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RESUME

Le temps de simulation est un parameétre crucial de I’analyse des transitoires dans les réseaux
¢lectriques et il est en train de devenir I'un des facteurs les plus importants pour mesurer les
performances et la fiabilité des logiciels. Actuellement, la vitesse et les performances des
processeurs ont atteint un point ou 1’accélération de gain en vitesse et d’opérations en virgule
flottante peut étre réduite en se concentrant uniquement sur 1’aspect vitesse des processeurs
individuels. Au contraire, la recherche en informatique et le développement de matériel
informatique tendent de plus en plus a rendre les processeurs paralléles plutdt que plus rapides.
D'autre part, la simulation des systemes électriques devient de plus en plus complexe avec
I'introduction de modéles complexes tels que les énergies renouvelables, les composantes de
réseaux intelligents et I'électronique de puissance. En outre, la demande de puissance sans cesse
croissante et I’augmentation de la zone de couverture des réseaux de distribution d’énergie
contribuent a I’augmentation de la taille des réseaux de distribution d’énergie et ralentissent encore

plus la simulation électromagnétique transitoire de ces réseaux.

De nombreux -logiciels de simulation de type EMT effectuent actuellement leurs opérations de
maniere séquentielle en utilisant un seul - processeur, plut6t que tous les processeurs de la machine.
Ce comportement entraine un temps de simulation long et introduit des difficultés pour simuler des
réseaux de systemes d'alimentation plus avancés et complexes. Ce type de délai devient un obstacle
lorsque de grands réseaux, réels ou existants, sont utilisés. Par exemple, simuler le réseau d'Hydro-
Québec doté d'une matrice de taille 41555 x 41555 et contenant un grand nombre de dispositifs de
commutation et des éléments non linéaires nécessite 1765 secondes pour simuler une seconde avec

un pas de temps de 50us.

La programmation parallele multithread est maintenant disponible dans les compilateurs
modernes. Elle peut étre utilisée pour améliorer de maniére significative les performances des
calculs EMT. La recherche actuelles dans ce domaine est principalement appliqué a des systémes
moins complexes qui nécessitent I'intervention de l'utilisateur pour le découpage parallele et
mangue de généralisation pour toute topologie rencontrée dans les études réels. Cette thése
développe une méthode de parallélisation entierement automatique applicable aux systémes a

grande échelle avec des topologies arbitraires sans aucune intervention de I'utilisateur.
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Cette thése présente les avancées existantes dans le domaine de I'accélération de la simulation des
transitoires électromagnétiques et met en évidence les différentes approches adoptées pour obtenir
une simulation plus rapide de I'EMT. L'accent est principalement mis sur le threading a travers le
processeur exclusivement sur les ordinateurs de bureau modernes utilisés quotidiennement par les

ingénieurs.

Ce document portera principalement sur le threading exclusivement via le processeur. Dans cette
these, deux approches sont adoptées pour améliorer les performances et le temps de calcul de la
simulation EMT. La premicre approche est axée sur la recherche d’un solveur simple, rapide et
efficace, qui servira de base a ce travail de recherche. Ce solveur est entierement étudié et
personnalisé pour éviter tout calcul inutile qui n’est pas nécessaire pour les simulations de type
EMT. Différents solveurs linéaires de matrices creuses sont considérés dans cette thése. Ces
solveurs sont traditionnellement divisés en deux catégories, les solveurs directs et itératifs. Dans
cette étude, ’accent sera mis sur la sélection du meilleur solveur direct parmi KLU et SuperLU

deux solveurs basés sur I'utilisation de 1’ordonnancement de degrés minimum,.

La deuxiéme approche pour obtenir une accélération de la simulation EMT consiste a appliquer
une technique de calcul paralléle au processus de simulation et a permettre a différentes taches
d'étre résolues en paralléle sur différents processeurs. De nombreuses techniques de parallélisation
sont étudiées pour trouver la plus performante avec le moins de modifications possibles du code
du solveur et exigeany le moin de temps d’implémentation . De nombreux standards de
programmation multithreading sont pris en compte, tels que le multithreading C ++ 11 et le
standard OpenMP.

Le nouveau solutionneur proposé (SMPEMT) est validé et testé sur un large éventail de points de
repére. Cette validation est effectuée a I'aide du logiciel de simulation EMT EMTP-RV en tant que
support de test. Tous les résultats des tests SMPEMT sont comparés aux résultats de 'EMTP et la

vitesse de la simulation et le gain d'accélération sont également vérifiés.



vii

ABSTRACT

Simulation time is a crucial parameter in power system transient analysis. The simulation needs
for electromagnetic transients are continuously increasing. The electromagnetic transient (EMT)
type tools are now also used for the simulation of slower electromechanical transients in large scale
power systems. The EMT approach for power system analysis is the most accurate approach, but
it suffers from computation performance issues. Research on this aspect is currently of crucial
importance. Research is timely and should increase the application range of EMT-type tools. In
fact very fast EMT-type tools can have a major impact on the simulation and analysis of modern

power grids with increased penetration of renewables.

Currently, computer processor speed and performance reached a point where not much speed gain
and floating-point operation acceleration can be achieved by only focusing on the speed aspect of
individual processors. Rather, the trend in computer research and hardware development is

becoming more and more focused on making processors parallel rather than faster.

Many EMT-Type simulation packages currently perform their operations sequentially by using
only one CPU core rather than all machine processors. This behaviour results in long simulation
time and introduces major difficulties when simulating large and complex power grids. This type

of delay becomes a show stopper when large, real and existing networks are used.

Multithreaded parallel programming is now available in modern compilers. It can be used to

significantly improve the performance of EMT computations.

Current research in this field has been mostly applied to less complicated systems and requires user
intervention. This thesis develops a fully automatic parallelization method that is applicable to
large scale systems with arbitrary topologies.

This PhD thesis presents existing progress in the field of electromagnetic transient simulation
acceleration and highlights the different approaches that are adopted to achieve faster EMT
simulation. The focus is mainly on threading through CPU exclusively on modern desktop

computers used by engineers on daily basis.

In this thesis, two approaches are adopted to improve EMT simulation performance and

computation time. The first approach is focused on finding a sparse solver that is fast and efficient
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to act as a baseline for all computations. This solver is studied throughout and customized to

improve performance for EMT computation needs.

The second approach to achieve acceleration is by applying parallel computation techniques on the
computation process and allow different tasks to be solved in parallel on different processors.
Parallelization techniques are studied to find the best performing parallelization technique with the

least changes to the solver code and minimum implementation time.

The outcome of research is a new parallel solver, named SMPEMT. It is demonstrated and tested

on practical large-scale benchmarks.
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CHAPTER 1 INTRODUCTION

The circuit based electromagnetic transient (EMT) simulation approach is a powerful approach for
studying power transmission and distribution grids. The range of applications of EMT-type tools
varies from very fast transients to slower electromechanical transients. Typical studies include
switching transients, lighting transients, HVDC transmission, wind generation and
electromechanical transients from small to very large-scale systems. EMT simulation is also used
in the design and sizing of power network components such as insulation levels and energy
absorption capabilities. EMT-type simulation tools are subdivided into two main categories: off-
line and real-time. The main goal of performing off-line is to perform simulations on generic
computers that are easily available to engineers. Real-time simulation tools are capable of
generating results in synchronism with a real-time clock. Such tools have the advantage of being
capable of interfacing with physical devices and maintaining data exchanges within the real-time
clock. The capability to compute and interface within real-time, imposes important restrictions on
the design of such tools. Current off-line EMT-type simulation tools remain more accurate than the
real-time counterparts. They are also capable of solving much larger power grids and maintain
higher accuracy. Nevertheless, research on the acceleration of off-line tools is also applicable to
the eventual acceleration of real-time tools. Convergence of these tools into a single environment

is inevitable in the near future.

Instead of using EMT-type tools in time-domain, it is also possible to simulate large power grids
through phasor-domain computations. Phasor-domain tools are also referred to as transient stability
(TS) tools. The TS approach can be very fast, especially when solving very large-scale systems,
but it suffers from important accuracy issues. This is becoming nowadays an important issue with
the increased usage of power electronics-based components (wind generation, HVDC,
photovoltaics...) in modern power systems. In fact, in more and more applications, the much more
accurate EMT-type methods and models are called to replace the usage of TS-type simulation and
modeling. This trend will subsist, and EMT-type tools will receive wider and wider acceptance in
practical applications, especially when they become capable of much higher efficiency for

networks of very large dimensions.

This thesis presents the implementation of a parallel sparse matrix solver used for improving the

computational speed of EMT-type tools. The new approach contributes in enhancing the overall



quality of EMT simulation by reducing the simulation time while maintaining the simulation
accuracy and reliability. Unlike other solvers published in the literature that are demonstrated by
repeating a small network multiple number of times, the proposed approach can be generalized and
is valid on any power system network. The proposed new method is also capable of automatically

parallelizing networks of arbitrary topologies without any user intervention.

The new method presented in this thesis is based on the KLU sparse matrix solver which is
currently the most suitable for circuit-based simulation methods [1]. The solver is programmed
using parallelization algorithm that can automatically detect independent parts of the sparse matrix
separated by the natural decoupling available in transmission line/cable models. This decoupling
technique can be detected without any user intervention and pre-determination of different

subnetworks.

Due to the iterative process required for solving nonlinearities in various models, this thesis also
contributes modifications into the KLU solver for improving its performance when repetitive

matrix refactorizations are requested.

The proposed new approach is demonstrated using an EMT-type software (i.e EMTP) that uses a
fully iterative solution method for all nonlinear models [2]. It remains however applicable to any
EMT-type software tool that uses sparse matrices. A modular sparse matrix package can be

replaced easily by the package elaborated in this thesis.



1.1 Thesis Outline

This thesis is divided into four chapters that are summarized below.

Chapter 1: Introduction

This chapter introduces the concept of EMT simulation and the modified-augmented nodal analysis
(MANA) approach used in the EMTP simulation package to form its sparse matrix [3]. This
approach is explained in detail and illustrated with an example. In addition, different sparse solvers
are introduced in this chapter including the minimum degree ordering (MDO) based approach used
in EMTP [4]. These solvers are used and compared to select the fastest package and enhance it as

it will be demonstrated in the following sections.

In the second part of this chapter, different methods such as BTF, MDO, SSN and Compensation

theory are introduced as well.

The last part of this chapter discusses different threading algorithms used in implemented the multi-

threaded sparse solver used in this thesis.

Chapter 2: Implementation of Sparse Matrix Package for EMTs

In this chapter the approaches used to accelerate the simulation process are explained and the
implementation of a new sparse solver that is customized only for EMT-type simulations is
introduced and explained. In addition, a comparison between the new sparse solver and other

already existing ones is presented and discussed.

Chapter3: Test Results

In this chapter, different benchmarks used in the process of validating the new sparse solver will
be presented. These test cases consist of real and existing networks with complex models, including
nonlinearities and power-electronics converters for wind generator applications. Each network’s
topology is described with related matrices and complexity level. Computational timings are used

to demonstrate the advantages of the approach presented in this thesis.

The results of each test case are analyzed and studied. The acceleration rate (gain) for each case
will be looked at in depth and compared with other cases. Observations and limitations will be

address herein as well.



Chapter 4: Conclusion and Future work

This chapter provides a quick summary of the overall work done throughout this PhD work and it
highlights the main milestones that were achieved during this project. In addition, it provides

recommended future work.

1.2 Contributions

In this thesis the multithreading approach used for programming a parallel sparse solver is based
on the OpenMP standard and the use of distributed memory design. Thanks to this design an
efficient parallel solution is achieved, and the effect of overhead timings is kept at minimum. This
parallel model design minimizes shared memory between different threads and allows each thread
to store its own data on its own designated memory. This approach makes it easier for all threads
to fetch and write data to memory without the need to communicate with the master thread or any
other threads for that matter.

Another noticeable contribution in this thesis is the fact that the proposed method is tested on
realistic large-scale network benchmarks. Parallelization is achieved without any user intervention.
Such practical networks allow to derive more realistic conclusions on the potential gains in EMT-
type solver parallelization.



1.3 Literature review

The computing time reduction for the simulation of electromagnetic transients[2][5] (EMTS) is a
crucial research topic. The EMT-type[5] simulation methods are circuit based and can use very
accurate models for an extended frequency range of power system phenomena. This qualifies them
as being of wideband type. In fact, the EMT approach is applicable to both slower
electromechanical transients and much faster electromagnetic transients. The computation of
electromechanical transients can be achieved with EMT-type solvers for very large networks [6]
and requires significant computing time when compared to phasor-domain approaches, but even
for smaller networks, the computing time can become a key factor due to numerical integration
time-step constraints or model complexity level. More and more challenging simulation cases are
created for studying modern power systems, those include, for example, HVDC systems and wind
generation[7].

There are several technigques for improving computational performance in EMT-type solvers. Such
techniques include improvements in model performance using, for example, average-value
models[8] for power-electronics based systems or circuit reduction [9]. Network reduction can be
also achieved using frequency domain fitting[10], or through dynamic equivalents[11]. Other
approaches include usage of multiple time-steps[12], waveform relaxation [13] and combinations
of different methods [14]. An important problem in network solution parallelization methods, such
as[15], is that user intervention is required for setting the network separation locations and task
scheduling. The user should be aware of the case details in order to best allocate the separation
locations and optimize the performance of the parallel solution. It is also necessary to program
network topology analysis and, in some methods such as in [16], analysis can be used for automatic

task scheduling.

A more direct path towards computational speed improvement in EMT-type numerical methods is
through efficient sparse matrix solvers and parallelization. This chapter introduces different types
of sparse solvers used in general circuit analysis. These solvers are currently implemented in
different simulation tools and each has its own advantages and disadvantages. Moreover, parallel
computation concept will be discussed, and different parallel programming techniques will be
introduced. These techniques will be used in this thesis to implement the EMT customized sparse



solver. In addition, different ordering techniques will be discussed such as AMD, COLAMD, BTF
and METIS.

This work targets off-line simulation methods and presents CPU-based parallelization for

conventional multi-core computers using a sparse matrix solver, named KLU [1].

1.3.1 Modified-Augmented-Nodal Analysis (MANA)

The modified-augmented-nodal analysis (MANA) method is briefly recalled in this section.
The traditional approach for the formulation of main network equation is based on nodal analysis.
The network admittance matrix Y, is used for computing the sum of currents entering each

electrical node and the following equation results from classical nodal analysis.
Y.V, =i, (1.2

where, v, is the vector of node voltages and the members of i, holds the sum of currents entering

each node. It is assumed that the network has a ground node at zero voltage which is not included
in (1.1) . Since the network may contain voltage sources (known node voltages), equation (1.1)

must be normally partitioned to keep only the unknown voltages on the left hand side

Yo Y| [h w2
st YSS VS iS .
Yo v, =i, =Y Vg (1.3)

where Y, is the coefficient matrix of unknown node voltages v;,, i, holds the sum of currents

entering nodes with unknown voltage, Y, € Y, and relates to known voltages v, . It is noticed that
_ . T
Vi _I:Vn Vs} [20]

Equation (1.3) has several limitations. It does not allow, for example, to model branch relations
instead of nodal relations and it assumes that every network model has an admittance matrix
representation, which is not possible in many cases. This is where the modified augmented nodal
analysis comes into play. The MANA formulation method [20][21][22] is a relatively new

approach to formulate network equations. This method offers several advantages [3] over classical



nodal analysis. Its formulation is recalled here to relate to material presented in the following
sections. In MANA the system of equations is generic and can use different types of unknowns in
addition to voltage. Equation (1.3) is augmented to include generic device equations and the

complete system of network equations can be rewritten in the more generic form as seen in (1.4).

In this equationY,, € Ay, X, contains both unknown voltage and current quantities and by
contains known current and voltage quantities. The matrix A, is not necessarily symmetric and it

is possible to directly accommodate non-symmetric model equations. Equation (1.4) can be written

Yn Ac Vi _ in 15
{Ar Ad}{ix}_{vj ( . )

where the matrices A,, A, and A, (augmented portion, row, column and diagonal coefficients)

explicitly as

are used to enter network model equations which are not or cannot be included in Y, , i, is the

vector of unknown currents in device models, v, is the vector of known voltages, Xy = [Vn ix]T
and by =[i, vx]T [23].
It is emphasized that the system in (1.5) is nhon-symmetric and can also accommodate generic
equations, such as

KV, + KoV, + Kl + Kyl +.=Db (1.6)
Where the terms on the left contribute coefficients (k; ) into the A matrix for voltage (v; ) and

current (i;) unknowns, and b, is a cell in the b vector. This equation allows integrating directly

source and switching equations. For example, an ideal switch can be represented by
kv, —kv,, —Ki,, =0 (1.7)

When the ideal switch is in closed position, k =1 and k, =0 . When the ideal switch is open, k =0

and k, =1. It is also possible to model non-ideal switches by setting k =1 and replacing k, by



high and low resistance values. Other, models, such as ideal transformers with tap control can be

easily accommodated [3].

Single phase and three-phase transformers can be built in EMTP using the ideal transformer unit
shown in Figure 1.1. It consists of dependent voltage and current sources. The secondary branch

equation is given by

Vi, =Vi, — QY + 0V, =0 (1.8)

Where, g is the transformation ratio. This equation contributes its own row into the matrix A,
whereas the matrix A, contains the transposed version of that row. It is possible to extend to

multiple secondary windings using parallel connected current sources on the primary side and
series connected voltage sources on the secondary side. Leakage losses and the magnetization

branch are added externally to the ideal transformer nodes.

Three-legged core-form transformer models or any other types can be included using coupled

leakage matrices and magnetization branches.

lkom2

k1 k2
_ +
ml m2

Figure 1.1 Ideal transformer model unit

The MANA formulation (1.4) is completely generic and can easily accommodate the juxtaposition
of arbitrary component models in arbitrary network topologies with any number of wires and
nodes. It is not limited to the usage of the unknown variables presented in (1.5) and can be
augmented to include different types of unknown and known variables. The MANA formulation is

conceptually simple to realize and program [23][24].

In order to provide a better understanding of the MANA formulation, the following example

illustrates a simple circuit with its MANA formulation. Figure 1.2 illustrates the example circuit



structure with all its components names and ratings. The analysis of this circuit starts by forming

the submatrix Y, that contains the admittance matrix of the MANA main matrix.
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Figure 1.2 MANA Formulation Example

In order to find the time domain system of equations using the MANA formulation, the linear
components of the circuit above (i.e inductors and capacitors) need to be discretized for a given
integration time step At using a numerical integration method. Although any discretization rule can
be used, the trapezoidal rule technique has been used herein to discretize nonlinear model of the
circuit into linear representation. The inductor equation shown in (1.9) is discretized into a linear
format shown in (1.10), this discretization allow to model the inductor as shown in Figure 1.3.

Similarly, the capacitor equation can be discretized in a similar fashion as well.

di
v, =L—" 1.9
At At

ikm = kam + Ivkmvm + ikmpm (110)
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Figure 1.3 Discretized inductance model for time domain MANA solution

Equation (1.11) shows the MANA formulation of the circuit shown in Figure 1.2. The equation of
each node has been written by replacing the inductors and capacitors connected to it by their
discretized model. Node 1 for example (which represents BUS 1 in Figure 1.2), has L, C and RL

branches connected to it in addition to the current source ig,. Hence, replacing the L, C and RL

branches with their discretized model produces the node junction shown in Figure 1.4 where R1,

R3 and R4 represent the resistors in the discretized model of L1, C1 and L2 respectively.

