
UNIVERSITÉ DE MONTRÉAL

WORLDWIDE WEATHER FORECASTING BY DEEP LEARNING

PHILIPPE TREMPE
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)
MAI 2019

© Philippe Trempe, 2019.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

WORLDWIDE WEATHER FORECASTING BY DEEP LEARNING

présenté par: TREMPE Philippe
en vue de l’obtention du diplôme de: Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de:

M. BILODEAU Guillaume-Alexandre, Ph. D., président
M. GAGNON Michel, Ph. D., membre et directeur de recherche
M. PAL Christopher J., Ph. D., membre

iii

EPIGRAPH

“The brain surely does not work by
somebody programming in rules.”

— Geoffrey Hinton

iv

ACKNOWLEDGEMENTS

Many thanks go to the great people at Pelmorex (with a special thank to Edwin Vargas
(project manager and supervisor)), partners at Google (with a special thank to Shibl Mourad
(insightful data science/engineering and machine learning lead)), and the Polytechnique
Montreal (University of Montreal) research team (with special thanks to Guillaume-Alexandre
Bilodeau (jury president), Christopher J. Pal (jury member) and Michel Gagnon (research
director)) for their support, feedback and insightful discussions throughout the undertaking of
this work. Special thanks also go to the author’s close ones, including family, friends, colleagues
and all others who contributed in making the undertaking of this work an enlightening and
pleasant experience.

v

RÉSUMÉ

La prévision météorologique a été et demeure une tâche ardue ayant été approchée sous
plusieurs angles au fil des années. Puisque les modèles proéminents récents sont souvent des
modèles d’appentissage machine, l’importance de la disponibilité, de la quantité et de la
qualité des données météorologiques augmente. De plus, la revue des proéminents modèles
d’apprentissage profond appliqués à la prédiction de séries chronologiques météorologiques
suggère que leur principale limite est la formulation et la structure des données qui leur sont
fournies en entrée, ce qui restreint la portée et la complexité des problèmes qu’ils tentent de
résoudre.

À cet effet, cette recherche fournit une solution, l’algorithme d’interpolation géospatiale SkNNI
(interpolation des k plus proches voisins sphérique), pour transformer et structurer les données
géospatiales disparates de manière à les rendre utiles pour entraîner des modèles prédictifs.
SkNNI se démarque des algorithmes d’interpolation géospatiale communs, principalement de
par sa forte robustesse aux données d’observation bruitées ainsi que sa considération accrue
des voisinages d’interpolation.

De surcroît, à travers la conception, l’entraînement et l’évaluation de l’architecture de réseau
de neurones profond DeltaNet, cette recherche démontre la faisabilité et le potentiel de la
prédiction météorologique multidimensionnelle mondiale par apprentissage profond. Cette
approche fait usage de SkNNI pour prétraiter les données météorologiques en les transformant
en cartes géospatiales à multiples canaux météorologiques qui sont organisées et utilisées en
tant qu’éléments de séries chronologiques. Ce faisant, le recours à de telles cartes géospatiales
ouvre de nouveaux horizons quant à la définition et à la résolution de problèmes de prévisions
géospatiales (p. ex. météorologiques) plus complexes.

Substantiellement, cette recherche propose une formulation de problèmes de prévisions géo-
spatiales novatrice et riche en information, et montre ses bénéfices quant à la prédiction
de multiples paramètres météorologiques à travers le monde. À cet effet, le but principal
de ces travaux est de fonder des bases solides dans le domaine, et d’inspirer chercheurs et
praticiens à définir des problèmes toujours plus riches en bâtissant sur la présente recherche
pour ultimement aider les gens et les organisations à planifier et opérer en sécurité.

vi

ABSTRACT

Weather forecasting has been and still is a challenging task which has been approached from
many angles throughout the years. Since recent state-of-the-art models are often machine
learning ones, the importance of weather data availability, quantity and quality rises. Also,
the review of prominent deep learning models for weather time series forecasting suggests
their main limitation is the formulation and structure of their input data, which restrains the
scope and complexity of the problems they attempt to solve.

As such, this work provides a solution, the spherical k-nearest neighbors interpolation (SkNNI)
algorithm, to transform and structure scattered geospatial data in a way that makes it useful
for predictive model training. SkNNI shines when compared to other common geospatial
interpolation methods, mainly because of its high robustness to noisy observation data and
acute interpolation neighborhood awareness.

Furthermore, through the design, training and evaluation of the DeltaNet deep neural
network architecture, this work demonstrates the feasibility and potential of multidimensional
worldwide weather forecasting by deep learning. This approach leverages SkNNI to preprocess
weather data into multi-channel geospatial weather frames, which are then organized and
used as time series elements. Thus, working with such geospatial frames opens new avenues
to define and solve more complex geospatial (e.g. weather) forecasting problems.

Essentially, this research proposes a novel and information-rich geospatial forecasting problem
formulation and shows its benefits for accurate forecasting of multiple weather parameters
worldwide. Hence, the main goal of this work is to lay groundwork in the field, and inspire
researchers and practitioners to define ever-richer problems by building upon it to ultimately
help people and organizations plan ahead and operate safely.

vii

TABLE OF CONTENTS

EPIGRAPH . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF LISTINGS . xii

LIST OF SYMBOLS, ACRONYMS AND ABBREVIATIONS xiii

GLOSSARY . xiv

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Problem Definition . 1
1.3 Outline . 2
1.4 Disclaimer . 2

CHAPTER 2 BACKGROUND AND RELATED WORK 3
2.1 Meteorological Data . 3
2.2 Temporal Coverage and Resolution . 3
2.3 Geospatial Coverage and Resolution . 4
2.4 Solving Problems With Machine Intelligence 4

2.4.1 Problems . 4
2.4.2 Models . 5

2.5 Conclusion . 6

CHAPTER 3 SPHERICAL K-NEAREST NEIGHBORS INTERPOLATION 7
3.1 Introduction . 7

viii

3.2 Problem Definition . 7
3.3 Background and Related Work . 8

3.3.1 Bilinear Interpolation . 8
3.3.2 Bicubic Interpolation . 9
3.3.3 Smooth Sphere Bivariate Spline . 9
3.3.4 LSQ Sphere Bivariate Spline . 9
3.3.5 Gaussian Process Regression (Kriging) 10

3.4 Motivation . 10
3.5 Proposed Algorithm . 11
3.6 Algorithm Execution Steps . 12

3.6.1 Change of Coordinate System . 13
3.6.2 Indexing Using a k-Dimensional Tree 13
3.6.3 Finding Neighbors by Querying a k-Dimensional Tree 14
3.6.4 Interpolating Values . 15
3.6.5 Neighborhood Distribution Debiased Normalized Inverse Squared Dis-

tance Interpolation Function . 15
3.6.6 Calculating Great Circe Distances . 18

3.7 Algorithm Evaluation Methodology . 19
3.7.1 Absolute Maximum Error Ratio Percentage Error 20
3.7.2 Evaluation Data . 21

3.8 Empirical Results & Analysis . 23
3.9 Implementation . 28
3.10 Contribution . 29
3.11 Conclusion . 29

CHAPTER 4 MULTIDIMENSIONAL WORLDWIDE WEATHER FORECASTING
BY DEEP LEARNING . 36
4.1 Introduction . 36

4.1.1 Problem Definition . 37
4.2 Background and Related Work . 37

4.2.1 Physics Simulations . 37
4.2.2 Spherical Convolutional Neural Networks 38
4.2.3 Residual Neural Networks and Functions 38
4.2.4 Adaptive Moment Estimation Optimizer 39

4.3 Approach and Methodology . 39
4.3.1 Data and Datasets . 39

ix

4.3.2 Model Architecture . 41
4.3.3 Model Evaluation and Metrics . 44
4.3.4 Model Training . 45

4.4 Empirical Results and Analysis . 46
4.5 Contribution . 48
4.6 Conclusion . 49

CHAPTER 5 CONCLUSION . 53
5.1 Summary . 53
5.2 Contribution . 53
5.3 Limitations . 53
5.4 Future Work . 54
5.5 Closing Thoughts . 55

REFERENCES . 56

x

LIST OF TABLES

Table 2.1 Example of Typical Timestamped Geospatial Values 3
Table 3.1 Interpolation Error on Synthetic Data 31
Table 3.2 Interpolation Error on Real World Hourly Temperature Data 32
Table 3.3 Interpolation Error on Real World Hourly Dew Point Data 33
Table 3.4 Interpolation Error on Real World Hourly Pressure Data 34
Table 3.5 Interpolation Error on Real World Hourly Wind Speed Data 35
Table 4.1 Hyperparameters . 41

xi

LIST OF FIGURES

Figure 2.1 Weather Time Series Forecasting Problem Definition 4
Figure 3.1 Sparse Spherical Interpolation Problem Definition 8
Figure 3.2 SkNNI Algorithm Overview . 12
Figure 3.3 Interpolation Neighborhood . 16
Figure 3.4 Neighborhood Distribution Debiasing 17
Figure 3.5 Orthodromic Distance . 18
Figure 3.6 Evaluation Process for SkNNI . 19
Figure 3.7 Interpolation Error on Synthetic Data 24
Figure 3.8 Interpolation Error on Real World Hourly Temperature Data 25
Figure 3.9 Interpolation Error on Real World Hourly Dew Point Data 26
Figure 3.10 Interpolation Error on Real World Hourly Pressure Data 27
Figure 3.11 Interpolation Error on Real World Hourly Wind Speed Data 28
Figure 4.1 Data Preprocessing for Multidimensional Worldwide Weather Forecasting 40
Figure 4.2 ResDRU Architecture . 42
Figure 4.3 DeltaNet Architecture . 43
Figure 4.4 Mean Absolute Prediction Error for Temperature 46
Figure 4.5 Mean Absolute Prediction Error for Dew Point 47
Figure 4.6 Mean Absolute Prediction Error for Relative Humidity 48
Figure 4.7 Mean Absolute Prediction Error for Ultraviolet Index 49
Figure 4.8 Ground Truth for Temperature . 50
Figure 4.9 Model Prediction for Temperature . 51
Figure 4.10 Absolute Model Prediction Error for Temperature 52

xii

LIST OF LISTINGS

Listing 3.1 SkNNI Usage Example . 29

xiii

LIST OF SYMBOLS, ACRONYMS AND ABBREVIATIONS

Adam adaptive moment estimation
AMERPE absolute maximum error ratio percentage error
CMAE channel mean absolute error
ConvLSTM convolutional long short-term memory
ConvNet convolutional neural network
DRU delta reduction unit
ELM extreme learning machine
LSTM long short-term memory
NDD neighborhood distribution debiasing
NDDNISD neighborhood distribution debiased normalized

inverse squared distance
NISD normalized inverse squared distance
ResDRU residual delta reduction unit
RNN recurrent neural network
SkNNI spherical k-nearest neighbors interpolation
SVRM support vector regression machine

xiv

GLOSSARY

nowcast Forecast at a high time resolution (often hourly
or every few minutes)

tensor Generalization of scalars, vectors, matrices and
the like to an arbitrary number of dimensions
and represented as n-dimensional collections of
base data types (integers, floating point num-
bers, etc.)

1

CHAPTER 1 INTRODUCTION

Due to its effect on human life and activities, weather remains a very active research field.
Throughout the years, researchers have been developing a variety of statistical and algorithmic
weather forecasting techniques to better model the environment and predict its evolution [1].
Since weather forecasting remains a modern challenge due to its inherent complexity [2],
researchers have started turning to more complex algorithms and models, often machine
learning ones [3]. Such models’ applications are currently being explored and are already
yielding significant results regarding the prediction of weather parameters like temperature [4],
air quality (urban air pollution) [5], and solar radiation (horizontal irradiance) [6].

1.1 Motivation

Reviewing the recent scientific literature in the field (see §2) exposes the popularity of
machine learning methods’ application to weather forecasting. It also exposes a frequently
occurring pattern in the problem formulation and proposed solution presented in many of
the reviewed articles: the focus is on a single weather parameter for a single geographic
location, and the proposed solution is an adapted variant of a machine learning model which
is used to forecast the weather parameter of interest [1, 3, 4, 7–10]. These low-dimensional
(i.e. one scalar value per time step) formulations of the weather forecasting problem, which are
mainly due to data availability limitations, are likely to diminish the richness and contextual
information of model inputs and predictions. Thus, questions arise about how restrictive such
low-dimensional model inputs might be to the predictive model’s learning and prediction
ability, notwithstanding having to retrain a new model for each weather parameter and for
each location. As such, these interrogations motivate the proposition of a high-dimensional
weather forecasting problem formulation with weather states (time steps) which have three
extra dimensions: latitude, longitude and weather parameter channel.

1.2 Problem Definition

The broad problem under study is first and foremost a weather forecasting problem, i.e. a
time series of past weather states is used to forecast the weather state at the next time step.
The main distinction from more typical weather forecasting formulations is the addition of
three extra dimensions to the weather states: latitude, longitude and weather parameter
channel. Working with these extra weather state dimensions adds richness to them by allowing

2

the model to capture correlations and influences between the variables, but also adds data
processing requirements since the data must be made usable for the predictive model.

Thus, there are two main problems under study, the latter depending on at least a partial
solution to the former. The first problem is about finding a way to organize and transform
scattered potentially sparse multidimensional geospatial data in a way that makes it useful
for a predictive model to learn from. The second problem is about automatically forecasting
weather parameters worldwide as accurately as possible using a deep neural network working
with the transformed input data.

Hence, the goal of this research is to lay some groundwork in the field of multidimensional
worldwide weather forecasting by deep learning. There are also some secondary goals like
leveraging big data and cloud computing to automate and streamline the process for real-world
applications. To reach the main goal, a multidimensional worldwide weather forecasting
framework, with its data transformations and predictive models, is developed and evaluated.
As such, the project is considered successful if the created framework allows for the automatic
training of a deep neural network model which is capable of using multidimensional worldwide
weather data to make worldwide forecasts which are, on average, more accurate than the ones
made by comparable baseline models.

1.3 Outline

This work is organized as outlined hereby. First, the research context is introduced and leads
to the motivation regarding the undertaking of this work. The problems under study are
then presented alongside the research framework, goals and success conditions. Then, the
relevant background and related work are presented to provide the necessary notions to further
understand this work. Subsequently, the body of this work covers both problems of interest, i.e.
geospatial data transformation for model usability and automatic multidimensional worldwide
weather forecasting by deep learning. For each are thus presented the approach, results and
analysis. Ultimately, this work is summed up and concluded with considerations pertaining
to its limitations, contributions and potential future work.

