.00

GOLBA_KAYSE_2
+

9.0946e-005

C2_KAYSE

+

9.0946e-005

C1_KAYSE

CP+

154.00

BURSA_ADAPA

CP+

109.00

BALIK_BURSA

CP+

75.00

BURSA_TUNC

CP+

42.00

TUNC_SEYIT

CP+

116.00

SEYIT_GOKCE

CP+

186.00

ERZIN_ELBIS
+

9.6458e-005

C_ERZIN

+
-1|1E15|0

BYPASS

CP+

80.00

ADANA_ERZIN

CP+

350.00

SEYDI_ADANA
+

9.6458e-005

C_SEYDI

CP+

385.00

SEYIT_SEYDI

CP+

85.00

OYMAP_SEYDI

CP+

65.00

BALIK_SOMA

CP+

82.00

ALIAG_SOMA

CP+

46.00

ALIAG_IZMIR
CP+

287.00

IZMIR_SEYIT

C
P

+

1
8
2
.0

0

Y
E

N
IK

_
IZ

M
IR

C
P

+

1
4
6
.0

0

Y
A

T
A

G
_
IZ

M
IR

CP+

40.00

YENIK_YATAG

CP+

47.00

KEMER_YATAG

YATAG
 TPP

YATAG_TPP

YENIK
 TPP

YENIK_TPP

KEMER
 TPP

KEMER_TPPL
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
Y

E
N

IK

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
Y

A
T

A
G

L
F

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
IZ

M
IR

L
F

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
A

L
IA

G

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
S

O
M

A L
F

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
B

A
L
IK

L
F

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
B

U
R

S
A

L
F

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
A

D
A

P
A

SOMA
 TPP

SOMA_TPP SEYIT
 TPP

SEYIT_TPP

TUNC
 TPP

TUNC_TPP

CAYIR
 TPP

CAYIR_TPP

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
T

U
N

C

L
F

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
S

E
Y

IT

L
F

2
0
0
M

W

1
0
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
S

E
Y

D
I

L
F

7
5
M

W

3
7
.5

M
V

A
R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
C

A
Y

IR

L
F

1
0
0
M

W

3
3
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
E

L
B

IS

 HAMIT
NGCCPP

HAMIT_NGCCPP

L
F

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
A

D
A

N
A

L
F

1
2
5
M

W

6
2
.5

M
V

A
R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
O

Y
M

A
P

L
F

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
E

R
Z

IN

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
K

A
Y

S
E

L
F

3
0
0
M

W

1
5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
G

O
L
B

A

CP+

121.00

ERZIN_ANTEP

CP+

170.00

ELBIS_KEBAN

ELBIS
 TPP

ELBIS_TPP

L
F

2
0
0
M

W

1
0
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
A

N
T

E
P

+

9.0946e-005

C1_KAYAB

+

9.0946e-005

C2_KAYAB

+

9.0946e-005

C3_KAYAB

CP+

167.00

KAYAB_to_SIVAS

CP+

61.00

SIVAS_to_KANGA

KANGA
 TPP

KANGA_TPP

CP+

139.00

KANGA_KEBAN

CP+

271.00

KAYSE_KEBAN_1

CP+

271.00

KAYSE_KEBAN_2

L
F

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
S

IV
A

S

L
F

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
K

A
N

G
A

C
P

+

2
5
2
.0

0

A
N

T
E

P
_
to

_
K

A
R

A
K

C
P

+

8
5
.0

0

K
A

R
A

K
_
to

_
K

E
B

A
N

_
1

C
P

+

8
5
.0

0

K
A

R
A

K
_
to

_
K

E
B

A
N

_
2

L
F

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
K

E
B

A
N

+

3
.4

5

R
e
a
c
to

r_
G

O
L
B

A +

2
.3

R
e
a
c
to

r_
K

A
Y

S
E

+

1
.1

5

R
e
a
c
to

r_
K

E
B

A
N

+

6
.9

6
4
1
5
6
1
2
5

R
e
a
c
to

r_
B

A
B

A

GOKCE
 HPP

GOKCE_HPP

OYMAP
 HPP

OYMAP_HPP

+

4
.6

R
e
a
c
to

r_
S

E
Y

IT

+

2
.3

R
e
a
c
to

r_
S

E
Y

D
I

+

4
.6

R
e
a
c
to

r_
A

D
A

N
A

+

4
.7

R
e
a
c
to

r_
K

A
R

A
K

L
F

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
K

A
R

A
K

KARAK
 HPP

KARAK_HPP

+

2
.3

L
1

KEBAN
 HPP

KEBAN_HPP

+

1
.1

5

R
e
a
c
to

r_
K

A
Y

A
B

+

4
.6

R
e
a
c
to

r_
U

R
G

U
P

C
P

+

1
0
3
.0

0

K
A

Y
A

B
_
to

_
A

L
T

IN

C
P

+

1
2
6
.0

0

K
A

Y
A

B
_
to

_
C

A
R

S
A

CP+

95.00

ALTIN_to_CARSA

CP+

19.00

CARSA_to_HUGUR_1

CP+

19.00

CARSA_to_HUGUR_2

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
H

U
G

U
R

L
F

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
A

L
T

IN

L
F

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
o
a
d
_
C

A
R

S
A

ALTIN
 HPP

ALTIN_HPP

HUGUR
 HPP

HUGUR_HPP

PI

+YENIK_KEMER_PI

onshore_WTs

F

F
a
u
lt
1

+
CB1

-1|1.08|0
+

CB2

-1|1.1|0

BABA

COP

UMRAN

HALKA

GEBZE

EREGL

CANKI

SINCA

GOKCE

YENIK
YATAG

IZMIR

ALIAG

BALIK

BURSA

SOMA

TUNC

HAMIT

KANGA

GOLBA KAYSE

OYMAP

SEYIT

SEYDI

ADANA

ERZIN

ANTEP

KARAK

ELBIS

KEBAN

SIVAS

URGUP

KAYAB

CARSA
ALTIN

HUGUR

KEMER

OSMAN

ADAPA

CAYIR

107

Figure 3.19 T1-AVM Grid matrix A after BTF permutation

T1-Grid Simulation data:

• Simulation time: 10 second

• Simulation time step: 50 s

• Pivot tolerance p : 0.01

• Average number of iterations per time step: 3.01

• Total number of iterations: 604919

• Matrix A size: 1542 ×1542

• Number of nonzero elements (nnz) in A : 5428

• Sparsity percentage: 99%

• Total number of BTF of Blocks (nblocks): 45

• Biggest block size: 811×811

• Smallest block size: 3×3

The BTF of matrix A shows that a limiting block exists in this case. This block is the first block

seen in Figure 3.19. The size of the limiting block is 811 and it limits the parallelization of the case

108

beyond two threads since it does not have any delay-based lines in it and can’t be divided using

BTF permutation. shows the solution of equation (1.4) timing using different solvers and different

number of threads.

 Table 3.4 T1-Grid sparse matrix solution timings for 1s simulation and t =50 s

 Number of cores

Solver 1 2 4 8 12 13 14 15 16

EMTP 48

KLU 53

SMPEMT1 19.5 10 13.1 14 15.4 17 19 20 20

SMPEMT2 17 8.5 11.2 13 14.5 16 18 18.5 19

In this case the difference between SMPEMT1 and 2 is minor due to the fact that the biggest block’s

FLDC is located at the 6th column in the BTF format and that limits the ability of partial KLU-RF

to decrease the computation time of the block factorization. The best gain is achieved with

SMPEMT2 (48/10 = 4.8). The overall computation time including the solution of equation (2.1),

the control solution, steady-state solution and updating matrix A and vector b drops from 68

seconds (when using EMTP solver) to 21 seconds (when using SMPEMT2, parallel control solver

and 8 threads topology).

