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RÉSUMÉ

L’ingénierie de production (release engineering) englobe toutes les activités visant à «con-
struire un pipeline qui transforme le code source en un produit intégré, compilé, empaqueté,
testé et signé prêt à être publier». La stratégie des production et les pratiques de publication
peuvent avoir un impact sur la qualité d’un produit logiciel. Bien que cet impact ait été
longuement discuté et étudié dans la communauté du génie logiciel, il reste encore plusieurs
problèmes à résoudre.

Cette thèse s’attaque à quelque-uns de ces problèmes non résoulus de l’ingénierie de pro-
duction en vue de proposer des solutions. En particulier, nous investigons : 1) pourquoi les
activités de révision de code (code review) peuvent rater des erreurs de code susceptibles
de causer des plantages (crashs); (2) comment prévenir les bogues lors de l’approbation et
l’intégration des patches urgents; 3) dans un écosystème logiciel, comment atténuer le risque
de bogues dus à des injections de DLL. Nous avons choisi d’étudier ces problèmes car ils cor-
respondent à trois phases importantes des processus de production de logiciels, c’est-à-dire la
révision de code, les patches urgents, et la publication de logiciels dans un écosystème. Les
solutions à ces problèmes peuvent aider les entreprises de logiciels à améliorer leur stratégie
de production et de publication. Ce qui augmentera leur productivité de développement et
la qualité générale de leurs produits logiciels.

En général, nous avons constaté que : 1) Les codes susceptibles de plantage sont souvent com-
plexes et dépendent de nombreux autres codes. Pendant la révision de code, les développeurs
dépensent beaucoup de temps (à travers de longues discussions) sur ces codes susceptibles
de plantage. Utilisant une analyse manuelle sur un échantillon de codes susceptibles de
plantage, nous avons constaté que la plupart de ces codes étaient utilisés pour améliorer
les performances, faire du refactoring, rajouter des fonctionnalités, ou réparer les plantages
précédents. Les erreurs de mémoire et les erreurs sémantiques sont identifiées comme les
raisons principales des plantages. 2) La plupart des patches urgents sont utilisés pour fixer
une mauvaise fonctionnalité ou un plantage. Certains d’entre eux ne fonctionnent pas comme
prévu parce qu’ils n’ont pas résolu leurs problèmes ou ont introduits un nouveau bogue. Les
patchs urgents qui ont introduits de nouveaux bogues contiennent souvent de nombreuses
lignes de code. La plupart de leurs bogues sont dues à des erreurs de sémantique ou des
erreurs de mémoire. Plus de 25% des bogues auraient pu être évités car ils pourraient être
reproduits par les développeurs ou trouvées dans les endroits populairs (ex. les fonction-
nalités / sites Web / configurations populaires) ou via la télémétrie. 3) Parmi les défaults
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d’injection de DLL que nous avons étudiés, 88,8% des bogues ont provoqués des plantages et
55,3% ont été causés par un logiciel antivirus. Utilisant un sondage auprès des fournisseurs
des logiciels d’injections, nous avons constaté que certains fournisseurs n’effectuaient pas de
contrôle qualité avec des versions préliminaires de Firefox, ni avaient l’intention d’utiliser une
API publique (ex. WebExtensions).

Nos résultats suggèrent que: 1) Les entreprises de logiciels devraient bien examiner les patches
qui contiennent du code complexe et des dependences compliqués. Ils doivent aider les
réviseurs à concentrer leurs efforts d’inspection en utilisant des outils d’analyse statique. 2)
Les gérants de la publication de logiciel (release managers) doivent soigneusement publier
certains types de patches avant la date de publication prévue. Un grand nombre de bogues
causés par des patches urgents auraient pu être évitées avec un test extensif. 3) Dans un
écosystème, pour réduire les bogues dus aux injections de DLL, les entreprises de logiciel qui
fournissent la platforme et qui fournissent les plug-ins doivent renforcer leur collaboration,
par example, en créant un cadre de test de validation accessible au public. Les entreprises
qui fournissent la platforme peuvent également utiliser une approche de liste blanche pour
autoriser uniquement l’injection de DLL vérifiées.
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ABSTRACT

Release engineering encompasses all the activities aimed at “building a pipeline that trans-
forms source code into an integrated, compiled, packaged, tested, and signed product that is
ready for release”. The strategy of the release processes and practices can impact the quality
of a software artefact. Although such impact has been extensively discussed and studied in
the software engineering community, there are still many pending issues to resolve.

The goal of this thesis is to study and solve some of these pending issues. More specifically,
we examine 1) why code review practices can miss crash-prone code; 2) how urgent patches
(also called patch uplift) are approved to release and how to prevent regressions due to
urgent patches; 3) in a software ecosystem, how to mitigate the risk of defects due to DLL
injections. We chose to study these problems because they correspond to three important
phases of software release processes, i.e., code review, patch uplift, and releasing software in
an ecosystem. The solutions of these problems can help software organizations improve their
release strategy; increasing their development productivity and the overall user-perceived
quality of their products.

In general, we found that: 1) Crash-prone code tends to have high complexity and depend
on many other classes. In the code review process, developers often spend a long time on
and have long discussions about crash-prone code. Through a manual analysis on a sample
of reviewed crash-prone code, we observed that most crash-prone patches aim to improve
performance, refactor code, add functionality, or fix previous crashes. Memory and semantic
errors are identified as major root causes of the crashes. 2) Most patches are uplifted because
of a wrong functionality or a crash. Certain uplifts did not effectively address their problems
because they did not completely fix the problems or lead to regressions. Uplifted patches
that lead to regressions tend to have larger patch size, and most of the faults are due to
semantic or memory errors in the patches. More than 25% of the regressions could have
been prevented as they could be reproduced by developers and were found in widely used
feature/website/configuration or via telemetry. 3) Among our studied DLL injection bugs,
88.8% of the bugs led to crashes and 55.3% of the bugs were caused by antivirus software.
Through a survey with the software vendors who performed DLL injections, we observed that
some vendors did not perform any QA with pre-release versions nor intend to use a public
API (WebExtensions).

Our findings suggest that: 1) Software organizations should apply more scrutiny to patches
with complex code and complex dependencies, and provide better support for reviewers
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to focus their inspection effort by using static analysis tools. 2) Release managers should
carefully uplift certain kinds of patches. A considerable amount of uplift regressions could
have been prevented through more extensive testing on the channels. 3) In an ecosystem,
to reduce DLL injection bugs, host software vendors may strengthen the collaboration with
third-party vendors, e.g., build a publicly accessible validation test framework. Host software
vendors may also use a whitelist approach to only allow vetted DLLs to inject.
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CHAPTER 1 INTRODUCTION

A good release strategy can help software orga-
nizations improve the quality of their product
and the satisfaction of users.

The goal of release engineering is to “build a pipeline that transforms source code into an
integrated, compiled, packaged, tested, and signed product that is ready for release” [1].
The processes and practices of release engineering have been extensively studied in previous
works, including topics on the rapid release model [2], impact of code review on software
release process [3], release of urgent patches [4], and software release in an ecosystem [5]. The
findings of these studies indicated that a good release strategy can help software organizations
improve the quality of their product and the satisfaction of users.

Despite of the fruitful achievements so far, there are still some problems that are closely
related to the aforementioned topics but have not been systematically investigated, which
motivated us to conduct this research. Specifically, we set out to answer the following ques-
tions: 1) why can code review practices miss crash-prone code? 2) how were urgent patches
approved to release and how can software organizations prevent regressions due to urgent
patches? 3) in a software ecosystem, how can vendors of host and third-party software (re-
spectively software that allows other software to extend its functionality and software that
adds code into another software) reduce defects due to DLL injections?

In the rest of this chapter, we will briefly describe the problems we aim to address and
summarize our findings.

1.1 Why can code review practices miss crash-prone code?

Code review, i.e., the practice of having other team members critique changes to a software
system, is a pillar of modern software quality assurance approaches. Although this activity
aims at improving software quality, some high-impact defects, such as crash-related defects,
can elude the inspection of reviewers and escape to the field, affecting user satisfaction and
increasing maintenance overhead. In this research, we investigate the characteristics of crash-
prone code, observing that such code tends to have high complexity and depend on many
other classes. In the code review process, developers often spend a long time on and have
long discussions about crash-prone code. We manually classify a sample of reviewed crash-
prone patches according to their purposes and root causes. We observe that most crash-prone
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patches aim to improve performance, refactor code, add functionality, or fix previous crashes.
Memory and semantic errors are identified as major root causes of the crashes. Our results
suggest that software organizations should apply more scrutiny to these types of patches, and
provide better support for reviewers to focus their inspection effort by using static analysis
tools.

1.2 How were urgent patches approved to release and how can software orga-
nizations prevent regressions due to these patches?

In rapid release development processes, patches that fix critical issues, or implement high-
value features are often promoted directly from the development channel to a stabilization
channel, potentially skipping one or more stabilization channels. This practice is called patch
uplift. Patch uplift is risky, because patches that are rushed through the stabilization phase
can end up introducing regressions in the code. We examined patch uplift operations at
Mozilla, with the aim to identify the characteristics of the uplifted patches that did not
effectively fix the targeted problem and that introduced regressions. Through statistical and
manual analyses, a series of problems were investigated, including the reasons behind patch
uplift decisions, the root causes of ineffective uplifts, the characteristics of uplifted patches
that introduced regressions, and whether these regressions can be prevented. Additionally,
three Mozilla release managers were interviewed in order to understand organizational factors
that affect patch uplift decisions and outcomes. Results show that most patches are uplifted
because of a wrong functionality or a crash. Certain uplifts did not effectively address their
problems because they did not completely fix the problems or lead to regressions. Uplifted
patches that lead to regressions tend to have larger patch size, and most of the faults are
due to semantic or memory errors in the patches. Also, release managers are more inclined
to accept patch uplift requests that concern certain specific components, and–or that are
submitted by certain specific developers. About 25% to 30% of the regressions due to Beta
or Release uplifts could have been prevented as they could be reproduced by developers and
were found in widely used feature/website/configuration or via telemetry.

1.3 How can host and third-party vendors reduce defects due to DLL injections
in a software ecosystem?

DLL injection is a technique used for executing code within the address space of another
process by forcing the load of a dynamic-link library. In a software ecosystem, the interactions
between the host and third-party software increase the maintenance challenges of the system
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and may lead to bugs. In this work, we empirically investigate bugs that were caused by third-
party DLL injections into the Mozilla Firefox browser. Among the studied DLL injection
bugs, we found that 88.8% of the bugs led to crashes and 55.3% of the bugs were caused by
antivirus software. Through a survey with third-party software vendors, we observed that
some vendors did not perform any QA with pre-release versions nor intend to use a public
API (WebExtensions) but insist on using DLL injection. To reduce DLL injection bugs, host
software vendors may strengthen the collaboration with third-party vendors, e.g., build a
publicly accessible validation test framework. Host software vendors may also use a whitelist
approach to only allow vetted DLLs to inject.

1.4 Research Statement

Leveraging Mozilla Firefox as the subject system, this thesis investigated three important
problems on release engineering processes and practices: the reasons why crash-prone code
eluded from code review; the characteristics of uplifted patches and characteristics of inef-
fective (including defective) uplifted patches; and the solutions to mitigate the risks of DLL
injections in a software ecosystem.

1.5 Thesis Overview

• Why can code review practices miss crash-prone code (Chapter 3)?
We compared the characteristics of the reviewed patches that crashed with the ones
that did not crash, and manually investigated the purposes and root causes of crash-
prone patches. We made suggestions to improve the code review process in order to
catch more crash-prone code.

• How were urgent patches approved to release and how can software organizations prevent
regressions due to these patches (Chapter 4)?
We compared the characteristics of patches that were accepted to uplift with the ones
that were rejected. We also examined the uplifted patches that did not address the
problems they aim at, investigated the purposes of uplifted patches and the root causes
of uplift regressions, and finally proposed solutions to prevent regressions due to patch
uplift.

• How can host and third-party vendors reduce defects due to DLL injections in a software
ecosystem (Chapter 5)?
We quantitatively investigated the characteristics of the defects caused by DLL in-
jections, and qualitatively investigated the factors that trigger DLL injection defects.
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Based on a survey with third-party software vendors who injected code into Mozilla
Firefox, we proposed solutions to reduce DLL injection defects in Firefox and its equiv-
alent ecosystems.

1.6 Thesis Contribution

In this thesis, we conducted empirical studies on different aspects of software release processes
and practices. Our contributions are summarized as follows:

• We observed that reviewers often spend a long time on and have long discussions
about crash-prone code. Most crash-prone patches were originally used to improve
performance, refactor code, add functionality, or fix previous crashes. Memory and
semantic errors are identified as major root causes of the crashes that eluded from
the code review process. Our findings suggest that software practitioners should more
carefully scrutinize certain types of patches and apply static analysis tools to assist
their code review practices.

• Through quantitative and qualitative analyses, we observed that most patches were
uplifted in order to fix a wrong functionality or a crash. Among the studied uplifted
patches, certain patches did not completely fix the targeted problems or lead to regres-
sions. Uplifted patches that lead to regressions often have larger patch size, and most
of the regressions are due to semantic or memory errors, thus static analysis tools can
be leveraged to reduce the errors. In addition, more than 25% of the studied regres-
sions could have been prevented through more extensive testing because they can be
reproduced by developers.

• We found that 88.8% of the DLL injection bugs led to crashes and 55.3% of the bugs
were caused by antivirus software. According to the results of our survey, some third-
party software vendors acknowledged that they did not perform any QA with pre-release
versions nor intend to use a public API (i.e., WebExtensions as Mozilla recommended)
but insist on using DLL injection. To improve the release processes for both host and
third-party vendors, we suggest that they should strengthen the collaboration between
them, such as building a publicly accessible validation test framework.

1.7 Organization of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 outlines literature review in the areas of rapid release model, code review,
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crash report analysis, urgent patches, software ecosystems, and DLL injection.

• Chapter 3 presents our empirical study on reviewed patches that still crashed.

• Chapter 4 presents our empirical study on patch uplift in rapid release development
pipelines of Mozilla Firefox.

• Chapter 5 presents our empirical study on the DLL injection bugs in the Firefox ecosys-
tem.

• Chapter 6 summarizes and concludes this thesis and discuss future work.
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CHAPTER 2 LITERATURE REVIEW

2.1 Rapid Release Model

Since the adoption of the rapid release model [2] by Mozilla in 2011, a plethora of studies
have focused on the impact of rapid release strategies on software quality. Khomh et al. [2]
compared crash rates, median uptime, and the proportion of post-release bugs between the
versions of Firefox that followed a traditional release cycle and those that followed a rapid
release cycle. They observed that short release cycles do not induce significantly more bugs.
However, compared to traditional releases, users experience bugs earlier during software
execution. Nevertheless, they also observed that post-release bugs are fixed faster under the
rapid release model. Khomh et al. observed, in their extended work [6], that one of the
major challenges of fast release cycles is the automation of the release engineering process.
Da Costa et al. [7] studied the impact of Mozilla’s rapid release cycles on the integration delay
of addressed issues. They found that, compared to the traditional release model, the rapid
release model does not deliver addressed issues to end users more quickly, which is contrary to
expectations. Adams et al. [8] analyzed the six major phases of release engineering practices
and proposed a roadmap for future research, highlighting the need for more empirical studies
that validate the best practices and assess the impact of release engineering processes on
software quality.

2.2 Code Review

One important goal of code review is to identify defective code at early stages of development
before it affects end users. Software organizations expect that this process can improve the
quality of their systems.

Previous studies have investigated the relationship between code review quality and software
quality. Jiang et al. [3] cross analyzed reviewed patches from Linux kernel mailing list and
landed patches from the kernel’s version control system. They found that a third of the
reviewed patches were eventually released to end users and most of these patches need three
to six months to get released. They also found that patches from more experienced developers
tend to be more easily accepted and be faster reviewed and integrated. McIntosh et al. [9, 10]
found that low code review coverage, participation, and expertise share a significant link with
the post-release defect proneness of components in the Qt, VTK, and ITK projects. Similarly,
Morales et al. [11] found that code review activity shares a relationship with design quality
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in the same studied systems. Thongtanunam et al. [12] found that lax code reviews tend to
happen in defect-prone components both before and after defects were found, suggesting that
developers are not aware of problematic components. Kononenko et al. [13] observed that
54% of the reviewed changes are still implicated in subsequent bug fixes in Mozilla projects.
Moreover, their statistical analysis suggests that both personal and review participation
metrics are associated with code review quality. In a recent work, Sadowski et al. [14]
conducted a qualitative study of the code review practices at Google. They observed that
problem solving is not the only focus for Google reviewers and only a few developers said
that code review have helped them catch bugs.

The results of [9, 10, 12, 13, 14] suggest that despite being reviewed, many changes still
introduce defects. Therefore, in this thesis, we investigate the relationship between the
rigour of the code review that a code change undergoes and its likelihood of inducing a
software crash – a type of defect with severe implications. We draw inspiration from these
prior studies to design our set of metrics [12, 15] (see Chapter 3).

2.3 Crash Report Analysis

Crashes can unexpectedly terminate a software system, resulting in data loss and user frus-
tration. To evaluate the importance of crashes in real time, many software organizations
have implemented automatic crash collection systems to collect field crashes from end users.

Previous studies analyze the crash data from these systems to propose debugging and bug
fixing approaches for crash-related defects. Podgurski et al. [16] introduced an automated
failure clustering approach to classify crash reports. This approach enables the prioritization
and diagnosis of the root causes of crashes. Khomh et al. [17] proposed an entropy-based
approach to identify crash-types that frequently occurred and affect a large number of users.
Kim et al. [18] mined crash reports and the related source code in Firefox and Thunderbird
to predict top crashes for a future release of a software system. To reduce the efforts of
debugging crashing code, Wu et al. [19] proposed a framework, ChangeLocator, which can
automatically locate crash-inducing changes from a given bucket of crash reports.

In most of these aforementioned works, researchers analyzed data from the Mozilla Socorro
crash reporting system [20] because at the time of writing of this paper, only the Mozilla
Foundation has opened its crash data to the public [21]. Though Wang et al. [21] studied an-
other system, Eclipse, they could obtain crash information from the issue reports (instead of
crash reports). However, the exact crash date are not provided in these issue reports, which
hampers our ability to apply the SZZ algorithm [22]. Dang et al. [23] proposed a method,
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ReBucket, to improve the current crash report clustering technique based on call stack match-
ing. However, their studied collection of crash reports from the Microsoft Windows Error
Reporting (WER) system is not accessible for the public.

In this thesis, we leverage crash data from the Mozilla Socorro system to quantitatively
and qualitatively investigate the reasons why reviewed code still led to crashes, and make
suggestions to improve the code review process.

2.4 Urgent Patches

Another important aspect of release engineering that has been investigated by the community
is the integration of urgent patches that are used to fix severe problems, such as frequent
crashes or security bugs, or to introduce important features. Urgent patches break the balance
between new feature work and software quality, and hence could lead to faults and failures.
Hassan et al. [4] investigated emergency updates for top Android apps and identified eight
patterns along the following two categories: “updates due to deployment issues” and “updates
due to source code changes”. They suggest to limit the number of emergency updates that
fall in these patterns, since they are likely to have a negative impact on users’ satisfaction.
In a recent work, Lin et al. [24] empirically analyzed urgent updates in 50 most popular
games on the Steam platform, and observed that the choice of the release strategy affects the
proportion of urgent updates, i.e., games that followed a rapid release model had a higher
proportion of urgent patches in comparison to those that followed the traditional release
model. Rahman et al. [25] examined the “rush to release” period on Linux and Chrome.
They observed that experienced developers are often allowed to make changes right before
stabilization occurs and these changes are added directly to the stabilization line. They also
found that there is a rush in the number of commits right before a new release is added
to the stabilization channel, to add final features. In a following work, Rahman et al. [26]
observed that feature toggles [27] can effectively turn off faulty urgent patches, which limits
the impact of faulty patches.

To the best of our knowledge, none of these prior works has empirically investigated how
urgent patches in the rapid release model affect software quality in terms of fault proneness,
and how the reliability of the integration of urgent updates could be improved. This work
fills this gap in the literature by investigating the reliability of the Mozilla’s uplift process,
since uplifted patches are urgent updates (see Chapter 4).
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2.5 Software Ecosystems

When a software organization increasingly allows other software to join and extend its soft-
ware platform, an ecosystem is gradually formed. Many software organizations have realized
that either creating or joining into such an ecosystem can be beneficial because they no longer
have to produce an entire system but only need to work for a part of it. Recently, we have
seen an increase in the number of software ecosystems and the number of research studies
that have focused on them. Bosch [28] observed the emerging trend of the transition from tra-
ditional software product lines to software ecosystems and proposed actions required for this
transition. He also discussed the implications of adopting a software ecosystem approach on
the way organizations build software. Hanssen [5] conducted an empirical study of the CSoft
system, which transitioned from a closed and plan-driven approach towards an ecosystem.
He observed that transitioning to a software ecosystem improved the cross organizational
collaboration and the development of a shared value (i.e., technology and business) in the
collaboration. Jansen et al. [29] discussed the challenges of software ecosystems at the lev-
els of software ecosystems themselves, software supply network, and software vendors. This
early work provided a guideline for software vendors to make their software adaptable to new
business models and new markets, and help them to choose appropriate strategy to succeed
in an ecosystem. Later on, Van Den Berk et al. [30] built models to quantitatively assess the
status of a software ecosystem as well as the success of decisions taken by the host vendors
in the past.

Researchers have also empirically studied various popular open source ecosystems, including
Linux kernel (e.g., [31]), Debian distribution (e.g., [32, 33]), Eclipse (e.g., [34, 35]), and R
(e.g., [36]) ecosystems. The host software in these ecosystems are respectively operating
system, integrated development environment, and mathematical software. However, as far
as we know, there is no previous study that empirically investigates a browser-based open
source ecosystem (e.g., Firefox, Chrome). Although Liu et al. [37] studied the extension
security model of Chrome and Karim et al. [38] studied the Jetpack Extension Framework of
Mozilla, their research focused on the extension techniques rather than on the ecosystems.
We contribute to filling this gap by conducting an empirical study of DLL injection bugs in
the Firefox ecosystem. Another difference between our work and these previous works [37, 38]
is that DLL injection is completely arbitrary, i.e., third-party software can execute whatever
it requires; while the extension API can constrain third-party software’s behaviour.
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2.6 DLL Injection

DLL injection is one of the popular ways to insert code into other software. It can force a
process to load external code in a manner that the author of the process does not anticipate or
intend. Leveraging the DLL injection technique, Andersson et al. [39] proposed a framework
to detect code injection attacks [40]. Lam et al. [41] proposed an approach that uses DLL
injection to isolate the execution of the incoming email attachments and web documents on
a physically separate machine rather than on the user machine. Their approach can help
reduce the risk that user machines are attacked. Berdajs et al. [42] analyzed the limitations
of multiple existing DLL injection techniques (including CreateRemoteThread, proxy DLL,
Windows hooks, using a debugger, and reflective injection) and introduced a new approach
that combines DLL injection and API hooking (a technique by which we can modify the
behaviour and flow of an API call [43]). The improved approach can inject code even when
the application is not fully initialized.

As DLL injection allows a program to inject arbitrary code into arbitrary processes [44],
malware producers can also take advantage of this technique to exploit computers. Jang
et al. [45] proposed an approach to help identify malicious DLLs in Windows. Windows
maintains a list of all loaded modules, including DLL modules. Some software checks this list
to detect DLLs injected from another process and take corresponding measures, e.g., block it
if a DLL is suspicious. However, an approach called Reflective injection [46] can inject DLLs
in a stealthy manner, which increases the difficulty of detecting suspicious DLLs.

Like a double-edged sword, DLL injection is a useful (even indispensable) programming
technique, but can also cause severe damages due to its arbitrary nature. To the best of our
knowledge, we are not aware of any existing work that empirically studied the root causes
and counterplans of the bugs or defects caused by DLL injection. Particularly, in a software
ecosystem, this kind of bugs can hardly be predicted but can affect a large number of users.
To help software practitioners understand the root causes of DLL injection bugs and propose
solutions to reduce them, we conduct a case study on the Firefox ecosystem (see Chapter 5).