Yu Y 0 0 0 vy 00 0} v _isl+ih61_ih12_ih10

Ya Y 0 Y, -2 0 00 0}v, o Fingo oo T

0 0 y, 0 0 0 00 0fv, “H a0, o,

O v, 0 vy, 0 0 00 0fv, s

0 2 0 0 2 0 00 O0fv|= 0 (1.11)
Yo 0 0 0 0 Yes 1 0 0 vs 'ih61

0 0 0 0 0 1 00 0fi, v,

0 0 -1 0 1 0 0 1 0ig, 0

(0 0 0 0 0 0 00 1fig,| | 0 |
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Figure 1.4 BUS1 branches discretized model

Hence, the value of y,, shown in equation (1.11) is the summation of R1, R2, R3 and R4

admittances that can be calculated using the following equation:

At 2x0.8x107° N 1

= +
2x6x107° At 005+2><2><1o-3

Yuu

In a similar manner all quantities in the Y, part of the MANA matrix can be found as follows:

1
Y, =— 3
0.054 2x2x10
—At
Yis e e—
2x6x10
1
Yoo = yll+ﬁ
Yo=Y
B B —At
Yoo = Ve = 2x6x107
2x1x107°® 1
Yoo T 2x19.72x10°
2261+ ——— ——

Yoo =Y
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Yes = Y16

Yor = Y16

The terms on the right of (1.11) are the contributions from independent current sources and history

current sources resulting from component discretization (inductances and capacitances).

In the current project, EMT simulation is solved at each time step after updating A for switches
position changes, transformer tap changes or any other modifications in model equations (including
nonlinear devices). For nonlinear models (NMs), the NEs must be solved iteratively to achieve an
accurate simultaneous solution. This is done by linearizing each model at each operating point and
solving iteratively [3]. Model linearization results into a Norton equivalent with the Norton
resistance contributing changes into the A matrix and the Norton current contributing updates into

the b vector.

It means that at each time-point it is necessary to resolve (1.11) iteratively until convergence for

all nonlinear models is achieved.

For time-varying models (TVMs), such as switches or transformer tap positions, it is also possible
to update A iteratively without advancing to the next time-point. This accuracy option, marked as
iterative time-varying method (ITVM), allows achieving a simultaneous solution for the
determination of all changes and dependencies between models at the same time-point. This

process also includes the sequential re-calculation of control system equations [3].

1.4 Parallelization and network tearing

In order to be able to solve power systems in parallel, the network system of equations needs to be
subdivided into multiple subnetworks. This division process allows distributing different parts of
the network on different CPU cores and solving these subnetworks independently. Several schemes

can be used to achieve this goal. A list of known methods is presented in this section.

1.4.1 Block Triangular Format (BTF)

The block triangular formulation of a matrix is an approach specialized in permuting the matrix by

putting as much non-zero elements of the matrix along the diagonal [25]. This reordering allows
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the flexibility of partially decoupling the matrix into different submatrices and allows the solving

of these submatrices separately. Figure 1.5 shows a generic representation of the block triangular
format with blocks A; aligned along the diagonal and some off-diagonal elements A;. These off
diagonal blocks/elements arise due to light links between different parts of the matrix such as block
A, and A,; that are linked through A, block, and A,, and A, that are linked through A,

block. In this thesis all cases used have no off-diagonal elements in them thanks to the time domain
decoupling produced by transmission lines. Although, the parallelization of matrices shown in

Figure 1.5 is still feasible, it involves more restrictions and complications.

Ayl 0 [AL 10 [0
0 | A, 0|0 A
A=| 0 | 0 |[A ] 0 |0
00| 0 A, O
00|00 A,

Figure 1.5 An example of a matrix in BTF form

Another type of block triangular form that is more interesting for parallelization and mainly used
herein, is the type where there are no off diagonal blocks/elements. This type of format is called
block diagonal form BDF since all matrices elements are aligned along the matrix diagonal and the
rest are zeros as can be seen in Figure 1.6 [25].

Ayl 0|00 o0
0 | A, 000
A=| 0 | 0 |A, 0 | 0
00 |0 |A, 0
00|00 A,

Figure 1.6 An example of a matrix in BDF
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In order to transform a matrix into the BTF form, the KLU package uses a special technigue that
is based on Duff and Reid’s algorithm [25]. This algorithm finds any matrix BTF form (if
applicable) by finding all strongly connected vertices of the matrix. It starts by preparing the matrix
adjacency graph which guides the algorithm by moving from one graph vertex to another. Then a
depth first search is launched starting from a random vertex and tries to visit/reach the maximum

number of graph vertices of which there exists a path.

The design of KLU BTF algorithm uses a user-built stack that keeps track of all visited and
unvisited vertices and avoids many run time errors such as stack over flow and memory shortage.
The algorithm uses depth first search (DFS) topology that is based on a recursive algorithm to find
all possible strongly connected vertices in the graph and keeps track of all visited and non-visited
vertices. Once all connected vertices are labeled as visited, those vertices (nodes) form a block in
the BTF form and the DFS algorithm begins again starting from an arbitrary non-visited vertex.

The vertex graphs are explored and all efforts to try all combinations of connections is exhausted.

The following example gives a better visualization of how the BTF algorithm calculates strongly
connected regions of the matrix. It is noticed here that the transmission line models are of
distributed parameter type. In fact, any such model, either with constant parameters or with
frequency dependent parameters, offers an important property for parallelization. The line (or
cable) model provides a delay between its left (k-side)) and right (m-side) hand sides. This means
that the k-side network can be solved completely independently from the m-side network without
any approximation. This well-known property is the key ingredient used in this thesis for delivering
parallelization. Nevertheless, the independent subnetworks created by transmission lines, must be

found automatically.

The sparsity pattern of the matrix of the network shown in Figure 1.7 is presented in Figure 1.8,
and the BTF version of this matrix is presented in Figure 1.9. The BTF method can automatically
derive the block-diagonal (BD) without any user intervention as long as the case has at least one

transmission line implemented in it.



RL1

230kVRMSLL /_|

15

R2

L1
—0
im
+
>S5
=y

Figure 1.7 BTF format test case

Figure 1.8 Sparsity pattern of matrix A of circuit shown in Figure 1.7
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Figure 1.9 BTF Sparsity pattern of matrix A of circuit shown in Figure 1.7
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In order to facilitate the differentiation between a BTF ordered matrix with a non-ordered matrix,

the “hat” symbol is used from now on to represent all BTF ordered matrices (i.e A). In addition,
the second digit in the BTF block index will be dropped due to the fact that all cases used herein
have no off-diagonal blocks and both digits used to refer to a BTF block in this case are the same

(i.e Ai refers to block i in the BTF ordered matrix A). The BTF ordering is similar to graph

traversal ordering that is based on a depth first algorithm to find all decoupled subnetworks and
used in [16]. This ordering tries first to decouple the network based on the presence of the existing
transmission lines and detect each subnetwork by the end of traversal, and at the same time they
apply a heuristic calculation on the time cost for each component type (R, machine, inductance,
etc...) in the subnetwork to make the simulation fit to real time simulation. Based on the execution
cost, it can decide to join several subnetwork in one cpu and put this in one matrix if the resolution

will fit in one step.

In KLU solver package, the BTF ordering is followed by another ordering that aims at reducing
the I:i and Ui matrices fill-in. There are three ordering techniques that are already implemented
in KLU package which are AMD, COLAMD and a user pre-defined ordering. This step plays a
major role in reducing computational load during KLU numerical solution by reducing the number

of floating-point operations required to solve the system. This type of ordering will be discussed

in the coming sections.

1.4.2 METIS

METIS is an efficient algorithm that allows the partitioning of a matrix into multiple submatrices
that are either independent of each other or share elements with other submatrices with all shared
elements aligned along the submatrices boarders. An advantage of METIS is the feasibility of
increasing the degree of parallelism with the existence of only one partitioned matrix in the system.
METIS is specialized in partitioning large-scale irregular graphs or meshes and providing a

permutation that provides an efficient partitioning as well as a reduction of fill-in of I:i and Ui

factors [26].

Unlike other traditional ordering techniques that work on the graph directly to provide a portioning
by one step operation, and hence provide a low quality and less efficient partitioning, METIS is
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based on multi-level graph partitioning technique that adopts a totally different technique that
works on the graph and reduces the size of the graph as much as possible, by collapsing graph
vertices and edges and partitioning the small graph and re-ordering it to produce the partitioning
of the original graph [26]. Figure 1.10 shows matrix A of the IEEE1138 bus system ordered by
METIS algorithm.

200 f b O
400 |
600 ...

800

1000

0 200 400 600 800 1000
nz = 4054

Figure 1.10 IEEE-1138 network ordered by METIS

Not only METIS can provide a high-quality portioning over other ordering techniques, it is
considered one of the fastest ordering techniques that can provide its partitioning results in one or

two orders faster that other traditional algorithms. Moreover, METIS ordering contributes in
reducing the fill-in of ﬁi and Ui factors without the need of using other techniques to do this task.

METIS has the ability to produce more blocks along the diagonal compared to BTF. This
phenomenon is due to the fact that METIS does not require a complete decoupling of blocks like
BTF, but rather it can still reorder a block (that BTF was not able to partition) into sub-blocks and

align all shared elements between these sub-blocks along the matrix or block border.

However, given the types of problems this thesis deals with, and the fact that BTF blocks are totally
independent of each other, the use of METIS becomes less significant for cases that have multiple
transmission lines that allow decoupling the case in time domain into relatively small independent

regions. The importance of this ordering technique arises when a large-scale case with no
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transmission line in its structure (or have very few of them) is being studied. Using Metis in this
case helps introduce some degree of parallelization into the solution. In addition, this partitioning
technique can help reduce the effect of large limiting blocks that prevent parallel simulation as will
be seen in chapter 3. In addition, different fill-in reduction techniques that were tested herein (such

as AMD) were found to be more efficient and produce around 15% less fill-in compared to METIS.

1.4.3 SSN and MANA

Another parallelization approach can be achieved through the combination nodal or MANA
equations with state-space equations. This approach, name state-space nodal (SSN), is explained
in [27]. The basic principle is that the network is separated (cutting) into state-space groups that

are solved independently in parallel and combined through MANA equations.

Although the SSN method is perfectly accurate, it has two drawbacks. First the network separation
locations must be determined manually. Another problem is that the usage of state-space equations
is typically inappropriate for solving large scale grids. Other complications arise when the state-

space equations must be reformulated for nonlinear models and time-varying models.

1.4.4 Scotch

Scotch [28] is yet another sparse matrix package that focuses on solving graph theory-based
problems using divide and conquer approach. It is used in wide range of applications and not
limited to electrical or power circuit problems, this package is based mainly on nested dissection
approach to permute the application sparse matrix into a format that allows certain degree of
parallelization. The nested dissection starts by forming the matrix undirected graph in which the
vertices represent rows and columns of the matrix, and an edge/connection in the graph represents
a nonzero entry in the sparse matrix. Once the graph is formed, the nested dissection algorithm
uses a divide and conquer strategy on the graph in order to remove a set of vertices to result in two
new graphs that are independent of each other. This algorithm uses a recursive technique that
partitions the graph into subgraphs by selecting barriers or separators that consist of small set of
graph vertices. The removal of these separators creates independent subgraphs. Applying

factorization and solving the matrix parts that represent the new sub-graphs can be done
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independently and in parallel. The results of the two new graphs can then be combined to find the

overall matrix results.

In order to better understand the nested dissection ordering, the following matrix shown in Figure

1.11 gives an example of a matrix graph (mesh) that is ordered by nested dissection. In this figure,

the graph is partitioned into four subgraphs (A, B, D and E) by three different separators (C, F and

G). The matrix shown in equation (1.12) is a representation of the matrix after being reordered.

Sub-Graph A

Sub-Graph D

Separator C

Sub-Graph B

Separator G

Sub-Graph E

Separator F

Figure 1.11 Scotch example - matrix graph

SAA SAC
SBB SBC
SCA SCB SCC

SGA SGB SGC

SDD

Sep
Sep

See
See
Sce

(1.12)

Equation (1.12) shows the matrix after being ordered by nested dissection. All black elements in

the matrix represent sub-graphs created after adding the separators, and all blue and red elements

represent elements that are located across the separators (C, F and G) and they are linking different

black blocks together.
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Comparing this ordering technique with other ordering techniques, it is found that the nested
dissection ordering is only applied to symmetric matrices, and that is a condition that can’t be met

and guaranteed in many EMT simulation tools including EMTP.

1.4.5 Bordered Block Diagonal matrix

This ordering scheme is a methodology that permutes the power system network matrix A into a
doubly bordered block diagonal (DBBD) or a single bordered block diagonal (SBBD). Figure 1.12
shows the typical structure of a DBBD permuted matrix [29].

o0
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0000 00 00
o000 00 00
Figure 1.12 Doubly bordered block diagonal (DBBD)

It can be seen from Figure 1.12 that a doubly bordered block diagonal form is similar to a block
upper triangular form but has non-zeros on the sub diagonal region. These nonzero elements found
in the lower section of the diagonal form a horizontal strip resembling a border. The same thing
applies for nonzero elements above the diagonal, these elements form a vertical strip that resemble
a vertical border. Many ordering techniques can be used to produce DBBD permuted matrix such
as METIS and nested dissection [26].

Generically speaking, when a complete network or a network portion does not contain delay-based
transmission line models, it will not be possible to create a BD matrix for its equations. It can be
demonstrated that for such cases, it is possible to derive a BBD matrix as seen in following

compensation theory section.

1.4.6 Compensation Theory

The Compensation method theory is presented in [31]-[33] and it was used in [34]. The application
described in [34] is for the solution of nonlinear models in an EMT-type code. The limitations that

this method may encounter for solving nonlinearities, or in general, are described in [35]. It is
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shown in [35] that the compensation method although very powerful, is not conformable to the
topological proper-tree and therefore has topological limitations. The hybrid analysis method [36]-
[38] has been shown in [40] to be more general than the Compensation algorithm. The work in

[35][39] relates the more general hybrid analysis to the Compensation method.

Despite the limitations of the Compensation method for solving nonlinear systems, it will be used
below to demonstrate how it links to other methods in the literature and how it can be used to
decouple networks when transmission line delay-based decoupling is not possible.

The basic idea of the Compensation method is illustrated in Figure 1.13. In this figure the dash line
shows cutting through wires. It is assumed that a linear or nonlinear network N2 is connected to
network N1 through one or more wires. In some publications [34] it is assumed that N2 can contain
only (one type of) nonlinear component, but N2 can actually contain any number of nonlinear
components and it fact it can contain complete arbitrary (except for cases explained in [35])
networks. In the following, it will be assumed that N2 is actually a grid with any number of

components. N2 can be purely linear.

=
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Figure 1.13 Separation of two networks using the compensation method

Let us assume the wires (i wires) connecting N2 to N1 are connected to a set of nodes N in N1.

It can be written that for any time-point solution

v,g”a' =V vy, (1.13)

where vy is the solution vector of node voltages for N1 when it is disconnected from N2, vy -is

the solution found from the contributions of currents entering N1 through A wires and vgna' is the

final solution through the superposition theorem. In this presentation, it is assumed that N1 does
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not contain any nonlinearities, whereas N2 may contain nonlinear components that require

iterations for an accurate solution. It can be further shown that
where Z, is an impedance matrix relating the currents entering the set of nodes N to the

contributions on voltages Vg, - By using an incidence matrix, the branch voltages in N2 are related

by

vy = ALy ™ (1.15)
where A, is the nodal incidence matrix for the nodes in N2. If all the fi wires are connecting from
node to ground, then A, becomes unitary and diagonal. By combining equation (1.13), (1.14) and
(1.15)

V=V +ALZi, (1.16)
where ¥, is the vector of Thevenin voltages as found from N1. It is apparent that the Thevenin
impedance matrix Z,, is given by

Zy=AlZ, (1.17)
and consequently
V=V +Zy, (1.18)
Finally, it is noted that the currents i, and voltages v, are related through a function @ that could
be linear or nonlinear:
(I)(V¢,i¢)=0 (1.19)

If ® is nonlinear then (1.18) must be solved using iterations and the Newton method.

The vector v, is time-dependent and must be found at each time-point solution. The matrix Z,,
may also have time-dependency due to switching devices in N1.
In Figure 1.13 it is assumed that N1 includes coupled (no delay-based transmission lines) networks.

It is however possible that N1 contains decoupled networks or wires are used to connect separate

networks. Let us assume that there are now two networks in N1 and N2 that are connected together
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using the circuit of network N3. In that case the new representation of relations between networks

Is shown in Figure 1.14.

N1 N3
I 3 I
N2

=

Figure 1.14 Two networks N1 and N2 connected through wires in network N3.

The MANA formulation of network equations for Figure 1.14 is given by

A 0 Sck X1 b,
[ ]H 020

0 Ay S |[|X

X3 b,

S« Sm Sq
In the above system, A, is the matrix of N1, A, is the matrix of N2, the Smatrices are the
connecting matrices from network N3. It is possible that some off-diagonal S matrices are nullified
due to disconnection between N1 and N2. Equation (1.20) is generic and allows N3 to contain
longitudinal impedances, but for the following text and without any lack of generality, it is assumed
that the impedances in N3 are simply zero, meaning that N1 and N2 are interconnected through

ideal wires. For ideal wires, equation (1.20) becomes
b,

A, 0 S ([x
0 A, S, X |=|by
0

(1.21)

S¢St 0 |[Xs

The Compensation based solution of (1.20) (or (1.21)) can proceed as follows at each solution
time-point. First it is necessary to solve with switches open (cutting the wires) by using
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A, 0 0fxg b,
0 0 1lliy| |0

In this way the unknowns x; and x, are found before compensation and x, =i, for the wire
currents (zero in this solution stage). From the found vectors x; and x, it is possible to directly
extract the network Thevenin voltages ¥, and ¥, , respectively. Then using current injection
method in b; and bj for each network, it is possible to derive the Thevenin impedances. In the

following equations the double-primed vectors signify the current injection method for finding the

Thevenin impedances Z,, and Z,, (column-by-column process):

A =D (1.23)
A,x5 =hj '
At this stage it is possible to solve for the wire currents i, with
|:2th1 + Zthz :| i3 = \A/thl - \A/thz (1.24)

The above relation is illustrated in Figure 1.15 and it is assumed that the wire currents are oriented
from left to right. It is also assumed that the coefficient matrix resulting in (1.24) is not singular.

Zthl Zthz
+ :
. _
13
Vthl ‘?thz

Figure 1.15 Compensation based equivalent of network in Figure 1.14.

After solving for i, in (1.24), it is now possible to solve for the contributions (x,, and x,,) of i,

on N1 and N2:

A Xy, =-Si
P Tk (1.25)
AyXyy =—Spls

Finally, we can apply superposition (compensation) to find
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X; =X; +X
LY (1.26)

Xy =X, +Xpy
The above procedure must be applied at each solution time-point. Any number of networks can be
used and interconnected using wires (or impedances). Equations (1.23) and (1.25) can be solved in
parallel. If there is any topological change in N1 or/and N2, it is necessary to recalculate z,, or/and
Z,, . This is an important limitation and can become computationally very intensive with power-

electronics based systems.