Figure 3.20 SMPEMT T1-Grid simulation time and gain for AVM model

The studied event in this test case is a (3-phase-to-ground) fault on the transmission line

ADAPA_to_ CAYIR connected between the lines ADAPA and CAYIR as seen in.

109

Figure 3.21 T1-AVM fault location

The fault occurs at 1 s, the breaker on the left of the line receives the opening signal at 1.08 s and

the one on the right at 1.1 s. Figure 3.22 and Figure 3.23 show the voltage drop across line

ADAPA_TO_CAYIR and the real power of SM CAYIR TPP CAYIRHAN U2 respectively. Both

figures contain two waveforms calculated by EMTP-MDO and SMPEMT and both curves overlap

with difference seen throughout the faults span period.

110

Figure 3.22 T1-Grid line ADAPA TO CAYIR voltage drop - phase A

Figure 3.23 Generator CAYIR TPP CAYIRHAN U2 real power

111

3.1.4 T2-AVM Grid

T2-Grid is a modified version of the Turkish grid discussed in the previous section. Three offshore

wind turbine farms were added to the HVDC_ALIGA and HVDC_IZMIR buses. The location of

the fault is kept between buses CAYER and ADAPA. The main components of the case are the

following:

• RLC branches: 900

• PI/RL coupled branches, 3-phase: 9

• CP Lines/Cable: 62

• Ideal transformer units (for 3-phase transformers): 168

• Ideal switches: 410

• Synchronous generators: 28

• Loads: 105

T2-Grid Simulation data:

• Simulation time: 10 second

• Simulation time step: 50 s

• Pivot tolerance p : 0.01

• Average number of iterations per time step: 3.04

• Total number of iterations: 610783

• Matrix A size: 24252425

• Number of nonzero elements (nnz) in A : 8347

• Sparsity percentage: 99%

• Total number of BTF of Blocks (nblocks): 58

• Biggest block size: 811×811

112

• Smallest block size: 3×3

Figure 3.24 shows the top view of the case that provides an illustration of the faults position and all

offshore wind farms locations. Figure 3.25 and Figure 3.26 shows the matrix A nonzero pattern

before and after BTF permutation. Unlike T1-Grid discussed in section 3.1.3, the biggest block

(size = 811) consist of almost 30% of the case size and that will loosen the parallelization limitation

seen in benchmark T1. However, the biggest block will still impose limitation on parallelization

beyond 4 threads.