2.7 Chapter Summary

In this chapter, we briefly discussed literatures on release engineering processes and practices
that are related to the problems we aim to address: the reasons why reviewed patches still
crashed; the characteristics of uplifted patches and the solutions to reduce regressions due
to uplifted patches; the reasons why certain third-party vendors insist on DLL injections
rather than the recommended API and the solutions to mitigate the risk of DLL injections.
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Specifically, we reviewed related works in the following fields: rapid release model, code
review, crash analysis, urgent patches, software ecosystems, and DLL injection techniques.

In the following chapters, we will describe our empirical studies on the aforementioned prob-
lems and propose solutions to help software organizations improve their release strategy;
decreasing the number of bugs and increasing the overall user-perceived quality.
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CHAPTER 3 WHY DID THIS REVIEWED CODE CRASH?∗

Despite being reviewed, many changes still in-
troduce defects, including crashes.

A software crash refers to an unexpected interruption of software functionality in an end user
environment. Crashes may cause data loss and frustration of users. Frequent crashes can
decrease user satisfaction and affect the reputation of a software organization. Practitioners
need an efficient approach to identify crash-prone code early on, in order to mitigate the
impact of crashes on end users. Nowadays, software organizations like Microsoft, Google,
and Mozilla are using crash collection systems to automatically gather field crash reports,
group similar crash reports into crash-types, and file the most frequently occurring crash-
types as bug reports.

Code review is an important quality assurance activity where other team members critique
changes to a software system. Among other goals, code review aims to identify defects at
early stages of development. Since reviewed code is expected to have better quality, one
might expect that reviewed code would tend to cause few severe defects, such as crashes.
However, despite being reviewed, many changes still introduce defects, including crashes.
For example, Kononenko et al. [13] find that 54% of reviewed code changes still introduce
defects in Mozilla projects.

In this chapter, we want to understand the reasons why reviewed code still led to crashes.
To achieve these goals, we mine the crash collection, version control, issue tracking, and code
reviewing systems of the Mozilla Firefox project. More specifically, we address the following
two research questions:

RQ1: What are the characteristics of reviewed code that is implicated in a crash?

We find that crash-prone reviewed patches often contain complex code, and classes with
many other classes depending on them. Crash-prone patches tend to take a longer time
and generate longer discussion threads than non-crash-prone patches. This result suggests
that reviewers need to focus their effort on the patches with high complexity and on the
classes with a complex relationship with other classes.

RQ2: Why did reviewed patches crash?
∗Part of the content of this chapter is published in “Why Did This Reviewed Code Crash? An Empirical

Study of Mozilla Firefox”, Le An, Foutse Khomh, Shane McIntosh, and Marco Castelluccio, Proceedings of
the 25th Asia-Pacific Software Engineering Conference (APSEC), December 2018.
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To further investigate why some reviewed code crashes, we perform a manual classification
on the purposes and root causes of a sample of reviewed patches. We observe that
the reviewed patches that crash are often used to improve performance, refactor code,
address prior crashes, and implement new features. These findings suggest that software
organizations should impose a stricter inspection on these types of patches. Moreover,
most of the crashes are due to memory (especially null pointer dereference) and semantic
errors. Software organizations can perform static code analysis prior to the review process,
in order to catch these memory and semantic errors before crashes escape to the field.

Chapter Overview

Section 3.1 provides background information on Mozilla crash collection system and code
review process. Section 3.2 describes how we identify reviewed code that leads to crashes.
Section 3.3 describes our data collection and analysis approaches. Section 3.4 discusses the
results of the two research questions. Section 3.5 discloses the threats to the validity of our
study, and Section 3.6 summarizes this chapter.

3.1 The Mozilla Crash Collecting System and Code Review Process

In this section, we describe approaches of Mozilla on crash report collection and code review.

3.1.1 The Mozilla Crash Collection System

Mozilla integrates the Mozilla Crash Reporter, a crash report collection tool, into its software
applications. Once a Mozilla application, such as the Firefox browser, unexpectedly halts,
the Mozilla Crash Reporter will generate a detailed crash report and send it to the Socorro
crash report server [20]. Each crash report includes a stack trace of the failing thread and
the details of the execution environment of the user. Figure 3.1 shows an example Socorro
crash report. These crash reports are a rich source of information, which provide developers
and quality assurance personnel with information that can help them to reproduce the crash
in a testing environment.

The Socorro server automatically clusters the collected crash reports into crash-types accord-
ing to the similarity of the top method invocations of their stack traces. Figure 3.2 shows
an example Mozilla crash-type. The Socorro server ranks crash-types according to their
frequency, e.g., Socorro publishes a daily top 50 crash-types, i.e., the crash-types with the
maximum number of crash reports, for each of the recent releases of Firefox.

Socorro operators file top-ranked crash-types as issue reports in the Bugzilla issue tracking
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Figure 3.1 An example of crash report in Socorro.

system. Quality assurance teams use Socorro to triage these crash-related issue reports and
assign severity levels to them [47]. For traceability purposes, Socorro crash reports provide a
list of the identifiers of the issues that have been filed for each crash-type. This link is initiated
from Bugzilla. If a bug is opened from a Socorro crash, it is automatically linked. Otherwise,
developers can add Socorro signatures to the bug reports. By using these traceability links,
software practitioners can directly navigate to the corresponding issues (in Bugzilla) from
the summary of a crash-type in the web interface of Socorro. Note that different crash-
types can be linked to the same issue, while different issues can also be linked to the same
crash-type [17].

3.1.2 The Mozilla Code Review Process

Mozilla manages its code review process using issue reports in Bugzilla. After writing a
patch for an issue, the developer can request peer reviews by setting the review? flag on
the patch. At Mozilla, the reviewers are often chosen by the patch author herself [48]. If
the patch author does not know who should review her patch, they can consult a list of
module owners and peers. Senior developers can also often recommend good reviewers. The
designated reviewers need to inspect a patch from various aspects [49], such as correctness,
style, security, performance, and compatibility. Once a developer has reviewed the patch,
they can record comments with a review flag, which also indicates their vote, i.e., in support
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Figure 3.2 An example of crash-type in Socorro.

of (+) or in opposition to (-) the patch. Mozilla applies a two-tiered code review process,
i.e., review and superreview. A review is performed by the owner of the module or peer
who has expertise in a specific aspect of the code of the module [50]; while a superreview
is required for certain types of changes, such as significant architectural refactoring, API or
pseudo-API changes, or changes that affect the interactions of modules [51]. Therefore, to
evaluate patches, there are four possible voting combinations on a reviewed patch: review+,
review-, superreview+, and superreview-.

A code review may have several iterations. Unless the patch receives only positive review flags
(review+ or superreview+), it cannot be integrated into the version control system (VCS)
of Mozilla. In this case, the patch author needs to provide a revised patch for reviewers to
consider. Some Mozilla issues are resolved by a series of patches. Since the patches are used to
address the same issue, reviewers need to inspect the entire series of patches before providing
a review decision. In the trial review platform of Mozilla, ReviewBoard, the patches of an
issue are automatically grouped together [52]. Thus, in this study, we examine the review
characteristics at the issue level. Finally, the Tree Sheriffs [53] (i.e., engineers who support
developers in committing patches, ensuring that the automated tests are not broken after
commits, and monitoring intermittent failures, and reverting problematic patches) or the
patch authors themselves will commit the reviewed patches to the VCS.
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3.2 Identifying Reviewed Code that Crashes

In this section, we describe our approach to identify reviewed code that is implicated in a
crash report. Our approach consists of three steps: identifying crash-related issues, identify-
ing commits that are implicated in future crash-related issues, and linking code reviews to
commits. Below, we elaborate on each of these steps.

3.2.1 Identifying Crash-related Issues

Mozilla receives 2.5 million crash reports on the peak day of each week. In other words, the
Socorro server needs to process around 50GB of data every day [54]. For storage capacity
and privacy reasons, Socorro only retains those crash reports that occurred within the last
six months. Historical crash reports are stored in a crash analysis archive1. We mine this
archive to extract the issue list, which contains issues that are linked to a crash, from each
crash event. These issues are referred as to crash-related issues in the rest of this chapter.

3.2.2 Identifying Commits that are Implicated in Future Crash-related Issues

We apply the SZZ algorithm [22] to identify commits that introduce crash-related issues.
First of all, we use Fischer et al.’s heuristic [55] to find commits that fixed a crash-related
issue I by using regular expressions to identify issue IDs from commit messages. Then, we
extract the modified files of each crash-fixing commit with the following Mercurial command:

hg log --template {node},{file_mods}

By using the CLOC tool [56], we find that 51% of the Firefox codebase is written in C/C++.
Although JavaScript and HTML (accounts for respectively 20% and 14% in the code base)
are the second and third most used languages. Code implemented by these languages can-
not directly cause crashes because it does not have direct hardware access. Crash-prone
Javascript/HTML changes are often due to the fault of parsers, which are written in C/C++.
Therefore, in this research, we focus our analysis on C/C++ code. Given a file F of a crash-
fixing commit C, we extract C’s parent commit C ′, and use the diff command of Mercurial
to extract F ’s deleted line numbers in C ′, henceforth referred to as rm_lines. Next, we use
the annotate command of Mercurial to identify the commits that introduced the rm_lines
of F ′. We filter these potential crash-introducing candidates by removing those commits
that were submitted after I’s first crash report. The remaining commits are referred to as
crash-inducing commits.

1https://crash-stats.mozilla.com/api/

https://crash-stats.mozilla.com/api/
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As mentioned in Section 3.1.2, Mozilla reviewers and release managers consider all patches
together in an issue report during the review process. If an issue contains multiple patches,
we bundle its patches together. Among the studied issues whose patches have been approved
by reviewers, we identify those containing committed patches that induce crashes. We refer
to those issues as crash-inducing issues.

3.3 Case Study Design

In this section, we present the selection of our studied system, the collection of data, and the
analysis approaches that we use to address our research questions.

3.3.1 Studied System

We use Mozilla Firefox as the subject system because at the time of writing of this thesis,
only the Mozilla Foundation has opened its crash data to the public [21]. It is also the
reason why in most previous empirical studies of software crashes (e.g., [17, 18]), researchers
analyzed data from the Mozilla Socorro crash reporting system [20]. Though Wang et al. [21]
studied another system, Eclipse, they could obtain crash information from the issue reports
(instead of crash reports). However, the exact crash date are not provided in these issue
reports, which hampers our ability to apply the SZZ algorithm. Dang et al. [23] proposed
a method, ReBucket, to improve the current crash report clustering technique based on call
stack matching. The studied collection of crash reports from the Microsoft Windows Error
Reporting (WER) system is not accessible for the public.

3.3.2 Data Collection

We analyze the Mozilla crash report archive. We collect crash reports that occurred between
February 2010 (the first crash recorded date) until September 2015. We collect issue reports
that were created during the same period. We only take closed issues into account. We filter
out the issues that do not contain any successfully reviewed patch (i.e., patch with a review
flag review+ or superreview+). To select an appropriate study period, we analyze the rate
of crash-inducing commits throughout the collected timeframe (March 2007 until September
2015). Figure 4.1 shows the rate of crash-inducing commits over time. In this figure, each
time point represents one quarter (three months) of data. We observe that the rate of crash-
inducing commits increases from January 2007 to April 2010 before stabilizing between April
2010 and April 2015. After April 2015, the rate suddenly drops. Since the last issue report
is collected in September 2015, there is not enough related information to identify crash-
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Figure 3.3 Number of crash-inducing commits during each three months from March 2007 to
September 2015. Periods with low number of crash-inducing commits are removed.

inducing commits during the last months. Using Figure 4.1, we select the periods between
April 2010 and April 2015 as our study period and focus our analysis on the crash reports,
commits, and issue reports during this period. In total, we analyze 9,761,248 crash-types
(from which 11,421 issue IDs are identified), 41,890 issue reports, and 97,840 commits. By
applying the SZZ algorithm from Section 4.2.2, we find 1,202 (2.9%) issue reports containing
reviewed patches that are implicated in crashes.

3.3.3 Data Extraction

We compute metrics for reviewed patches and the source code of the studied system. Fig-
ure 3.4 provides an overview of our data extraction steps. To aid in the replication of our
study, our data and scripts are available online.2

Review Metrics

For each reviewed patch, we extract the names of the author and reviewer(s), as well as its
creation date, reviewed date, patch size, and the votes from each of the review activities. We
also extract the list of modified files from the content of the patch. Although main review
activities of Mozilla are organized in Bugzilla attachments, we can also extract additional
review-related information from Bugzilla comments and transaction logs. If a comment is
concerned with an attachment like a patch, Bugzilla provides a link to the attachment in
the comment. We can use this to measure the review discussion length of a patch. Bugzilla
attachments only contain votes on review decisions, such as review+ and review-. To obtain
the date when a review request for a patch was created, we search for the review? activity

2https://github.com/swatlab/crash_review

https://github.com/swatlab/crash_review
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Figure 3.4 Overview of our approach to identify and analyze reviewed code that crashed in
the field.

date in the issue discussion history. As we consider all of the patches of an issue together,
we use the mean to aggregate patch-specific values to the issue-level. Unlike other systems,
such as Qt [12], Mozilla does not allow self-review, i.e., the author of a patch cannot act
as a reviewer of that patch. However, Mozilla patch authors may set the review+ score
themselves, from time to time, when reviewers are generally satisfied with the patch with
the exception of minor changes. Thus in this work, we remove the patch author from the
reviewer list of each of the studied issues. More details on our review metrics are provided
in Section 3.4.

Code Complexity Metrics

To analyze whether reviewed code that crashed in the field is correlated with code complexity,
we compute code complexity metrics using the Understand static code analysis tool [57]. We
wrote a script to compute five code complexity metrics for each C/C++ file using Understand,
i.e., Lines Of Code (LOC), average cyclomatic complexity, number of functions, maximum
nesting level, and the proportion of comment lines in a file. More details on our complexity
metrics are provided in Section 3.4.

Social Network Analysis Metrics

To measure the relationship among classes, we apply Social Network Analysis (SNA) [58]
to measure the centrality [59] of each C++ class (or C file), i.e., the degree to which other
classes depend on a certain class. A high centrality value indicates that a class is important
to a large portion of the system, and any change to the class may impact a large amount of
functionality. We compute centrality using the class-to-class dependencies that are provided
by Understand. We combine each .c or .cpp file with its related .h file into a class node.
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We use a pair of vertices to represent the dependency relationship between any two mutually
exclusive class nodes. Then, we build an adjacency matrix [60] with these vertex pairs. By
using the igraph network analysis tool [61], we convert the adjacency matrix into a call graph,
based on which we compute the PageRank, betweenness, closeness, indegree, and outdegree
SNA metrics.

3.4 Case Study Results

In this section, we present the results of our case study. For each research question, we
present the motivation, our data processing and analysis approaches, and the results.

RQ1: What are the characteristics of reviewed code that is implicated in a crash?

Motivation. We intend to compare the characteristics of the reviewed patches that lead
to crashes (Crash) with those that did not lead to crashes (Clean). Particularly, we want to
know whether patch complexity, centrality, and developer participation in the code review
process are correlated with the crash proneness of a reviewed patch. The result of this research
question can help software organizations improve their code review strategy; focusing review
efforts on the most crash-prone code.

Approach. We extract information from the source code to compute code complexity and
SNA metrics and from issue reports to compute review metrics. Tables 3.1 to 3.3 provide
descriptions of each of the studied metrics.

We assume that changes to complex classes are likely to lead to crashes because complex
classes are usually more difficult to maintain. Inappropriate changes to complex classes
may result in defects or even crashes. The SNA metrics are used to estimate the degree of
centrality (see Section 3.3.3) of a class. Inappropriate changes to a class with high centrality
may impact dependent classes; thus causing defects or even crashes. For each SNA metric, we
compute the mean of all class values for the commits that fix an issue. Regarding the review
metrics, we assume that patches with longer review duration and more review comments
have higher risk of crash proneness. Since these patches may be more difficult to understand,
although developers may have spent more time and effort to review and comment on them.
We use the review activity metrics that were proposed by Thongtanunam et al. [12]. In
addition, we also take obsolete patches into account because these patches were not approved
by reviewers. The percentage of the obsolete patches that fix an issue can help to estimate
the quality and the difficulty of the patches on an issue, as well as developer participation.

We apply the two-tailedMann-Whitney U test [66] to compare the differences in metric values
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Table 3.1 Code complexity metrics used to compare the characteristics of crash-inducing
patches and clean patches.

Metric Description Rationale
Patch size Mean number of lines of the patch(s) of

an issue. We include context lines and
comment lines because reviewers need
to read all these lines to inspect a patch.

The larger the code changes, the easier
it is for reviewers to miss defects [13].

Changed file
number

Mean number of changed C/C++ files
in the issue fixing commit(s).

If a change spreads across multiple files,
it is difficult for reviewers to detect de-
fects [13].

LOC Mean number of the lines of code in the
changed classes to fix an issue.

Large classes are more likely to
crash [18].

McCabe Mean value of McCabe cyclomatic com-
plexity [62] in all classes of the issue fix-
ing commit(s).

Classes with high cyclomatic com-
plexity are more likely to lead to
crashes [18].

Function number Mean number of functions in all classes
in the issue fixing commit(s).

High number of functions indicates high
code complexity [63], which makes it
difficult for reviewers to notice defects.

Maximum nesting Mean of maximum level of nested func-
tions in all classes in the issue fixing
commit(s).

Code with deep nesting level is more
likely to cause crashes [18].

Comment ratio Mean ratio of the lines of comments
over the lines of code in all classes of
the issue fixing commit(s)

Reviewers may have difficulty to un-
derstand code with low ratio of com-
ment [64], thus miss crash-prone code.

between crash-inducing patches and clean patches. We choose to use the Mann-Whitney U
test because it is non-parametric, i.e., it does not assume that metrics must follow a normal
distribution. For the statistical test of each metric, we use a 95% confidence level (i.e.,
α = 0.05) to decide whether there is a significant difference among the two categories of
patches. Since we will investigate characteristics on multiple metrics, we use the Bonferroni
correction [67] to control the familywise error rate of the tests. In this work, we compute the
adjusted p-value, which is multiplied by the number of comparisons.

For the metrics that have a significant difference between the crash-inducing and clean
patches, we estimate the magnitude of the difference using Cliff’s Delta [68]. Effect size
measures report on the magnitude of the difference while controlling for the confounding
factor of sample size [69].

To further understand the relationship between crash proneness and reviewer origin, we
calculate the percentage of crash-inducing patches that were reviewed by Mozilla developers,
external developers, and by both Mozilla and external developers. Previous work, such as
[70], used the suffix of an email address to determine the affiliation of a developer. However,
many Mozilla employees use an email address other than mozilla.com in Bugzilla, when
they review code. To make our results more accurate, our collaborator, who is working at
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Table 3.2 Social network analysis (SNA) metrics used to compare the characteristics of crash-
inducing patches and clean patches. We compute the mean of each metric across the classes
of the fixing patch(es) within an issue. Rationale: An inappropriate change to a class with
high centrality value [59] can lead to malfunctions in the dependent classes; even cause
crashes [18].

Metric Description
PageRank Time fraction spent to “visit” a class in a random walk in the call graph. If

an SNA metric of a class is high, this class may be triggered through multiple
paths.

Betweenness Number of classes passing through a class among all shortest paths.
Closeness Sum of lengths of the shortest call paths between a class and all other classes.
Indegree Numbers of callers of a class.
Outdegree Numbers of callees of a class.

Mozilla, used a private API to examine whether a reviewer is a Mozilla employee.

Results. Table 3.4 compares the reviewed patches that lead to crash (Crash) to those that
do not crash (Clean). Statistically significant p-values and non-negligible effect size values
are shown in bold. Figure 3.5 visually compares crash-inducing and clean patches on the
metrics (after removing outliers because they can bury the median values), where there is a
statistically significant difference and the effect size is not negligible. In this figure, the red
bold line indicates the median value on the crash-inducing patches (or clean patches) for a
metric. The dashed line indicates the overall median value of a metric. The width variation
in each plot shows the variation of the data density.

For the code complexity metrics, crash-inducing patches have a significantly larger patch
size, higher number of changed files, and higher comment ratio than clean patches. The
magnitude of the differences on patch size and changed files is large; while the magnitude
of the differences on comment ratio is small. This result implies that the related files of the
reviewed patches that crash tend to contain complex code. These files have higher comment
ratio because developers may have to leave more comments to describe a complicated or
difficult problem. Our finding suggests that reviewers need to double check the patches that
change complex classes before approving them. Investigators also need to carefully approve
patches with intensive discussions because developers may not be certain about the potential
impact of these patches.

In addition, crash-inducing patches have significantly higher centrality values than clean
patches on all of the social network analysis metrics. The magnitude of closeness and out-
degree is negligible; while the magnitude of PageRank, betweenness, and indegree is small.
This result suggests that the reviewed patches that have many other classes depending on
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Table 3.3 Review metrics used to compare the characteristics of crash-inducing patches and
clean patches. We compute the mean metric value across the patches within an issue.

Metric Description Rationale
Review iterations Number of review flags on a reviewed

patch.
Multiple rounds of review may help to
better identify defective code than a
single review round [12].

Number of
comments

Number of comments related with a re-
viewed patch.

Review with a long discussion may
help developers to discover more
defects [12].Comment words Number of words in the message of a

reviewed patch.
Number of
reviewers

Number of unique reviewers involved
for a patch.

Patches inspected by multiple reviewers
are less likely to cause defects [65].

Proportion of
reviewers writing
comments

Number of reviewers writing comments
over all reviewers.

Reviews without comments have higher
likelihood of defect proneness [9, 12].

Negative review
rate

Number of disagreement review flags
over all review flags.

High negative review rate may indicate
a low quality of a patch.

Response delay Time period in days from the review
request to the first review flag.

Patches that are promptly reviewed af-
ter their submission are less likely to
cause defects [65].

Review duration Time period in days from the review
request until the review approval.

Long review duration may indicate the
complexity of a patch and the uncer-
tainty of reviewers on it, which may re-
sult in a crash-prone patch.

Obsolete patch rate Number of obsolete patches over all
patches in an issue.

High proportion of obsolete patch indi-
cates the difficulty to address an issue,
and may imply a high crash proneness
for the landed patch.

Amount of
feedback

Quantity of feedback given from devel-
opers. When a developer does not have
enough confidence on the resolution of
a patch, she would request for feedback
prior to the code review.

The higher the amount of feedback, the
higher the uncertainty of the patch au-
thor, which can imply a higher crash
proneness.

Negative feedback
rate

Quantity of negative feedback over all
feedback.

High negative feedback rate may imply
high crash proneness for a patch.

them are more likely to lead to crashes. Reviewers need to carefully inspect the patches with
high centrality.

Regarding the review metrics, compared to clean patches, crash-inducing patches have sig-
nificantly higher number of comments and comment words. This finding is in line with the
results in [13], where the authors also found that the number of comments have a negative
impact on code review quality. The response time and review duration on crash-inducing
patches tend to be longer than clean patches. These results are expected because we assume
that crash-inducing patches are harder to understand. Although developers spend a longer
time and comment more on them, these patches are still more prone to crashes. In terms of
the magnitude of the statistical differences, crash-inducing and clean patches that have been
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Table 3.4 Median metric value of crash-inducing patches (Crash) and clean (Clean) patches,
adjusted p-value of Mann-Whitney U test, and Cliff’s Delta effect size.

