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RÉSUMÉ 

Le temps de simulation est un paramètre crucial de l’analyse des transitoires dans les réseaux 

électriques et il est en train de devenir l’un des facteurs les plus importants pour mesurer les 

performances et la fiabilité des logiciels. Actuellement, la vitesse et les performances des 

processeurs ont atteint un point où l’accélération de gain en vitesse et d’opérations en virgule 

flottante peut être réduite en se concentrant uniquement sur l’aspect vitesse des processeurs 

individuels. Au contraire, la recherche en informatique et le développement de matériel 

informatique tendent de plus en plus à rendre les processeurs parallèles plutôt que plus rapides. 

D'autre part, la simulation des systèmes électriques devient de plus en plus complexe avec 

l'introduction de modèles complexes tels que les énergies renouvelables, les composantes de 

réseaux intelligents et l'électronique de puissance. En outre, la demande de puissance sans cesse 

croissante et l’augmentation de la zone de couverture des réseaux de distribution d’énergie 

contribuent à l’augmentation de la taille des réseaux de distribution d’énergie et ralentissent encore 

plus la simulation électromagnétique transitoire de ces réseaux. 

De nombreux -logiciels de simulation de type EMT effectuent actuellement leurs opérations de 

manière séquentielle en utilisant un seul - processeur, plutôt que tous les processeurs de la machine. 

Ce comportement entraîne un temps de simulation long et introduit des difficultés pour simuler des 

réseaux de systèmes d'alimentation plus avancés et complexes. Ce type de délai devient un obstacle 

lorsque de grands réseaux, réels ou existants, sont utilisés. Par exemple, simuler le réseau d'Hydro-

Québec doté d'une matrice de taille 41555 × 41555 et contenant un grand nombre de dispositifs de 

commutation et des éléments non linéaires nécessite 1765 secondes pour simuler une seconde avec 

un pas de temps de 50us.  

 La programmation parallèle multithread est maintenant disponible dans les compilateurs 

modernes. Elle peut être utilisée pour améliorer de manière significative les performances des 

calculs EMT.  La recherche actuelles dans ce domaine est principalement appliqué à des systèmes 

moins complexes qui nécessitent l'intervention de l'utilisateur pour le découpage parallèle et 

manque de généralisation pour toute topologie rencontrée dans les études réels.  Cette thèse 

développe une méthode de parallélisation entièrement automatique applicable aux systèmes à 

grande échelle avec des topologies arbitraires sans aucune intervention de l'utilisateur. 
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Cette thèse présente les avancées existantes dans le domaine de l'accélération de la simulation des 

transitoires électromagnétiques et met en évidence les différentes approches adoptées pour obtenir 

une simulation plus rapide de l'EMT. L'accent est principalement mis sur le threading à travers le 

processeur exclusivement sur les ordinateurs de bureau modernes utilisés quotidiennement par les 

ingénieurs. 

Ce document portera principalement sur le threading exclusivement via le processeur. Dans cette 

thèse, deux approches sont adoptées pour améliorer les performances et le temps de calcul de la 

simulation EMT. La première approche est axée sur la recherche d’un solveur simple, rapide et 

efficace, qui servira de base à ce travail de recherche. Ce solveur est entièrement étudié et 

personnalisé pour éviter tout calcul inutile qui n’est pas nécessaire pour les simulations de type 

EMT. Différents solveurs linéaires de matrices creuses sont considérés dans cette thèse. Ces 

solveurs sont traditionnellement divisés en deux catégories, les solveurs directs et itératifs. Dans 

cette étude, l’accent sera mis sur la sélection du meilleur solveur direct parmi KLU et SuperLU  

deux solveurs basés sur l’utilisation de  l’ordonnancement de degrés minimum,. 

La deuxième approche pour obtenir une accélération de la simulation EMT consiste à appliquer 

une technique de calcul parallèle au processus de simulation et à permettre à différentes tâches 

d'être résolues en parallèle sur différents processeurs. De nombreuses techniques de parallélisation 

sont étudiées pour trouver la plus performante avec le moins de modifications possibles du code 

du solveur et exigeany le moin de temps d’implémentation . De nombreux standards de 

programmation multithreading sont pris en compte, tels que le multithreading C ++ 11 et le 

standard OpenMP. 

Le nouveau solutionneur proposé (SMPEMT) est validé et testé sur un large éventail de points de 

repère. Cette validation est effectuée à l'aide du logiciel de simulation EMT EMTP-RV en tant que 

support de test. Tous les résultats des tests SMPEMT sont comparés aux résultats de l'EMTP et la 

vitesse de la simulation et le gain d'accélération sont également vérifiés. 
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ABSTRACT 

Simulation time is a crucial parameter in power system transient analysis. The simulation needs 

for electromagnetic transients are continuously increasing. The electromagnetic transient (EMT) 

type tools are now also used for the simulation of slower electromechanical transients in large scale 

power systems. The EMT approach for power system analysis is the most accurate approach, but 

it suffers from computation performance issues. Research on this aspect is currently of crucial 

importance. Research is timely and should increase the application range of EMT-type tools. In 

fact very fast EMT-type tools can have a major impact on the simulation and analysis of modern 

power grids with increased penetration of renewables. 

Currently, computer processor speed and performance reached a point where not much speed gain 

and floating-point operation acceleration can be achieved by only focusing on the speed aspect of 

individual processors. Rather, the trend in computer research and hardware development is 

becoming more and more focused on making processors parallel rather than faster.   

Many EMT-Type simulation packages currently perform their operations sequentially by using 

only one CPU core rather than all machine processors. This behaviour results in long simulation 

time and introduces major difficulties when simulating large and complex power grids. This type 

of delay becomes a show stopper when large, real and existing networks are used.  

Multithreaded parallel programming is now available in modern compilers. It can be used to 

significantly improve the performance of EMT computations.  

Current research in this field has been mostly applied to less complicated systems and requires user 

intervention. This thesis develops a fully automatic parallelization method that is applicable to 

large scale systems with arbitrary topologies. 

This PhD thesis presents existing progress in the field of electromagnetic transient simulation 

acceleration and highlights the different approaches that are adopted to achieve faster EMT 

simulation. The focus is mainly on threading through CPU exclusively on modern desktop 

computers used by engineers on daily basis.  

In this thesis, two approaches are adopted to improve EMT simulation performance and 

computation time. The first approach is focused on finding a sparse solver that is fast and efficient 
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to act as a baseline for all computations. This solver is studied throughout and customized to 

improve performance for EMT computation needs.  

The second approach to achieve acceleration is by applying parallel computation techniques on the 

computation process and allow different tasks to be solved in parallel on different processors. 

Parallelization techniques are studied to find the best performing parallelization technique with the 

least changes to the solver code and minimum implementation time.  

The outcome of research is a new parallel solver, named SMPEMT. It is demonstrated and tested 

on practical large-scale benchmarks. 
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CHAPTER 1 INTRODUCTION 

The circuit based electromagnetic transient (EMT) simulation approach is a powerful approach for 

studying power transmission and distribution grids. The range of applications of EMT-type tools 

varies from very fast transients to slower electromechanical transients. Typical studies include 

switching transients, lighting transients, HVDC transmission, wind generation and 

electromechanical transients from small to very large-scale systems. EMT simulation is also used 

in the design and sizing of power network components such as insulation levels and energy 

absorption capabilities. EMT-type simulation tools are subdivided into two main categories: off-

line and real-time. The main goal of performing off-line is to perform simulations on generic 

computers that are easily available to engineers. Real-time simulation tools are capable of 

generating results in synchronism with a real-time clock. Such tools have the advantage of being 

capable of interfacing with physical devices and maintaining data exchanges within the real-time 

clock. The capability to compute and interface within real-time, imposes important restrictions on 

the design of such tools. Current off-line EMT-type simulation tools remain more accurate than the 

real-time counterparts. They are also capable of solving much larger power grids and maintain 

higher accuracy. Nevertheless, research on the acceleration of off-line tools is also applicable to 

the eventual acceleration of real-time tools. Convergence of these tools into a single environment 

is inevitable in the near future. 

Instead of using EMT-type tools in time-domain, it is also possible to simulate large power grids 

through phasor-domain computations. Phasor-domain tools are also referred to as transient stability 

(TS) tools. The TS approach can be very fast, especially when solving very large-scale systems, 

but it suffers from important accuracy issues. This is becoming nowadays an important issue with 

the increased usage of power electronics-based components (wind generation, HVDC, 

photovoltaics...) in modern power systems. In fact, in more and more applications, the much more 

accurate EMT-type methods and models are called to replace the usage of TS-type simulation and 

modeling. This trend will subsist, and EMT-type tools will receive wider and wider acceptance in 

practical applications, especially when they become capable of much higher efficiency for 

networks of very large dimensions.  

This thesis presents the implementation of a parallel sparse matrix solver used for improving the 

computational speed of EMT-type tools. The new approach contributes in enhancing the overall 
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quality of EMT simulation by reducing the simulation time while maintaining the simulation 

accuracy and reliability. Unlike other solvers published in the literature that are demonstrated by 

repeating a small network multiple number of times, the proposed approach can be generalized and 

is valid on any power system network. The proposed new method is also capable of automatically 

parallelizing networks of arbitrary topologies without any user intervention. 

The new method presented in this thesis is based on the KLU sparse matrix solver which is 

currently the most suitable for circuit-based simulation methods [1]. The solver is programmed 

using parallelization algorithm that can automatically detect independent parts of the sparse matrix 

separated by the natural decoupling available in transmission line/cable models. This decoupling 

technique can be detected without any user intervention and pre-determination of different 

subnetworks.  

Due to the iterative process required for solving nonlinearities in various models, this thesis also 

contributes modifications into the KLU solver for improving its performance when repetitive 

matrix refactorizations are requested. 

The proposed new approach is demonstrated using an EMT-type software (i.e EMTP) that uses a 

fully iterative solution method for all nonlinear models [2]. It remains however applicable to any 

EMT-type software tool that uses sparse matrices. A modular sparse matrix package can be 

replaced easily by the package elaborated in this thesis. 
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1.1 Thesis Outline 

This thesis is divided into four chapters that are summarized below. 

Chapter 1: Introduction 

This chapter introduces the concept of EMT simulation and the modified-augmented nodal analysis 

(MANA) approach used in the EMTP simulation package to form its sparse matrix [3]. This 

approach is explained in detail and illustrated with an example. In addition, different sparse solvers 

are introduced in this chapter including the minimum degree ordering (MDO) based approach used 

in EMTP [4]. These solvers are used and compared to select the fastest package and enhance it as 

it will be demonstrated in the following sections.  

In the second part of this chapter, different methods such as BTF, MDO, SSN and Compensation 

theory are introduced as well.  

The last part of this chapter discusses different threading algorithms used in implemented the multi-

threaded sparse solver used in this thesis. 

Chapter 2: Implementation of Sparse Matrix Package for EMTs 

In this chapter the approaches used to accelerate the simulation process are explained and the 

implementation of a new sparse solver that is customized only for EMT-type simulations is 

introduced and explained. In addition, a comparison between the new sparse solver and other 

already existing ones is presented and discussed.  

Chapter3: Test Results 

In this chapter, different benchmarks used in the process of validating the new sparse solver will 

be presented. These test cases consist of real and existing networks with complex models, including 

nonlinearities and power-electronics converters for wind generator applications. Each network’s 

topology is described with related matrices and complexity level. Computational timings are used 

to demonstrate the advantages of the approach presented in this thesis. 

The results of each test case are analyzed and studied. The acceleration rate (gain) for each case 

will be looked at in depth and compared with other cases. Observations and limitations will be 

address herein as well. 



4 

 

 

 Chapter 4: Conclusion and Future work 

This chapter provides a quick summary of the overall work done throughout this PhD work and it 

highlights the main milestones that were achieved during this project. In addition, it provides 

recommended future work. 

1.2 Contributions 

In this thesis the multithreading approach used for programming a parallel sparse solver is based 

on the OpenMP standard and the use of distributed memory design. Thanks to this design an 

efficient parallel solution is achieved, and the effect of overhead timings is kept at minimum. This 

parallel model design minimizes shared memory between different threads and allows each thread 

to store its own data on its own designated memory. This approach makes it easier for all threads 

to fetch and write data to memory without the need to communicate with the master thread or any 

other threads for that matter.  

Another noticeable contribution in this thesis is the fact that the proposed method is tested on 

realistic large-scale network benchmarks. Parallelization is achieved without any user intervention. 

Such practical networks allow to derive more realistic conclusions on the potential gains in EMT-

type solver parallelization.  
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1.3 Literature review  

The computing time reduction for the simulation of electromagnetic transients[2][5] (EMTs) is a 

crucial research topic. The EMT-type[5] simulation methods are circuit based and can use very 

accurate models for an extended frequency range of power system phenomena. This qualifies them 

as being of wideband type. In fact, the EMT approach is applicable to both slower 

electromechanical transients and much faster electromagnetic transients. The computation of 

electromechanical transients can be achieved with EMT-type solvers for very large networks [6] 

and requires significant computing time when compared to phasor-domain approaches, but even 

for smaller networks, the computing time can become a key factor due to numerical integration 

time-step constraints or model complexity level. More and more challenging simulation cases are 

created for studying modern power systems, those include, for example, HVDC systems and wind 

generation[7]. 

There are several techniques for improving computational performance in EMT-type solvers. Such 

techniques include improvements in model performance using, for example, average-value 

models[8] for power-electronics based systems or circuit reduction [9]. Network reduction can be 

also achieved using frequency domain fitting[10], or through dynamic equivalents[11]. Other 

approaches include usage of multiple time-steps[12], waveform relaxation [13] and combinations 

of different methods [14].  An important problem in network solution parallelization methods, such 

as[15], is that user intervention is required for setting the network separation locations and task 

scheduling. The user should be aware of the case details in order to best allocate the separation 

locations and optimize the performance of the parallel solution. It is also necessary to program 

network topology analysis and, in some methods such as in [16], analysis can be used for automatic 

task scheduling.  

A more direct path towards computational speed improvement in EMT-type numerical methods is 

through efficient sparse matrix solvers and parallelization. This chapter introduces different types 

of sparse solvers used in general circuit analysis. These solvers are currently implemented in 

different simulation tools and each has its own advantages and disadvantages. Moreover, parallel 

computation concept will be discussed, and different parallel programming techniques will be 

introduced. These techniques will be used in this thesis to implement the EMT customized sparse 
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solver. In addition, different ordering techniques will be discussed such as AMD, COLAMD, BTF 

and METIS.  

This work targets off-line simulation methods and presents CPU-based parallelization for 

conventional multi-core computers using a sparse matrix solver, named KLU [1].  

1.3.1 Modified-Augmented-Nodal Analysis (MANA) 

The modified-augmented-nodal analysis (MANA) method is briefly recalled in this section. 

The traditional approach for the formulation of main network equation is based on nodal analysis.  

The network admittance matrix 
nY  is used for computing the sum of currents entering each 

electrical node and the following equation results from classical nodal analysis.  

n n nY v = i                                                               (1.1) 

where, 
nv  is the vector of node voltages and the members of 

ni  holds the sum of currents entering 

each node. It is assumed that the network has a ground node at zero voltage which is not included 

in (1.1) . Since the network may contain voltage sources (known node voltages), equation (1.1) 

must be normally partitioned to keep only the unknown voltages on the left hand side 

     
     
     

' ' '

n ns n n

sn ss s s

Y Y v i
= 

Y Y v i
                                                                (1.2) 

  = −n n n ns sY v i Y v                                                        (1.3) 

where '

nY  is the coefficient matrix of unknown node voltages 
nv , '

ni  holds the sum of currents 

entering nodes with unknown voltage, ns nY Y  and relates to known voltages
sv . It is noticed that

T
'

n n s
v = v v   [20]. 

Equation (1.3) has several limitations. It does not allow, for example, to model branch relations 

instead of nodal relations and it assumes that every network model has an admittance matrix 

representation, which is not possible in many cases. This is where the modified augmented nodal 

analysis comes into play. The MANA formulation method [20][21][22] is a relatively new 

approach to formulate network equations. This method offers several advantages [3] over classical 
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nodal analysis. Its formulation is recalled here to relate to material presented in the following 

sections. In MANA the system of equations is generic and can use different types of unknowns in 

addition to voltage. Equation (1.3) is augmented to include generic device equations and the 

complete system of network equations can be rewritten in the more generic form as seen in (1.4). 

N N NA x = b                                                             (1.4) 

In this equation n NY A , Nx  contains both unknown voltage and current quantities and Nb   

contains known current and voltage quantities. The matrix NA  is not necessarily symmetric and it 

is possible to directly accommodate non-symmetric model equations. Equation (1.4) can be written 

explicitly as 

n c n n

r d x x

Y A v i

A A i v

     
=     

    
                                                  (1.5) 

where the matrices rA , cA  and dA (augmented portion, row, column and diagonal coefficients) 

are used to enter network model equations which are not or cannot be included in nY , xi  is the 

vector of unknown currents in device models, xv  is the vector of known voltages,  N n xx = v i
T

 

and  N n xb i v
T

= [23]. 

It is emphasized that the system in (1.5) is non-symmetric and can also accommodate generic 

equations, such as 

 
1 2 3 4 .....k m x y zk v k v k i k i b+ + + + =                                         (1.6) 

Where the terms on the left contribute coefficients ( jk  ) into the A  matrix for voltage ( jv ) and 

current ( ji ) unknowns, and zb  is a cell in the b  vector. This equation allows integrating directly 

source and switching equations. For example, an ideal switch can be represented by  

 0k m s kmkv kv k i− − =                                                      (1.7) 

When the ideal switch is in closed position, 1k =  and 0sk =  . When the ideal switch is open, 0k =  

and 1sk = . It is also possible to model non-ideal switches by setting 1k =  and replacing sk  by 
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high and low resistance values. Other, models, such as ideal transformers with tap control can be 

easily accommodated [3].  

Single phase and three-phase transformers can be built in EMTP using the ideal transformer unit 

shown in Figure 1.1. It consists of dependent voltage and current sources. The secondary branch 

equation is given by 

 
2 2 1 1

0k m k mv v gv gv− − + =                                                   (1.8) 

Where, g  is the transformation ratio. This equation contributes its own row into the matrix rA   

whereas the matrix cA  contains the transposed version of that row. It is possible to extend to 

multiple secondary windings using parallel connected current sources on the primary side and 

series connected voltage sources on the secondary side. Leakage losses and the magnetization 

branch are added externally to the ideal transformer nodes.  

Three-legged core-form transformer models or any other types can be included using coupled 

leakage matrices and magnetization branches. 

 

Figure 1.1 Ideal transformer model unit 

The MANA formulation (1.4) is completely generic and can easily accommodate the juxtaposition 

of arbitrary component models in arbitrary network topologies with any number of wires and 

nodes. It is not limited to the usage of the unknown variables presented in (1.5) and can be 

augmented to include different types of unknown and known variables. The MANA formulation is 

conceptually simple to realize and program [23][24]. 

In order to provide a better understanding of the MANA formulation, the following example 

illustrates a simple circuit with its MANA formulation. Figure 1.2 illustrates the example circuit 

1k 2k

1m 2m

2 2k mg i−

2 2k mi

( )1 1k mg v v−
+

-
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structure with all its components names and ratings. The analysis of this circuit starts by forming 

the submatrix 
nY  that contains the admittance matrix of the MANA main matrix. 

 

Figure 1.2 MANA Formulation Example 

In order to find the time domain system of equations using the MANA formulation, the linear 

components of the circuit above (i.e inductors and capacitors) need to be discretized for a given 

integration time step t using a numerical integration method. Although any discretization rule can 

be used, the trapezoidal rule technique has been used herein to discretize nonlinear model of the 

circuit into linear representation. The inductor equation shown in (1.9) is discretized into a linear 

format shown in (1.10), this discretization allow to model the inductor as shown in Figure 1.3. 