Figure 3.24 T2-AVM Grid top view

L
F

L
o
a
d
_
H

A
M

IT

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

CP+

COP_to_HALKA

125.00

CP+

HAMIT_to_HALKA

147.00

CP+

COP_to_UMRAN

62.00

L
F

L
o
a
d
_
C

O
P

2
0
0
M

W

1
0
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

CP+

UMRAN_to_GEBZE_1

32.00

CP+

UMRAN_to_GEBZE_2

32.00

CP+

BABA_to_HAMIT

25.00

CP+

HAMIT_to_COP

22.00

L
F

L
o
a
d
_
U

M
R

A
N

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
G

E
B

Z
E

3
0
0
M

W

1
5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

CP+

HALKA_to_OSMAN

225.00

CP+

GEBZE_to_ADAPA_1

87.00

CP+

GEBZE_to_ADAPA_2

87.00

CP+

ADAPA_to_OSMAN

66.00

L
F

L
o
a
d
_
H

A
L
K

A

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

CP+

ADAPA_to_CAYIR

136.00

CP+

CAYIR_to_SINCA

136.00

CP+

OSMAN_to_SINCA

172.00

L
F

L
o
a
d
_
O

S
M

A
N

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

CP+

OSMAN_to_EREGL

44.00

CP+

SINCA_to_KAYAB

202.00

CP+

OSMAN_to_CANKI

206.00

CP+

CANKI_to_KAYAB

216.00

L
F

L
o
a
d
_
C

A
N

K
I

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
E

R
E

G
L

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

CP+

ADAPA_to_GOKCE

100.00

+

R
e
a
c
to

r_
O

S
M

A
N

5
.7

4
5
4
2
8
8
0
3 +

R
e
a
c
to

r_
C

A
N

K
I

5
.7

4
5
4
2
8
8
0
3

CP+

SINCA_GOLBA

34.00

L
F

L
o
a
d
_
S

IN
C

A

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

+

R
e
a
c
to

r_
S

IN
C

A

3
.4

5

C
P

+

G
O

K
C

E
_
G

O
L
B

A

1
6
8
.0

0

C
P

+

U
R

G
U

P
_
S

IN
C

A

2
6
6
.0

0

+

C1_URGUP

9.6458e-005
+

C2_URGUP

9.6458e-005
CP+

URGUP_ELBIS

202.00

CP+

GOLBA_KAYSE_1

271.00

CP+

GOLBA_KAYSE_2

271.00

+

C2_KAYSE

9.0946e-005

+

C1_KAYSE

9.0946e-005

CP+

BURSA_ADAPA

154.00

CP+

BALIK_BURSA

109.00

CP+

BURSA_TUNC

75.00

CP+

TUNC_SEYIT

42.00

CP+

SEYIT_GOKCE

116.00

CP+

ERZIN_ELBIS

186.00

+

C_ERZIN

9.6458e-005

+

BYPASS

-1|1E15|0

CP+

ADANA_ERZIN

80.00

CP+

SEYDI_ADANA

350.00

+

C_SEYDI

9.6458e-005

CP+

SEYIT_SEYDI

385.00

CP+

OYMAP_SEYDI

85.00

CP+

BALIK_SOMA

65.00
CP+

ALIAG_SOMA

82.00

CP+

ALIAG_IZMIR

46.00

CP+

IZMIR_SEYIT

287.00

C
P

+

Y
E

N
IK

_
IZ

M
IR

1
8
2
.0

0

C
P

+

Y
A

T
A

G
_
IZ

M
IR

1
4
6
.0

0

CP+

YENIK_YATAG

40.00

CP+

YENIK_KEMER

12.00

CP+

KEMER_YATAG

47.00

YATAG
 TPP

YATAG_TPP

YENIK
 TPP

YENIK_TPP

KEMER
 TPP

KEMER_TPP

L
F

L
o
a
d
_
Y

E
N

IK

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
Y

A
T

A
G

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
IZ

M
IR

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
A

L
IA

G

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
S

O
M

A

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L L

F

L
o
a
d
_
B

A
L
IK

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
B

U
R

S
A

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
A

D
A

P
A

2
5
0
M

W

1
2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

SOMA
 TPP

SOMA_TPP SEYIT
 TPP

SEYIT_TPP

TUNC
 TPP

TUNC_TPP

CAYIR
 TPP

CAYIR_TPP

L
F

L
o
a
d
_
T

U
N

C

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
S

E
Y

IT

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
S

E
Y

D
I

2
0
0
M

W

1
0
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
C

A
Y

IR

7
5
M

W

3
7
.5

M
V

A
R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
E

L
B

IS

1
0
0
M

W

3
3
M

V
A

R

4
0
0
k
V

R
M

S
L
L

 HAMIT
NGCCPP

HAMIT_NGCCPP

L
F

L
o
a
d
_
A

D
A

N
A

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
O

Y
M

A
P

1
2
5
M

W

6
2
.5

M
V

A
R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
E

R
Z

IN

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
K

A
Y

S
E

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
G

O
L
B

A

3
0
0
M

W

1
5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

CP+

ERZIN_ANTEP

121.00

CP+

ELBIS_KEBAN

170.00

ELBIS
 TPP

ELBIS_TPP

L
F

L
o
a
d
_
A

N
T

E
P

2
0
0
M

W

1
0
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

+

C1_KAYAB

9.0946e-005

+

C2_KAYAB

9.0946e-005

+

C3_KAYAB

9.0946e-005
CP+

KAYAB_to_SIVAS

167.00

CP+

SIVAS_to_KANGA

61.00

KANGA
 TPP

KANGA_TPP

CP+

KANGA_KEBAN

139.00

CP+

KAYSE_KEBAN_1

271.00

CP+

KAYSE_KEBAN_2

271.00

L
F

L
o
a
d
_
S

IV
A

S

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
K

A
N

G
A

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

C
P

+

A
N

T
E

P
_
to

_
K

A
R

A
K

2
5
2
.0

0
C

P
+

K
A

R
A

K
_
to

_
K

E
B

A
N

_
1

8
5
.0

0

C
P

+

K
A

R
A

K
_
to

_
K

E
B

A
N

_
2

8
5
.0

0

L
F

L
o
a
d
_
K

E
B

A
N

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

+

R
e
a
c
to

r_
G

O
L
B

A

3
.4

5 +

R
e
a
c
to

r_
K

A
Y

S
E

2
.3

+

R
e
a
c
to

r_
K

E
B

A
N

1
.1

5

+

R
e
a
c
to

r_
B

A
B

A

6
.9

6
4
1
5
6
1
2
5

GOKCE
 HPP

GOKCE_HPP

OYMAP
 HPP

OYMAP_HPP

+

R
e
a
c
to

r_
S

E
Y

IT

4
.6

+

R
e
a
c
to

r_
S

E
Y

D
I

2
.3 +

R
e
a
c
to

r_
A

D
A

N
A

4
.6

+

R
e
a
c
to

r_
K

A
R

A
K

4
.7

L
F

L
o
a
d
_
K

A
R

A
K

5
0
M

W

2
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

KARAK
 HPP

KARAK_HPP

+

L
1

2
.3

KEBAN
 HPP

KEBAN_HPP

+

R
e
a
c
to

r_
K

A
Y

A
B

1
.1

5

+

R
e
a
c
to

r_
U

R
G

U
P

4
.6

C
P

+

K
A

Y
A

B
_
to

_
A

L
T

IN

1
0
3
.0

0

C
P

+

K
A

Y
A

B
_
to

_
C

A
R

S
A

1
2
6
.0

0

CP+

ALTIN_to_CARSA

95.00

CP+

CARSA_to_HUGUR_1

19.00

CP+

CARSA_to_HUGUR_2

19.00

L
F

L
o
a
d
_
H

U
G

U
R

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
A

L
T

IN

1
0
0
M

W

5
0
M

V
A

R

4
0
0
k
V

R
M

S
L
L

L
F

L
o
a
d
_
C

A
R

S
A

1
5
0
M

W

7
5
M

V
A

R

4
0
0
k
V

R
M

S
L
L

ALTIN
 HPP

ALTIN_HPP

HUGUR
 HPP

HUGUR_HPP

PI

+YENIK_KEMER_PI

onshore_WTs

F

F
a
u
lt
1

+
-1|1.08|0

CB1

+
-1|1.1|0

CB2

CP+

HVDC_ALIAG1

20.00

CP+

HVDC_ALIAG2

20.00

CP+

HVDC_IZMIR1

15.00

CP+

HVDC_IZMIR2

15.00

IC

PQ

3-phase
MMC_ALIAG

50Hz

?s

IC

PQ

3-phase
MMC_IZMIR

50Hz

?s

offshore

BABA

COP

UMRAN

HALKA

GEBZE

EREGL

CANKI

SINCA

GOKCE

YENIK
YATAG

BALIK

BURSA

SOMA

TUNC

HAMIT

KANGA

GOLBA KAYSE

OYMAP

SEYIT

SEYDI

ADANA

ERZIN

ANTEP

KARAK
ELBIS

KEBAN

SIVAS

URGUP

KAYAB

CARSA
ALTIN

HUGUR

KEMER

OSMAN

ADAPA

CAYIR

ALIAG

IZMIR

HVDC_ALIAG

HVDC_IZMIR

113

Figure 3.25 T2-AVM Grid matrix A before BTF permutation

Figure 3.26 T2-AVM Grid matrix A after BTF permutation

 shows the solution of equation (1.4) timing using different solvers and different number of threads.

It can be notices from the results that SMPEMT1/2 performance accelerates with the increase

number of threads up to 3 threads and after that the performance starts to deteriorate. Like other

cases, this phenomenon is due to the limiting block (biggest block = 811) that does not have any

CP line in. The overall computation time including the solution of equation (2.1), the control

solution, steady-state solution and updating matrix A and vector b drops from 164 seconds (when

114

using EMTP solver) to 29 seconds (when using SMPEMT2, parallel control solver and 8 threads

topology).

 Table 3.5 T2-Grid sparse matrix solution timings for 1s simulation and t =50 s

 Number of cores

Solver 1 2 4 8 12 13 14 15 16

EMTP 64

KLU 72

SMPEMT1 33 15 7.8 11 11.9 12.5 13.2 14 14

SMPEMT2 31 14 7.5 10 11.2 12 13 14 14

Figure 3.27 SMPEMT T2-Grid simulation time and gain for AVM model

The studied event in this test case is similar to the one seen in the previous section and the fault

scenario remains the same. However; three set of offshore wind turbines are added to the case and

that will add more numerical stress on the solvers. Figure 3.28 and Figure 3.29 show the

comparison between EMTP-MDO and SMPEMT using phase A voltage drop across line

ADAPA_TO_CAYIR and SM CAYIR TPP CAYIRAN U2 real power. Both figures show

complete overlap between the two solvers results and no difference can be seen visually.

Calculation of the error percentage between the EMTP-MDO and SMPEMT solvers at 1.01t =

second is found to be 95.3 10− and 108.2 10− for both signals respectively.

115

Figure 3.28 Line ADAPA_TO_CAYIR voltage drop - Phase A

Figure 3.29 SM CAYIR TPP CAYIRAN U2 real power

116

From the above figure it can be seen that both solvers produce similar result and both curves

perfectly overlap each other.

3.1.5 IEEE14

This benchmark represents a simplified version of the IEEE 14 bus system [60]. This case has 14

buses, 5 generators and 11 loads. The case does not have any nonlinear instances and hence the

number of iterations is 0. The case was simulated for 1 second with a 50 s time step.

The BTF version of matrix A has only one block since the case has no CP lines and can’t be

decoupled in time domain. The size of the only block in BTF form is the size of the case overall

A matrix. Figure 3.30 and Figure 3.31 show the sparsity pattern of matrix A before and after BTF

permutation. shows the solution of equation (1.4) timing using different solvers with one thread

only.

IEEE14-Grid Simulation data:

• Simulation time: 1 second

• Simulation time step: 50 s

• Pivot tolerance p : 0.01

• Average number of iterations per time step: 0 (linear case)

• Total number of iterations: 20000

• Matrix A size: 99×99

• Number of nonzero elements (nnz) in A : 711

• Sparsity percentage: 92.7%

• Total number of BTF of Blocks (nblocks): 1

117

Figure 3.30 IEEE14-Grid matrix A before BTF permutation

Figure 3.31 IEEE14-Grid matrix A after BTF permutation

 Table 3.6 IEEE14 sparse matrix solution timings for T=1s and t =50 s

 Number of cores

Solver 1 2 4 8 12

EMTP 0.91

KLU 1.10 N/A N/A N/A N/A

SMPEMT1 0.77 N/A N/A N/A N/A

SMPEMT2 0.77 N/A N/A N/A N/A

118

Since the BTF format has only one block, all tests conducted for this case were done using one

thread only. No major gain is seen when SMPEMT1 and 2 since factorization of the A matrix is

done once due to the lack of nonlinear elements in the case and the pivot validity testing feature

didn’t have any impact of the gain seen in SMPEMT1/2 timings, but rather it is all due to the partial

forward substitution that was explained in 2.4.