The above solution steps can be explained and performed differently. Equation (1.21) can be

rewritten as follows

10 S,1[x] |b:

{o 1 sz}{le b, (1.27)

0 0 Sgllis] |B,

with

S, =A’S, (1.28)
b, =A'o, (1.29)
S, =Aj'S,, (1.30)
b, =A}', (1.31)
S, =SS, +S1.S, (1.32)
b, =Spb, +Shb, (1.33)

From (1.24) and (1.32) it is seen that

S;= Zthl + Zthz (1.34)
From (1.24) and (1.33) it is apparent that

by =V, — Vit (1.35)
because b, isactually x; in (1.22). The same applies for b, and xj . It is noted that the coefficients

of S! are negative (ideal switch equations) and that explains the corresponding negative sign in

(1.35). Finally, it is clear from (1.27), (1.25) and (1.26) that

Xl = _Ailsk|3 + AIlbl = X1¢ + X:’l. (136)
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The approach derived with (1.27) is actually called MATE (Multi Area Thevenin Equivalent)
[40][41]. As proven above with (1.36) and (1.37), and contrary to what is written in the literature,
MATE is not a new theory or approach, it is in fact the Compensation method that was available

in the literature much before!

The formulation of (1.20) indicates that if it is possible to find the bordered-block-diagonal matrix
of a network, then it is possible to solve it in parallel even when distributed-parameter lines are not
available. That solution uses the Compensation method (or MATE). Any number of networks can

be separated (cut) and solved. The above illustration was made for two networks N1 and N2.

But there is a fundamental flaw in this approach. In a typical network, the networks N1 and N2

may encounter topological changes and require recalculating S; in (1.34), which is

computationally inefficient and even catastrophic if repetitive switching occurs due to power-
electronics converters, for example. Moreover, all of the above is assuming linear networks and
becomes inapplicable for practical problems with nonlinearities. It is possible in theory to extend
the above Compensation based network tearing to include nonlinearities, but that may result into

significant computational inefficiencies and annihilate the gains due to parallelization.

As a final demonstration, one can notice that the presentation given for (1.27) is simply the

symbolic solution of (1.21). The steps are written here for convenience:

Syiy =b, (1.38)
X, =—S,i5 +B; (1.39)
Xy = ~S,i5 +D, (1.40)

The solution order is

1. solve in parallel: equation (1.29) for b, and (1.31) for b,

2. solve for b, with (1.35) (the two parts of this equations can be calculated in parallel and
then combined).
use (1.38) to find i,

solve (1.39) in parallel with (1.40).
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In reality it is not possible to implement symbolic matrix inversions in actual software codes, as
shown in (1.28)-(1.31). This is obvious for power system software developers. In fact LU
decomposition must be used for solving (1.21) by re-writing it as follows

Ly Ly L[ 0 0 Usg|Xs b,

where the coupling matrices in L and U are resulting from the interconnecting switch equations.
It is noted that L,, and Uy, are not zero even if s, =0 (ideal wires). The purpose here is to

implement the solution of (1.41) in parallel. This can be done by realizing that

L, O 0 |ly; b,
Ly La Laz]lys b,

The solutions of y, and y, are found in parallel. The solution of y, can be found from

Lasys =bs—Lay; —Lgy, (1.43)
At this stage we have
U 0 Ugl|[x Y1

0 0 Ug|xs| Vs

The solution of x, is found from the last set of equations in (1.44):

UssX3 =Y3 (1.45)

Once x, is known, itis possible to solve for x, and x, in parallel since

U;X; =y; —UssXs (1.46)
UsX; =Y, —UgpsXs

This idea of parallelization outlined above is also said to be based on diakoptics [42][43]. It has

been discussed in [42][43] (also other publications) and recently re-used also in [19]. It is the same
idea as in (1.38)-(1.40).

Contrary to what is said in [19] it is obvious that LU decomposition was and must be used to solve

(1.21). In addition, as it is said in [19], it is not necessary to derive the L, and U,, (for k=1..3

in this case) matrices explicitly, since these matrices can be found directly from a sparse matrix
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solver. Moreover, it is again emphasized that the time-consuming LU decomposition must be
repeated in the presence of switches and nonlinearities. This important aspect is not considered in

[42] and it will be even more inefficient with the approach proposed in [19] for finding L, and

Uz -

In the above theory, there are no restrictions in the number of interconnected networks. One
fundamental issue to be automate the derivation of (1.21). Switches can be inserted manually for
parallel computations, but ideally it should be done automatically. It is possible to use tools like
METIS to find bordered-block-diagonal matrices (as shown in (1.21)), but there are no
demonstrations on the capabilities for arbitrary topology networks. The work in [19] uses the trivial

duplication of a small network and no conclusions can be derived from such work.

The efficiency of bordered-block-diagonal formulation depends on the contents of the borders. The
larger borders may require too many operations (see (1.43) and (1.45)-(1.46)). The resulting
sparsity patterns must be analysed. In conclusion, significant further research is needed before

applying this approach for practical systems.

Finally, it has been shown above that the Compensation method is also indirectly related to the

formulation and solution of (1.21).

1.5 Sparse Matrices

Matrices in general have different types and different usage in many scientific fields. Sparse matrix
IS a term used to represent matrices with high number of zeros among its elements. These types of
matrices appear in many scientific applications such as power systems, thermodynamics and

different types of physical modelling.

A typical power grid matrix is typically more than 98% sparse. This means that most elements in

the matrix are zero.

Sparse matrices possess specific characteristics that can be exploited to accelerate the solution
process of very large-scale linear algebra problems. Sparse matrices require less storage memory.

Using sparse matrices can dramatically improve the computational speed of large-scale linear
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algebra problems. In fact, it is essential to apply sparse matrices for solving large scale power

systems in an EMT-type method.
Several packages are available for solving sparse matrix problems.
A simple electrical circuit, its sparse matrix (MANA formulation) and its sparsity pattern are shown

below in Figure 1.16 and Figure 1.17.

RL1 TLM1 R1

FN\ACL N + +

% & %j Rn2
’ L

Figure 1.16 Small scale circuit with CP transmission line

[ 0.5%x10° 0 0 -05x10° 1]
0 0.50205 -0.5 0 0
A= 0 05 25 0 0 (1.47)
~0.5x10°° 0 0 10016 O
1 0 0 0 0]
0
n
A
ol
nz=11

Figure 1.17 Non-zero pattern of matrix for the circuit of Figure 1.16.
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1.5.1 Sparse Matrix representation

Sparse matrices can be presented is many different formats depending on the application they are
used in. Different types of applications have different requirements in terms of ordering of matrix
elements and representation in memory. One of these presentations is the classical way of matrix
presentation that is stored in memory as a two-dimensional array. This type is often used in dense
matrix memory storage and applications. However, adapting such a storage topology results in
waste of memory resources due to the high number of zeros that will be stored, and the expanding

of cache segments required for access during solution.

Other representations exist to reduce memory storage and consider only the non-zero elements in
the matrix. The following two sections provide details about two sparse matrix representations that
are often used in circuit analysis. These two storage techniques reduce the size of memory required

to store sparse matrices.

15.1.1 Compressed Column Format

The compressed column (CSC) format allows storing a sparse matrix using three single
dimensional vectors that include only nonzero elements in the sparse matrix and their locations. To
fully represent each element location three vectors are used. Let the sparse matrix be A, the size

of the matrix A is nxn and the number of nonzero elements in A is nnz.

Let the three vectors representing A be A,, A, andA, ; where:

A, : n+1 longinteger vector that contains indices of the starting nonzero elements of each column.

This first element of this vector (A (0)) is zero and the last element (A, (n)) is nnz.
A,: nnz long integer vector that stores the row number of each nonzero element in A.

A, : nnz long vector that stores the numerical values of all nonzero elements in A in the same
sequence they are listed in A, .
The matrix shown in (1.47) is used herein to illustrate the concept of CSC format. In order to better

understand the explanation in this section, the non-zero elements of the matrix have been numbered

in a sequential manner as shown in Table 1.1.



Table 1.1 Matrix (1.47) nonzero elements order

Element Number Element
0 A(0,0)
1 A(3,0)
2 A(4,0)
3 AR
4 A(2,2)
5 A 2)
6 A(2,2)
7 A(0,3)
8 A33)
9 A(0,4)

10 A(0,0)

31

The A, vector is formed by listing the sequential number of each column’s first nonzero element.

For example, A, (2) is the sequential number of the first nonzero element of column 2 which is

according to Table 1.1 is equal to 4. Hence A, is equal to the vector shown in (1.48).
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(1.48)

© N o1 w O

10

A, vector is formed by listing the row number of all (1.47) nonzero elements in the same sequence
they are listed in Table 1.1. For example, A, (6) is the row number of the sixth element A(2,2)

which is in this case row number 2. Therefor the vector A, is formed as shown in (1.49).

(1.49)

O w o N P DN PP B WO

Vector A, stores the numerical values of all nonzero elements in matrix (1.47). The ordering of

elements listed in A, is done in the same sequence as A,.
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[ 0.5x10°° ]
-0.5x10°®
1
0.50205
-0.5
A, = o5 (1.50)
0.5
-0.5x10°°
1.0016

1

1.5.1.2 Compressed Row Format

The compressed row (CSR) format is similar to CSC in terms of methodology, however, the
sequence of listing the non-zero elements is by rows instead of columns. This format lists the

numerical values of all non-zero elements in A, , the column number (not row as CSC) of all non-
zero elements in A, and the index of starting nonzero element of each row A, . Equations (1.51)

to (1.53) provide the CSR presentation of matrix (1.47).

0]

A,= (1.51)

10|
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(1.52)

O W o N PEFEPE NP DM wWwO

AX = (153)

The computational performances of the above two sparse matrix representations are similar and
one can use any one of them to code any sparse solver algorithm. However, it is very crucial when
using an open source solver to know what representation the solver is expecting as an input,

otherwise the solution results given by that solver will be wrong.

1.5.1.3 Solving a Sparse matrix

Solving a sparse matrix is the same as solving a dense matrix in terms of general steps and topology.
Both types of matrices need to be factorized to two factors that have similar size as the original
matrix and differ in structure from each other. These two factors are the upper factor U and lower
factor L . Equations (1.54) and (1.55) show the structure of a system of equation before and after

factorization.
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(1.54)

(1.55)

It can be seen from (1.55) that the upper factor (U ) has nonzero elements only above the diagonal;

whereas the lower factor (L) has nonzero elements under the diagonal line. Solving the system

shown in (1.55) is done in two steps: Forward and backward substitution. During the forward

substitution the equation shown in (1.56) is solved. While in the backward substitution the system

shown in (1.58) is solved.

—

11

—

2,1

31

.

Ln,l

Where:

Y,
Y,
Y

Ys |

0
L3,3
Ln,3 Ln,n
U1,2 Ul 3
U 2,2 U 2,3

Y.
Y,

Ys

Cc

1n

-

2n

C

3.n

n,n

Ys |=

(1.56)

(1.57)
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U11 U1,2 U1,3 Ul,n X Y1
Uz,z U 23 7 U 2n || X2 Y,

Uss o U || X5 |5 Ys (1.58)
i 0 Un,n__xs_ LY |

1.6 Sparse Solvers

In order to achieve a higher speed of EMT simulation a suitable and efficient solver package must
be used. Accelerating the performance of any EMT simulation package starts by selecting a solver
that is in line with the matrix structure of that EMT simulation package. In this section, a brief
presentation of three sparse solvers is given and supported with different types of examples. These
sparse solvers are KLU [1], SuperLU [44], and the minimum degree ordering based solver that is
currently used in EMTP [4].

1.6.1 SuperLU

SuperLU [45][46] is a sparse solver package that is proven to be efficient and reliable when solving

different types of sparse matrices in different applications such as fluid dynamics, structural

mechanics, chemical process simulation, circuit simulation, electromagnetic fields and so on [45].

The SuperLU package is an open source solver that is available online for download. In order to

find the solution of a system of equations, SuperLU performs the following steps:

1. Minimize the number of fill-in elements in matrices L and U . This step is used to manipulate
the matrix and permute it in such a way that it reduces the number of non-zero elements in L
and U factors, and hence reduces overall solution time. SuperLU offers the use of many
techniques that are integrated inside the package and can reduce fill-in in quick and reliable
manner without affecting the solution quality or numerical stability [46].

2. Once the fill-in ordering is determined, SuperLU runs a symbolic algorithm to define the non-
zero pattern of L and U factors. This algorithm helps in allocating all fill-ins that are
introduced in L and U factors and estimating the size of memory storage the problem in hand
requires before even starting the numerical step [45]. The nonzero pattern found in this step is

used during the numerical factorization in order to find the numerical coefficients of L and U
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factors. All other elements that are flagged as non-zero in this step will not be calculated and
will be treated as zeros.

. Allocate all memory required for factorization work and for storing L and U matrices.
SuperLU package uses the compressed row storage CRS format to store sparse matrices as seen
in section 1.5.1.2.

Numerically factorize the matrix A into L and U . This step is the most time-consuming step
among all other tasks and operations in the package. It starts by running a symbolic analysis on
the permuted A matrix (permuted in step 1) and determining the location of all Supernodes
(explained below) [45].

The use of Supernodes allows to create dense nodes (regions) in the matrix in order to use
packages such as BLAS level 2 that is suitable for dense matrices. Supernodes have many types
and take many forms. Figure 1.18 shows different types of Supernodes that may be encountered
in a matrix.

The dense nodes shown in Figure 1.18 represent Supernodes that may occur in different
formats. The Supersnode T1 shown in Figure 1.18 - (a) illustrates a dense matrix that is full
(with all elements in the Supernode being nonzero) and nonzero elements along the columns
of L and rows of U. T2 shown in Figure 1.18 - (b) illustrates a Supernode that has a dense
L matrix along the diagonal that is full and non-zero elements scattered in the off-diagonal
columns of L. However, no non-zero elements exist in the rows associated with U. T3
shown in Figure 1.18-(c) illustrates a Supernode that has a dense L matrix along the diagonal
that is full with non-zero elements scattered in the off-diagonal columns of L and a full U
block with no off-diagonal elements along its rows. The last type of Supernode T4 is shown
in Figure 1.18 - (d) where full L and U blocks can be found along the diagonal. The L has
non-zero elements scattered along its columns and a stretch of non-zero elements scattered in
the columns associated with the full part of U [45][46].
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(a) (b)

(c) (d)

E Rows with similar structure . Dense node m:u Columns with similar structure

Figure 1.18 Types of Supernodes T1, T2, T3 and T4 respectively

The following example [46] provides a better understanding of the concept of Supernodes.

Let us take the matrix A shown in Figure 1.19 in its initial form without any ordering

SuperLU Matrix Example

Rows Number
w =] - o o - w [ - [=]

10

1"

0 2 4 B 8 10
Columns Number

Figure 1.19 SuperLU matrix example
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According to the SuperLU steps mentioned above, the matrix undergoes symbolic analysis
that applies a fill-in reduction ordering and it determines the L and U non-zero patterns.
Figure 1.20 and Figure 1.21 show the L and U matrices and their non-zeros pattern. The
Supernode allocation uses a special matrix that is called the filled matrix, to find all possible
Supernodes. According to [46], the filled matrix can be found by (1.59).

F=L+U-I (1.59)
where | is an identity matrix of size nxn subtracted from L and U in order to remove all
elements along the diagonal. According to the type of Supernode selected (T1, T2, T3 or T4),
the SuperLU algorithm finds all possible Supernodes in the matrix F . Figure 1.20 and Figure
1.21 below show the sparsity pattern of L and U of matrix A, Figure 1.22 shows the sparsity
pattern of matrix F, and Figure 1.23 shows all Supernodes of type T1 that were found in the

matrix F .

SuperLU Lower matrix of A

Rows Number

o 2 4 6 8 10
Columns Number

Figure 1.20 SuperLU Example L matrix (symbolic version)

SuperLU Upper matrix of A

Rows Number
© ® N @ o & W N = o

10

1

0 2 4 [ 8 10
Columns Number

Figure 1.21 SuperLU Example U matrix (symbolic version)
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L + U -Imatrix of A

Rows Number

0 2 4 6 8 10
Columns Number

Figure 1.22 L + U - | of matrix A (symbolic)

L + U -Imatrixof A

Rows Number

0 2 4 6 8 10
Columns Number

Figure 1.23 T1 Supernodes of matrix A

Based on the type of Supernode selected, SuperLU runs a search technique that explores all
possible Supernodes that fits all criteria of the selected Supernode type. In Figure 1.23 for
example, the Supernode that was selected is T1 and as can be seen in the figure there are five
Supernodes found in the matrix. The first Supernode is a 2x2 node with scattered non-zero
elements along the columns and rows corresponding to this full Supernode. Once the
Supernodes are determined, they are treated as dense matrices for storage and computation.
SuperLU uses different types of left looking algorithms that factors the matrix A into L and
U . Depending on the user selection or the degree of Supernodes density, different types of
standard dense matrix-vector multiplication kernels are used such as level 2 BLAS and level 3

BLAS. This algorithm treats the Supernode and its corresponding columns/rows as single
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elements and a call to BLAS algorithm will expand these elements into their actual structure
and perform the appropriate computation on them to find the actual L and U . This algorithm
IS proven to be very efficient in factorizing dense matrices and sparse matrices with less than
90% sparsity [46].

. The last step of SuperLU solution is performing a backward and forward substitution to find

the results. This step uses the traditional substitution techniques that is based on the L and U

factors found in step 4 and the right hand vector of the system.
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1.6.2 KLU

KLU [1] is a sparse matrix solver that employs hybrid ordering mechanisms and elegant
factorization to solve any sparse system. It has been tested on several simulation packages and
proven to be a fast and reliable solver especially when solving circuit analysis problems. It is based
on Gilbert-Peierls’ algorithm [47] with partial pivoting that aims at computing the nonzero pattern

of the I:i and Ui factors and the numerical values in a total time of O( flops(LU)) . This technique

consists of two major stages, the symbolic analysis and the numerical analysis. Throughout this
thesis all the cases listed herein have only blocks along the diagonal without any off diagonal
nonzero elements. This is mainly due to the fact that all subnetworks separated by a delay-based
transmission line are strongly connected and the strongly connected subnetworks are decoupled
from each other. This means that the matrix A in its block triangular format (BTF) has N number

of blocks along its diagonal as can be seen in (1.60):

AL 0 0 0 0
0 AL 0 0 O
A=lo0 0 A, 0 0 (1.60)
0 0 0 A, 0
0 0 0 0 A

The KLU solver will be applied to each diagonal block Ai separately and they can be solved in

parallel due to the fact that their solution is independent of each other.

1.6.2.1 KLU Symbolic Analysis

During the symbolic analysis, block Ai will be analyzed to find its nonzero pattern. This analysis
is becoming more and more challenging with the integration of partial pivoting in the sparse solver.
The nonzero pattern of ﬁi and Ui factors is hard to predict with a dynamic pivoting order that

keeps changing and for that reason this symbolic stage is being computed and updated every time

a pivot for Ai is updated.