1.4 Disclaimer

Before moving on, is hereby presented a brief disclaimer which states that the real world data
used throughout this work originates from proprietary datasets which shall remain private.
Thus, this work will attempt to provide a general idea as to what such a dataset might look
like in similar projects, but will intentionally remain vague about the one used throughout.

3

CHAPTER 2 BACKGROUND AND RELATED WORK

This chapter explores the state of the art regarding the use of deep learning to tackle
meteorology-related problems. In doing so, articles published over the last few years have
been reviewed and the ones presenting original and field-leading contributions have been
retained for further analysis.

2.1 Meteorological Data

Meteorological data is generated by the numerous automatic and manual weather stations
around the world and aggregated by organizations for archiving and further processing. Since
weather data is geospatial, it often follows typical schemes like the very common timestamped
geospatial value scheme which is of the form shown in table 2.1. This highly dimensional

Table 2.1 Example of Typical Timestamped Geospatial Values

Timestamp Latitude Longitude Value
2000-01-01 01:00:00 -38.123 29.654 12.345
2000-01-01 01:00:00 48.286 -120.259 9.874
2000-01-01 02:20:00 -38.123 29.654 13.736
2000-01-01 02:20:00 48.286 -120.259 11.397

data is then often further organized as time series for a variety of weather parameters like
temperature, wind speed, wind direction, pressure, relative humidity, etc. Since gathering
clean and complete data for many weather parameters is often challenging for researchers,
most reviewed articles focus on one or a few meteorological parameters. For example, [10]
focuses on forecasting temperature, while [11] focuses on predicting wind speed, [12] solar
radiation, and [1] rainfall.

2.2 Temporal Coverage and Resolution

Temporal coverage and resolution vary from a studied article to another. In most, about
a year or two [8, 9, 13] (and sometimes more [10, 14]) worth of weather data is aggregated
daily [4,9,10,15], hourly [8,13], or every few minutes [16], and time series of said weather data
are used to forecast a meteorological parameter of interest for the next time step. As time
resolution increases, fewer articles are found due to how difficult finding high quality datasets

4

with high temporal resolution is, which limits the time-related precision proposed models
achieve. As such, [16] exposes the lack of high-temporal-resolution weather forecasting studies
while noting their importance in predicting impactful short-duration events like rainfall to
allow organizations like airports to plan ahead and ensure safe flights to passengers.

2.3 Geospatial Coverage and Resolution

Geospatial coverage and resolution vary much less from article to article. In fact, most
solutions receive meteorological data for one specific location and use it to forecast a weather
parameter for that same location [1, 3, 4, 7–10]. Nonetheless, some solutions are based on
multiple closely scattered (sometimes autonomous, sometimes manual) weather stations
covering a region [13, 16]. A notable article even used weather data from 692 automated
weather stations in South Korea [14], covering the whole country at a high resolution.

2.4 Solving Problems With Machine Intelligence

2.4.1 Problems

In almost all reviewed articles, the problem to be solved by researchers is defined as a
weather time series forecasting problem (see figure 2.1) for one specific weather parameter
like temperature [3, 4, 10], wind speed [8, 11], air quality [13], rainfall [1], etc. One of the
notable exceptions is [16] in which the authors define their rainfall nowcasting problem as
spatiotemporal since they are working with time series of radar maps. Another considerable
article is [14] since the problem its authors aim to solve is a data consistency and error
correction one. Thus, their article focuses on finding erroneous values and on determining
adequate replacement values for them, which, in the end, helps build more complete and
consistent weather datasets for ulterior use.

Model
Weather
state at
𝑡1

Weather
state at
𝑡2

⋯
Weather
state at
𝑡𝑛−1

Weather
state at
𝑡𝑛

Figure 2.1 Weather Time Series Forecasting Problem Definition. The figure
illustrates the problem definition for weather time series forecasting. It shows a sequence
of consecutive weather states which are passed to a predictive model which then predicts
the weather state at the next time step.

5

2.4.2 Models

State-of-the-art solutions to weather forecasting problems often use machine learning models.
As such, one of the most frequent ones is the support vector regression machine (SVRM) [17]
(a support-vector-machine-based regression model which minimizes prediction error by in-
dividualizing the hyperplane which maximizes margin while tolerating a part of the error),
for which each research team has developed a custom variant better adapted to solving their
forecasting problem [4, 12, 14]. Hybrid models were also developed by other researchers to
include a feature selection step before model training [9, 10].

Nonetheless, the most popular types of models for weather forecasting using machine in-
telligence techniques are extreme learning machines (ELMs) [18] (a fast-learning kind of
usually shallow feedforward neural network which makes use of random projections and
which is trained by computing the Moore-Penrose inverse (pseudoinverse) using singular value
decomposition, e.g. [8, 11,13,19]) and deep neural networks (a deep computational graph of
layers which is trained through gradient-based optimization by using the chain rule of calculus
to iteratively compute gradients for topologically ordered layers from prediction backwards,
e.g. [1, 3, 7, 16]).

State-of-the-art extreme learning machines sometimes use feature selection [13], neuro-fuzzy
models (a kind of predictive model which combines neural networks and fuzzy logic, which is
a form of logic which works with probabilities instead of binary values, e.g. [8]), and online
machine learning (a machine learning method for which data becomes available in sequential
order, as opposed to batch processing on a complete dataset, and which updates its predictive
model as new data becomes available, e.g. [19]) to push the boundaries of fast model training.

State-of-the-art deep learning models are mostly recurrent neural networks (RNNs) [20–22] (a
class of neural network which excels at processing sequential data due to its internal state),
often long short-term memory (LSTM) [23] neural networks (a kind of recurrent neural
network which controls its internal state using learned gates and which excels at sequence
processing, even when correlated information is far apart in the sequence), and sometimes
convolutional neural networks (ConvNets) [24] (a class of neural network which is based on
using convolution/correlation operations and which has interesting properties like translation
invariance) to make predictions on time series data.

Furthermore, [16], with the researchers’ problem definition as spatiotemporal, unites both
LSTMs and ConvNets in what is called a convolutional long short-term memory (ConvLSTM)
neural network. As the name implies, a ConvLSTM is very similar to a classic LSTM, the
main difference being its preactivations are convolutional instead of linear. With such an

6

architecture, the model learns patterns in the temporal evolution of spatial motifs in input
sequences, and makes use of its learned hidden parameters to make predictions. Hence, this
model architecture has a lot of potential for learning more complex spatiotemporal patterns
evolving through time like weather ones.

2.5 Conclusion

As shown throughout this state of the art review, many research teams are working on solving
weather forecasting problems by making use of machine intelligence. Even though most of
the data is often for a single location and forecasts for a single weather parameter, new
breakthroughs keep pushing the domain’s frontiers, so much that, nowadays, state-of-the-art
models like ELMs and spatiotemporal deep neural networks are able to work with highly
dimensional weather datasets to provide ever more accurate forecasts for people to plan their
day and live safely.

7

CHAPTER 3 SPHERICAL K-NEAREST NEIGHBORS INTERPOLATION

This chapter focuses on the problem of sparse spherical interpolation. Such an approach is
necessary to transform scattered geospatial data into a dense (not sparse) and always-identical
format for predictive model usability. Thus, this chapter presents challenges in organizing and
transforming scattered potentially sparse geospatial data, as well as a novel algorithm named
spherical k-nearest neighbors interpolation (SkNNI) (pronounced “skinny”) which addresses
the problem.

3.1 Introduction

A significant proportion of big data is geospatial, and this proportion is estimated to keep
growing by at least 20 % every year [25]. Also, big data is highly heterogeneous. Researchers
estimate that about 95 % of big data is unstructured, and geospatial big data is, of course, no
exception [26]. It is voluminous, heterogeneous, and variable [27]. Nonetheless, geospatial data
is useful in a variety of fields like healthcare, security, marketing, environmental modeling,
and business intelligence, providing much insight on diverse behavioral and evolutional
traits [28–30]. Thus, there is a clear need by researchers, companies and other organizations
for processing, organizing and structuring geospatial big data in a way that makes it useful
for them.

3.2 Problem Definition

Geospatial big data is highly heterogeneous, often sparse, and scattered around the globe,
making it difficult to use. Since many algorithms and predictive models require dense and
identically structured inputs, an algorithm shall be designed in order to transform the sparse
and scattered geospatial data. Thus, the problem is expressed as follows. See figure 3.1 for an
illustration of the problem. Starting with observations of the form platitude, longitude, valueq
scattered on the surface of a sphere with radius ρ, the objective is to determine sensible
data values at given interpolation coordinates of the form platitude, longitudeq. Note that no
assumptions regarding the quantity nor distribution of the coordinates are made. Thus, the
number and distribution of observation and interpolation coordinates are variable. Also, some
extra parameters may be passed to the geospatial interpolation algorithm for configuration
purposes. Thus, the main goal of this work is stated as making such an algorithm which
is applicable, numerically stable, efficient and simple to use by anyone looking to perform

8

potentially sparse spherical interpolation, e.g. to structure scattered geospatial big data for
use in further algorithms and predictive models requiring a dense and fixed input structure.

Observation coordinates

Interpolation coordinates

Figure 3.1 Sparse Spherical Interpolation Problem Definition. The figure
illustrates the problem definition for sparse spherical interpolation. It shows the observation
coordinates as filled and the interpolation coordinates as hollow.

3.3 Background and Related Work

Before presenting the proposed solution, a review of existing interpolation algorithms related to
the problem is undertaken, covering advantages, limitations, and most importantly applicability
of each reviewed candidate. Also note that, to be retained, considered algorithms must be
both practically implementable as software and executable in a reasonable amount of time.

3.3.1 Bilinear Interpolation

When tackling an interpolation problem, a classic and well-known algorithm to first consider
is bilinear interpolation [31]. This algorithm performs interpolation on two-dimensional data
residing on a regular grid by first linearly interpolating along one dimension, and then by
interpolating along the other. It has the advantage of being rather simple and quite fast to
calculate. One of its main limitations is its interpolation accuracy, which gets outperformed
by more sophisticated algorithms like bicubic interpolation. Thus, since this work requires an

9

interpolation algorithm which supports irregular and sparse data both in the input and the
output of the algorithm, this solution is not retained.

3.3.2 Bicubic Interpolation

When tackling an interpolation problem where bilinear interpolation is considered, bicubic
interpolation [31] should also be reviewed. This algorithm performs cubic interpolation on
two-dimensional data residing on a regular grid by using third-order polynomials. It first
does a cubic interpolation along one dimension, and then does a cubic interpolation along the
other. This algorithm’s main advantage is its interpolation accuracy while its main downside
is being more computationally expensive. Though, as for bilinear interpolation, since this
work requires an interpolation algorithm which supports irregular and sparse data both in
the input and the output of the algorithm, this solution is not retained.

3.3.3 Smooth Sphere Bivariate Spline

Another explored candidate algorithm is the smooth sphere bivariate spline found in SciPy [32],
which is a “Smooth bivariate spline approximation in spherical coordinates” [33]. This
algorithm fits a spherical bivariate spline such that it minimizes the error with respect to
observations while also applying a smoothing regularization to mitigate the impact of outliers.
As such, not smoothing enough has a hard time dealing with outliers and smoothing too much
has a hard time fitting the provided observations. Thus, tuning the algorithm’s smoothing
parameter seems tedious. Also, making such a parameter trainable would lead to some
undesirable overhead, on top of the one required to fit the spherical bivariate spline. With
such considerations regarding tedious tuning and computational expensiveness, this solution
is not retained.

3.3.4 LSQ Sphere Bivariate Spline

The next reviewed candidate algorithm is the LSQ sphere bivariate spline found in SciPy [32],
which is a “Weighted least-squares bivariate spline approximation in spherical coordinates” [34].
The algorithm fits a spherical bivariate spline such that it minimizes squared error with
respect to observations at given knot coordinates. Some variants of the algorithm allow for the
addition of smoothing (through minimization of discontinuity jumps in the spline’s derivatives
at the provided knots) in the objective to minimize, but not SciPy’s, at least not in any
way parameterizable by the user. As such, observation outliers are likely to be troublesome.
Also, fitting a spline adds undesirable computational overhead. Furthermore, choosing how

10

many knots (which are different from observation and interpolation points, adding to the
user’s confusion) to use, and with which coordinates, is likely to be application-dependent
and require an undesirable amount of tuning. Thus, considering the algorithm’s usability
complexity, fragility to outliers and computational expensiveness, it is not retained.

3.3.5 Gaussian Process Regression (Kriging)

Gaussian process regression, also known as Kriging, is an interpolation method often used
in geostatistics and for which values are modeled using a Gaussian process based on prior
covariances [35]. This approach is more flexible since the distribution represents values at a
set of interpolation points while being conditioned on observation values at another set of
(observation) coordinates. Thus, this approach has the advantage of not requiring a regular
grid for inputs and outputs. Unfortunately, Gaussian process regression becomes a problem
when having to deal with ever-changing data coordinates, since a new Gaussian process
regression model needs to be created and its kernel chosen and parameters fit each time there
is a new observation or interpolation point. Considering problematic cases like the addition
of new weather stations, the reactivation of weather stations after maintenance, and mobile
weather stations with ever-changing coordinates; where the Gaussian process regression model
would need to be recreated and refit for every such change, the impracticability (due to
computational expensiveness) of such an approach to the studied interpolation problem leads
to its rejection.

3.4 Motivation

After reviewing various interpolation methods, from the classic bilinear interpolation to the
more sophisticated Gaussian process regression, it seems there is no current approach which is
fully suitable to solve the presented sparse spherical interpolation problem while respecting the
given constraints. For example, bilinear and bicubic interpolation methods are not applicable
since they only operate on regular two-dimensional grids. As for SciPy’s bivariate spline
interpolations, their tedious tuning and computational expensiveness make them unsuitable.
Is then left Gaussian process regression which is, by far, the most applicable currently existing
solution since it accepts sparse inputs and outputs, and is already implemented in various
frameworks. Unfortunately though, this solution also cannot be retained because of the
ever-changing nature of input and output coordinates, and also because of the computational
expensiveness required to train the model’s kernel each time new coordinates appear, which
is expected to happen very often.