Metric Crash Clean p-value effect size

Code complexity metrics
Patch size 406 111 <0.001 0.53 (large)
Changed files 4.8 2.0 <0.001 0.49 (large)
LOC 1259.3 1124.5 0.2 –
McCabe 3.0 3.0 0.5 –
Function number 45.8 43.0 0.3 –
Maximum nesting 3.0 3.0 1 –
Comment ratio 0.3 0.2 <0.001 0.24 (small)

Social network analysis metrics
PageRank 4.4 3.2 <0.001 0.17 (small)
Betweenness 50,743.5 22,011.3 <0.001 0.16 (small)
Closeness 2.2 2.1 <0.001 0.12 (negligible)
Indegree 12.0 7.5 <0.001 0.15 (small)
Outdegree 27.3 26.0 0.02 0.05 (negligible)

Review metrics
Review iterations 1.0 1.0 0.001 0.03 (negligible)
Number of comments 0.5 0 <0.001 0.15 (small)
Comment words 2.5 0 <0.001 0.16 (small)
Number of reviewers 1.0 1.0 1 –
Proportion of reviewers
writing comments

1 1 <0.001 0.10 (negligible)

Negative review rate 0 0 0.03 0.01 (negligible)
Response delay 14.2 8.1 <0.001 0.14 (negligible)
Review duration 15.2 8.2 <0.001 0.15 (small)
Obsolete patch rate 0 0 1 –
Amount of feedback 0 0 0.03 0.02 (negligible)
Negative feedback rate 0 0 1 –

reviewed only have a small effect size on number of comments, comment words, and review
duration; while the effect sizes of other statistical differences are negligible.

Table 3.5 shows the percentage of the patches that were reviewed by Mozilla developers,
external developers, and by both Mozilla and external developers. Regarding the crash-
inducing rate of the studied patches, the patches reviewed by both Mozilla and external
developers lead to the highest rate of crashes (5.9%). On the one hand, there are few
patches that were reviewed by both Mozilla and external developers, this result may not
be representative. One the other hand, Mozilla internal members and external community
members do not have the same familiarity on a specific problem, such collaborations may
miss some crash-prone changes. We suggest patch authors to choose reviewers with the same
level of familiarity on the changed module(s) and the whole system. In the future, we plan
to further investigate the relationship between crash proneness and the institution that the
reviewers represent.
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Figure 3.5 Comparison between crash-inducing patches (left part, grey) vs. clean patches
(right part, white). Since we removed outliers from the plots, the median values may not
correspond to the values in Table 3.4, which includes the outliers.

RQ2: Why did reviewed patches crash?

Motivation. In RQ1, we compared the characteristics of reviewed code that crashes with
reviewed code that does not crash. To more deeply understand why reviewed patches can
still lead to crashes, we perform a qualitative analysis on the purposes of the reviewed patches
that crash and the root causes of their induced crashes.

Approach. To understand why developers missed the crash-inducing patches, we randomly
sample 100 out of the 1,202 issues that contain reviewed patches that crash. If we use a
confidence level of 95%, our sample size corresponds to a confidence interval of 9%. Inspired
by Tan et al.’s work [71], we classify the purposes of patches (patch reasons) into 13 cate-
gories based on their (potential) impact on users and detected fault types. The “incorrect
functionality” category defined by Tan et al. is too broad, so we break it into more detailed
patch reasons: “incorrect rendering”, “(other) wrong functionality”, and “incompatibility”.
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Table 3.5 Origin of the developers who reviewed clean patches and crash-inducing patches.

Origin Total Crash Crash rate

Mozilla 38,481 1,094 2.8%
External 2,512 55 2.2%
Both 897 53 5.9%
Total 41,890 1,202 2.9%

Table 3.6 Patch reasons and descriptions (abbreviation are shown in parentheses).

Reason Description
Security Security vulnerability exists in the code.
Crash Program unexpectedly stops running.
Hang Program keeps running but without response.
Performance
degradation (perf)

Functionalities are correct but response is slow or delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong
functionality (func)

Incorrect functionalities besides rendering issues.

Incompatibility
(incompt)

Program does not work correctly for a major website or for a major
add-on/plug-in due to incompatible APIs or libraries, or a functionality,
which was removed on purpose, but is still used in the wild.

Compile Compilation errors.
Feature Introduce or remove features.
Refactoring
(refactor)

Non-functional improvement by restructuring existing code without
changing its external behaviour.

Improvement
(improve)

Minor functional or aesthetical improvement.

Test-only problem
(test)

Errors that only break tests.

Other Other patch reasons, e.g., data corruption and adding logging.

In addition, since we do not only study defect-related issues as Tan et al. [71], we add more
categories about the reason of patches, such as “refactoring”, “improvement”, and “test-only
problem”. Table 3.6 shows the patch reasons used in our classification. We conduct a card
sorting on the sampled issues with the following steps: 1) examine the issue report (the title,
description, keywords, comments of developers, and the patches). Two graduate students
individually classified each issue into one or more categories; 2) created an online document
to compare categories and resolved conflicts through discussions; 3) discussed each conflict
until a consensus was reached.

Then, from the results of the SZZ algorithm, we find the crash-related issues caused by the
patches of the sampled issues. Following the same card sorting steps, we classify the root
causes of these crash-related issues into five categories, as shown in Table 3.7.
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Table 3.7 Crash root causes and descriptions.

Reason Description
Memory Memory errors, i.e., memory leak, overflow, null pointer dereference, dangling

pointer, double free, uninitialized memory read, and incorrect memory alloca-
tion.

Semantic Semantic errors, i.e., incorrect control flow, missing functionality, missing cases
of a functionality, missing feature, incorrect exception handling, and incorrect
processing of equations and expressions.

Third-party Errors due to incompatibility of drivers, plug-ins or add-ons.
Concurrency Synchronization problems between multiple threads or processes, e.g., incorrect

mutex usage.

Results. Figure 3.6 shows the distribution of patch reasons obtained from our manual
classification. Among the reviewed patches that lead to crashes, we find that most patches
are used for improving Firefox’ performance, refactoring code, fixing previous crashes, and
implementing new features. These results imply that: 1) improving performance is the most
important purpose of the reviewed patches that crash; 2) some “seemingly simple” changes,
such as refactoring, may lead to crashes; 3) fixing crash-related issues can introduce new
crashes; 4) many crashes were caused by new feature implementations. The classification
suggests that reviewers need to scrutinize patches due to the above reasons, and software
managers can ask a super review inspection for these types of patches.

Figure 3.7 shows the distribution of our manually classified root causes. According to the
results, most crashes are due to memory and semantic errors. To further understand the
detailed causes of the memory errors, we found that 61% of these errors are as a result
of null pointer dereferences. By studying the issue reports of the null pointer crashes, we
found that most of them were eventually fixed by adding check for NULL values, e.g., the
issue #1121661.3 This finding is interesting because some memory faults can be avoided by
static analysis. Mozilla has planned to use static analysis tools, such as Coverity [72] and
Clang-tidy [73], to enhance its quality assurance. We suggest that software organizations
can perform static analysis on a series of memory faults, such as null pointer dereference
and memory leaks, prior to their code review process. Our results suggest that static code
analysis can not only help to mitigate crashes but also certain security faults. Even though
the accuracy of the static analysis cannot reach 100%, it can help reviewers to focus their
inspection efforts on suspicious patches. In addition, semantic errors are also an important
root cause of crashes. Many of these crashes are eventually resolved by modifying the if
conditions of the faulty code. Semantic errors are relatively hidden in the code, we suggest

3https://bugzilla.mozilla.org/show_bug.cgi?id=1121661#c1

https://bugzilla.mozilla.org/show_bug.cgi?id=1121661#c1
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Figure 3.6 Distribution of the purposes of the reviewed issues that lead to crashes.
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Figure 3.7 Distribution of the root causes of the reviewed issues that lead to crashes.

reviewers to focus their inspections on changes of control flow, corner cases, and exception
handling to prevent potential crashes. Software organizations should also enhance their
testing effort on semantic code changes.

3.5 Threats to Validity

Internal validity threats are concerned with factors that may affect a dependent variable
and were not considered in the study. We choose steady periods for the studied commits
by analyzing the distribution of crash-inducing commit numbers. We eliminate the periods
where the numbers of crash-inducing commits are relatively low because some crash-inducing
code has not been filed into issues at the beginning and at the end of our collected data.

The SZZ algorithm is a heuristic to identify commits that induce subsequent fixes. To mit-
igate the noise introduced by this heuristic, we removed all candidates of crash-introducing
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commits that only change comments or whitespace. We validate the accuracy of the algo-
rithm by comparing changed files of a crash-inducing commit with the information in its
corresponding crash-related issue report. As a result, 68.1% of our detected crash-inducing
commits changed at least one file mentioned in the crashing stack trace or comments of their
corresponding issues. The remaining commits might change a dependent class of the code
in the stack trace, or developers do not provide any stack trace in their corresponding issue
reports. Therefore, we believe that the SZZ algorithm can provide a reasonable starting point
for identifying crash-prone changes.

Finally, in RQ1, we use some time-related metrics (e.g., review duration), which measures
the period since a review for a patch was requested until the patch was approved. Although
a review duration of two months does not mean that developers really spent two months to
review a patch, it can reflect the treatment time of a development team (including pending
time, understanding time, and evaluation time) to the patch. For example, when the review
queue of a reviewer is long, her assigned patches may be pending for a long time before she
begins to inspect them [74].

Conclusion validity threats are concerned with the relationship between the treatment and
the outcome. We paid attention not to violate the assumptions of our statistical analyses. In
RQ1, we apply the non-parametric test, the Mann-Whitney U test, which does not require
that our data be normally distributed.

In our manual classifications of root causes of the reviewed patches that crashes, we randomly
sampled 100 reviewed issues and the crashes that were induced. Though a larger sample size
might yield more nuanced results, our results clearly show the most crash-prone types of
patches, and the major root causes of the reviewed patches that crash.

Reliability validity threats are concerned with the replicability of the study. To aid in future
replication studies, we share our analytic data and scripts online: https://github.com/
swatlab/crash_review.

External validity threats are concerned with the generalizability of our results. In this work,
we study only one subject system, mainly due to the lack of available crash reports and code
review data. Thus, our findings may not generalize beyond this studied system. However, the
goal of this study is not to build a theory that applies to all systems, but rather to empirically
study the relationship between review activities and crash proneness. Nonetheless, additional
replication studies are needed to arrive at more general conclusions.

https://github.com/swatlab/crash_review
https://github.com/swatlab/crash_review
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3.6 Summary

The code review process helps software organizations to improve their code quality, reduce
post-release defects, and collaborate more effectively. However, some high-impact defects,
such as crash-related defects, can still pass through this process and negatively affect end
users. In this chapter, we compare the characteristics of reviewed code that induces crashes
and clean reviewed code in Mozilla Firefox. We observed that crash-prone reviewed code
often has higher complexity and centrality, i.e., the code has many other classes depending
on it. Compared to clean code, developers tend to spend a longer time on and have longer
discussions about the crash-prone code; suggesting that developers may be uncertain about
such patches (RQ1). Through a qualitative analysis, we found that the crash-prone reviewed
code is often used to improve performance of a system, refactor source code, fix previous
crashes, and introduce new functionalities. Moreover, the root causes of the crashes are
mainly due to memory and semantic errors. Some of the memory errors, such as null pointer
dereferences, could be likely prevented by adopting a stricter organizational policy with
respect to static code analysis (RQ2). In the future, we plan to investigate to which extent
static analysis can help to mitigate software crashes. We are also contacting other software
organizations in order to study their crash reports to validate the results obtained in this
work.
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CHAPTER 4 AN EMPIRICAL STUDY OF PATCH UPLIFT IN RAPID
RELEASE DEVELOPMENT PIPELINES∗

Patch uplift is risky because the time allowed
for the stabilization of uplifted patches is re-
duced by six weeks for each skipped channel.

The advent of continuous delivery and rapid release practices have significantly reduced the
amount of stabilization time available for new features, forcing companies to resort to inno-
vative techniques to ensure that important features are released to the public, in a timely
manner and with a good quality. To cope with short release cycles, Mozilla has re-organized
its release process around four channels: a development channel named Nightly, two stabi-
lization channels (Aurora and Beta), and a main Release channel. Features corresponding to
a new release are developed on the Nightly channel over a period of six weeks. After that, the
code is transferred to Aurora, where it is tested by Mozilla developers and contributors, for a
period of six weeks, and then to Beta where it is tested by a selected group of external users.
Finally, mature Beta features are imported into the main Release channel and delivered to
end users. This pipelined process allows Mozilla to avoid mixing the development of new
features with the stabilization process, which is particularly important given that integration
operations are unpredictable [75], and can significantly delay a release process, if not enough
time is allowed for stabilization. However, this well organized release process is frequently
subverted by urgent patches, implementing high-value features or critical fixes, that cannot
wait for the next release train. These features and fixes are directly promoted from the
development channel to stable channels (i.e., Aurora, Beta, and main Release), a practice
called patch uplift. Patch uplift is risky because the time allowed for the stabilization of
uplifted patches is reduced by six weeks for each skipped channel. Therefore, it is important
to carefully pick the patches that are uplifted and ensure that developers scrutinize them
properly, to reduce the risk of regressions. There are a set of rules in place at Mozilla to
govern this uplift process. One of these rules is that patches uplifted to the Beta channel
should be (1) ideally reproducible by the QA team, so that they can be verified; (2) should
have been verified on Aurora/Nightly first; and (3) should not contain string changes (i.e.,
changes in the text which is visible to users). However, despite these rules, multiple uplifted
patches still introduce regressions in the code. Hence, it is unclear if–and–how the rules are

∗Part of the content of this chapter is published in “An Empirical Study of Patch Uplift in Rapid Release
Development Pipelines”, Marco Castelluccio, Le An, and Foutse Khomh, Empirical Software Engineering
(EMSE), DOI=10.1007/s10664-018-9665-y.
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enforced at Mozilla and why certain uplifted patches introduce post-release bugs.

In this study, we conduct a series of quantitative and qualitative analyses to understand the
decision making process of patch uplift at Mozilla and the characteristics of uplifted patches
that introduce regressions. Overall, we analyze 33,664 issue reports (corresponding to 7,267
uplift requests) in 17 versions of Firefox over a period of two years and answer the following
research questions:

RQ1: What are the characteristics of patches that are uplifted?

We observed that most patches are uplifted to resolve wrong functionalities or crashes.
Rejected uplift requests required longer decision time than accepted requests. We attribute
this difference to the high complexity of these rejected patches (since complex patches
require longer time for risk assessment). Last but not least, release managers tend to trust
patches that concern certain specific components, and–or that are submitted by certain
specific developers.

RQ2: How effective are uplift operations?

4% of the subject uplifts did not effectively address the problems but were later reopened,
duplicate or cloned into another issue, or required additional uplifts to fix the issue. Two
major root causes were observed from the ineffective uplifts: the uplifts only partially fixed
the issues or caused regressions. Higher proportion of ineffective uplifts were detected from
the Release channel than from Aurora and Beta.

RQ3: What are the characteristics of uplifted patches that introduced faults in the system?

From our analysis, we observed that uplifted patches that lead to faults tend to have larger
patch size; suggesting that developers and release managers need to carefully review patch
candidates for uplift with a large amount of changes, before allowing for their uplift. Most
faulty uplifts are due to semantic or memory-related errors. We also observed that patches
related to certain components and–or submitted by certain developers are more likely to
cause faults.

RQ4: Are regressions caused by uplift more severe than the bugs that were fixed with the
uplift?

Through a manual analysis, we observed that 37.5% of the Beta fault-inducing uplifts
caused a “more severe regression”, i.e., regression that is more severe than the problems
they aimed to address. No “more severe regression” was found from the examined Release
uplifts, perhaps due to a more strict uplift policy and code review process on this channel.

RQ5: Could some of the regressions have been prevented through more extensive testing on
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the channels?

We considered regressions to be possibly preventable if they were reproducible not only by
the issue reporter and were found either on a widely used feature/website/configuration
or via Mozilla’s telemetry. We manually examined a sample of regressions due to Beta
and Release uplifts, and found that 25% of the regressions due to Beta uplifts and 30% of
the regressions due to Release uplifts could have been possibly prevented.

Chapter Overview

Section 4.1 provides background information about patch uplift. Section 4.2 describes the
design of our case study. Section 4.3 presents the results of the case study. Section 4.4
discusses threats to the validity of this study, and Section 4.5 summarizes the chapter.

4.1 Mozilla Patch Uplift Process

This section describes the Mozilla patch uplift process and the rules governing this process.

Firefox follows a pipelined release process [2], with four release channels (Nightly, Aurora,
Beta, and Release). New feature work is done on the Nightly channel, while Aurora and Beta
serve as stabilization channels, and the Release channel is used to deliver the software to
end users. Every six weeks, there is a merge day, when the code from a less stable channel
flows into a more stable one (e.g., the Nightly code is moved in the Aurora repository).
Most of the development work is performed in the Nightly channel, where patches can be
committed after a normal review process. For the stabilization channels, a different process
for committing patches has been put in place (i.e., patch uplift), to keep the channels as
stable as possible (as code committed to Aurora and Beta is closer to be released to users).
Patches with important features or severe fault fixes that cannot wait for the entire process
are promoted directly from the development channel to one of the stable channels, skipping
the stabilization phase on one or more channels.

The lifecycle of an uplifted patch can be summarized as follows: developers write a patch,
which gets reviewed by one or more reviewers. After a successful review, the patch is com-
mitted to the Nightly channel. If developers (or other stakeholders) believe that the patch is
particularly important (e.g., it fixes a frequent crash, or a performance issue), they can ask
for approval to uplift the patch to one (or more) of the stable channels, i.e., Aurora, Beta,
or Release.

Release managers (who are independent and different from reviewers) are responsible for
deciding which patches can be uplifted. They can either accept or reject the patch uplift
request, after a careful consideration of the risks involved.
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The more a channel is stable, the higher is the bar for approval of uplift requests. Below we
present an excerpt of the rules in place at Mozilla on the different channels.

• Aurora: Uplifts to the Aurora channel are less critical, as they still have considerable
time for stabilization. The rules are not strict in this case: no new features are ac-
cepted; no disruptive refactorings; no massive code changes; no string changes, unless
the localization team is aware and has approved; they must be accompanied, if possible,
by automated tests.

• Beta: Uplifts to the Beta channel are more critical, as they have less time for stabi-
lization. In addition to the rules outlined for Aurora, the changes uplifted to the Beta
channel should be (1) ideally reproducible by QA, so that they can be verified; (2) they
should have been verified on Aurora/Nightly first; and should not contain (3) changes
to the user-visible strings in the application (as those require a very high effort and time
to be localized, since Mozilla relies on volunteer contributors). The uplifted changes
can be proven performance improvements, fixes to important crashes, fixes for recent
regressions. The closer to the release date, the stricter the release managers should be
in enforcing the rules.

• Release: Uplifts to the Release channel are generally discouraged, as they require a
new version to be built and released to users. Possible uplifts are fixes for major top
crashes, security issues, functional regressions with a very broad impact.

Once a patch is accepted for uplift, Tree Sheriffs [53] (i.e., engineers responsible for supporting
developers in committing patches and ensuring that the automated tests are not broken after
commits, monitoring intermittent failures and backing out patches in case of test failures) or
the developers themselves can commit it to the stabilization channel(s) for which the patch
was approved.

4.2 Case Study Design

In this section, we describe the data collection and analysis approaches that we used to
answer our five research questions.
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4.2.1 Data Collection

We collected, from the Mozilla issue tracking system (Bugzilla), all issues marked as resolved
or verified in the Firefox and Core products between July 2014 (release date of Firefox 31.0)
and August 2016 (release date of Firefox 48.0). In total, there are 35,826 issue reports in our
dataset.

Mozilla developers use customized Bugzilla flags to request for patch uplifts. These flags have
the form approval-mozilla-CHANNEL, where CHANNEL can be Aurora, Beta, or Release. The
postfix of the flag is set to a question mark (?) when a developer asks for an uplift, to a
minus sign (-) if the release manager rejects the uplift, and to a plus sign (+) if the release
manager approves the uplift. We relied on these flags to identify uplifted patches. At Mozilla,
release managers usually inspect all patches in an issue report before deciding whether they
can be uplifted together. Thus, in this work, we considered uplift characteristics at the issue
level. If an issue contains multiple patches, we bundled the patches together. To study the
patch uplift process, we need to consider a period of time during which the practice was well
established at Mozilla. To decide on this period, we computed the amount of patches that
were uplifted each month, over our initial period of July 2014 to August 2016. Figure 4.1
shows the distribution of the number of uplifts in three Firefox’s release channels during this
period. We did not consider uplifts that concern the “Pocket” component, as the inclusion
of Pocket (which is a third-party add-on) in Firefox, a one-time event, might introduce noise
in our data. In Figure 4.1, each time point represents a period of one month (we can see
that the Release channel did not receive any uplift in May and November 2015). Figure 4.1
shows that the number of uplifted patches increased from July 2014 to August 2014 and
then became stable from September 2014 to August 2016. Based on this distribution, we
selected the period between September 2014 and August 2016, for our study. In other words,
we limited our dataset to only issue reports and commits that occurred within this period.
Between September 2014 and August 2016, we study in total 33,664 issue reports, in which
there are 7,267 uplift requests: 285 to Release, 2,614 to Beta, and 4,368 to Aurora.

4.2.2 Data processing

Figure 4.2 shows a general overview of our approach. We describe each step of the approach
below. The corresponding data and scripts are available online at: https://github.com/
swatlab/uplift-analysis.

https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis
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Figure 4.2 Overview of our data processing approach.

Identification of Fault-related Issues

Mozilla uses Bugzilla to manage and track its issues. All types of issues, whether they
are faults or new features, are managed in this system. Unlike JIRA [76], which offers the
possibility to distinguish between issues using a tag, Bugzilla does not provide issue type
information. Therefore, our first processing task is to differentiate issues that are related to
faults, from new feature requests or improvements. To automatically identify fault-related
issues, we used a keyword-based heuristic to search information in the title, description, flags,
and user comments of each issue report. Our list of keywords includes: crash, regression,
failure, leak, steps to reproduce (STR), and hang. The full list is available at: https:
//github.com/swatlab/uplift-analysis.

To ensure the accuracy of our detection on fault-related issues, we manually validated a
sample of our results. From a total of 33,664 issue reports, we randomly selected a sample of
380 issue reports, which corresponds to a confidence level of 95% and a confidence interval of

https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis
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5%. The first and the second authors read each of the 380 issue reports independently and
classified them into fault-related and other categories. We then compared their classification
results and observed that 41 issue reports were classified into different categories by the two
authors. To resolve these discrepancies, we created an online document for the 41 issues;
allowing all of the authors to comment and discuss the issues. After this round, a consensus
was reached for 35 out of the 41 issues. For the remaining 6 issues, we organized a meeting
and discussed the classification of each of them until a consensus was found. The result of our
manual classification shows that our keyword-based heuristic achieves a precision of 87.3%
and a recall of 78.2%, when classifying issues into fault-related (the true class) and other (the
false class) categories.

Identification of Fault-inducing Patches

We used the SZZ algorithm [22] to identify patches (these patches could be fault-fixing
patches or patches related to features or improvements) that introduced faults in the system.
First, we used Fischer et al.’s heuristics [55] to map each studied issue to its corresponding
patch(es) (i.e., commits). This heuristic consists in looking for issue IDs in commit messages
using regular expressions. Next, for each fault-related issue, we used the following Mercurial
command to extract the list of files that were changed to fix the issue:

hg log –template {commit},{file_mods},{file_dels}

In this step, we only considered modified and deleted lines, since added lines could not have
been changed by prior commits. We denoted an issue’s fault-fixing file by Ffix. Then, for
each changed file ffix | ffix ∈ Ffix, we used Mercurial’s annotate command as follow to
check which prior commits changed the lines that were modified by the fault-fixing commits.
The SZZ algorithm assumes that the fault is located in these lines.

hg annotate commitˆ -r f_fix -c -l -w -b -B

We refer to the obtained commits as fault-inducing candidates. Finally, we examined whether
a fault-inducing candidate was submitted before the creation date of its corresponding fault-
related issue report. If so, we considered the candidate to be a fault-inducing commit, and
its related issue to be a fault-inducing issue.
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Identification of Duplicate Issues

There has not been an approach that can identify duplicate issues1 with 100% accuracy.
Two general threads of approaches were proposed in previous works. The first thread of
approaches ranks the similarity between one given issue and other issues in a dataset, such
as [77, 78, 79]. The other thread predicts whether two given issue reports are duplicate or
not, such as [80, 81, 82]. Inspired by these works, we designed the following approach, which
is customized for our dataset.

1. For each subject issue report, we extracted its short description (i.e., title) and long
description (i.e., first comment). We performed stemming and stop word removal
against these raw texts.