Similarly, the capacitor equation can be discretized in a similar fashion as well. 

km
km

di
v L

dt
=                                                                  (1.9) 

2 2t t t t t tkm km km km

t t
i v v i

L L − −

 
= + +                                                       (1.10) 
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 Figure 1.3 Discretized inductance model for time domain MANA solution 

Equation (1.11) shows the MANA formulation of the circuit shown in Figure 1.2. The equation of 

each node has been written by replacing the inductors and capacitors connected to it by their 

discretized model. Node 1 for example (which represents BUS 1 in Figure 1.2), has L, C and RL 

branches connected to it in addition to the current source 
1si . Hence, replacing the L, C and RL 

branches with their discretized model produces the node junction shown in Figure 1.4 where R1, 

R3 and R4 represent the resistors in the discretized model of L1, C1 and L2 respectively.  
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             (1.11) 
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Figure 1.4 BUS1 branches discretized model 

Hence, the value of 
11y  shown in equation (1.11) is the summation of R1, R2, R3 and R4 

admittances that can be calculated using the following equation: 

6

11 33
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In a similar manner all quantities in the 
nY  part of the MANA matrix can be found as follows: 
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66 16y y= −  

61 16y y=  

The terms on the right of (1.11) are the contributions from independent current sources and history 

current sources resulting from component discretization (inductances and capacitances). 

In the current project, EMT simulation is solved at each time step after updating A  for switches 

position changes, transformer tap changes or any other modifications in model equations (including 

nonlinear devices). For nonlinear models (NMs), the NEs must be solved iteratively to achieve an 

accurate simultaneous solution. This is done by linearizing each model at each operating point and 

solving iteratively [3]. Model linearization results into a Norton equivalent with the Norton 

resistance contributing changes into the A  matrix and the Norton current contributing updates into 

the b  vector.  

It means that at each time-point it is necessary to resolve (1.11) iteratively until convergence for 

all nonlinear models is achieved. 

For time-varying models (TVMs), such as switches or transformer tap positions, it is also possible 

to update A  iteratively without advancing to the next time-point. This accuracy option, marked as 

iterative time-varying method (ITVM), allows achieving a simultaneous solution for the 

determination of all changes and dependencies between models at the same time-point. This 

process also includes the sequential re-calculation of control system equations [3]. 

1.4 Parallelization and network tearing 

In order to be able to solve power systems in parallel, the network system of equations needs to be 

subdivided into multiple subnetworks. This division process allows distributing different parts of 

the network on different CPU cores and solving these subnetworks independently. Several schemes 

can be used to achieve this goal. A list of known methods is presented in this section. 

1.4.1 Block Triangular Format (BTF) 

The block triangular formulation of a matrix is an approach specialized in permuting the matrix by 

putting as much non-zero elements of the matrix along the diagonal [25]. This reordering allows 
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the flexibility of partially decoupling the matrix into different submatrices and allows the solving 

of these submatrices separately. Figure 1.5 shows a generic representation of the block triangular 

format with blocks 
iiA  aligned along the diagonal and some off-diagonal elements ijA . These off 

diagonal blocks/elements arise due to light links between different parts of the matrix such as block 

11A  and 
33A  that are linked through 

13A  block, and 
22A  and 

55A  that are linked through 
25A  

block. In this thesis all cases used have no off-diagonal elements in them thanks to the time domain 

decoupling produced by transmission lines. Although, the parallelization of matrices shown in 

Figure 1.5 is still feasible, it involves more restrictions and complications. 

 

Figure 1.5 An example of a matrix in BTF form  

Another type of block triangular form that is more interesting for parallelization and mainly used 

herein, is the type where there are no off diagonal blocks/elements. This type of format is called 

block diagonal form BDF since all matrices elements are aligned along the matrix diagonal and the 

rest are zeros as can be seen in Figure 1.6 [25]. 

 

Figure 1.6 An example of a matrix in BDF 
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In order to transform a matrix into the BTF form, the KLU package uses a special technique that 

is based on Duff and Reid’s algorithm [25]. This algorithm finds any matrix BTF form (if 

applicable) by finding all strongly connected vertices of the matrix. It starts by preparing the matrix 

adjacency graph which guides the algorithm by moving from one graph vertex to another. Then a 

depth first search is launched starting from a random vertex and tries to visit/reach the maximum 

number of graph vertices of which there exists a path.  

The design of KLU BTF algorithm uses a user-built stack that keeps track of all visited and 

unvisited vertices and avoids many run time errors such as stack over flow and memory shortage. 

The algorithm uses depth first search (DFS) topology that is based on a recursive algorithm to find 

all possible strongly connected vertices in the graph and keeps track of all visited and non-visited 

vertices. Once all connected vertices are labeled as visited, those vertices (nodes) form a block in 

the BTF form and the DFS algorithm begins again starting from an arbitrary non-visited vertex. 

The vertex graphs are explored and all efforts to try all combinations of connections is exhausted. 

The following example gives a better visualization of how the BTF algorithm calculates strongly 

connected regions of the matrix. It is noticed here that the transmission line models are of 

distributed parameter type. In fact, any such model, either with constant parameters or with 

frequency dependent parameters, offers an important property for parallelization. The line (or 

cable) model provides a delay between its left (k-side)) and right (m-side) hand sides. This means 

that the k-side network can be solved completely independently from the m-side network without 

any approximation. This well-known property is the key ingredient used in this thesis for delivering 

parallelization. Nevertheless, the independent subnetworks created by transmission lines, must be 

found automatically. 

The sparsity pattern of the matrix of the network shown in Figure 1.7 is presented in Figure 1.8, 

and the BTF version of this matrix is presented in Figure 1.9. The BTF method can automatically 

derive the block-diagonal (BD) without any user intervention as long as the case has at least one 

transmission line implemented in it.  
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Figure 1.7 BTF format test case 

 

Figure 1.8 Sparsity pattern of matrix A  of circuit shown in Figure 1.7 

 

Figure 1.9 BTF Sparsity pattern of matrix A  of circuit shown in Figure 1.7 

+ AC1

230kVRMSLL /_0

+

RL1

1/1

+
R2

1

+

Rn1

CP+

TLM1

400

+
R

11

+
L

1

1
m

H



16 

 

 

In order to facilitate the differentiation between a BTF ordered matrix with a non-ordered matrix, 

the “hat” symbol is used from now on to represent all BTF ordered matrices (i.e Â ). In addition, 

the second digit in the BTF block index will be dropped due to the fact that all cases used herein 

have no off-diagonal blocks and both digits used to refer to a BTF block in this case are the same 

(i.e Â i  refers to block i  in the BTF ordered matrix Â ).  The BTF ordering is similar to graph 

traversal ordering that is based on a depth first algorithm to find all decoupled subnetworks and  

used in [16]. This ordering tries first to decouple the network based on the presence of the existing 

transmission lines and detect each subnetwork by the end of traversal, and at the same time they 

apply a heuristic calculation on the time cost for each component type (R, machine, inductance, 

etc...)   in the subnetwork to make the simulation fit to real time simulation. Based on the execution 

cost, it can decide to join several subnetwork in one cpu and put this in one matrix if the resolution 

will fit in one step. 

In KLU solver package, the BTF ordering is followed by another ordering that aims at reducing 

the L̂i  and Û i  matrices fill-in. There are three ordering techniques that are already implemented 

in KLU package which are AMD, COLAMD and a user pre-defined ordering. This step plays a 

major role in reducing computational load during KLU numerical solution by reducing the number 

of floating-point operations required to solve the system. This type of ordering will be discussed 

in the coming sections. 

1.4.2 METIS 

METIS is an efficient algorithm that allows the partitioning of a matrix into multiple submatrices 

that are either independent of each other or share elements with other submatrices with all shared 

elements aligned along the submatrices boarders. An advantage of METIS is the feasibility of 

increasing the degree of parallelism with the existence of only one partitioned matrix in the system. 

METIS is specialized in partitioning large-scale irregular graphs or meshes and providing a 

permutation that provides an efficient partitioning as well as a reduction of fill-in of L̂i  and Û i  

factors [26]. 

Unlike other traditional ordering techniques that work on the graph directly to provide a portioning 

by one step operation, and hence provide a low quality and less efficient partitioning, METIS is 
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based on multi-level graph partitioning technique that adopts a totally different technique that 

works on the graph and reduces the size of the graph as much as possible, by collapsing graph 

vertices and edges and partitioning the small graph and re-ordering it to produce the partitioning 

of the original graph [26]. Figure 1.10 shows matrix A  of the IEEE1138 bus system ordered by 

METIS algorithm. 

 

Figure 1.10 IEEE-1138 network ordered by METIS 

Not only METIS can provide a high-quality portioning over other ordering techniques, it is 

considered one of the fastest ordering techniques that can provide its partitioning results in one or 

two orders faster that other traditional algorithms. Moreover, METIS ordering contributes in 

reducing the fill-in of L̂i  and Û i  factors without the need of using other techniques to do this task. 

METIS has the ability to produce more blocks along the diagonal compared to BTF. This 

phenomenon is due to the fact that METIS does not require a complete decoupling of blocks like 

BTF, but rather it can still reorder a block (that BTF was not able to partition) into sub-blocks and 

align all shared elements between these sub-blocks along the matrix or block border. 

However, given the types of problems this thesis deals with, and the fact that BTF blocks are totally 

independent of each other, the use of METIS becomes less significant for cases that have multiple 

transmission lines that allow decoupling the case in time domain into relatively small independent 

regions. The importance of this ordering technique arises when a large-scale case with no 
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transmission line in its structure (or have very few of them) is being studied. Using Metis in this 

case helps introduce some degree of parallelization into the solution. In addition, this partitioning 

technique can help reduce the effect of large limiting blocks that prevent parallel simulation as will 

be seen in chapter 3. In addition, different fill-in reduction techniques that were tested herein (such 

as AMD) were found to be more efficient and produce around 15% less fill-in compared to METIS.  

1.4.3 SSN and MANA 

Another parallelization approach can be achieved through the combination nodal or MANA 

equations with state-space equations. This approach, name state-space nodal (SSN), is explained 

in [27]. The basic principle is that the network is separated (cutting) into state-space groups that 

are solved independently in parallel and combined through MANA equations.  

Although the SSN method is perfectly accurate, it has two drawbacks. First the network separation 

locations must be determined manually. Another problem is that the usage of state-space equations 

is typically inappropriate for solving large scale grids. Other complications arise when the state-

space equations must be reformulated for nonlinear models and time-varying models. 

1.4.4 Scotch 

Scotch [28] is yet another sparse matrix package that focuses on solving graph theory-based 

problems using divide and conquer approach. It is used in wide range of applications and not 

limited to electrical or power circuit problems, this package is based mainly on nested dissection 

approach to permute the application sparse matrix into a format that allows certain degree of 

parallelization. The nested dissection starts by forming the matrix undirected graph in which the 

vertices represent rows and columns of the matrix, and an edge/connection in the graph represents 

a nonzero entry in the sparse matrix. Once the graph is formed, the nested dissection algorithm 

uses a divide and conquer strategy on the graph in order to remove a set of vertices to result in two 

new graphs that are independent of each other. This algorithm uses a recursive technique that 

partitions the graph into subgraphs by selecting barriers or separators that consist of small set of 

graph vertices. The removal of these separators creates independent subgraphs. Applying 

factorization and solving the matrix parts that represent the new sub-graphs can be done 

https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Sparse_matrix
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independently and in parallel. The results of the two new graphs can then be combined to find the 

overall matrix results. 

In order to better understand the nested dissection ordering, the following matrix shown in Figure 

1.11 gives an example of a matrix graph (mesh) that is ordered by nested dissection. In this figure, 

the graph is partitioned into four subgraphs (A, B, D and E) by three different separators (C, F and 

G). The matrix shown in equation (1.12) is a representation of the matrix after being reordered. 

 

Figure 1.11 Scotch example - matrix graph  
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                                       (1.12) 

Equation (1.12) shows the matrix after being ordered by nested dissection. All black elements in 

the matrix represent sub-graphs created after adding the separators, and all blue and red elements 

represent elements that are located across the separators (C, F and G) and they are linking different 

black blocks together. 
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Comparing this ordering technique with other ordering techniques, it is found that the nested 

dissection ordering is only applied to symmetric matrices, and that is a condition that can’t be met 

and guaranteed in many EMT simulation tools including EMTP.  

1.4.5 Bordered Block Diagonal matrix 

This ordering scheme is a methodology that permutes the power system network matrix A  into a 

doubly bordered block diagonal (DBBD) or a single bordered block diagonal (SBBD).  Figure 1.12 

shows the typical structure of a DBBD permuted matrix [29].  

 

Figure 1.12 Doubly bordered block diagonal (DBBD) 

It can be seen from Figure 1.12 that a doubly bordered block diagonal form is similar to a block 

upper triangular form but has non-zeros on the sub diagonal region. These nonzero elements found 

in the lower section of the diagonal form a horizontal strip resembling a border. The same thing 

applies for nonzero elements above the diagonal, these elements form a vertical strip that resemble 

a vertical border. Many ordering techniques can be used to produce DBBD permuted matrix such 

as METIS and nested dissection [26].  

Generically speaking, when a complete network or a network portion does not contain delay-based 

transmission line models, it will not be possible to create a BD matrix for its equations. It can be 

demonstrated that for such cases, it is possible to derive a BBD matrix as seen in following 

compensation theory section. 

1.4.6 Compensation Theory  

The Compensation method theory is presented in [31]-[33] and it was used in [34]. The application 

described in [34] is for the solution of nonlinear models in an EMT-type code. The limitations that 

this method may encounter for solving nonlinearities, or in general, are described in [35]. It is 
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shown in [35] that the compensation method although very powerful, is not conformable to the 

topological proper-tree and therefore has topological limitations. The hybrid analysis method [36]-

[38] has been shown in [40]  to be more general than the Compensation algorithm. The work in 

[35][39] relates the more general hybrid analysis to the Compensation method. 

Despite the limitations of the Compensation method for solving nonlinear systems, it will be used 

below to demonstrate how it links to other methods in the literature and how it can be used to 

decouple networks when transmission line delay-based decoupling is not possible. 

The basic idea of the Compensation method is illustrated in Figure 1.13. In this figure the dash line 

shows cutting through wires. It is assumed that a linear or nonlinear network N2 is connected to 

network N1 through one or more wires. In some publications [34] it is assumed that N2 can contain 

only (one type of) nonlinear component, but N2 can actually contain any number of nonlinear 

components and it fact it can contain complete arbitrary (except for cases explained in [35]) 

networks. In the following, it will be assumed that N2 is actually a grid with any number of 

components. N2 can be purely linear. 

 

Figure 1.13 Separation of two networks using the compensation method 

Let us assume the wires ( n̂  wires) connecting N2 to N1 are connected to a set of nodes N̂  in N1. 

It can be written that for any time-point solution 

ˆ ˆˆ
final

N NN 
= +v v v                                                           (1.13) 

where 
N̂

v  is the solution vector of node voltages for N1 when it is disconnected from N2, 
N̂

v  is 

the solution found from the contributions of currents entering N1 through n̂  wires and ˆ
final

N
v  is the 

final solution through the superposition theorem. In this presentation, it is assumed that N1 does 

N1 N2
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not contain any nonlinearities, whereas N2 may contain nonlinear components that require 

iterations for an accurate solution. It can be further shown that  

N̂
 =v Z i                                                             (1.14) 

where Z  is an impedance matrix relating the currents entering the set of nodes N̂  to the 

contributions on voltages 
N̂

v . By using an incidence matrix, the branch voltages in N2 are related 

by 

ˆ
ˆ finalT

n N =v A v                                                          (1.15) 

where ˆ
nA  is the nodal incidence matrix for the nodes in N2. If all the n̂  wires are connecting from 

node to ground, then ˆ
nA  becomes unitary and diagonal. By combining equation (1.13), (1.14) and 

(1.15) 

ˆˆ T
th n   = +v v A Z i                                                       (1.16) 

where ˆ thv  is the vector of Thevenin voltages as found from N1. It is apparent that the Thevenin 

impedance matrix ˆ
thZ  is given by 

ˆˆ T
th n =Z A Z                                                          (1.17) 

and consequently 

ˆˆ th th = +v v Z i                                                         (1.18) 

Finally, it is noted that the currents i  and voltages v   are related through a function Φ  that could 

be linear or nonlinear: 

( ), 0  =Φ v i                                                          (1.19) 

If Φ  is nonlinear then (1.18) must be solved using iterations and the Newton method.  

The vector ˆ thv  is time-dependent and must be found at each time-point solution. The matrix ˆ
thZ  

may also have time-dependency due to switching devices in N1. 

In Figure 1.13 it is assumed that N1 includes coupled (no delay-based transmission lines) networks. 

It is however possible that N1 contains decoupled networks or wires are used to connect separate 

networks. Let us assume that there are now two networks in N1 and N2 that are connected together 
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using the circuit of network N3. In that case the new representation of relations between networks 

is shown in Figure 1.14. 

 

Figure 1.14 Two networks N1 and N2 connected through wires in network N3. 

The MANA formulation of network equations for Figure 1.14 is given by 

     
     

=     
         

k

m

1 c 1 1

2 c 2 2

3 3k m d

A 0 S x b

0 A S x b

x bS S S

                                                   (1.20) 

In the above system, 1A  is the matrix of N1, 2A  is the matrix of N2, the S matrices are the 

connecting matrices from network N3. It is possible that some off-diagonal S  matrices are nullified 

due to disconnection between N1 and N2. Equation (1.20) is generic and allows N3 to contain 

longitudinal impedances, but for the following text and without any lack of generality, it is assumed 

that the impedances in N3 are simply zero, meaning that N1 and N2 are interconnected through 

ideal wires. For ideal wires, equation (1.20) becomes 

T T

     
     

=     
        

1 k 1 1

2 m 2 2

3k m

A 0 S x b

0 A S x b

x 0S S 0

                                                    (1.21) 

The Compensation based solution of (1.20) (or (1.21)) can proceed as follows at each solution 

time-point. First it is necessary to solve with switches open (cutting the wires) by using 

N1 N3

N2



24 

 

 

    
     =
    
        

1 1 1

2 2 2

3

A 0 0 x b

0 A 0 x b

0 0 1 i 0

                                                    (1.22) 

In this way the unknowns 
1x  and 

2x  are found before compensation and =3 3x i  for the wire 

currents (zero in this solution stage). From the found vectors 
1x  and 

2x  it is possible to directly 

extract the network Thevenin voltages ˆ th1
v  and ˆ th2

v , respectively. Then using current injection 

method in 
1b  and 

2b  for each network, it is possible to derive the Thevenin impedances. In the 

following equations the double-primed vectors signify the current injection method for finding the 

Thevenin impedances ˆ
th1

Z  and  ˆ
th2

Z  (column-by-column process):   

 =

 =

1 1 1

2 2 2

A x b

A x b
                                                              (1.23) 

At this stage it is possible to solve for the wire currents 3i  with 

ˆ ˆ ˆ ˆth th th th
 + = −
 1 2 1 23Z Z i v v                                                   (1.24) 

The above relation is illustrated in Figure 1.15 and it is assumed that the wire currents are oriented 

from left to right. It is also assumed that the coefficient matrix resulting in (1.24) is not singular. 

 

Figure 1.15 Compensation based equivalent of network in Figure 1.14. 

After solving for 3i  in (1.24), it is now possible to solve for the contributions ( 1x  and 2x ) of 3i  

on N1 and N2: 





= −

= −

1 1 k 3

2 2 m 3

A x S i

A x S i
                                                            (1.25) 

Finally, we can apply superposition (compensation) to find 

+

+

+

+          
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



= +

= +

1 1 1

2 2 2

x x x

x x x
                                                             (1.26) 

The above procedure must be applied at each solution time-point. Any number of networks can be 

used and interconnected using wires (or impedances). Equations (1.23) and (1.25) can be solved in 

parallel. If there is any topological change in N1 or/and N2, it is necessary to recalculate ˆ
th1

Z  or/and  

ˆ
th2

Z . This is an important limitation and can become computationally very intensive with power-

electronics based systems. 