11

With these considerations in mind, the solution sought for is required to be able to deal
with both sparse inputs and outputs, in varying numbers and coordinates, without prior
assumptions on them except for validity, which may be ensured through software validation.
Furthermore, since the algorithm is to be implemented as software and run on very large
weather datasets, it needs to be computationally efficient and scalable. Put simply, the
algorithm needs to be designed with big data, cloud computing and scale in mind. As such,
three main axes to consider throughout the design and implementation of the algorithm are
the scientific/research one, the business/engineering one, and the developer/end user one.

3.5 Proposed Algorithm

Since there is currently no algorithm suitable to solve the problem under study while respecting
the given constraints, this work presents a novel approach: spherical k-nearest neighbors
interpolation (SkNNI) (pronounced “skinny”), along with a novel interpolation function:
neighborhood distribution debiased normalized inverse squared distance (NDDNISD).

The main idea behind SkNNI is to be able to find the k-nearest neighbors of each interpolation
point fast and efficiently. Thus, an efficient geospatial data structure is needed, which is
why a k-dimensional tree is used to index the geospatial data. Since k-dimensional trees
operate in Euclidean space for their distance calculations, the spherical/polar (observation and
interpolation) coordinates need to be transformed. The k-dimensional tree is then queried to
obtain the neighborhood (k-nearest neighbors) of each interpolation point. The information
about interpolation points and their neighborhood is then passed to an interpolation function
to calculate the interpolated value for each interpolation point. Thus, this work proposes the
NDDNISD interpolation function, which shines due to its consideration of locality/proximity
and distribution of observation neighbors in interpolation neighborhoods when interpolating.

In the same vein, the inner workings of SkNNI are as follows. For clarity, an overview of the
SkNNI algorithm is presented in figure 3.2. The idea is to start with observations, transform
them to make them indexable by a k-dimensional tree, build it, and use it to find nearest
neighbors of new coordinates. These new coordinates are also transformed to be in the same
space, and are then used to query the k-dimensional tree for the k-nearest neighbors of each
interpolation point. Once the neighborhood of each interpolation point determined, each
neighborhood’s information is then used to calculate the interpolated value at its interpolation
coordinates. This interpolation step is realized using an interpolation function, the one put
forth in this work being NDDNISD (though arbitrary compatible interpolation functions may
be used instead).

12

Change of coordinate system

𝑂 𝜙,𝜃,𝜈 𝑃(𝜙,𝜃)

Indexation

Request for k-nearest neighbors

Change of coordinate system

𝜏 𝔑 Interpolation 𝑃 𝜙,𝜃,ෝ𝜈

Observations Interpolation coordinates

KDTree Interpolation neighborhoods Interpolation result

NDDNISD

NISD NDD𝔇

Figure 3.2 SkNNI Algorithm Overview. The figure shows an overview of the
SkNNI algorithm with inputs, outputs, transformations and intermediate results.

With the intuition and algorithm overview covered, §3.6 formalizes and details the inner
workings of each of SkNNI’s steps, as well as the ones of NDDNISD.

3.6 Algorithm Execution Steps

Executing the SkNNI algorithm starts with obtaining N observations O � 〈o1, o2, . . . , oN〉,
where large angle brackets denote sets which preserve insertion order (also known as lists),
scattered on a sphere. Each observation oi is defined with the following three attributes: the
observation latitude oi,φ P r�90, 90r in degrees, the observation longitude oi,θ P r�180, 180r
in degrees, and the observation data value oi,ν P R. The objective is to determine sensible
data values pi,ν̂ P R at the M given interpolation coordinates P � 〈p1, p2, . . . , pM〉. Each pi is
defined with the following two attributes when passed to the algorithm: the interpolation
latitude pi,φ P r�90, 90r in degrees and the interpolation longitude pi,θ P r�180, 180r in degrees.
The third attribute is the interpolated data value pi,ν̂ which is added to each interpolation
point throughout the execution of the algorithm. Three arguments may also be configured
by the user: the number of nearest neighbors k P N¡0,¤N to consider when interpolating,
the sphere’s radius ρ P R¡0, and the interpolation function I which is as defined in §3.6.4.
Since some configuration parameters will often be taking the same value, for example setting
the sphere’s radius ρ to the mean radius of the Earth, which is p6371.01� 0.02q km [36], the
algorithm will have decent default values for each configuration parameter. As a note, the
choice of using degrees for input and output latitudes and longitudes is deliberate and comes
from the empirical consideration that most geospatial data possessed by potential users of

13

the algorithm is in the format hereinbefore described. Since inputs and outputs are part of
the user interface of the algorithm, data formats were chosen such that they will likely match
users’ data. As a last note before continuing, all trigonometric operators used in the algorithm
operate in radians and the input degrees are quickly converted to radians for the algorithm’s
internal processing. With these considerations covered, the algorithm’s main execution steps
are presented, each described in its respective section.

3.6.1 Change of Coordinate System

When the input data enters the algorithm, it is first validated and useful error messages are
shown to the user if an input gets invalidated. Then, each observation oi gets transformed by
applying the change of coordinate system described by the following expressions.

Tx : R¥�90, 90 � R¥�180, 180 � R¡0 Ñ R¥�ρ,¤ρ (3.1)

Ty : R¥�90, 90 � R¥�180, 180 � R¡0 Ñ R¥�ρ,¤ρ (3.2)

Tz : R¥�90, 90 � R¥�180, 180 � R¡0 Ñ R¥�ρ,¤ρ (3.3)

oi,x � Tx
�
oi,φ, oi,θ, ρ

� � ρ � cos
�
π � oi,θ

180

� sin

�
π � oi,φ

180

(3.4)

oi,y � Ty
�
oi,φ, oi,θ, ρ

� � ρ � sin
�
π � oi,θ

180

� sin

�
π � oi,φ

180

(3.5)

oi,z � Tz
�
oi,φ, oi,θ, ρ

� � ρ � cos
�
π � oi,φ

180

(3.6)

Expressions (3.1) to (3.6) show the transforms Tx, Ty and Tz used to convert input coordinates
to radians, and then from polar coordinates to Cartesian x, y, and z coordinates.

3.6.2 Indexing Using a k-Dimensional Tree

Once the observations transformed, a k-dimensional tree, in this case a 3-dimensional tree, is
built from a set, which preserves insertion order (for later indexing), of Cartesian coordinate
tuples

�
oi,x, oi,y, oi,z

�
, one for each observation oi, as shown in equation (3.7).

τ � β

�〈�
oi,x, oi,y, oi,z

�〉
@iPt1,2,...,Nu

(3.7)

In the equation, β represents the k-dimensional tree building operator which partitions the
space observation points are defined in and uses this tree-structured partitioning to spatially

14

index the observations, and τ represents the built k-dimensional tree. Once constructed, the
k-dimensional tree may then be used by the algorithm as a spatial index to quickly find nearest
neighbors of points [37]. At this point in the process, the interpolator object (containing the
given configuration, observations and built k-dimensional tree) may be returned to user space
for eventual querying.

3.6.3 Finding Neighbors by Querying a k-Dimensional Tree

To make use of the interpolator, the user specifies interpolation points P , and optionally the
number of nearest neighbors to consult for interpolation k and the interpolation function I

(which is elaborated further). At first, the input data is validated and a clear error message
is provided to the user if any input gets invalidated. The interpolation points P are then
transformed using expressions (3.1) to (3.6) and used to issue a query to the k-dimensional
tree τ . The query result N is a set of sets, which all preserve insertion order, where each inner
set contains the k-nearest neighbors for each corresponding queried point pi P P . This step is
also expressible in matrix form, as shown in equation (3.8), which is simpler to visualize and
implement.

N � τ

������
�����
p1,x p1,y p1,z

p2,x p2,y p2,z
...

pM,x pM,y pM,z

�����
������

������
N1,1 N1,2 . . . N1,k

N2,1 N2,2 . . . N2,k
...

NM,1 NM,2 . . . NM,k

������ (3.8)

In the equation, each Ni,j corresponds to a neighbor index, and these indices are used to
access the corresponding observation points in O, since insertion order was preserved for their
containing set. Equation (3.9) shows the neighboring observations, where oNi,j denotes the
observation at index Ni,j, that will be used to perform interpolation in further steps.

ON �

������
oN1,1 oN1,2 . . . oN1,k

oN2,1 oN2,2 . . . oN2,k...
oNM,1 oNM,2 . . . oNM,k

������ (3.9)

At this point, a matrix containing all k-nearest observation neighbors for each interpolation
point is obtained. All there is left to do is interpolate the values using an interpolation
function.

15

3.6.4 Interpolating Values

In this last step, interpolated values Pν̂ P RM are calculated for all interpolation points by
combining the information of their k-nearest observation neighbors. To execute this part of
the algorithm, an interpolation function of the form defined in expressions (3.10) and (3.11)
is used.

I : RM
¥�π

2 ,
π
2
� RM

¥�π, π � RM�k
¥�π

2 ,
π
2
� RM�k

¥�π, π � RM�k � R¡0 � N¡0,¤N Ñ RM (3.10)

Pν̂ � I
�
ON,φ, ON,θ, ON,ν , Pφ, Pθ, ρ, k

�
(3.11)

In these expressions, ON,φ is the matrix containing the latitude of each observation neighbor
for each interpolation point, ON,θ is the matrix containing the longitude of each observation
neighbor for each interpolation point, and ON,ν is the matrix containing the value of each
observation neighbor for each interpolation point. If the user does not specify an interpolation
function, the algorithm defaults to the neighborhood distribution debiased normalized inverse
squared distance (NDDNISD) function, which is described in §3.6.5. Since this last step works
in matrix form, the result is thus a vector Pν̂ P RM . At that point, the interpolation points
and their associated interpolated values are simply combined to produce the final output P
of the algorithm which is ultimately returned to user space.

3.6.5 Neighborhood Distribution Debiased Normalized Inverse Squared Dis-
tance Interpolation Function

The neighborhood distribution debiased normalized inverse squared distance (NDDNISD)
interpolation function is composed of three primary steps: great circle distance calculation
(detailed in §3.6.6) to evaluate geospatial proximity, normalized inverse squared distance
(NISD) calculation for proximal importance weighting, and neighborhood distribution debias-
ing (NDD) to better deal with biased neighborhood geospatial distributions. In the following
equations, all operations are element-wise, unless otherwise specified, with broadcasting to
extra dimensions à la NumPy if necessary. Also note that large operators like the sum are
reductive, unless otherwise specified, meaning the tensors on which the operation is applied
lose the dimensions corresponding to the reduction axes.

Thus, as shown in equation (3.12), the great circle distance between each interpolation point
and each of its k-nearest observation neighbors is first calculated using the great circle distance
function D which is detailed in §3.6.6.

δ � D
�
Pφ, Pθ, ON,φ, ON,θ, ρ

�
(3.12)

16

The distances in each neighborhood (see figure 3.3) are then converted into weights through
the NISD function (equation (3.13)) which computes the element-wise square of each distance,
adds a very small positive constant εÑ0�,¡0 to it to avoid division by zero, inverts the values,
and normalizes each row of the distance weight matrix wδ such that its elements sum up to
one.

wδ �
1

δ2�ε°k
i�1

1
δ2
i�ε

(3.13)

Observation point

Interpolation point

Orthodromic distance

Figure 3.3 Interpolation Neighborhood. The figure shows an interpolation neigh-
borhood with the orthodromic distances between its interpolation coordinates and the ones
of each observation neighbor. These distances are then used in the subsequent calculations
performed by the NISD step to determine the importance of each neighbor.

Then, neighborhood distribution debiasing (NDD) is applied to deal with biased neigh-
borhood distributions like the one shown in figure 3.4. Thus, NDD is calculated by first
finding each observation neighborhood centroid’s latitude sφ (equation (3.14)) and longitude sθ
(equation (3.15)).

sφ � 1
k

ķ

i�1
ON,φ,i (3.14)

sθ � 1
k

ķ

i�1
ON,θ,i (3.15)

17

Great circle distances between each neighborhood’s centroid and each of the neighborhood’s
observations is then calculated (equation (3.16)), and these distances are used to debias
the earlier distance weights wδ, ending up with neighborhood distribution debiased distance
weights wη (equation (3.17)).

η � D
�sφ, sθ, ON,φ, ON,θ, ρ

	
(3.16)

wη � wδη°k
i�1wδ,iηi

(3.17)

Observation point

Interpolation point

Distance to interpolation point

Centroid

Distance to centroid

Figure 3.4 Neighborhood Distribution Debiasing. The figure shows a biased
interpolation neighborhood. The distances from observations to the neighborhood’s
interpolation point are also illustrated, as well as distances from observations to the
neighborhood’s centroid. Intuitively, the more an observation neighbor is close to the
neighborhood’s centroid, the more it is biased. NDD uses this information to renormalize
the distance weights wδ.

This NDD step is useful since it allows the algorithm to deal with interpolation neigh-
borhoods which have a non-uniform spatial distribution of observations, thus over- and
under-representing some values due to the neighborhood distribution’s bias. To counteract
this bias, NDD calculates each neighborhood’s centroid to find where the neighborhood’s
center of bias is, and then weights down neighbors proportionally to how close they are to the
aforementioned center of bias. Once the NDD part complete, the debiased weights wη are
ultimately used to perform a weighted sum for each neighborhood (equation (3.18)).

Pν̂ � INDDNISD
�
ON,φ, ON,θ, ON,ν , Pφ, Pθ, ρ, k

� � ķ

i�1
wη,iONi,ν (3.18)

18

3.6.6 Calculating Great Circe Distances

To calculate great circle distances (also known as orthodromic distances), the orthodrome
(shortest path between two points on the surface of a sphere) from each interpolation
point to each of its k-nearest observation neighbors is determined and used to compute
the geodesic/orthodromic distance (which corresponds to the length of the ohthodrome) [38].
In other words, the shortest distance on the surface of a sphere between two points is calculated,
for each pair of points of interest, as illustrated in figure 3.5.

Point A

Point B

Euclidean distance

Orthodromic distance

Figure 3.5 Orthodromic Distance. The figure shows the difference between ortho-
dromic distance and Euclidian distance between two points, A and B, on the surface of a
sphere.

This great circle distance is calculated as defined in expressions (3.19) to (3.21) using the
famous haversine formula [39].

aÐ sin2
�
Bφ � Aφ

2

� cos

�
Aφ

�
cos

�
Bφ

�
sin2

�
Bθ � Aθ

2

(3.19)

aÐ min
�
1,max p0, aq� (3.20)

D
�
Aφ, Aθ, Bφ, Bθ, ρ

� � 2ρ � arctan2
�?

a ,
?