2. As [81, 82], we used Okapi BM25 algorithm [83] (referred as BM25 in the rest of
the chapter) to rank of the similarity between any pair of issues: {(issuei, issuej) |
i 6= j, issuei ∈ uplift bugs, issuej ∈ all bugs}. In a given pair of (issuei, issuej),
we respectively calculated the similarity between their titles and their descriptions. As
there are in total 33,664 studied issues and 4,958 unique uplifted issues2, we should
perform (33664− 4958)× 4958 + 4958× (4958− 1) ≈ 167M comparisons (for titles and
descriptions respectively). In each of these comparisons, the BM25 algorithm yields a
score of similarity, the higher the score the closer the two pieces of information (i.e.,
titles or descriptions).

3. We ranked the BM25 scores for all pairs of issues by descending order. We removed
the pairs where the BM25 scores is 0. The rest of the results were considered as
duplicate issue candidates. We intended to manually examine the correctness of each
title (respectively description) pair by carefully analyzing the whole issue reports. There
are 8.1 million pairs of duplicate issues candidates, our manual validation cannot cover
all these but can only focus on the most likely candidates. First, we narrowed down
our manual analysis scope to the top 1,000 candidates because correct duplicate cases
can hardly be observed beyond the top 1,000 candidates (in which the highest BM25
value is 97.5, and the lowest value is 29.1) through a preliminary analysis. Second, we
designed a heuristic to further filter out the pairs in which the two issue reports are
not linked to each other: if Issue A is never mentioned in Issue B (either in one of the
comments, or in the “Blocking”, “Depends On”, “See Also” fields), we considered the
two issues to be “not linked” (meaning that, in practice, developers did not notice any

1In this study, “duplicate” issues indicate different issues that aim to address the same problem, rather
than DUPLICATE in the Bugzilla sense, which means identical issues.

2There are in total 7,267 studied uplift requests, but some requests are across multiple channels.
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relationship between the issues). To calculate the false positive rate of this heuristic, we
manually examined the top 50 and 100 other randomly selected candidates, and found
that only two correct duplicate pairs were misclassified by the “unlinked” heuristic. As
a result, 137 candidates survived this step. Our manual validation was then performed
on these candidates.

4. Since we separately performed Steps 2 and 3 on the issue titles and descriptions, we
combined the results and removed redundancies. We also removed the pairs where an
issue is a clone of another one. From the obtained results, we only keep the duplicate
pairs where the duplicate issue were opened or resolved after the original patch had
been uplifted.

Compared to any fully automated approach, our approach can achieve a very high precision
because all of the reported duplicate issue pairs have been carefully examined by two graduate
students (by understanding the whole context of the issue reports). Although we cannot
guarantee a 100% recall, we believe that our reported results covers all possible cases where
the titles (respectively descriptions) of a pair of issues are textually similar to each other. In
fact, text processing is the base of most aforementioned approaches. BM25 is considered as an
advanced measure of ranking similarities, which has a higher performance than the traditional
TF-IDF algorithm [82]. Some approaches, such as [81, 82], used additional information (e.g.,
priority, product, and version fields from the analyzed issue reports), but such information
cannot help to retrieve more possible candidate (i.e., it cannot increase the recall). In this
work, we only ignored the issue pairs where the titles or descriptions have no relevance (i.e.,
BM25 value is 0) or have little relevance (i.e., the two issues are not linked and the BM25
value is weak).

Mining Issue Reports

We mined several kinds of metrics from Bugzilla issue reports: information about the review
process (e.g., how long a review took, how many reviewers inspected a patch), information
about the uplift process (e.g., whether an uplift was accepted, how long before a release
manager decided to accept or reject an uplift request), the developer assigned to an issue,
and the component(s) affected by an issue.

Computing Metrics

To capture the characteristics of patches that were uplifted, we computed the 22 metrics
described in Tables 4.1 to 4.5. These metrics correspond to the following five dimensions:
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Table 4.1 Developer experience and participation metrics (m1 - m5).

Metric mi Description Type and range
Developer experience 1 Number of previous commits of the

patch developer.
Integer, from 0 to 43639.

Reviewer experience 2 Number of previous commits of the
patch reviewer.

Integer, from 0 to 43691.

Number of comments 3 Number of comments in the issue re-
port.

Integer, from 3 to 1359.

Comment words 4 Average number of words in the com-
ments to an issue.

Integer, from 0 to 2199.

Review duration 5 Time period (in days) from a patch’s
submission until its approval.

Float, from 0.0 to around
406.67.

Table 4.2 Uplift process metrics (m6 - m8).

Metric mi Description Type and range
Landing delta 6 Time elapsed (in days) between when the

patch was applied to the Nightly version and
when the developer asked for approval of an
uplift. The value can be negative, as some-
times developers request uplift before their
patch is applied to Nightly.

Float, from -41.59 to
around 153.73.

Response delta 7 Time elapsed (in days) between when the de-
veloper asked for approval for the uplift and
when the release manager decided (approved
or rejected).

Float, from 0.0 to around
31.23.

Release delta 8 Time elapsed (in days) between when the de-
veloper asked for approval for the uplift and
the date of the following release.

Float, from 0.0 to around
42.76.

Developer experience and participation metrics Our rationale for computing these
metrics is that patches written or reviewed by experienced developers may have a higher
chance to be accepted for uplift, and may be less fault-prone. Long comments and long
review durations may indicate the complexity of an issue and developers’ uncertainty about
it, which may explain its rejection or fault-proneness.

Uplift process metrics We computed metrics capturing the uplift process for the follow-
ing reasons. Release managers may be more inclined to accept patches with higher landing
delta (as the more time a patch has been on the Nightly channel, the more time it has been
tested by Nightly users). Patches with low release delta are likely to be refused uplifts, since
patches that are developed closer to the date of release might pose more risk (as there is less
time to fix potential regressions). Patches with low response delta may also be rejected (since
developers have less time to evaluate the risks associated with the patch). Patches with low
landing delta, release delta, and low response delta may also lead to faults if uplifted.
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Table 4.3 Sentiment metrics (m9 - m10).

Metric mi Description Type and range
Developer sentiment 9 The highest negative sentiment score in the

developers’ comments on an issue.
Integer, from -5 to 0.

Owner sentiment 10 The highest negative sentiment score in mod-
ule owners’ comments on an issue.

Integer, from -5 to 0.

Table 4.4 Code complexity metrics (m11 - m19).

Metric mi Description Type and range
Patch size 11 Number of lines in a patch (excluding test

patches).
Integer, from 0 to 301114.

Test patch size 12 Number of lines in a test patch. Integer, from 0 to 127155.
Prior changed times 13 Number of previous commits that modi-

fied the same files that the patch is mod-
ifying.

Integer, from 0 to 114051.

LOC 14 Average lines of code in all files in a patch. Integer, from 0 to 27727.
Average cyclomatic 15 Average cyclomatic complexity of the

functions in a file.
Integer, from 0 to 128.

Number of functions 16 Average number of files’ functions in a
patch.

Integer, from 0 to 3878.

Maximum nesting 17 Average maximum level of nested func-
tions in all files in a patch.

Integer, from 0 to 13.

Comment ratio 18 Average ratio of the lines of comments
over the total lines of code in all files in a
patch.

Integer, from 0 to 99.

Module number 19 Number of modules (as defined by Mozilla
in [84]) involved by a patch.

Integer, from 0 to 76.

Sentiments We computed sentiment metrics because we believe that sentiments can af-
fect uplift decisions and their success rate. From each studied issue, we extract develop-
ers’ comments to compute their sentiments. We leverage the sentiment mining tool, Sen-
tiStrength [85], to estimate the extent of developers’ positive and negative sentiments toward
a specific issue. As one of the state-of-the-art sentiment mining tool, SentiStrength is easy
to apply, and it has achieved a reasonable performance in prior works [85, 86]. To adapt
this tool to the software engineering context, we ignored a group of words that have negative
meanings in general but do not represent any negative sentiment in Bugzilla discussions, e.g.,
bug, error, issue, regression, failure, fail, leak, crash3. To further filter out irrelevant infor-
mation from the comments, we used regular expressions to ignore hyperlinks and referred
texts (i.e., lines starting with “>”). In addition to developers’ sentiments, we also computed
module owners’ sentiments.

3Please refer to our data repository to see the whole list of ignored words:
https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis
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Table 4.5 Code centrality (SNA) metrics (m20 - m22).

Metric mi Description Type and range
PageRank 20 Time fraction spent to “visit” a node (i.e., file)

in a random walk in the call graph.
Float, from 0.0 to 1158.91.

Betweenness 21 Number of classes passing through a node
among all shortest paths.

Float, from 0.0 to 6.2e+07.

Closeness 22 The average length of the shortest path be-
tween a node and all other nodes.

Float, from 0.0 to 3.21.

Code Complexity Previous works, such as [18], have shown that complex code is likely
to introduce faults. We calculated code complexity metrics to understand how uplifting de-
cisions and their success are affected by the complexity of the uplifted patches. We extracted
the files changed in each patch and use the static code analysis tool Understand [57] to cal-
culate the following complexity metrics on the files: lines of code (LOC), average cyclomatic
complexity, number of functions, maximum nesting, and ratio of the comment lines over the
total code lines.

Code centrality (SNA) metrics Kim et al. [18] observed that functions close to the cen-
tre of a call graph are likely to experience more faults. Hence, we computed metrics capturing
the centrality of functions involved in uplifted patches and uplifted patch candidates. We
used the network analysis tool, igraph [61], in combination to Understand [57], as in [87], to
compute the following Social Network Analysis (SNA) metrics: PageRank, betweenness, and
closeness. When computing complexity and SNA metrics, we only considered the C/C++
code since Firefox contains 86% of C/C++ code. Computing code complexity and SNA
metrics is a very time-consuming task. Instead of computing the metrics for each patch, we
computed metrics by releases and map a given patch to its latest major release as in our
previous work [87]. To make the metric results as precise as possible, we considered all major
releases from Firefox 32.0 until Firefox 48.0, which cover the system’s history from September
2014 until August 2016.

4.3 Case Study Results

This section presents and discusses the results of our five research questions. For each ques-
tion, we discuss the motivation, the approach designed to answer the question, and the
findings. To get a deeper insight of the patch uplift process, we perform both quantitative
and qualitative analyses for each research question.
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RQ1: What are the characteristics of patches that are uplifted?

Motivation. This question aims to understand the characteristics of patches that are
uplifted. We are particularly interested in understanding what differentiates patch uplifts
among different channels. Although Mozilla has published rules to guide the patch uplift
process [88], it is unclear if and how these rules are enforced in practice. The answer to this
research question can help discover hidden factors that affect the uplift process, and help
software practitioners make this process more predictable.

1) Quantitative Analysis

Approach. Using the metrics from Tables 4.1 to 4.5, we statistically compared 22 numerical
characteristics of patch uplift candidates that were accepted and those that were rejected.
As Mozilla release managers take a whole issue report into account during the uplift process
(see Section 4.2.1), we calculated the average values of the code complexity and SNA metrics
for all patches in a subject issue report.

For each of the 22 metrics mi, we formulated the following null hypothesis:
H01

i : there is no difference between the values of mi for patch uplift candidates that were
accepted and those that were rejected, where i ∈ {1, . . . , 22}

We used the Mann-Whitney U test [66] to accept or reject these hypotheses. The Mann-
Whitney U test is a non-parametric statistical test that measures whether two independent
distributions have equally large values. We used a 95% confidence level (i.e., α = 0.05)
to accept or reject the hypotheses. Since we performed more than one comparison on the
same dataset, to reduce the chances of obtaining false-positive results, we used Bonferroni
correction [67] to control the familywise error rate. Concretely, we calculated the adjusted p-
value, which is multiplied by the number of comparisons. Whenever we obtained statistically
significant differences between metric values, we computed the Cliff’s Delta effect size [89] to
measure the magnitude of the difference. Given a result of the Cliff’s Delta, d, we use the
following thresholds to decide its magnitude: |d| < 0.147 “negligible”, |d| < 0.33 “small”,
|d| < 0.474 “medium”, otherwise “large” [90]. In the following, we report only the metrics
for which there is a statistically significant difference between accepted and rejected patch
uplift candidates.

Results. Table 4.6 summarizes differences between the characteristics of patches that were
accepted for an uplift and those that were rejected. We show the median value of accepted
and rejected uplifts for each metric, as well as the p-value of the Mann Whitney U test and
the effect size. For all three channels, rejected uplifts have longer response delta (m7) than
accepted uplifts. We attribute this outcome to the high complexity of the rejected patches,
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Table 4.6 Accepted vs. rejected patch uplift candidates.

Channel Metric Accepted Rejected p-value Effect size

Aurora Comment ratio 0.1 0.2 0.03 small
Landing delta 0.4 3.0 0.02 small
Response delta 0.9 2.4 <0.001 medium

Beta LOC 529.0 1,046.8 <0.001 small
Cyclomatic 2.0 3.0 0.04 negligible
# of functions 20.0 35.2 <0.001 small
Comment ratio 0.1 0.2 <0.001 small
Betweenness 2,789.0 20,586.3 0.01 negligible
PageRank 1.4 1.7 0.01 negligible
Max. nesting 2.3 3.0 7.72e-03 negligible
Module number 1.0 1.0 7.13e-03 negligible
Response delta 0.7 1.0 <0.001 small

Release Response delta 0.02 3.1 <0.001 large

which required longer time for risk assessment. We summarize the different results among
the channels as follows:

• Aurora: We observed that rejected uplift requests have significantly higher landing
delta; this might imply that the rejected patches are landing at the end of the Aurora
cycle, and so have less time for stabilization. Also, rejected uplift requests have higher
ratio of comment in the source code, although we expected that a higher comment
ratio might help release managers understand the code. A high comment ratio could
also indicate a high code complexity. Release managers may hesitate to release patches
with complex code ahead of schedule.

• Beta: Compared to accepted patches, rejected patches tend to have higher code com-
plexity in terms of LOC and number of functions, as well as higher SNA values in
terms of PageRank. This result is expected, because we assume that complex code
and code connected with many other classes is less likely to be accepted for urgent
releases. As in the Aurora channel, rejected patches also contain code with higher ratio
of comment. Although accepted and rejected patches have significant differences on
some other metrics such as cyclomatic complexity, the magnitude of these differences
is negligible.

According to the results, we can only reject H01
7 , meaning that the response delta

can significantly affect the decision to uplift a patch or not. The impact of other
metrics, including code complexity and SNA metrics, is channel dependent.

We quantified the acceptance rate of uplift requests for different components and observed
that certain components enjoy a 100% acceptance rate (perhaps because they rarely expe-
rienced faults); while other components have lower acceptance rates (perhaps because they
are inherently more complex, e.g., the implementation of JavaScript, or because release man-
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agers have had bad experience with some of them). This difference between the acceptance
rates of components is more pronounced in the Release channel. Some components that are
involved in a large number of uplifts (e.g., Audio/Video, Graphics, and DOM components)
also have the lowest acceptance rate. Perhaps developers of those components tend to ask
for uplifts more often, prompting a negative reaction from release managers who may feel
that they take too many risks.

2) Qualitative Analysis
Since we did not observe significant structural differences between the code of patch uplift
candidates that were rejected and those that were accepted, we conducted a qualitative study
to identify and compare the reasons behind successful and failed patch uplift requests.

Approach. From 2,384 uplifted issues in the Beta channel and 231 uplifted issues in the
Release channel, we randomly chose respectively 459 and 154 issues as our samples (which
correspond to a confidence level of 95% and a confidence interval of 5%). Inspired by Tan
et al.’s work [71], we classified the uplift reasons into 14 categories based on their (potential)
impact and detected fault types. Some of Tan et al.’s categories are too broad, such as
incorrect functionality. We broke them into more detailed uplift reasons, e.g., incorrect
functionality is split to incorrect rendering and (other) wrong functionality. Some of Tan et
al.’s categories, such as data corruption, are with too few occurrences. We combined them
into the “other” category. Table 4.7 shows the uplift reasons used in our classification. We
performed a card sorting on each of the sampled issues. By studying the issue report, two
graduate students individually classified each issue into one or multiple uplift reasons (some
uplift may be due to multiple reasons). Then we compared their classifications and resolved
conflicts through discussions. We discussed each conflict until an agreement was reached.

To connect uplift reasons with the risk of regression, we will show the distribution of the
faulty uplifts for each uplift reason.

Moreover, to identify organizational factors that play a role in patch uplift decisions, we
interviewed three of the current five Mozilla release managers (the other remaining two were
new to the role) one at a time (to avoid them influencing each other), asking them the
following questions:

1. Which factors do you take into account when deciding about an uplift?

2. Are there differences in how you handle uplifts in different channels, and what are the
differences?

3. How do you decide which developers you can trust?

After this first more structured interview with the questions above, we performed a semi-
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Table 4.7 Uplift reasons and descriptions (abbreviations are shown in parentheses).

Reason Description
Security Security vulnerability exists in the code.
Crash Program unexpectedly stops running.
Hang Program keeps running but without response.
Performance
degradation (perf)

Functionalities are correct but response is slow or delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong functionality
(func)

Incorrect functionalities besides rendering issues.

Web incompatibility
(web comp)

Program does not work correctly for a major website or many websites
due to incompatible APIs or libraries, or a functionality, which was re-
moved on purpose, but is still used in the wild.

Add-on or plug-in
incompatibility
(addon comp)

Program does not work correctly for a major add-on/plug-in or many
add-ons/plug-ins due to incompatible APIs or libraries, or a functional-
ity, which was removed on purpose, but is still used in the wild.

Compile Compiling errors.
Feature Introduce or remove features, including support adding.
Improvement
(improve)

Minor functional or aesthetical improvement.

Test-only problem
(test)

Errors that only break tests.

Other Other uplift reasons, e.g., data corruption and license incompatibility.

structured one, showing the results of our quantitative analysis to the release managers and
asking them for their feedback.

The questions of the both interviews were open-ended, so we had to perform an analysis to
extrapolate interesting elements and to group together similar ones (e.g., if an interviewee
mentioned “a really important issue reported multiple times” as being one of the factors and
another mentioned “a bug affecting many users”, we considered these factors to be the same
and grouped them together in “Importance of the issue”).

Results. Figures 4.3 and 4.4 show the distribution of the uplift reasons, as well as the
distribution of fault-inducing uplifts and clean uplifts for each reason. We observed that, in
the Beta channel, most patches are uplifted because of a wrong functionality, crash, security
vulnerability, incompatibility with some major websites, or to introduce/remove a feature.
Most regressions are introduced by the uplifts that resolved wrong functionalities, crash, and
security issues. For some uplift reasons, including improvement, resolving add-on/plug-in
incompatibility and compiling errors, few patches lead to faults in our studied sample. How-
ever, a high percentage of patches resolving performance and rendering problems introduced
new regressions.

In the Release channel, we observed the same top five uplift reasons. Compared to the Beta
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Figure 4.3 Distribution of uplift reasons in Beta.
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Figure 4.4 Distribution of uplift reasons in Release.

channel, there are fewer regressions; implying that these uplifted patches may have been
more carefully scrutinized, the rules for approval on the Release channel being more strict.
The fault-inducing patches only concentrated on five uplift categories: crash, hang, security,
performance degradation, and incorrect rendering. Especially, most patches for incorrect
rendering lead to future faults. These results suggest that, although developers prudently
uplift patches in the Release channel, they still need to carefully review patches belonging to
the aforementioned categories in order to prevent delivering faults to users.

Through the interview, we learn that release managers take into account several factors when
deciding whether to approve or reject a patch uplift request.
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1. Importance of the issue. This is measured through the impact that rejecting the uplift
would have on users.

2. Risk associated with the patch. Release managers share the same view on the risks.
They generally trust developers’ words, unless they have had bad experiences with them
(e.g., developers who caused regressions and did not fix them); they evaluate the risk
of the patch by looking at its size and complexity, the presence/absence of automated
tests, the reviewers of the patch. In case of doubts, release managers consult other
release managers or engineering managers to get a clearer picture.

3. Timing of the uplift in the Aurora/Beta cycle. They tend to trust more patches that
have been in Nightly for some time and patches that are far from the next release date.
They almost always accept uplifts requested during the first weeks of the Aurora cycle.

4. Verification of the patch. In particular for more stable channels, they make sure that
the patch has been verified to actually fix the problems it was supposed to fix. If needed,
they ask QA to manually verify the patch. If it is a patch that fixes a Nightly crash,
before uplifting the patch to Aurora, they will verify if users are no longer reporting
the crash.

They remarked that the uplift bar gets higher as they are getting closer to release. After
the middle point of the Beta cycle, they only accept patches fixing high security issues,
high-volume crashes, severe recent regressions, severe performance issues or memory leaks.

We presented the release managers with the results of our quantitative and qualitative anal-
ysis and collected the following observations.
They found that the response delta information is interesting. After thinking about
it, they all gave us similar replies. When they are evaluating a complex issue and are still
undecided, they will not make the call immediately. One release manager said that “when I
reject something, I won’t make the call immediately. I will think about it before doing it, in
case I change my mind or new facts are coming in the equation".
Regarding the landing delta, they were surprised, as they thought they were more likely
to accept patches with a higher landing delta (that is, patches that have been in Nightly for
longer). They have also said that they are almost always accepting patches during the first
four weeks of the Aurora cycle, which would explain this discrepancy (as those patches have
a small landing delta).

The interviewed release managers also told us that they take into account the fault-proneness
of components when making uplift decisions; which is in line with what we found (some com-
ponents have a smaller acceptance rate). One release manager told us that “some components
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always come out as causing the most regressions, e.g., graphics layers, DOM". Regarding
the trust in developers, they all mentioned the assessment of risk as one of the first factors.
One release manager explained that “when they seem really overconfident or aren’t telling
me the whole story I lose some trust", another one stated that “some developers are taking
a lot of risks, some other less and are super reactive to fix potential fallout". This finding is
consistent with the uplift criteria followed at Facebook [91], where release managers tend to
trust developers who introduced less regressions in the past.

Regarding uplift reasons, release managers were not surprised that test and compile changes
are less frequent than others. They argued that these kinds of changes are really hard to
move from the Nightly channel to a stabilization channel (build or test failures, unless they
happen on really particular configurations, are noticed as soon as a patch is applied, since
tests are run for every changeset). For the same reasons, they were not surprised that the
uplift regressions are rarely compile-related.

Release managers argued that the information about the distribution of uplift reasons is
useful for their future decision-making. They were initially surprised to see that crash and
security-related uplifts often caused regressions, but they thought that the urgency of those
fixes might degrade their quality. They were also interested in the results regarding the
categories where a high proportion of uplift patches caused regressions (e.g., performance
uplifts). They said that they will start to take this information into account when deciding
about uplifts, and will be more careful with the uplifts in those categories.

RQ2: How effective are uplift operations?

Motivation. Previous studies showed that some issues cannot be effectively fixed by one
patch, but need additional fixing efforts. These issues can be detected by seeking re-
opened [92], cloned [93], duplicate, or resolved by multiple patches [94] (which also
includes backouts made by tree sheriffs, [95]) issues. In this research question, we want
to examine whether it happens that patch uplift operations require multiple attempts (we
refer to such uplifts as “ineffective uplifts”). Since such outcome is not desirable, it would be
useful to help developers identify the characteristics of such patch uplifts, so that they can
take the necessary steps to avoid reoccurrences of issues addressed by uplift operations.

Approach. To identify issues that were reopened, we used the REOPENED Bugzilla resolution
type. To identify issues that were cloned, we used a regular expression to match the following
pattern, which Bugzilla adds automatically when a user clones a bug.

+++ This bug was initially created as a clone of Bug #ISSUE_ID +++
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To identify issues that were fixed by more than one uplift, we used regular expressions to
detect uplifts in issue reports (see Section 4.2.1), and initially marked issues where at least
two uplifts occurred (at a distance of at least three days between them). We chose three days
because the distance between two beta builds is three days. A shorter time would likely have
caught simple follow-up fixes that we are not interested in. A longer time would likely have
missed some cases of multiple uplifts.

From the obtained results, we removed the issues that were reopened or cloned before their
corresponding patches had been uplifted. We also removed the issues with multiple uplifted
patches, which were actually uplifted together (or at the same time) or where one of the
multiple uplifts was a simple test-only fix (identified by a=test-only in the commit message).
From the user side, these issues were resolved by only one shot.