The Gilbert-Peierls’ algorithm uses graph theory to calculate the nonzero pattern of I:i and Ui
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A

[47] which is based on finding the reachability of any nonzero element of A,. The reachability
calculation starts by assuming the lower factor I:i to be equal to a unity matrix and then starts
processing the block Ai in sequence order column by column. As seen in Figure 1.24, if block Ai
column k (shown at the right side of Figure 1.24) has a nonzero element at row | and factor I:i
has a non-zero element at element (i, j) then the element at row i of column k must be non-zero.
By applying this algorithm, the location of all non-zero elements in I:i and Ui can be determined

before the numerical step even starts, and the calculation of I:i and Ui elements will be only for

those nonzero elements found during this symbolic stage.

® < -

Figure 1.24 Nonzero pattern of X when solving Lx=b

Once the locations of non-zero elements of each column are determined, the non-zero elements

numerical values are determined as shown in Figure 1.25.
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L=1
fork=1:n
x=L\A(:,k)
% (partial pivoting on X can be done here)
Ul :k, k) =x(1:k)
L(k:n,k) =x(k:n)/ Uk, k)
end

Figure 1.25 L, and U, non-zero pattern allocation
The simple circuit example shown in Figure 1.16 is used in section 1.6.2.2 to illustrate KLU
symbolic analysis in a very detailed manner.
1.6.2.2 KLU Numerical Analysis

Once the nonzero pattern is found, a left looking numerical factorization with partial pivoting is

conducted to calculate the factors I:i and Ui numerical values. The matrix Ai now becomes:
A =LU, (1.61)

In equation (1.61), I:i and Ui contain the upper and lower factors of BTF diagonal blocks

respectively. It is worth mentioning that KLU solver has two types of factorization, namely Full-
Factorization (KLU-FF) and Re-Factorization (KLU-RF).

During the KLU-FF, a symbolic analysis is done on the matrix to determine the non-zero pattern

of I:i and Ui (as seen in section 1.6.2.1), followed by numerical analysis involves a partial

pivoting to select the pivot of each column being factorized.

KLU-RF on the other hand, assumes that the non-zero pattern of ﬁi and Ui calculated in the
previous iteration and the pivoting order of the previous iterations are still valid and can be used.

The KLU-RF function only updates the numerical values of Ui and I:i based on the changes to

block Ai.
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In order to fully understand both the symbolic analysis of KLU and KLU-FF, the system of
equations of Figure 1.16 circuit is written for a given operating condition of Rn2. This system was
built using the MANA approach discussed earlier.

[ 0.5x10°° 0 0 -05x10° 1][x | [-2.64183]

0 0.50205 -0.5 0 0| x,| |3.46719

0 05 25 0 0| x, |=]187794.2 (1.62)
—05x10° 0 0  1.0016 O} x| |0.01497
1 0 0 0 oll%|] | 0 |

After running BTF symbolic analysis, the vector shown in (1.63) was calculated to be the row
permutation vector that is used to sort the rows to obtain BTF form.

(1.63)

)
I
w N b~

This vector determines the location of each row in the permuted matrix. For example, P(2) =4

means that row 4 in A will be row 2 in the A . Hence the row permutation matrix of A is shown
in (1.64). The permutation matrix (1.64) is formed by reallocating the diagonal elements of a given
identity matrix column to the row number indicated in (1.63). For example, second column’s

diagonal element is moved to the forth row since P(2)=4.

10000
00010

A,={0 0 0 0 1 (1.64)
01000
0010 0]

The column permutation is the transposed version of the matrix shown in (1.64) as can be seen in
(1.65) and (1.66).

A. =AL (1.65)
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The following equation shows the permuted version of system (1.62):

0.5x10°
—-0.5x10°°
1
0
0

A=A_AA
~05x10° 1 0
10006 0 O
0 0 o
0 0 0.50205
0 0 -05

0
0
0
05
25 |
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(1.66)

(1.67)

(1.68)

The matrix given in (1.68) is factorized and solved below with pivot tolerance equal to 0.01 and

all pivots elements are initially assumed to be along the diagonal of A as shown in (1.69).

Pivot —

g b~ WO DN B

(1.69)

Poioe ShOwn in (1.69) indicates that the pivot of column 1 is located at row 1, the pivot of column

2 is located at row 2, the pivot of column 3 is located at row 3 and so on. The factorization starts

by assuming that both L and U are equal to an identity matrix as shown in (1.70) and (1.71)

>

I
O O O O -

o O O+~ O

o O O O

o O O O

R O O O O

(1.70)
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10 0 0 0]

01000
U=l0 0 1 0 0 (1.71)
00010

0000 1]

Since KLU is a left looking solver and it factorize the matrix A one column at a time, the

factorization process is done in the following five steps:
1. Factorizing the 1% column of matrix (1.68):

The factorizing process starts by finding the location of non-zero elements in [1 and Ul

as follow:

1-0--06-0-0F-[ 05x10° |
0 1--6-9--0F-|-05x10°

00 ]-9-6t= 1
0010 0
00 06 0 1 0

Figure 1.26 Analysis of 1st column of matrix (1.68)
In the above symbolic analysis, the launch of the maximum reach from row 1, 2 and 3 of
the right hand side was not able to find any non-zero elements below the diagonal elements,
and was not able to introduce any non-zero elements into L, and U, other than the already
non-zero valued elements in row 1, 2 and 3. Hence, the location of non-zero elements of

L, and U; are shown in (1.72) and (1.73):

x 0 0 0 0]
x 1 000
L,=|x 0100 (1.72)
00010
0 0 00 1]
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x 0000
01000

U,=/0 0100 (1.73)
00010
0000 1

The calculation of the numerical values of L, and U, is done by solving the system

shown in (1.74).

100 0 0x] [05x10° ]

0100 0[x| |[-05x10°

0010 0fx|= 1 (1.74)
000 1 0|x, 0

0000 1f[x|] | 0 |

The symbolic analysis of column 1 above found that only x ,x, and x;are non-zero
elements, hence the system of equations in (1.74) is only solved for x ,x, and x,. This
solution results in x, =0.5x10°°, x, =—0.5x10"° and x, =1.

Applying partial pivoting on the solution of (1.74) starts by finding the largest element in
the x vector and comparing it with the element stored at the pivot location. Using the

assumption used at the beginning of this example, the assumed pivot is stored at element

x(1) and the largest element in x is found to be x(3). Testing the pivot criteria on both
pivot candidates (x(1) and x(3) ) as shown in (1.75) it turns out that the pivot of column 1
must be replaced with the element of row 3.

£,X(3)>x(2) (1.75)
This change in pivoting order updates Pp;,; as shown in (1.76) and the rows of system of

equations shown in (1.68) are permuted according to the new Pp;,; as shown in (1.77).



Using the formulation in Figure 1.25 I:l and 01 are calculated to be:

2. Factorizing the 2" column of matrix (1.68):

Figure 1.27 Analysis of 2nd column of matrix (1.68)

1
-0.5x10°°
0.5x10°°
0
0

—
Il

X

X

0

-
-
Il
o o o o

Pivot —

0
1.0016
-0.5x10°
0
0

1
—-0.5x10°°
0.5x10°°
0
0

o O o +—» O

0 0
c
1
0 0
0 0

O r O O O

g B~ P N W

0 0

0 0

1 0

0 0.50205
0 -05

0000
1000
0100
0010
000 1]
0 0 0]
00 0
100
010
0 0 1]

o] [ 0 ]
0 1.0016
0|=|-0.5x10"°
0 0

L 0

0

0
0
-0.5
2.5
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(1.76)

(1.77)

(1.78)

(1.79)
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The launch of maximum reach from row 2 and 3 of the right-hand side was not able to find

any non-zero element below the diagonal of the second column and hence it was not able

to add any fill-in. Hence, the non-zero elements of L, and U, are:

x 0000
x x 000

L,={0 x 1 0 0 (1.80)
00010
0000 1
x 0 0 0 0]
0x 000

U,=|0 0 1 00 (1.81)
00010
0 000 1]

In order to find the numerical values of I:2 and 02 the system shown in (1.82) is solved

1 000 O][x] [ 0 ]

-05x10° 1 0 0 0}|x, 1.0016

05x10° 0 1 0 0% |=|-05%10"° (1.82)
0 0 01 0fx, 0

0 000 1][x| | 0 |

The above system of equations in (1.82) is only solved for x, and X5. This solution results

in x, =1.001575 and x, =—-0.5x10"°. Applying partial pivoting on the results of (1.82) it

can be seen that element X, is larger than all other elements in x, hence the existing pivot

is valid.

Using the formulation shown in Figure 1.25, L, and U, are calculated to be:



o1

1 0 000
~0.5x10°° 1 000
L,=| 05x10° -0.4992223x10° 1 0 0 (1.83)
0 0 010
0 0 00 1
1 0 0 0 0]
0 1.001575 0 0 0
U,=|0 0 100 (1.84)
0 0 010
0 0 00 1

3. Factorizing the 3™ column of matrix (1.68):

x 00 0 0] |O
X X 0 0| |0
0-0=|1
01 0| |0

i 0 01| (O]

Figure 1.28 Analysis of 3rd column of matrix (1.68)

In the above analysis, the launch of the maximum reach from row 3 wasn’t able to find any

non-zero elements below the diagonal element of the 3™ column. Hence, the non-zero

elements of L, and U, are:

(1.85)

—
w
Il
o O X O O
O b O O O
R O O O O
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x x 0 00
0 x 000
U,=[0 0 x 0 0 (1.86)
00010
0 000 1]

In order to find the numerical values of IA_3 and 03 the system shown in (1.87) is solved.

1 0 0 0 O]x] [0

—-0.5x10° 1 0 0 Oflx,| |0

05x10° -0.4992223x10° 1 0 0} x, |=|1 (1.87)
0 0 0 1 0fx | |0

0 0 0 0 1]/x]| [0

The above system of equations in (1.87) is only solved for X;, X, and X;. This solution

results in x; =1. Applying partial pivoting on the results of (1.87) it can be seen that

element X; is larger than all other elements in , hence the existing pivot is valid.

Using the formulation shown in Figure 1.25 I:3 and 03 are calculated to be:

! 0 0 0 0]
-0.5x10°° 1 000
L, =| 0.5x10° —0.4992223x10° 1 0 0 (1.88)
0 0 010
0 0 00 1]
1 0 0 0 0]
0 1.001575 0 0 0
U,=[0 0 100 (1.89)
0 0 010
0 0 001
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4. Factorizing the 4™ column of matrix (1.68):

x 00 00O 0
x x 000 0

x 0 0|=] O

0 1--G-|0.5021
000 0 1 -05 ]

Figure 1.29 Analysis of 4th column of matrix (1.68)

In the above analysis, the launch of the maximum reach from row 4 and 5 failed to find any

non-zero elements below the diagonal elements and was not able to introduce any other

non-zero elements into L,. Hence, the non-zero elements of L, and U, are:

x 0000
x x 0 0 0
L,=[x x x 0 0 (1.90)
00 x 0
000 x 1
'x x x 0 0]
0 x x 00
U,=/0 0 x 0 0 (1.91)
000 x 0
0000 1

In order to find the numerical values of I:4 and 04 the system shown in (1.92) is solved.

1 0 0 0 0]x 0

—0.5x10°° 1 0 0 0| X 0

0.5x10° -0.4992223x10° 1 0 O/ x|=| O (1.92)
0 0 0 1 0|[x,| |0.50205

.0 0 0 0 1f[x]| | -05 |

The symbolic analysis of this column found that only elements X, and Xy are non-zero,
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hence the above system of equations in (1.92) is only solved for X, and Xs only. This

solution results in x, =1.0266 and x; =—1. Applying partial pivoting on the results of

(1.92) it can be seen that element X, is larger than all other elements in . hence the existing

pivot is valid.

A

Using the formulation shown in Figure 1.25, L, and 04 are calculated to be:

1 0 0 0 0
-0.5x10°° 1 0 0 0
I:4: 0.5x10° -0.4992223x10° 1 0 0 (1.93)
0 0 0 1 0
0 0 0 -0.9959034 1|
1 0 0 0 0]
0 1.001575 0 0 0
U,=0 0 1 0 0 (1.94)
0 0 0 0.50205673 0
0 0 0 0 1]
5. Factorizing the 51 column of matrix (1.68):
'x 00 0 0] [ O]
x x 000 0
x 0 0= 0
0 x-0}--05
i 0 x==Ff=| 0.5 |

Figure 1.30 Analysis of 5th column of matrix (1.68)

The above symbolic analysis was able to determine that rows 4 and 5 of column 5 of I:S

and U, will be non-zero entries. Hence, the non-zero elements of L, and U, are
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—
(2]
I
X
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(1.95)

o

o

o o

X X

X O O o o

X
X

o O O

(1.96)

X

C

o

Il
© O o o X
O O O X
© X O o o

0 X

In order to find the numerical values of I:s and 05 the system shown in (1.97) is solved.

1 0 0 0 0] %, 0

—0.5x10°° 1 0 0 0 || %, 0

0.5x10° -0.4992223x10° 1 0 0 x|= 0 (1.97)
0 0 0 1 0| x,| |-05

0 0 0 -0.9959034 1] x| | 25 |

Using the symbolic analysis above it was found that only elements X, and Xg are non-

zero; hence, the above system of equations in (1.97) is solved for these two elements only.

This solution results in the following x vector.

X, 0
X, 0
X; | = 0 (1.98)
X, -0.5
| Xs | | 2.0020483 |

Applying partial pivoting on the results of (1.98) it can be seen that element X; is larger

than all other elements in x, hence the existing pivot is valid.

Using the formulation shown in figure 4, £5 and 05 are calculated to be:



In order to verify the above factorization, one can multiply L and U to obtain A.

|

1

0
0

-0.5%x10°
0.5x10°°

0 0 0 0 |
1.0016 0 0 0
-0.5x10° 1 0 0

0 0 0.50205 -0.5

0 0 -05 25|

1 0 0
-0.5x10° 1 0
05x10° —-0.4992223x10° 1

0 0 0
0 0 0

1 0 0 0

0 1.001575 0 0

U, =0 0 1 0
0 0 0 0.50205673
0 0 0 0

o O O

1
—-0.9959034

0

0

0
-0.5
2.0020483 |

. O O O O
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(1.99)

(1.100)

(1.101)

The second step of the numerical analysis stage is the solution step that performs forward and

backward substitution in order to obtain the results of vector X [1]. This step is summarized below

for the above example:

1 0
-0.5x10°  1.0016
0.5x10° -0.5x10°

0 0

0 0

—

(@
X X X
w

=

X

N

>

0.50205
-0.5

=| -2.64183

0 0 |

0 0
0 0
-0.5

[187785.9 |
3.471719

0.002821
0

25 |

x, | [187785.9]
X, | |3.471719
X, | =| -2.64183
x, | |0.002821
_X5 L 0 n

(1.102)

(1.103)



Where

1

-0.5x107°

0.5x10°°

0
0

Y1
Y2
Y3
Ya

Ys |

0
1

—0.4992223x107°

0
0

0

0
0

o O O O -

0

1.001575

o O B O O

The solution of equation (1.105) results in:

i
Y,
Y3
Y,

Ys |

0 0 0] [y,
0 0 o |y,
1 0 0[x| Y,
0 1 0 Y,
0 -0.9959034 1] |y,
0 0
0 0
0 0
050205673  -0.5
0 2.0020483 |
1 [1.8779x10° ]
3.5656
=| -2.7357
0.0028
| 0.0028

><J>><w><m><»—?<

ol

1187785.9 |
3.471719

-2.64183
0.002821
0

Substituting equation (1.106) in (1.105) yields to the following equation:

o O O O B

0
1.001575
0
0
0

o O — O O

0 o
0 0
0 0
050205673  -0.5
0 2.0020483 ||
X, | [1.87785x10°]
X, 3.56000
X, |=| -2.7357
X, 0.0070
| | 00014 |

X
X
X

N

w

X

=~

X

ol

1.8779%x10° |
3.5656
—2.7357
0.0028

0.0028
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(1.104)

(1.105)

(1.106)

(1.107)

(1.108)
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KLU uses a scaling algorithm to scale all elements of L and U factors based on a predefined scale.
This scaling topology helps reduces the size of numbers used throughout the calculation and
increases accuracy. However, throughout this research project it was found that the scaling
algorithm did not add much advantages for the selected applications, but it rather increased

computation time and code complexity with no valid reason.
1.6.3 EMTP-MDO solver

From the above two sections on SuperLU and KLU, it can be noticed that these two solvers have
two types of matrix permutations, namely fill-in reduction permutation and structural permutation.
The first type of permutation is specialized in reducing the fill-in elements in L and U factors,
hence reduces the computation time for factorization and substitution steps. The other type of
permutation is specialized in permuting the structure of A in order to allow for some degree of
parallelization. For example, in the case of BTF permutation, in context of this thesis this
permutation decouples all strongly connected regions of the matrix forming multiple submatrices
that are fully independent of each other. This approach allows numerical steps to work on different
submatrices in parallel and assign each or a group of submatrices to a specific processor to reduce
computation time [48].

Unlike SuperLU and KLU, EMTP-MDO [4] has only one permutation that is the fill-in reduction
permutation. This permutation is based on the minimum degree ordering technique. The minimum
degree ordering is a generic technique works on reducing the fill-in of L and U by re-ordering
the matrix rows and columns based on different nodes connectivity. Various minimum degree
algorithms exist in the literature such as basic minimum degree (which is used in EMTP-MDO),
approximate minimum degree (AMD) [49][50] and column approximate degree (COLAMD)
[51][52]. It was proven in [1] that AMD gives the best performance for circuits matrices. AMD

finds a permutation vector P to reduce the fill-ins in Cholesky factorization and apply it on the

matrix A as follow: PAP". AMD assumes no numerical pivoting within its scope and all its
ordering is purely symbolic. COLAMD on the other hands produces a column permutation vector

Q to reduce the fill-in of L and U and it applies it on matrix A as follow: Q"AQ .

The basic minimum degree ordering is based on selecting a node with minimum number of

connected edges and factorizes the column or row that corresponds to that node [29]. This
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technique performs a symbolic elimination on the non-zero structure of the system. During this
stage, a pivot element is chosen from those un-eliminated diagonal entries. The symbolic
elimination results in a permutation array that is used to permute the system main matrix A into
the pivoting order found during this stage. The permuted A matrix is solved in three steps,

symbolic factorization, numerical factorization and forward-backward substitution.

During the symbolic factorization, the nonzero structure of the rows of L and U factors is
determined based on the structure of the permuted matrix A . Once the nonzero pattern of L and
U is found, the numerical values of all L and U coefficients are calculated. The last step in the
solution stage is to perform a backward and forward substitution to find the solution of x based on

the right hand side b and using the L and U factors generated in the first two steps.

Therefore, the application of parallel computation with the EMTP-MDO solver is not feasible due
to the fact that the minimum degree ordering technique does not permute the matrix into any kind
of block diagonal format but rather reduces the fill-in of L and U factors. Even if a structural
permutation technique is applied to obtain the BTF form of A, the numerical solver has to be re-

coded or changed to adapt to data structure needed by the added permutation.

The following example illustrates how minimum degree ordering technique works to find the best
permutation topology that contributes to a maximum reduction of fill-ins. The system of equations
shown in (1.62) is used herein.