1� a
	

(3.21)

The equation receives two points, A and B, with their respective latitude φ and longitude θ,
and also the sphere’s radius ρ, and computes the great circle distance. Note that arctan2 py, xq
is a version of the arctangent of y over x which chooses the correct quadrant correctly, and
which operates as described in the NumPy documentation [40]. Also note that expression (3.20)
is an extra step that is added to the calculation to ensure numerical stability. With the

19

equations defined, they are now used to compute the great circle distances for the pairs of
points of interest. An advantage of this calculation is that it also works in vector and matrix
forms simply by using vectors or matrices of same cardinality as inputs instead of scalars,
and by applying scalar operators element-wise. In that case, instead of producing a single
scalar output, the result is now a vector or matrix with the same cardinality as the input
vectors or matrices. Lastly, note that operation and array broadcasting à la NumPy may also
be used to achieve the same results simply and efficiently.

3.7 Algorithm Evaluation Methodology

To validate and evaluate the algorithm, the validation methodology presented in figure 3.6
is undertaken. Thus, the idea is to evaluate the accuracy of some of SkNNI’s interpolation
functions I in a way which remains agnostic to the evaluated quantity’s nature Υ (e.g.
temperature, wind speed, pressure, and even artificially generated weather parameters). As
such, the experiments compare various combinations of interpolation functions I and numbers
of nearest neighbors k by evaluating their interpolation error on observation sets of various
natures Υ.

Start with 𝑁
observations

Hide 𝐻
observations

Ask SkNNI to
interpolate at
hidden values

Calculate
interpolation error

1

𝑁

𝑖=1

𝑁

−

Figure 3.6 Evaluation Process for SkNNI. The figure shows the evaluation process
for SkNNI, which is performed in four main steps. The first step consists in acquiring
a set of observation values. The second step then hides a portion of the observations
in a holdout set used for evaluation. The third step consists in having SkNNI perform
interpolation at the coordinates where values were hidden. The fourth and last step then
simply measures the algorithm’s accuracy using a given metric.

For each experiment, an observation set of about 4000 elements is collected, 1000 of which
are sampled without replacement and used to build a SkNNI interpolator. Note that the
sphere radius ρ used for all experiments is the algorithm’s default value, which is the Earth’s
mean radius in kilometers. Then, the remaining observation values are held out for validation
and their coordinates are passed as a query to the SkNNI interpolator. Once the SkNNI

20

interpolator built and the holdout set prepared, one interpolation query is made for each
configuration pair pI, kq P tIMean, IMedian, INDDNISD, INearestu � N¡0,¤25 and the results and
settings are collected for further analysis. As such, equations (3.22), (3.23) and (3.24) show
the respective definitions of IMean, IMedian and INearest, where 1 is an indicator function which
takes the value 1 if its condition is met and the value 0 otherwise. Ultimately, for each quantity
nature Υ P ΥSynthetic,ΥTemperature,ΥDewPoint,ΥPressure,ΥWindSpeed

(
, 100 different observation

sets are gathered and used to produce the results to be further analyzed.

IMean
�
ON,φ, ON,θ, ON,ν , Pφ, Pθ, ρ, k

� � 1
k

ķ

i�1
ONi,ν (3.22)

IMedian
�
ON,φ, ON,θ, ON,ν , Pφ, Pθ, ρ, k

� � medianki�1
�
ONi,ν

�
(3.23)

INearest
�
ON,φ, ON,θ, ON,ν , Pφ, Pθ, ρ, k

� � ķ

i�1
1i�1ONi,ν (3.24)

3.7.1 Absolute Maximum Error Ratio Percentage Error

Once all the experiments for a quantity nature completed, the data is aggregated by interpo-
lation function I and number of nearest neighbors k, and interpolated values are evaluated
using the absolute maximum error ratio percentage error (AMERPE) metric which is as
described in equation (3.25).

AMERPE
�rV , pV ; Vmin,Vmax

	
� 100

Vmax � Vmin

���rV � pV��� (3.25)

The AMERPE is a variant of absolute error (which is the absolute difference between
the ground truth value rV and the interpolated value pV) which applies a normalization
coefficient based on the domain extrema, Vmin and Vmax, of the input variable V. Note
that the condition Vmax ¡ Vmin must hold true. The main idea is to scale the absolute
interpolation error as a percentage of the maximal error that could ever be made and use that
relative error AMERPE

�rV , pV ; Vmin,Vmax

	
P r0, 100s (a quantity expressed without units of

measurement) instead. To expose why such a metric might be useful, consider the following
examples. If the input variable varies from 0 to 5 and a prediction of 3 is made when the
ground truth is 2, the obtained AMERPE is 20, as shown in equation (3.26), whereas if the
input variable varies from 0 to 50 and a prediction of 3 is made when the ground truth is 2,

21

the obtained AMERPE is 2, as shown in equation (3.27).

AMERPE p2, 3; 0, 5q � 100
5� 0 |2� 3| � 20 (3.26)

AMERPE p2, 3; 0, 50q � 100
50� 0 |2� 3| � 2 (3.27)

These toy examples show that, for a same absolute interpolation error of 1 in these cases, the
former ends up with a much larger AMERPE since an absolute error of 1 over a range of 5 is
much worse than an error of 1 over a range of 50. Thus, use of AMERPE allows for fairer
comparison of absolute interpolation errors made on various quantity natures.

3.7.2 Evaluation Data

To evaluate the algorithm and various of its configurations on a data nature Υ for which the
underlying generation function is fully known, noisy synthetic observation sets are generated
for the data of synthetic nature ΥSynthetic using expressions (3.28) to (3.33).

Φ � C p0, 30,�90, 90q (3.28)

Θ1 � C p0, 60,�180, 180q (3.29)

Θ2 � S
�
〈�125,�75, 0, 75, 100, 135〉 , 〈0.15, 0.15, 0.15, 0.2, 0.2, 0.15〉

�
(3.30)

Θ � pΘ1 �Θ2 � 180qmod� 360� 180 (3.31)

Z � U p0, 8q (3.32)

V � G pΦ,Θ,T,Zq � 42 sin
�
πpΦ� 90q

180

�
� 7 cos

�
3
2
πpΘ� 180q

180 � π

12T
�
� Z� 25 (3.33)

In these expressions, C pµ, σ, a, bq represents a truncated normal distribution, U pa, bq represents
a uniform distribution, S pA,P q represents random sampling with replacement from elements
of A with probabilities P where the probability of selecting ai P A is pi P P |

°
piPP

pi � 1,
and mod� represents the modulo operator which returns the first positive remainder. The
synthetic data generation function G depends on input latitude Φ, longitude Θ, time T, and
noise Z. The idea is to use a different time T value to create each experiment’s observation
set, thus simulating a noisy geospatial function evolving through time. The uniform noise Z

included in the synthetic geospatial function G enforces a limit on the expected minimal
absolute interpolation error which is as shown in lemma 3.1. This limit turns out to be
important to analyze and compare interpolation errors on noisy data.

22

Lemma 3.1. Let V be a random variable such that V � U pa, bq, a uniform distribution with
lower bound a and upper bound b such that a b. Then, the expected minimal absolute error

E
����rV � E rVs

���� is equal to b� a
4 .

Proof. To prove it, start with the expectation of the uniformly distributed random vari-
able E rVs, which is used as the best prediction value pV to try.

V � U pa, bq ùñ E rVs � a� b

2
(3.34)

Define the expectation of the absolute error given the best prediction value to try as follows.

E
����rV � E rVs

���� (3.35)

Then, calculate the expected minimal absolute error by averaging (where the sum is done
through integration) over all possible truth values rV .

E
����rV � E rVs

���� � 1
b� a

» b

a

���rV � E rVs
��� drV (3.36)

� 1
b� a

�» ErVs

a

���E rVs � rV��� drV �
» b

ErVs

���rV � E rVs
��� drV� (3.37)

� 1
b� a

����
E rVs rV �

rV2

2

�������
ErVs

a

�
�rV2

2 � E rVs rV�
������
b

ErVs

��� C (3.38)

� 1
b� a

�
E2 rVs � aE rVs � bE rVs � a2

2 � b2

2

�
� C (3.39)

� 1
b� a

��
a� b

2

2

� a
a� b

2 � b
a� b

2 � a2

2 � b2

2

�
� C (3.40)

� a2 � 2ab� b2

4 pb� aq � C (3.41)

� pb� aq2
4 pb� aq � C (3.42)

� b� a

4 � C (3.43)

23

Analyzing the synthetic function G, its extrema are as calculated in equations (3.44) and (3.45).

min pGq � 42 � 0� 7 � �1� 0� 25 � �32 (3.44)

max pGq � 42 � 1� 7 � 1� 8� 25 � 32 (3.45)

Considering the AMERPE’s definition as a scaled absolute error, the extrema of the synthetic
function G, and lemma 3.1; the theoretically expected best (minimal) AMERPE is as calculated
in equation (3.46).

AMERPE
�rV ,E rVs ; min pGq ,max pGq

	
� 100

32��32
8� 0

4 � 25
8 � 3.125 (3.46)

Thus, the lowest interpolation errors on data of synthetic nature ΥSynthetic generated through G
will tend towards 3.125 because of the 12.5 % noise included in G, which is slightly higher
than would be expected in real world datasets (even though some are even noisier than this
synthetic function).

3.8 Empirical Results & Analysis

Once the experiments (as defined in §3.7) run and results collected, the data is first aggregated
by nature Υ (for each figure), and then by interpolation function I and number of nearest
neighbors k (for every bar in the figures). The experimental conditions defined in §3.7 ensure
high statistical significance by calculating statistics on 300 000 truth-interpolation pairs per
bar of every figure, totaling 30 000 000 truth-interpolation pairs per figure.

Figure 3.7 shows experimental results for data of synthetic nature ΥSynthetic. In it, it is
possible see that the nearest neighbor interpolation function INearest does not benefit from
having additional neighbors available to it since it always uses the value of the nearest one,
thus not having an optimal k value. Note that the reason why this interpolation function
is included in the experiments is because it is a simple and commonly used interpolation
function which is well known and meaningful as a comparison baseline. The figure also
shows that, for k � 1, all evaluated interpolation functions degenerate into nearest neighbor
interpolation, which is why they all end up with the same error, statistically. Furthermore,
table 3.1 shows that, as k increases from k � 1, IMean and IMedian seem to benefit from
the information provided by the extra neighbors, up to an optimal value of k � 9 for IMean

and of k � 12 for IMedian, after which their error starts to slowly but steadily increase.
Interestingly, INDDNISD’s error drops significantly more per neighbor, showing a better use
of the information provided by each neighbor, and does not reach an obvious optimal value

24

of k P N¡0,¤25, suggesting that using even more neighbors would allow the error to keep
improving, even though less and less, as it approaches the theoretical limit of 3.125 (see
equation (3.46)). Table 3.1 also shows the overall minimal error is achieved by INDDNISD at
k � 25 with an AMERPE of 3.814 303 and which is about four times closer to the theoretical
optimum than the second-best interpolation function’s (IMean at k � 9 with an AMERPE of
5.697 394), putting forth INDDNISD’s robustness to noise in observation values. Along the same
line of thought, INDDNISD achieves errors comparable to other interpolation functions’ minimal
errors using only two nearest neighbors (k � 2), hinting at the importance of considering the
locality, proximity and distribution of observation neighbors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
k (number of nearest neighbors)

0

1

2

3

4

5

6

7

AM
ER

PE

Interpolation Error on Synthetic Data

Interpolation function
Mean
Median
NDDNISD
Nearest

Figure 3.7 Interpolation Error on Synthetic Data. The figure shows the inter-
polation error of various interpolation functions on noisy synthetic data. 100 experiments
were run, each for a different noisy geospatial function, and AMERPE was calculated
for various interpolation functions for 25 values of k (number of nearest neighbors) using
1000 observations and 3000 validation observations that were held out for evaluation.
The error bars represent the 95 % confidence interval for the bootstrap mean (over 100
bootstrap samples) of the evaluated quantities. The dashed horizontal line represents the
best (minimal) error expectation considering the noise included in the geospatial functions.

In figure 3.8, experimental results on real world hourly temperature data are shown. One of
the main differences is that IMean and IMedian now end up with a higher error than INearest

and their error seems to be steadily increasing as k grows. This seemingly odd result may be
explained by the consideration of more and more locally impertinent nearest neighbors as
k grows, which increases the error. INDDNISD, though, still behaves similarly to the way it
does on synthetic data, having its error lower as k grows from k � 1, but this time reaches a

25

minimal AMERPE of 2.116 623 at k � 13 (as shown in table 3.2), after which its error starts
increasing, even though very slightly. The interpolation difficulty as k gets larger could be
explained as originating from observation sparsity which would render most further neighbors
not only useless, but actually detrimental to the interpolation as their larger distance makes
them less locally pertinent up to a point where their values simply become additional noise.
Nonetheless, INDDNISD’s error is still significantly lower than the one of the other interpolation
functions, suggesting its robustness to observation location sparsity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
k (number of nearest neighbors)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AM
ER

PE

Interpolation Error on Real World Hourly Temperature Data

Interpolation function
Mean
Median
NDDNISD
Nearest

Figure 3.8 Interpolation Error on Real World Hourly Temperature Data.
The figure shows the interpolation error of various interpolation functions on real world
hourly temperature data. 100 experiments were run, each for a different hourly temperature
observation set (sampled from a set of observation sets), and AMERPE was calculated for
various interpolation functions for 25 values of k (number of nearest neighbors) using 1000
sampled observations and about 3000 validation observations (the rest) that were held
out for evaluation. The error bars represent the 95 % confidence interval for the bootstrap
mean (over 100 bootstrap samples) of the evaluated quantities.

Figure 3.9 shows experimental results on real world hourly dew point data. The first point
to note is the similarity of these results to the ones on real world hourly temperature data,
since temperature and dew point are likely following similar distributions. One thing to
note is that, as k grows to larger values, IMedian ends up with a significantly lower error
than IMean, hinting at observation location sparsity and large observation value variance per
interpolation neighborhood, giving the median an advantage over the mean since it is more
robust to outliers. INDDNISD still shows similar behavior, its error diminishing as k grows from
k � 1, and reaching a minimal AMERPE of 2.043 507 at k � 10 (as shown in table 3.3), after

26

which it starts increasing, even though still very slightly. Furthermore, INDDNISD’s error is
significantly lower than the one of the other interpolation functions, suggesting its robustness
to higher neighborhood observation value variance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
k (number of nearest neighbors)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AM
ER

PE

Interpolation Error on Real World Hourly Dew Point Data

Interpolation function
Mean
Median
NDDNISD
Nearest

Figure 3.9 Interpolation Error on Real World Hourly Dew Point Data.
The figure shows the interpolation error of various interpolation functions on real world
hourly dew point data. 100 experiments were run, each for a different hourly dew point
observation set (sampled from a set of observation sets), and AMERPE was calculated for
various interpolation functions for 25 values of k (number of nearest neighbors) using 1000
sampled observations and about 3000 validation observations (the rest) that were held
out for evaluation. The error bars represent the 95 % confidence interval for the bootstrap
mean (over 100 bootstrap samples) of the evaluated quantities.