The above solution steps can be explained and performed differently. Equation (1.21) can be 

rewritten as follows 

ˆ

ˆ

ˆ

    
    

=     
          

11 1

2 2 2

3 3 3

b1 0 S x

0 1 S x b

0 0 S i b

                                                      (1.27) 

with 

1−=1 1 kS A S                                                               (1.28) 

1ˆ −=1 1 1b A b                                                                (1.29) 

1−=2 2 mS A S                                                               (1.30) 
1ˆ −=2 2 2b A b                                                               (1.31) 

T T= +3 k 1 m 2S S S S S                                                         (1.32) 

ˆ ˆ ˆT T= +3 k 1 m 2b S b S b                                                         (1.33) 

From (1.24) and (1.32) it is seen that 

ˆ ˆ
th th= +

1 23S Z Z                                                          (1.34) 

From (1.24) and (1.33) it is apparent that  

ˆ ˆ ˆth th= −
1 23b v v                                                           (1.35) 

because ˆ
1b  is actually 

1x  in (1.22). The same applies for ˆ
2b  and 

2x . It is noted that the coefficients 

of T
mS  are negative (ideal switch equations) and that explains the corresponding negative sign in 

(1.35).  Finally, it is clear from (1.27), (1.25) and (1.26) that  

1 1



− − = − + = +1 1 k 3 1 1 1 1x A S i A b x x                                               (1.36) 
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1 1



− − = − + = +2 2 m 3 2 2 2 2x A S i A b x x                                              (1.37) 

The approach derived with (1.27) is actually called MATE (Multi Area Thevenin Equivalent) 

[40][41]. As proven above with (1.36) and (1.37), and contrary to what is written in the literature, 

MATE is not a new theory or approach, it is in fact the Compensation method that was available 

in the literature much before! 

The formulation of (1.20) indicates that if it is possible to find the bordered-block-diagonal matrix 

of a network, then it is possible to solve it in parallel even when distributed-parameter lines are not 

available. That solution uses the Compensation method (or MATE). Any number of networks can 

be separated (cut) and solved. The above illustration was made for two networks N1 and N2. 

But there is a fundamental flaw in this approach. In a typical network, the networks N1 and N2 

may encounter topological changes and require recalculating 3S  in (1.34), which is 

computationally inefficient and even catastrophic if repetitive switching occurs due to power-

electronics converters, for example. Moreover, all of the above is assuming linear networks and 

becomes inapplicable for practical problems with nonlinearities. It is possible in theory to extend 

the above Compensation based network tearing to include nonlinearities, but that may result into 

significant computational inefficiencies and annihilate the gains due to parallelization.  

As a final demonstration, one can notice that the presentation given for (1.27) is simply the 

symbolic solution of (1.21). The steps are written here for convenience: 

ˆ=3 3 3S i b                                                                  (1.38) 

ˆ= − +1 1 3 1x S i b                                                              (1.39) 

ˆ= − +2 2 3 2x S i b                                                             (1.40) 

The solution order is 

1. solve in parallel: equation (1.29) for ˆ
1b  and (1.31) for ˆ

2b    

2. solve for ˆ
3b  with (1.35) (the two parts of this equations can be calculated in parallel and 

then combined).  

3. use (1.38) to find 3i   

4. solve (1.39) in parallel with (1.40).  
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In reality it is not possible to implement symbolic matrix inversions in actual software codes, as 

shown in (1.28)-(1.31). This is obvious for power system software developers. In fact LU 

decomposition must be used for solving (1.21) by re-writing it as follows 

13

23

31 32 33 33

       
       

=
       
              

1 1 1 1

2 2 2 2

3 3

L 0 0 U 0 U x b

0 L 0 0 U U x b

L L L 0 0 U x b

                                        (1.41) 

where the coupling matrices in L  and U  are resulting from the interconnecting switch equations. 

It is noted that 33L  and 33U  are not zero even if  =dS 0  (ideal wires). The purpose here is to 

implement the solution of (1.41) in parallel. This can be done by realizing that  

31 32 33

     
     

=
     
          

1 1 1

2 2 2

3 3

L 0 0 y b

0 L 0 y b

L L L y b

                                                (1.42) 

The solutions of 1y  and  2y  are found in parallel. The solution of  3y  can be found from 

33 31 32= − −3 3 1 2L y b L y L y                                                   (1.43) 

At this stage we have 

13

23

33

     
     

=
     
          

1 1 1

2 2 2

3 3

U 0 U x y

0 U U x y

0 0 U x y

                                                (1.44) 

The solution of 3x  is found from the last set of equations in (1.44): 

33 =3 3U x y                                                            (1.45) 

Once 3x  is known,  it is possible to solve for 1x  and  2x  in parallel since 

 
13

23

= −

= −

1 1 1 3

2 2 2 3

U x y U x

U x y U x
                                                    (1.46) 

This idea of parallelization outlined above is also said to be based on diakoptics [42][43]. It has 

been discussed in [42][43] (also other publications) and recently re-used also in [19]. It is the same 

idea as in (1.38)-(1.40). 

Contrary to what is said in [19] it is obvious that LU decomposition was and must be used to solve 

(1.21). In addition, as it is said in [19], it is not necessary to derive the 3kL  and 3kU  (for 1,...3k =  

in this case) matrices explicitly, since these matrices can be found directly from a sparse matrix 
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solver. Moreover, it is again emphasized that the time-consuming LU decomposition must be 

repeated in the presence of switches and nonlinearities. This important aspect is not considered in 

[42] and it will be even more inefficient with the approach proposed in [19] for finding 3kL  and 

3kU . 

In the above theory, there are no restrictions in the number of interconnected networks. One 

fundamental issue to be automate the derivation of (1.21). Switches can be inserted manually for 

parallel computations, but ideally it should be done automatically. It is possible to use tools like 

METIS to find bordered-block-diagonal matrices (as shown in (1.21)), but there are no 

demonstrations on the capabilities for arbitrary topology networks. The work in [19] uses the trivial 

duplication of a small network and no conclusions can be derived from such work. 

The efficiency of bordered-block-diagonal formulation depends on the contents of the borders. The 

larger borders may require too many operations (see (1.43) and (1.45)-(1.46)). The resulting 

sparsity patterns must be analysed. In conclusion, significant further research is needed before 

applying this approach for practical systems. 

Finally, it has been shown above that the Compensation method is also indirectly related to the 

formulation and solution of (1.21). 

1.5 Sparse Matrices 

Matrices in general have different types and different usage in many scientific fields. Sparse matrix 

is a term used to represent matrices with high number of zeros among its elements. These types of 

matrices appear in many scientific applications such as power systems, thermodynamics and 

different types of physical modelling.  

A typical power grid matrix is typically more than 98% sparse. This means that most elements in 

the matrix are zero. 

Sparse matrices possess specific characteristics that can be exploited to accelerate the solution 

process of very large-scale linear algebra problems. Sparse matrices require less storage memory. 

Using sparse matrices can dramatically improve the computational speed of large-scale linear 
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algebra problems. In fact, it is essential to apply sparse matrices for solving large scale power 

systems in an EMT-type method. 

Several packages are available for solving sparse matrix problems. 

A simple electrical circuit, its sparse matrix (MANA formulation) and its sparsity pattern are shown 

below in Figure 1.16 and Figure 1.17.  

 

Figure 1.16 Small scale circuit with CP transmission line 

    

6 6

6

0.5 10 0 0 0.5 10 1
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0 0.5 2.5 0 0

0.5 10 0 0 1.0016 0
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  − 
 

− 
 −
 
−  
 
 

                             (1.47) 

 

Figure 1.17 Non-zero pattern of matrix for the circuit of Figure 1.16. 
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1.5.1 Sparse Matrix representation 

Sparse matrices can be presented is many different formats depending on the application they are 

used in. Different types of applications have different requirements in terms of ordering of matrix 

elements and representation in memory. One of these presentations is the classical way of matrix 

presentation that is stored in memory as a two-dimensional array. This type is often used in dense 

matrix memory storage and applications. However, adapting such a storage topology results in 

waste of memory resources due to the high number of zeros that will be stored, and the expanding 

of cache segments required for access during solution.  

Other representations exist to reduce memory storage and consider only the non-zero elements in 

the matrix. The following two sections provide details about two sparse matrix representations that 

are often used in circuit analysis. These two storage techniques reduce the size of memory required 

to store sparse matrices.  

1.5.1.1 Compressed Column Format 

The compressed column (CSC) format allows storing a sparse matrix using three single 

dimensional vectors that include only nonzero elements in the sparse matrix and their locations. To 

fully represent each element location three vectors are used. Let the sparse matrix be A , the size 

of the matrix A  is n n  and the number of nonzero elements in A  is nnz .  

Let the three vectors representing A  be PA , iA  and XA ; where: 

PA : 1n+  long integer vector that contains indices of the starting nonzero elements of each column.  

This first element of this vector ( (0)PA ) is zero and the last element ( ( )P nA ) is nnz . 

iA : nnz  long integer vector that stores the row number of each nonzero element in A . 

XA : nnz  long vector that stores the numerical values of all nonzero elements in A  in the same 

sequence they are listed in iA .   

The matrix shown in (1.47) is used herein to illustrate the concept of CSC format. In order to better 

understand the explanation in this section, the non-zero elements of the matrix have been numbered 

in a sequential manner as shown in Table 1.1. 
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                           Table 1.1 Matrix (1.47) nonzero elements order 

Element Number Element 

0 (0,0)A  

1 (3,0)A  

2 (4,0)A  

3 (1,1)A  

4 (2,1)A  

5 (1,2)A  

6 (2,2)A  

7 (0,3)A  

8 (3,3)A  

9 (0,4)A  

10 (0,0)A  

The PA  vector is formed by listing the sequential number of each column’s first nonzero element. 

For example, (2)PA  is the sequential number of the first nonzero element of column 2 which is 

according to Table 1.1 is equal to 4. Hence PA is equal to the vector shown in (1.48).  
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0

3

5

7

9

10

P

 
 
 
 
 
 
 
 
 

A =                                                         (1.48) 

iA  vector is formed by listing the row number of all (1.47) nonzero elements in the same sequence 

they are listed in Table 1.1. For example, (6)iA  is the row number of the sixth element (2,2)A  

which is in this case row number 2. Therefor the vector 
iA  is formed as shown in (1.49).   

0

3

4

1

2

1

2

0

3

0

i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A =                                                          (1.49) 

Vector XA  stores the numerical values of all nonzero elements in matrix (1.47). The ordering of 

elements listed in XA is done in the same sequence as iA . 
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6

6

6

0.5 10

0.5 10

1

0.50205

0.5

0.5

0.5

0.5 10

1.0016

1

X

−

−

−

 
 
−  
 
 
 
 −
 

− 
 
 
 − 
 
 
  

A =                                                  (1.50) 

1.5.1.2 Compressed Row Format 

The compressed row (CSR) format is similar to CSC in terms of methodology, however, the 

sequence of listing the non-zero elements is by rows instead of columns. This format lists the 

numerical values of all non-zero elements in 
XA , the column number (not row as CSC) of all non-

zero elements in iA  and the index of starting nonzero element of each row PA . Equations (1.51) 

to (1.53) provide the CSR presentation of matrix (1.47). 

0

3

5

7

9

10

P

 
 
 
 
 
 
 
 
 

A =                                                          (1.51) 
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0

3

4

1

2

1

2

0

3

0

i

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

A =                                                           (1.52) 

5

5

5

2.5 10

2.5 10

1

1.0266

1
=

1

1

2.5 10

1.0016

1

X

−

−

−

 
 
−  
 
 
 
 −
 

− 
 
 
 − 
 
 
  

A                                                    (1.53) 

The computational performances of the above two sparse matrix representations are similar and 

one can use any one of them to code any sparse solver algorithm. However, it is very crucial when 

using an open source solver to know what representation the solver is expecting as an input, 

otherwise the solution results given by that solver will be wrong. 

1.5.1.3 Solving a Sparse matrix 

Solving a sparse matrix is the same as solving a dense matrix in terms of general steps and topology. 

Both types of matrices need to be factorized to two factors that have similar size as the original 

matrix and differ in structure from each other. These two factors are the upper factor U  and lower 

factor L . Equations (1.54) and (1.55) show the structure of a system of equation before and after 

factorization. 
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 Ax = b                                                                     (1.54) 

       
       
       
       
       
       
             

1,1 1,1 1,2 1,3 1,n 1 1

2,1 2,2 2,2 2,3 2,n 2 2

3,1 3,2 3,3 3,3 3,n 3 3

n,1 n,2 n,3 n,n n,n 5 5

L 0 U U U U x b

L L U U U x b

L L L U U x  = b

L L L L 0 U x b

          (1.55) 

It can be seen from (1.55) that the upper factor ( U ) has nonzero elements only above the diagonal;  

whereas the lower factor ( L ) has nonzero elements under the diagonal line. Solving the system 

shown in (1.55) is done in two steps: Forward and backward substitution. During the forward 

substitution the equation shown in (1.56) is solved. While in the backward substitution the system 

shown in (1.58) is solved. 

     
     
     
     
     
     
         

1,1 1 1

2,1 2,2 2 2

3,1 3,2 3,3 3 3

n,1 n,2 n,3 n,n 5 5

L 0 y b

L L y b

L L L y = b

L L L L y b

                                          (1.56) 

 

 

 

 

Where: 

1,1 1,2 1,3 1,n1 1

2,2 2,3 2,n2 2

3,3 3,n3 3

n,n5 5

U U U Uy x

U U Uy x

U Uy x  

0 Uy x

    
    
    
    =
    
    
        

                                         (1.57) 
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     
     
     
     
     
     
         

1,1 1,2 1,3 1,n 1 1

2,2 2,3 2,n 2 2

3,3 3,n 3 3

n,n 5 5

U U U U x y

U U U x y

U U x = y  

0 U x y

                                         (1.58) 

1.6 Sparse Solvers 

In order to achieve a higher speed of EMT simulation a suitable and efficient solver package must 

be used. Accelerating the performance of any EMT simulation package starts by selecting a solver 

that is in line with the matrix structure of that EMT simulation package. In this section, a brief 

presentation of three sparse solvers is given and supported with different types of examples. These 

sparse solvers are KLU [1], SuperLU [44], and the minimum degree ordering based solver that is 

currently used in EMTP [4]. 

1.6.1 SuperLU 

SuperLU [45][46] is a sparse solver package that is proven to be efficient and reliable when solving 

different types of sparse matrices in different applications such as fluid dynamics, structural 

mechanics, chemical process simulation, circuit simulation, electromagnetic fields and so on [45]. 

The SuperLU package is an open source solver that is available online for download. In order to 

find the solution of a system of equations, SuperLU performs the following steps: 

1. Minimize the number of fill-in elements in matrices L  and U . This step is used to manipulate 

the matrix and permute it in such a way that it reduces the number of non-zero elements in L  

and U factors, and hence reduces overall solution time. SuperLU offers the use of many 

techniques that are integrated inside the package and can reduce fill-in in quick and reliable 

manner without affecting the solution quality or numerical stability [46]. 

2. Once the fill-in ordering is determined, SuperLU runs a symbolic algorithm to define the non-

zero pattern of L  and U factors. This algorithm helps in allocating all fill-ins that are 

introduced in L  and U factors and estimating the size of memory storage the problem in hand 

requires before even starting the numerical step [45].  The nonzero pattern found in this step is 

used during the numerical factorization in order to find the numerical coefficients of L  and U
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factors. All other elements that are flagged as non-zero in this step will not be calculated and 

will be treated as zeros. 

3. Allocate all memory required for factorization work and for storing L  and U matrices. 

SuperLU package uses the compressed row storage CRS format to store sparse matrices as seen 

in section 1.5.1.2.  

4. Numerically factorize the matrix A  into L  and U . This step is the most time-consuming step 

among all other tasks and operations in the package. It starts by running a symbolic analysis on 

the permuted A  matrix (permuted in step 1) and determining the location of all Supernodes 

(explained below) [45].  

The use of Supernodes allows to create dense nodes (regions) in the matrix in order to use 

packages such as BLAS level 2 that is suitable for dense matrices. Supernodes have many types 

and take many forms. Figure 1.18 shows different types of Supernodes that may be encountered 

in a matrix. 

The dense nodes shown in Figure 1.18 represent Supernodes that may occur in different 

formats. The Supersnode T1 shown in Figure 1.18 - (a) illustrates a dense matrix that is full 

(with all elements in the Supernode being nonzero) and nonzero elements along the columns 

of L  and rows of U . T2   shown in Figure 1.18 - (b) illustrates a Supernode that has a dense 

L  matrix along the diagonal that is full and non-zero elements scattered in the off-diagonal 

columns of L . However, no non-zero elements exist in the rows associated with U . T3    

shown in Figure 1.18-(c) illustrates a Supernode that has a dense L  matrix along the diagonal 

that is full with non-zero elements scattered in the off-diagonal columns of  L  and a full U  

block with no off-diagonal elements along its rows. The last type of Supernode T4  is shown 

in Figure 1.18 - (d) where full L  and U  blocks can be found along the diagonal. The L  has 

non-zero elements scattered along its columns and a stretch of non-zero elements scattered in 

the columns associated with the full part of U  [45][46].  
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Figure 1.18 Types of Supernodes T1, T2, T3 and T4 respectively 

The following example [46] provides a better understanding of the concept of Supernodes. 

Let us take the matrix A  shown in Figure 1.19 in its initial form without any ordering 

 

Figure 1.19 SuperLU matrix example 
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According to the SuperLU steps mentioned above, the matrix undergoes symbolic analysis 

that applies a fill-in reduction ordering and it determines the L  and U non-zero patterns. 

Figure 1.20 and Figure 1.21 show the L  and U  matrices and their non-zeros pattern. The 

Supernode allocation uses a special matrix that is called the filled matrix, to find all possible 

Supernodes. According to [46], the filled matrix can be found by (1.59). 

-F L U I= +                                                        (1.59) 

where I  is an identity matrix of size n n  subtracted from L  and U in order to remove all 

elements along the diagonal. According to the type of Supernode selected (T1, T2, T3 or T4), 

the SuperLU algorithm finds all possible Supernodes in the matrix F . Figure 1.20 and Figure 

1.21 below show the sparsity pattern of L  and U of matrix A , Figure 1.22 shows the sparsity 

pattern of matrix F , and Figure 1.23 shows all Supernodes of type  T1 that were found in the 

matrix F . 

           

               Figure 1.20 SuperLU Example L  matrix (symbolic version) 

            

           Figure 1.21 SuperLU Example U  matrix (symbolic version) 
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Figure 1.22 L + U - I of matrix A (symbolic) 

 

Figure 1.23 T1 Supernodes of matrix A 

Based on the type of Supernode selected, SuperLU runs a search technique that explores all 

possible Supernodes that fits all criteria of the selected Supernode type. In Figure 1.23 for 

example, the Supernode that was selected is T1 and as can be seen in the figure there are five 

Supernodes found in the matrix. The first Supernode is a 2 2  node with scattered non-zero 

elements along the columns and rows corresponding to this full Supernode. Once the 

Supernodes are determined, they are treated as dense matrices for storage and computation. 

SuperLU uses different types of left looking algorithms that factors the matrix A  into L  and 

U . Depending on the user selection or the degree of Supernodes density, different types of 

standard dense matrix-vector multiplication kernels are used such as level 2 BLAS and level 3 

BLAS. This algorithm treats the Supernode and its corresponding columns/rows as single 
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elements and a call to BLAS algorithm will expand these elements into their actual structure 

and perform the appropriate computation on them to find the actual L  and U . This algorithm 

is proven to be very efficient in factorizing dense matrices and sparse matrices with less than 

90% sparsity [46]. 