Figure 3.32 shows comparison between two signals calculated by EMTP-MDO and SMPEMT

solvers. The two signals represent phase A voltage drop across transmission line (PI15). From the

figure, it can be seen that both signals are completely matching and no difference can be notices

throughout the waveforms in the figure.

Figure 3.32 Line PI15 voltage drop - phase A

3.1.6 IEEE7000

The IEEE7000 benchmark is built by repeating the IEEE14 case 500 times in order to get a case

with 7000 buses. The different IEEE14 cases were linked by CP lines at buses 13 and 14. Using

CP lines between different IEEE14 allows to have 500 blocks in the BTF format where each block

represents an IEEE14 case. Figure 3.33 and Figure 3.34 show the network A before and after BTF

permutation.

119

The IEEE7000 case was simulated for 1 second with time step 50t s = and similar to IEEE14

benchmark, this case does not have any iterations due to the absence of any nonlinear objects and

hence the rate of iterations per time step is 0. shows the solution of equation (1.4) timing using

different solvers and different number of threads.

IEEE7000-Grid Simulation data:

• Simulation time: 1 second

• Simulation time step: 50 s

• Pivot tolerance p : 0.01

• Average number of iterations per time step: 0

• Total number of iterations: 20000

• Matrix A size: 49698×49698

• Number of nonzero elements (nnz) in A : 357633

• Sparsity percentage: 99.9%

• Total number of BTF of Blocks (nblocks): 500

Figure 3.33 IEEE7000-Grid matrix A before BTF permutation

120

Figure 3.34 IEEE7000-Grid matrix A after BTF permutation

 Table 3.7 IEEE7000 sparse matrix solution timings for 1s simulation and t =50 s

 Number of cores

Solver 1 2 4 8 12 13 14 15 16

EMTP 1074

KLU 1135

SMPEMT1 222 125 75 42 25 21 18.4 16 15

SMPEMT2 222 125 75 42 25 21 18.4 16 15

Figure 3.35 SMPEMT IEEE7000-Grid simulation time and gain

The same case was simulated in [19] where the case was partitioned using a boarder block diagonal

scheme based on the use of PI section transmission lines. An approximation of this test results is

shown in .

121

Table 3.8 T2-Grid sparse matrix solution timings with BBD (s)

From the above two tables, it can be seen that the KLU based approach implemented herein is more

efficient and faster than what is proposed in [19], and the timing obtained with 20 threads in was

achieved and overcome with only one thread of SMPEMT2 as seen in . Although the machine used

to obtain the results in and [19] have different processors type, the other specifications are very

close and this difference can’t justify the different in results.

3.1.7 IEEE39

The IEEE39 benchmark represents a part of New England 345-KV grid. It consists of 10

synchronous generators, 39 buses, 12 transformers, and 19 loads. The case has a total of 34

transmission lines with 24 modeled as CP lines and the rest as PI section type of lines. A simplified

version of the case was modeled using EMTP with the following list presents a summary of the

case main components:

• Synchronous machine: 10

• Ideal Transformer units: 90

• RLC: 337

• Ideal switch: 123

• L nonlinear: 87

• PQ load centers: 57

• AC current source: 57

• PI/RL lines: 10

• CP lines/cable: 24

IEEE39-Grid Simulation data:

• Simulation time: 10 second

• Simulation time step: 20 s

Number of cores 1 10 20 30 40 50 60

Simulation time 5000 550 250 200 200 210 220

122

• Pivot tolerance p : 0.01

• Average number of iterations per time step: 1.18

• Total number of iterations: 711930

• Matrix A size: 486486

• Number of nonzero elements (nnz) in A : 1662

• Sparsity percentage: 99.2%

• Total number of BTF of Blocks (nblocks): 57

• Biggest block size: 60×60

• Smallest block size: 3×3

Figure 3.36 shows the case top view that provides general understanding about the case layout and

elements distributions. Figure 3.37 and Figure 3.38 show the case A matrix before and after BTF

permutation. This case is a relatively small case and applying parallel computation on it shows to

what extend parallelization can accelerate the performance of the solution before the overhead

weight of synchronizing thread, launching and joining threads takes over. shows the solution of

equation (1.4) timing using different solvers and different number of threads.