In figure 3.10, experimental results on real world hourly pressure data are shown. The first
element to note is the steep and steady rise in error for IMean and IMedian as k grows, which
might be explained by the very localized nature of pressure, meaning that pressure values are
likely to have relatively high local variance which accentuates the importance of the very near
observation neighbors and rapidly decreases the importance of further neighbors. This effect
may also be seen in INDDNISD’s error which reaches it optimal k values at k � 8 and k � 9
(as shown in table 3.4), its lowest optimal k values thus far.

Figure 3.11 shows experimental results on real world hourly wind speed data. A first point
to notice is that IMean and IMedian end up with lower errors than INearest, suggesting that
wind speed values vary in a smoother way locally. This result may also be caused by the
wind speed value distribution being zero/low-inflated. As shown in table 3.5, the error of

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
k (number of nearest neighbors)

0.000

0.005

0.010

0.015

0.020
AM

ER
PE

Interpolation Error on Real World Hourly Pressure Data

Interpolation function
Mean
Median
NDDNISD
Nearest

Figure 3.10 Interpolation Error on Real World Hourly Pressure Data.
The figure shows the interpolation error of various interpolation functions on real world
hourly pressure data. 100 experiments were run, each for a different hourly pressure
observation set (sampled from a set of observation sets), and AMERPE was calculated for
various interpolation functions for 25 values of k (number of nearest neighbors) using 1000
sampled observations and about 3000 validation observations (the rest) that were held
out for evaluation. The error bars represent the 95 % confidence interval for the bootstrap
mean (over 100 bootstrap samples) of the evaluated quantities.

IMean and IMedian decreases rapidly for low values of k and quickly reaches an optimum at
respectively low k values of k � 5 and k � 6, after which the error starts slowly but steadily
increasing as more and more impertinent neighbors get considered. On its side, INDDNISD

behaves similarly to the way it behaves on synthetic data, its error steadily decreasing as
k grows without reaching an obvious optimum such that k P N¡0,¤25, suggesting a smaller
local neighborhood distribution variance, even though potentially accompanied by higher
distribution skewness/kurtosis.

Ultimately, SkNNI’s INDDNISD significantly outperforms all other evaluated interpolation
functions, both on synthetic and real world data, regardless of distribution variance, skewness,
zero inflation and noise, which clearly exposes its interpolation robustness for a variety of
data natures and distributions.

28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
k (number of nearest neighbors)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
AM

ER
PE

Interpolation Error on Real World Hourly Wind Speed Data

Interpolation function
Mean
Median
NDDNISD
Nearest

Figure 3.11 Interpolation Error on Real World Hourly Wind Speed Data.
The figure shows the interpolation error of various interpolation functions on real world
hourly wind speed data. 100 experiments were run, each for a different hourly wind speed
observation set (sampled from a set of observation sets), and AMERPE was calculated for
various interpolation functions for 25 values of k (number of nearest neighbors) using 1000
sampled observations and about 3000 validation observations (the rest) that were held
out for evaluation. The error bars represent the 95 % confidence interval for the bootstrap
mean (over 100 bootstrap samples) of the evaluated quantities.

3.9 Implementation

Since its inception, SkNNI has been designed and developed with practical and empirical
considerations in mind. Thus, the solution which is used to run the experiments and
produce the results is implemented in Python using NumPy and SciPy as its sole external
dependencies. To promote transparency, exemplification and extensibility of the software, the
SkNNI project is open source and the source code for the Python implementation is available
at https://ptrempe.page.link/sknni. Thus, users are encouraged to fork the repository
to extend the code and build upon it. Of course, the code is also designed and developed
with usability in mind. As such, people who only want to use SkNNI as is may easily add
the dependency to their Python projects simply by installing SkNNI through PyPI with
the following one-liner: pip install sknni. Usability and abstraction of the algorithm’s
complexity for end users being main goals, listing 3.1 shows how simple SkNNI is to use
through a brief example.

https://ptrempe.page.link/sknni

29

Listing 3.1 SkNNI Usage Example
1 import numpy as np
2
3 from sknni import SkNNI
4
5 if __name__ == '__main__ ':
6 observations = np.array ([[30 , 120, 20],
7 [30, -120, 10],
8 [-30, -120, 20],
9 [-30, 120, 0]])

10 interpolator = SkNNI(observations)
11 interp_coords = np.array ([[30 , 0],
12 [0, -120],
13 [0, 0],
14 [0, 120] ,
15 [-30, 0]])
16 interpolation = interpolator (interp_coords)
17 print(interpolation)
18 # Output :
19 # [[30. 0. 9.312546]
20 # [0. -120. 14.684806]
21 # [0. 0. 12.5]
22 # [0. 120. 10.315192]
23 # [-30. 0. 16.464548]]

3.10 Contribution

This chapter proposes a novel solution to the problem of efficient sparse spherical interpolation
at scale: SkNNI which shines when using the proximity-and-neighborhood-distribution-aware
NDDNISD interpolation function. Thus, the main contributions of the solution presented in
this chapter are:

• SkNNI, an efficient algorithm for sparse spherical interpolation;
• NDDNISD, a proximity-and-neighborhood-distribution-aware interpolation function;
• a maximal error guarantee for interpolated values;
• sknni, an open source Python package also available through PyPI;
• an easy-to-use and comprehensible programmatic user interface.

3.11 Conclusion

Motivated by the need for an algorithm which structures scattered geospatial data, a so-
lution is proposed: the spherical k-nearest neighbors interpolation (SkNNI). Throughout
this chapter, each step of the algorithm is explained along with the associated rationale and

30

equations, and various interpolation functions are then evaluated to measure the algorithm’s
performance on noisy synthetic and real world data. After running the experiments, a key
takeaway is that the consideration of many nearest interpolation neighbors is important
since they provide additional information, but only up to a point after which they become
detrimental. Another key takeaway is that SkNNI’s INDDNISD significantly outperforms all
other evaluated interpolation functions thanks to its robustness to interpolation neighborhood
distribution variance, skewness, zero inflation and noise. Thus, SkNNI’s numerical stability
and robustness to noise in the observation data make it suitable for real world applications
like data mining, predictive modeling, and data visualization. Hence, this work shows that
it is possible to structure scattered geospatial data efficiently through spherical k-nearest
neighbors interpolation (SkNNI) while providing an easy-to-use and comprehensible user
interface for researchers, engineers, and other practitioners wanting to incorporate it into
their data processing pipelines. Ultimately, SkNNI is released in the optic of improving the
data science field, allowing for simple interpolation, easy visualization, rich predictive model
input provisioning, and much more.

31

Table 3.1 Interpolation Error on Synthetic Data

k IMean IMedian INDDNISD INearest

1 7.180887 7.180887 7.180887 7.180887
2 6.292216 6.292216 5.713150 7.180887
3 6.000302 6.386995 5.030378 7.180887
4 5.864746 6.070917 4.661821 7.180887
5 5.785400 6.102587 4.435114 7.180887
6 5.741767 5.943362 4.279173 7.180887
7 5.713855 5.969839 4.172184 7.180887
8 5.704050 5.886915 4.095598 7.180887
9 5.697394 5.907827 4.036693 7.180887
10 5.698507 5.860449 3.992791 7.180887
11 5.701431 5.889342 3.958226 7.180887
12 5.708400 5.858672 3.931962 7.180887
13 5.717604 5.883218 3.911465 7.180887
14 5.728999 5.867701 3.894426 7.180887
15 5.741268 5.894593 3.879615 7.180887
16 5.755385 5.888917 3.867770 7.180887
17 5.769680 5.914400 3.856452 7.180887
18 5.784062 5.912072 3.848904 7.180887
19 5.799974 5.938317 3.841940 7.180887
20 5.817045 5.942745 3.835128 7.180887
21 5.834190 5.970097 3.829496 7.180887
22 5.850272 5.973504 3.824670 7.180887
23 5.867263 5.998613 3.820316 7.180887
24 5.883805 6.004929 3.817285 7.180887
25 5.900620 6.028701 3.814303 7.180887

min 5.697394 5.858672 3.814303 7.180887
max 7.180887 7.180887 7.180887 7.180887

32

Table 3.2 Interpolation Error on Real World Hourly Temperature Data

k IMean IMedian INDDNISD INearest

1 2.665625 2.665625 2.665625 2.665625
2 2.636061 2.636061 2.369657 2.667078
3 2.662057 2.699771 2.256119 2.665861
4 2.701233 2.702824 2.196502 2.665602
5 2.740470 2.758294 2.166395 2.665686
6 2.784114 2.778144 2.148715 2.665751
7 2.823021 2.826885 2.136740 2.665983
8 2.862797 2.849402 2.128386 2.665781
9 2.899099 2.890800 2.122914 2.667346
10 2.935949 2.916202 2.120297 2.665583
11 2.970875 2.952571 2.118820 2.666155
12 3.003557 2.981707 2.117649 2.666342
13 3.035741 3.012049 2.116623 2.666025
14 3.067085 3.039471 2.116854 2.666124
15 3.096562 3.068821 2.118038 2.666754
16 3.125052 3.097134 2.119352 2.666136
17 3.152291 3.124024 2.120373 2.665670
18 3.180208 3.155309 2.121920 2.666228
19 3.207222 3.183880 2.124083 2.666197
20 3.232494 3.209806 2.126432 2.666571
21 3.256624 3.233558 2.128680 2.666834
22 3.280750 3.261104 2.131506 2.666941
23 3.303521 3.286242 2.133911 2.666331
24 3.326694 3.310927 2.136222 2.666163
25 3.348467 3.333161 2.138759 2.665903

min 2.636061 2.636061 2.116623 2.665583
max 3.348467 3.333161 2.665625 2.667346

33

Table 3.3 Interpolation Error on Real World Hourly Dew Point Data

k IMean IMedian INDDNISD INearest

1 2.535426 2.535426 2.535426 2.535426
2 2.536053 2.536053 2.271442 2.536933
3 2.570109 2.608266 2.158391 2.535842
4 2.621533 2.619108 2.105821 2.536399
5 2.674192 2.684520 2.075117 2.536114
6 2.720712 2.701085 2.057358 2.536434
7 2.769336 2.755300 2.048393 2.536098
8 2.818598 2.779703 2.044607 2.536168
9 2.865431 2.825556 2.043763 2.536392
10 2.908990 2.857349 2.043507 2.535781
11 2.948776 2.895035 2.044385 2.536299
12 2.987787 2.928608 2.044863 2.536306
13 3.024064 2.966058 2.046658 2.536498
14 3.058141 2.995154 2.050000 2.536402
15 3.091800 3.027724 2.052573 2.535999
16 3.123234 3.055308 2.055930 2.536802
17 3.151773 3.082732 2.058755 2.536968
18 3.180382 3.108762 2.061609 2.536130
19 3.208803 3.135793 2.064967 2.535474
20 3.236057 3.160292 2.068183 2.535938
21 3.262319 3.184537 2.071683 2.536565
22 3.286715 3.208171 2.074704 2.536197
23 3.311579 3.230688 2.077754 2.536191
24 3.335427 3.253906 2.080968 2.535762
25 3.358386 3.275029 2.084425 2.536456

min 2.535426 2.535426 2.043507 2.535426
max 3.358386 3.275029 2.535426 2.536968

34

Table 3.4 Interpolation Error on Real World Hourly Pressure Data

k IMean IMedian INDDNISD INearest

1 0.014757 0.014757 0.014757 0.014757
2 0.014987 0.014987 0.012975 0.014752
3 0.015366 0.015498 0.012296 0.014758
4 0.015758 0.015631 0.011985 0.014755
5 0.016130 0.016127 0.011808 0.014752
6 0.016500 0.016330 0.011699 0.014756
7 0.016876 0.016834 0.011647 0.014756
8 0.017238 0.017075 0.011623 0.014758
9 0.017583 0.017505 0.011623 0.014760
10 0.017898 0.017725 0.011631 0.014750
11 0.018199 0.018094 0.011643 0.014756
12 0.018468 0.018327 0.011654 0.014756
13 0.018747 0.018672 0.011676 0.014749
14 0.019011 0.018899 0.011697 0.014749
15 0.019260 0.019200 0.011724 0.014759
16 0.019501 0.019413 0.011749 0.014758
17 0.019743 0.019681 0.011779 0.014755
18 0.019971 0.019913 0.011810 0.014758
19 0.020201 0.020186 0.011843 0.014761
20 0.020432 0.020411 0.011875 0.014759
21 0.020658 0.020684 0.011905 0.014754
22 0.020874 0.020897 0.011933 0.014758
23 0.021090 0.021146 0.011961 0.014756
24 0.021302 0.021339 0.011993 0.014762
25 0.021511 0.021567 0.012023 0.014757

min 0.014757 0.014757 0.011623 0.014749
max 0.021511 0.021567 0.014757 0.014762

35

Table 3.5 Interpolation Error on Real World Hourly Wind Speed Data

k IMean IMedian INDDNISD INearest

1 0.354403 0.354403 0.354403 0.354403
2 0.335207 0.335207 0.325974 0.354427
3 0.328778 0.334170 0.314835 0.354389
4 0.326969 0.327124 0.308738 0.354506
5 0.326677 0.329275 0.305537 0.354306
6 0.326898 0.327010 0.302942 0.354396
7 0.328020 0.329073 0.301002 0.354475
8 0.329175 0.328735 0.299813 0.354419
9 0.330543 0.330327 0.298995 0.354358
10 0.332047 0.330648 0.298228 0.354362
11 0.333515 0.331980 0.297561 0.354497
12 0.334981 0.332697 0.296825 0.354347
13 0.336048 0.333577 0.296298 0.354203
14 0.336997 0.334670 0.295942 0.354409
15 0.338150 0.335601 0.295647 0.354487
16 0.339171 0.336448 0.295299 0.354537
17 0.340138 0.337216 0.295078 0.354316
18 0.341059 0.337959 0.294868 0.354291
19 0.341956 0.338635 0.294705 0.354416
20 0.342809 0.339416 0.294517 0.354416
21 0.343650 0.340104 0.294406 0.354468
22 0.344366 0.340731 0.294263 0.354452
23 0.345121 0.341029 0.294155 0.354366
24 0.345912 0.341870 0.294046 0.354432
25 0.346618 0.342357 0.293959 0.354370

min 0.326677 0.327010 0.293959 0.354203
max 0.354403 0.354403 0.354403 0.354537

36

CHAPTER 4 MULTIDIMENSIONAL WORLDWIDE WEATHER
FORECASTING BY DEEP LEARNING

This chapter focuses on the problem of automatic multi-weather-parameter worldwide weather
forecasting by deep learning. In it, challenges and ideas related to the topic are discussed, and
a novel deep neural network architecture is presented to show how preprocessed and structured
initially scattered geospatial big data may be used to train a model to make accurate and
insightful worldwide forecasts automatically and without prior weather-related knowledge.