5. The last step of SuperLU solution is performing a backward and forward substitution to find 

the results. This step uses the traditional substitution techniques that is based on the L  and U  

factors found in step 4 and the right hand vector of the system.  

 

  



42 

 

 

1.6.2 KLU 

KLU [1] is a sparse matrix solver that employs hybrid ordering mechanisms and elegant 

factorization to solve any sparse system. It has been tested on several simulation packages and 

proven to be a fast and reliable solver especially when solving circuit analysis problems. It is based 

on Gilbert-Peierls’ algorithm [47] with partial pivoting that aims at computing the nonzero pattern 

of the L̂i  and Û i  factors and the numerical values in a total time of ))(( LUflopsO . This technique 

consists of two major stages, the symbolic analysis and the numerical analysis. Throughout this 

thesis all the cases listed herein have only blocks along the diagonal without any off diagonal 

nonzero elements. This is mainly due to the fact that all subnetworks separated by a delay-based 

transmission line are strongly connected and the strongly connected subnetworks are decoupled 

from each other. This means that the matrix A  in its block triangular format (BTF) has N number 

of blocks along its diagonal as can be seen in (1.60):  

ˆ 0 0 0 0

ˆ 0 0 0

ˆ ˆ 0 0

ˆ 0

ˆ

1

2

3

4

5

A

0 A

A= 0 0 A

0 0 0 A

0 0 0 0 A

 
 
 
 
 
 
 
 
 

                                                    (1.60) 

The KLU solver will be applied to each diagonal block Â i  separately and they can be solved in 

parallel due to the fact that their solution is independent of each other.  

1.6.2.1 KLU Symbolic Analysis 

During the symbolic analysis, block Â i  will be analyzed to find its nonzero pattern. This analysis 

is becoming more and more challenging with the integration of partial pivoting in the sparse solver. 

The nonzero pattern of L̂i  and Û i  factors is hard to predict with a dynamic pivoting order that 

keeps changing and for that reason this symbolic stage is being computed and updated every time 

a pivot for Â i  is updated.  

The Gilbert-Peierls’ algorithm uses graph theory to calculate the nonzero pattern of L̂i  and Û i  
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[47] which is based on finding the reachability of any nonzero element of Â i . The reachability 

calculation starts by assuming the lower factor L̂i  to be equal to a unity matrix and then starts 

processing the block Â i  in sequence order column by column. As seen in Figure 1.24, if block Â i

column k  (shown at the right side of Figure 1.24) has a nonzero element at row j  and factor L̂i  

has a non-zero element at element ( , )i j  then the element at row i  of column k  must be non-zero.  

By applying this algorithm, the location of all non-zero elements in L̂i  and Û i  can be determined 

before the numerical step even starts, and the calculation of L̂i  and Û i  elements will be only for 

those nonzero elements found during this symbolic stage. 

 

Figure 1.24 Nonzero pattern of x  when solving Lx=b  

Once the locations of non-zero elements of each column are determined, the non-zero elements 

numerical values are determined as shown in Figure 1.25. 
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Figure 1.25 L̂i  and Û i  non-zero pattern allocation 

The simple circuit example shown in Figure 1.16 is used in section 1.6.2.2 to illustrate KLU 

symbolic analysis in a very detailed manner.  

1.6.2.2 KLU Numerical Analysis 

Once the nonzero pattern is found, a left looking numerical factorization with partial pivoting is 

conducted to calculate the factors L̂i  and Û i  numerical values. The matrix Â i  now becomes: 

ˆ ˆ ˆA L Ui i i=                                                             (1.61) 

In equation (1.61), L̂i  and Û i  contain the upper and lower factors of BTF diagonal blocks 

respectively. It is worth mentioning that KLU solver has two types of factorization, namely Full-

Factorization (KLU-FF) and Re-Factorization (KLU-RF).  

During the KLU-FF, a symbolic analysis is done on the matrix to determine the non-zero pattern 

of  L̂i  and Û i  (as seen in section 1.6.2.1), followed by numerical analysis involves a partial 

pivoting to select the pivot of each column being factorized.  

KLU-RF on the other hand, assumes that the non-zero pattern of L̂i  and Û i  calculated in the 

previous iteration and the pivoting order of the previous iterations are still valid and can be used. 

The KLU-RF function only updates the numerical values of Û i  and L̂i  based on the changes to 

block Â i .      
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In order to fully understand both the symbolic analysis of KLU and KLU-FF, the system of 

equations of Figure 1.16 circuit is written for a given operating condition of Rn2. This system was 

built using the MANA approach discussed earlier. 

    

6 6
1

2

3

6
4

5

-2.641830.5 10 0 0 0.5 10 1

3.467190 0.50205 0.5 0 0

187794.20 0.5 2.5 0 0

0.014970.5 10 0 0 1.0016 0

01 0 0 0 0

x

x

x

x

x

− −

−

  −     
     

−     
     =−
     
−      
        

                       (1.62) 

After running BTF symbolic analysis, the vector shown in (1.63) was calculated to be the row 

permutation vector that is used to sort the rows to obtain BTF form. 

1

4

5

2

3

P

 
 
 
 =
 
 
  

                                                                               (1.63) 

This vector determines the location of each row in the permuted matrix. For example, (2) 4P =  

means that row 4 in A  will be row 2 in the Â . Hence the row permutation matrix of A  is shown 

in (1.64). The permutation matrix (1.64) is formed by reallocating the diagonal elements of a given 

identity matrix column to the row number indicated in (1.63). For example, second column’s 

diagonal element is moved to the forth row since  (2) 4P = . 

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

A =P

 
 
 
 
 
 
  

                                                                (1.64) 

The column permutation is the transposed version of the matrix shown in (1.64) as can be seen in 

(1.65) and (1.66). 

A A
T

C P=                                                                            (1.65) 
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1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

A =C

 
 
 
 
 
 
  

                                                                 (1.66) 

The following equation shows the permuted version of system (1.62): 

 Â=A AAP C                                                                   (1.67) 

6 6

6

0.5 10 0.5 10 1 0 0

0.5 10 1.0016 0 0 0

ˆ 1 0 0 0 0

0 0 0 0.50205 0.5

0 0 0 0.5 2.5

− −

−

  − 
 
−  
 
 

− 
 − 

A=                                          (1.68) 

The matrix given in (1.68) is factorized and solved below with pivot tolerance equal to 0.01 and 

all pivots elements are initially assumed to be along the diagonal of Â  as shown in (1.69). 

1

2

3

4

5

PPivot

 
 
 
 =
 
 
  

                                                                              (1.69) 

PivotP  shown in (1.69) indicates that the pivot of column 1 is located at row 1, the pivot of column 

2 is located at row 2, the pivot of column 3 is located at row 3 and so on. The factorization starts 

by assuming that both L̂  and Û  are equal to an identity matrix as shown in (1.70) and (1.71) 

1 0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

L                                                                   (1.70) 
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1 0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U                                                                   (1.71) 

Since KLU is a left looking solver and it factorize the matrix Â  one column at a time, the 

factorization process is done in the following five steps: 

1. Factorizing the 1st column of matrix (1.68): 

The factorizing process starts by finding the location of non-zero elements in 1L̂  and 1Û  

as follow: 

6

6

1 0 0 0 0 0.5 10

0 1 0 0 0 0.5 10

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

−

−

  
  
−   
   =
  
  
     

 

Figure 1.26 Analysis of 1st column of matrix (1.68) 

In the above symbolic analysis, the launch of the maximum reach from row 1, 2 and 3 of 

the right hand side was not able to find any non-zero elements below the diagonal elements, 

and was not able to introduce any non-zero elements into 1L̂  and 1Û  other than the already 

non-zero valued elements in row 1, 2 and 3. Hence, the location of non-zero elements of  

1L̂   and 1Û   are shown in (1.72) and (1.73): 

1

0 0 0 0

1 0 0 0

ˆ 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 

 
 = 
 
 
  

L                                                                  (1.72) 
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1

0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

U

 
 
 
 =
 
 
  

                                                                  (1.73) 

The calculation of the numerical values of 1L̂  and 1Û  is done by solving the system 

shown in (1.74). 

6
1

6
2

3

4

5

1 0 0 0 0 0.5 10

0 1 0 0 0 0.5 10

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

x

x

x

x

x

−

−

    
   
−    
    =
   
   
        

                                        (1.74) 

The symbolic analysis of column 1 above found that only 
1x ,

2x  and 
3x are non-zero 

elements, hence the system of equations in (1.74) is only solved for 
1x ,

2x  and 
3x . This 

solution results in 6

1 0.5 10x −=  , 6

2 0.5 10x −= −   and 
3 1x = .  

Applying partial pivoting on the solution of (1.74) starts by finding the largest element in 

the x  vector and comparing it with the element stored at the pivot location. Using the 

assumption used at the beginning of this example, the assumed pivot is stored at element 

(1)x  and the largest element in x  is found to be (3)x . Testing the pivot criteria on both 

pivot candidates ( (1)x  and (3)x ) as shown in (1.75) it turns out that the pivot of column 1 

must be replaced with the element of row 3.  

 (3) (1)x >xp                                                    (1.75) 

This change in pivoting order updates PivotP  as shown in (1.76) and the rows of system of 

equations shown in (1.68) are permuted according to the new PivotP   as shown in (1.77). 
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3

2

1

4

5

PPivot

 
 
 
 =
 
 
  

                                                                          (1.76) 

 

6

6 6

1 0 0 0 0

0.5 10 1.0016 0 0 0

ˆ 0.5 10 0.5 10 1 0 0

0 0 0 0.50205 0.5

0 0 0 0.5 2.5

−

− −

 
 
− 
 
  − 
 

− 
 − 

A=                                     (1.77) 

Using the formulation in Figure 1.25 1L̂  and 1Û  are calculated to be: 

6

6

1

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−

−

 
 
− 
 
 = 
 
 
  

L                                            (1.78) 

1

1 0 0 0 0

0 1 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U                                                  (1.79) 

2. Factorizing the 2nd column of matrix (1.68): 

6

0 0 0 0 0

1 0 0 0 1.0016

0 1 0 0 0.5 10

0 0 0 1 0 0

0 0 0 0 1 0

−

   
   

   
   = − 
   
   
      

 

Figure 1.27 Analysis of 2nd column of matrix (1.68) 
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The launch of maximum reach from row 2 and 3 of the right-hand side was not able to find 

any non-zero element below the diagonal of the second column and hence it was not able 

to add any fill-in. Hence, the non-zero elements of 2L̂  and 2Û  are: 

2

0 0 0 0

0 0 0

ˆ 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 = 
 
 
  

L                                                                   (1.80) 

2

0 0 0 0

0 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 


 
 =
 
 
  

U                                                                   (1.81) 

In order to find the numerical values of 2L̂  and 2Û  the system shown in (1.82) is solved 

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 1.0016

0.5 10 0 1 0 0 0.5 10

0 0 0 1 0 0

0 0 0 0 1 0

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    
    
        

                               (1.82) 

The above system of equations in (1.82) is only solved for 2x  and 3x . This solution results 

in 2 1.001575x =  and 6

3 0.5 10x −= −  . Applying partial pivoting on the results of (1.82) it 

can be seen that element 2x  is larger than all other elements in x , hence the existing pivot 

is valid. 

 Using the formulation shown in Figure 1.25,  2L̂  and 2Û  are calculated to be: 



51 

 

 

6

6 6

2

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0 1

−

− −

 
 
− 
 
 =  − 
 
 
  

L                               (1.83) 

2

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U                                             (1.84) 

3. Factorizing the 3rd column of matrix (1.68): 

0 0 0 0 0

0 0 0 0

1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

   
   
 
   
   = 
   
   
      

 

Figure 1.28 Analysis of 3rd column of matrix (1.68) 

In the above analysis, the launch of the maximum reach from row 3 wasn’t able to find any 

non-zero elements below the diagonal element of the 3rd column. Hence, the non-zero 

elements of 3L̂  and 3Û  are: 

3

0 0 0 0

0 0 0

ˆ 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 =   
 
 
  

L                                                          (1.85) 
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3

0 0 0

0 0 0 0

ˆ 0 0 0 0

0 0 0 1 0

0 0 0 0 1

U

  
 


 
 = 
 
 
  

                                                               (1.86) 

In order to find the numerical values of 3L̂  and 3Û  the system shown in (1.87) is solved. 

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 0

0.5 10 0.4992223 10 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    
    
        

                  (1.87) 

The above system of equations in (1.87) is only solved for 1x , 2x  and 3x . This solution 

results in 3 1x = . Applying partial pivoting on the results of (1.87) it can be seen that 

element 3x  is larger than all other elements in x  hence the existing pivot is valid. 

Using the formulation shown in Figure 1.25 3L̂  and 3Û  are calculated to be: 

6

6 6

3

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0 1

−

− −

 
 
− 
 
 =  − 
 
 
  

L                                  (1.88) 

3

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 =
 
 
  

U                                              (1.89) 
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4. Factorizing the 4th column of matrix (1.68):   

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 1 0 0.5021

0 0 0 0 1 0.5

   
   
 
   
   =  
   
   
   −   

 

Figure 1.29 Analysis of 4th column of matrix (1.68) 

In the above analysis, the launch of the maximum reach from row 4 and 5 failed to find any 

non-zero elements below the diagonal elements and was not able to introduce any other 

non-zero elements into 4L̂ . Hence, the non-zero elements of 4L̂  and 4Û  are: 

4

0 0 0 0

0 0 0

ˆ 0 0

0 0 0 0

0 0 0 1

 
 
 
 
 =   
 

 
  

L                                                                  (1.90) 

4

0 0

0 0 0

ˆ 0 0 0 0

0 0 0 0

0 0 0 0 1

   
 

 
 
 = 
 

 
  

U                                                                   (1.91) 

In order to find the numerical values of 4L̂  and 4Û  the system shown in (1.92) is solved. 

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 0

0.5 10 0.4992223 10 1 0 0 0

0 0 0 1 0 0.50205

0 0 0 0 1 0.5

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    
    
    −    

                (1.92) 

The symbolic analysis of this column found that only elements 4x  and 5x  are non-zero, 
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hence the above system of equations in (1.92) is only solved for 4x  and 5x  only. This 

solution results in 4 1.0266x =  and 5 1x = − . Applying partial pivoting on the results of 

(1.92) it can be seen that element 4x  is larger than all other elements in x  hence the existing 

pivot is valid. 

Using the formulation shown in Figure 1.25,  4L̂  and 4Û  are calculated to be: 

6

6 6

4

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0.9959034 1

−

− −

 
 
− 
 
 =  − 
 
 
 − 

L                            (1.93) 

4

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 0.50205673 0

0 0 0 0 1

 
 
 
 =
 
 
  

U                                          (1.94) 

5. Factorizing the 5th column of matrix (1.68): 

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0 0.5

0 0 0 1 0.5

   
   
 
   
   =  
   

 −   
      

 

Figure 1.30 Analysis of 5th column of matrix (1.68) 

The above symbolic analysis was able to determine that rows 4 and 5 of column 5 of 5L̂  

and 5Û  will be non-zero entries. Hence, the non-zero elements of 5L̂  and 5Û  are 
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5

0 0 0 0

0 0 0

ˆ 0 0

0 0 0 0

0 0 0

 
 
 
 
 =   
 

 
   

L                                                                  (1.95) 

5

0 0

0 0 0

ˆ 0 0 0 0

0 0 0

0 0 0 0

   
 

 
 
 = 
 

  
  

U                                                                  (1.96) 

In order to find the numerical values of 5L̂  and 5Û  the system shown in (1.97) is solved. 

1

6

2

6 6

3

4

5

1 0 0 0 0 0

0.5 10 1 0 0 0 0

0.5 10 0.4992223 10 1 0 0 0

0 0 0 1 0 0.5

0 0 0 0.9959034 1 2.5

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    

−    
    −    

                    (1.97) 

Using the symbolic analysis above it was found that only elements 4x  and 5x  are non-

zero; hence, the above system of equations in (1.97) is solved for these two elements only. 

This solution results in the following x  vector. 

1

2

3

4

5

0

0

0

0.5

2.0020483

x

x

x

x

x

   
   
   
   =
   

−   
     

                                                       (1.98) 

Applying partial pivoting on the results of (1.98) it can be seen that element 5x  is larger 

than all other elements in x , hence the existing pivot is valid. 

Using the formulation shown in figure 4, 5L̂  and 5Û  are calculated to be: 
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6

6 6

5

1 0 0 0 0

0.5 10 1 0 0 0

ˆ 0.5 10 0.4992223 10 1 0 0

0 0 0 1 0

0 0 0 0.9959034 1

−

− −

 
 
− 
 
 =  − 
 
 
 − 

L                          (1.99) 

5

1 0 0 0 0

0 1.001575 0 0 0

ˆ 0 0 1 0 0

0 0 0 0.50205673 0.5

0 0 0 0 2.0020483

 
 
 
 =
 

− 
  

U                              (1.100) 

In order to verify the above factorization, one can multiply L̂  and Û  to obtain Â . 

6

6 6

1 0 0 0 0

0.5 10 1.0016 0 0 0

ˆ ˆ 0.5 10 0.5 10 1 0 0

0 0 0 0.50205 0.5

0 0 0 0.5 2.5

−

− −

 
 
− 
 
 =  − 
 

− 
 − 

LU                                    (1.101) 

The second step of the numerical analysis stage is the solution step that performs forward and 

backward substitution in order to obtain the results of vector x̂ [1]. This step is summarized below 

for the above example: 

1

6

2

6 6

3

4

5

1 0 0 0 0 187785.9

0.5 10 1.0016 0 0 0 3.471719

0.5 10 0.5 10 1 0 0 -2.64183

0 0 0 0.50205 0.5 0.002821

0 0 0 0.5 2.5 0

x

x

x

x

x

−

− −

    
    

− 
    
    = − 
    

−     
    −    

                   (1.102) 

1

2

3

4

5

187785.9

3.471719

ˆ ˆ -2.64183

0.002821

0

x

x

x

x

x

   
   
   
   =
   
   
     

LU                                                    (1.103) 
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1

6

2

6 6

3

4

5

1 0 0 0 0 187785.9

0.5 10 1 0 0 0 3.471719

0.5 10 0.4992223 10 1 0 0 -2.64183

0 0 0 1 0 0.002821

0 0 0 0.9959034 1 0

y

y

y

y

y

−

− −

    
    

− 
    
     = − 
    
    
    −    

              (1.104) 

Where 

1 1

2 2

3 3

4 4

5 5

1 0 0 0 0

0 1.001575 0 0 0

0 0 1 0 0

0 0 0 0.50205673 0.5

0 0 0 0 2.0020483

y x

y x

y x

y x

y x

    
    
    
    =
    

−    
        

                            (1.105) 

The solution of equation (1.105) results in: 

5
1

2

3

4

5

1.8779 10

3.5656

2.7357

0.0028

0.0028

y

y

y

y

y

   
  
  
   = −
  
  
     

                                                   (1.106) 

Substituting equation (1.106) in (1.105) yields to the following equation: 

5
1

2

3

4

5

1 0 0 0 0 1.8779 10

0 1.001575 0 0 0 3.5656

0 0 1 0 0 2.7357

0 0 0 0.50205673 0.5 0.0028

0 0 0 0 2.0020483 0.0028

x

x

x

x

x

    
   
   
    = −
   

−    
        

      (1.107) 

5
1

2

3

4

5

1.87785 10

3.56000

-2.7357

0.0070

0.0014

x

x

x

x

x

   
  
  
   =
  
  
     

                                                  (1.108) 
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KLU uses a scaling algorithm to scale all elements of L̂  and Û  factors based on a predefined scale. 