123

Figure 3.36 IEEE39-Grid top view

S M

PowerPlant_08

B37

SMB30

PowerPlant_10

SM
B38

PowerPlant_09

S M B35

PowerPlant_06

SM

PowerPlant_01

S M

PowerPlant_02

B31AndLoad
SLACK

S M

B32

PowerPlant_03

S M
B34

PowerPlant_05

S M

B33

PowerPlant_04

S M B36

PowerPlant_07

+
bus26_28

317.70
+
bus28_29

101.20

+
bus26_29

418.90

Load29Load26

+
bus25_26

216.50 Load28

Load25

P
I

+
5

8
k
m

b
u

s
0

2
_

2
5

C
P

+

1
0

1
.2

0

b
u

s
0

2
_

0
3

+

8
9

.1
0

b
u

s
0

3
_

1
8 Load18

Load3

P
I

+

2
7

6
k
m

b
u

s
0

1
_

0
2

+
1

6
7

.6
0

b
u

s
0

1
_

3
9

+

1
4

2
.8

0

b
u

s
0

3
_

0
4

Load4

Load39 +

8
5

.8
0

b
u

s
0

4
_

0
5

P
I

+
1

7
k
m

b
u

s
0

5
_

0
6

+

6
1

.7
0

b
u

s
0

6
_

0
7

Load7

P
I

+

b
u

s
0

7
_

0
8

3
1

k
m

+

7
5

.1
0

b
u

s
0

5
_

0
8

+

1
6

7
.6

0

b
u

s
0

9
_

3
9

+

2
4

3
.3

0

b
u

s
0

8
_

0
9

Load8

+

9
8

.5
0

b
u

s
2

6
_

2
7

+

1
1

6
.0

0

b
u

s
1

7
_

2
7

PI

+
55km

bus17_18

P
I

+

60km

b
u

s
1

6
_

1
7

P
I

+

40km

b
u

s
1

6
_

2
4

+

6
3

.0
0

b
u

s
1

5
_

1
6

+
9

0
.5

0

b
u

s
1

6
_

2
1

+

1
4

5
.4

0

b
u

s
1

4
_

1
5

+

1
3

0
.7

0

b
u

s
1

6
_

1
9

+

6
4

.3
0

b
u

s
2

2
_

2
3

+

2
3

4
.6

0

b
u

s
2

3
_

2
4

+

93.80

bus21_22

+

86.50

bus04_14

P
I

+

5
5

k
m

b
u

s
0

6
_

1
1

2 3

1

tap=1.06
1400MVA

530/300/12.5

xfo19_20

+

6
7

.7
0

b
u

s
1

3
_

1
4

P
I

+

b
u

s
1

0
_

1
3

2
9

k
m

P
I

+
b

u
s
1

0
_

1
1

2
9

k
m

Load27

Load24

Load16

Load12

Load20

Load23

Load15

+

92MVAR@500kV

368uS

BUS24_shunt

Load21

View Steady-State MPLOT

F

F
a

u
lt

BRKB3B4

BRKB4B3

Load-Flow

OFF

Change Scenario

Ssenario 1 is normal load model
Scenario 2 is advanced load model

1
2

-3
0 200MVA

tap=1.006

x
fo

1
2

_
1

3

503/251
2

-3
0

200MVA
tap=1.006

x
fo

1
2

_
1

1

503/25

Show Load-Flow

V1:1.04/_-0.7

B29

V1:1.04/_-3.4

B28V1:1.05/_-5.7
B25

V1:1.04/_-7.1B2

V1:1.04/_-9.8
B1

V1:0.98/_-11.2

B7

V1:1.03/_-11.4

B39

B9

V1:1.02/_-11.6

V1:0.98/_-11.7

B8

V1:1.02/_-8.9
B27

V1:1.04/_-6.9

B26

V1:1.02/_-8.7

B17

V1:1.01/_-9.6

B18

V1:1.04/_-0.8

B23

V1:1.02/_-7.4

B24

V1:1.04/_-0.6

B22

V1:1.02/_-5.1

B21

V1:0.99/_-8.9

B6

B11

V1:1.00/_-7.2

V1:1.04/_-2.4
B19

V1:1.00/_-7.1

B13

V1:1.00/_-6.4

B10

B20

300kV

V1:0.98/_-3.4

B16
V1:1.02/_-7.5V1:1.01/_-9.9

B3

V1:0.99/_-8.8

B14

V1:0.99/_-9.6

B5

B15
V1:1.00/_-9.1

B12V1:0.97/_-37.3

B4

V1:0.98/_-10.8

124

Figure 3.37 IEEE39-Grid matrix A before BTF permutation

Figure 3.38 IEEE39-Grid matrix A after BTF permutation

 Table 3.9 IEEE39- Grid sparse matrix solution timings for T=1s and t =50 s

 Number of cores

Solver 1 2 4 8 12 13 14 15 16

EMTP 38

KLU 43

SMPEMT1 11.7 6.5 5 7.8 9.2 10.8 12 13 13.5

SMPEMT2 10.2 5.5 4 6.9 9 10.5 11.8 13 13.5

125

Figure 3.39 SMPEMT IEEE39-Grid simulation time and gain

The overall computation time including the solution of equation (2.1), the control solution, steady-

state solution and updating matrix A and vector b drops from 52 seconds (when using EMTP

solver) to 38 seconds (when using SMPEMT2, parallel control solver and 8 threads topology).

The studied event in this test case is a (3-phase-to-ground) fault inserted between on the

transmission line bus03_04 as seen in Figure 3.40. The fault is triggered at 0.2t = second and

removed at 0.3t = second.

126

Figure 3.40 IEEE39 fault location

Figure 3.41 and Figure 3.42 below show a comparison of EMTP-MDO results and SMPEMT

result. Both figures show very similar results for both solvers and no difference can be seen during

the fault effect. The difference error percentage between the two solvers is found to be 97.1 10−

and 111.5 10− for both signals respectively.

127

Figure 3.41 Line 03-04 voltage drop - phase A

Figure 3.42 Power Plant 10 real power

128

3.1.8 IEEE118-GMD

This benchmark represents a modified version of the IEEE-118 that represents a portion of the

American Electrical Power (AEP) system in the US Midwest [59]. This version included herein

has comes with different upgrades and modifications to the original case. This modification

includes

• Modifying transmission line and machine data according to the latest IEEE standards and

publications and typical data from North America transmission grid.

• Adding extra features and data to allow EMT-type studies, these added features/data

include transmission line data such as tower configuration, conductor data, per unit length

positive sequence, zero-sequence line impedance data and line length data. In addition,

different types of transmission lines have been incorporated with the case such as PI, CP

and FD that will allow the user to use combination of transmission lines depending on the

type of study and requirement.

• Updating machine data and adding machine controls such as excitors, governors, OEL and

PSS.

The following list presents a summary of the IEEE-118 main components:

• 177 transmission lines (CP, PI and FD)

• 91 loads

• 9 Transformers

• 54 synchronous machines (SMs)

• 19 Synchronous generators (SGs)

• 35 Synchronous condensers (SCs)

IEEE118-Grid Simulation data:

• Simulation time: 400 second

• Simulation time step: 50 s

129

• Pivot tolerance p : 0.01

• Matrix A size: 85148514

• Number of nonzero elements (nnz) in A : 27471

• Sparsity percentage: 99.96%

• Total number of BTF of Blocks (nblocks): 40

• Biggest block size: 1148×1148

• Smallest block size: 30×30

The case has also several voltage levels that vary between 345KV transmission, 138KV sub-

transmission, 25V distribution and 20, 15, 10.5 KV generation. Figure 3.43 shows an overview of

the IEEE-118 grid and the location of different components within the Network.

Figure 3.43 Single line diagram of IEEE-118 Grid

130

Figure 3.44 and Figure 3.45 show the case A matrix before and after BTF permutation. The case

was simulated for 400 seconds with a 50 s time-step. The long simulation interval was selected

due to the existence of different events along the first 400 seconds of simulation. shows the solution

of equation (1.4) timing using different solvers and different number of threads.

Figure 3.44 IEEE118-Grid matrix A before BTF permutation

Figure 3.45 IEEE118-Grid matrix A after BTF permutation

131

 Table 3.10 IEEE118- Grid sparse matrix solution timings for T=400s and t =50 s

 Number of cores

Solver 1 2 4 8 12 13 14 15 16

EMTP 39730

KLU 43687

SMPEMT1 16870 8698 4698 2267 2865 2883 2892 2892 2898

SMPEMT2 16794 8624 4653 2241 2843 2868 2867 2871 2873

Figure 3.46 SMPEMT IEEE118-Grid simulation time and gain

The overall computation time including the solution of equation (2.1), the control solution, steady-

state solution and updating matrix A and vector b drops from 168130 seconds (when using EMTP

solver) to 67473 seconds (when using SMPEMT2, parallel control solver and 16 threads topology).

The above simulation timing shows a nearly linear gain from thread 1 to thread 8 and the

performance starts to deteriorate after the 8th thread. This phenomenon is due to the existence of a

limiting block of size 1148 that limits the gain to 8 threads and prevents any further acceleration.

132

3.2 Results analysis

The results presented in the previous chapter illustrate the gain that can be achieved by using

SMPEMT solver. Depending on the case configuration, the gain may vary widely depending on

different types of factors. These factors involve the following:

• The existence of CP lines in the case: The use of parallel computation in SMPEMT depends

mainly of the ability to divide the network matrix into various independent blocks. The

division process is based on the time domain decoupling effect of the constant parameter

transmission lines. If no CP lines exist in the case, the parallel computation algorithm can’t

be used and the whole network matrix is solved on one thread. Although some of the

features of SMPEMT may help accelerating the performance, the overall gain will not be

that great compared to the gain obtained by parallelization the solution.

• The testing platform (hardware) used in the simulation: Although SMPEMT works on all

machines with more than one processor (CPU), it is notices that the ultimate performance

can be achieved with higher number of physical cores (avoiding hyper threading) and

bigger cache line of the machine. These two factors allow threading to be more efficient by

avoiding sequencing of parallel tasks and allowing different threads to handle bigger blocks

and matrices.

• Network configuration: The satisfying of the first two factors does not guarantee good

performance and a scaling gain without having a network configuration that is well

designed with parallel solution in mind. In order to have an efficient parallelization with

lasting effect at higher number of threads, the blocks of BTF matrix must be as small as

possible to enable SMPEMT load balancing topology to distribute blocks evenly on

different CPUs. Having a limiting block (bottle nick) will limit the gain and make the use

of higher number of processors a burden. Figure 3.47 shows an example of a network that

has a block that is almost one third of the overall size of the matrix. Such block limits the

gain of SMPEMT to three threads only. Whereas, Figure 3.48 shows an example of a case

that has a perfect distribution of elements across its blocks and the threading performance

of this type of cases will be efficient and a high gain can be achieved with higher number

of threads.

133

 Figure 3.47 A network with a limiting block

 Figure 3.48 A network with a perfect distribution of blocks

The following table lists all cases used in SMPEMT validation with the maximum gain

achieved for each case, the size of A matrix and the size of limiting block for each case.