To identify issues duplicate of a previous issue fixed by patch uplift, we used the approach
described in Section 4.2.2.

For each identified and verified issue that was not effectively fixed by an uplift, two of the
authors independently card sorted the root causes of the ineffective uplift into one or multiple
categories. They first defined categories separately, and then merged similar categories into
one. Next, they standardized the category names as shown in Table 4.8. Finally, they used
these standardized categories to compare their classification differences and resolve conflicts
until reaching an agreement for each of the issues.

Results. Table 4.9 shows the number of ineffective uplifts detected from the three develop-
ment channels. Since some patches were uplifted into multiple channels, the table also shows
the unique number of the ineffectively uplifted patches in a specific manner (e.g., reopened,
cloned, or duplicate). Figure 4.5 depicts the root causes of the ineffective uplifts and shows
the prevalence of each root cause. In this figure, if the patch of an issue was uplifted to
multiple channels, we only counted it once. In general, 196 out of the 4,958 (4%) stud-
ied issues were not effectively fixed by one patch uplift and required additional
efforts. In previous studies, Park et al. [94] and An et al. [96] respectively detected 32.8%
and 23.8% general Mozilla issues (in different time periods) that were resolved by multiple
patches. Shihab et al. [97] detected 6.5% to 26% reopened issues from Eclipse, Apache HTTP,
and OpenOffice. Compared to these results, uplifted patches are more likely to fix a problem
in one shot than other patches, even though we analyzed ineffective uplifted patches from
different angles, including reopened, cloned, duplicate issues, and issues fixed by multiple
uplifts. This implies that uplifted patches have a better general quality than other patches.

“The original uplifted patches did not completely fix the problem” is the most
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Table 4.8 Root causes of the ineffective uplifts.

Category Description
Not fixed The issue was completely not fixed, i.e., the uplifted patch did

not have any effect.
Partially fixed The issue was only partially fixed, i.e., the uplifted patch had an

effect but did not completely resolve the problem.
Need more QA The uplifted patch had not gone through enough manual verifica-

tion.
Need more tests There were no tests added with the uplifted patch, but they were

required.
Diagnostics An uplift was made to gather more data on a problem, then an-

other uplift was made to actually fix it.
Regressions The uplifted patch caused other defects.
Test failure The uplifted patch did not pass a certain test.
Build failure The uplifted patch caused a build error.
Other Other reasons, e.g., an issue was fixed by an uplift, but then ap-

peared again because of another patch; or the patch depended on
other patches to be uplifted first.

Table 4.9 Number of ineffective uplifts in the three channels.

Aurora Beta Release Unique count

Reopened 70 49 10 77
Cloned 28 16 3 32
Duplicate created after an uplift 15 10 2 16
Duplicate resolved after an uplift 5 3 2 7
Resolved by multiple uplifts 50 42 3 78

frequent root cause behind the issues that were ineffectively fixed and were later
reopened, cloned, or duplicate. An example of such case is issue #1156182; the original
uplifted patch of issue #11561824 only fixed the crash problem on Windows. The issue was
reopened to further fix crashes on Linux.

“Leading to regressions” is another important frequent root cause of the issues
that were reopened, cloned, and were resolved by multiple uplifts. An example of
such case is issue #1044975; after uplifting and landing a patch to the Aurora and Release
channels to fix crashes of issue #10449755, developers noticed an increase of crashes with
another stack trace in the field. They had to uplift another patch to address the regressions.

In addition, among the ineffective uplifts, 27.5% of the issues were reopened after patch uplifts
because these patches did not resolve the issues at all. 18.1% of the issues were resolved by
multiple uplifts because their first uplifted patch did not pass a test case. Test and build

4https://bugzilla.mozilla.org/show_bug.cgi?id=1156182
5https://bugzilla.mozilla.org/show_bug.cgi?id=1044975

https://bugzilla.mozilla.org/show_bug.cgi?id=1156182
https://bugzilla.mozilla.org/show_bug.cgi?id=1044975
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diagnostics: 1.2%
need more tests: 5.0%
need more QA: 1.2%

regressions: 20.0%
other: 3.8%

not fixed: 27.5%

test failure: 3.8%

partially fixed: 37.5%

(a) Reopened

diagnostics: 3.1%
not fixed: 3.1%

other: 9.4%

partially fixed: 71.9%
regressions: 12.5%

(b) Cloned

not fixed: 12.5%

other: 6.2%

partially fixed: 75.0%
regressions: 6.2%

(c) Duplicate created after an uplift

not fixed: 14.3%

partially fixed: 85.7%

(d) Duplicate resolved after an uplift

build failures: 6.0%
diagnostics: 4.3%

not fixed: 2.6%
other: 19.8%need more tests: 0.9%

partially fixed: 10.3%

regressions: 37.9%
test failure: 18.1%

(e) Resolved by multiple uplifts

Figure 4.5 Root causes of the ineffective uplifts.

failures happen because the patch from the Nightly version is applied to an earlier version
(Beta or Aurora), so the rest of the code might be different. In the current workflow, the
uplift is published only after the uplift is accepted. In other words, build or test failures
can only be detected after an uplift is approved. If a developer does not fix a problem
quickly enough, the uplift might be published later than it could have, thus missing one or
more Beta builds (which are made twice a week), which means reducing the time dedicated
to manual testing. In the data we have collected, build or test failures caused on average
around four days lost on Aurora and around three days lost on Beta. This means loosing four
days of testing on Aurora, and almost one week of testing on Beta (since there are only two
Beta builds per week). We suggest that Mozilla performs “uplift simulations”, i.e., notifying
developers whether their patch causes build or test failures as soon as they request an uplift,
instead of after the uplift is approved.

Moreover, we observed that 9 out of the 77 reopened issues did not completely get resolved,
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which were further filed as cloned or duplicate issues. For example, issue #11540036 was
created due to crashes in the drawing method DrawingContext::FillRectangle. After
uplifting a patch to the Aurora and Release channels, developers still observed a high volume
of crashes with the same signature. To address the missing edge cases of these crashes,
developers cloned the issue into issue #11625207. This finding inspired us to investigate
whether the cloned and duplicate issues were resolved in the same version as their original
issues or resolved in a later version. We found that 23 out of the 54 (32+15+7) cloned or
duplicate issues were resolved in the same version as their original issues, and the other 32
issues were resolved in a later version.

In this study, we only target for closed issues, but during our manual analysis, we observed
that some issues fixed by uplifted patches have not been eventually closed. For example,
issue #12973908 was created as a follow-up to the crashes fixed in issue #12801109. Issue
#1297390 has not been closed because the crash volume decreased again to a relatively low
level. The priority of this issue were adjusted to P3, i.e., would like to fix, but waiting
for resources [98]. Although it would be interesting to investigate how many issues fixed
by ineffective uplifts have been “completely and eventually” resolved, we can hardly get an
exact answer because first, our subject dataset is dated from September 2014 to August 2016.
Answering this question is beyond the scope of our study. Second, developers and testers can
hardly know whether the most recent patch has covered all possible aspects to fix a certain
issue, in other words, a “fixed” problem may come back again in the future. A lesson from
this finding is that some issues are more difficult to get fixed than others. If an issue has
recurred in the field, a proper follow-up is required even after the issue has been closed.

Regarding the differences of the ineffective uplift among channels, we observed that 153
out of the 4,368 (3.5%) Aurora uplifts, 112 out of the 2,614 (4.3%) Beta uplifts, and 16
out of the 285 (5.6%) Release uplifts were ineffective. Although the strictness of the uplift
rules increases from Aurora, Beta, and to Release, the prevalence of ineffective uplifts does
not decrease accordingly in these channels. The percentages vary among different kinds of
ineffective uplifts, in particular “not fixed” uplifts account for 0.5% in Aurora, 0.9% in Beta,
and 2.5% in Release. A possible reason could be that patches uplifted to the Release channel
are aimed at more critical problems, which might be harder to fix. We looked in more detail
at the “not fixed” cases in Release. It turns out that these uplifts indeed often fix very hard
issues that occur in not-easily reproducible scenarios (even though they affect many users),

6https://bugzilla.mozilla.org/show_bug.cgi?id=1154003
7https://bugzilla.mozilla.org/show_bug.cgi?id=1162520
8https://bugzilla.mozilla.org/show_bug.cgi?id=1297390
9https://bugzilla.mozilla.org/show_bug.cgi?id=1280110

https://bugzilla.mozilla.org/show_bug.cgi?id=1154003
https://bugzilla.mozilla.org/show_bug.cgi?id=1162520
https://bugzilla.mozilla.org/show_bug.cgi?id=1297390
https://bugzilla.mozilla.org/show_bug.cgi?id=1280110
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thus developers are forced to fumble around in the dark, attempting tentative fixes that
sometimes do not work at all. However, we still suggest that release managers enhance the
review effort on the Release uplifts, because these patches are targeted to the most stabilized
version and most users of the product. Releasing updates to them without fixing the issues
might be counterproductive.

According to our results, we suggest that developers and testers should carefully inspect
whether a patch has completely resolved an issue and verify whether the patch has covered
all possible scenarios of the issue. They also need to examine whether the patch would lead
to new problems (i.e., regressions) before requesting for uplift. Some ineffective uplifts (such
as those due to test and build failures) can be prevented by performing uplift simulations.

We have shown the results to the release managers, who observed that many times in order to
mitigate risk and especially for very urgent issues, they actually request developers to either
implement a workaround or a partial fix, postponing a full fix (and potential refactorings)
for a subsequent release.

RQ3: What are the characteristics of uplifted patches that introduced faults in
the system?

Motivation. In RQ2, we studied ineffective uplifts, i.e., uplifted patches that need addi-
tional fixing efforts. We observed that leading to regressions is one of the reasons of these
ineffective uplifts. In this research question, we focus on the uplifted patches that intro-
duced new regressions. These patches not only decrease the users-perceived software quality,
but also increase development costs, since developers, testers and release managers have to
rework the faulty patches. In Firefox’ Aurora, Beta and Release channels, we found respec-
tively 8.8%, 8.3%, and 7.9% of uplifted patches that introduced regressions in the system.
Understanding the characteristics of these “fault-inducing uplifts” can help software organi-
zations focus their QA and code review efforts on specific kinds of uplifts to prevent users’
frustration.

1) Quantitative Analysis

Approach. To discover all possible fault-inducing uplifts, we applied the SZZ algorithm
(described in Section 4.2.2) on all fault-fixing changes to identify uplifted patches that in-
troduced a fault in the system. Next, we classified the uplifted patches into two groups:
fault-inducing uplifts and clean uplifts. We used the 22 metrics listed in Tables 4.1 to 4.5 to
assess the differences between these two groups. For each (mi) metric, we tested the following
hypothesis:
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H02
i : there is no difference between the values of mi for uplifted patches that introduced a

fault in the system and those that did not.

Similar to RQ1, we used the Mann-Whitney U test and Cliff’s Delta effect size to accept or
reject the hypotheses, and assessed the magnitude of the differences between fault-inducing
uplifts and clean uplifts. We also tested the hypotheses for all three channels.

Results. Table 4.10 summarizes differences between the characteristics of uplifted patches
that introduced a fault in the system and those that did not. We observed that fault-inducing
uplifts have significantly larger patch size (m11) than clean ones, across all three channels.
The effect size of the difference is large. This implies that patches with larger modifications
are more likely to introduce a regression if uplifted. We observed the following on the different
channels:

• On Aurora and Beta channels, fault-inducing uplifts tend to have more complex code
in terms of LOC, cyclomatic complexity, number of functions, and number of modules.
These patches often contain classes that are connected to many other classes, in terms
of closeness, betweenness and PageRank. Fault-inducing uplifts also tend to have higher
comment ratios and tend to change files that were changed more frequently. Interest-
ingly, fault-inducing uplifts are frequently submitted by developers or reviewers with
high experience. Fault-inducing uplifts also have a larger amount of comments than
clean uplifts. A large number of comments may be a sign that developers are struggling
with the patch, which may explain the high fault-proneness. Although fault-inducing
uplifts and clean uplifts also display other significant differences (as shown in Table
4.10), the magnitude of these differences is negligible.

• For the Release channel, we do not observe a significant difference between fault-
inducing uplifts and clean uplifts for the above metrics.

Overall, we rejected H02
11 , i.e., fault-inducing uplifts have larger patch size than

clean uplifts. Release managers should pay attention to large patches and review-
ers should scrutinize them carefully. Although the effect of other characteristics
is channel dependent, in Aurora and Beta, we observed that patches with high
complexity and centrality tend to lead to faults. Uplift requests submitted by
experienced developers and reviewers also tend to lead to regressions.

Similar to RQ1, we examined patch uplifts per component, and observed that patch uplifts
affecting certain components (e.g., Graphics component) are more likely to cause regressions
than others. Some of the components with the highest fault-inducing rates also have a low
approval rate; probably because the release managers were acting based on their previous
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Table 4.10 Fault-inducing Uplifts vs. Clean uplifts.

Channel Metric Faulty Clean p-value Effect size

Aurora Patch size 155.0 34.0 <0.001 large
Prior changes 362.5 164.0 <0.001 small
LOC 903.6 457.4 <0.001 small
Cyclomatic 2.5 2.0 <0.001 small
# of functions 34.3 17.0 <0.001 small
Max. nesting 2.7 2.0 <0.001 negligible
Comment ratio 0.2 0.1 <0.001 small
Module number 2.0 1.0 <0.001 small
Closeness 1.5 1.2 <0.001 small
Betweenness 45,221.9 880.7 <0.001 small
PageRank 1.7 1.4 <0.001 small
# of comments 26.0 20.0 <0.001 small
Developer exp. 28.5 10.0 <0.001 small
Reviewer exp. 9.0 2.0 <0.001 small
Comment words 10.0 2.0 <0.001 small
Developer senti. -3 -3 <0.001 negligible
Owner sentiment -2 -1 <0.001 negligible

Beta Patch size 141.0 32.0 <0.001 large
Prior changes 268.0 156.5 1.02e-03 small
LOC 895.5 476.3 1.66e-03 small
Cyclomatic 2.5 2.0 3.69e-03 small
# of functions 37.0 18.0 3.13e-03 small
Max. nesting 2.7 2.2 0.01 negligible
Comment ratio 0.2 0.1 <0.001 small
Module number 2.0 1.0 <0.001 small
Closeness 1.6 1.2 <0.001 small
Betweenness 35,661.7 1,327.8 <0.001 small
PageRank 1.7 1.4 <0.001 small
# of comments 28.0 22.0 <0.001 small
Comment words 8.0 3.0 0.04 negligible
Developer exp. 29.0 10.0 <0.001 small
Reviewer exp. 10.0 2.0 <0.001 small
Owner sentiment -2 -1 4.14e-03 small

Release Patch size 108.0 27.0 2.07e-03 large

experiences with those components (for example, the Web Audio component). Components
like the Audio/Video, which are involved in multiple patch uplift operations, also have the
highest fault-inducing rates; these components would be inherently more prone to faults
because of their complexity, or technical debt.

We made a similar observation regarding developers’ submitting uplift requests. Many de-
velopers who submitted multiple uplift requests appear in the list of developers with high
fault-inducing rates; perhaps, by uplifting more patches, they are taking more risks.

2) Qualitative Analysis
To understand the root cause of faults in uplifted patches, we conducted a qualitative study.

Approach. We manually examined uplifted patches (from the samples selected in RQ1)
that introduced faults, and classified the reasons behind the faults. Inspired by the work
of Tan et al [71], we defined seven possible root causes for uplift faults (as shown in Table
4.11). We identified respectively 132 and 17 fault-inducing uplifts from the Beta and Release
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samples chosen in RQ1, and performed a card sorting to classify each of the faults into one
or multiple causes. As in RQ1, the first and the second authors individually read the issue
reports and their fault-fixing patches to understand the root causes of the faults (i.e., the
reason why their corresponding uplifted patches caused the faults) and classified these root
causes along our seven categories. Similar to RQ1, disagreements were resolved through
discussions.

We also interviewed release managers, asking them the following question: What are the
characteristics of fault-inducing patches that you are not currently taking enough into account
but could be considered in the future?

Results. Figure 4.6 depicts the distribution of the reasons why fault-inducing uplift in-
troduced regressions. In both channels, semantic and memory-related errors are dominant
root causes of the uplift regressions. With a detailed check on the patches, we found that
many memory errors are due to null pointer dereference and memory leak. In addition,
incompatibility of plug-ins and drivers also cause uplift regressions in both channels. Con-
currency issues are ranked as a popular cause for Beta’s uplift regressions, but we did not
find any example of this category in the Release channel. In general, our results suggest that,
when uplifting a patch, release managers need to carefully check for potential faults
on the program’s semantic meaning, memory operations, synchronization, and
third-party extension’s compatibility.

In the interview, all the release managers agreed that it would be beneficial for
them to have more detailed information about the complexity of the patches
they are asked to evaluate and more information about the history of the com-
ponents involved in these patches. This resonates with our findings. Release managers
were surprised to see that fault-inducing patches were more likely to be written by more ex-
perienced developers and reviewed by more experienced reviewers. They guessed that these
developers/reviewers are assigned to more complex tasks with more complex solutions. A
release manager told us that “if you call in the big guns, then it’s a warning sign”.

The fault categorization was also interesting for the release managers, who told us that
Mozilla is about to employ more static analysis tools (e.g., Coverity [72]) and to move some
of their code from C++ to a safer language (e.g., Rust). It is promising for them to see how
many memory and concurrency faults can be avoided by using these techniques, and how
many semantic and third-party faults can be reduced by enhancing code review or testing
efforts.
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Table 4.11 Fault reasons and descriptions.

Reason Description
Memory Memory errors, including memory leak, overflow, null pointer

dereference, dangling pointer, double free, uninitialized memory
read, and incorrect memory allocation.

Semantic Semantic errors, including incorrect control flow, missing func-
tionality, missing cases of a functionality, missing feature, incor-
rect exception handling, and incorrect processing of equations and
expressions.

Third-party Errors due to incompatibility of drivers, plug-ins or add-ons.
Concurrency Synchronization problems between multiple threads or processes,

e.g., incorrect mutex usage.
Compile Compile-time errors.
Other Other errors.

0
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semantic memory third−party concurrency compile other

Beta Release

Figure 4.6 Reasons of fault-inducing uplifts.

RQ4: Are regressions caused by uplift more severe than the bugs that were fixed
with the uplift?

Motivation. In RQ3, we found that some uplift patches lead to regressions. For these
patches, following an observation from the release managers, we are curious to compare
their potential impact with the impact of the regression they lead to. We would suggest
developers to carefully uplift certain kinds of patches if the patches have often caused more
severe problems than what they intended to address.

Approach. We performed a manual analysis on the uplifted patches that were examined
in RQ3. For each of these patches, two of the authors independently identified: 1) the
problem the patch aims to address (noted as “original problem”), and 2) the impact of the
regression the patch caused (noted as “regression problem”). To facilitate the comparison on
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the severity level between the original problem and the regression problem, we merged some
of the categories (which have the same severity) defined in Table 4.7 as in Table 4.12. We
also ranked the severity among different uplifted reasons (or regressions).

In some cases, the uplift and regression problems belong to the same category, but they affect
users to a different extent. For example, issue #105979710 (which was uplifted to address a
hang problem) caused a regression as issue #123978911 (which is a crash problem). Although
crash and hang are considered to have the same level of severity, the first issue only happened
during test runs, whereas the second one can be reproduced by users. To reduce any biases in
the above rule, we also carefully examined the severity of the issues that belong to different
categories. For example, issue #107519912 (which was uplifted to add a mock GMP plugin
for testing) caused issue #116091413 (which is a crash). Although the latter is a crash, it only
affects the plugin used for testing, i.e., it has no impact on end users. Thus, we considered
that the former is more important.

Results. Figure 4.7 depicts the proportion of uplifted patches that caused a more, same, or
less severe regression. Tables 4.13 and 4.14 show the frequency and probability of a regression
that an uplift on the Beta or Release channel can lead to.

In the Beta channel, more than one third (37.5%) of the manually examined
uplifted patches led to a regression that is more severe than the problem they
intended to address. Most of these patches were used to introduce improvements or new
features (but caused crashes/hangs and broken functionalities), to fix broken functionalities
(but caused crashes/hangs), or to fix performance degradation (but caused crashes/hangs and
broken functionalities). In addition, we observed that crash/hang and broken functionality
are the most frequent and the most probable regressions, which ranked as the top regression
for each type of the analyzed uplifts. Especially, 50% of the patches uplifted to fix a crash
caused other crashes, and 50% of the patches uplifted to fix a broken functionality broke
other functionalities. Regarding the patches uplifted for security vulnerabilities (which have
the worst impact on users), 21% of them caused other severity vulnerabilities and 29% of
them caused crashes/hangs.

In the Release channel, none of the examined uplifted patches led to a regression
that is more severe than the problem the patches intended to address. This result
is expected because patches uplifted for the Release channel should have been more strictly
reviewed and approved. The examined patches are only used to fix security vulnerabilities,

10https://bugzilla.mozilla.org/show_bug.cgi?id=1059797
11https://bugzilla.mozilla.org/show_bug.cgi?id=1239789
12https://bugzilla.mozilla.org/show_bug.cgi?id=1075199
13https://bugzilla.mozilla.org/show_bug.cgi?id=1160914

https://bugzilla.mozilla.org/show_bug.cgi?id=1059797
https://bugzilla.mozilla.org/show_bug.cgi?id=1239789
https://bugzilla.mozilla.org/show_bug.cgi?id=1075199
https://bugzilla.mozilla.org/show_bug.cgi?id=1160914
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Table 4.12 Categories of uplift reasons and regression impact. The severity is ranked by
descending order (1 represents the most severe reason; while 6 represents the least severe
reason)

.

Reason Description Severity
Security Same as security in Table 4.7. 1
Crash crash + hang. 2
Broken functionality
(func)

func + web compat + addon compat + rendering. 3

Performance
degradation (perf)

Same as perf in Table 4.7. 4

Improvement or new
feature (improve)

improve + feature. 5

Compile or test
problem (compile)

compile + test. 6

Other Same as other in Table 4.7. 6

more: 37.5%

same: 17.0%

less: 45.5%

(a) Beta channel

same: 33.3%

less: 66.7%

(b) Release channel

Figure 4.7 Whether the regression an uplift caused is more severe than the problem the uplift
aims to address.

crashes/hangs, and broken functionalities, which respected the uplift rules for the Release
channel. 33.3% of these patches led to a regression as the same type of problem they intended
to address. All these patches have a high probability to cause a new broken functionality.

In general, developers and release managers should carefully uplift patches that aim to fix
security vulnerabilities, crashes/hangs, or broken functionalities because these patches may
lead to the same kind of problems they intend to address and these problems have the worst
impact on end users. Uplifting patches that aim to introduce improvement (or new features)
or to fix performance degradation should also be prudently inspected because these patches
may cause regressions that are more severe than the problem they intended to address.
Although none of the examined patches that were uplifted to the Release channel caused a
more severe regression than what they intended to address, around half of the patches fixing
the top severe problems (i.e., crash/hang or severity problems) caused other severe problems.
More QA effort needs to be invested on these patches, to avoid releasing severe regression to
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Table 4.13 The frequency and probability of a regression that an uplift in the Beta channel
can lead to (rows in italic indicates that the regression is more severe than the problem the
uplift intended to address).

Uplift Regression Frequency Probability

compile crash 2 0.67
compile compile 1 0.33
crash crash 24 0.50
crash func 13 0.27
crash compile 5 0.10
crash perf 3 0.06
crash other 2 0.04
crash security 1 0.02
func func 35 0.57
func crash 14 0.23
func perf 7 0.11
func compile 4 0.07
func other 1 0.02
improve crash 7 0.37
improve func 7 0.37
improve compile 2 0.11
improve perf 2 0.11
improve security 1 0.05
perf func 5 0.50
perf crash 4 0.40
perf perf 1 0.10
security func 8 0.33
security crash 7 0.29
security security 5 0.21
security compile 2 0.08
security other 1 0.04
security perf 1 0.04

users.