4.1 Introduction

Weather forecasting has remained an interesting problem for years due to its inherent complex-
ity and high impact on humanity and its infrastructures. Weather systems being this complex,
there is no simple way of expressing them and of making very accurate forecasts, especially far
into the future [41,42]. Even though long-term forecasting proves to be a challenge, the higher
collection and availability of meteorological data allow for the creation and training of more
accurate models. Earlier weather forecasting models were mostly theoretical and equations
were implemented and calculated as is. Later models started leveraging collected weather data
to compute statistics and other predefined metrics, and used these to compute their forecast.
Over the last few years, because of the much higher data availability and advances in the
field of machine intelligence, researchers have started leveraging weather data to train models
using a wide variety of optimization algorithms [13,14,16]. This trend culminated in many
recent breakthroughs like the ones discussed in chapter 2. The main limitation nowadays
often not being data anymore but the problem formulation and model architecture design
for efficient and accurate model training instead, chapter 3 of this work presents such a way
of organizing and structuring globally scattered geospatial data in that way which makes it
useful for a trainable model to learn from. Thus, this chapter aims to provide an example
of multi-weather-parameter worldwide weather forecasting deep learning model architecture
and show its relevance with the ultimate goal of laying groundwork in the field and inspiring
others to build upon it to provide ever more accurate weather forecasts to help people plan
ahead and live safely.

37

4.1.1 Problem Definition

The problem is defined similarly to a classic weather forecasting problem, meaning the model
receives a sequence of weather system states as input and its task is to predict the next
one. The main differences with the proposed problem formulation are spatiotemporality and
working with multi-channel weather data, since the inputs and predictions are worldwide for
all weather parameters.

Thus, a geospatial frame is defined as a multi-channel geospatial map (of latitudinal reso-
lution |Φ| and longitudinal resolution |Θ|) containing C channels. The model’s input x̃ P
RB�T�|Φ|�|Θ|�C is defined as a batch (of length B) of time-contiguous sequences (of length T)
of geospatial frames (of shape

�|Φ| , |Θ| , C�), and the model’s output ŷ P RB�|Φ|�|Θ|�C as a
batch (of length B) of geospatial frames (of shape

�|Φ| , |Θ| , C�) which correspond to the
temporally next frames to be predicted.

To perform inference (prediction), the model M with trainable parameters θ is given an input
batch x̃ and predicts an output batch ŷ using forward propagation as shown in equation (4.1).

ŷ � M px̃; θq (4.1)

Thus, the model training process’s goal is to find optimal trainable parameter values θ� that
minimize a loss function L pỹ, ŷq which measures the model’s prediction ŷ error with respect
to given ground truth ỹ.

4.2 Background and Related Work

This section discusses important external contributions and topics related to this work. In
it, key notions to better understand this chapter and the context in which it unfolds are
presented.

4.2.1 Physics Simulations

This first section briefly addresses physics simulations, since they are used extensively for
weather forecasting. Such simulations perform very well when the equations used to model
the problem are accurate and encompass a very large proportion of the underlying reality.

Unfortunately, this is not always the case and many of these models end up with a multitude
of parameters to manually tune. As such, meteorologists have quickly realized that some
models perform better for some parts of the world and worse for others, and better during
a specific season than during others. The problem is they have to keep track of a lot of

38

information, and of various models, on top of having to tune every single one of them. Since
such a process rapidly becomes tedious, most weather forecasts are no more than national.

About aforementioned fastidious manual or semi-automatic tuning, some researchers have
started investigating ways of automating the tuning of differential equations using deep
learning [43] and this could prove to be a very interesting avenue for future research. Though,
since this work aims to forecast weather automatically and only through data, no prior
information about weather or weather systems should be incorporated into the model, i.e. the
model shall learn meteorology and weather forecasting only through data.

4.2.2 Spherical Convolutional Neural Networks

The spherical ConvNet is a kind of ConvNet which operates by performing spherical con-
volutions which are practically implemented as spherical cross-correlations using the fast
Fourier transform [44]. As such, it is useful for spherical-rotation-invariant classification and
regression problems.

Thus, such models are expected to perform well on inputs like spherical images, e.g. having a
model determine the distance to the closest object based on a spherical image provided by a
drone. This example case is spherical-rotation-invariant, because rotating the spherical image
does not influence the closest object distance metric to be predicted by the model.

Since the worldwide weather forecasting problem this work aims to solve is spherical-rotation-
variant, spherical ConvNets cannot be used, though they would be very interesting to consider
if some kind of spherical deconvolution is ever developed.

4.2.3 Residual Neural Networks and Functions

Residual neural networks are based on the consideration that, as neural networks get deeper
and use many non-linearities, it becomes difficult for them to learn the identity function, and
these very deep models tend to suffer from exploding and vanishing gradient problems [45]. The
proposed solution makes clever use of residual functions which are as shown in equation (4.2).

H pxq � F pxq � x (4.2)

In the equation, x represents an input, H pxq is the hidden mapping to optimize and F pxq is
the residual mapping which is optimized instead. The addition of x is incorporated into models
as a shortcut connection (also called a skip connection) and allows for model optimization
as usual. The authors of [45] hypothesize that it might be easier for models to optimize the

39

residual mapping than the full hidden mapping. They then show that using residual functions
allows for the training of very deep neural networks without encountering the aforementioned
problems. Since the publication of their findings, residual neural networks have been used to
achieve state-of-the-art results for a variety of tasks and challenges.

4.2.4 Adaptive Moment Estimation Optimizer

Adaptive moment estimation (Adam) is a gradient-based optimizer which uses adaptive
moment estimation to compute trainable parameter updates [46]. Adam is a very efficient
optimizer based on the ideas used in AdaGrad [47] and RMSProp [48]. It has appealing
properties like not requiring a stationary objective and yielding parameter updates which are
robust to sparse gradients and gradient rescaling. A typical trainable parameter update is as
shown in expression (4.3).

θ Ð Adam
�

∇θ L
�
ỹ,M px̃; θq� , θ;α, β1, β2, ε

	
(4.3)

In this expression, ∇θ L
�
ỹ,M px̃; θq� is the gradient of the loss L with respect to the model’s

trainable parameters θ; and α, β1, β2 and ε are hyperparameters used to tune the optimizer.
Though, in practice; β1, β2 and ε are often left to their default values which are 0.9, 0.999 and
10�8, respectively. Since its publication, the Adam optimizer has been implemented in many,
if not all, major deep learning frameworks (e.g. TensorFlow [49], Keras [50], PyTorch [51],
Caffe [52], Lasagne [53], Theano [54], CNTK [55], MxNet [56], etc.) and has seen a lot of use
due to its simplicity and efficiency, often helping researchers achieve state-of-the-art results.

4.3 Approach and Methodology

The following sections detail the undertaken approach and methodology. Are hereafter
presented the data organization, model architecture, evaluation metrics, and training process.

4.3.1 Data and Datasets

The original data source for this work’s experiments is the proprietary dataset mentioned
in §1.4, which is constituted of weather data collected at various locations scattered around
the world.

This data is first processed using SkNNI to transform the time-aggregated scattered values
into geospatial weather maps (where all values are assumed to be at sea level). The geospatial
weather maps corresponding to the same time step are then stacked to form geospatial frames.

40

Time-contiguous geospatial frames are then stacked to form time series of multi-channel
worldwide weather states. These data transformations are illustrated in figure 4.1. Each time
series is then converted into an example composed of an input part x̃ which contains all of
the sequence except the last time step, and an output part ỹ which contains the last time
step (which is the prediction target).

Figure 4.1 Data Preprocessing for Multidimensional Worldwide Weather
Forecasting. The figure shows various transformations used to prepare the data for
multidimensional worldwide weather forecasting. From left to right, the first step uses
SkNNI to transform scattered geospatial observations into geospatial frame channels. The
next transformation stacks geospatial frame channels into complete geospatial frames. The
last step stacks geospatial frames into time-contiguous sequences.

All of these examples ultimately form the dataset D which is split (using the training
split STraining, validation split SValidation and test split STest defined in table 4.1) into three
mutually exclusive datasets: the training set DTraining, the validation set DValidation and the
test set DTest, as shown in equations (4.4) and (4.5) (where S denotes the dataset splitting
function).

STraining � SValidation � STest � 1 (4.4)�
DTraining,DValidation,DTest

� � S
�
D,STraining,SValidation,STest

�
(4.5)

41

Table 4.1 Hyperparameters

Hyperparameter Value
Input sequence length 12
Sequence time step duration ¤ 1 h
Latitudinal resolution 90
Longitudinal resolution 180
Training split 70 %
Validation split 15 %
Test split 15 %
Optimizer Adam
Learning rate 10�3

Number of trainable parameters 300 000

4.3.2 Model Architecture

Before presenting the model architecture used in this work, it is important to mention that a
variety of model architectures are capable of operating with the problem formulation defined
in this work. For example, when considering time series forecasting, recurrent neural network
architectures like LSTMs are prominent candidates. In this case, a variant of LSTMs, namely
the ConvLSTM, could be used to work with the aforementioned problem formulation. Other
model architectures, like residual or non-residual ConvNets could also be used in conjunction
with reshaping operations to work with the same problem formulation. Of course, when
considering custom model architectures which are sometimes adapted for low latency, low
memory usage, low power usage and the like, the possibilities become almost limitless.

As such, this work does not attempt to create a large model with hundreds of millions (or
even billions) of parameters, which would require enormous computational resources, though
that would make for very interesting future work. Instead, the proposed model architecture
is mainly meant as a proof of concept for the aforementioned formulation with the goal of
showing its practicality and potential.

Thus, the proposed model architecture, named DeltaNet, is a deep neural network based on
the use of residual delta reduction units (ResDRUs) (see figure 4.2 for architectural details)
which are a kind of residual block. Each block is a hyperparameterizable group of potentially
trainable layers. Conceptually, each ResDRU computes a variation (the delta) and hidden
representations (using the H transforms) based on the time steps it receives, and then merges
aforementioned hidden representations through stacking before compacting them using the
reduction transform R. As such, the ResDRU is designed to receive two inputs: the last time

42

step of a sequence tn�1 and an anterior time step tn�L of the same sequence. It then carries
on the computation presented in equations (4.6) to (4.11).

∆t � tn�1 � tn�L (4.6)

h∆t � H∆t p∆tq (4.7)

htn�1 � Htn-1

�
tn�1

�
(4.8)

htn�L � Htn-L

�
tn�L

�
(4.9)

h∆ � R
��
h∆t , htn�1 , htn�L

�

(4.10)

t̂n � tn�1 � h∆ (4.11)

ℋ𝑡𝑛−1

𝑡𝑛−1

ℋ𝑡𝑛−𝐿
ℋΔ𝑡

𝑡𝑛−𝐿

stack(axis=-1)

ℛ

Δ𝑡

+

ෝ𝑡𝑛

Figure 4.2 ResDRU Architecture. The figure illustrates the architecture of a
ResDRU block with its inputs, inner operations, residual connection and output.

Thus, the ResDRU first computes the difference ∆t between the last time step tn�1 and the
anterior time step tn�L. It then computes hidden representations for ∆t, tn�1 and tn�L using
the H∆t , Htn�1 and Htn�L transforms, respectively. The hidden representations are then
stacked along a new last axis and reduced using the R transform. Note that the transforms are
conceptually generic and may be realized in many ways as long as compatible tensor shapes
and types are used. In this work, the H transforms are realized using two-dimensional 3� 3
convolutions with “same” padding, and the R transform is realized as a single-channel three-

43

dimensional pointwise (1� 1) convolution with “same” padding followed by last dimension
squeezing. Once the delta reduction unit (DRU) part computed, the residual skip connection
is incorporated by adding the last time step tn�1 to the reduced representation. Along the
same line of thought, equations (4.12) to (4.14) show various representations of the ResDRU
which are all equivalent by definition.

t̂n � tn�1 � h∆ (4.12)

ðñ∆ t̂n � tn�1 �DRU
�
tn�1, tn�L

�
(4.13)

ðñ∆ t̂n � ResDRU
�
tn�1, tn�L

�
(4.14)

Regarding the DeltaNet model (see figure 4.3 for architectural details), it starts with an
input x̃ P RB�T�|Φ|�|Θ|�C and first applies a channel normalization step as described in
equation (4.15).

C pc; cmin, cmaxq � 2 c� cmin

cmax � cmin
� 1 (4.15)

𝑡𝑛−1 ෝ𝑡𝑛𝑡𝑛−2𝑡2

ResDRU ResDRU

stack(axis=-1)

ℛ

𝑡1

ResDRU

Figure 4.3 DeltaNet Architecture. The figure illustrates the architecture of the
DeltaNet model with its input sequence of multidimensional weather states, inner ResDRUs,
consensual reduction step, and output.

This normalization effectively transforms each channel’s values so that they lie in r�1, 1s.
The model then applies a ResDRU to each of the T time steps of the input sequence, except
the last one. The intuition is that each ResDRU is computing an estimate of the target
time step t̂n based on the variation between the last time step tn�1 and its given earlier time

44

step tn�L. Once every ResDRU has made its estimation, they are all processed (stacked
along a new last axis and then reduced through pointwise-convolutional compaction of the
aforementioned last axis and squeezing) into a form of consensual representation. A final
channel restoration step is then performed as described in equation (4.16).

C-1 pc; cmin, cmaxq � c� 1
2 pcmax � cminq � cmin (4.16)

This restoration step brings each channel’s values back to their original range such that they
lie in rcmin, cmaxs. Thus, the output of the channel restoration step becomes the model’s
output prediction ŷ.