134

 Table 3.11 Testing cases performance summary

Case name Matrix size Limiting Block Maximum gain

HQ case (Full) 41797 2898 33.8

T0-DM 4703 573 12.5

T1_AVM 1542 811 5.65

T2_AVM 2425 811 8.5

IEEE-14 99 99 1

IEEE-7000 49500 99 71.6

IEEE-39 486 60 9.5

IEEE-118 GMD 8514 1148 17.7

From the above table, it can be seen that most cases have hit a point where the gain is

maximized, and no further gain can be achieved. Despite the fact that increasing the number

of threads adds an overhead to the compiler and hinder the efficiency of threading, the

limiting block is the main reason that limits the gain of further parallelization and forms a

bottle nick to any possible improvement and acceleration.

• The size of blocks loaded on each thread: Adding a relatively large blocks on threads is

crucial to overcome threading overhead. In order to make an efficient use of any extra

thread launched, a sufficient amount of computation load need to be available to keep that

new thread busy. Otherwise, this increase of number of threads will contribute in slowing

down performance and makes overall gain deteriorate.

135

CHAPTER 4 CONCLUSION AND RECOMMENDATIONS

4.1 Thesis summary

The main objective of this thesis was to present an enhanced and a more efficient way of conducting

EMT type simulations that is faster and less time consuming. The main trigger of this project was

the long waiting time needed to simulate large scale power network that are realistic and involve

nonlinear devices, power electronics and have some sort of renewable sources penetration. The

main case used in this project was the Hydro-Quebec grid benchmark that represents a simulated

version of the complete Hydro-Quebec network with its extensions in the Canadian provinces of

Quebec, Ontario and New Brunswick, and New York, Vermont, Massachusetts, and New

Hampshire states in the United State of America. Simulating this case using a traditional solver

was consuming a lot of computation time with the MANA matrix solution acting as the bottle neck

of this simulation time delay. Another trigger of this work is the urgency of attaining real time

simulation (or as close to real time as possible) for realistic and existing power grids. This PhD

project is a step forward in reaching the ultimate goal of having an automatic real time EMT

simulation package that requires no intervention of the user and provides accurate and reliable

simulation results.

4.1.1 Sparse matrix package for EMTs (SMPEMT)

The new way of enhancing EMT simulation is based on accelerating the solution of a network

Ax = b system of equation and provide a customized sparse solver that is suitable for

electromagnetic transient studies. The new sparse solver is called sparse matrix package for EMTs

(SMPEMT) and it has been validated and tested using the EMT simulation package EMTP-RV

that used an iterative technique to solve nonlinear equations and hence involves more computations

that other packages. The development of this sparse solver involved two major steps namely:

Finding an existing and fast sparse solver and applying parallel computation to the new solver.

4.1.1.1 Replacing the Sparse solver package

Throughout this PhD project, several sparse solvers were considered to select a fast and reliable

solver package to act as the baseline that the work and improvement will be based on. The survey

of literature narrowed down the search to three solvers: KLU, SuperLU and EMTP-MDO. The

136

three solvers were studied and tested against each other and EMTP-MDO were found to be

relatively faster than the other two. However, studying KLU and its features makes adopting KLU

as the based solver more appealing than EMTP-MDO. This is mainly due to the potential

improvement that may applied on KLU and the continuous support the package has by its

developers. Many features were added to KLU and contribute in boosting its performance, these

features are the following:

- Pivot validity testing: This feature was added to avoid unnecessary factorization during the

Ax = b solution. The feature assumes the previously calculated pivot order is valid unless

proven otherwise. This was done by making the refactoring technique of KLU as the default

topology of updating LU factors. A test criterion was added in the refactor function to test the

validity of the used pivot and flag any faults if detected. The same tolerance used in

determining the pivot element is KLU is used in testing the validity of the previously calculated

pivot in refactor function.

- Partial factor: This added feature to KLU is capable of reducing the computation load of any

case by providing a mapping between the changed elements of the matrix A and different

BTF blocks. By creating this mapping, only blocks with changed elements are factorized and

the other unchanged blocks will be only solved using backward and forward substitution. In

addition, using the refactor technique allows the partial factor technique to start refactoring

process from the first left changed column (FLCC).

4.1.1.2 Applying parallel computation

Since BTF blocks are completely independent of each other, factorization and solving of these

blocks in parallel was done by using parallel computation techniques OpenMP. OpenMP allowed

to integrate the concept of parallel computation with minimum change of the sparse solver code.

A load balancing technique was also developed to guarantee that all thread’s load are balanced and

match the load other threads are loaded with.

In conclusion, this PhD work enhanced the speed of EMT type simulation with the implementation

of the new SMPEMT without jeopardizing the accuracy and precision of the simulation. The

proposed SMPEMT solver accounts for varying topologies and the accurate iterative solution of

137

nonlinear models. The SMPEMT sparse solver is applicable to any software tool for the

computation of electromagnetic transients. Moreover, the proposed enhancements to the KLU

solver are applicable to other power system computation tools.

The computational gains are demonstrated for practical and large networks. The demonstration

benchmarks and results constitute another contribution of this project.

4.2 Future work

Investigation a new In-Block-Permutation

Since the dynamic elements of the matrix A can be provided to KLU beforehand, it is worth

investigation creating a new way of ordering the BTF blocks internally to reduce the amount of

calculation KLU needs to refactor blocks. This new in blocks permutation will focus on individual

blocks and push dynamic column to the right of the bock and all constant columns to the left of the

block. This type of permutation will affect the fill-in reduction permutation used now in KLU and

hence the challenge of this idea arises. The new permutation will have to combine the consideration

of maximizing the constant part of the block (located at the left side of the block) and minimizes

the dynamic part, and at the same time keeping the fill-in levels of L and U without big increase.

This idea of IBP is similar to some extend to what is proposed in [34].

The application of METIS on single BTF blocks

BTF permutation in SMPEMT is based on the existence of constant parameters transmission lines

in the case under study. Each block represents a part of the network that is isolated from the other

parts of the network due to the time domain decoupling effect of the CP line model. These blocks

do not have any lines in the part of circuit they represent and that may limit the ability of obtaining

an efficient parallelization. This effect was seen in many cases in chapter 3 and the biggest block

of most cases acted as a limiting factor of the parallel process. Adding the concept of METIS into

SMPEMT will allow the solver to break these limiting blocks into boarder block diagonal format

and allow to increase the parallelization degree of the case being studied.

138

Loading balancing technique

The loading balancing technique developed in SMPEMT is an efficient algorithm that provide a

relatively efficient load balancing. However, it does take into account the size of constant regions

and dynamic region of each block, and the integration of METIS or other permutation techniques

will make such ordering obsolete.

Improving threads loading

It is notices throughout this PhD project that the efficiency of threading is based on the amount of

work (load) assigned to threads. The more computation load threads have the better the

performance. In the current SMPEMT implementation only Ax = b solution is solved in parallel.

In addition to this part, many parts of EMT solution process can be added to the threads and be

done in parallel. These parts include the solution of the control system, update of models, update

history and so on….

139

REFERENCES

[1] T. A. Davis, and E. P. Natarajan, ”Algorithm 907: KLU, a direct sparse solver for circuit

simulations problems,” ACM Trans. Math. Softw., Vol. 37, pp 36:1-36:17, September 2010.

[2] J. Mahseredjian, J. L. Naredo, U. Karaagac, and J. A. Martinez, “EMTP Off-line Simulation

Methods and Tools for Electromagnetic Transients in Power Systems: Overview and

Challenges,” IEEE Power Eng. Soc. Gen. Meeting, Minneapolis, Minnesota, USA, Jul. 25–29,

2010

[3] J. Mahseredjian, U. Karaagac, S. Dennetiere, H. Saad, “Simulation of electromagnetic

transients with EMTP-RV”, Book, A. Ametani (Editor), “Numerical Analysis of Power System

Transients and Dynamics”, IET (The Institution of Engineering and Technology), 2015.