Release managers were, as one might have predicted, happy to see our results regarding the
release channel, but were not surprised because, compared to other channels, release uplifts
are inspected with more QA efforts and are more carefully approved. When using the metrics
listed in Tables 4.1 to 4.5 to compare the differences between Beta uplifts that caused more
severe regressions than they fixed and other manually analyzed Beta uplifts14, we observed
that the former uplifts tended to happen closer to the release date and tended to have a
shorter review duration (but these results are not statistically significant as the sample we
analyzed is probably small). Release managers thought that these patches might have been
uplifted in a rush and under pressure, which would explain both the closeness to the release

14Please refer to the detailed comparison in our data repository:
https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis
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Table 4.14 The frequency and probability that an uplift in the Release channel can lead to.

Uplift Regression Frequency Probability

crash func 6 0.55
crash crash 5 0.45
func func 1 0.50
func perf 1 0.50
security func 2 0.50
security security 2 0.50

date and the short review duration.

RQ5: Could some of the regressions have been prevented through more extensive
testing on the channels?

Motivation. Given the results of RQ2, we set out to find whether any regressions could
actually have been prevented by more extensive testing on the stabilization channels. In this
research question, we tried to identify, from a selected sample of regressions that hit users,
which issues were reproducible and how they were found by Mozilla. Our result can inform
developers and release managers whether more extensive testing efforts would be effective
in preventing regressions and how many regressions could possibly be prevented. It should
be noted that there is an important trade-off that release managers take into account when
deciding about uplifts: the necessity of shipping features as fast as possible versus the need
to not introduce regressions. More extensive testing efforts might improve the second aspect,
but hamper the first.

Approach. To identify regressions that were shipped to users (that is, the regressions caused
by patches that were uplifted to a version of Firefox and fixed only in a later version of Firefox;
for example, a patch that is uplifted to Firefox 57 and causes a regression that is only fixed
in Firefox 58), we used Bugzilla status flags (cf_status_firefox), which specify the status
of the issue for a given Firefox version (e.g., cf_status_firefox48 set to “affected” means
that the issue affects Firefox 48). In particular, “affected” means that the issue exists for
the given version; “wontfix” means that the issue exists and that Mozilla does not plan on
fixing it for that specific version; “fixed” means that the issue is fixed in the given version;
“verified” means that the issue is fixed in the given version and is also verified to be fixed
either by the reporter, QA, a volunteer, or a developer who could reproduce the problem (but
not by the developer who fixed it). Given an uplift fixing Issue A and a resulting regression
tracked in Issue B, we identified it as being shipped to users if Issue A was set as fixed or
verified in an earlier version than Issue B.
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We then manually analyzed the identified regressions, categorizing both whether an issue
was reproducible and how the issue was found. We have analyzed all Release regressions,
and a representative sample of 152 Beta regressions (which corresponds to a confidence level
of 95% and a confidence interval of 5%).

Table 4.15 and Table 4.16 show and describe how an uplift regression is reproducible and
how it was found. We considered the regressions as possibly preventable by additional testing
if they were not only reproducible by the issue reporter and were found either on a widely
used feature/website/config or via telemetry. If they were reproducible only by the issue
reporter, additional testing would not help. The regressions found via telemetry could be
prevented if the data (crash reports and measurements) were analyzed in a timely manner
(for example if there was an alerting system in place). We considered the regressions as not
easily preventable, if they were reproducible but found on a rarely used feature/website/con-
figuration, or found via telemetry but not reproducible, since manual testing is likely going
to focus on widely used features/websites/configurations rather than seldom used ones, and
issues noticed via telemetry are harder to fix if they cannot be reproduced. We consider the
remaining regressions as hardly preventable: the regressions found by tooling could hardly
be prevented, as the specific tooling was not available at the time the uplift was made (they
could be prevented now that it is available); the regressions found by developers (e.g., by
code inspection) could hardly be prevented by additional testing. They could, in some cases,
be mitigated by more detailed code reviews.

Results. Figure 4.8 shows the proportion of reproducibility on the regressions. On Beta,
58 out of 73 regression issues were reproducible by all or by some developers, 9 were not
reproducible or reproducible only by the reporter. The reproducibility of the remaining 6
regressions cannot be identified. On Release, 10 out of 12 were reproducible by all or by some
developers, 2 were not reproducible or reproducible only by the reporter. To summarize,
79.5% of the regressions caused by Beta uplifts and 83.3% of the regressions
caused by Release uplifts were reproducible.

Figure 4.9 shows the distribution of ways through which the regressions were found by Mozilla.
In Beta, 20 regressions were found by developers, 14 were found by tooling, 13 were found via
telemetry, 17 were found by users on widely used features/websites/configurations, 9 were
found on rarely used features/websites/configurations. In Release, 4 were found by devel-
opers, 1 was found by tooling, 2 were found via telemetry, 3 were found by users on widely
used features/websites/configurations, 2 were found on rarely used features/websites/config-
urations.

Between the two channels, both the reproducibility and how the issues were found have
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Table 4.15 How an uplift regression is reproducible.

Reproducible Description
By all Everybody was able to reproduce.
By some Somebody was able to reproduce (depending for example on

the version of a driver, or a specific version of an operating
system, and so on).

By the reporter only Nobody else except the reporter was able to reproduce.
By no one Nobody was able to reproduce (and the issue was found,

for example, by analyzing crash reports).

Table 4.16 How a regression was found.

Found Description
By tooling The issue was found by fuzzing or static analysis.
By developers The issue was found by Mozilla developers (by code in-

spection, by running tests that were not included in
Firefox’ test suites, or by running special tools such as
Valgrind or ASan) or by an external developer (e.g., a
security researcher).

On a widely used
feature/website/config

The issue was found by a user (an end-user, a volunteer,
or a website developer) on a widely used feature, on a
widely used website, or in a widespread configuration.

On a rarely used
feature/website/config

The issue was found by a user on a rarely used feature or
rarely used website or on an uncommon configuration.

Via telemetry The issue was found by analyzing crash reports or per-
formance measurements from the field.

similar characteristics (i.e., the proportions are very similar), as can be seen from the figures
mentioned above.

In order to understand the share of regressions that could have possibly been prevented,
we compare the numbers of the possibly preventable, not easily preventable, and hardly
preventable regressions in each channel. In Beta, 20 regressions (around 30%) could
have been possibly prevented according to our definition; 13 regressions (around
20%) could not be prevented easily; 34 regressions (around 50%) could hardly be prevented.
In Release, 3 regressions (around 25%) could have been possibly prevented ac-
cording to our definition; 3 regressions (around 25%) could not be prevented easily; 6
regressions (around 50%) could hardly be prevented. We notice that the proportions are
similar between the two channels; meaning that our discussion applies to both channels.

From these results, we suggest that developers and release managers should:

1. Try to detect issues via telemetry as early as possible (e.g., using alerting systems), so
that they can also be fixed in time;

2. Perform more QA on the stabilization channels, e.g., trying more diverse configurations,
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not reproducible: 8.2%
not reproducible (except by reporter): 4.1%

reproducible: 74.0%

reproducible (but not by everyone): 5.5%
unknown: 8.2%

(a) Beta channel

not reproducible: 8.3%
not reproducible (except by reporter): 8.3%

reproducible: 75.0% reproducible (but not by everyone): 8.3%

(b) Release channel

Figure 4.8 Whether the regressions caused by an uplift were reproducible.

developers: 27.4%telemetry: 17.8%

rarely used feature/
website/config: 12.3%

tooling: 19.2%
widely used feature/
website/config: 23.3%

(a) Beta channel

developers: 33.3%

telemetry: 16.7%

rarely used feature/
website/config: 16.7%

tooling: 8.3%
widely used feature/
website/config: 25.0%

(b) Release channel

Figure 4.9 How the regressions caused by uplifts were found.

as around 24% of the issues were reproducible and found on widely used features.

Coming back to the trade-off aspect we briefly discussed in the “Motivation” part, it applies
to our suggestions too. An effective alerting system should not need to collect data for a
long time before being able to produce alerts, otherwise if release managers had to wait in
order to check whether there are alerts, the release process would be slowed down (in this
case, a higher number of users on the stabilization channels might help because the more
users the more quickly data is available to make decisions). The same applies to QA, in the
best case, the QA efforts should be increased in a parallel way or should be more directed
towards widely used features, to avoid slowing down the release process.

Release managers have recently introduced changes to avoid regressions like these to go
unnoticed: Mozilla now performs QA on the Nightly channel for new features directly when
they are introduced. This allows more time to detect regressions and to fix them. We found
(not a statistically significant result probably due to the small size of the sample) that the
possibly preventable issues tend to have been on Nightly for longer (higher landing delta),
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but tend to be uplifted later, closer to the release date (lower release delta)15. Given the
additional QA on the Nightly channel, the situation of regressions (at least for the issues
that could possibly be prevented by additional QA) may be improved soon. Verifying the
potential improvement will be a part of our future work.

4.4 Threats to Validity

In this section, we discuss the threats to validity of our study following the guidelines for
case study research [99].

Construct validity threats are concerned with the relationship between theory and observa-
tion. In this study, the construct validity threats are mainly due to measurement errors. In
RQ2, to find ineffective uplifts, we looked for cases where an issue linked to the uplift had
been, after the uplift operation, reopened, cloned, duplicate, or resolved by multiple patches.
To prevent false positive results due to this heuristic, we took a series of measures to remove
noisy results from our dataset (see the “Approach” part of RQ2) and manually examined
all candidates of ineffective uplifts. We believe that the eventually included results have a
high precision. In addition, some correct candidates might not be detected by our heuristic,
i.e., the false negatives. For example, some ineffective uplifts can be beyond our expected
cases (such as reopened, cloned or duplicated issues) or mislabelled by developers in Bugzilla.
However, instead of finding all possible ineffective uplifts, the aim of this research questions
is to identify precise and representative ineffectively uplifted patches, analyzing their charac-
teristics and propose methods for software practitioners to avoid them. In RQ3, we observed
that uplifted patches with more lines of code are more likely to be fault-inducing. This result
is not surprising if we assume that the fault density is uniformly distributed in the studied
system. Nevertheless, as suggested by previous studies, software practitioners should always
carefully approve patches that modify a large number of lines.

Internal validity threats concern factors that affect the independent variable with respect to
causality. Since we do not draw any casual conclusion, threats to the internal validity are
not applicable for our study.

Conclusion validity threats concern the relationship between the treatments and the out-
come. We paid attention not to violate the assumptions of the statistical tests that are
performed in this study. Specifically, in RQ1 and RQ3, we applied non-parametric tests
that do not require making assumptions on the distribution of our dataset. We used Sen-
tiStrength as the sentiment detection tool. We compared the performance of this tool with

15Please refer to the detailed comparisons in our data repository:
https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis
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SentiStrengthSE [100], the version tailored for software engineering, and obtained the same
results, i.e., no significant differences between accepted and rejected uplifts in any channel,
and only a small effect size of the differences on the module owners’ sentiment between clean
and fault-inducing uplifts. Another reason why we prefer SentiStrength over SentiStrengthSE
is that the former tool can be used from the command line and can be easily integrated into
our automated scripts. On the contrary, the latter tool can currently only be executed from
a user interface. In addition, when ingesting a large dataset such as the one we used in this
study, the latter tool cannot be as easily deployed into a distributed environment. Before
conducting the case study, we limited our studied dataset within a duration that covers con-
secutive series of relatively stable periods on all the three uplift channels. In addition, we
used a keyword matching heuristic to identify fault-related issues. We manually validated
a random sample of 380 issues. Three researchers participated in the validation. Whenever
there were diverging opinions, we set up a meeting and discussed the issue until a consensus
was reached. As a result, we found that our heuristic can achieve a precision of 87.3% and a
recall of 78.2%, when identifying fault-related issues. Moreover, we performed manual clas-
sifications on the uplift reasons, the root causes of uplift regressions and reoccurrences, the
reproducibility of the uplift regressions, and the way by which developers were discovered the
regressions. We also manually compared the severity of the issues that the uplifts intended
to address with the severity of the regressions that they led to. To mitigate potential bias
that may result from our subjective opinions, we also discussed on each of our classification
conflicts until reaching a consensus. However, as any other taxonomic study, we cannot
guarantee a 100% of accuracy on our classification results. Future replications are welcomed
to validate our work. Last, we used a heuristic to detect issues that duplicate a previous
issue fixed by uplifted patches, which was inspired by Tian et al.’s approach [82]. Besides
the automated detection, we manually confirmed every case used in our analyses to answer
RQ2. Although some true positive cases might have been missed, the goal of RQ2 is not
to find all duplicate cases, but to understand why some uplifted patches did not completely
resolve a problem and re-occurred in the field.

External validity threats are concerned with the generalizability of our results. In this work,
we only studied Mozilla Firefox. First, Mozilla Firefox is the most studied system for issues
related to rapid releases; moreover, the system’s data are publicly available. We also have the
opportunity to perform both quantitative and qualitative analyses (including the interviews
with release managers) on this system. However, we should recognize that our findings may
not be generalizable to other systems. In the future, we plan to collaborate with other
software organizations, to validate and extend the results of this work. In addition, more
studies on other systems with other programming languages are desirable to further validate
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our results. To facilitate future replication studies, we share our datasets and scripts at:
https://github.com/swatlab/uplift-analysis. Another issue is that, in the manual
classification, although we randomly chose our samples by applying a confidence level of 95%
and a confidence interval of 5%, our samples might not precisely reflect the distributions
of the uplift reasons and–or root causes of uplift regressions on the whole Firefox dataset.
Further investigations on larger data sets are desirable.

4.5 Summary

Mozilla follows a rapid release model, which uses 18 weeks to deliver fault fixes and new
features to users. Frequently, certain patches that fix critical issues, or implement high-value
features are promoted directly from the development channel to a stabilization channel,
because they are too urgent and cannot wait for the next release train. This practice, known
as patch uplift, is risky because the time allowed for the stabilization of the uplifted patches
is short. In average, 8% of uplifted patches introduced a regression in the code of Firefox.
In this chapter, we investigated the decision making process of patch uplift at Mozilla and
observed that release managers are more inclined to accept patch uplift requests that concern
certain specific components, and–or that are submitted by certain specific developers (RQ1).
We found that 4% of the issues fixed by patch uplift were not effectively resolved but were
later reopened, cloned, duplicated, or fixed by additional uplifts. Two frequent root causes
were identified from our manual analysis, i.e., the original uplifts only partially fixed the
issues or caused regressions (RQ2). We examined the characteristics of uplifted patches that
introduced regressions in the code and found that they are more complex than clean uplifts,
and they tend to change a higher number of lines of code. Most regressions are caused by
patch uplifts aimed at fixing wrong functionalities and crashes. The most common root causes
of faults in uplifted patches are semantic and memory errors (RQ3). In addition, through a
manual analysis on a sample of the uplifts that introduced regressions, we found that more
than one third of the fault-inducing Beta uplifts led to a regression that is more severe than
the problem they aimed to address (RQ4). Last but not least, we observed that 25% to 30%
of the regressions due to Beta and Release uplifts could be possibly prevented because they
can be reproduced not only by the issue reporter but also by developers and were found on
widely used feature/website/configuration or via the Mozilla telemetry (RQ5). We hope that
software organizations take our findings and suggestions as a reference to improve their uplift
(or urgent patch approval) strategy.

https://github.com/swatlab/uplift-analysis
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CHAPTER 5 AN EMPIRICAL STUDY OF DLL INJECTION BUGS IN
THE FIREFOX ECOSYSTEM∗

While Firefox and other equivalent browsers
provide public APIs for extending functional-
ity, a lot of third-party software still employs
DLL injection techniques.

Since its inception, Firefox has always provided APIs to extend the functionality of the
browser. There has been an evolution of methods to extend the functionality towards safer
and more stable methods (starting from plugins such as Flash, moving to XUL/XPCOM
extensions, then ending with JavaScript/HTML WebExtensions). While Firefox and other
equivalent browsers provide public APIs for extending functionality, a lot of third-party soft-
ware (i.e., software that adds code into another software) still employs DLL injection tech-
niques, i.e., techniques that forces host software (i.e., software that allows other software
to extend its functionality) to run arbitrary code by making it load a dynamic-link library
(DLL). By injecting arbitrary code, third-party software can extend the functionality of the
host software without limits. However, injecting arbitrary code, while it is a very powerful
technique, can easily cause severe bugs, such as crashes, in the host software. As can be seen
in [101], bugs arising from injection can be indeed severe and widespread as to delay or cause
revisions of entire software releases.

To the best of our knowledge, there has not been an empirical study towards understanding
the DLL injection landscape, why third-party software vendors still employ these techniques
despite the availability of safer alternatives, the root causes of DLL injection bugs, and
proposing solutions to reduce them. This motivated us to conduct this work, in which we
analyzed DLL injection bugs that occurred from July 2015 to August 2017 in the Firefox
ecosystem. In particular, our study aims to answer the following three research questions:

RQ1: What are the characteristics of the bugs caused by DLL injections?

We observed that most of the DLL injection bugs led to severe problems. Out of the
103 studied bugs, 93 bugs (90.3%) caused crashes (among them, 47 bugs (45.6%) crashed
Firefox while the browser was starting) and four bugs (3.9%) made the browser hang (i.e.,
losing responses from users’ requests). By analyzing the types of the third-party software,
∗Part of the content of this chapter is published in “An Empirical Study of DLL Injection Bugs in

the Firefox Ecosystem”, Le An, Marco Castelluccio, and Foutse Khomh, Empirical Software Engineering
(EMSE), DOI=10.1007/s10664-018-9677-7.
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we found that 57 bugs (55.3%) derive from antivirus software, 19 from hardware vendor
drivers, and 10 from malware.

RQ2: Which factors triggered the DLL injection bugs?

To further understand the root causes of DLL injection bugs, we surveyed third-party
vendors who caused the bugs. From their responses, we learnt that third-party software
uses a variety of techniques (including standard Windows DLL injection techniques and
proprietary techniques) to inject DLLs into the host software. DLL injection bugs can be
triggered by injection engine errors, compiler/runtime incompatibility, or version incom-
patibility between the host and third-party software.

RQ3: What would be the potential solutions to reduce such DLL injection bugs?

In the survey, we also asked questions about the potential solutions that could reduce DLL
injection bugs. From the answers, we realized that DLL injection should not be outright
blocked from the ecosystem because it could be useful under certain circumstances, e.g.,
when antivirus software intercepts suspicious processes. Host and third-party software
vendors should strengthen their collaboration. Host software vendors should extend the
features of the extension API (as a safer alternative to DLL injection) and can build a
publicly accessible validation test framework.

Chapter Overview

Section 5.1 provides background knowledge on the Firefox ecosystem as well as the risks and
countermeasures of DLL injection in the system. Section 5.2 describes the design of the case
study. Section 5.3 shows and analyzes the results of the case study. Section 5.4 discusses
the implications of our findings. Section 5.5 discloses the threats to the validity. Section 5.6
summarizes this chapter.

5.1 Background

5.1.1 Firefox Ecosystem

There are several ways third-party developers have been able to extend the functionality of
Firefox: a) themes; b) plugins; c) extensions; d) DLL injection.

Themes are only allowed to change UI elements of the browser, thus they are very limited.

The API used to build plugins, NPAPI (Netscape Plugin Application Programming Inter-
face), has been introduced by Netscape in 1995, and later adopted by most major browsers.
NPAPI plugins declared content types that they could handle. When the browser was not
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natively able to handle that content type, it would load the appropriate plugin and let it run.
NPAPI plugins are binary plugins, and they have been slowly deprecated for security rea-
sons (e.g., Chrome dropped NPAPI plugins in September 2015, Firefox dropped all NPAPI
plugins except Flash in March 2017 and will drop Flash too in 2019).

Since its inception, Firefox has also allowed third-party developers to extend the functionality
of the browser through JavaScript/HTML APIs by writing extensions. Extensions are either
self-hosted, or hosted on a Mozilla website called AMO (addons.mozilla.org). When hosted
on AMO, they undergo code review by Mozilla employees and/or volunteers. Since Firefox
44 (released in January 2016), Mozilla introduced a signing requirement where all extensions
(either self-hosted or hosted on AMO) must be signed by Mozilla in order to be installable
in Firefox (with the objective of reducing malware). This means that all extensions since
Firefox 44 undergo code review.

Initially, extensions had access to browser internals (using XUL/XPCOM APIs); meaning
that they could introduce technical debt into Firefox itself, as Mozilla developers could not
easily modify Firefox internal code that was being used by extensions.

To ease development and to make extensions higher level (which would allow Mozilla to
change their internal APIs without breaking existing extensions), Mozilla later introduced
an extension SDK (JetPack). Behind the hood, JetPack extensions were still using XUL/X-
PCOM APIs.

A new set of APIs, the WebExtensions API [102], was later introduced in alpha state in
November 2015, then in stable state since August 2016. Since November 2017, following
a major rewrite of the browser which would have made many extensions incompatible, all
extensions are required to use the WebExtensions API, which is an API supported by many
major browsers (Firefox, Edge, and Chromium-based browsers). The advantage of such a
common API is that developers only need to write a single extension and it will (modulo
implementation differences) work on multiple browsers seamlessly, much like the web. The
WebExtensions API is more restrictive than the old APIs, but also more secure and stable,
and with better performance characteristics [103] [104]. Moreover, since these extensions are
not allowed to use Firefox internal APIs, they cannot introduce technical debt as the old
extension APIs used to do.

Another way that third-party developers use to extend the functionality of the browser (and
of other software) is DLL injection.
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5.1.2 Risks of DLL Injection and Countermeasures

By employing DLL injection, third-party developers are able to inject in the Firefox process
any type of code, whose behaviour was not intended nor anticipated by Mozilla developers.

DLL injection is a powerful technique as it allows third-party developers to extend the func-
tionality of the host software however they want, but it can be very risky. The injected
code can, for example, use internal functions of the host software, without the knowledge of
the host software developers, thus causing crashes or other problems when the host software
removes or changes the behaviour of those functions. In order to use internal functions of the
host software, some injected code depends on the binary layout of the host software, which
changes for every specific build. If there are no mitigations in place, the injected code can
cause crashes for every new release of the host software.

Figure 5.1 shows an excerpt of some buggy code injected in Firefox by a software using an
open source library, EasyHook1. This is one of the few examples that can be shown, as usually
the injection techniques are proprietary. In this example, Firefox is the host software (whose
functionality is extended) and the software using the EasyHook library is the third-party
software (which injects its code into Firefox). The process of the third-party software used
the CreateRemoteThread function2 to create a thread that runs in the Firefox process address
space. The thread would call the Injection_ASM_x86 function, which first loads the library
to inject (line 11), then tries to find the entry point of the library using the GetProcAddress
function (AcLayers!NS_Armadillo::APIHook_GetProcAddress(), from the Windows DLL:
AcLayers.dll) (line 19). This is where the crash occurs: the address to the GetProcAddress
function was retrieved by the third-party software in its process, but then called in the Firefox
process, expecting it to have the same function and at the same address. Since Firefox does
not load AcLayers.dll, this function does not exist in its process. EasyHook later fixed
the bug by retrieving the address of the function from the remote process, rather than the
process doing the injection.

Other software employed a very similar technique to the one used by EasyHook, but using
apphelp!StubGetProcAddress() instead (from the Windows DLL apphelp.dll. Again, the
technique is not used by Firefox). AcLayers.dll and apphelp.dll are both part of Windows,
providing fixes for backward compatibility. GetProcAddress is usually part of kernel32.dll
(which is loaded in every process), but for such software, Windows was probably shimming
the API for compatibility, redirecting to apphelp.dll or AcLayers.dll.