In order to find the minimum degree ordering of the matrix shown in (1.62) one can use an

elimination graph that is basically an undirected graph of the matrix A, that is

G=(V,E) (1.109)

Where, G is the undirected graph of the matrix shown in (1.62), V represents graph’s G nodes

and E is the edges between different nodes in G . The elimination graph as can be seen in Figure
1.31 has n vertices, where n is the size of matrix A, and each vertex represents a column/row.
The elimination graph can be established by adding a connection between any vertex with all other
vertices that are adjacent to it. For example, vertex 1 is adjacent to vertices 4 and 5 through elements
A(0,3) and A(0,4).
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The minimum degree ordering technique starts by eliminating the node with minimum weight,
which is the node with the least number of connections or the minimum number of adjacent nodes.
In case of multiple nodes having similar weight, the selected node is chosen randomly. At start, the
node weight is evaluated as shown in Table 1.2. This table shows the weight of nodes in the
elimination graph shown in Figure 1.31. Since this is a small case, all nodes order varies between
one and two and the elimination process is very simple and straightforward. The first node to be
eliminated will be node 3 and the graph becomes as shown in Figure 1.32. The nodes are evaluated
again and the node with the minimum weight is eliminated and the remaining nodes order is
reevaluated once again. This process in repeated until the graph’s last node is eliminated. Figure
1.33 to Figure 1.35 show the changes in elimination graph. In [49] a more complex example is
given where the weight of the nodes changes during the elimination process and the tracking and
storing of all new established edges becomes challenging. Larger graphs use a modified and
simpler way of handling the nodes elimination process. This approach is based on creating Quotien

graphs of the matrix as shown in [49].

(O—
O OO0

Figure 1.31 Matrix A elimination graph



Table 1.2 Elimination graph nodes weight

Node weight
1 2
2 1
3 1
4 1
5 1

(O—©
OO

Figure 1.32 1st elimination step of matrix A graph

(O)—
0

Figure 1.33 2nd elimination step of matrix A graph

61
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O—©

Figure 1.34 3rd elimination step of matrix A graph

©

Figure 1.35 4th elimination step of matrix A graph

1.6.4 Threading

Different parallel algorithms have been proposed in order to apply parallel computation on EMT
simulations in different real-time simulation tools [16]-[18] and in off-line applications [5][15][53].
Most of these proposed algorithms are based on some user intervention and/or user defined network
partitioning as in [19][27] where the user has to define the location where the network can be
partitioned, or using external packages to link all subnetworks as in [15]. Such partitioning
technique requires the user to have full knowledge of the system in order to make an informative
decision on the best partitioning location that guarantees the highest computation gain. Such
decisions become very complicated for large power systems. Other proposed parallel techniques
are based on the use of graphical processing units GPU [54]. This approach efficiency decreases
with the increased size of the power network being analyzed and makes it not suitable for handling

practical problems. Problems arise when repetitive matrix factorizations are needed.

In this project, the threading implementation is meant to be automated and the program will be
self-sufficient to determine the feasibility of threading and assigning the location of threading and
task distribution. The threading part will be done on an already existed sparse solver (KLU) and it
will be mainly based on two threading techniques, the OpenMP and C++11 threading.
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1.6.4.1 OpenMP

OpenMP is a thread programming tool used in the implementation of parallel processing [55] in
Windows computing environment. It is a high-level threading technique that requires the user to
define different segments of the code where parallel processing is required using one of OpenMP
pragma notations. The compiler will launch, control, synchronize and terminate threads without
much extra effort to be made by the user. Using the OpenMP implementation requires minimum
changes to the sequential code as opposed to other threading techniques.

In KLU the symbolic analysis is done in a pure sequential fashion. However, when it comes to
numerical analysis parallelizing the factorization and the forward-backward substitution is
essential to convert the KLU code to a parallel solver given that the network that is being solved
can be solved in parallel or has at least one delay-based line in it. Parallelizing the factorization
process was done by surrounding the factorization loop that factorizes all blocks of BTF matrix
with a pragma bracket that will guarantee a parallel execution of that loop, and in a similar manner
the forward-backward substitution can be parallelized. The assignment of each bock to a specific
thread requires defining a special mapping that is given to OpenMP before starting the parallel
segment. In addition, distinguishing between thread specific variables and threads shared variables
is critical to avoid any overlap between different threads and to avoid any kind of race conditions

during OpenMP threads synchronization.

In the OpenMP parallel version of sparse solver, each thread has a set of private variables that are
exclusive for each thread and can be accessed only by the thread that owns them. However, there
are a set of variables mainly used for statistical purposes that are common between all threads such

as the number of non-zero elements in L and U.

Given that the KLU algorithm was written in C, the link between the Fortran code based EMT
simulation package and the KLU solver was done using the ICO_C_BINDING standard [55]. This

standard allows for interchange calls from Fortran to C and vice versa as will be seen in Chapter 2.

1.6.4.2 C++11 Threading

Unlike OpenMP, using C++ multithreading is a low-level implementation which requires the user

to manage all threads from the moment threads start until the moment threads finish. If a Fortran
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based EMT simulation package is used, the Fortran-C++ threading lifecycle is divided into 3

phases: initialization, execution and finalization.

During the initialization phase, the number of threads required and the matrices A and b arrays
are passed to the initialization function (init()) where the symbolic analysis of BTF and the
launching of all worker threads (threads that do factorization and triangular solving for an assigned
block) take place. In order to avoid the overhead of creating threads every time the solver is being
called, a thread pool is created by storing the thread handles in a global vector for later use. Once
the threads are created the initialization function is blocked until all worker threads indicate that

they have started up and ready to execute iterations.

The signaling mechanism between the initialization function and the worker threads is
implemented via an atomic integer that gets incremented by one whenever a starting thread is
initialized and ready, after which the worker threads move into the BLOCKED state waiting for a
signal to run the numerical analysis code. The C++ main thread performs a busy-wait until all
threads are ready, then it returns control to FORTRAN. Illustration of this phase is shown in Figure
1.36.

/C++ Main Thread /C++ Worker Threads

create_and_start()

busy-wait until all threads have started ﬁ

2. increment atomic count
3. wait for the "run" signal

1. initialize local variables T

Figure 1.36 Parallel implementation initialization phase

During the execution phase, the C++ main thread signals to all worker threads to start executing
the iteration code, and then waits for all threads to finish running numerical analysis on their
assigned blocks. The start signaling is implemented via a condition variable and a lock. Once the
worker threads are notified of the signal (by the operating system), they transition from the
BLOCKED state into the RUNNING state.
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/C++ Main Thread /C++ Worker Threads

runislgnal[]H

blocked-wait until all threads 1. wake up
finish one iteration 2. execute one
iteration

signal_finished_iteration

e __lsignal_finished_terationt] __ | L

Figure 1.37 Parallel implementation Execution

Worker threads execute the numerical analysis process, and signal to the main thread that they’ve
finished via a semaphore. After which, the worker threads go back again to the BLOCKED state
waiting for another start signal. Once all worker threads are finished, the main thread returns

control to EMT package to prepare for the next time step / iteration.

The last phase of the process is the finalization phase. It is a phase required to terminate worker
threads and to release any resources allocated by the C++ subsystem. It starts by invoking a
termination function (finish()) from FORTRAN into C++ main thread. The C++ main thread then

sets an exit flag and awakes the worker threads. The worker threads check the flag and exist.

This approach was implemented and integrated with EMTP, and different test scenarios were used
to validate its performance; However, the EMT simulation acceleration obtained with this approach
was not considerable and the complexity that involved in implementing this parallel design was

another reason that let to drop it as a viable parallel implementation option of KLU.
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CHAPTER 2 IMPLEMENTATION OF SPARSE SOLVER PACKAGE
FOR EMT SIMULATION
The objective of this chapter is to deliver the implementation of a new sparse matrix solver in an

EMT-type tool for the solution of electrical network (power) equations. The implementation will

be performed into EMTP [1] using an available code interface.

In addition to the power network equations, EMTP uses a separate solver for its control system
equations [3]. The control system part is not considered in this thesis since its solution procedures
fall into another category [56].

Before proceeding, it is important to recall that the network equations in EMTP are solved using
the MANA formulation. Also, it is recalled that EMTP uses a fully iterative solver. At each time-
point EMTP solves a set of equations similar to (1.54). It is recalled here for convenience:

A, =D, (2.1)
where the vector b, contains independent sources and history terms resulting from device model
discretization, the matrix A, is actually the Jacobian matrix [3]. At each time point the above
system is solved using the LU decomposition of A, . If a nonlinear function changes its operating
segment or an ideal switch changes its position, it becomes necessary to update A, and
consequently its factorization. This process is essential for maintaining an accurate solution for
network but is also creates significant extra computational load.

After each time-point solution of (2.1), it is necessary to use the solution vector x; for updating all

model history terms preparing the solution for the next time-point. Analysis has demonstrated that
when accounting for all solution procedure, the main computation burden is the iterative solution
in network equation (2.1). Improving its performance through the usage of a better sparse matrix
solver and through parallelization, is the main research objective of this thesis.

As a first step, this chapter presents the selection of a new sparse matrix solver. The second step is

the parallelization of the solution process for gaining more computational performance.

The new sparse matrix solver is named Sparse Matrix Package for EMTs (SMPEMT).



67

2.1 Selecting a Sparse Solver

In the previous chapter three sparse solver packages have been introduced, namely SuperLU, KLU
and EMTP-MDO existing sparse solver (MDO). The three solvers were briefly introduced to
explain the underlying programming techniques. The objective here is to conduct numerical tests
for actual systems. A variant of the Hydro-Quebec grid is used to perform tests with EMTP.

The size of the Hydro-Quebec A matrix is 41797x41797 with 99% sparsity and 169369 non-zero
entries. The simulation interval was chosen to be 1s with a time-step of 50 ,s. The network
contains nonlinearities and the average number of iterations per time-point is equal to 2.07.

The computation time of solving equation (2.1) for different solvers are presented in Table 2.1.

Table 2.1 Solver comparison timings (s), EMTP solution, Single-Core

MDO-EMTP | KLU Solver SuperLU solver
Time Domain solution 1048 1216 5340
Number of KLU-FF - 68532 -
Number of KLU-RF - 57543 -

As seen from the above table, the MDO-EMTP solver is apparently the fastest among the three
selected packages running on a single CPU core. This phenomenon is due to the heavy computation
involved in the numerical analysis of both KLU solver and SuperLU solver. However, after
studying the algorithms of various packages, it was found that the KLU package has significant
potential of improvement for EMT-type solution. In addition to the fact that other circuit-based
simulation packages demonstrated the potential of the KLU method [1][57].
The most useful features with the KLU package are:

1. The existence of BTF partitioning technique in KLU that is implemented as part of the

solver package.

The data structure used in storing L and U matrices.
The existing ordering techniques can be replaced easily with a user defined alternative.
The code structure and code documentation.

The separation of different tasks in different C functions.

o 0k~ D

The minimization of a potential stack overflow run time error during BTF permutation
calculation. This is mainly due to the fact that the stack used in all recursive calls in the

package are allocated on the heap and have more memory backup compare to other stack
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memory given by the compiler.

7. The lower fill-in produced during factorization compared to the other two packages.

8. KLU performance is proven to be better that other solvers with matrices with high sparsity
degree.

9. The use of an efficient left looking factorization technique that reduces floating-point
operations during numerical factorization.

10. The existence of re-factoring technique (KLU-RF) that can significantly speed-up the re-

factorization process due to a time-domain varying A matrix.

Figure 2.1 shows a test case that was used to compare the ordering results of produced by KLU
and EMTP-MDO solvers. This case represents Reluctance network based transformer model. The
case consists of one block due to the fact that it does not include any transmission line, and it has
many nonlinear devices such as non-linear resisters. From the Figure 2.2, Figure 2.3 and Figure

2.4 it can be seen that KLU solver was able to produce an ordering that results in less fill-in compare

to EMTP-MDO and this will result in less factorization and solution time for L and U..
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Figure 2.1 Top view of Reluctance based transformer model case (Contributed by EDF)
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Figure 2.4 Reluctance based transformer model case KLU permutation of matrix A

Table 2.2 Shows the sparse matrix solution time for 1 second simulation of the case shown in
Figure 2.1. It can be seen from the table that the difference between the two solvers are huge and

the effect of fill-in reduction and an efficient ordering is important in computation time
optimization.

Table 2.2 Reluctance based transformer model case Ax =b solution time

Solver Time (second)
EMTP-MDO 5560
KLU 75

2.2 KLU Interface

Since EMTP computational engine is written in FORTRAN, and the KLU package is coded in C,
it is necessary to establish an interface between both programming languages for allowing calls

into the KLU solver. This work is also applicable to other EMT-type simulation tools [5] that are

written in Fortran.
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In order to establish such an interface, the ISO_C_BINDING module is used to provide Fortran
with access to different C types and functions. KLU has also three user defined types namely
KLU_common, KLU_symbolic and KLU_numeric. The KLU_common consists of different
tuning parameters that are used in defining how the solver runs and the type of ordering package
used in the symbolic analysis, KLU_symbolic consists of variables related to the symbolic analysis

of KLU and other techniques such as the column ordering permutation vector P, and row
permutation vector Py and KLU_numeric contains all variables related to numerical factorization

and solution. Other than user defined types, ISO_C_BINDING provides an interface between
Fortran and conventional C types such as int, double, float and all other types including pointer
types. Figure 2.5 shows different FORTRAN types with their corresponding C variable types; for
example, the type int in C matches the type INTEGER in FORTRAN. In order to map the two
variables in an ISO_C_BINDING interface, the Name constant types shown in Figure 2.5 is used.
Figure 2.6 and Figure 2.7 give an example of how this mapping is done in defining

ISO_C_BINDING interface for a user defined type and a function.

The syntax of declaring a user defined type using ISO_C_BINDING is shown in Figure 2.6. This
declaration will allow the use of KLU types (i.e KLU_symbolic) in different FORTRAN modules.



Fortran Type
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
TINTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
TINTEGER
INTEGER
REAL
REAL
REAL
REAL
COMPLEX
COMPLEX
COMPLEX
REAL
LOGICAL
CHARACTER

Named constant

C INT

C_SHORT

C_LONG

C_LONG LONG
C_SIGNED CHAR

C SIZE T
C_INT8 T
C_INT16 T
C_INT32 T
C_INT64 T
C_INT128 T

C_INT LEASTS T
C_INT LEAST16 T
C_INT LEAST32 T
C_INT LEAST64 T
C_INT LEAST128 T
C_INT FAST8 T

C INT FAST16 T
C_INT FAST32 T
C_INT FAST64 T
C_INT FAST128 T
C_INTMAX T
C_INTPTR_T
C_PTRDIFF T
C_FLOAT

C_DOUBLE

C_LONG DOUBLE
C_FLOAT128
C_FLOAT COMPLEX
C_DOUBLE_COMPLEX
C_LONG_DOUBLE_COMPLEX
C_FLOAT128 COMPLEX
C_BOOL

C_CHAR

C type

int

short int

long int

long long int
signed char/unsigned char
size t

int8 t

intlse t

int32_t

int64d_t
intl28 t

int least8 €
int leastlé t
int least32 t
int leasto6d t
int leastl28 t
int fast8 t

int fastlé t
int fast3Z t
int fasted t
int fastl28 t
intmax t
intptr t
ptrdiff t

float

double

long double

_ floatl28
float Complex
double Complex
long double Complex
_ floatl28 Complex
_Bool

char

Figure 2.5 ISO_C_BINDING types declaration
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type, Bind(C) :: klu_symbolic
real(kind=C_DOUBLE) :: symmetry
real(kind=C_DOUBLE) :: est flops
real(kind=C_DOUBLE) :: 1nz, unz
TYPE(C_PTR) B LLnz
TYPE(C_PTR) i+ block flops
integer(kind=C_INT) :: n
integer(kind=C_INT) :: nz
TYPE(C_PTR) i P
TYPE(C_PTR) i Q
TYPE(C_PTR) i R
TYPE(C_PTR) ::  RB
integer(kind=C_INT) :: nzoff
integer(kind=C_INT) :: nblocks
integer(kind=C_INT) :: maxblock
integer(kind=C_INT) :: ordering
integer(kind=C_INT) :: do_btf
integer(kind=C_INT) ::  TimeStep Call
integer(kind=C_INT) :: structural_rank
integer(kind=C_INT) :: maxLnz

end type klu symbolic

Figure 2.6 KLU symbolic declaration using ISO_C_BINDING

The declaration of functions using ISO_C_BINDING is different than variables. It consists of
adding a special section in the interface file that encapsulates all function declarations and their
argument types. Figure 2.7 shows the syntax of ISO_C_BINDING function declaration, this
declaration lists the function name, its arguments and it defines the name of the function in the C
based code. The interface then imports the type mapping of all arguments used in the function and
includes a list of arguments with their types. This standard is used in Figure 2.7 to build the
interface for KLU_SOLVER_ANALYZE.

interface
subroutine FUNCTION_NAME(argumetsl, argumets2) bind(C, name="FUNCTION_ NAME™)
import C_INT, C_FLOAT ! Tmports all types of arguments
INTEGER(C_INT), VALUE :: argumetsl | Argumentl of type integer

INTEGER(C_FLOAT), VALUE :: argumets2 | Argumentl of type float
end subroutine FUNCTION_ NAME

end interface

Figure 2.7 ISO_C_BINDING functions declaration syntax



74

interface
function KLU_SOLVER ANALYZE(n,Ap,Ai) bind (C, name="KLU SOLVER_ ANALYZE™)
import C_INT, C PTR
INTEGER (kind=C_INT) :: KLU SOLVER_ANALYZE
INTEGER(Kind=C_INT), VALUE :: n
type(C _PTR), VALUE :: Ap
type(C_PTR), VALUE :: Ai
end function KLU SOLVER_ANALYZE
end interface

Figure 2.8 ISO_C_BINDING declaration of KLU_ANALY ZE function

2.3 Pivot validity test

In order to improve the performance of the KLU solver, it was necessary to make modification in

its code. As explained above, the KLU-RF technique of the KLU solver assumes that the non-zero
pattern of I:i and Ui calculated in the previous KLU-FF and the previous pivoting order are still
valid. Therefore, by making such an assumption the symbolic analysis during the numerical
factorization and the computation of the partial pivoting order can be skipped. The KLU-RF
function updates the numerical values of I:i and Ui to reflect any changes in the matrix A. .

However, KLU-RF technique does not involve any pivot validation, and it blindly uses the old
non-zero pattern and the old pivoting order without any verification. This practice increases the
risk of introducing numerical instability and producing inaccurate results.

The first added feature to KLU in this thesis is called the “pivot validity test”. It deals mainly with
how KLU decides on whether conducting a KLU-FF on a certain block Ai or KLU-RF is required.
The pivot validity testing is an added feature that allows the KLU solver to be able to make an
informative decision on whether a KLU-FF or KLU-RF is needed. Pivot validity testing criterion
is based on verifying that the element stored at the location of each column’s pivot is greater than
all other elements belonging to the same column by at least the user defined tolerance. The use of
tolerance avoids calculating a new pivoting order if the new candidate pivot is slightly greater than
the previously calculated one. Equation (2.2) shows the pivot validity testing verification criterion.

This test is performed on every column of block Ai . In case any column of Ai fails to satisfy this

criterion, block Ai is deemed ineligible for KLU-RF and a KLU-FF is needed.
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€,y > Ayq (2.2)

p“new

Where, &, is the pivot testing criteria, @, is the new pivot element candidate and &, is the old

pivot element. The pivot tolerance plays a major rule in controlling the acceleration gain of
SMPEMT. This is due to the fact that this tolerance ratio determines the number of times KLU-FF

is executed as opposed to KLU-RF. The higher & results in increasing number of iterations use

KLU-FF compare to lower ¢€,,.