This scaling topology helps reduces the size of numbers used throughout the calculation and 

increases accuracy. However, throughout this research project it was found that the scaling 

algorithm did not add much advantages for the selected applications, but it rather increased 

computation time and code complexity with no valid reason.  

1.6.3 EMTP-MDO solver 

From the above two sections on SuperLU and KLU, it can be noticed that these two solvers have 

two types of matrix permutations, namely fill-in reduction permutation and structural permutation. 

The first type of permutation is specialized in reducing the fill-in elements in L  and U  factors,  

hence reduces the computation time for factorization and substitution steps. The other type of 

permutation is specialized in permuting the structure of A  in order to allow for some degree of 

parallelization. For example, in the case of BTF permutation, in context of this thesis this 

permutation decouples all strongly connected regions of the matrix forming multiple submatrices 

that are fully independent of each other. This approach allows numerical steps to work on different 

submatrices in parallel and assign each or a group of submatrices to a specific processor to reduce 

computation time [48].  

Unlike SuperLU and KLU, EMTP-MDO [4] has only one permutation that is the fill-in reduction 

permutation. This permutation is based on the minimum degree ordering technique. The minimum 

degree ordering is a generic technique works on reducing the fill-in of L   and U  by re-ordering 

the matrix rows and columns based on different nodes connectivity. Various minimum degree 

algorithms exist in the literature such as basic minimum degree (which is used in EMTP-MDO), 

approximate minimum degree (AMD) [49][50] and column approximate degree (COLAMD) 

[51][52]. It was proven in [1] that AMD gives the best performance for circuits matrices. AMD 

finds a permutation vector P  to reduce the fill-ins in Cholesky factorization and apply it on the 

matrix A  as follow: PAP
T

. AMD assumes no numerical pivoting within its scope and all its 

ordering is purely symbolic. COLAMD on the other hands produces a column permutation vector 

Q  to reduce the fill-in of L  and U  and it applies it on matrix A  as follow: T
Q AQ . 

The basic minimum degree ordering is based on selecting a node with minimum number of 

connected edges and factorizes the column or row that corresponds to that node [29]. This 
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technique performs a symbolic elimination on the non-zero structure of the system. During this 

stage, a pivot element is chosen from those un-eliminated diagonal entries. The symbolic 

elimination results in a permutation array that is used to permute the system main matrix A  into 

the pivoting order found during this stage. The permuted A  matrix is solved in three steps, 

symbolic factorization, numerical factorization and forward-backward substitution.  

During the symbolic factorization, the nonzero structure of the rows of L  and U  factors is 

determined based on the structure of the permuted matrix A . Once the nonzero pattern of L  and 

U  is found, the numerical values of all L  and U  coefficients are calculated. The last step in the 

solution stage is to perform a backward and forward substitution to find the solution of x  based on 

the right hand side b  and using the L  and U  factors generated in the first two steps.   

Therefore, the application of parallel computation with the EMTP-MDO solver is not feasible due 

to the fact that the minimum degree ordering technique does not permute the matrix into any kind 

of block diagonal format but rather reduces the fill-in of L  and U  factors. Even if a structural 

permutation technique is applied to obtain the BTF form of A , the numerical solver has to be re-

coded or changed to adapt to data structure needed by the added permutation.  

The following example illustrates how minimum degree ordering technique works to find the best 

permutation topology that contributes to a maximum reduction of fill-ins. The system of equations 

shown in (1.62) is used herein.  

In order to find the minimum degree ordering of the matrix shown in (1.62) one can use an 

elimination graph that is basically an undirected graph of the matrix A , that is 

( , )G V E=                                                            (1.109) 

Where, G  is the undirected graph of the matrix shown in (1.62), V represents graph’s G  nodes 

and E  is the edges between different nodes in G . The elimination graph as can be seen in Figure 

1.31 has n  vertices, where n  is the size of matrix A , and each vertex represents a column/row. 

The elimination graph can be established by adding a connection between any vertex with all other 

vertices that are adjacent to it. For example, vertex 1 is adjacent to vertices 4 and 5 through elements 

(0,3)A  and (0,4)A .     
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The minimum degree ordering technique starts by eliminating the node with minimum weight, 

which is the node with the least number of connections or the minimum number of adjacent nodes. 

In case of multiple nodes having similar weight, the selected node is chosen randomly. At start, the 

node weight is evaluated as shown in Table 1.2. This table shows the weight of nodes in the 

elimination graph shown in Figure 1.31. Since this is a small case, all nodes order varies between 

one and two and the elimination process is very simple and straightforward. The first node to be 

eliminated will be node 3 and the graph becomes as shown in Figure 1.32. The nodes are evaluated 

again and the node with the minimum weight is eliminated and the remaining nodes order is 

reevaluated once again. This process in repeated until the graph’s last node is eliminated. Figure 

1.33 to Figure 1.35 show the changes in elimination graph. In [49] a more complex example is 

given where the weight of the nodes changes during the elimination process and the tracking and 

storing of all new established edges becomes challenging. Larger graphs use a modified and 

simpler way of handling the nodes elimination process. This approach is based on creating Quotien 

graphs of the matrix as shown in [49].   

 

 

Figure 1.31 Matrix A  elimination graph 
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                                     Table 1.2 Elimination graph nodes weight 

Node weight 

1 2 

2 1 

3 1 

4 1 

5 1 

 

 

Figure 1.32 1st elimination step of matrix A  graph 

 

Figure 1.33 2nd elimination step of matrix A  graph 
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Figure 1.34 3rd elimination step of matrix A  graph 

 

Figure 1.35 4th elimination step of matrix A  graph 

1.6.4 Threading 

Different parallel algorithms have been proposed in order to apply parallel computation on EMT 

simulations in different real-time simulation tools [16]-[18] and in off-line applications [5][15][53]. 

Most of these proposed algorithms are based on some user intervention and/or user defined network 

partitioning as in [19][27] where the user has to define the location where the network can be 

partitioned, or using external packages to link all subnetworks as in [15]. Such partitioning 

technique requires the user to have full knowledge of the system in order to make an informative 

decision on the best partitioning location that guarantees the highest computation gain. Such 

decisions become very complicated for large power systems. Other proposed parallel techniques 

are based on the use of graphical processing units GPU [54]. This approach efficiency decreases 

with the increased size of the power network being analyzed and makes it not suitable for handling 

practical problems. Problems arise when repetitive matrix factorizations are needed.  

In this project, the threading implementation is meant to be automated and the program will be 

self-sufficient to determine the feasibility of threading and assigning the location of threading and 

task distribution. The threading part will be done on an already existed sparse solver (KLU) and it 

will be mainly based on two threading techniques, the OpenMP and C++11 threading. 
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1.6.4.1 OpenMP 

OpenMP is a thread programming tool used in the implementation of parallel processing [55] in 

Windows computing environment. It is a high-level threading technique that requires the user to 

define different segments of the code where parallel processing is required using one of OpenMP 

pragma notations. The compiler will launch, control, synchronize and terminate threads without 

much extra effort to be made by the user. Using the OpenMP implementation requires minimum 

changes to the sequential code as opposed to other threading techniques.  

In KLU the symbolic analysis is done in a pure sequential fashion. However, when it comes to 

numerical analysis parallelizing the factorization and the forward-backward substitution is 

essential to convert the KLU code to a parallel solver given that the network that is being solved 

can be solved in parallel or has at least one delay-based line in it. Parallelizing the factorization 

process was done by surrounding the factorization loop that factorizes all blocks of BTF matrix 

with a pragma bracket that will guarantee a parallel execution of that loop, and in a similar manner 

the forward-backward substitution can be parallelized. The assignment of each bock to a specific 

thread requires defining a special mapping that is given to OpenMP before starting the parallel 

segment. In addition, distinguishing between thread specific variables and threads shared variables 

is critical to avoid any overlap between different threads and to avoid any kind of race conditions 

during OpenMP threads synchronization. 

In the OpenMP parallel version of sparse solver, each thread has a set of private variables that are 

exclusive for each thread and can be accessed only by the thread that owns them. However, there 

are a set of variables mainly used for statistical purposes that are common between all threads such 

as the number of non-zero elements in L and U.   

Given that the KLU algorithm was written in C, the link between the Fortran code based EMT 

simulation package and the KLU solver was done using the ICO_C_BINDING standard [55]. This 

standard allows for interchange calls from Fortran to C and vice versa as will be seen in Chapter 2. 

1.6.4.2 C++11 Threading   

Unlike OpenMP, using C++ multithreading is a low-level implementation which requires the user 

to manage all threads from the moment threads start until the moment threads finish. If a Fortran 



64 

 

 

based EMT simulation package is used, the Fortran-C++ threading lifecycle is divided into 3 

phases: initialization, execution and finalization. 

During the initialization phase, the number of threads required and the matrices A  and b  arrays 

are passed to the initialization function (init()) where the symbolic analysis of BTF and the 

launching of all worker threads (threads that do factorization and triangular solving for an assigned 

block) take place. In order to avoid the overhead of creating threads every time the solver is being 

called, a thread pool is created by storing the thread handles in a global vector for later use. Once 

the threads are created the initialization function is blocked until all worker threads indicate that 

they have started up and ready to execute iterations.   

The signaling mechanism between the initialization function and the worker threads is 

implemented via an atomic integer that gets incremented by one whenever a starting thread is 

initialized and ready, after which the worker threads move into the BLOCKED state waiting for a 

signal to run the numerical analysis code. The C++ main thread performs a busy-wait until all 

threads are ready, then it returns control to FORTRAN. Illustration of this phase is shown in Figure 

1.36. 

 

Figure 1.36 Parallel implementation initialization phase 

During the execution phase, the C++ main thread signals to all worker threads to start executing 

the iteration code, and then waits for all threads to finish running numerical analysis on their 

assigned blocks. The start signaling is implemented via a condition variable and a lock. Once the 

worker threads are notified of the signal (by the operating system), they transition from the 

BLOCKED state into the RUNNING state. 
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Figure 1.37 Parallel implementation Execution 

Worker threads execute the numerical analysis process, and signal to the main thread that they’ve 

finished via a semaphore. After which, the worker threads go back again to the BLOCKED state 

waiting for another start signal. Once all worker threads are finished, the main thread returns 

control to EMT package to prepare for the next time step / iteration.  

The last phase of the process is the finalization phase. It is a phase required to terminate worker 

threads and to release any resources allocated by the C++ subsystem.  It starts by invoking a 

termination function (finish()) from FORTRAN into C++ main thread. The C++ main thread then 

sets an exit flag and awakes the worker threads. The worker threads check the flag and exist.  

This approach was implemented and integrated with EMTP, and different test scenarios were used 

to validate its performance; However, the EMT simulation acceleration obtained with this approach 

was not considerable and the complexity that involved in implementing this parallel design was 

another reason that let to drop it as a viable parallel implementation option of KLU. 
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CHAPTER 2 IMPLEMENTATION OF SPARSE SOLVER PACKAGE 

FOR EMT SIMULATION 

The objective of this chapter is to deliver the implementation of a new sparse matrix solver in an 

EMT-type tool for the solution of electrical network (power) equations. The implementation will 

be performed into EMTP [1] using an available code interface. 

In addition to the power network equations, EMTP uses a separate solver for its control system 

equations [3]. The control system part is not considered in this thesis since its solution procedures 

fall into another category [56]. 

Before proceeding, it is important to recall that the network equations in EMTP are solved using 

the MANA formulation. Also, it is recalled that EMTP uses a fully iterative solver. At each time-

point EMTP solves a set of equations similar to (1.54). It is recalled here for convenience: 

 A x bt t t=                                                             (2.1) 

where the vector bt  contains independent sources and history terms resulting from device model 

discretization, the matrix At  is actually the Jacobian matrix [3]. At each time point the above 

system is solved using the LU decomposition of At . If a nonlinear function changes its operating 

segment or an ideal switch changes its position, it becomes necessary to update At  and 

consequently its factorization. This process is essential for maintaining an accurate solution for 

network but is also creates significant extra computational load.  

After each time-point solution of (2.1), it is necessary to use the solution vector xt  for updating all 

model history terms preparing the solution for the next time-point. Analysis has demonstrated that 

when accounting for all solution procedure, the main computation burden is the iterative solution 

in network equation (2.1). Improving its performance through the usage of a better sparse matrix 

solver and through parallelization, is the main research objective of this thesis. 

As a first step, this chapter presents the selection of a new sparse matrix solver. The second step is 

the parallelization of the solution process for gaining more computational performance.  

The new sparse matrix solver is named Sparse Matrix Package for EMTs (SMPEMT). 
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2.1 Selecting a Sparse Solver 

In the previous chapter three sparse solver packages have been introduced, namely SuperLU, KLU 

and EMTP-MDO existing sparse solver (MDO). The three solvers were briefly introduced to 

explain the underlying programming techniques. The objective here is to conduct numerical tests 

for actual systems. A variant of the Hydro-Quebec grid is used to perform tests with EMTP.  

The size of the Hydro-Quebec A  matrix is 41797x41797 with 99% sparsity and 169369 non-zero 

entries. The simulation interval was chosen to be 1 s with a time-step of 50 s . The network 

contains nonlinearities and the average number of iterations per time-point is equal to 2.07.  

The computation time of solving equation (2.1) for different solvers are presented in Table 2.1. 

        Table 2.1 Solver comparison timings (s), EMTP solution, Single-Core 

 MDO-EMTP KLU Solver SuperLU solver 

Time Domain solution 1048 1216 5340 

Number of KLU-FF - 68532 - 

Number of KLU-RF - 57543 - 

As seen from the above table, the MDO-EMTP solver is apparently the fastest among the three 

selected packages running on a single CPU core. This phenomenon is due to the heavy computation 

involved in the numerical analysis of both KLU solver and SuperLU solver. However, after 

studying the algorithms of various packages, it was found that the KLU package has significant 

potential of improvement for EMT-type solution. In addition to the fact that other circuit-based 

simulation packages demonstrated the potential of the KLU method [1][57].  

The most useful features with the KLU package are: 

1. The existence of BTF partitioning technique in KLU that is implemented as part of the 

solver package. 

2. The data structure used in storing L̂  and Û  matrices. 

3. The existing ordering techniques can be replaced easily with a user defined alternative. 

4. The code structure and code documentation. 

5. The separation of different tasks in different C functions. 

6. The minimization of a potential stack overflow run time error during BTF permutation 

calculation. This is mainly due to the fact that the stack used in all recursive calls in the 

package are allocated on the heap and have more memory backup compare to other stack 
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memory given by the compiler.  

7. The lower fill-in produced during factorization compared to the other two packages. 

8. KLU performance is proven to be better that other solvers with matrices with high sparsity 

degree.  

9. The use of an efficient left looking factorization technique that reduces floating-point 

operations during numerical factorization. 

10. The existence of re-factoring technique (KLU-RF) that can significantly speed-up the re-

factorization process due to a time-domain varying A  matrix. 

Figure 2.1 shows a test case that was used to compare the ordering results of produced by KLU 

and EMTP-MDO solvers. This case represents Reluctance network based transformer model. The 

case consists of one block due to the fact that it does not include any transmission line, and it has 

many nonlinear devices such as non-linear resisters. From the Figure 2.2, Figure 2.3 and Figure 

2.4 it can be seen that KLU solver was able to produce an ordering that results in less fill-in compare 

to EMTP-MDO and this will result in less factorization and solution time for L̂  and Û .  

 

Figure 2.1 Top view of Reluctance based transformer model case (Contributed by EDF) 
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Figure 2.2 Reluctance based transformer model case matrix sparsity pattern 

 

Figure 2.3  Reluctance based transformer model case EMTP permutation for Matrix A  
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Figure 2.4  Reluctance based transformer model case KLU permutation of matrix A  

Table 2.2 Shows the sparse matrix solution time for 1 second simulation of the case shown in 

Figure 2.1. It can be seen from the table that the difference between the two solvers are huge and 

the effect of fill-in reduction and an efficient ordering is important in computation time 

optimization. 

Table 2.2 Reluctance based transformer model case =Ax b  solution time 

Solver Time (second) 

EMTP-MDO 5560 

KLU 75 

 

2.2  KLU Interface 

Since EMTP computational engine is written in FORTRAN, and the KLU package is coded in C, 

it is necessary to establish an interface between both programming languages for allowing calls 

into the KLU solver. This work is also applicable to other EMT-type simulation tools [5] that are 

written in Fortran.  
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In order to establish such an interface, the ISO_C_BINDING module is used to provide Fortran 

with access to different C types and functions. KLU has also three user defined types namely 

KLU_common, KLU_symbolic and KLU_numeric. The KLU_common consists of different 

tuning parameters that are used in defining how the solver runs and the type of ordering package 

used in the symbolic analysis, KLU_symbolic consists of variables related to the symbolic analysis 

of KLU and other techniques such as the column ordering permutation vector Pc  and row 

permutation vector PR  and KLU_numeric contains all variables related to numerical factorization 

and solution. Other than user defined types, ISO_C_BINDING provides an interface between 

Fortran and conventional C types such as int, double, float and all other types including pointer 

types. Figure 2.5 shows different FORTRAN types with their corresponding C variable types; for 

example, the type int in C matches the type INTEGER in FORTRAN. In order to map the two 

variables in an ISO_C_BINDING interface, the Name constant types shown in Figure 2.5 is used. 

Figure 2.6 and Figure 2.7 give an example of how this mapping is done in defining 

ISO_C_BINDING interface for a user defined type and a function. 

The syntax of declaring a user defined type using ISO_C_BINDING is shown in Figure 2.6. This 

declaration will allow the use of KLU types (i.e KLU_symbolic) in different FORTRAN modules.  
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Figure 2.5 ISO_C_BINDING types declaration 
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Figure 2.6 KLU symbolic declaration using ISO_C_BINDING 

The declaration of functions using ISO_C_BINDING is different than variables. It consists of 

adding a special section in the interface file that encapsulates all function declarations and their 

argument types. Figure 2.7 shows the syntax of ISO_C_BINDING function declaration, this 

declaration lists the function name, its arguments and it defines the name of the function in the C 

based code. The interface then imports the type mapping of all arguments used in the function and 

includes a list of arguments with their types. This standard is used in Figure 2.7 to build the 

interface for KLU_SOLVER_ANALYZE.     

 

Figure 2.7 ISO_C_BINDING functions declaration syntax 
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Figure 2.8 ISO_C_BINDING declaration of KLU_ANALYZE function 

2.3 Pivot validity test 

In order to improve the performance of the KLU solver, it was necessary to make modification in 

its code. As explained above, the KLU-RF technique of the KLU solver assumes that the non-zero 

pattern of ˆ
iL  and ˆ

iU  calculated in the previous KLU-FF and the previous pivoting order are still 

valid. Therefore, by making such an assumption the symbolic analysis during the numerical 

factorization and the computation of the partial pivoting order can be skipped. The KLU-RF 

function updates the numerical values of ˆ
iL  and ˆ

iU  to reflect any changes in the matrix Âi . 

However, KLU-RF technique does not involve any pivot validation, and it blindly uses the old 

non-zero pattern and the old pivoting order without any verification. This practice increases the 

risk of introducing numerical instability and producing inaccurate results.   

The first added feature to KLU in this thesis is called the “pivot validity test”. It deals mainly with 

how KLU decides on whether conducting a KLU-FF on a certain block Âi  or KLU-RF is required. 

The pivot validity testing is an added feature that allows the KLU solver to be able to make an 

informative decision on whether a KLU-FF or KLU-RF is needed. Pivot validity testing criterion 

is based on verifying that the element stored at the location of each column’s pivot is greater than 

all other elements belonging to the same column by at least the user defined tolerance. The use of 

tolerance avoids calculating a new pivoting order if the new candidate pivot is slightly greater than 

the previously calculated one. Equation  (2.2) shows the pivot validity testing verification criterion. 