[4] S.C. Eisenstat, M.C. Gursky, M. H. Schultz, A. H. Sherman. “Yale Sparse matrix Package”.

Research report #114, Department of computer science, Yale University, 1982.

[5] J. Mahseredjian, V. Dinavahi and J.A. Martinez “Simulation Tools for Electromagnetic

Transients in Power Systems: Overview and Challenges”, IEEE Transactions on Power

Delivery, Vol. 24, Issue 3, pp. 1657-1669, July 2009.

[6] L. Gérin-Lajoie and J. Mahseredjian: “Simulation of an extra large network in EMTP: from

electromagnetic to electromechanical transients”, Proc. of International Conference on

Power Systems Transients, IPST 2009 in Kyoto, Tokyo, June 2-6, 2009.

[7] U. Karaagac, J. Mahseredjian, L. Cai, H. Saad, “Offshore Wind Farm Modeling Accuracy and

Efficiency in MMC-Based Multi-Terminal HVDC Connection”, IEEE Trans. on Power Delivery,

Vol. 32, No. 2, pp. 617-627, 2017.

[8] H. Saad, J. Peralta, S. Dennetière, J. Mahseredjian, et al., “Dynamic Averaged and Simplified

Models for MMC-based HVDC Transmission Systems”, IEEE Trans. on Power Delivery, Vol.

28, Issue 3, pp. 1723-1730, July 2013.

[9] U. N. Gnanarathna, A. M. Gole and R. P. Jayasinghe, “Efficient Modeling of Modular

Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs,”

IEEE Trans. on Power Delivery, vol. 26, no. 1, pp. 316-324, Jan. 2011.

[10] B. Gustavsen, "Passivity enforcement of rational models via modal perturbation," IEEE

Transactions on Power Delivery, vol. 23, pp. 768-775, Apr 2008.

140

[11] U. D. Annakkage, N. K. C. Nair, Y. Liang, A. M. Gole, V. Dinavahi, B. Gustavsen, et al.,

"Dynamic System Equivalents: A Survey of Available Techniques," IEEE Transactions on

Power Delivery, vol. 27, pp. 411-420, 2012.

[12] A. Benigni, A. Monti, and R. Dougal, “Latency-based approach to the simulation of large

power electronics systems,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp.

3201–3213, June 2014.

[13] J. M. Bahi, K. Rhofir, J.-C. Miellou, "Parallel solution of linear DAEs by multisplitting

waveform relaxation methods," Elsevier, Linear Algebra and its Applications, Aug. 2001,

pp. 181-196.

[14] Y. Zhang, A. M. Gole, W. Wu, B. Zhang, H. Sun, “Development and Analysis of Applicability

of a Hybrid Transient Simulation Platform Combining TSA and EMT Elements”, IEEE

Transactions on Power Systems, vol. 28, no. 1, pp. 357-366, 2013.

[15] S. Montplaisir-Goncalves, J. Mahseredjian, O. Saad, X. Legrand, A. El-Akoum, “A

Semaphore-based Parallelization of Networks for Electromagnetic Transients”,

International conference on power system transients, 2013, Vancouver, Canada.

[16] D. Paré, G. Turmel, J.-C. Soumagne, V. A. Do, S. Casoria, M. Bissonnette, B. Marcoux, D.

McNabb, “Validation tests of the Hypersim digital real time simulator with a large AC-DC

network”, International conference on power system transients, 2003, New Orleans.

[17] S. Abourida, C. Dufour, J. Belanger, G. Murere, N. Lechevin, and B. Yu, “Real-time PC-based

simulator of electric systems and drives”, Proc. 17th IEEE APEC, Applied Power Electronics

Conf. and Expo., Mar. 10–14, 2002, vol. 1, pp. 433–438.

[18] R. Kuffel, J. Giesbrecht, T. Maguire, R. P.Wierckx, and P. G. McLaren, “RTDS-A fully digital

power system simulator operating in real-time”, Proc. EMPD’95, 1995, vol. 2, pp. 498–503.

[19] S. Fan, H. Ding, A. Kariyawasam, A. M. Gole, “Parallel Electromagnetic Transients

Simulation with Shared Memory Architecture Computers”, IEEE Trans. on Power Delivery,

Vol. 33, Issue 1, 2018, pp. 239-247.

[20] J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian and L. Gérin-Lajoie, “On a new

approach for the simulation of transients in power systems”. Electric Power Systems

Research, Volume 77, Issue 11, September 2007, pp. 1514-1520.

141

[21] J. Mahseredjian and F. Alvarado, “Creating an electromagnetic transients program in

MATLAB: MatEMTP,” IEEE Trans. on Power Delivery, vol. 12, no. 1, pp. 380-388, January

1997.

[22] J. Mahseredjian, “Simulation des transitoires électromagnétiques dans les réseaux

électriques,” Édition ‘Les Techniques de l'Ingénieur’, February 10, 2008, Dossier D4130.

2008, 12 pages.

[23] A. Abusalah, O. Saad, J. Mahseredjian, U. Karaagac, L. Gerin-Lajoie, I. Kocar. “CPU Based

Parallel Computation of Electromagnetic Transients For Large Scale Power Systems”. IPST

- International Conference on Power Systems Transients 2017, Seoul, Republic of Korea.

[24] A. Abusalah, O. Saad, J. Mahseredjian, U. Karaagac, L. Gerin-Lajoie, I. Kocar. “CPU based

parallel computation of electromagnetic transients for large power grids”. Electric Power

Systems Research 162 (2018) 57–63.

[25] I. S. Duff, J. K. Reid, "Algorithm 529: permutations to block triangular form", ACM Trans. on

Mathematical Software, 4(2): 189-192, 1978.

[26] George Karypis and Vipin Kumar, “A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices

Version 4.0”.

[27] J. Mahseredjian, C. Dufour, U Karaagac and J. Bélanger, “Simulation of power system

transients using State-Space grouping through nodal analysis,” International conference

on power system transients (IPST2011), Delft, Netherland, June 2011.

[28] F. Pellegrini, “Scotch and LibScotch 5.1 User’s Guide. User’s manual”, 2008

[29] D.P. Koester, S. Ranka, G. C. Fox, “ Parallel Block-Diagonal-Bordered Sparse Linear Solvers

for electrical Power Systems Applications”, Presented at the Scalable parallel libraries

conference, Mississippi State University, Mississippi, 6-8 October 1993.

[30] A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs”. George

Karypis and Vipin Kumar. SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359—

392, 1999.

[31] W. F. Tinney, “Compensation Methods for Network Solutions by Optimally Ordered

Triangular Factorization”, IEEE Trans. on Power Apparatus and Systems, vol. PAS-91, no. 1,

pp. 123-127.

142

[32] W. F. Tinney, “Compensation Methods for Network Solutions by Optimally Ordered

Triangular Factorization”, IEEE Trans. on Power Apparatus and Systems, vol. PAS-91, no. 1,

1972, pp. 123-127. (was 2 in jean’s)

[33] O. Alsac, B. Stott, W. F. Tinney, “Sparsity-Oriented Compensation Methods for Modified

Network Solutions”, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-102, no.

5, 1983, pp. 1050-1060. (was 3 in jean’s)

[34] H. W. Dommel, “Nonlinear and time-varying elements in digital simulation of

electromagnetic transients,” IEEE Trans. Power App. Syst., vol. PAS–90, no. 6, 1971, pp.

2561-2567. (was 4 in jean’s)

[35] J. Mahseredjian, S. Lefebvre, X.D. Do, “A New Method for Time-Domain Modelling of

Nonlinear Circuits in Large Linear Networks”, Power Systems Computation Conference

1993, Avignon, France, 1993.

https://pscc-central.epfl.ch/repo/papers/1993/pscc1993_113.pdf (was 5 in jean’s)

[36] H. C. So, “On the hybrid description of a linear n-port resulting from the extraction of

arbitrarily specified elements”, IEEE Trans. on Circuit Theory, vol. 12, 1965, pp. 381-387.