Figure 2.9 shows a flow chart presentation of the sequence of pivot validity testing implemented in
KLU during an EMT type simulation process.

EMT Package call
to solver

l

NO YES Symbolic
KLU-RF Analysis
A
i YES
New Pivot > KLU-FF

needed

Backward and
Forward solution

[ Results Available ]

Figure 2.9 Pivot validity test flow chart
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From the above figure, it can be seen that a KLU-FF is essentially needed at the beginning of
simulation to calculate the non-zero patterns of I:i and Ui and finding the first pivoting order.

Once the first solution of (2.1) is completed, KLU-RF becomes the default factoring algorithm

used during KLU numerical stage. If an invalid pivot is spotted, the KLU-RF function is terminated
for the block Ai and a KLU-FF will start to calculate a new ﬁi and Ui non-zero pattern and pivot
order.

It is important to highlight the fact that this feature allows to have a sort of hybrid factorization

technique during the same time step solution. Given that BTF blocks are independent of each other,

the fact that one block failed the pivot validity test does not necessary mean that all other blocks

will fail the test. There could be a scenario where some blocks are updating their I:i and Ui

numerical elements using KLU-RF technique and other blocks are calculating I:i and Ui from
scratch using KLU-FF.
2.4 Partial factorization

A second feature added in this thesis to the KLU solver is called “Partial Factorization”. To reduce
the computational cost of KLU-RF for Ai even further, it is possible to apply partial KLU-RF. In

a given system of equation (2.1), it is possible to determine the cells that are occupied by NMs and

TVMs. Those dynamic cells may change between solution time-points and during iterations at a
given time-point. These changes require the KLU-RF of Ai. A mapping can be derived to

determine the BTF block number that contains each dynamic cell and the column number within
BTF blocks that contains these cells.

f=A,—>A, (2.3)
A (i) =A (P, @) (2.4)
Let f inequation (2.3) be a mapping between A columns indices and A column indices. This

mapping is based on the column permutation vector P, found during KLU symbolic analysis. The
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conversion of column indices into BTF indices requires the calculation of the inverse column

perm utation vector P,

M:A i (2.5)

A similar mapping can be drawn between each matrix cell and the BTF blocks they belong in A .
Let (2.5) be the mapping between matrix A nonzero elements and the BTF blocks | they belong
toin A . Figure 2.10 shows the mapping procedure between these two sets. The mapping involved
two nested loops that go over all matrix cells (the outer loop) and all BTF blocks (the inner loop).
The outer loop runs from 1 to the total number of non-zeros (nnz) and passes column index of each
cell to the inner loop. The inner loop runs from 1 to the number of blocks (nblocks) looking for the

block the cell belongs to. In Figure 2.10, vector r represents block boundaries vector where R(i)
is the starting row of block i and R(i+1) is the starting row number of block i+1, and vector

Rgre has the BTF block number of each non-zero elementin A.

Cells to BTF blocks mapping

for(i = 1; i <= nnz; i++)

{
for (j = 1; j < nblocks; j++)
{
%f(( Pc[Ac[i]] > R[3]) & (Ac[i] < R[j + 1]))
Rere[1] = 3J;
}
}
}

Figure 2.10 Cells to BTF blocks mapping

The matrix Ai is reordered using AMD and can be written as
. [P, P
Ai :|: cc cd:| (26)
Pdc Pdd
Where, the subscripts ¢ and d mean constant and dynamic respectively. The ¢ columns do not have
any dynamic parts, but the d columns contain at least one dynamic cell and may have zero or more

dynamic cells in the following columns.
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In the left-looking algorithm, the columns of I:i are derived one-by-one by solving for each column

of Ai . If, for example, the lower matrix decomposition of Ai is stopped at its first dynamic column

then

(oo {"cc 0 } @7)
PdC Idd

Where I:E’ is a partially computed lower-triangular matrix, L. is a lower-triangular matrix, Py,

and L, contain the columns of the static part of LP and I, is the identity matrix. Once Py, is
determined (status of time-varying devices or iterative Norton equivalent) at a given solution time-

point, the calculation process is continued until the replacement of 1, to obtain Li from I:E’ . The

upper-triangular matrix U; is calculated within the calculation process of Ei . For (2.7), the partial

upper matrix factorization is available up to the constant columns

ur {“} (2.8)

0

In the above approach it is not necessary to restart the partial KLU-RF process for the complete set

of columns of P, . Better efficiency can be gained, if partial KLU-RF is applied by restarting from

the first left modified column j 4 in Py . As before, since KLU is a left-looking solver, all

unchanged columns to the left of j,, can maintain the previous contributions to the I:i and Ui

factors. In addition, given the fact that not all the elements in the right hand side vector b are
dynamic, the forward substitution can start from the top changed element of b and the results of
the skipped part can be retrieved from the previous iteration.

It is also possible to apply a permutation technique that forces Py, to contain only NMs and TVMs

(similar idea in [34]). But such an approach interferes with the AMD ordering and creates extra
fill-ins which hinder the performance gains. It was tested and was not retained for this thesis.
The following example shows the application of partial factorization feature on the simple electric

circuit shown in Figure 2.11.
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Figure 2.11 Sample circuit for demonstrating partial factorization

The BTF permuted MANA matrix for the circuit shown in the above figure is shown in equation
(2.9). At the start of simulation, the nonlinear resistor Rn1 is equal to 1 Ohm (initial linear slope

position) and the contribution of this resistance in the A matrix appears at the diagonal element
A(sl 3) '

1.2500 -1.0000 -0.250001[V,] [l
~1.000 1.83333 -0.33333||V, |=| 0 (2.9)
~0.2500 -0.33333 1.583333 ||V, | | 0

The KLU-FF of system (2.9) is performed in equations (2.10) to (2.19). The following steps

demonstrate a summarized KLU-FF process (for detailed procedure of KLU-FF refer to section
1.6.2.2).

1. KLU 1% column factorization:

1 0 0|[x] [125007 [x7] [ 1.2500
0 1 0|x, |=|-1.000 |=|x, |=| -1.000 (2.10)
0 0 1|%] |-0.2500] |[x| |-0.2500

1 00
[,=|-0.8000 1 0 (2.11)
—0.2000 0 1
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12500 0 O
U= 0 10 (2.12)
0 01
2. KLU 2" column factorization:
1.0000 0 0 X, —-1.0000 X, —-1.0000
~0.8000 1.0000 0 || x, |=|1.83333 |=|x, |=| 1.03300 (2.13)
—0.2000 0 1.0000 || x, -0.3333 X, —0.53300
1 0 0
L,=/-08000 1 0 (2.14)
—-0.2000 -0.5161 1
1.2500 -1.000 0
U,=| 0 1.0333 0 (2.15)
0 0 1.000
3. KLU 3" column factorization:
1.0 0 0| x —-0.2500 X, —0.2500
—0.8000 1.0 0 || x,|=]0.33333 |=| X, |=| 0.13333 (2.16)
-0.2000 -0.5161 1.0 || x, 1.58333 X, 1.60214
1.0 0 0
L,=|-0.8000 1.0 0 (2.17)
-0.2000 -0.5161 1.0
1.25000 -1.000 -0.250
U,=| 0 1.0333 0.1333 (2.18)
0 0 1.6021
The fully factorized system of (2.9) is shown in (2.19)
1 0 0[125 -1 -02571[V,] [l
0.8 1 0 0 1.0333 —0533|V,|=| 0 (2.19)
0.2 -05161 1| 0 0 1.257 ||V, 0

Once the system in (2.19) is solved and the simulation moves to the next time step, the nonlinear

resistor in Figure 2.11 may change to another value. In this example and for the sake of illustrating



81

the partial KLU-RF concept, it is assumed that Rnl value changes from 1 ohm to 2 Ohms. The
MANA matrix in (2.9) changes and it becomes as shown in (2.20).

1.2500 -1.000 -0.25001[V,] [l
~1.000 1.8333 -0.3333||V, |=| 0 (2.20)
—0.2500 -0.33 1.08333 ||V, 0

A comparison between (2.9) and (2.20) shows that the change in Rn1 only affects element A(3,3)
and hence column and row 3 only. The partial KLU-RF feature can detect the first left change
column (FLCC) in Ai and starts the factorization process from that changed column. In this

example, the first left change column is column number 3. In order to factorize this column
successfully, the lower and upper matrices resulted from the factorization of (2.9) up to the second
column (shown in equations (2.14) and (2.15) are retrieved. The factorization of (2.20) can be

achieved by only factoring the third column with the new element at A(3,3) .

1 0 0]x] [-0.2500 x, ] [-0.2500
~0.8000 1 0|/ x, |=]0.33333 |=|x, |=| 0.13333 (2.21)
~0.2000 -0.5161 1|/ x, | |1.08333 x, | |1.10213

1.0 0 0
[=(-0.8000 1.0 O (2.22)

-0.2000 -0.5161 1.0

1.2500 -1.000 -0.2500

U= 0  1.0333 -0.5333 (2.23)
0 0  1.10213
1.0 0 0 ][1.2500 -1.000 -0.25001[V,] [l,
-0.8000 1.0 0 0  1.0333 -05333||V, |=|0 (2.24)
~0.2000 -0.5161 1.0|| © 0 110213 (|v,| | O

From the above example, it can be seen that the partial factorization process allows to save
computing time since it avoids the lengthy operations for recalculating the full I:i and Ui matrices

from scratch. The computational impact will depend effectively on the locations of the nonlinear

component columns. The Impact is maximized when all nonlinear component cells are located at
the far-right part of Ai . It is also obvious that the impact is more important for very large-scale

systems with nonlinear components. It is worth mentioning that in the above example the diagonal
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pivots assumed at the beginning of KLU-FF continue to be valid throughout the 3 columns
factorization. Applying partial KLU-RF involved continued validation of pivot for each column
being factorized, and if at any point an invalid pivot is found the partial KLU-RF process is halted

and a KLU-FF is performed on that particular block.

2.5 Parallel KLU Implementation

The second approach of achieving faster EMT simulation is by applying parallel computation on
the enhanced version of KLU presented above. In this project the OpenMP multithreading
technique is applied on different parts of KLU such as KLU-FF, KLU-RF and forward-backward

substitution.

Throughout this thesis, two different parallel sparse solver techniques were implemented and

tested. The two approaches are presented in this section.
2.5.1 Shared memory Model

The shared memory design of OpenMP is mainly based on keeping the matrix A received by the
simulation package (i.e EMTP) as one matrix that is allocated on one sequential segment of the
memory and using this matrix in the solution of (1.4). All BTF blocks in this model are
concatenated in one matrix and accessing these blocks requires the knowledge of the starting and

ending column/row of each block.

In KLU, the symbolic analysis is done in a pure sequential fashion due to the fact that it is done
only once at the beginning of simulation (t = 0). However, when it comes to numerical analysis,
parallelizing the solution of different blocks is essential to convert the KLU code to a parallel
solver, given that the network that is being solved can be solved in parallel because it has at least
one delay-based line model in it. KLU-FF process can be done in parallel allowing the Full-
factorization of different blocks to be done simultaneously. similarly, KLU-RF and the backward-

forward substitution steps can each be done in parallel as well.

In the shared memory model, parallelizing the factoring process (KLU-FF and KLU-RF) was done
by surrounding the factorization loop, that loops over BTF blocks, with a pragma bracket that will

guarantee a parallel execution of that loop. In a similar manner the backward/forward substitution
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step can be parallelized. Using shared memory model requires the distinguishing between thread
specific variables and threads shared variables and the proper distribution of blocks on different
threads. This concept it crucial to avoid any overlap between different threads, and to avoid any

kind of race conditions during OpenMP thread synchronization.

Figure 2.12 shows a flow chart of the shared memory OpenMP design. From the flow chart it can
be seen that the three parallel regions in this OpenMP model are launched and joined locally within
their SMPEMT functions. These three regions are defined by two black bold horizontal lines that
represent the launch and join points of threads. For example, in KLU-FF function, OpenMP
launches threads at the beginning of KLU-FF loop and joins them when the last block is fully
factored. The same concept applies for the KLU-RF and backward and forward substitution
functions. The KLU-FF and KLU-RF can run on the same thread and three parallel regions are
using threads that are launched and kept for further usage in an OpenMP thread pool.This process
of launching and joining threads at different locations within the solver increases threading
overhead and introduces further delays in the computation speed with the increased number of
threads.
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EMT Package
call To solver

|

NO i YES Symbolic
First call Analysis
hJ
¥ ¥ ¥ ¥ ¥ ¥ ¥ v
KLH-RF KLU"-RF KLU"-RF - KLH-RF KLU"-FF KLLL-FF KLLL-FF -mm = KLI.;\I-FF
AL Az A An AL Az A An
| [ | ] [ [ [ ]
New Pivot ™. YES
Needed?
NO
¥ ¥ ¥ ¥
Solution Solution Solution Solution
A A A - ... A
AL .+ A3 An

[ Results Available }

Figure 2.12 Shared memory OpenMP model

2.5.2 Distributed Memory Model

The second design of OpenMP implementation is based on the distributed memory concept. This
model uses matrix A to create another set of matrices that are fully independent in terms of
equations and memory storage. These new matrices are created based on the BTF permutation
found during the symbolic analysis of A. A new data type is created to fully represent the new
matrices both symbolically and numerically. Figure 2.13 shows the user defined type KLU_unit
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used to represent different sub-matrices. If the user of SMPEMT solver requested the launch of 4
threads, and the size of the matrix A and the circuit being solved support this number of threads,

four instances of KLU_unit will be created with each one of them representing part of A.

* klu_units: sets default parameters for each thread */
typedef struct

n klu_unit_common;
*klu_unit_numeric;

i *klu unit_symbolic;

int n;

int nnz;

double *klu_unit_Ax;

int *klu unit Ai:

int *klu_unit_Ap;

double *klu_unit_X;

double *"klu_unit_B;

int *klu_unit_work;

int *row_reverse _mapping;

i 115 *changed_cells;

int *A_EMTP _cell number;

int Changed_cells_count;

int Call counter;

int klu_unit_flag;

} klu_unit;

Figure 2.13 KLU _unit type declaration

In Figure 2.13, klu_unit_common is a variable of type KLU _Common that stores KLU control
parameters of the submatrix represented by KLU_UNIT, klu_unit_symbolic is a variable of type
KLU_Symbolic that stores the symbolic parameters of the submatrix represented by KLU_UNIT
(such as permutation vectors and different statistics variables), klu_unit_numeric is a variable of

type KLU_Numeric that stores the numerical quantities of the submatrix represented by KLU_Unit
(such as the matrices I:i, Ui and the solution vector X). The variables n, nnz, klu_unit_Ax,

Klu_unit_Ai, klu_unit_Ap, klu_unit_X and klu_unit_B are a representation of the submatrix being
represented by KLU _UNIT. All other variables in Figure 2.13 are used to provide two ways
mapping between KLU_UNIT submatrix and the matrix A.

Solving the system of equation in (1.54) using the distributed memory algorithm requires running
symbolic analysis on the matrix A. This symbolic analysis will find the BTF permutation of A

and determine the load balancing to achieve best parallelization possible (see section 2.6). A new
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function called KLU_submatrix_creation was created to form the new matrices and allocate all
necessary memory required to store KLU_unit elements. The creation of KLU_unit instances is
done in parallel in order to make sure that each thread uses its own memory and hence its own
cache line to store and manipulate data. This practice allows to minimize thread conflicts and

enhances the ability of each thread to fetch data faster and more efficiently.
The distributed memory algorithm is shown below:
1. First call to SMPEMT:

a. Perform symbolic analysis on A.
b. Create new matrices Ai by concatenating BTF blocks of A.

c. Launch a parallel SMPEMT call for all KLU_unit objects
d. Goto step 2
2. First KLU_unit call to SMPEMT:

a. Perform symbolic analysis

b. Perform KLU-FF to find I:i and Ui.

c. Backward and Forward substitution to find X;.

d. Go to step 4.
3. Not First KLU_unit call to SMPEMT:
a. Perform KLU-RF using existing nonzero pattern and pivoting with pivot validity testing
i. Invalid pivot found: go to step 2.b

b. Go to step 4.

4. Copy the values in X; back to x.
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In this thesis, two solvers will be used that are based on SMPEMT, namely SMPEMT1 and
SMPEMT2. The first solver (SMPEMT1) has only the pivot validity test implemented in it;
whereas SMPEMT?2 has all features discussed above (pivot validity test and partial factorization)
implemented. This practice allows for better understanding of the effect of each feature on

different test benchmarks and gives more insight of the advantages and disadvantages of all added

feature.
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2.6 Load balancing

Parallelization is applied to blocks found from BTF permutation, that is for each Ai matrix. Since

there is a limited number of CPU cores and the computing gains are limited by the largest network
blocks, it is necessary to apply a balancing technique for the given number of cores. An algorithm
that is based on different approaches has been implemented.

In the first approach a pre-programmed method allows to estimate the number of floating-point
operations for the solution of each block ( NFPO;). The following formula is used for a matrix

block of nxn:

n | j-1
NFPO, = >'| > 2LIen(m)+3Llen(j)+2Ulen(j) |+n (2.25)
j=1 . m=1

A

Where j and m are the indices of A; columns, Llenand Ulen are the counts of non-zeros in L, and

Ui respectively. This formula accounts for the LU-factorization based on the initial IA_iLAJi nonzero

patterns. It also accounts for the backward-forward substitution step. Equation (2.25) was derived
by considering the operations of KLU solvers factorization line by line and accounting for any step
to produce accurate and efficient load balancing.

The above equation consists of two nested summations, the outer summation of (2.25) goes
through all the block’s columns while the inner summation calculates the floating points operations

needed to KLU-RF column | and solving it. The main tasks equation (2.25) accounts for are
calculating the solution for a sparse lower triangular system used to find I:i and fJi, finding the

numerical elements of I:i and backward and forward solution. As can be seen in section 1.6.2, the

results of solving a sparse lower triangular system for column | requires the use of nonzero

A j—1
elements in the columns prior to j (m< j) in L, and that accounts for the term JZZLIen(m) in

m=1
equation (2.25); whereas the calculation of I:i numerical values contributes by Llen(j) floating

points operations as seen in the last line of Figure 1.25 pseudocode. Finally, the calculation of

backward and forward substitution costs 2Llen(j)+2Ulen(j)+n floating points operations.
In the second approach, the number of non-zeros in each block ( NNz;) is available from its

nonzero pattern. However, for all the test cases presented in this paper, using NNZ; was less
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efficient than using NFPO, .

The blocks are assigned to cores using the number of available cores (N ) and the factor
ks =NFPO/N., where NFPO is the total number for the entire system of equations. Since the
number of blocks N could be higher than N , it is necessary to verify the limiting k, for each
assignment. If a given core is assigned a block with NFPO, less than k, then it can contain
additional blocks until k4 is reached or exceeded. This is basically a packing procedure for

populating available cores.

If a block’s NFPO; falls below a minimum size, then it must be packed into an assigned core since
threading for such a block can become inefficient. The same is applicable using NNz; instead of

NFPO, .
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CHAPTER 3 TESTING AND RESULTS

In this chapter, different cases with different sizes and topologies are tested and validated. The new
implemented solvers SMPEMT1 and SMPEMT?2 are used in addition to the solver already exists
in EMTP (EMTP-MDO). The new solvers are tested with single thread and multithread in order to

validate the performance under all circumstances and scenarios.