4.3.3 Model Evaluation and Metrics

To evaluate the model’s performance on the datasets, a loss function L pỹ, ŷq and metrics are
defined. The idea is to first compute channel-wise metrics like mean absolute error, and then
use a function of these as the loss. Furthermore, since some parts of the world are very well
covered with weather stations and others are not, a binary weather station presence mask is
used to segment the metrics into two subsets which allow for more insightful optimization and
analysis. The binary weather station presence mask Ω P t0, 1u|Φ|�|Θ| is a gridded world map,
of which each cell is set to one if it contains at least one weather station, and to zero otherwise.
Such a mask is useful to allow fine-tuning of the loss, for example to penalize the model more
for errors where there are weather stations, since these places are more likely to be important
to humanity. Such a mask may also be useful to analyze how interpolated values where there
are no weather stations affect the prediction abilities of the model compared to where there
are. Thus, for each channel, the channel mean absolute error (CMAE) for locations with
weather stations (WS; see equation (4.17)) and locations with no weather stations (NWS; see
equation (4.18)) are computed.

CMAEWS pỹc, ŷcq � MAE pỹc d Ω, ŷc d Ωq (4.17)

CMAENWS pỹc, ŷcq � MAE
�
ỹc d p1� Ωq, ŷc d p1� Ωq� (4.18)

In these equations, d denotes the element-wise product of the binary mask with the prediction
or target along the latitudinal and longitudinal axes. Building on top of these metrics, the
loss L (also known as the objective function) is as defined in equation (4.19).

L pỹ, ŷq �
Ç

c�1

�
βc,WS CMAEWS pỹc, ŷcq � βc,NWS CMAENWS pỹc, ŷcq

ci,max � ci,min

�
(4.19)

45

This equation shows the loss is computed by summing over sublosses, one per channel, where
each subloss is the sum of weighted normalized CMAEs. Regarding weighting, the βs are
hyperparameters used to adjust the weight of each CMAE. If no particular weighting is
desired, all βs may simply be left to their default value of one. The loss L now defined, the
optimization process’s goal is thus to find optimal model parameters θ� that minimize the
loss L.

Furthermore, to evaluate DeltaNet’s performance, since there exists no model which uses
the novel problem formulation presented in this work, DeltaNet is compared to two baseline
models. The first one is the persistence model which computes its output as described in
equation (4.20).

ŷ � t̂n � tn�1 (4.20)

This baseline model is expected to be the hardest one to outperform due to the relatively
short time step duration used (see table 4.1). The second one is the naive linear model which
computes its output as described in equation (4.21).

ŷ � t̂n � tn�1 � ptn�1 � tn�2q (4.21)

To prove its potential, DeltaNet must outperform these two baseline models for at least one
weather parameter, and ideally many.

4.3.4 Model Training

To train the model, the training set DTraining is used to get batches of inputs x̃ and output
targets ỹ. Note that this work uses the term “batch” (and not “mini-batch”) to refer to
groups of examples. During training, input batches are fed to the model M with trainable
parameters θ which runs its forward pass and makes a prediction ŷ. The ground truth ỹ

and model prediction ŷ are then used to compute the loss L pỹ, ŷq. Then, an optimizer O
(with hyperparameters θO), in this case the Adam optimizer (with its default hyperparameter
values), computes the gradient of the loss with respect to the model’s trainable parameters
and uses it to update the model’s trainable parameters θ as shown in expression (4.22).

θ Ð O
�

∇θL
�
ỹ,M px̃; θq� , θ; θO

	
(4.22)

46

The training process ends when a termination condition (like reaching a given number of
epochs/iterations or not seeing any improvement on the validation set for a given number of
epochs/iterations) is met.

4.4 Empirical Results and Analysis

This section presents empirical results and discusses them to determine how DeltaNet fairs
against the persistence and naive linear baseline models in terms of prediction accuracy.

Figure 4.4 shows model prediction experimental results for temperature. In it, DeltaNet
proves to significantly outperform both persistence (by a small yet clear margin) and naive
linear (by a large margin) models. Comparing the results where there are weather stations
(darker portion of the bars) and where there are not (lighter portion of the bars), one may
observe the noticeably larger confidence intervals hinting at larger error variances where
there are no weather stations than where there are. This phenomenon may be explained by
the interpolation inducing a larger variance (both on interpolated observations and model
predictions) due to its inherent approximating nature.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Mean absolute prediction error

Persistence

Naive linear

DeltaNet

M
od

el

0.246584

0.412274

0.213368

0.246584

0.412274

0.213368

0.084077

0.144050

0.068028

Mean Absolute Prediction Error for Temperature

Figure 4.4 Mean Absolute Prediction Error for Temperature. The figure
shows the prediction error (on a held-out test set) of various predictive models for real
world temperature data. The darker portion of the bars represents the mean absolute
prediction error at locations where there are weather stations and the lighter portion of the
bar represents the mean absolute prediction error at locations where there are no weather
stations. The error bars represent the 95 % confidence interval for the bootstrap mean
(over 1000 bootstrap samples) of the evaluated quantities.

In figure 4.5, model prediction experimental results for dew point are presented. The first
element to notice is that DeltaNet outperforms the naive linear model, but does not outperform
the persistence model, even though not by far. This shows the limits of the admittedly small

47

(with its 300 000 trainable parameters) DeltaNet model which may likely be able to perform
better given a larger number of trainable parameters. Nonetheless, the point of making
DeltaNet is to lay groundwork in the field and show such a model’s potential for at least some
weather parameter and expose its limitations to stimulate new research in the field. Thus,
dew point nowcasting seems to be more challenging than the one of other weather parameters.
This may be caused by the more independent/decoupled nature of dew point with respect to
other weather parameters.

0.00 0.05 0.10 0.15 0.20 0.25
Mean absolute prediction error

Persistence

Naive linear

DeltaNet

M
od

el

0.146436

0.263043

0.176875

0.146436

0.263043

0.176875

0.048551

0.087362

0.052874

Mean Absolute Prediction Error for Dew Point

Figure 4.5 Mean Absolute Prediction Error for Dew Point. The figure shows
the prediction error (on a held-out test set) of various predictive models for real world dew
point data. The darker portion of the bars represents the mean absolute prediction error at
locations where there are weather stations and the lighter portion of the bar represents the
mean absolute prediction error at locations where there are no weather stations. The error
bars represent the 95 % confidence interval for the bootstrap mean (over 1000 bootstrap
samples) of the evaluated quantities.

Regarding relative humidity, figure 4.6 shows model prediction experimental results for it.
The chart shows DeltaNet ends up with a slightly yet clearly lower prediction error than
persistence and a significantly lower one than the one of the naive linear model. Akin to the
aforementioned hypothesis, relative humidity’s higher dependence on other weather parameters
might make it easier for models to predict.

Figure 4.7 exhibits the experimental results for ultraviolet index. The visualization shows
DeltaNet outperforms both persistence and naive linear baseline models by a significant
margin. This result suggests ultraviolet index is simpler to predict, maybe because of its more
predictable nature which could be due to its simpler dependence on other weather parameters
and seasonality.

Lastly, figures 4.8, 4.9 and 4.10 respectively show the ground truth, DeltaNet model prediction
and absolute prediction error for sample temperature data. These visualizations put forth the

48

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Mean absolute prediction error

Persistence

Naive linear

DeltaNet

M
od

el
1.033392

1.731522

0.921642

1.033392

1.731522

0.921642

0.333967

0.568512

0.283380

Mean Absolute Prediction Error for Relative Humidity

Figure 4.6 Mean Absolute Prediction Error for Relative Humidity. The
figure shows the prediction error (on a held-out test set) of various predictive models for
real world relative humidity data. The darker portion of the bars represents the mean
absolute prediction error at locations where there are weather stations and the lighter
portion of the bar represents the mean absolute prediction error at locations where there
are no weather stations. The error bars represent the 95 % confidence interval for the
bootstrap mean (over 1000 bootstrap samples) of the evaluated quantities.

model’s high worldwide prediction accuracy and the preservation of natural-looking weather
patterns (notwithstanding the distortions caused by the projection from the data’s plate
carrée projection to the visualization’s Miller projection). Also note that some values closer
to the planetary poles might seem odd. This is due to the weather station sparsity at those
locations. Considering such sparsity, the model’s predicted values are still very sensible with
respect to the given ground truth, which may be improved by collecting more observations at
these locations.

4.5 Contribution

This brief section simply puts forth the contribution of this work to the field of machine
intelligence. Thus, the main contributions presented in this chapter are:

• a multi-channel worldwide weather forecasting problem formulation;
• DeltaNet, a deep neural network model architecture for automatic multidimensional

worldwide weather forecasting;
• metrics to evaluate such a model’s performance;
• a use case of SkNNI for geospatial forecasting;
• a demonstration through empirical results of the feasibility and potential of automatically

learning to forecast weather by deep learning only through data.

49

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Mean absolute prediction error

Persistence

Naive linear

DeltaNet

M
od

el
0.171636

0.315903

0.158734

0.171636

0.315903

0.158734

0.062493

0.114189

0.042684

Mean Absolute Prediction Error for Ultraviolet Index

Figure 4.7 Mean Absolute Prediction Error for Ultraviolet Index. The
figure shows the prediction error (on a held-out test set) of various predictive models for
real world ultraviolet index data. The darker portion of the bars represents the mean
absolute prediction error at locations where there are weather stations and the lighter
portion of the bar represents the mean absolute prediction error at locations where there
are no weather stations. The error bars represent the 95 % confidence interval for the
bootstrap mean (over 1000 bootstrap samples) of the evaluated quantities.

4.6 Conclusion

Guided by the motivation for demonstrating the feasibility and potential of multi-channel
worldwide weather forecasting by deep learning, the DeltaNet model is designed, trained,
and evaluated against baseline models. Upon achieving better prediction accuracy than
the baseline models most of the time, the initial hypothesis regarding the feasibility and
potential of such an approach to weather forecasting holds true. Hence, the use of SkNNI
to structure scattered geospatial data in a way that makes it useful for a predictive model
and the design of the DeltaNet deep neural network architecture allow for the realization of
automatic multi-channel worldwide weather forecasting with high accuracy in the optic of
allowing people to plan ahead and live safely.

50

Ground Truth for Temperature

50

40

30

20

10

0

10

20

30

40

Figure 4.8 Ground Truth for Temperature. The figure shows the ground truth
for the temperature channel of a sample nowcast. To make this visualization, the geospatial
data is projected from its original plate carrée projection to the visualization’s Miller
projection, which causes some distortion.

51

Model Prediction for Temperature

50

40

30

20

10

0

10

20

30

40

Figure 4.9 Model Prediction for Temperature. The figure shows the model
prediction for the temperature channel of a sample nowcast. To make this visualization, the
geospatial data is projected from its original plate carrée projection to the visualization’s
Miller projection, which causes some distortion.

52

Absolute Model Prediction Error for Temperature

0.00

0.75

1.50

2.25

3.00

3.75

4.50

Figure 4.10 Absolute Model Prediction Error for Temperature. The figure
shows the absolute model prediction error for the temperature channel of a sample nowcast.
To make this visualization, the geospatial data is projected from its original plate carrée
projection to the visualization’s Miller projection, which causes some distortion.

53

CHAPTER 5 CONCLUSION

The present chapter concludes this work by first summarizing it and then presenting its
contribution to the machine intelligence field. Are then presented the limitations of the
approach put forth and future work pertaining to the topics coved throughout.

5.1 Summary

To briefly sum up this work, after introducing the problem under study and presenting related
work in the field, throughout are presented SkNNI, a geospatial interpolation algorithm,
and the feasibility and potential of multi-channel worldwide weather forecasting by deep
learning through the design, implementation and evaluation of the DeltaNet deep neural
network architecture. After running experiments which compare SkNNI and DeltaNet against
respective baselines, both solutions significantly outperform their respective baselines and
thus put forth their relevance at finding better solutions to the problems they are designed to
solve.

5.2 Contribution

This work’s fruition yields two main contributions.

The first one is SkNNI, the geospatial interpolation algorithm. Some of its subcontributions
are the thought process behind the algorithm’s design (like the importance of neighboring
observations’ distribution), and an efficient and user-friendly Python implementation of the
algorithm with strong guarantees regarding maximal interpolation errors.

The second one is DeltaNet, a multi-channel worldwide weather forecasting model. Some of its
subcontributions include the demonstration of a good use case for SkNNI, the presentation of
a deep neural network architecture which outperforms baseline models and shows its relevance
at finding more insightful solutions to the worldwide weather forecasting problem it aims to
solve, and importantly a demonstration of the feasibility and potential of such an approach
to weather forecasting.

5.3 Limitations

Since no real world solution is perfect, this section takes a look at both SkNNI and DeltaNet’s
limitations.

54

Starting with SkNNI, one of its prominent limitations when using the NDDNISD interpolation
function is being an interpolation-only algorithm (with respect to provided observation value
ranges) by design, meaning it cannot perform any form of extrapolation beyond the provided
observation values. Thus, users must make sure to provide representative and range-covering
observation values to the algorithm when building the interpolator to expect good results.
Another limitation of the algorithm (which may also be seen as an advantage depending on
context) is its data nature agnosticism, which might limit the algorithm’s performance, i.e. if
the algorithm were desired to be data-nature aware, it could potentially be updated to include
trainable parameters and learn to interpolate better if using a decent observation dataset.

Moving on to DeltaNet, one of its important limitations is its small number of trainable
parameters, which is close to 300 000. And yes; 300 000 trainable parameters is a noticeably
small figure when compared to recent state-of-the-art deep neural network architectures which
easily reach the hundreds of millions of trainable parameters [57] and even over a billion [58].
Though, DeltaNet is intentionally made to be relatively small, since the goal is to show
the potential of the proposed problem formulation, which DeltaNet does, even with such a
low number of trainable parameters. Ideas to remedy such a limitation would be to update
DeltaNet’s ResDRU transformations such that they use more trainable parameters, or simply
to propose a new deep neural network architecture with its own set of trainable parameters.
Another of DeltaNet’s limitations (which might also be considered an advantage) is the use
of channel-wise restoration operations which constrain the model’s outputs to lie in each
channel’s predefined bounds. If no such constraint is desired, the channel-wise restoration
step may simply be omitted or replaced by another kind of output activation function.

5.4 Future Work

To spark innovation and motivate researchers to always come up with ever-improving ap-
proaches and solutions, this section suggests ideas pertaining to potential future work related
to or ensuing from this work.