This test is performed on every column of block Âi . In case any column of Âi  fails to satisfy this 

criterion, block Âi  is deemed ineligible for KLU-RF and a KLU-FF is needed. 
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p new olda a                                                                                 (2.2) 

Where, p  is the pivot testing criteria,  newa  is the new pivot element candidate and olda  is the old 

pivot element. The pivot tolerance plays a major rule in controlling the acceleration gain of 

SMPEMT. This is due to the fact that this tolerance ratio determines the number of times KLU-FF 

is executed as opposed to KLU-RF. The higher p  results in increasing number of iterations use 

KLU-FF compare to lower p . 

Figure 2.9 shows a flow chart presentation of the sequence of pivot validity testing implemented in 

KLU during an EMT type simulation process. 

 

 

Figure 2.9 Pivot validity test flow chart 
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From the above figure, it can be seen that a KLU-FF is essentially needed at the beginning of 

simulation to calculate the non-zero patterns of ˆ
iL  and ˆ

iU  and finding the first pivoting order. 

Once the first solution of (2.1) is completed, KLU-RF becomes the default factoring algorithm 

used during KLU numerical stage. If an invalid pivot is spotted, the KLU-RF function is terminated 

for the block Âi  and a KLU-FF will start to calculate a new ˆ
iL  and ˆ

iU  non-zero pattern and pivot 

order. 

It is important to highlight the fact that this feature allows to have a sort of hybrid factorization 

technique during the same time step solution. Given that BTF blocks are independent of each other, 

the fact that one block failed the pivot validity test does not necessary mean that all other blocks 

will fail the test. There could be a scenario where some blocks are updating their ˆ
iL  and ˆ

iU  

numerical elements using KLU-RF technique and other blocks are calculating ˆ
iL  and ˆ

iU  from 

scratch using KLU-FF.   

2.4 Partial factorization 

A second feature added in this thesis to the KLU solver is called “Partial Factorization”. To reduce 

the computational cost of KLU-RF for Âi  even further, it is possible to apply partial KLU-RF. In 

a given system of equation (2.1), it is possible to determine the cells that are occupied by NMs and 

TVMs. Those dynamic cells may change between solution time-points and during iterations at a 

given time-point. These changes require the KLU-RF of Âi . A mapping can be derived to 

determine the BTF block number that contains each dynamic cell and the column number within 

BTF blocks that contains these cells.  

ˆ
c if = →A A                                                         (2.3) 

_
ˆ ( ) ( ( ))c c c invi i=A A P                                                   (2.4) 

Let f  in equation (2.3)  be a mapping between A  columns indices and Â  column indices. This 

mapping is based on the column permutation vector Pc   found during KLU symbolic analysis. The 
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conversion of column indices into BTF indices requires the calculation of the inverse column 

permutation vector _Pc inv . 

M : i→A                                                               (2.5) 

A similar mapping can be drawn between each matrix cell and the BTF blocks they belong in Â . 

Let (2.5) be the mapping between matrix A  nonzero elements and the BTF blocks i  they belong 

to in Â . Figure 2.10 shows the mapping procedure between these two sets. The mapping involved 

two nested loops that go over all matrix cells (the outer loop) and all BTF blocks (the inner loop). 

The outer loop runs from 1 to the total number of non-zeros (nnz) and passes column index of each 

cell to the inner loop. The inner loop runs from 1 to the number of blocks (nblocks) looking for the 

block the cell belongs to. In Figure 2.10, vector R  represents block boundaries vector where ( )iR   

is the starting row of block i  and ( 1)i +R  is the starting row number of block 1i + , and vector 

BTFR   has the BTF block number of each non-zero element in A .  

 

Figure 2.10 Cells to BTF blocks mapping 

The matrix Âi  is reordered using AMD and can be written as 

ˆ
i

 
=  
 

cc cd

dc dd

P P
A

P P
                                                     (2.6) 

Where, the subscripts c and d mean constant and dynamic respectively. The c columns do not have 

any dynamic parts, but the d columns contain at least one dynamic cell and may have zero or more 

dynamic cells in the following columns. 
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In the left-looking algorithm, the columns of ˆ
iL  are derived one-by-one by solving for each column 

of Âi . If, for example, the lower matrix decomposition of Âi  is stopped at its first dynamic column 

then 

ˆ p

i

 
=  
 

cc

dc dd

L 0
L

P I
                                                                        (2.7) 

Where L̂
p
i  is a partially computed lower-triangular matrix, Lcc  is a lower-triangular matrix, Pdc   

and Lcc  contain the columns of the static part of L̂
p
i  and Idd  is the identity matrix. Once ddP  is 

determined (status of time-varying devices or iterative Norton equivalent) at a given solution time-

point, the calculation process is continued until the replacement of Idd  to obtain 
'

Li  from L̂
p
i . The 

upper-triangular matrix 
'

Ui  is calculated within the calculation process of 
'

Li . For (2.7), the partial 

upper matrix factorization is available up to the constant columns  

 
=  
 

p
i

ccU
U

0
                                                             (2.8) 

In the above approach it is not necessary to restart the partial KLU-RF process for the complete set 

of columns of ddP . Better efficiency can be gained, if partial KLU-RF is applied by restarting from 

the first left modified column mdj   in ddP . As before, since KLU is a left-looking solver, all 

unchanged columns to the left of mdj  can maintain the previous contributions to the ˆ
iL  and ˆ

iU  

factors. In addition, given the fact that not all the elements in the right hand side vector b  are 

dynamic, the forward substitution can start from the top changed element of b  and the results of 

the skipped part can be retrieved from the previous iteration. 

It is also possible to apply a permutation technique that forces ddP   to contain only NMs and TVMs 

(similar idea in [34]). But such an approach interferes with the AMD ordering and creates extra 

fill-ins which hinder the performance gains. It was tested and was not retained for this thesis. 

The following example shows the application of partial factorization feature on the simple electric 

circuit shown in Figure 2.11. 
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Figure 2.11 Sample circuit for demonstrating partial factorization 

The BTF permuted MANA matrix for the circuit shown in the above figure is shown in equation 

(2.9). At the start of simulation, the nonlinear resistor Rn1 is equal to 1 Ohm (initial linear slope 

position) and the contribution of this resistance in the Â matrix appears at the diagonal element 

ˆ (3,3)A . 

1 1

2

3

1.2500 1.0000 0.25000

1.000 1.83333 0.33333 0

0.2500 0.33 3333 01.58 333

SV I

V

V

− −     
     
− − =

     
     − −     

                                       (2.9) 

The KLU-FF of system (2.9) is performed in equations (2.10) to (2.19). The following steps 

demonstrate a summarized KLU-FF process (for detailed procedure of KLU-FF refer to section 

1.6.2.2). 

1. KLU 1st column factorization: 

1 1

2 2

3 3

1 0 0 1.2500 1.2500

0 1 0 1.000 1.000

0 0 1 0.2500 0.2500

x x

x x

x x

         
         

= −  = −
         
         − −         

                                (2.10) 

1

1 0 0

ˆ 0.8000 1 0

0.2000 0 1

L

 
 

= −
 
 − 

                                                     (2.11) 

+
4

R1

+
3

R2
+

1

R3

+

2

R
4

+

Rn1

+ AC1



80 

 

 

1

1.2500 0 0

ˆ 0 1 0

0 0 1

U

 
 

=
 
  

                                                      (2.12) 

2. KLU 2nd column factorization: 

1 1

2 2

3 3

1.0000 0 0 1.0000 1.0000

0.8000 1.0000 0 1.83333 1.03300

0.2000 0 1.0000 0.3333 0.53300

x x

x x

x x

− −         
         
− =  =
         
         − − −         

                 (2.13) 

2

1 0 0

ˆ 0.8000 1 0

0.2000 0.5161 1

L

 
 

= −
 
 − − 

                                                (2.14) 

  2

1.2500 1.000 0

ˆ 0 1.0333 0

0 0 1.000

U

− 
 

=
 
  

                                               (2.15) 

3. KLU 3rd column factorization: 

1 1

2 2

3 3

1.0 0 0 0.2500 0.2500

0.8000 1.0 0 0.33333 0.13333

0.2000 0.5161 1.0 1.58333 1.60214

x x

x x

x x

− −         
         
− =  =
         
         − −         

                         (2.16) 

3

1.0 0 0

ˆ 0.8000 1.0 0

0.2000 0.5161 1.0

L

 
 

= −
 
 − − 

                                              (2.17) 

3

1.25000 1.000 0.250

ˆ 0 1.0333 0.1333

0 0 1.6021

U

− − 
 

=
 
  

                                           (2.18) 

The fully factorized system of (2.9) is shown in (2.19) 

1 1

2

3

1 0 0 1.25 1 0.25

0.8 1 0 0 1.0333 0.533 0

0.2 0.5161 1 0 0 1.257 0

SV I

V

V

− −       
       
− − =
       
       − −       

                          (2.19) 

Once the system in (2.19) is solved and the simulation moves to the next time step, the nonlinear 

resistor in Figure 2.11 may change to another value. In this example and for the sake of illustrating 
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the partial KLU-RF concept, it is assumed that Rn1 value changes from 1 ohm to 2 Ohms. The 

MANA matrix in (2.9) changes and it becomes as shown in (2.20). 

1 1

2

3

1.2500 1.000 0.2500

1.000 1.8333 0.3333 0

0.2500 0.33 3 01.083 3

SV I

V

V

− −     
     
− − =

     
     − −     

                                   (2.20) 

A comparison between (2.9) and (2.20) shows that the change in Rn1 only affects element ˆ (3,3)A  

and hence column and row 3 only. The partial KLU-RF feature can detect the first left change 

column (FLCC) in Âi  and starts the factorization process from that changed column. In this 

example, the first left change column is column number 3. In order to factorize this column 

successfully, the lower and upper matrices resulted from the factorization of (2.9) up to the second 

column (shown in equations (2.14) and (2.15) are retrieved. The factorization of (2.20) can be 

achieved by only factoring the third column with the new element at ˆ (3,3)A . 

1 1

2 2

3 3

1 0 0 0.2500 0.2500

0.8000 1 0 0.33333 0.13333

0.2000 0.5161 1 1.08333 1.10213

x x

x x

x x

− −         
         
− =  =
         
         − −         

                    (2.21) 

1.0 0 0

ˆ 0.8000 1.0 0

0.2000 0.5161 1.0

L

 
 

= −
 
 − − 

                                               (2.22) 

1.2500 1.000 0.2500

ˆ 0 1.0333 0.5333

0 0 1.10213

U

− − 
 

= −
 
  

                                             (2.23) 

1 1

2

3

1.0 0 0 1.2500 1.000 0.2500

0.8000 1.0 0 0 1.0333 0.5333 0

0.2000 0.5161 1.0 0 0 1.10213 0

SV I

V

V

− −       
       
− − =
       
       − −       

                 (2.24) 

From the above example, it can be seen that the partial factorization process allows to save 

computing time since it avoids the lengthy operations for recalculating the full ˆ
iL  and ˆ

iU  matrices 

from scratch. The computational impact will depend effectively on the locations of the nonlinear 

component columns. The Impact is maximized when all nonlinear component cells are located at 

the far-right part of Âi . It is also obvious that the impact is more important for very large-scale 

systems with nonlinear components. It is worth mentioning that in the above example the diagonal 
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pivots assumed at the beginning of KLU-FF continue to be valid throughout the 3 columns 

factorization. Applying partial KLU-RF involved continued validation of pivot for each column 

being factorized, and if at any point an invalid pivot is found the partial KLU-RF process is halted 

and a KLU-FF is performed on that particular block. 

2.5 Parallel KLU Implementation 

The second approach of achieving faster EMT simulation is by applying parallel computation on 

the enhanced version of KLU presented above. In this project the OpenMP multithreading 

technique is applied on different parts of KLU such as KLU-FF, KLU-RF and forward-backward 

substitution.  

Throughout this thesis, two different parallel sparse solver techniques were implemented and 

tested. The two approaches are presented in this section. 

2.5.1 Shared memory Model 

The shared memory design of OpenMP is mainly based on keeping the matrix A  received by the 

simulation package (i.e EMTP) as one matrix that is allocated on one sequential segment of the 

memory and using this matrix in the solution of (1.4). All BTF blocks in this model are 

concatenated in one matrix and accessing these blocks requires the knowledge of the starting and 

ending column/row of each block.  

In KLU, the symbolic analysis is done in a pure sequential fashion due to the fact that it is done 

only once at the beginning of simulation ( 0t = ). However, when it comes to numerical analysis, 

parallelizing the solution of different blocks is essential to convert the KLU code to a parallel 

solver, given that the network that is being solved can be solved in parallel because it has at least 

one delay-based line model in it. KLU-FF process can be done in parallel allowing the Full-

factorization of different blocks to be done simultaneously. similarly, KLU-RF and the backward-

forward substitution steps can each be done in parallel as well.  

In the shared memory model, parallelizing the factoring process (KLU-FF and KLU-RF) was done 

by surrounding the factorization loop, that loops over BTF blocks, with a pragma bracket that will 

guarantee a parallel execution of that loop. In a similar manner the backward/forward substitution 
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step can be parallelized. Using shared memory model requires the distinguishing between thread 

specific variables and threads shared variables and the proper distribution of blocks on different 

threads. This concept it crucial to avoid any overlap between different threads, and to avoid any 

kind of race conditions during OpenMP thread synchronization. 

Figure 2.12 shows a flow chart of the shared memory OpenMP design. From the flow chart it can 

be seen that the three parallel regions in this OpenMP model are launched and joined locally within 

their SMPEMT functions. These three regions are defined by two black bold horizontal lines that 

represent the launch and join points of threads. For example, in KLU-FF function, OpenMP 

launches threads at the beginning of KLU-FF loop and joins them when the last block is fully 

factored. The same concept applies for the KLU-RF and backward and forward substitution 

functions. The KLU-FF and KLU-RF can run on the same thread and three parallel regions are 

using threads that are launched and kept for further usage in an OpenMP thread pool.This process 

of launching and joining threads at different locations within the solver increases threading 

overhead and introduces further delays in the computation speed with the increased number of 

threads. 
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Figure 2.12 Shared memory OpenMP model 

2.5.2 Distributed Memory Model 

The second design of OpenMP implementation is based on the distributed memory concept. This 

model uses matrix A  to create another set of matrices that are fully independent in terms of 

equations and memory storage. These new matrices are created based on the BTF permutation 

found during the symbolic analysis of A . A new data type is created to fully represent the new 

matrices both symbolically and numerically. Figure 2.13 shows the user defined type KLU_unit 
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used to represent different sub-matrices. If the user of SMPEMT solver requested the launch of 4 

threads, and the size of the matrix A  and the circuit being solved support this number of threads, 

four instances of KLU_unit will be created with each one of them representing part of A . 

 

Figure 2.13 KLU_unit type declaration  

In Figure 2.13, klu_unit_common is a variable of type KLU_Common that stores KLU control 

parameters of the submatrix represented by KLU_UNIT,  klu_unit_symbolic is a variable of type 

KLU_Symbolic that stores the symbolic parameters of the submatrix represented by KLU_UNIT 

(such as permutation vectors and different statistics variables), klu_unit_numeric is a variable of 

type KLU_Numeric that stores the numerical quantities of the submatrix represented by KLU_Unit 

(such as the matrices L̂i , Û i  and the solution vector x̂ ). The variables n, nnz, klu_unit_Ax, 

klu_unit_Ai, klu_unit_Ap, klu_unit_X and klu_unit_B are a representation of the submatrix being 

represented by KLU_UNIT. All other variables in Figure 2.13 are used to provide two ways 

mapping between KLU_UNIT submatrix and the matrix A .  

Solving the system of equation in (1.54) using the distributed memory algorithm requires running 

symbolic analysis on the matrix A . This symbolic analysis will find the BTF permutation of A  

and determine the load balancing to achieve best parallelization possible (see section 2.6). A new 
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function called KLU_submatrix_creation was created to form the new matrices and allocate all 

necessary memory required to store KLU_unit elements. The creation of KLU_unit instances is 

done in parallel in order to make sure that each thread uses its own memory and hence its own 

cache line to store and manipulate data. This practice allows to minimize thread conflicts and 

enhances the ability of each thread to fetch data faster and more efficiently. 

The distributed memory algorithm is shown below: 

1. First call to SMPEMT: 

a. Perform symbolic analysis on A . 

b. Create new matrices ˆ
iA  by concatenating BTF blocks of A . 

c. Launch a parallel SMPEMT call for all KLU_unit objects 

d. Go to step 2 

2. First KLU_unit call to SMPEMT: 

a. Perform symbolic analysis 

b. Perform KLU-FF to find L̂i  and Û i . 

c. Backward and Forward substitution to find x̂i . 

d. Go to step 4. 

3. Not First KLU_unit call to SMPEMT: 

a. Perform KLU-RF using existing nonzero pattern and pivoting with pivot validity testing 

i. Invalid pivot found: go to step 2.b 

b. Go to step 4. 

4. Copy the values in x̂i  back to x . 



87 

 

 

 

Figure 2.14 Distributed model OpenMP design 

In this thesis, two solvers will be used that are based on SMPEMT, namely SMPEMT1 and 

SMPEMT2. The first solver (SMPEMT1) has only the pivot validity test implemented in it; 

whereas SMPEMT2 has all features discussed above (pivot validity test and partial factorization) 

implemented. This practice allows for better understanding of the effect of each feature on 

different test benchmarks and gives more insight of the advantages and disadvantages of all added 

feature.
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2.6 Load balancing 

Parallelization is applied to blocks found from BTF permutation, that is for each ˆ
iA   matrix. Since 

there is a limited number of CPU cores and the computing gains are limited by the largest network 

blocks, it is necessary to apply a balancing technique for the given number of cores. An algorithm 

that is based on different approaches has been implemented. 

In the first approach a pre-programmed method allows to estimate the number of floating-point 

operations for the solution of each block ( iNFPO ). The following formula is used for a matrix 

block of n n : 

( )
1

1 1

2 3 ( ) 2 ( )
−

= =

 
= + + + 

  
 

jn

i

j m

NFPO Llen m Llen j Ulen j n                                     (2.25) 

Where j and m are the indices of ˆ
iA  columns, Llen and Ulen  are the counts of non-zeros in L̂i  and  

Û i  respectively. This formula accounts for the LU-factorization based on the initial ˆ ˆL Ui i   nonzero 

patterns. It also accounts for the backward-forward substitution step. Equation (2.25) was derived 

by considering the operations of KLU solvers factorization line by line and accounting for any step 

to produce accurate and efficient load balancing.  

The above equation consists of two nested summations,  the outer summation of (2.25) goes 

through all the block’s columns while the inner summation calculates the floating points operations 

needed to KLU-RF column j  and solving it. The main tasks equation (2.25) accounts for are 

calculating the solution for a sparse lower triangular system used to find L̂i  and Û i , finding the 

numerical elements of L̂i  and backward and forward solution. As can be seen in section 1.6.2, the 

results of solving a sparse lower triangular system for column j   requires the use of nonzero 

elements in the columns prior to j  ( m j ) in L̂i  and that accounts for the term ( )
1

1

2
j

m

Llen m
−

=

  in 

equation (2.25); whereas the calculation of L̂i  numerical values contributes by ( )Llen j  floating 

points operations as seen in the last line of Figure 1.25 pseudocode. Finally, the calculation of 

backward and forward substitution costs 2 ( ) 2 ( )Llen j Ulen j n+ +  floating points operations. 

In the second approach, the number of non-zeros in each block ( iNNZ ) is available from its 

nonzero pattern. However, for all the test cases presented in this paper, using iNNZ  was less 
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efficient than using iNFPO . 

The blocks are assigned to cores using the number of available cores ( CN ) and the factor

/=d Ck NFPO N , where NFPO  is the total number for the entire system of equations. Since the 

number of blocks N could be higher than CN , it is necessary to verify the limiting dk  for each 

assignment. If a given core is assigned a block with iNFPO  less than dk  then it can contain 

additional blocks until dk  is reached or exceeded. This is basically a packing procedure for 

populating available cores. 