When it comes to EMT simulation, speed is not the most important factor to look at. The accuracy
of simulation results must be fully maintained in the new implemented solver under both single
threaded and multithreaded execution. The accuracy of SMPEMT1/2 was verified for all
benchmarks used in this chapter by calculating the difference error percentage between
SMPEMT1/2 and EMTP-MDO waveforms. The percentage error has been calculated between the

two sets of results using equation (3.1).

|-

e% =
Il

(3.1)

where:

€% : percentage error between SMPEMT1/2 and EMTP-MDO

f - results vector produced by SMPEMT1/2 solver
f : results vector produced by EMTP-MDO solver

In addition to the above quantitative measure, few signals of each test case were used to compare
the results of both solvers visually. These signals produced by both solvers were plotted and

overlapped to visually realize any differences along the simulation period.

SMPEMTL1 and SMPEMT?2 solver ability to provide simulation acceleration and flexibility to
different EMT cases can clearly be seen herein. In the following few sections further validations
of the new proposed solver is given with emphasis of the main advantages and the few limitations

the solver has.



3.1 SMPEMT testing and validation

The modified KLU solver named SMPEMT was tested on a wide range of cases and benchmarks.
The aim was to test the developed new solvers on realistic power grid cases. In addition, different
scenarios were considered to stress numerical limitations and examine solver stability and
accuracy. These scenarios involve faults, large numbers of nonlinear models and the use of wind

generators with power electronics converters. In addition, the distributed memory design of

OpenMP was used in all cases and has been validated.

In order to draw a clear conclusion about each test case and fully understand each scenario the

following is given for each benchmark:

A brief description of the case.

A listing of the benchmark main components.

A plot of the network sparsity pattern before and after BTF permutation.
Simulation timing results for EMTP, KLU, SMPEMT1 and SMPEMT?2.
Simulation acceleration plot (both in seconds and acceleration gain).

Results description and discussion.

All tests were run on a machine that has the specifications listed in Table 3.1.

Table 3.1 Testing platform

Test Platform: HP DL360
Processor Model Intel Xeon CPU E5-2650 v4
CPU frequency 2.20 GHz
Number of physical processors 12 / cluster
Number of logical processors 24 [ cluster
Memory 32.0GB
Windows 10
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3.1.1 Hydro-Quebec Full network (HQ-L)

This test case is an upgraded version of the one presented in [6]. It is based on the actual Hydro-
Quebec grid (HQ-grid). A top view of the test case is presented in Figure 3.1.

province_quebec

ontario

S
B

Figure 3.1 Hydro-Quebec case top view

The summary of the case main components is:

e RLC branches: 27530;

e PI/RL coupled branches, 3-phase: 860

e CP Lines/Cable: 1354 phases

e Ideal transformer units (for 3-phase transformers): 6294

e Ideal switches: 3663

e Zinc-Oxide Arresters: 174,

¢ Nonlinear inductances (transformer magnetization): 4452

e Synchronous generators (with excitors and governors): 349;
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e Loads: 4452
HQ-L Simulation data:

e Simulationtime: 1s

Simulation time step: 50 us
e Pivot tolerance ¢, : 0.01

e Average number of iterations per time step: 2.07
e Total number of iterations: 41400

e Matrix A size: 41797x41797

e Number of nonzero elements (nnz) in A : 169369
e Sparsity percentage: 99%

e Total number of BTF of Blocks: 217

e Biggest block size: 2898x2898

e Smallest block size: 3x3

The sparsity pattern of HQ-L network matrix A is shown in Figure 3.2, and the BTF version of

the matrix is shown in Figure 3.3.
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Figure 3.2 HQ-L matrix A before BTF
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Figure 3.3 HQ-L matrix A after BTF

shows the solution of equation (1.4) timing using different solvers and different number of threads.
It is apparent that the KLU method alone does not have performance gains as seen in section 2.1.
This is due to many reasons including the heavy computation operations used in KLU factorization
process and the fact that KLU-FF is applied to all blocks without the improvements of SMPEMT1
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and SMPEMT?2. For this case, SMPEMT2 and SMPEMT1 gave very close timings since some

dynamic elements can be found in the far-left segment of the matrices A, .

Table 3.2 HQ-grid sparse matrix solution timings for 1s simulation and At =50 us

Number of cores
Solver 1 2 4 8 12 13 14 15 16
EMTP 1048
KLU 1216
SMPEMT1 296 | 133 82 47 34 36 37 38.5 39
SMPEMT2 285 | 126 77 43 31 32 325 32.5 34

The computational gain against existing EMTP solver is 1048/31=33.8 with 12 cores. The gain
over the standard single-core KLU solver is 1216/31=39 with 12 cores.

Performance plots are presented in Figure 3.4. The maximum gain over the single core SMPEMT2
version is 9.2 and there are no significant gains after 12 cores. This is mainly due to the limitation
imposed by the largest block, increased memory exchange and thread management costs which
increase with the number of threads. The overall computation time including the solution of
equation (2.1), the control solution, steady-state solution and updating matrix A and vector b
drops from 1976 seconds (when using EMTP solver) to 404 seconds (when using SMPEMT?2,

parallel control solver and 16 threads topology).
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Figure 3.4 SMPEMT HQ-L Grid simulation time and gain

In order to validate the results of SMPEMT, three signals were selected to determine the accuracy
of the solution. The first selected signal is the voltage (phase A) drop across line L7016 located in

the province of Quebec and it was chosen in particular due to its distance proximity to a fault that
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is located between L7016 and L 7046A transmission lines. The fault event in this test case is a (3-

phase-to-ground) fault that is triggered at t = 0.5s as can be seen in Figure 3.5.
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Figure 3.5 HQ-L Grid fault location

The second signal is the real power of synchronous machine Generator Mercier A1 located in the
province of Quebec in the Laurentides region, and the third signal is the real power of the
synchronous machine Hydrocanyon_A located in the province of Quebec in the Quebec City
region. The comparison of the three signals are shown in Figure 3.6 to Figure 3.8. In these figures,
the red waveform represents the result of EMTP-MDO solver, and the blue is SMPEMT solver. It
can be seen from the figures that both results are matching and a complete overlap between the two
curves is achieved (including during the fault effect period). The error percentage between both set
of waveforms are found to be 2.67x10°, 2.93x10™ and 1.57x10° for the three signals

respectively.
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Figure 3.6 HQ-L grid line L7016 voltage drop - phase A
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Figure 3.7 HQ-L grid Generator Mercier_A1 real power
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Figure 3.8 HQ-L grid Generator Hydrocanyon_A real power
3.1.2 TO-Grid

This case is a realistic 400 kV, 50 Hz network. It is designed with high integration of renewable
sources to stress numerical accuracy and stability. It includes 72 synchronous generators modeled
with their exciters and governors. There is a total of 10 wind parks with aggregated wind
generators. These generators of DFIG type are simulated with their controllers that are based on
reactive power control mode. The DFIG converters are given two modeling options: Detailed
model (DM) and average value model (AVM) [58]. The DM includes nonlinear IGBT models
which require iterations and significantly increases computational burden. In the AVM controlled
sources are used to represent average converter behavior and sufficient accuracy can be achieved

when studying grid performance issues. The details of this benchmark are listed in [59].

The top view of TO-Grid is shown in Figure 3.9, where the green boxes represent sub-transmission
networks at 154 kV with wind generation, and the yellow boxes represent only sub-transmission

networks with no wind turbines. In addition to the above, the network has the following contents:

e RLC branches: 2319; PI/RL coupled branches, 3-phase: 595



99

e CP Lines/Cable: 174 phases

e Ideal transformer units (for 3-phase transformers): 6294
e Controlled switches (converter switches): 190

e Ideal switches: 254

e Nonlinear resistances (used for IGBT models): 270

¢ Nonlinear inductances (transformer magnetization): 564

e Loads: 1029

Figure 3.9 TO-Grid top view
TO-Grid Simulation data
e Simulationtime: 1s

e Simulation time step: 10 us

e Pivot tolerance £y " 0.01

e Average number of iterations per time step: 6.23



Total number of iterations: 799174

Matrix A size: 4703x4703

Number of nonzero elements (nnz) in A : 25117

Sparsity percentage: 99%

Total number of BTF of Blocks (nblocks): 28

Biggest block size: 573x573

Smallest block size: 3x3
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Figure 3.10 TO-Grid matrix A before BTF
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Figure 3.11 TO-Grid matrix A after BTF

Table 3.3 TO-DM sparse matrix solution timings for 1s simulation and At =50 us

Number of cores
Solver 1 2 4 8 12 13 14 15 16
EMTP 1241
KLU 2120
SMPEMT1 720 380 229 151 157 157 161 161 165
SMPEMT2 675 360 210 141 99 99 101 105 112
800 \ 8
Gain: 6.8
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Figure 3.12 SMPEMT TO-Grid simulation time and gain for DM model

shows the solution of equation (1.4) timing using different solvers and different number of threads.
A gain of 1241/151=8.2 is recorded over EMTP when SMPEMT1 is used with 8 threads and no
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further gain is noticed with the increase number of threads. This is mainly due to the largest block
that imposes limitation on further distribution of computation loads on additional threads, and acts
as the bottle nick that takes the biggest computation time and forces all other threads to perform a
busy wait while its computation is being finalized. However, a gain of 1241/99=12.5 was recorded
when SMPEMT2 is used. This difference between the two solvers (SMPEMT1 and 2) is mainly
due to the usage of partial factorization and the location of the first left dynamic column (FLDC).
The gain of SMPEMT1 with 8 threads is 720/151=4.7 compared to SMPEMT1 with 1 thread, while
SMPEMT?2 achieved 675/99=6.8 with 12 threads compared to 1 thread.

The overall computation time including the solution of equation (2.1), the control solution, steady-

state solution and updating matrix A and vector b drops from 2943 seconds (when using EMTP

solver) to 578 seconds (when using SMPEMT2, parallel control solver and 16 threads topology).

The studied event in this test case is a (phase-a-to-ground) fault on the transmission line
ADAPA _to_GOKCE connected between the lines ADAPA and GOKCE as can be seen in Figure
3.13.
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Figure 3.13 TO-DM Grid fault location
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The fault occurs at 1 s, the phase-a breaker on the left of the line receives the opening signal at
1.08 s and the one on the right at 1.1 s. The phase-a breaker on the left recloses at 1.48 s and the
one on the right at 1.5 s. The reclosing is unsuccessful and all breakers (all left and right phases)
receive the opening signal at 1.56 s to isolate the line. Figure 3.14 shows two waveforms of phase
A voltage drop across line ADAPA to GOKCE calculated by EMTP-MDO and SMPEMT
solvers. Figure 3.15 and Figure 3.16 show real power comparison of two synchronous machines
located close to the fault. Calculation of the error percentage between the EMTP-MDO and
SMPEMT solvers at t=1.01 second is found to be 3.8x10*°, 2.67x107° and 1.37x10™* for the

three signals respectively.
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Figure 3.14 Line ADAPA TO GOKCE voltage drop - phase A
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3.1.3 T1-AVM Grid

The T1-Grid is another version of the Turkish grid that uses the average model converters. This
case simulates the effect of a fault inserted between buses CAYER and ADAPA. This case shown
in Figure 3.17 uses wind turbine as part of its generations and includes the following main

components:
e RLC branches: 594
e PI/RL coupled branches, 3-phase: 6
e CP Lines/Cable: 58
o Ideal transformer units (for 3-phase transformers): 141
o Ideal switches: 213
e Synchronous generators (with AVRs and governors): 33
e Loads: 105

A top view of T1-Grid is shown in Figure 3.17, and the exact location of the fault can be seen in the

same figure. Figure 3.18 and Figure 3.19 show matrix A sparsity pattern before and after BTF

permutation.
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Figure 3.17 T1-AVM Grid top view

0 < =3
500 ~—— N\, o i
: " N %
his . ,
Y
'\\\'
1000 N\ ]
\ . )
-~
i ¥ \
1500 by R LY P o Y d
0 500 1000 1500
nz = 5428

Figure 3.18 T1-AVM Grid matrix A before BTF permutation.
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Figure 3.19 T1-AVM Grid matrix A after BTF permutation
T1-Grid Simulation data:

e Simulation time: 10 second

Simulation time step: 50 us

e Pijvot tolerance £,:0.01

e Average number of iterations per time step: 3.01
e Total number of iterations: 604919

e Matrix A size: 1542 x1542

e Number of nonzero elements (nnz) in A : 5428
e Sparsity percentage: 99%

e Total number of BTF of Blocks (nblocks): 45

e Biggest block size: 811x811

e Smallest block size: 3x3

The BTF of matrix A shows that a limiting block exists in this case. This block is the first block

seen in Figure 3.19. The size of the limiting block is 811 and it limits the parallelization of the case
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beyond two threads since it does not have any delay-based lines in it and can’t be divided using
BTF permutation. shows the solution of equation (1.4) timing using different solvers and different

number of threads.

Table 3.4 T1-Grid sparse matrix solution timings for 1s simulation and At =50 ps

Number of cores
Solver 1 2 4 8 12 13 14 15 16
EMTP 48
KLU 53
SMPEMT1 19.5 10 13.1 14 15.4 17 19 20 20
SMPEMT?2 17 85 | 11.2 13 14.5 16 18 18.5 19

In this case the difference between SMPEMT1 and 2 is minor due to the fact that the biggest block’s
FLDC is located at the 6™ column in the BTF format and that limits the ability of partial KLU-RF
to decrease the computation time of the block factorization. The best gain is achieved with

SMPEMT2 (48/10 = 4.8). The overall computation time including the solution of equation (2.1),

the control solution, steady-state solution and updating matrix A and vector b drops from 68
seconds (when using EMTP solver) to 21 seconds (when using SMPEMT?2, parallel control solver

and 8 threads topology).
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Figure 3.20 SMPEMT T1-Grid simulation time and gain for AVM model

The studied event in this test case is a (3-phase-to-ground) fault on the transmission line

ADAPA to_CAYIR connected between the lines ADAPA and CAYIR as seen in.
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Figure 3.21 T1-AVM fault location

The fault occurs at 1 s, the breaker on the left of the line receives the opening signal at 1.08 s and
the one on the right at 1.1 s. Figure 3.22 and Figure 3.23 show the voltage drop across line
ADAPA_TO_CAYIR and the real power of SM CAYIR TPP CAYIRHAN U2 respectively. Both
figures contain two waveforms calculated by EMTP-MDO and SMPEMT and both curves overlap

with difference seen throughout the faults span period.
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3.1.4 T2-AVM Grid

T2-Grid is a modified version of the Turkish grid discussed in the previous section. Three offshore
wind turbine farms were added to the HYDC_ALIGA and HVDC _IZMIR buses. The location of
the fault is kept between buses CAYER and ADAPA. The main components of the case are the
following:

e RLC branches: 900
e PI/RL coupled branches, 3-phase: 9
e CP Lines/Cable: 62
e Ideal transformer units (for 3-phase transformers): 168
o Ideal switches: 410
e Synchronous generators: 28
e Loads: 105
T2-Grid Simulation data:

e Simulation time: 10 second

Simulation time step: 50 us
e Pivot tolerance ¢,:0.01

e Average number of iterations per time step: 3.04
e Total number of iterations: 610783

e Matrix A size: 24252425

e Number of nonzero elements (nnz) in A : 8347
e Sparsity percentage: 99%

e Total number of BTF of Blocks (nblocks): 58

e Biggest block size: 811x811
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e Smallest block size: 3x3

Figure 3.24 shows the top view of the case that provides an illustration of the faults position and all
offshore wind farms locations. Figure 3.25 and Figure 3.26 shows the matrix A nonzero pattern
before and after BTF permutation. Unlike T1-Grid discussed in section 3.1.3, the biggest block
(size = 811) consist of almost 30% of the case size and that will loosen the parallelization limitation

seen in benchmark T1. However, the biggest block will still impose limitation on parallelization
beyond 4 threads.
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Figure 3.24 T2-AVM Grid top view
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Figure 3.25 T2-AVM Grid matrix A before BTF permutation
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Figure 3.26 T2-AVM Grid matrix A after BTF permutation

shows the solution of equation (1.4) timing using different solvers and different number of threads.
It can be notices from the results that SMPEMT1/2 performance accelerates with the increase
number of threads up to 3 threads and after that the performance starts to deteriorate. Like other
cases, this phenomenon is due to the limiting block (biggest block = 811) that does not have any
CP line in. The overall computation time including the solution of equation (2.1), the control

solution, steady-state solution and updating matrix A and vector b drops from 164 seconds (when
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using EMTP solver) to 29 seconds (when using SMPEMT2, parallel control solver and 8 threads
topology).

Table 3.5 T2-Grid sparse matrix solution timings for 1s simulation and At =50 us

Number of cores
Solver 1 2 4 8 12 13 14 15 16
EMTP 64
KLU 72
SMPEMT1 33 15 7.8 11 11.9 125 13.2 14 14
SMPEMT2 31 14 75 10 11.2 12 13 14 14
50 T T T T T S
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Figure 3.27 SMPEMT T2-Grid simulation time and gain for AVM model

The studied event in this test case is similar to the one seen in the previous section and the fault
scenario remains the same. However; three set of offshore wind turbines are added to the case and
that will add more numerical stress on the solvers. Figure 3.28 and Figure 3.29 show the
comparison between EMTP-MDO and SMPEMT using phase A voltage drop across line
ADAPA _TO_CAYIR and SM CAYIR TPP CAYIRAN U2 real power. Both figures show

complete overlap between the two solvers results and no difference can be seen visually.

Calculation of the error percentage between the EMTP-MDO and SMPEMT solvers at t =1.01

second is found to be 5.3x10™° and 8.2x10*° for both signals respectively.
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From the above figure it can be seen that both solvers produce similar result and both curves

perfectly overlap each other.

3.15 IEEE14

This benchmark represents a simplified version of the IEEE 14 bus system [60]. This case has 14
buses, 5 generators and 11 loads. The case does not have any nonlinear instances and hence the

number of iterations is 0. The case was simulated for 1 second with a 50 ,s time step.

The BTF version of matrix A has only one block since the case has no CP lines and can’t be
decoupled in time domain. The size of the only block in BTF form is the size of the case overall
A matrix. Figure 3.30 and Figure 3.31 show the sparsity pattern of matrix A before and after BTF
permutation. shows the solution of equation (1.4) timing using different solvers with one thread

only.
IEEE14-Grid Simulation data:

e Simulation time: 1 second

Simulation time step: 50 us

e Pivot tolerance £,:0.01

e Average number of iterations per time step: O (linear case)
e Total number of iterations: 20000

e Matrix A size: 99x99

e Number of nonzero elements (nnz) in A: 711

e Sparsity percentage: 92.7%

e Total number of BTF of Blocks (nblocks): 1
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Figure 3.30 IEEE14-Grid matrix A before BTF permutation
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Figure 3.31 IEEE14-Grid matrix A after BTF permutation

Table 3.6 IEEE14 sparse matrix solution timings for T=1s and At =50ps

Number of cores

Solver 1 2 4 8 12
EMTP 0.91

KLU 1.10 N/A N/A N/A N/A
SMPEMT1 0.77 N/A N/A N/A N/A
SMPEMT?2 0.77 N/A N/A N/A N/A
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Since the BTF format has only one block, all tests conducted for this case were done using one
thread only. No major gain is seen when SMPEMT1 and 2 since factorization of the A matrix is
done once due to the lack of nonlinear elements in the case and the pivot validity testing feature
didn’t have any impact of the gain seen in SMPEMT 1/2 timings, but rather it is all due to the partial

forward substitution that was explained in 2.4.