1https://github.com/EasyHook/EasyHook
2https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/

nf-processthreadsapi-createremotethread

https://github.com/EasyHook/EasyHook
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createremotethread
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1 public Injection_ASM_x86@0
2 Injection_ASM_x86@0 PROC
3 ; no r e g i s t e r s to save , because t h i s i s the thread main func t ion
4 ; save f i r s t param ( address o f hook i n j e c t i o n informat ion )
5
6 mov esi , dword ptr [ esp + 4 ]
7
8 ; c a l l LoadLibraryW ( I n j e c t−>EasyHookPath ) ;
9 push dword ptr [ es i + 8 ]
10
11 ca l l dword ptr [ es i + 40 ] ; LoadLibraryW@4
12 mov ebp , eax
13 test eax , eax
14 je HookInject_FAILURE_A
15
16 ; c a l l GetProcAddress ( eax , I n j e c t−>EasyHookEntry ) ;
17 push dword ptr [ es i + 24 ]
18 push ebp
19 ca l l dword ptr [ es i + 56 ] ; GetProcAddress@8
20 test eax , eax
21 je HookInject_FAILURE_B

Figure 5.1 An example of DLL injection performed by RoboSizer

Mozilla later totally blocked this kind of injection mechanism which uses CreateRemoteThread
(ironically, the code blocking this kind of injection mechanism triggered a bug in another
third-party software, an antivirus, which was later fixed by the vendor).

Using public APIs rather than DLL injection is preferable. Besides the aforementioned
examples, there are other reasons:

1. Since the WebExtensions API is supported by multiple browsers, the extension code
only needs to be written once but can be deployed to different major browsers;

2. The public API is controlled by the browser vendor, who has information on the API’s
usage and can decide when to deprecate it (and when not to);

3. The extensions are written in JavaScript and HTML, just like normal web pages, which
implies a very reduced chance of crashing the browser compared to the binary code that
is injected with DLL injection;

4. Should an extension cause a problem, the browser can easily recover (e.g., by reloading
the extension). Instead, when an injected DLL causes a problem, it will likely lead to
an unrecoverable situation.

Mozilla has been applying a blocklisting policy to react to bugs caused by third-party DLLs
[105]. If a DLL causes a severe and–or widespread bug (such as an easily reproducible startup
crash), Mozilla will, in parallel: a) try to contact the vendor of the third-party DLL and ask
them to solve the problem; b) start preparing a blocklisting addition to block the DLL; c)
attempt to reproduce the problem with its own quality assurance (QA) resources, if the
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third-party software is publicly available.

In order to solve the problem, third-party vendors usually request crash dumps from Mozilla,
which often cannot be shared with external people for privacy reasons (the dumps might con-
tain personal information of Firefox users). Mozilla may share crash dumps with third-party
vendors only in the two following situations: 1) when Mozilla’s QA manages to reproduce
the crash; 2) when Mozilla manages to get in contact with users who can reproduce the
crash (users can optionally leave their contact details when they submit a crash via Socorro,
i.e., Mozilla’s automated crash reporting system) and the users agree to the sharing of crash
dumps.

If the third-party software is publicly available, Mozilla will prepare modified Firefox builds
that block the offending DLLs. Sometimes blocking a DLL is not easily feasible, as some DLL
injection techniques operate at the kernel level. Sometimes blocking DLLs can cause more
severe problems than the ones caused by the DLL itself. Hence, the blocklisting addition has
to be tested first. If blocklisting works and does not cause regressions, Mozilla will apply the
blocklisting patch, uplift it (i.e., publish the patch ahead of the normal release cycle [106]),
and, if the problem is widespread enough, generate a new release build to ship to users.

5.2 Case Study Design

In this section, we describe the data collection, design of the survey, and analysis approaches
that we used to answer our three research questions.

5.2.1 Data Collection

From the Mozilla bug tracking system, Bugzilla [107], we searched bug reports that were
created between July 2015 and August 2017. We chose this time window because the We-
bExtensions API was introduced in September 2015, and our study started in August 2017.
In this work, we did not limit the analysis on already resolved bugs, because some bugs were
closed as WONTFIX or WORKSFORME, for example, if a DLL injection bug was deemed too hard
to fix for very little benefit or if the influence of a DLL injection bug drastically decreased
after the opening of the bug. From all the bugs in the studied time period, we selected the
ones that matched at least one of the following rules:

• the Bugzilla component of the bug is the one Mozilla uses to track bugs caused by
third-party software (“External Software Affecting Firefox::Other”);

• the title of the bug contains one of the keywords: “.dll”, “virus”, “malware” or “adware”;
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• the whiteboard of the bug contains the text “AV”, which Mozilla uses to mark some
bugs caused by antiviruses.

We then manually analyzed the results of the search to filter out false positives, obtaining
103 bugs caused by external software through DLL injection.

The AV- and malware-specific rules only helped increasing our dataset slightly (5 out of 103
bugs), so our results should not be biased towards those kinds of software. Within the results
from the other generic rules, we also found AV- and malware-specific bugs.

5.2.2 Data Processing

We manually identified a series of characteristics from the 103 bugs obtained in Section 5.2.1.
Table 5.1 shows the names and the descriptions of the characteristics. To reduce biases in
the manual identification, two of the authors separately collected the characteristics before
comparing their results together. They created an online document to discuss any divergence
until reaching an unanimous decision. In addition, we wrote scripts to automatically extract
some other characteristics as shown in the bottom of Table 5.1.

5.2.3 Survey

To further understand the root cause of the DLL injection bugs and how the bugs were
resolved, we designed a survey intended for the 58 vendors who caused these bugs. However,
we could not find the contact information of 14 vendors (including the malware producers)
from Bugzilla or through an online search. Hence, we ended up contacting only 44 vendors.
Among them, 12 vendors answered all or part of our questions, which corresponds to a
response rate of 27%. As we aim to propose potential solutions to reduce this kind of bugs,
we also asked these software vendors questions on improving the reliability when adding their
code into Firefox.

In our survey, we only used open questions. Participants could choose all or a part of the
questions to answer. Our questions were designed to better understand the DLL injection
landscape: what techniques are used, what kinds of bugs can arise, why DLL injection is
still used as an extension mechanism despite the presence of safer techniques. Here are the
questions we used in the survey:

Q1. What is the injection mechanism that you used?

Q2. Do you know the root cause of this bug?

Q3. If the bug is resolved from your part, do you remember the way by which you resolved
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Table 5.1 Characteristics of the bugs caused by third-party software.

Characteristic Description
Manually collected characteristics

Bug impact Whether a bug broke the functionality of the browser, caused a crash (or startup
crash), or caused a hang.

Software name Name of the software that caused a bug. If no software name is mentioned in
a bug report, we marked as “unknown”.

Software type Type of the external software, e.g., antivirus, malware, and hardware vendor
driver.

How resolved How a bug is resolved, e.g., fixed by the vendor, or blocked by Mozilla.
Reproducibility Whether a bug can be reproduced by the QA of Mozilla or third-party vendors.

Automatically collected characteristics
Percentage of
DLL users

Percentage of Firefox users who also have the third-party software.

Fixing time How many days it took for a bug to be fixed since its first occurrence. We
cannot retrieve the first occurrence date for some bugs, we have to use the
time period from the creation date until the fixed date to estimated these
bugs’ fixing time.

Tracked or
blocking

Whether a bug was ever tracked for a release or was blocking a release. More
information about Mozilla tracking flags and how they are used in the release
management process can be found in [108].

this bug?

Q4. Since Mozilla is encouraging other organizations to produce their software as an exten-
sion, is there any specific reason why you are still using the way of DLL injection to
add functionalities into Firefox?

Q5. Would you be open to switching to an extension-based solution if Mozilla gave you the
API you needed?

Q6. Do you run QA with pre-release versions of Firefox (e.g., Firefox Beta)?

Q7. Do you have any suggestions to improve the Mozilla API extension?

A possible approach to mitigate the DLL injection issues is to adopt a whitelist solution.
Instead of reacting to DLL injection issues by blocklisting misbehaving DLLs, Mozilla could
proactively block all DLLs except “good" ones. The vendors in the whitelist would need to be
more careful and perform QA in order to be in the whitelist. Once a whitelisted DLL causes
a problem, it will be removed from the whitelist. Also, developers using the WebExtensions
API would effectively be exempt and would always be in the whitelist. Besides reducing
bugs, Mozilla expects that this mechanism can push third-party software vendors to use
the WebExtensions API, which can also avoid crashes in the third-party code taking down
Firefox [101].

To evaluate how this solution would be received by third-party vendors, we asked additional
questions to the vendors who have answered our initial questions. During this work, we
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consulted some Mozilla developers by email and added these follow-up questions based on
their suggestions.

Q8. In your opinion, what would be a solution to allow for an effective integration of third-
party code into software like Firefox?

Q9. Some software vendors are moving to instruct users to uninstall third-party software
after a crash, what do you think of such practice?

Q10. When Firefox rolls out new content security features, it often runs into compatibility
issues with third-party suites that leverage injection. What steps do you think Firefox
should take to prevent these issues with your product(s) in the future?

Q11. What support might you be willing to provide to avoid these issues in the future?

Q12. If Firefox blocks third-party injection associated with your product, what side effects
do you anticipate? Would this potentially break your software product(s)? Could this
break Firefox?

Q13. Some vendors are considering introducing a whitelist that only allows “reliable” DLLs
to be installed. Would the whitelist be an incentive to adopt the cross-browser WebEx-
tensions API? (products using the extension API are always whitelisted)

Q14. Would the existence of a whitelist be an incentive for your company to do more QA
with Firefox?

Q15. Would your company try to circumvent the whitelist? If yes, how would you do it?

5.3 Case Study Results

We present the results of our case study and discuss the implications of these results.

RQ1: What are the characteristics of the bugs caused by DLL injections?

According to Mozilla telemetry3, large shares of Firefox users are also users of software
employing DLL injection to extend Firefox functionality. Each major third-party software
can be installed on between 1% and 15% of Firefox users’ machines. Severe bugs affecting
a DLL from a third-party software that is installed on 15% of users’ machines (or even 1%)
can be very concerning for Mozilla.

Table 5.2 shows the distribution of the impact of the DLL injection bugs. Out of the 103
studied bugs, 93 bugs (90.3%) caused browser crashes, i.e., the browser unexpectedly ter-

3https://wiki.mozilla.org/Telemetry

https://wiki.mozilla.org/Telemetry
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Table 5.2 Impact of the DLL injection bugs (some bugs have more than one impact)

Bug impact Occurrence Proportion

startup crash 47 45.6%
crash (unknown) 25 24.3%
crash 21 20.4%
broken functionality 8 7.8%
hang 4 3.9%
plugin crash 2 1.9%

Table 5.3 Types of the DLL injection software

Software type Occurrence Proportion

antivirus 57 55.3%
hardware vendor driver 19 18.4%
malware 10 9.7%
multimedia tool 4 3.9%
screen reader 3 2.9%
other 3 2.9%
IME 2 1.9%
download manager 2 1.9%
desktop customization 1 1.0%
file hosting service 1 1.0%
accessibility 1 1.0%

minates. Among them, 47 bugs (45.6%) caused crash during the browser startup (the most
severe type); 21 (20.4%) crashed while the browser was running; we could not deduct the type
of crash from the other 25 bugs (24.3%) (i.e., uptime unknown). Besides, two bugs (1.9%)
crashed a browser plugin. In addition, four bugs (3.9%) caused hangs, i.e., the browser does
not respond to users’ requests. Only eight bugs (7.8%) have lower severity. They break the
browser’s expected functionality. The overall impact of the DLL injection bugs are severe,
which can negatively affect users’ trustfulness on the quality of the browser. From the side
of users, they may not know whether the severe problems (such as crashes) are caused by
the host software itself (Firefox in this case) or by its interaction with third-party software
(usually they will just assume it is the host software, since that is the one which crashes, even
if the crash stems from injected code). If the problems are kept unresolved for a long time,
users may switch to other equivalent products. Especially for startup crashes, where users
cannot use the browser at all, nor automatically update it to a newer version when a fix is
released by Mozilla. The only options for them are to manually reinstall Firefox after a fix
is released, wait for an update of the third-party software, or switch to use another browser.

Table 5.3 shows the types of the DLL injection software. More than half of the bugs (57,
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Table 5.4 How the DLL injection bugs were fixed (some bugs were fixed by more than one
resolution)

Resolution Occurrence Proportion

fixed by the vendor 24 23.3%
worksforme 18 17.5%
not yet resolved 18 17.5%
blocklisted 16 15.5%
duplicate 12 11.7%
wontfix 8 7.8%
workaround 5 4.9%
invalid 2 1.9%
fixed by switching
to WebExtension

2 1.9%

fixed bug in firefox 1 1.0%

i.e., 55.3%) are from antivirus software, 19 (18.4%) are from hardware vendor drivers, 10
(9.7%) are from malware, and 17 (16.5%) are from other software, including multimedia
tools, screen readers, input method tools (IME), and download managers. Overall, except
for a small amount of malware and purpose-unidentified software, most bugs are derived from
DLLs that provide useful features to users.

Table 5.4 shows how the DLL injection bugs were resolved (or not resolved). 58 bugs (56.3%)
were not actually resolved by the time of this study. Some of the bugs were closed with a
label as “WORKSFORME” (bugs can no longer be reproduced), “INVALID” (bugs are in the
third-party software and with low enough severity), “WONTFIX” (due to low or decreased
volume of impact), or “DUPLICATE” (duplicate of another resolved bug). Unfortunately,
the labels are not always used consistently (for example, bugs with very low impact are
sometimes resolved as INVALID and sometimes as WONTFIX). Besides, five bugs (4.9%)
were fixed by employing workarounds (temporary and ugly solutions). For the bugs that
were actually resolved, 16 (15.5%) were fixed by Mozilla by blocklisting the offending DLLs;
24 (23.3%) of them were fixed from the vendor side. Only two bugs (1.9%) were resolved
by switching to using Mozilla’s WebExtension API as recommended. Merely one bug (1%)
was not due to the DLL vendors but due to defects of Firefox. From the result, we observe
that a weak percentage of the bugs can be resolved by the host software itself (Firefox).
Third-party vendors’ efforts and collaboration are important to keep the Firefox ecosystem
healthy. Moreover, few third-party vendors have adopted Mozilla’s recommendation of using
the WebExtensions API.

Figure 5.2 depicts the time period (in six weeks periods) during which the DLL injection bugs
were resolved. In this figure, we only considered the 81 bugs that were closed by the time
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Figure 5.2 Distribution of the bug fixing time. Each bin represents a period of six weeks,
e.g., the first bin means bugs fixed within six weeks (i.e., one release cycle).

of this study. 40 bugs were fixed within a period of six weeks; meaning that nearly half of
the DLL injection bugs can be fixed before the next release. 55 bugs were resolved within 18
weeks, a full release cycle from Nightly to Release. End users can benefit from the resolution
of these bugs within three releases (a new version is released every six weeks). However, we
also observed 10 bugs that were not resolved for more than one year. Moreover, 22 other
bugs have never been resolved until the writing of this thesis. Long resolution time of DLL
injection bugs challenges users’ trustfulness not only to the third-party software, but also,
and in many cases even more, to the host software. To maintain the health of the ecosystem,
both sides of the host and third-party software need to actively and effectively discover and
resolve bugs. We found that some bugs, such as Bug #1268470, were resolved late because
at the time of reporting the bug, it affected only a small number of users. When the bug
started affecting more users, it attracted Mozilla’s attention.

Although Bugzilla has priority/importance fields, they are used inconsistently by different
developers and different teams, thus cannot be relied upon to infer the importance of a given
bug. In order to evaluate the actual severity of the bugs, we analyzed the Bugzilla tracking
flags that are used by Release Managers during the release process [108]. We found that 32
bugs (31.1%) were tracked or blocking for a release at least once. These kinds of bugs are
particularly important because they either have been closely monitored by release managers
for possible resolution in a Firefox release (tracked bugs: 24, 23.3%) or have been marked
as blocking (must be fixed before shipping) a Firefox release (blocking bugs: 8, 7.8%).
To put it into perspective, we can compare these percentages with the overall ones: 3390
tracked bugs (around 0.037%) and 165 blocking bugs (around 0.002%). This means that
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DLL injection bugs, even though expectedly rarer than other bugs, are often more severe
than other bugs. We also compared the fixing times of DLL-injection blocking/tracked bugs
with those of generic blocking/tracked bugs. In addition, we found that the average fixing
time is around 3.4 times higher for DLL-injection tracked bugs than generic tracked bugs (for
blocking bugs the average is 2.8 times higher). However, the differences are not statistically
significant based on the Mann-Whitney U test [66]. One reason is that there are too few
samples in our dataset.

Finally, 26 (25.2%) of the DLL injection bugs could be reproduced by Mozilla or third-party
vendor’s QA, four (3.9%) of the bugs could not be reproduced, and we cannot identify whether
the rest 73 bugs (70.9%) could be reproduced or not. For bugs that were reproducible,
additional QA performed by either Mozilla or the third-party vendors before a Firefox release
could have prevented the bug from hitting users. Among the aforementioned eight blocking
bugs (account for 7.8%), five of them could be reproduced by Mozilla or third-party QA, one
of them could not be reproduced, and we cannot identify the reproducibility for the remaining
two bugs. If more in-depth QA was part of the envisioned whitelist policy of Mozilla, many
of these blocking bugs could have been resolved before they became blocking.

RQ2: Which factors triggered the DLL injection bugs?

Firefox is an open source browser. Its crash and bug reports are also open to the public.
Developers and researchers can leverage these resources to understand the root causes of
most bugs. However, through our manual analysis, none of the DLL injection software that
caused bugs in Firefox is open source. Thus, we cannot understand the root causes of these
bugs from source code. As we observed in RQ1, many subject bugs, which were eventually
resolved, were fixed by the software vendors or blocked by Mozilla. In both cases, Mozilla
did not know the triggers. Although the third-party vendors knew the triggers of the bugs
they resolved, they rarely mentioned them in the bug reports. In other words, bug reports
cannot help us to understand the bugs’ root causes either. Therefore, to answer this research
question, we decided to ask the software vendors themselves. In the rest of this section, we
will show the vendors’ responses to the corresponding survey questions and discuss these
responses. Table 5.5 shows statistics on the participants for each survey question. In this
table, we respectively provided the total number of participants who answered a question,
types of these participants’ software, and number of participants for each type of software.
All the reported responses are from closed source software vendors. Due to privacy reasons,
we may have hidden some confidential details.

DLL injection mechanisms used by the software vendors (Q1).
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Table 5.5 Statistics on the survey participants (all participants are from different vendors)

Question Participants Software type (and its frequency)

1 12 antivirus (7) screen reader (1)
unknown (1) internet downloader (1)
media recorder (1) hardware vendor driver (1)

2 12 antivirus (7) screen reader (1)
unknown (1) internet downloader (1)
media recorder (1) hardware vendor driver (1)

3 10 antivirus (5) screen reader (1)
unknown (1) internet downloader (1)
media recorder (1) hardware vendor driver (1)

4 11 antivirus (7) screen reader (1)
unknown (1) hardware vendor driver (1)

5 7 antivirus (3) screen reader (1)
unknown (1) hardware vendor driver (1)

6 6 antivirus (2) screen reader (1)
unknown (1) hardware vendor driver (1)

7 5 screen reader (1) unknown (1)
hardware vendor driver (1) media recorder (1)

8 5 antivirus (3) media recorder (1)
9 4 antivirus (3) media recorder (1)
10 4 antivirus (3) media recorder (1)
11 4 antivirus (3) media recorder (1)
12 4 antivirus (3) media recorder (1)
13 4 antivirus (3) media recorder (1)
14 5 antivirus (3) media recorder (1)
15 4 antivirus (3) media recorder (1)

We received 12 responses to the question related to the injection mechanisms used on Firefox.
Two general kinds of mechanisms can be identified from the responses: standard Windows
techniques and proprietary techniques. Among the eight responses on the standard tech-
niques, seven participants explained the detail of their technique, one participant only men-
tioned that their DLL injection technique is standard for the Windows OS. Here we quote
our participants’ answers to this question: “It’s just a standard Shell Extension that runs
when folks use the open/save dialogues.” “We use SetWinEventHook [109] from user32.dll.”
“We used a general mechanism (SetWindowsHookEx [110]) to inject other processes in or-
der to be able to influence window creation flags in case the user decides to not be disturbed
in Game Mode / Do Not Disturb Mode.” “AppInit_dll [111] registry entry.” “CreateRe-
moteThread+LoadLibrary [112, 113]”.

Three participants said that they used proprietary techniques, but none of them revealed
details. Two other participants did not directly answer this question but said that the
injection mechanism is irrelevant to the bugs. Overall, third-party software uses a variety
of techniques to inject DLLs into the host software.

Root causes of DLL injection bugs and resolution mechanisms (Q2, Q3).
Our second and third questions concerned the root causes of the bugs and how the bugs were
resolved. Nine participants explained the root causes of the bugs caused by their injected
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software. 10 participants explained the resolution process of the bugs caused by their injected
code. Some bugs were caused by the injection engine. The participants said: “Bug in hook
engine. Legacy code not covered by automatic tests.”, “Problem was internal to the hooked
functionality and likely not dependent on Firefox code”. The DLL vendors resolved the bugs
by fixing their injection code.

Compiler or runtime incompatibility is another cause mentioned: “Our compiler wasn’t C++
11 compliant and therefore introduced a race initialization of a mutex.” “(Our DLL) was
incompatible with C++ runtime, shipped with Windows 8.0 x64. It is not depend of upgrade
or clear installation of FF (Firefox). In addition, it should not depend from browser, for crash
it is enough Windows 8.0 x64 C++ runtime and any browser.”. Participants did not provide
detailed information about the resolution of this problem. We suppose that upgrading the
compiler would address the bugs.

Some other bugs were due to generic programming mistakes, which were later resolved and
made the DLL work again. One participant explained: “It was a mistake regarding 64 and
32 bit values in our code base.” “bad_alloc wasn’t caught in our code.”

In addition, bugs can also occur when “users forcibly loaded old extensions to newer versions
of Firefox and disabled compatibility checks ... (Old versions of Firefox) missed a check for
NULL on one of interface queries. The issue started to persist after significant changes in
Mozilla interfaces.” To reduce this kind of bugs, the host software can alert users to upgrade
their old version of the third-party software, and warn them of the potential consequences of
the incompatibilities on the host/third-party software versions.

Based on our observations, most bugs are due to injection engine problems, com-
piler/runtime incompatibility, or version incompatibility between the host and
third-party software. This finding corroborates what we found in RQ1: most bugs are in
third-party software’s code and thus cannot directly be fixed by Mozilla.

RQ3: What would be the potential solutions to reduce such DLL injection bugs?

Unreliability challenges all software ecosystems. To reduce potential crashes caused by third-
party software, from September 2018, Chrome will try to block most third-party software
that injects code into it [114] (Chrome developers claim that “users with software that injects
code into Windows Chrome are 15% more likely to experience crashes”). The organization
hopes third-party software can switch to use the recommended WebExtensions API to run
code inside Chrome processes. Mozilla is also trying to reduce bugs caused by third-party
software, while avoiding outright blocking, by introducing a whitelist to allow only DLLs,
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which are proved reliable, to inject code into Firefox. With the same expectation as Chrome,
Mozilla hopes that this measure can make third-party software vendors switch from DLL
injection to WebExtensions, which is considered as a more reliable way to interact with
Firefox. In this study, by analyzing survey participants’ answers, we want to discuss whether
the whitelist is the best solution to reduce bugs from third-party software, and whether there
are better alternatives to it.

Reasons provided for not adopting WebExtensions (Q4).
First, we wanted to know the reasons why many third-party vendors are still using the way
of DLL injection, although WebExtensions have been available for a while (in alpha state
since Firefox 42, released in 2015-11-03; in a stable state since Firefox 48, released in 2016-08-
02). This corresponds to Question #4 in the survey. 11 participants answered this question.
Multiple participants mentioned that their DLL is not specifically designed for Firefox but is
also being used for other host software, e.g., “Our software is not just used for FF (Firefox).
It is a general purpose audio recorder. Users choose which application they wish to target.”
For these vendors, migrating to WebExtensions would not be interesting because it requires
extra efforts to refactor the existing code.

Another reason is that some vendors cannot use WebExtensions to achieve their goal, e.g.,
“We must be able to gather content from Firefox. The most efficient way being to inject.
Extensions are not suitable for Screen Reading software such as ours”. An antivirus vendor
said: “We provide secure input feature in our product, which means that no one can intercept
symbols, which user input in browser fields. The task could not be done on Windows OS
without kernel driver and injected dll in browser”. Another antivirus vendor explained: “As
hackers always inject, while we are reducing to minimize our injections, we cannot totally
eliminate them”. This would partially explain why a big percentage of DLL injection bugs
derive from antivirus software. Due to the above two reasons, if a host software banned DLL
injections, the vendors will have to find other feasible hosts.