If a block’s iNFPO  falls below a minimum size, then it must be packed into an assigned core since 

threading for such a block can become inefficient. The same is applicable using iNNZ  instead of

iNFPO . 
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CHAPTER 3 TESTING AND RESULTS 

In this chapter, different cases with different sizes and topologies are tested and validated. The new 

implemented solvers SMPEMT1 and SMPEMT2 are used in addition to the solver already exists 

in EMTP (EMTP-MDO). The new solvers are tested with single thread and multithread in order to 

validate the performance under all circumstances and scenarios.  

When it comes to EMT simulation, speed is not the most important factor to look at. The accuracy 

of simulation results must be fully maintained in the new implemented solver under both single 

threaded and multithreaded execution. The accuracy of SMPEMT1/2 was verified for all 

benchmarks used in this chapter by calculating the difference error percentage between 

SMPEMT1/2 and EMTP-MDO waveforms. The percentage error has been calculated between the 

two sets of results using equation (3.1).  

 

2

2
%

f f
e

f

−
=                                                   (3.1) 

where: 

%e : percentage error between SMPEMT1/2 and EMTP-MDO 

f : results vector produced by SMPEMT1/2 solver 

f : results vector produced by EMTP-MDO solver  

In addition to the above quantitative measure, few signals of each test case were used to compare 

the results of both solvers visually. These signals produced by both solvers were plotted and 

overlapped to visually realize any differences along the simulation period. 

SMPEMT1 and SMPEMT2 solver ability to provide simulation acceleration and flexibility to 

different EMT cases can clearly be seen herein. In the following few sections further validations 

of the new proposed solver is given with emphasis of the main advantages and the few limitations 

the solver has.  
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3.1 SMPEMT testing and validation 

The modified KLU solver named SMPEMT was tested on a wide range of cases and benchmarks. 

The aim was to test the developed new solvers on realistic power grid cases. In addition, different 

scenarios were considered to stress numerical limitations and examine solver stability and 

accuracy. These scenarios involve faults, large numbers of nonlinear models and the use of wind 

generators with power electronics converters. In addition, the distributed memory design of 

OpenMP was used in all cases and has been validated. 

In order to draw a clear conclusion about each test case and fully understand each scenario the 

following is given for each benchmark: 

• A brief description of the case. 

• A listing of the benchmark main components. 

• A plot of the network sparsity pattern before and after BTF permutation. 

• Simulation timing results for EMTP, KLU, SMPEMT1 and SMPEMT2. 

• Simulation acceleration plot (both in seconds and acceleration gain). 

• Results description and discussion.  

All tests were run on a machine that has the specifications listed in Table 3.1.  

                    Table 3.1 Testing platform  

Test Platform: HP DL360 

Processor Model Intel Xeon CPU E5-2650 v4 

CPU frequency 2.20 GHz 

Number of physical processors 12 / cluster 

Number of logical processors 24 / cluster 

Memory 32.0 GB 

Windows 10 
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3.1.1 Hydro-Quebec Full network (HQ-L) 

This test case is an upgraded version of the one presented in [6]. It is based on the actual Hydro-

Quebec grid (HQ-grid). A top view of the test case is presented in Figure 3.1. 

 

Figure 3.1 Hydro-Quebec case top view 

The summary of the case main components is:  

• RLC branches: 27530;  

• PI/RL coupled branches, 3-phase: 860 

• CP Lines/Cable: 1354 phases 

• Ideal transformer units (for 3-phase transformers): 6294 

• Ideal switches: 3663 

• Zinc-Oxide Arresters: 174; 

• Nonlinear inductances (transformer magnetization): 4452 

• Synchronous generators (with excitors and governors): 349;  

VT NH

MA

vt_nh_ma

ny

province_quebec

ontario

nb
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• Loads: 4452 

HQ-L Simulation data: 

• Simulation time: 1 s 

• Simulation time step: 50 s    

• Pivot tolerance p  : 0.01 

• Average number of iterations per time step: 2.07 

• Total number of iterations: 41400 

• Matrix A  size: 41797×41797 

• Number of nonzero elements (nnz) in A : 169369  

• Sparsity percentage: 99% 

• Total number of BTF of Blocks: 217 

• Biggest block size: 2898×2898 

• Smallest block size: 3×3 

The sparsity pattern of HQ-L network matrix A  is shown in Figure 3.2, and the BTF version of 

the matrix is shown in Figure 3.3. 
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Figure 3.2  HQ-L matrix A  before BTF 

 

Figure 3.3  HQ-L matrix A  after BTF 

 shows the solution of equation (1.4) timing using different solvers and different number of threads. 

It is apparent that the KLU method alone does not have performance gains as seen in section 2.1. 

This is due to many reasons including the heavy computation operations used in KLU factorization 

process and the fact that KLU-FF is applied to all blocks without the improvements of SMPEMT1 
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and SMPEMT2. For this case, SMPEMT2 and SMPEMT1 gave very close timings since some 

dynamic elements can be found in the far-left segment of the matrices Â i
. 

        Table 3.2 HQ-grid sparse matrix solution timings for 1s simulation and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 13 14 15 16 

EMTP 1048         

KLU 1216         

SMPEMT1 296 133 82 47 34 36 37 38.5 39 

SMPEMT2 285 126 77 43 31 32 32.5 32.5 34 

 

The computational gain against existing EMTP solver is 1048/31=33.8 with 12 cores. The gain 

over the standard single-core KLU solver is 1216/31=39 with 12 cores. 

Performance plots are presented in Figure 3.4. The maximum gain over the single core SMPEMT2 

version is 9.2 and there are no significant gains after 12 cores. This is mainly due to the limitation 

imposed by the largest block, increased memory exchange and thread management costs which 

increase with the number of threads. The overall computation time including the solution of 

equation (2.1), the control solution, steady-state solution and updating matrix A  and vector b  

drops from 1976 seconds (when using EMTP solver) to 404 seconds (when using SMPEMT2,  

parallel control solver and 16 threads topology).    

 

Figure 3.4  SMPEMT HQ-L Grid simulation time and gain 

In order to validate the results of SMPEMT, three signals were selected to determine the accuracy 

of the solution. The first selected signal is the voltage (phase A) drop across line L7016 located in 

the province of Quebec and it was chosen in particular due to its distance proximity to a fault that 
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is located between L7016 and L 7046A transmission lines. The fault event in this test case is a (3-

phase-to-ground) fault that is triggered at t = 0.5s as can be seen in Figure 3.5.  

 

Figure 3.5 HQ-L Grid fault location 

The second signal is the real power of synchronous machine Generator Mercier_A1 located in the 

province of Quebec in the Laurentides region, and the third signal is the real power of the 

synchronous machine Hydrocanyon_A located in the province of Quebec in the Quebec City 

region. The comparison of the three signals are shown in Figure 3.6 to Figure 3.8. In these figures, 

the red waveform represents the result of EMTP-MDO solver, and the blue is SMPEMT solver. It 

can be seen from the figures that both results are matching and a complete overlap between the two 

curves is achieved (including during the fault effect period). The error percentage between both set 

of waveforms are found to be 92.67 10− , 102.93 10−  and 91.57 10−  for the three signals 

respectively.  
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Figure 3.6 HQ-L grid line L7016 voltage drop - phase A  

 

Figure 3.7 HQ-L grid Generator Mercier_A1 real power 



98 

 

 

 

Figure 3.8 HQ-L grid Generator Hydrocanyon_A real power 

3.1.2 T0-Grid 

This case is a realistic 400 kV, 50 Hz network. It is designed with high integration of renewable 

sources to stress numerical accuracy and stability. It includes 72 synchronous generators modeled 

with their exciters and governors. There is a total of 10 wind parks with aggregated wind 

generators. These generators of DFIG type are simulated with their controllers that are based on 

reactive power control mode. The DFIG converters are given two modeling options: Detailed 

model (DM) and average value model (AVM) [58]. The DM includes nonlinear IGBT models 

which require iterations and significantly increases computational burden. In the AVM controlled 

sources are used to represent average converter behavior and sufficient accuracy can be achieved 

when studying grid performance issues. The details of this benchmark are listed in [59]. 

The top view of T0-Grid is shown in Figure 3.9, where the green boxes represent sub-transmission 

networks at 154 kV with wind generation, and the yellow boxes represent only sub-transmission 

networks with no wind turbines. In addition to the above, the network has the following contents: 

• RLC branches: 2319; PI/RL coupled branches, 3-phase: 595 
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• CP Lines/Cable: 174 phases 

• Ideal transformer units (for 3-phase transformers): 6294 

• Controlled switches (converter switches): 190 

• Ideal switches: 254 

• Nonlinear resistances (used for IGBT models): 270 

• Nonlinear inductances (transformer magnetization): 564 

• Loads: 1029 

 

Figure 3.9 T0-Grid top view 

T0-Grid Simulation data 

• Simulation time: 1 s 

• Simulation time step: 10 s  

• Pivot tolerance p  : 0.01 

• Average number of iterations per time step: 6.23 
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• Total number of iterations: 799174 

• Matrix A  size: 4703×4703 

• Number of nonzero elements (nnz) in A : 25117 

• Sparsity percentage: 99% 

• Total number of BTF of Blocks (nblocks): 28 

• Biggest block size: 573×573 

• Smallest block size: 3×3 

 

Figure 3.10 T0-Grid matrix A  before BTF 
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Figure 3.11 T0-Grid matrix A  after BTF 

       Table 3.3 T0-DM sparse matrix solution timings for 1s simulation and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 13 14 15 16 

EMTP 1241         

KLU 2120         

SMPEMT1 720 380 229 151 157 157 161 161 165 

SMPEMT2 675 360 210 141 99 99 101 105 112 

 

 

 

Figure 3.12  SMPEMT T0-Grid simulation time and gain for DM model 

 shows the solution of equation (1.4) timing using different solvers and different number of threads. 

A gain of 1241/151=8.2 is recorded over EMTP when SMPEMT1 is used with 8 threads and no 
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further gain is noticed with the increase number of threads. This is mainly due to the largest block 

that imposes limitation on further distribution of computation loads on additional threads, and acts 

as the bottle nick that takes the biggest computation time and forces all other threads to perform a 

busy wait while its computation is being finalized. However, a gain of 1241/99=12.5 was recorded 

when SMPEMT2 is used. This difference between the two solvers (SMPEMT1 and 2) is mainly 

due to the usage of partial factorization and the location of the first left dynamic column (FLDC). 

The gain of SMPEMT1 with 8 threads is 720/151=4.7 compared to SMPEMT1 with 1 thread, while 

SMPEMT2 achieved 675/99=6.8 with 12 threads compared to 1 thread.  

The overall computation time including the solution of equation (2.1), the control solution, steady-

state solution and updating matrix A  and vector b  drops from 2943 seconds (when using EMTP 

solver) to 578 seconds (when using SMPEMT2,  parallel control solver and 16 threads topology). 

The studied event in this test case is a (phase-a-to-ground) fault on the transmission line 

ADAPA_to_GOKCE connected between the lines ADAPA and GOKCE as can be seen in Figure 

3.13. 

 

Figure 3.13 T0-DM Grid fault location 
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The fault occurs at 1 s, the phase-a breaker on the left of the line receives the opening signal at 

1.08 s and the one on the right at 1.1 s. The phase-a breaker on the left recloses at 1.48 s and the 

one on the right at 1.5 s. The reclosing is unsuccessful and all breakers (all left and right phases) 

receive the opening signal at 1.56 s to isolate the line. Figure 3.14 shows two waveforms of phase 

A voltage drop across line ADAPA_to_GOKCE calculated by EMTP-MDO and SMPEMT 

solvers. Figure 3.15 and Figure 3.16 show real power comparison of two synchronous machines 

located close to the fault. Calculation of the error percentage between the EMTP-MDO and 

SMPEMT solvers at 1.01t =  second is found to be 103.8 10− , 82.67 10−  and 101.37 10−  for the 

three signals respectively.  

 

Figure 3.14 Line ADAPA TO GOKCE voltage drop - phase A 
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Figure 3.15 Generator CAYIR TPP CAYIRHAN U1 real power 

 

Figure 3.16 Generator CAYIR TPP CAYIRHAN U2 real power 
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3.1.3 T1-AVM Grid 

The T1-Grid is another version of the Turkish grid that uses the average model converters. This 

case simulates the effect of a fault inserted between buses CAYER and ADAPA. This case shown 

in Figure 3.17 uses wind turbine as part of its generations and includes the following main 

components: 

• RLC branches:  594 

• PI/RL coupled branches, 3-phase: 6 

• CP Lines/Cable: 58 

• Ideal transformer units (for 3-phase transformers): 141 

• Ideal switches: 213 

• Synchronous generators (with AVRs and governors): 33 

• Loads: 105 

A top view of T1-Grid is shown in Figure 3.17, and the exact location of the fault can be seen in the 

same figure. Figure 3.18 and Figure 3.19 show matrix A  sparsity pattern before and after BTF 

permutation. 
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Figure 3.17 T1-AVM Grid top view 

 

Figure 3.18 T1-AVM Grid matrix A  before BTF permutation. 
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Figure 3.19 T1-AVM Grid matrix A  after BTF permutation 

T1-Grid Simulation data: 

• Simulation time: 10 second 

• Simulation time step: 50 s  

• Pivot tolerance p : 0.01 

• Average number of iterations per time step: 3.01 

• Total number of iterations: 604919 

• Matrix A  size: 1542 ×1542 

• Number of nonzero elements (nnz) in A : 5428 

• Sparsity percentage: 99% 

• Total number of BTF of Blocks (nblocks): 45 

• Biggest block size: 811×811 

• Smallest block size: 3×3 

The BTF of matrix A  shows that a limiting block exists in this case. This block is the first block 

seen in Figure 3.19. The size of the limiting block is 811 and it limits the parallelization of the case 



108 

 

 

beyond two threads since it does not have any delay-based lines in it and can’t be divided using 

BTF permutation.  shows the solution of equation (1.4) timing using different solvers and different 

number of threads.  

      Table 3.4 T1-Grid sparse matrix solution timings for 1s simulation and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 13 14 15 16 

EMTP 48         

KLU 53         

SMPEMT1 19.5 10 13.1 14 15.4 17 19 20 20 

SMPEMT2 17 8.5 11.2 13 14.5 16 18 18.5 19 

In this case the difference between SMPEMT1 and 2 is minor due to the fact that the biggest block’s 

FLDC is located at the 6th column in the BTF format and that limits the ability of partial KLU-RF 

to decrease the computation time of the block factorization. The best gain is achieved with 

SMPEMT2 (48/10 = 4.8). The overall computation time including the solution of equation (2.1), 

the control solution, steady-state solution and updating matrix A  and vector b  drops from 68 

seconds (when using EMTP solver) to 21 seconds (when using SMPEMT2,  parallel control solver 

and 8 threads topology). 

 

Figure 3.20  SMPEMT T1-Grid simulation time and gain for AVM model 

The studied event in this test case is a (3-phase-to-ground) fault on the transmission line 

ADAPA_to_ CAYIR connected between the lines ADAPA and CAYIR as seen in.  
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Figure 3.21 T1-AVM fault location 

The fault occurs at 1 s, the breaker on the left of the line receives the opening signal at 1.08 s and 

the one on the right at 1.1 s. Figure 3.22 and Figure 3.23 show the voltage drop across line 

ADAPA_TO_CAYIR and the real power of SM CAYIR TPP CAYIRHAN U2 respectively. Both 

figures contain two waveforms calculated by EMTP-MDO and SMPEMT and both curves overlap 

with difference seen throughout the faults span period. 
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Figure 3.22 T1-Grid line ADAPA TO CAYIR voltage drop - phase A 

 

Figure 3.23 Generator CAYIR TPP CAYIRHAN U2 real power 
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3.1.4 T2-AVM Grid 

T2-Grid is a modified version of the Turkish grid discussed in the previous section. Three offshore 

wind turbine farms were added to the HVDC_ALIGA and HVDC_IZMIR buses. The location of 

the fault is kept between buses CAYER and ADAPA. The main components of the case are the 

following: 

• RLC branches:  900 

• PI/RL coupled branches, 3-phase: 9 

• CP Lines/Cable: 62 

• Ideal transformer units (for 3-phase transformers): 168 

• Ideal switches: 410 

• Synchronous generators: 28 

• Loads: 105 

T2-Grid Simulation data: 

• Simulation time: 10 second 

• Simulation time step: 50 s  

• Pivot tolerance p : 0.01 

• Average number of iterations per time step: 3.04 

• Total number of iterations: 610783 

• Matrix A  size: 24252425 

• Number of nonzero elements (nnz) in A : 8347 

• Sparsity percentage: 99% 

• Total number of BTF of Blocks (nblocks): 58 

• Biggest block size: 811×811 
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• Smallest block size: 3×3 

Figure 3.24 shows the top view of the case that provides an illustration of the faults position and all 

offshore wind farms locations. Figure 3.25 and Figure 3.26 shows the matrix A  nonzero pattern 

before and after BTF permutation. Unlike T1-Grid discussed in section 3.1.3, the biggest block 

(size = 811) consist of almost 30% of the case size and that will loosen the parallelization limitation 

seen in benchmark T1. However, the biggest block will still impose limitation on parallelization 

beyond 4 threads.  

 

Figure 3.24 T2-AVM Grid top view 
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Figure 3.25 T2-AVM Grid matrix A  before BTF permutation 

  

Figure 3.26 T2-AVM Grid matrix A  after BTF permutation 

 shows the solution of equation (1.4) timing using different solvers and different number of threads. 

It can be notices from the results that SMPEMT1/2 performance accelerates with the increase 

number of threads up to 3 threads and after that the performance starts to deteriorate. Like other 

cases, this phenomenon is due to the limiting block (biggest block = 811) that does not have any 

CP line in.  The overall computation time including the solution of equation (2.1), the control 

solution, steady-state solution and updating matrix A  and vector b  drops from 164 seconds (when 
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using EMTP solver) to 29 seconds (when using SMPEMT2,  parallel control solver and 8 threads 

topology). 

      Table 3.5 T2-Grid sparse matrix solution timings for 1s simulation and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 13 14 15 16 

EMTP 64         

KLU 72         

SMPEMT1 33 15 7.8 11 11.9 12.5 13.2 14 14 

SMPEMT2 31 14 7.5 10 11.2 12 13 14 14 

 

Figure 3.27  SMPEMT T2-Grid simulation time and gain for AVM model 

The studied event in this test case is similar to the one seen in the previous section and the fault 

scenario remains the same. However; three set of offshore wind turbines are added to the case and 

that will add more numerical stress on the solvers. Figure 3.28 and Figure 3.29 show the 

comparison between EMTP-MDO and SMPEMT using phase A voltage drop across line 

ADAPA_TO_CAYIR and SM CAYIR TPP CAYIRAN U2 real power. Both figures show 

complete overlap between the two solvers results and no difference can be seen visually. 

Calculation of the error percentage between the EMTP-MDO and SMPEMT solvers at 1.01t =

second is found to be 95.3 10−  and 108.2 10−  for both signals respectively.  
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Figure 3.28 Line ADAPA_TO_CAYIR voltage drop - Phase A 

 

Figure 3.29 SM CAYIR TPP CAYIRAN U2 real power 
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From the above figure it can be seen that both solvers produce similar result and both curves 

perfectly overlap each other. 

3.1.5 IEEE14 

This benchmark represents a simplified version of the IEEE 14 bus system [60]. This case has 14 

buses, 5 generators and 11 loads. The case does not have any nonlinear instances and hence the 

number of iterations is 0. The case was simulated for 1 second with a 50 s time step.  