Figure 3.32 shows comparison between two signals calculated by EMTP-MDO and SMPEMT
solvers. The two signals represent phase A voltage drop across transmission line (PI115). From the
figure, it can be seen that both signals are completely matching and no difference can be notices

throughout the waveforms in the figure.

Line PI15a Phase A Voltage Drop
1500 v v : r r v v

EMTP-MDO

s T
I

Time (Seconds)

Figure 3.32 Line PI115 voltage drop - phase A

3.1.6 IEEE7000

The IEEE7000 benchmark is built by repeating the IEEE14 case 500 times in order to get a case
with 7000 buses. The different IEEE14 cases were linked by CP lines at buses 13 and 14. Using
CP lines between different IEEE14 allows to have 500 blocks in the BTF format where each block
represents an IEEE14 case. Figure 3.33 and Figure 3.34 show the network A before and after BTF

permutation.



119

The IEEE7000 case was simulated for 1 second with time step At =50us and similar to IEEE14

benchmark, this case does not have any iterations due to the absence of any nonlinear objects and
hence the rate of iterations per time step is 0. shows the solution of equation (1.4) timing using

different solvers and different number of threads.
IEEE7000-Grid Simulation data:

e Simulation time: 1 second

Simulation time step: 50 us

e Pijvot tolerance £,:0.01

e Average number of iterations per time step: 0

e Total number of iterations: 20000

e Matrix A size: 49698x49698

e Number of nonzero elements (nnz) in A: 357633
e Sparsity percentage: 99.9%

e Total number of BTF of Blocks (nblocks): 500

4

<10

nz = 357633 <10%

Figure 3.33 IEEE7000-Grid matrix A before BTF permutation
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nz = 357633 <104

Figure 3.34 IEEE7000-Grid matrix A after BTF permutation

Table 3.7 IEEE7000 sparse matrix solution timings for 1s simulation and At =50 ps

Number of cores
Solver 1 2 4 8 12 13 14 15 16
EMTP 1074
KLU 1135
SMPEMT1 222 | 125 75 42 25 21 18.4 16 15
SMPEMT2 222 | 125 75 42 25 21 18.4 16 15

250

Gain

Cores

Figure 3.35 SMPEMT IEEE7000-Grid simulation time and gain

The same case was simulated in [19] where the case was partitioned using a boarder block diagonal
scheme based on the use of PI section transmission lines. An approximation of this test results is

shown in .
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Table 3.8 T2-Grid sparse matrix solution timings with BBD (s)

Number of cores 1 10 20 30 40 50 60

Simulation time 5000 550 250 200 200 210 220

From the above two tables, it can be seen that the KLU based approach implemented herein is more
efficient and faster than what is proposed in [19], and the timing obtained with 20 threads in was
achieved and overcome with only one thread of SMPEMT?2 as seen in . Although the machine used
to obtain the results in and [19] have different processors type, the other specifications are very
close and this difference can’t justify the different in results.

3.1.7 IEEE39

The IEEE39 benchmark represents a part of New England 345-KV grid. It consists of 10
synchronous generators, 39 buses, 12 transformers, and 19 loads. The case has a total of 34
transmission lines with 24 modeled as CP lines and the rest as Pl section type of lines. A simplified
version of the case was modeled using EMTP with the following list presents a summary of the

case main components:
e Synchronous machine: 10
e Ideal Transformer units: 90
e RLC: 337
e Ideal switch: 123
e L nonlinear: 87
¢ PQ load centers: 57
e AC current source: 57
e PI/RL lines: 10
e CP lines/cable: 24

IEEE39-Grid Simulation data:
e Simulation time: 10 second

e Simulation time step: 20 us
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e Pijvot tolerance g, 1001

e Average number of iterations per time step: 1.18
e Total number of iterations: 711930

e Matrix A size: 486'486

e Number of nonzero elements (nnz) in A : 1662

e Sparsity percentage: 99.2%

e Total number of BTF of Blocks (nblocks): 57

e Biggest block size: 60x60

e Smallest block size: 3x3

Figure 3.36 shows the case top view that provides general understanding about the case layout and
elements distributions. Figure 3.37 and Figure 3.38 show the case A matrix before and after BTF
permutation. This case is a relatively small case and applying parallel computation on it shows to
what extend parallelization can accelerate the performance of the solution before the overhead
weight of synchronizing thread, launching and joining threads takes over. shows the solution of

equation (1.4) timing using different solvers and different number of threads.



PowerPlant_10

V11,0410,

PowerPlant_08

Load25

bus02_25

bus02_03

Load26

bus25_26

bus26_27

bus17_18

Load27

bus26_29
1890
bus26_28 bus28_29
B2s [ i
B29

92MVAR@S00K l
BUS24_shunt

B24
V1:1.02

Load24

bus10_13

B

58

bus13_14

20km

2 3| k g g
As & 2
HE

PowerPlant_01 2=
V1:1.00._9.
Loadd  preeass busos 14
839 T N —
VTo0e 108 s
1:1.03/_114
Load39 g
8f V1050
N
Bs B
V1099196
Load12
S
V110072
3 g <
V110064
S
2 PowerPlant_03

B9 md
V1:1.02/_-116

bus16 21

Load1s

bus16_19

V1:1.04/_-2.4

Load29

1:1.041_0.7

PowerPlant_09

PowerPlant_06

SM )5

822
VITOA

bus23_24

bus22_23

Load23

Load20

PowerPlant_05
B34

Figure 3.36 IEEE39-Grid top view

PowerPlant_07

823
V1:1.04/_-0.8

123



100 +

200

250

300

350

400
450
A A A

50

100

200 300 400
nz = 1662
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Figure 3.38 IEEE39-Grid matrix A after BTF permutation

Table 3.9 IEEE39- Grid sparse matrix solution timings for T=1s and At =50 us
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Number of cores
Solver 1 2 4 8 12 13 14 15 16
EMTP 38
KLU 43
SMPEMT1 11.7 | 6.5 5 7.8 9.2 10.8 12 13 13.5
SMPEMT2 10.2 | 55 4 6.9 9 10.5 11.8 13 13.5
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Figure 3.39 SMPEMT IEEE39-Grid simulation time and gain

The overall computation time including the solution of equation (2.1), the control solution, steady-
state solution and updating matrix A and vector b drops from 52 seconds (when using EMTP

solver) to 38 seconds (when using SMPEMT?2, parallel control solver and 8 threads topology).

The studied event in this test case is a (3-phase-to-ground) fault inserted between on the
transmission line bus03_04 as seen in Figure 3.40. The fault is triggered at t =0.2 second and

removed at t = 0.3 second.
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Figure 3.40 IEEE39 fault location

Figure 3.41 and Figure 3.42 below show a comparison of EMTP-MDO results and SMPEMT
result. Both figures show very similar results for both solvers and no difference can be seen during
the fault effect. The difference error percentage between the two solvers is found to be 7.1x107°

and 1.5x10* for both signals respectively.
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3.1.8 IEEE118-GMD

This benchmark represents a modified version of the IEEE-118 that represents a portion of the
American Electrical Power (AEP) system in the US Midwest [59]. This version included herein
has comes with different upgrades and modifications to the original case. This modification

includes

e Modifying transmission line and machine data according to the latest IEEE standards and

publications and typical data from North America transmission grid.

e Adding extra features and data to allow EMT-type studies, these added features/data
include transmission line data such as tower configuration, conductor data, per unit length
positive sequence, zero-sequence line impedance data and line length data. In addition,
different types of transmission lines have been incorporated with the case such as Pl, CP
and FD that will allow the user to use combination of transmission lines depending on the
type of study and requirement.

e Updating machine data and adding machine controls such as excitors, governors, OEL and
PSS.

The following list presents a summary of the IEEE-118 main components:
e 177 transmission lines (CP, Pl and FD)
e 91 loads
e 9 Transformers
e 54 synchronous machines (SMs)
e 19 Synchronous generators (SGs)
e 35 Synchronous condensers (SCs)

IEEE118-Grid Simulation data:
e Simulation time: 400 second

e Simulation time step: 50 us
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e Pivottolerance ¢, :0.01

e Matrix A size: 85148514

e Number of nonzero elements (nnz) in A: 27471
e Sparsity percentage: 99.96%

e Total number of BTF of Blocks (nblocks): 40

e Biggest block size: 1148x1148

e Smallest block size: 30x30

The case has also several voltage levels that vary between 345KV transmission, 138KV sub-
transmission, 25V distribution and 20, 15, 10.5 KV generation. Figure 3.43 shows an overview of

the IEEE-118 grid and the location of different components within the Network.
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Figure 3.44 and Figure 3.45 show the case A matrix before and after BTF permutation. The case
was simulated for 400 seconds with a 50 us time-step. The long simulation interval was selected
due to the existence of different events along the first 400 seconds of simulation. shows the solution

of equation (1.4) timing using different solvers and different number of threads.
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Figure 3.44 IEEE118-Grid matrix A before BTF permutation
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Figure 3.45 IEEE118-Grid matrix A after BTF permutation
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Table 3.10 IEEE118- Grid sparse matrix solution timings for T=400s and At =50ps

Number of cores
Solver 1 2 4 8 12 13 14 15 16
EMTP 39730
KLU 43687
SMPEMT1 16870 | 8698 | 4698 | 2267 | 2865 2883 2892 2892 2898
SMPEMT2 16794 | 8624 | 4653 | 2241 | 2843 2868 2867 2871 2873
, x10* .
1.5 26
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Cores
Figure 3.46 SMPEMT IEEE118-Grid simulation time and gain

The overall computation time including the solution of equation (2.1), the control solution, steady-
state solution and updating matrix A and vector b drops from 168130 seconds (when using EMTP
solver) to 67473 seconds (when using SMPEMT2, parallel control solver and 16 threads topology).
The above simulation timing shows a nearly linear gain from thread 1 to thread 8 and the
performance starts to deteriorate after the 8" thread. This phenomenon is due to the existence of a
limiting block of size 1148 that limits the gain to 8 threads and prevents any further acceleration.
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3.2 Results analysis

The results presented in the previous chapter illustrate the gain that can be achieved by using

SMPEMT solver. Depending on the case configuration, the gain may vary widely depending on

different types of factors. These factors involve the following:

The existence of CP lines in the case: The use of parallel computation in SMPEMT depends
mainly of the ability to divide the network matrix into various independent blocks. The
division process is based on the time domain decoupling effect of the constant parameter
transmission lines. If no CP lines exist in the case, the parallel computation algorithm can’t
be used and the whole network matrix is solved on one thread. Although some of the
features of SMPEMT may help accelerating the performance, the overall gain will not be

that great compared to the gain obtained by parallelization the solution.

The testing platform (hardware) used in the simulation: Although SMPEMT works on all
machines with more than one processor (CPU), it is notices that the ultimate performance
can be achieved with higher number of physical cores (avoiding hyper threading) and
bigger cache line of the machine. These two factors allow threading to be more efficient by
avoiding sequencing of parallel tasks and allowing different threads to handle bigger blocks

and matrices.

Network configuration: The satisfying of the first two factors does not guarantee good
performance and a scaling gain without having a network configuration that is well
designed with parallel solution in mind. In order to have an efficient parallelization with
lasting effect at higher number of threads, the blocks of BTF matrix must be as small as
possible to enable SMPEMT load balancing topology to distribute blocks evenly on
different CPUs. Having a limiting block (bottle nick) will limit the gain and make the use
of higher number of processors a burden. Figure 3.47 shows an example of a network that
has a block that is almost one third of the overall size of the matrix. Such block limits the
gain of SMPEMT to three threads only. Whereas, Figure 3.48 shows an example of a case
that has a perfect distribution of elements across its blocks and the threading performance
of this type of cases will be efficient and a high gain can be achieved with higher number

of threads.
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Figure 3.47 A network with a limiting block
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Figure 3.48 A network with a perfect distribution of blocks

The following table lists all cases used in SMPEMT validation with the maximum gain

achieved for each case, the size of A matrix and the size of limiting block for each case.
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Table 3.11 Testing cases performance summary

Case name Matrix size | Limiting Block | Maximum gain

HQ case (Full) 41797 2898 33.8
TO-DM 4703 573 12,5
T1_AVM 1542 811 5.65
T2_AVM 2425 811 8.5
IEEE-14 99 99 1

IEEE-7000 49500 99 71.6
IEEE-39 486 60 9.5
IEEE-118 GMD 8514 1148 17.7

From the above table, it can be seen that most cases have hit a point where the gain is
maximized, and no further gain can be achieved. Despite the fact that increasing the number
of threads adds an overhead to the compiler and hinder the efficiency of threading, the
limiting block is the main reason that limits the gain of further parallelization and forms a

bottle nick to any possible improvement and acceleration.

The size of blocks loaded on each thread: Adding a relatively large blocks on threads is
crucial to overcome threading overhead. In order to make an efficient use of any extra
thread launched, a sufficient amount of computation load need to be available to keep that
new thread busy. Otherwise, this increase of number of threads will contribute in slowing

down performance and makes overall gain deteriorate.
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CHAPTER 4 CONCLUSION AND RECOMMENDATIONS

4.1 Thesis summary

The main objective of this thesis was to present an enhanced and a more efficient way of conducting
EMT type simulations that is faster and less time consuming. The main trigger of this project was
the long waiting time needed to simulate large scale power network that are realistic and involve
nonlinear devices, power electronics and have some sort of renewable sources penetration. The
main case used in this project was the Hydro-Quebec grid benchmark that represents a simulated
version of the complete Hydro-Quebec network with its extensions in the Canadian provinces of
Quebec, Ontario and New Brunswick, and New York, Vermont, Massachusetts, and New
Hampshire states in the United State of America. Simulating this case using a traditional solver
was consuming a lot of computation time with the MANA matrix solution acting as the bottle neck
of this simulation time delay. Another trigger of this work is the urgency of attaining real time
simulation (or as close to real time as possible) for realistic and existing power grids. This PhD
project is a step forward in reaching the ultimate goal of having an automatic real time EMT
simulation package that requires no intervention of the user and provides accurate and reliable

simulation results.

4.1.1 Sparse matrix package for EMTs (SMPEMT)

The new way of enhancing EMT simulation is based on accelerating the solution of a network
AX =Dbsystem of equation and provide a customized sparse solver that is suitable for
electromagnetic transient studies. The new sparse solver is called sparse matrix package for EMTs
(SMPEMT) and it has been validated and tested using the EMT simulation package EMTP-RV
that used an iterative technique to solve nonlinear equations and hence involves more computations
that other packages. The development of this sparse solver involved two major steps namely:

Finding an existing and fast sparse solver and applying parallel computation to the new solver.

4.1.1.1 Replacing the Sparse solver package

Throughout this PhD project, several sparse solvers were considered to select a fast and reliable
solver package to act as the baseline that the work and improvement will be based on. The survey
of literature narrowed down the search to three solvers: KLU, SuperLU and EMTP-MDO. The
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three solvers were studied and tested against each other and EMTP-MDO were found to be
relatively faster than the other two. However, studying KLU and its features makes adopting KLU
as the based solver more appealing than EMTP-MDO. This is mainly due to the potential
improvement that may applied on KLU and the continuous support the package has by its
developers. Many features were added to KLU and contribute in boosting its performance, these

features are the following:

- Pivot validity testing: This feature was added to avoid unnecessary factorization during the
AX = b solution. The feature assumes the previously calculated pivot order is valid unless
proven otherwise. This was done by making the refactoring technique of KLU as the default
topology of updating LU factors. A test criterion was added in the refactor function to test the
validity of the used pivot and flag any faults if detected. The same tolerance used in
determining the pivot element is KLU is used in testing the validity of the previously calculated

pivot in refactor function.

- Partial factor: This added feature to KLU is capable of reducing the computation load of any

case by providing a mapping between the changed elements of the matrix A and different
BTF blocks. By creating this mapping, only blocks with changed elements are factorized and
the other unchanged blocks will be only solved using backward and forward substitution. In
addition, using the refactor technique allows the partial factor technique to start refactoring

process from the first left changed column (FLCC).

4.1.1.2 Applying parallel computation

Since BTF blocks are completely independent of each other, factorization and solving of these
blocks in parallel was done by using parallel computation techniques OpenMP. OpenMP allowed
to integrate the concept of parallel computation with minimum change of the sparse solver code.
A load balancing technique was also developed to guarantee that all thread’s load are balanced and

match the load other threads are loaded with.

In conclusion, this PhD work enhanced the speed of EMT type simulation with the implementation
of the new SMPEMT without jeopardizing the accuracy and precision of the simulation. The

proposed SMPEMT solver accounts for varying topologies and the accurate iterative solution of
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nonlinear models. The SMPEMT sparse solver is applicable to any software tool for the
computation of electromagnetic transients. Moreover, the proposed enhancements to the KLU
solver are applicable to other power system computation tools.

The computational gains are demonstrated for practical and large networks. The demonstration

benchmarks and results constitute another contribution of this project.

4.2 Future work

Investigation a new In-Block-Permutation

Since the dynamic elements of the matrix A can be provided to KLU beforehand, it is worth
investigation creating a new way of ordering the BTF blocks internally to reduce the amount of
calculation KLU needs to refactor blocks. This new in blocks permutation will focus on individual
blocks and push dynamic column to the right of the bock and all constant columns to the left of the
block. This type of permutation will affect the fill-in reduction permutation used now in KLU and
hence the challenge of this idea arises. The new permutation will have to combine the consideration
of maximizing the constant part of the block (located at the left side of the block) and minimizes
the dynamic part, and at the same time keeping the fill-in levels of L and U without big increase.
This idea of IBP is similar to some extend to what is proposed in [34].

The application of METIS on single BTF blocks

BTF permutation in SMPEMT is based on the existence of constant parameters transmission lines
in the case under study. Each block represents a part of the network that is isolated from the other
parts of the network due to the time domain decoupling effect of the CP line model. These blocks
do not have any lines in the part of circuit they represent and that may limit the ability of obtaining
an efficient parallelization. This effect was seen in many cases in chapter 3 and the biggest block
of most cases acted as a limiting factor of the parallel process. Adding the concept of METIS into
SMPEMT will allow the solver to break these limiting blocks into boarder block diagonal format

and allow to increase the parallelization degree of the case being studied.
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Loading balancing technique

The loading balancing technique developed in SMPEMT is an efficient algorithm that provide a
relatively efficient load balancing. However, it does take into account the size of constant regions
and dynamic region of each block, and the integration of METIS or other permutation techniques

will make such ordering obsolete.
Improving threads loading

It is notices throughout this PhD project that the efficiency of threading is based on the amount of
work (load) assigned to threads. The more computation load threads have the better the
performance. In the current SMPEMT implementation only Ax =b solution is solved in parallel.
In addition to this part, many parts of EMT solution process can be added to the threads and be
done in parallel. These parts include the solution of the control system, update of models, update

history and so on....
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