Moreover, some participants indicated the disadvantages of WebExtensions, e.g., “The main
disadvantage we find is that WebExtensions can be easily disabled (for a user with admin-
rights, and in a Windows workgroup environment). We had taken this route of injecting a
DLL to enforce URL filtering even in such environments”. Again, DLL injection is currently
the most suitable way for such vendors.

Only one participant is willing to accept WebExtensions, but they also said that WebEx-
tensions cannot fulfill some particular purposes, which is inline with the aforementioned
observations.
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In general, some DLL vendors do not want to adopt WebExtensions, because they
do not target for one specific host software, and the features currently offered by
the WebExtensions API are still limited for some purposes. One participant told us
that their organization has thoroughly analyzed the pros and cons about using WebExten-
sions. However, they still keep using DLL injection because they “don’t see any way how and
why to stop injecting there (in order to protect our users, which is our business)”. We cite
their analysis here and hope that host software organizations can take this as a reference to
improve the extension API and–or communicate better about their advantages.

“In comparison with injection, extension has much worse deployment possibilities – the instal-
lation process is cumbersome (you can’t install the extension silently without user interaction
which is a major UX problem, you can’t protect the extension from uninstalling, you’d need
to check for browser reinstalls and install again etc).
Also, it’s possible to write the extension, but since the API is limited (everyone saw the 2/3
of extensions being removed from new Firefox because of API problems) and the model is
also asynchronous, which kinda gets in a way what would AV product need. And the next
point against extensions is a need for three different extensions for three browsers – although
they all use WebExtensions, they’re quite different. And MSIE is still there, with stronger
presence than Edge.”

Migration from code injection to WebExtensions (Q5).
Q5 is about whether third-party vendors are open to switch to WebExtensions if Mozilla
gave them the needed API. Seven participants answered this question. One participant, who
is the one saying that WebExtensions can be easily disabled, simply said Yes. Those vendors
targeting multiple hosts answered No, because “Mozilla doesn’t control the surface area we
modify”.

A participant suggested that if different host software organizations can standardize their
APIs, third-party vendors will be more willing to migrate. “It depends on the functionality
and if there are general, OS runtime based standard mechanisms already available. It makes
no sense to have two different implementations of the same functionality.”

Other participants’ attitude is rather open, but they doubt whether Mozilla can provide
the specific API they require. For example, “I doubt that the extension mechanism would
be sufficient for our requirements. However, we, Mozilla, and other vendors are actively
considering other ways that software such as ours would not have to inject to gather this
content.”

“We are combatting malware and exploits though, which work in a low-level way, directly
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manipulating Firefox code and interacting with the operating system. It is quite unlikely that
a high-level extension (i.e., JavaScript) can be used to detect and mitigate all those threats
reliably.”

“Actually, we prefer to use ‘standard’ means whenever possible ... The main concern is, how
do you expose the API without any malicious software using it.”

Overall, although some third-party vendors are open to adopt WebExtensions
API, they doubt whether the API can fulfill their requirements.

Quality assurance of injected code (Q6).
Six participants answered whether they run QA with pre-release versions of Firefox. Four
participants said Yes, one of them further explained: “but not as often as we would like”.
The other two said No. In our opinion, running QA against each version of the host software
is necessary. The vendors who neglect this process may miss bugs in the ecosystem. In this
case, the whitelist would be an effective measure to penalize the vendors who do not test
their software well and frequently have bugs.

Suggested improvements to the WebExtensions API (Q7).
Q7 encourages participants to suggest improvements for the WebExtensions API. One par-
ticipant wished that “(Mozilla) can provide a mean to get the HWND [115] of a window from
within the extension”. This suggestion is in line with the doubts on the functionality offered
by the WebExtensions API.

Another suggestion is about the reliability of the API itself: “Some of the mechanisms (of
WebExtensions) do not work ... We opened a bug (on this problem)”. Therefore, completely
blocking DLL injection may not be the best solution because if a third-party vendor can
neither use DLL injection nor program against an available/reliable API, they have to give
up the host software and find other platforms. However, if all browsers move to reduce DLL
injection, third-party software will be forced to gradually transition to WebExtensions.

To further discuss the solutions of reducing DLL injection bugs, we will analyze the answers
on the follow-up questions. Some of the questions are targeted for the upcoming whitelist
by Mozilla. Only five participants answered these questions. Their answers may not be
representative, but can be used as a reference for host and third-party software to improve
the reliability of an ecosystem. In the following of this section, we will cite their answers and
discuss the implications.

Allow an effective integration of third-party software into another software (Q8).
Our follow-up questions start by how to allow an effective integration of third-party software
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into another software. Our participants answered as follows: “Certainly the most common
extensions can and should be handled by a plugin API like WebExtensions. Additionally,
having a link to AMSI (Anti-Malware Scan Interface) by Microsoft would make sense. But
generally, what Windows supports should be also supported by Firefox, which also includes
code injection. For monitoring the process state on a system level, sometimes there are no
other options that would come to my mind.”

“Use of extensions is the most effective method. However, in enterprise environment, ad-
min would want to enforce use of certain extensions (without allowing a user to disable it).
Browsers allow enforcing certain extension through group policy in domain environment.
However, we have a lot of SMB (small and midsize business) customers who don’t have
domain-network environments. Solving that requirement is tricky.”

“There (should be) an extensive QA verification process in place that includes Firefox test
scenarios and a working collaboration with Mozilla. One proven approach to improve the code
quality of external components is to establish a publicly accessible validation test framework
that provides the test scenarios an extension has to pass and where test scenarios are updated,
based on observances with field issues.”

“If they can provide an API (e.g., callback) that will be available only for registered whitelisted
DLLs, we can move to that model instead of our current model and reduce even more com-
patibilities issues.”

Based on their answers, besides the extension API, third-party software vendors believe that
DLL injection should also be kept as an option since it is legally supported by the operating
system. The collaboration between host and third-party software is necessary to ensure the
quality of an ecosystem. Particularly, a publicly accessible validation test framework can
help standardize the QA for both parties. Moreover, the upcoming whitelist seems to be a
favourable solution for some third-party vendors.

Whether suggest users to uninstall third-party software after a crash (Q9).
We then were curious to know the opinions of third-party vendors on the practice that some
host software (e.g., Chrome [114]) will suggest users to uninstall third-party software after
a crash. We received a favourable opinion “If an app crashes on your machine then sure
uninstall it. Makes complete sense. Not all machines are created equal.” versus multiple
against opinions “I consider this generally to be a bad practice, especially when a crash can’t
be clearly attributed to a particular third-party software – which is usually not possible in an
automated way.” “They put their customers at risk, since the legitimate (e.g., antivirus) will
be removed ... If I were malware, I will use this functionality to ask users to remove any 3rd
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party mechanisms that prevent me from doing whatever I need.” “Uninstalling third-party
solution isn’t a long term solution.”

From the answers, we can see that this is a complex problem. First, such suggestions may
become false alarms to users because a host vendor cannot simply decide whether a crash is
due to the third-party or the host software itself. Second, in the Mozilla ecosystem, many
crashes are caused by antivirus software. If such antivirus software is uninstalled, malware
may take advantage of this. Facing a third-party software related crash, we suggest
that host vendors warn users about the potential risks of running the third-party
software (e.g., by showing the number of crashes) but also remind them of the
risks of removing it. Besides, host vendors should investigate whether the crash happens
with other equivalent host software. Moreover, host vendors should always make efforts to
improve the reliability of their platform if necessary, because if users value the importance
of the third-party software and find it working well with other hosts, they may uninstall the
host software instead.

Incompatibilities between host and third-party software (Q10, Q11).
Q10 and Q11 are about the way to prevent incompatibilities between host and third-party
software when the host software rolls out new content security features. Our participant
suggested: “Notify us like they did when there is an issue. Worked well last time. We have
a fix rolled out very quickly when we were made aware of the issue.”

“Browser vendors can closely work with security vendors to bring about more stable, secure
browser ecosystem.”

“A preview of such functionality to test it in our labs will be highly appreciated (with enough
leeway and documentation to have the time for the vendors to adapt their code).”

In the meanwhile, the participants told us that they are willing to take the following measures
from their part. “We always try and fix any issues with our software when they are reported
to us. We do this as soon as we were alerted to the problem.”

“Regular compatibility testing of latest aurora/beta releases of various browsers from our side
along with our product and addresses any issues found.”

“We are willing, and already testing, any beta and post beta releases. But if we can get
documentation and enough time, we can commit to have our code ready and tested by the re-
lease date (or if push comes to shove, temporarily some remove functionality to accommodate
browsers releases).”

Overall, we learnt that many third-party vendors are making efforts on compatibility testing
and bug fixing for each (pre-) release. A good communication between host and
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third-party software would help to reduce incompatibilities due to new security
features. Mozilla can provide some preview and necessary documentation of the
new features to the trusted (i.e., whitelisted) vendors (for compatibility testing)
before the features are released to users.

Blocking of third-party DLLs (Q12).
Blocking third-party DLLs is one the of measures host software is using. Let us look at the
potential side effects analyzed by third-party vendors.

“Our users would not be able to target FireFox ... and would probably use another browser.”

“Practically I wouldn’t anticipate any side effects, although theoretically it could affect the
stability of Firefox, our software products or even the whole operating system.”

“It will break our protections and cause frauds associated with the removed protections, can
crash our browser components and probably Firefox as well.”

“This will break our ability to scan HTTPS URLs for malware/phishing links.”

Again, according to the respondents, blocking DLLs would not be the best way
to resolve DLL bugs. Before doing this, host software vendors should be aware of
any potential and serious side effects. This is the reason why in Mozilla’s blocklisting
policy the blocks are always applied after careful consideration and testing, and also why
outright blocking might pose problems if not handled well.

Enforcing a whitelist (Q13, Q14).
Some host software vendors are considering to put the DLLs into the whitelist if the DLL
software is also using the standard extension API.

On the one hand, some third-party vendors agreed that such whitelist bonus is an incentive
for them to adopt the extension API, but these vendors have already considered/started to
migrate to the API. “Yes ... (the whitelist bonus will be) along with the ability to enforce
addons in certain scenarios.” “We already adapting to the best of our ability the WebExtension
API. We also moved to that methods on other browsers.”

On the other hand, some others are not interested in this bonus because “I am unaware
that we can extract audio from a browser using this API” and “The WebExtensions API has
simply different use cases than the ones we are currently implementing. Therefore I don’t
think it makes sense to mix that up”. The benefit of the whitelist bonus still needs to be
verified in the future.

Some participants agreed that the existence of a whitelist will be an incentive for them to
do more QA. For the two participant who did not agree, one thought that their “current



90

QA processes are sufficient”. The other one absolutely denied potential benefits from the
whitelist: “A whitelist approach is inferior as it holds back the extension ecosystem overall,
in my opinion. A proactive approach providing extensive and frequently updated test scenario
framework support covering known problematic techniques is superior.” Therefore, we also
need future evidences to answer this question.

Bypassing the whitelist (Q15).
About our last question, no participant plans to circumvent the whitelist, even for the vendors
who insist to use DLL injection.

“No, because it won’t be a long term solution.”

“We would not for legal reasons. We do not circumnavigate anything.” “This question is quite
hypothetical right now. Likely we would respect Firefox’s policy and not try to actively cir-
cumvent anything like this by technical means, but instead we may notify our users about this
and suggest to move to another browser. Depending on the exact method of implementation,
it’s questionable if we’d be affected by such a whitelist though.”

“If we will be on the white list, why should we (circumvent it)?”

However, we do not know whether malware producers would try to circumvent the whitelist
(our guess is that they probably would), since we are not able to contact any of them.
Also, we cannot be sure that the answers to this question are actually honest, given that
circumventing the whitelist might be illegal and would be a direct challenge against Mozilla.
Clearing out this doubt will be a part of our future work, once we collect enough field data
on the whitelist.

5.4 Discussion

In a software ecosystem, pursuing user satisfaction is one of the most important goals for both
host and third-party vendors. However, to achieve this goal, some host and guest vendors
are taking conflicting measures. In the previous section, we have observed that, on the one
hand, some host vendors are (even completely) blocking third-party software added through
DLL injection and are suggesting users to uninstall unreliable software. On the other hand,
some third-party vendors are not willing to adopt host vendors’ advices and new solutions
because once their extensions cannot work with the host software, they claim that they will
suggest users to migrate to another host. We believe that in an ecosystem, host and third-
party vendors should not consider their benefit as a zero-sum game, but a win-win game.
To satisfy and hold their common users, host and third-party vendors should strengthen
their collaboration along all aspects of the development of the ecosystem, including (but not
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limited to) testing, bug fixing, feature introducing, and API evolution.

In this work, we choose DLL injection as subject because some host software vendors realize
that this technique often caused bugs (even crashes) and can be exploited by attackers.
However, besides DLL injection and a standard extension API, there are other ways to add
third party code into another software, such as Flash. As a resource consuming and outdated
technique, Flash has been made “click-to-play” in both Firefox and Chrome since 2017, and
will be completely blocked in all browsers by 2019 (2020 for Firefox ESR), so we do not study
it in our work. Comparing the reliability among different extension techniques will be a part
of our future work.

5.5 Threats to Validity

Construct validity threats are concerned with the relationship between theory and observa-
tion. Studying DLL injection bugs in an ecosystem is a new research topic. As far as we know,
there has not been a theory behind this. However, before conducting the empirical study, we
learnt some assumptions through our contact with Mozilla developers, but observed oppos-
ing results. For example, some Mozilla developers thought that the WebExtensions API can
fulfill most of the purposes. They guessed that some third-party vendors are not willing to
migrate to the API because the vendors do not want to spend time to modify their existing
code. However, multiple of our survey participants indicated that their purposes cannot be
satisfied by the current WebExtensions API. Moreover, to reduce DLL injection bugs, host
vendors are taking measures, e.g., blocking DLL injection, suggesting users to uninstall “un-
reliable” extensions. By analyzing feedback from third-party vendors, we realize that many
of these measures could be harmful for end users and even the host vendors themselves.

Internal validity threats concern factors that may affect a dependent variable and were not
considered in the study. Some of our observations derived from the 12 survey responses.
Although these responses cannot represent all third-party vendors’ opinions, they provided
us valuable information to understand the root causes of the DLL injection bugs and to
propose potential solutions to reduce the bugs occurrence. The most important reason is
that such information cannot be discovered from any open source repositories, such as Mozilla
bug reports, crash reports, or commit logs. Besides, we studied all the 103 DLL injection
bugs reported during the past two years. These bugs were caused by 58 different vendors,
among which, 44 vendors were contacted. 12 survey participants represent a 21% coverage
of all subject third-party vendors and 27% survey response rate (which is higher than the
average response rate in questionnaire-based software engineering studies, i.e., 5%, according
to Singer et al.’s finding [116]).
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Conclusion validity threats concern the relationship between the treatments and the outcome.
When investigating the characteristics of the DLL injection bugs, we manually classified
DLL bugs into different categories. To reduce any biases during this process, we did not
predefine any category. For each characteristic, two of the authors independently made their
classification before comparing their results and resolving each of the discrepancies. Despite
this, we cannot guarantee a 100% accuracy on our classification result. To help future
studies validate our result, we share our dataset online at: https://github.com/swatlab/
dll_injection. Some of the important observations are based on the survey responses.
To reduce any possible biases, besides our discussion and analyses, we cited participants
original answers. Readers can use this information to validate our conclusion and discover
more insight. When compiling the survey responses, we hid some details due to privacy
reasons. For example, we did not make a table showing which participant answered which
question because this way may disclose information that participants do not wish to publish.
In the survey, we only use open questions, because first, our subject problem has not been
empirically studied before, i.e., there is no reference to help us predefine options for the
answers. Second, predefined answers may bias and limit participants’ judgement. In this
work, we are open to receive any unexpected ideas that can lead us to a better understanding
of the subject problem.

External validity threats are concerned with the generalizability of our results. In this work,
we choose Mozilla Firefox as subject ecosystem because other equivalent ecosystems either
lack relevant data or will try to completely block DLL injection soon (e.g., Chrome). We
believe that Firefox is a large-scale representative ecosystem, which contains various and
diverse DLL software (refer to the software types discussed in RQ1). In addition, Firefox
possesses some public resources that we cannot benefit from other host vendors, such as
bug reports, where we can also often see decision processes in play, and third-party vendors’
contacts. Nevertheless, the results and conclusion of our work may not be generalized to
other environments. Future studies are required to validate and complement our findings.
Researchers can also use our shared dataset to replicate this study: https://github.com/
swatlab/dll_injection.

5.6 Summary

In a software ecosystem, DLL injection allows third-party software to forcibly load arbitrary
code into the host software. This technique may cause severe problems, such as crashes
and hangs. In this work, we quantitatively and qualitatively studied DLL injection bugs
in the Firefox ecosystem. We found that: most of the subject bugs (93 bugs, i.e., 90.3%)

https://github.com/swatlab/dll_injection
https://github.com/swatlab/dll_injection
https://github.com/swatlab/dll_injection
https://github.com/swatlab/dll_injection
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led to crashes, and 57 (55.3%) of them were caused by antivirus software (RQ1). Various
DLL injection mechanisms were applied by third-party vendors; the triggers of the bugs can
be engine errors, compiler/runtime incompatibility, or version incompatibility between the
host and third-party software (RQ2). Completely banning DLL injection might not be the
best strategy because some software (e.g., antivirus) relies on this technique. Collaboration
between host and third-party software vendors could help reduce DLL injection bugs; host
software vendors should extend the features of the extension API (as a safer alternative of
adding functionalities onto the host software) and build a publicly accessible validation test
framework (RQ3). In the future, we plan to investigate whether the upcoming whitelist can
further help reduce DLL injection bugs.
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CHAPTER 6 CONCLUSION

In this chapter, we conclude the thesis and summarize our findings. In addition, we will
discuss the limitations of our proposed approaches and the directions for future work.

6.1 Summary

Release engineering is a sub-discipline of software engineering that aims at improving software
release strategies; helping software organizations increase user perceived quality and reduce
maintenance cost. Although release engineering problems have been extensively studied by
previous researchers, some important issues have never been systematically investigated yet.
Specifically, software practitioners would be curious to know the reasons why crash-prone code
was missed in the code review process; how to effectively release urgent patches; and how to
prevent DLL injection bugs. In this thesis, we conducted empirical studies on Mozilla Firefox
against the above issues, and proposed solutions to academic and industrial practitioners.

In the rest of this section, we review our subject problems and summarize our findings and
implications.

Why was crash-prone code missed in the code review process?

Nowadays, most software organizations are investing time and human resources to conduct
code review; expecting to improve the quality of their source code. However, severe bugs,
especially crashes, can still elude from this process. In the first part of this thesis (Chapter
3), we identified reviewed code that were implicated into crashes. We compared the charac-
teristics of such crash-prone code with reviewed code that did not crash. We also conducted
a manual inspection on a sample of crash-prone patches that have been peer reviewed with
the aim of understanding the intensions of these patches and the root causes of their crashes.

As a result, we found that crash-prone code tends to be more complex and be involved with
more complicated dependencies. Developers tend to spend longer time to review and discuss
on the crash-prone code than other code. Most of the inspected crash-prone code is used to
improve performance, refactor code, add functionality, or fix previous crashes. Memory and
semantic errors were identified as major root causes of the crashes.

Based on these findings, we suggest that software organizations should more carefully approve
complex changes and changes with complicated dependencies. Static analysis tools should
be applied to help reviewers find more memory and concurrency related errors.
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How can we effectively release urgent patches?

At Mozilla, patches introducing important features or fixing severe faults cannot wait for
the standard release process and are promoted directly from the development channel (i.e.,
Nightly) to one of the stable channels (i.e., Aurora, Beta, or Release). This process is called
patch uplift. Patch uplift is risky because the time allowed for the stabilization of uplifted
patches is reduced. Such a rushed operation can lead to regressions in the code. In the
second part of this thesis (Chapter 4), we studied the uplifted patches that did not address
the subject problems and that introduced regressions. We conducted a series of statistical and
manual analyses to understand the reasons behind patch uplift decisions, the root causes of
ineffective uplifts, the characteristics of uplifted patches that led to regressions, and whether
such regressions can be prevented.

As a result, we observed that most uplifted patches were used to fix wrong functionality or
a crash. 4% of the subject uplifts were identified as ineffective because they only partially
fixed the expected problems or caused regressions. Regression introducing uplifts tend to have
larger patch size, and most of their faults are due to semantic or memory errors. We also found
that release managers are more inclined to accept uplift requests that concern certain specific
components, and–or that are submitted by certain specific developers. In addition, more than
25% of the regressions due to Beta or Release uplifts could have been prevented because they
could be reproduced by developers or found in widely used feature/website/configuration or
via Mozilla’s telemetry.

We suggest that software organizations take our findings and suggestions as a reference to
improve their patch uplift strategies.

How can we prevent DLL injection bugs?

As many other browsers, Firefox allows other software to extend its functionalities. DLL
injection is a technique that allows third-party software to run its code within the address
space of another process by forcing the load of a dynamic-link library. However, this tech-
nique can be very risky and is not recommended by Mozilla because it can lead to arbitrary
consequences, such as severe crashes and vulnerabilities. In the third part of this thesis
(Chapter 5), we investigated bugs of Firefox that were caused by third-party software via
DLL injection.

We observed that 90% of the studied DLL injections bugs led to crashes and 55.3% of them
were caused by antivirus software. We sent surveys to the software vendors who introduced
these bugs and learnt that some vendors did not perform any QA with pre-release versions
nor intend to use a recommended technique (the WebExtensions API) but insist on using
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DLL injection.

To reduce DLL injection bugs, we suggest that host software vendors strengthen the collabo-
ration with third-party vendors. For example, they can build a publicly accessible validation
test framework to prevent from DLL injection bugs. Host software vendors could also main-
tain a whitelist, which only allows vetted DLLs to inject.

6.2 Limitations of this thesis

• In this thesis, we only used Mozilla Firefox as the subject system. Although Firefox is
a representative, large-scale software system, which provides a public crash database
and allows us to access its uplift data, we cannot guarantee that our findings are
generalizable to other software systems. Future replication studies are required to
validate our approaches and results.

• In the first and second parts of this thesis, we used a heuristic (SZZ algorithm) to
identify bug- or crash-inducing commits. The basic idea of this heuristic is that the bug-
inducing code is fixed in the bug-fixing patches. Although this heuristic is considered
as the state-of-the-art approach, it may still yield a lot of noises. For example, some
bugs cannot be located from the bug fixing patch. Future researchers can apply some
proposed improvement on this heuristic (such as [117]) or perform a manual validation
on a sample of the yielded results.

• A part of our conclusions relies on sampled manual analyses or surveys. Future repli-
cations with larger sample size or larger number of survey participants are welcomed
to make our conclusions more generalizable.

6.3 Future work

In the future, we plan to extend our study in the following directions:

• To validate our findings, we are replicating the study of patch uplift on a closed source
software system in the game industry. As in this thesis, we plan to study the uplift
decisions, the characteristics of buggy uplifts, and find out the root causes of the uplifted
patches. The challenge is that the closed source system is from another industry other
than web browsers and its uplift process is different from the one of Mozilla. Adjusting
our analytic approaches might be required to obtain sound results. Another challenge
is that we need to explain the differences of findings between Firefox and the closed
source system.
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• We plan to conduct another study on code review: whether similar patches received
similar review decisions. The results of this study can help us to understand whether
code reviewers make consistent decisions when facing a group of similar patches. The
results can also help to build a review recommendation system that prevent reviewers
from providing wrong decisions.

• We also plan to follow up the DLL injection work. We are aware that Mozilla is
already planning to deploy a whitelist to allow only healthy DLL to inject. In this
follow-up study, we want to verify the effectiveness of this whitelist. In addition, as
aforementioned, Chrome has completely banned DLL injection from third-party soft-
ware. We want to investigate the alternatives that third-party software vendors take,
e.g., whether they switch their code to the recommended API or migrate to another
ecosystem, e.g., from Chrome to Firefox.
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