(was 6 in jean’s)

[37] P. M. Lin, Formulation of hybrid matrices for linear multiports containing controlled

sources. IEEE Trans. Circuit Theory, vol. CT-21, Mar. 1974, pp. 169-175. (was 7 in jean’s)

[38] L. O. Chua and L. K. Chen, “Nonlinear diakoptics. Proc. of the international symposium on

Circuits and Systems”, Boston, Apr. 21-23, 1975, pp. 373-376. (was 8 in jean’s)

[39] J. Mahseredjian, S. Lefebvre and D. Mukhedkar, “Power Converter simulation module

connected to the EMTP”, IEEE Trans. on Power Systems, vol. 6, no. 2, pp. 501-510, May

1991. (was 9 in jean’s)

[40] M. A. Tomim, J. R. Martí, and L.Wang, “Parallel solution of large power system networks

using the Multi-Area Thévenin Equivalents (MATE) algorithm,” International Journal of

Electrical Power & Energy Systems, vol. 31, no. 9, pp. 497–503, 2009. (was 10 in jean’s)

[41] F. A. Moreira, J.R. Martí, “Latency Techniques for Time-Domain Power System Transients

Simulation,” IEEE Trans. on Power Systems, vol. 20, no. 1, pp. 246-253, 2005. (was 11 in

jean’s)

https://pscc-central.epfl.ch/repo/papers/1993/pscc1993_113.pdf

143

[42] F. M. Uriarte, R. E. Hebner, and A. L. Gattozzi, "Accelerating the simulation of shipboard

power systems," in Grand Challenges in Modeling & Simulation, The Hague, Netherlands,

June 27 - 30, 2011. (was 12 in jean’s)

[43] F. M. Uriarte, “On Kron’s diakoptics”, Electric Power Systems Research, vol. 88, pp. 146-

150, 2012. (was 13 in jean’s)

[44] Xiaoye S. Li, James W. Demmel, John R. Gilbert, Laura Grigori, Meiyue Shao, Ichitaro

Yamazaki. “ SuperLU Users’ Guide”. September 1999.

[45] Xiaoye S. Li, An overview of SuperLU: Algorithms, Implementation, and user Interface, ACM

Transactions on Mathmetical Software, Vol. x, No. x, x 2004, Pages 1-24

[46] J. Demmel, S. Eisenstat, J. Gilbert, X Li, J. Liu, “A supernodal approach to sparse partial

pivoting”.

[47] J. R. Gilbert, T. Peierls, “Sparse partial pivoting in time proportional to arithmetic

operations”, SIAM J. Sci. Stat. Comput., 9(5): 862-873, 1988.

[48] Alan George and Joseph W. H. Liu, “The Evolution of the Minimum Degree Ordering

Algorithm”, SIAM Review, Vol. 31, No. 1 (Mar., 1989), pp. 1-19

[49] P. R. Amestoy, T. Davis, I. S. Duff, “An Approximate Minimum Degree Ordering Algorithm”,

SIAM J. Matrix Analysis & Applic., Vol 17, no 4, pp. 886-905, Dec.1996

[50] P. R. Amestoy, T. Davis, I. S. Duff, “Algorithm 837 : AMD, an approximate minimum degree

ordering algorithm, ACM Transactions on Mathematical software, 30(3) :381-388, 2004

[51] T. A. Davis, J. R. Gilbert, S. I. Larimore, Esmond G. Ng. “ A Column approximate minimum

degree ordering algorithm”, ACM Transactions on Mathematical software, 30(3) :381-376,

2004

[52] T. A. Davis, J. R. Gilbert, S. I. Larimore, Esmond G. Ng. “ Algorithm 836: COLAMD, A Column

approximate minimum degree ordering algorithm”, ACM Transactions on Mathematical

software, 30(3) :381-380, 2004

[53] R. Singh, A. M. Gole, C. Muller, P. Graham, R. Jayasinghe, B. Jayasekera, D. Muthumuni,

“Using Local Grid and Multi-core Computing in Electromagnetic Transients Simulation”,

International conference on power system transients, 2013, Vancouver, Canada.

144

[54] Jayanta Kumar Debnath, Wai-Keung Fung, Aniruddha M. Gole, Shaahin Filizadeh

“Electromagnetic Transient Simulation of Large- Scale Electrical Power Networks using

Graphical Processing Units”. 2012 25th IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE)

[55] OpenMP user manual, available online:

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[56] J. Mahseredjian, L. Dube, M. Zou, S. Dennetiere, and G. Joos, “Simultaneous solution of

control system equations in EMTP,” IEEE Trans. Power Systems, vol. 21, no. 1, pp. 117-124,

February 2006.

[57] E. P. Natarajan, “KLU-A High Performance Sparse linear solver for Circuit Simulation

Problems”, Master Thesis, University of Florida, 2005.

[58] U. Karaagac, J. Mahseredjian, L. Cai, H. Saad, “Offshore Wind Farm Modeling Accuracy and

Efficiency in MMC-Based Multi-Terminal HVDC Connection”, IEEE Trans. on Power Delivery,

Vol. 32, No. 2, pp. 617-627, 2017.

[59] A. Haddadi, J. Mahseredjian, “Power System Test Cases for EMT-Type Simulation Studies”,

CIGRE WG C4.503 report, 2018, pp. 1-142.

[60] http://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm

	DEDICATION
	Acknowledgements
	Résumé
	Abstract
	Table OF CONTENTS
	List OF TABLES
	List OF figures
	List of symbols and abbreviations
	Chapter 1 Introduction
	1.1 Thesis Outline
	1.2 Contributions
	1.3 Literature review
	1.3.1 Modified-Augmented-Nodal Analysis (MANA)

	1.4 Parallelization and network tearing
	1.4.1 Block Triangular Format (BTF)
	1.4.2 METIS
	1.4.3 SSN and MANA
	1.4.4 Scotch
	1.4.5 Bordered Block Diagonal matrix
	1.4.6 Compensation Theory

	1.5 Sparse Matrices
	1.5.1 Sparse Matrix representation
	1.5.1.1 Compressed Column Format
	1.5.1.2 Compressed Row Format
	1.5.1.3 Solving a Sparse matrix

	1.6 Sparse Solvers
	1.6.1 SuperLU
	1.6.2 KLU
	1.6.2.1 KLU Symbolic Analysis
	1.6.2.2 KLU Numerical Analysis

	1.6.3 EMTP-MDO solver
	1.6.4 Threading
	1.6.4.1 OpenMP
	1.6.4.2 C++11 Threading

	Chapter 2 Implementation of Sparse solver Package for EMT Simulation
	2.1 Selecting a Sparse Solver
	2.2 KLU Interface
	2.3 Pivot validity test
	2.4 Partial factorization
	2.5 Parallel KLU Implementation
	2.5.1 Shared memory Model
	2.5.2 Distributed Memory Model

	2.6 Load balancing

	Chapter 3 Testing and Results
	3.1 SMPEMT testing and validation
	3.1.1 Hydro-Quebec Full network (HQ-L)
	3.1.2 T0-Grid
	3.1.3 T1-AVM Grid
	3.1.4 T2-AVM Grid
	3.1.5 IEEE14
	3.1.6 IEEE7000
	3.1.7 IEEE39
	3.1.8 IEEE118-GMD

	3.2 Results analysis

	Chapter 4 Conclusion AND recommEndations
	4.1 Thesis summary
	4.1.1 Sparse matrix package for EMTs (SMPEMT)
	4.1.1.1 Replacing the Sparse solver package
	4.1.1.2 Applying parallel computation

	4.2 Future work

	References