On SkNNI’s side, there are two prominent avenues awaiting future research. The first one
is defining new interpolation functions to use within SkNNI. The second one is about the
creation of a trainable version of SkNNI, potentially through deep learning or any other
similar automatic learning method.

On DeltaNet’s side, there are also two main avenues awaiting further exploration. The first one
is about experimenting with different configurations of the problem formulation, e.g. by varying
the input sequence length, the time step duration, the number of channels, and importantly

55

which channels to use. The second one is about finding model architectures which yield
high forecast accuracy while scaling well to hundreds of millions or even billions of trainable
parameters. In that vein, this work offers ideas and suggestions like ConvNets, spherical
ConvNets, ConvLSTMs and custom architectures like DeltaNet in the optic of stimulating
the machine intelligence community to keep proposing novel solutions to challenging problems
which impact millions on a daily basis.

5.5 Closing Thoughts

Looking forward, this work aims at laying groundwork regarding multi-channel worldwide
weather forecasting by deep learning with the goal of showing its feasibility and potential,
and inspiring researchers to build with and upon the core ideas behind the success of SkNNI
and DeltaNet to provide increasingly more accurate weather forecasts all around the globe for
people to plan their day and live safely.

56

REFERENCES

[1] A. G. Salman, B. Kanigoro, and Y. Heryadi, “Weather forecasting using deep learning
techniques,” in 2015 International Conference on Advanced Computer Science and
Information Systems (ICACSIS), 2015, Conference Proceedings, pp. 281–285.

[2] S. Lu, H. Youngdeok, I. Khabibrakhmanov, F. J. Marianno, S. Xiaoyan, J. Zhang, B. M.
Hodge, and H. F. Hamann, “Machine learning based multi-physical-model blending
for enhancing renewable energy forecast - improvement via situation dependent error
correction,” in 2015 European Control Conference (ECC), 2015, Conference Proceedings,
pp. 283–290.

[3] S. Suksri and W. Kimpan, “Neural network training model for weather forecasting
using fireworks algorithm,” in 2016 International Computer Science and Engineering
Conference (ICSEC), 2016, Conference Proceedings, pp. 1–7.

[4] L. Houthuys, Z. Karevan, and J. A. K. Suykens, “Multi-view ls-svm regression for
black-box temperature prediction in weather forecasting,” in 2017 International Joint
Conference on Neural Networks (IJCNN), 2017, Conference Proceedings, pp. 1102–1108.

[5] Y. Rybarczyk and R. Zalakeviciute, “Machine learning approach to forecasting urban
pollution,” in 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), 2016, Conference
Proceedings, pp. 1–6.

[6] B. Manning, “A machine learning based application for predicting global horizontal
irradiance,” in SoutheastCon 2017, 2017, Conference Proceedings, pp. 1–6.

[7] K. L. M. D. Sobrevilla, A. G. Quiñones, K. V. S. Lopez, and V. T. Azaña, “Daily
weather forecast in tiwi, albay, philippines using artificial neural network with missing
values imputation,” in 2016 IEEE Region 10 Conference (TENCON), 2016, Conference
Proceedings, pp. 2981–2985.

[8] E. Lazarevska, “Comparison of different models for wind speed prediction,” in IECON
2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, Confer-
ence Proceedings, pp. 5544–5549.

[9] A. Ahmadi, Z. Zargaran, A. Mohebi, and F. Taghavi, “Hybrid model for weather
forecasting using ensemble of neural networks and mutual information,” in 2014 IEEE

57

Geoscience and Remote Sensing Symposium, 2014, Conference Proceedings, pp. 3774–
3777.

[10] Z. Karevan and J. A. K. Suykens, “Clustering-based feature selection for black-box
weather temperature prediction,” in 2016 International Joint Conference on Neural
Networks (IJCNN), 2016, Conference Proceedings, pp. 2722–2729.

[11] E. Lazarevska, “Wind speed prediction with extreme learning machine,” in 2016 IEEE
8th International Conference on Intelligent Systems (IS), 2016, Conference Proceedings,
pp. 154–159.

[12] S. Sreekumar, K. C. Sharma, and R. Bhakar, “Optimized support vector regression
models for short term solar radiation forecasting in smart environment,” in 2016 IEEE
Region 10 Conference (TENCON), 2016, Conference Proceedings, pp. 1929–1932.

[13] C. Zhao, M. v. Heeswijk, and J. Karhunen, “Air quality forecasting using neural networks,”
in 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016, Conference
Proceedings, pp. 1–7.

[14] M. K. Lee, S. H. Moon, Y. H. Kim, and B. R. Moon, “Correcting abnormalities in
meteorological data by machine learning,” in 2014 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2014, Conference Proceedings, pp. 888–893.

[15] T. R. V. Anandharajan, G. A. Hariharan, K. K. Vignajeth, R. Jijendiran, and Kushmita,
“Weather monitoring using artificial intelligence,” in 2016 2nd International Conference
on Computational Intelligence and Networks (CINE), 2016, Conference Proceedings, pp.
106–111.

[16] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, andW.-c. Woo, “Convolutional
lstm network: A machine learning approach for precipitation nowcasting,” in Advances in
Neural Information Processing Systems 28, 2015, Conference Proceedings, pp. 802–810.

[17] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Support vec-
tor regression machines,” in Advances in neural information processing systems, 1997,
Conference Proceedings, pp. 155–161.

[18] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: a new learning
scheme of feedforward neural networks,” Neural networks, vol. 2, pp. 985–990, 2004.

[19] J. M. Park and J. H. Kim, “Online recurrent extreme learning machine and its application
to time-series prediction,” in 2017 International Joint Conference on Neural Networks
(IJCNN), 2017, Conference Proceedings, pp. 1983–1990.

58

[20] M. Jordan, “Attractor dynamics and parallelism in a connectionist sequential machine,”
in Proc. of the Eighth Annual Conference of the Cognitive Science Society (Erlbaum,
Hillsdale, NJ), 1986, 1986, Conference Proceedings.

[21] B. A. Pearlmutter, “Learning state space trajectories in recurrent neural networks,”
Neural Computation, vol. 1, no. 2, pp. 263–269, 1989.

[22] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland, “Finite state automata and
simple recurrent networks,” Neural computation, vol. 1, no. 3, pp. 372–381, 1989.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[24] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,”
The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.

[25] J.-G. Lee and M. Kang, “Geospatial big data: challenges and opportunities,” Big Data
Research, vol. 2, no. 2, pp. 74–81, 2015.

[26] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and
analytics,” International Journal of Information Management, vol. 35, no. 2, pp. 137–144,
2015.

[27] S. Li, S. Dragicevic, F. A. Castro, M. Sester, S. Winter, A. Coltekin, C. Pettit, B. Jiang,
J. Haworth, and A. Stein, “Geospatial big data handling theory and methods: A review
and research challenges,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.
115, pp. 119–133, 2016.

[28] H. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrish-
nan, and C. Shahabi, “Big data and its technical challenges,” Communications of the
ACM, vol. 57, no. 7, pp. 86–94, 2014.

[29] S. Erevelles, N. Fukawa, and L. Swayne, “Big data consumer analytics and the trans-
formation of marketing,” Journal of Business Research, vol. 69, no. 2, pp. 897–904,
2016.

[30] X.-W. Chen and X. Lin, “Big data deep learning: challenges and perspectives,” IEEE
access, vol. 2, pp. 514–525, 2014.

[31] S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal
plane polarimeters,” Optics express, vol. 19, no. 27, pp. 26 161–26 173, 2011.

59

[32] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools for
Python,” 2001–. [Online]. Available: http://www.scipy.org/

[33] The Scipy community, “scipy.interpolate.smoothspherebivariatespline,” 2016. [On-
line]. Available: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
SmoothSphereBivariateSpline.html

[34] ——, “scipy.interpolate.lsqspherebivariatespline,” 2016. [Online]. Avail-
able: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
LSQSphereBivariateSpline.html

[35] The Tensorflow Community, “tfp.distributions.gaussianprocessregressionmodel,” 2019.
[Online]. Available: https://www.tensorflow.org/probability/api_docs/python/tfp/
distributions/GaussianProcessRegressionModel

[36] W. McDonough, “Compositional model for the earth’s core,” Treatise on geochemistry,
vol. 2, p. 568, 2003.

[37] The Scipy community, “scipy.spatial.ckdtree,” 2016. [Online]. Available: https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html

[38] Wolfram Research, Inc., “Great circle,” 2018. [Online]. Available: http://mathworld.
wolfram.com/GreatCircle.html

[39] N. R. Chopde and M. K. Nichat, “Landmark based shortest path detection by using a*
and haversine formula,” International Journal of Innovative Research in Computer and
Communication Engineering, vol. 1, no. 2, pp. 298–302, 2013.

[40] The Scipy community, “numpy.arctan2,” 2009. [Online]. Available: https:
//docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.arctan2.html

[41] M. A. Zaytar and C. El Amrani, “Sequence to sequence weather forecasting with long
short-term memory recurrent neural networks,” International Journal of Computer
Applications, vol. 143, no. 11, pp. 7–11, 2016.

[42] W. Wu, K. Chen, Y. Qiao, and Z. Lu, “Probabilistic short-term wind power forecasting
based on deep neural networks,” in 2016 International Conference on Probabilistic
Methods Applied to Power Systems (PMAPS). IEEE, 2016, Conference Proceedings, pp.
1–8.

http://www.scipy.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.html
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/GaussianProcessRegressionModel
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/GaussianProcessRegressionModel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html
http://mathworld.wolfram.com/GreatCircle.html
http://mathworld.wolfram.com/GreatCircle.html
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.arctan2.html
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.arctan2.html

60

[43] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: A navier-stokes
informed deep learning framework for assimilating flow visualization data,” arXiv preprint
arXiv:1808.04327, 2018.

[44] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical cnns,” arXiv preprint
arXiv:1801.10130, 2018.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
Conference Proceedings, pp. 770–778.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[47] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul, pp.
2121–2159, 2011.

[48] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

[49] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, and M. Isard, “Tensorflow: A system for large-scale machine learning,” in 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016,
Conference Proceedings, pp. 265–283.

[50] F. Chollet et al., “Keras,” https://keras.io, 2015.

[51] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in 31st Conference on
Neural Information Processing Systems (NIPS 2017), 2017, Journal Article.

[52] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[53] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana,
M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman, D. M. de Almeida,
B. McFee, H. Weideman, G. Takács, P. de Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu,

https://keras.io

61

G. French, and J. Degrave, “Lasagne: First release.” Aug. 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.27878

[54] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas,
F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio, A. Bergeron, J. Bergstra,
V. Bisson, J. Bleecher Snyder, N. Bouchard, N. Boulanger-Lewandowski, X. Bouthillier,
A. de Brébisson, O. Breuleux, P.-L. Carrier, K. Cho, J. Chorowski, P. Christiano,
T. Cooijmans, M.-A. Côté, M. Côté, A. Courville, Y. N. Dauphin, O. Delalleau,
J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin, S. Ebrahimi
Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham,
C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,
K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee,
S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma,
P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van Merriënboer,
V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel,
D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard,
J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian,
E. Simon, S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay, G. van
Tulder, J. Turian, S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J.
Webb, M. Willson, K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang, “Theano: A
Python framework for fast computation of mathematical expressions,” arXiv e-prints,
vol. abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/1605.02688

[55] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning toolkit,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2016, Conference Proceedings, pp. 2135–2135.

[56] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang, “Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[57] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and
L. van der Maaten, “Exploring the limits of weakly supervised pretraining,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, Conference Proceedings,
pp. 181–196.

[58] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models
are unsupervised multitask learners,” in Proceedings of the 25 th International Conference
on Machine Learning, 2019, Journal Article.

http://dx.doi.org/10.5281/zenodo.27878
http://arxiv.org/abs/1605.02688

	EPIGRAPH
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF LISTINGS
	LIST OF SYMBOLS, ACRONYMS AND ABBREVIATIONS
	GLOSSARY
	1 INTRODUCTION
	1.1 Motivation
	1.2 Problem Definition
	1.3 Outline
	1.4 Disclaimer

	2 BACKGROUND AND RELATED WORK
	2.1 Meteorological Data
	2.2 Temporal Coverage and Resolution
	2.3 Geospatial Coverage and Resolution
	2.4 Solving Problems With Machine Intelligence
	2.4.1 Problems
	2.4.2 Models

	2.5 Conclusion

	3 SPHERICAL K-NEAREST NEIGHBORS INTERPOLATION
	3.1 Introduction
	3.2 Problem Definition
	3.3 Background and Related Work
	3.3.1 Bilinear Interpolation
	3.3.2 Bicubic Interpolation
	3.3.3 Smooth Sphere Bivariate Spline
	3.3.4 LSQ Sphere Bivariate Spline
	3.3.5 Gaussian Process Regression (Kriging)

	3.4 Motivation
	3.5 Proposed Algorithm
	3.6 Algorithm Execution Steps
	3.6.1 Change of Coordinate System
	3.6.2 Indexing Using a k-Dimensional Tree
	3.6.3 Finding Neighbors by Querying a k-Dimensional Tree
	3.6.4 Interpolating Values
	3.6.5 Neighborhood Distribution Debiased Normalized Inverse Squared Distance Interpolation Function
	3.6.6 Calculating Great Circe Distances

	3.7 Algorithm Evaluation Methodology
	3.7.1 Absolute Maximum Error Ratio Percentage Error
	3.7.2 Evaluation Data

	3.8 Empirical Results & Analysis
	3.9 Implementation
	3.10 Contribution
	3.11 Conclusion

	4 MULTIDIMENSIONAL WORLDWIDE WEATHER FORECASTING BY DEEP LEARNING
	4.1 Introduction
	4.1.1 Problem Definition

	4.2 Background and Related Work
	4.2.1 Physics Simulations
	4.2.2 Spherical Convolutional Neural Networks
	4.2.3 Residual Neural Networks and Functions
	4.2.4 Adaptive Moment Estimation Optimizer

	4.3 Approach and Methodology
	4.3.1 Data and Datasets
	4.3.2 Model Architecture
	4.3.3 Model Evaluation and Metrics
	4.3.4 Model Training

	4.4 Empirical Results and Analysis
	4.5 Contribution
	4.6 Conclusion

	5 CONCLUSION
	5.1 Summary
	5.2 Contribution
	5.3 Limitations
	5.4 Future Work
	5.5 Closing Thoughts

	REFERENCES