The BTF version of matrix A  has only one block since the case has no CP lines and can’t be 

decoupled in time domain. The size of the only block in BTF form is the size of the case overall 

A  matrix. Figure 3.30 and Figure 3.31 show the sparsity pattern of matrix A  before and after BTF 

permutation.  shows the solution of equation (1.4) timing using different solvers with one thread 

only. 

IEEE14-Grid Simulation data: 

• Simulation time: 1 second 

• Simulation time step: 50 s  

• Pivot tolerance p : 0.01 

• Average number of iterations per time step: 0 (linear case) 

• Total number of iterations: 20000 

• Matrix A  size: 99×99 

• Number of nonzero elements (nnz) in A : 711 

• Sparsity percentage: 92.7% 

• Total number of BTF of Blocks (nblocks): 1 
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Figure 3.30 IEEE14-Grid matrix A  before BTF permutation 

 

Figure 3.31 IEEE14-Grid matrix A  after BTF permutation 

                Table 3.6 IEEE14 sparse matrix solution timings for T=1s and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 

EMTP 0.91     

KLU 1.10 N/A N/A N/A N/A 

SMPEMT1 0.77 N/A N/A N/A N/A 

SMPEMT2 0.77 N/A N/A N/A N/A 
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Since the BTF format has only one block, all tests conducted for this case were done using one 

thread only. No major gain is seen when SMPEMT1 and 2 since factorization of the A  matrix is 

done once due to the lack of nonlinear elements in the case and the pivot validity testing feature 

didn’t have any impact of the gain seen in SMPEMT1/2 timings, but rather it is all due to the partial 

forward substitution that was explained in 2.4.  

Figure 3.32  shows comparison between two signals calculated by EMTP-MDO and SMPEMT 

solvers. The two signals represent phase A voltage drop across transmission line (PI15). From the  

figure, it can be seen that both signals are completely matching and no difference can be notices 

throughout the waveforms in the figure.  

 

Figure 3.32 Line PI15 voltage drop - phase A  

3.1.6 IEEE7000 

The IEEE7000 benchmark is built by repeating the IEEE14 case 500 times in order to get a case 

with 7000 buses. The different IEEE14 cases were linked by CP lines at buses 13 and 14. Using 

CP lines between different IEEE14 allows to have 500 blocks in the BTF format where each block 

represents an IEEE14 case. Figure 3.33 and Figure 3.34 show the network A  before and after BTF 

permutation. 
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The IEEE7000 case was simulated for 1 second with time step 50t s = and similar to IEEE14 

benchmark, this case does not have any iterations due to the absence of any nonlinear objects and 

hence the rate of iterations per time step is 0.  shows the solution of equation (1.4) timing using 

different solvers and different number of threads.  

IEEE7000-Grid Simulation data: 

• Simulation time: 1 second 

• Simulation time step: 50 s  

• Pivot tolerance p : 0.01 

• Average number of iterations per time step: 0 

• Total number of iterations: 20000 

• Matrix A  size: 49698×49698 

• Number of nonzero elements (nnz) in A : 357633 

• Sparsity percentage: 99.9% 

• Total number of BTF of Blocks (nblocks): 500 

 

Figure 3.33 IEEE7000-Grid matrix A  before BTF permutation 
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Figure 3.34 IEEE7000-Grid matrix A  after BTF permutation 

      Table 3.7 IEEE7000 sparse matrix solution timings for 1s simulation and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 13 14 15 16 

EMTP 1074         

KLU 1135         

SMPEMT1 222 125 75 42 25 21 18.4 16 15 

SMPEMT2 222 125 75 42 25 21 18.4 16 15 

 

Figure 3.35  SMPEMT IEEE7000-Grid simulation time and gain 

The same case was simulated in [19] where the case was partitioned using a boarder block diagonal 

scheme based on the use of PI section transmission lines. An approximation of this test results is 

shown in . 
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Table 3.8 T2-Grid sparse matrix solution timings with BBD (s) 

From the above two tables, it can be seen that the KLU based approach implemented herein is more 

efficient and faster than what is proposed in [19], and the timing obtained with 20 threads in  was 

achieved and overcome with only one thread of SMPEMT2 as seen in . Although the machine used 

to obtain the results in  and [19] have different processors type, the other specifications are very 

close and this difference can’t justify the different in results. 

3.1.7 IEEE39 

The IEEE39 benchmark represents a part of New England 345-KV grid. It consists of 10 

synchronous generators, 39 buses, 12 transformers, and 19 loads. The case has a total of 34 

transmission lines with 24 modeled as CP lines and the rest as PI section type of lines. A simplified 

version of the case was modeled using EMTP with the following list presents a summary of the 

case main components: 

• Synchronous machine: 10 

• Ideal Transformer units: 90 

• RLC: 337 

• Ideal switch: 123 

• L nonlinear: 87 

• PQ load centers: 57 

• AC current source: 57 

• PI/RL lines: 10 

• CP lines/cable: 24 

IEEE39-Grid Simulation data: 

• Simulation time: 10 second 

• Simulation time step: 20 s  

Number of cores 1 10 20 30 40 50 60 

Simulation time 5000 550 250 200 200 210 220 
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• Pivot tolerance p   : 0.01 

• Average number of iterations per time step: 1.18 

• Total number of iterations: 711930 

• Matrix A  size: 486486 

• Number of nonzero elements (nnz) in A : 1662 

• Sparsity percentage: 99.2% 

• Total number of BTF of Blocks (nblocks): 57 

• Biggest block size: 60×60 

• Smallest block size: 3×3 

Figure 3.36 shows the case top view that provides general understanding about the case layout and 

elements distributions. Figure 3.37 and Figure 3.38 show the case A  matrix before and after BTF 

permutation. This case is a relatively small case and applying parallel computation on it shows to 

what extend parallelization can accelerate the performance of the solution before the overhead 

weight of synchronizing thread, launching and joining threads takes over.  shows the solution of 

equation (1.4) timing using different solvers and different number of threads. 
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Figure 3.36 IEEE39-Grid top view 
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Figure 3.37 IEEE39-Grid matrix A  before BTF permutation 

 

Figure 3.38 IEEE39-Grid matrix A  after BTF permutation 

      Table 3.9 IEEE39- Grid sparse matrix solution timings for T=1s and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 13 14 15 16 

EMTP 38         

KLU 43         

SMPEMT1 11.7 6.5 5 7.8 9.2 10.8 12 13 13.5 

SMPEMT2 10.2 5.5 4 6.9 9 10.5 11.8 13 13.5 
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Figure 3.39  SMPEMT IEEE39-Grid simulation time and gain 

The overall computation time including the solution of equation (2.1), the control solution, steady-

state solution and updating matrix A  and vector b  drops from 52 seconds (when using EMTP 

solver) to 38 seconds (when using SMPEMT2,  parallel control solver and 8 threads topology). 

The studied event in this test case is a (3-phase-to-ground) fault inserted between on the 

transmission line bus03_04 as seen in Figure 3.40. The fault is triggered at 0.2t =  second and 

removed at 0.3t = second.  
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Figure 3.40 IEEE39 fault location 

Figure 3.41 and Figure 3.42 below show a comparison of EMTP-MDO results and SMPEMT 

result. Both figures show very similar results for both solvers and no difference can be seen during 

the fault effect. The difference error percentage between the two solvers is found to be 97.1 10−  

and 111.5 10− for both signals respectively. 
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Figure 3.41 Line 03-04 voltage drop - phase A 

 

Figure 3.42 Power Plant 10 real power 
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3.1.8 IEEE118-GMD 

This benchmark represents a modified version of the IEEE-118 that represents a portion of the 

American Electrical Power (AEP) system in the US Midwest [59]. This version included herein 

has comes with different upgrades and modifications to the original case. This modification 

includes  

• Modifying transmission line and machine data according to the latest IEEE standards and 

publications and typical data from North America transmission grid. 

• Adding extra features and data to allow EMT-type studies, these added features/data 

include transmission line data such as tower configuration, conductor data, per unit length 

positive sequence, zero-sequence line impedance data and line length data. In addition, 

different types of transmission lines have been incorporated with the case such as PI, CP 

and FD that will allow the user to use combination of transmission lines depending on the 

type of study and requirement.  

• Updating machine data and adding machine controls such as excitors, governors, OEL and 

PSS.  

The following list presents a summary of the IEEE-118 main components: 

• 177 transmission lines (CP, PI and FD) 

• 91 loads 

• 9 Transformers 

• 54 synchronous machines (SMs) 

• 19 Synchronous generators (SGs) 

• 35 Synchronous condensers (SCs) 

IEEE118-Grid Simulation data: 

• Simulation time: 400 second 

• Simulation time step: 50 s  
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• Pivot tolerance p   : 0.01 

• Matrix A  size: 85148514 

• Number of nonzero elements (nnz) in A : 27471 

• Sparsity percentage: 99.96% 

• Total number of BTF of Blocks (nblocks): 40 

• Biggest block size: 1148×1148 

• Smallest block size: 30×30 

The case has also several voltage levels that vary between 345KV transmission, 138KV sub-

transmission, 25V distribution and 20, 15, 10.5 KV generation. Figure 3.43 shows an overview of 

the IEEE-118 grid and the location of different components within the Network. 

 

Figure 3.43 Single line diagram of IEEE-118 Grid 
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Figure 3.44 and Figure 3.45 show the case A  matrix before and after BTF permutation. The case 

was simulated for 400 seconds with a 50 s  time-step. The long simulation interval was selected 

due to the existence of different events along the first 400 seconds of simulation.  shows the solution 

of equation (1.4) timing using different solvers and different number of threads. 

    

Figure 3.44 IEEE118-Grid matrix A  before BTF permutation 

 

Figure 3.45 IEEE118-Grid matrix A  after BTF permutation 
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      Table 3.10 IEEE118- Grid sparse matrix solution timings for T=400s and t =50 s  

 Number of cores 

Solver 1 2 4 8 12 13 14 15 16 

EMTP 39730         

KLU 43687         

SMPEMT1 16870 8698 4698 2267 2865 2883 2892 2892 2898 

SMPEMT2 16794 8624 4653 2241 2843 2868 2867 2871 2873 

 

Figure 3.46  SMPEMT IEEE118-Grid simulation time and gain 

The overall computation time including the solution of equation (2.1), the control solution, steady-

state solution and updating matrix A  and vector b  drops from 168130 seconds (when using EMTP 

solver) to 67473 seconds (when using SMPEMT2,  parallel control solver and 16 threads topology). 

The above simulation timing shows a nearly linear gain from thread 1 to thread 8 and the 

performance starts to deteriorate after the 8th thread. This phenomenon is due to the existence of a 

limiting block of size 1148 that limits the gain to 8 threads and prevents any further acceleration.  

 

 

 

 



132 

 

 

3.2 Results analysis 

The results presented in the previous chapter illustrate the gain that can be achieved by using 

SMPEMT solver. Depending on the case configuration, the gain may vary widely depending on 

different types of factors. These factors involve the following: 

• The existence of CP lines in the case: The use of parallel computation in SMPEMT depends 

mainly of the ability to divide the network matrix into various independent blocks. The 

division process is based on the time domain decoupling effect of the constant parameter 

transmission lines. If no CP lines exist in the case, the parallel computation algorithm can’t 

be used and the whole network matrix is solved on one thread. Although some of the 

features of SMPEMT may help accelerating the performance, the overall gain will not be 

that great compared to the gain obtained by parallelization the solution. 

• The testing platform (hardware) used in the simulation: Although SMPEMT works on all 

machines with more than one processor (CPU), it is notices that the ultimate performance 

can be achieved with higher number of physical cores (avoiding hyper threading) and 

bigger cache line of the machine. These two factors allow threading to be more efficient by 

avoiding sequencing of parallel tasks and allowing different threads to handle bigger blocks 

and matrices. 

• Network configuration: The satisfying of the first two factors does not guarantee good 

performance and a scaling gain without having a network configuration that is well 

designed with parallel solution in mind. In order to have an efficient parallelization with 

lasting effect at higher number of threads, the blocks of BTF matrix must be as small as 

possible to enable SMPEMT load balancing topology to distribute blocks evenly on 

different CPUs. Having a limiting block (bottle nick) will limit the gain and make the use 

of higher number of processors a burden. Figure 3.47 shows an example of a network that 

has a block that is almost one third of the overall size of the matrix. Such block limits the 

gain of SMPEMT to three threads only. Whereas, Figure 3.48 shows an example of a case 

that has a perfect distribution of elements across its blocks and the threading performance 

of this type of cases will be efficient and a high gain can be achieved with higher number 

of threads. 
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            Figure 3.47 A network with a limiting block 

     

                            Figure 3.48 A network with a perfect distribution of blocks 

The following table lists all cases used in SMPEMT validation with the maximum gain 

achieved for each case, the size of A matrix and the size of limiting block for each case.  
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                          Table 3.11 Testing cases performance summary 

Case name Matrix size Limiting Block Maximum gain 

HQ case (Full) 41797 2898 33.8 

T0-DM 4703 573 12.5 

T1_AVM 1542 811 5.65 

T2_AVM 2425 811 8.5 

IEEE-14 99 99 1 

IEEE-7000 49500 99 71.6 

IEEE-39 486 60 9.5 

IEEE-118 GMD 8514 1148 17.7 

 

From the above table, it can be seen that most cases have hit a point where the gain is 

maximized, and no further gain can be achieved. Despite the fact that increasing the number 

of threads adds an overhead to the compiler and hinder the efficiency of threading, the 

limiting block is the main reason that limits the gain of further parallelization and forms a 

bottle nick to any possible improvement and acceleration.  

• The size of blocks loaded on each thread: Adding a relatively large blocks on threads is 

crucial to overcome threading overhead. In order to make an efficient use of any extra 

thread launched, a sufficient amount of computation load need to be available to keep that 

new thread busy. Otherwise, this increase of number of threads will contribute in slowing 

down performance and makes overall gain deteriorate.  
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CHAPTER 4 CONCLUSION AND RECOMMENDATIONS 

4.1 Thesis summary 

The main objective of this thesis was to present an enhanced and a more efficient way of conducting 

EMT type simulations that is faster and less time consuming. The main trigger of this project was 

the long waiting time needed to simulate large scale power network that are realistic and involve 

nonlinear devices, power electronics and have some sort of renewable sources penetration. The 

main case used in this project was the Hydro-Quebec grid benchmark that represents a simulated 

version of the complete Hydro-Quebec network with its extensions in the Canadian provinces of 

Quebec, Ontario and New Brunswick, and New York, Vermont, Massachusetts, and New 

Hampshire states in the United State of America. Simulating this case using a traditional solver 

was consuming a lot of computation time with the MANA matrix solution acting as the bottle neck 

of this simulation time delay. Another trigger of this work is the urgency of attaining real time 

simulation (or as close to real time as possible) for realistic and existing power grids. This PhD 

project is a step forward in reaching the ultimate goal of having an automatic real time EMT 

simulation package that requires no intervention of the user and provides accurate and reliable 

simulation results.  

4.1.1 Sparse matrix package for EMTs (SMPEMT) 

The new way of enhancing EMT simulation is based on accelerating the solution of a network 

Ax = b system of equation and provide a customized sparse solver that is suitable for 

electromagnetic transient studies. The new sparse solver is called sparse matrix package for EMTs 

(SMPEMT) and it has been validated and tested using the EMT simulation package EMTP-RV 

that used an iterative technique to solve nonlinear equations and hence involves more computations 

that other packages. The development of this sparse solver involved two major steps namely: 

Finding an existing and fast sparse solver and applying parallel computation to the new solver. 

4.1.1.1 Replacing the Sparse solver package 

Throughout this PhD project, several sparse solvers were considered to select a fast and reliable 

solver package to act as the baseline that the work and improvement will be based on. The survey 

of literature narrowed down the search to three solvers: KLU, SuperLU and EMTP-MDO. The 
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three solvers were studied and tested against each other and EMTP-MDO were found to be 

relatively faster than the other two. However, studying KLU and its features makes adopting KLU 

as the based solver more appealing than EMTP-MDO. This is mainly due to the potential 

improvement that may applied on KLU and the continuous support the package has by its 

developers. Many features were added to KLU and contribute in boosting its performance, these 

features are the following: 

- Pivot validity testing: This feature was added to avoid unnecessary factorization during the 

Ax = b solution. The feature assumes the previously calculated pivot order is valid unless 

proven otherwise. This was done by making the refactoring technique of KLU as the default 

topology of updating LU factors. A test criterion was added in the refactor function to test the 

validity of the used pivot and flag any faults if detected. The same tolerance used in 

determining the pivot element is KLU is used in testing the validity of the previously calculated 

pivot in refactor function. 

- Partial factor: This added feature to KLU is capable of reducing the computation load of any 

case by providing a mapping between the changed elements of the matrix A  and different 

BTF blocks. By creating this mapping, only blocks with changed elements are factorized and 

the other unchanged blocks will be only solved using backward and forward substitution. In 

addition, using the refactor technique allows the partial factor technique to start refactoring 

process from the first left changed column (FLCC).  

4.1.1.2 Applying parallel computation 

Since BTF blocks are completely independent of each other, factorization and solving of these 

blocks in parallel was done by using parallel computation techniques OpenMP. OpenMP allowed 

to integrate the concept of parallel computation with minimum change of the sparse solver code. 

A load balancing technique was also developed to guarantee that all thread’s load are balanced and 

match the load other threads are loaded with.  

In conclusion, this PhD work enhanced the speed of EMT type simulation with the implementation 

of the new SMPEMT without jeopardizing the accuracy and precision of the simulation. The 

proposed SMPEMT solver accounts for varying topologies and the accurate iterative solution of 
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nonlinear models. The SMPEMT sparse solver is applicable to any software tool for the 

computation of electromagnetic transients. Moreover, the proposed enhancements to the KLU 

solver are applicable to other power system computation tools. 

The computational gains are demonstrated for practical and large networks. The demonstration 

benchmarks and results constitute another contribution of this project. 

4.2 Future work 

Investigation a new In-Block-Permutation 

Since the dynamic elements of the matrix A can be provided to KLU beforehand, it is worth 

investigation creating a new way of ordering the BTF blocks internally to reduce the amount of 

calculation KLU needs to refactor blocks. This new in blocks permutation will focus on individual 

blocks and push dynamic column to the right of the bock and all constant columns to the left of the 

block. This type of permutation will affect the fill-in reduction permutation used now in KLU and 

hence the challenge of this idea arises. The new permutation will have to combine the consideration 

of maximizing the constant part of the block (located at the left side of the block) and minimizes 

the dynamic part, and at the same time keeping the fill-in levels of L and U without big increase. 

This idea of IBP is similar to some extend to what is proposed in [34]. 

The application of METIS on single BTF blocks 

BTF permutation in SMPEMT is based on the existence of constant parameters transmission lines 

in the case under study. Each block represents a part of the network that is isolated from the other 

parts of the network due to the time domain decoupling effect of the CP line model. These blocks 

do not have any lines in the part of circuit they represent and that may limit the ability of obtaining 

an efficient parallelization. This effect was seen in many cases in chapter 3 and the biggest block 

of most cases acted as a limiting factor of the parallel process. Adding the concept of METIS into 

SMPEMT will allow the solver to break these limiting blocks into boarder block diagonal format 

and allow to increase the parallelization degree of the case being studied. 
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Loading balancing technique 

The loading balancing technique developed in SMPEMT is an efficient algorithm that provide a 

relatively efficient load balancing. However, it does take into account the size of constant regions 

and dynamic region of each block, and the integration of METIS or other permutation techniques 

will make such ordering obsolete.  

Improving threads loading  

It is notices throughout this PhD project that the efficiency of threading is based on the amount of 

work (load) assigned to threads. The more computation load threads have the better the 

performance. In the current SMPEMT implementation only Ax = b  solution is solved in parallel. 

In addition to this part, many parts of EMT solution process can be added to the threads and be 

done in parallel. These parts include the solution of the control system, update of models, update 

history and so on…. 
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