
POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Multilingual SPARQL Query Generation Using Lexico-Syntactic Patterns

NIKOLAY RADOEV
Département de génie informatique et génie logiciel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie informatique

Avril 2019

c© Nikolay Radoev, 2019.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213623212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Multilingual SPARQL Query Generation Using Lexico-Syntactic Patterns

présenté par Nikolay RADOEV
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Michel DESMARAIS, président
Amal ZOUAQ, membre et directrice de recherche
Michel GAGNON, membre et codirecteur de recherche
Philippe LANGLAIS, membre externe

iii

DEDICATION

To all my friends,
Without whom I would’ve finished a long time ago. . .

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisors Amal Zouaq and Michel Gagnon for their immense
help, guidance and the many detailed comments all throughout my work. Their advice and
supervision has helped me learn a lot for the past two years. I would also like to acknowledge
their patience with my disorganization and habitual lateness.

I would like to thank my friend and coworker Mathieu Tremblay who designed a bit part
of the original AMAL system and has helped me many times since then. I thank all my
friends who supported me while I worked, especially Yonni Chen and Emilio Rivera with
who I started my masters and are the reason I didn’t quit two months in.

Finally, I would like to thank my mother who helped me with many of the linguistic questions
I had for my work and my dad and sister who had to endure many conversations about things
they didn’t care about.

v

RÉSUMÉ

Le Web Semantique et les technologies qui s’y rattachent ont permis la création d’un grand
nombre de données disponibles publiquement sous forme de bases de connaissances. Toute-
fois, ces données nécessitent un langage de requêtes SPARQL qui n’est pas maitrisé par
tous les usagers. Pour faciliter le lien entre les bases de connaissances comme DBpedia des-
tinées à être utilisées par des machines et les utilisateurs humains, plusieurs systèmes de
question-réponse ont été développés. Le but de tels systèmes est de retrouver dans les bases
de connaissances des réponses à des questions posées avec un minimum d’effort demandé de
la part des utilisateurs. Cependant, plusieurs de ces systèmes ne permettent pas des expres-
sions en langage naturel et imposent des restrictions spécifiques sur le format des questions.
De plus, les systèmes monolingues, très souvent en anglais, sont beaucoup plus populaires
que les systèmes multilingues qui ont des performances moindres. Le but de ce travail est
de développer un système de question-réponse multilingue capable de prendre des questions
exprimées en langage naturel et d’extraire la réponse d’une base de connaissance. Ceci est
effectué en transformant automatiquement la question posée en requêtes SPARQL. Cette
génération de requêtes repose sur des patrons lexico-syntaxiques qui exploitent la spécificité
syntaxique de chaque langue.

vi

ABSTRACT

The continuous work on the Semantic Web and its related technologies for the past few
decades has lead to large amounts of publicly available data and a better way to access it. To
bridge the gap between human users and large knowledge bases, such as DBpedia, designed
for machines, various QA systems have been developed. These systems aim to answer users’
questions as accurately as possible with as little effort possible from the user. However, not
all systems allow for full natural language questions and impose additional restrictions on
the user’s input. In addition, monolingual systems are much more prevalent in the field with
English being widely used while other languages lack behind. The objective of this work
is to propose a multilingual QA system able to take full natural language questions and to
retrieve information from a knowledge base. This is done by transforming the user’s question
automatically into a SPARQL query that is sent to DBpedia. This work relies, among other
aspects, on a set of lexico-syntactic patterns that leverage the power of language-specific
syntax to generate more accurate queries.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF SYMBOLS AND ACRONYMS . xii

LIST OF APPENDICES . xiii

CHAPTER 1 INTRODUCTION . 1
1.1 Problem Definition . 2
1.2 Concepts and Definitions . 3

1.2.1 Semantic Web . 3
1.2.2 Knowledge Base . 4
1.2.3 SPARQL . 5
1.2.4 Lexico-Syntactic Patterns . 6

1.3 Research Objectives . 6
1.4 Thesis Overview . 7

CHAPTER 2 LITERATURE REVIEW . 8
2.1 Question Answering Systems . 8

2.1.1 QA Systems’ Architecture . 9
2.1.2 Multilingual Systems . 13

CHAPTER 3 RESEARCH METHODOLOGY . 15
3.1 Multilingual Question Answering . 15
3.2 Knowledge Base Exploitation . 17

viii

3.3 Entity and Property Extraction . 18
3.3.1 Entity Extraction . 18
3.3.2 Property Extraction . 18

3.4 Lexico-syntactic patterns . 19
3.5 Datasets . 19

3.5.1 QALD . 19
3.5.2 SQA . 20

3.6 LAMA’s evaluation . 20

CHAPTER 4 ARTICLE 1 : A LANGUAGE ADAPTIVE METHOD FOR QUESTION
ANSWERING ON FRENCH AND ENGLISH . 22
4.1 Introduction . 22
4.2 Related Work . 24
4.3 System Overview . 25

4.3.1 Question Type Classifier . 26
4.3.2 Entity Extraction . 27
4.3.3 Property Extraction . 31
4.3.4 SPARQL Query Generation . 33

4.4 Complex Question Simplification . 33
4.5 Parallel Processing and Scalability . 34
4.6 Evaluation . 35
4.7 System Limitations and Future Work . 36
4.8 Conclusion . 37

CHAPTER 5 ARTICLE 2 : MULTILINGUAL QUESTION ANSWERING USING
LEXICO-SYNTACTIC PATTERNS . 38
5.1 Abstract . 38
5.2 Introduction . 38
5.3 Methodology . 39

5.3.1 Dataset and Question Analysis . 39
5.3.2 Overview of the LAMA System . 41
5.3.3 SPARQL queries and triple patterns 50

5.4 Dependency-based Patterns . 51
5.4.1 Dependency Parsing . 51
5.4.2 Lexico-Syntactic Pattern Representation 52

5.5 POS-based Patterns . 53
5.5.1 POS Tagging . 53

ix

5.5.2 POS Pattern Representation . 54
5.6 Experiments and Evaluation Results . 57

5.6.1 Pattern presence in datasets . 58
5.6.2 Patterns Impact on the LAMA system 59
5.6.3 Multilingual analysis . 61
5.6.4 Error analysis . 62

5.7 Future Work . 63
5.8 Related Work . 64
5.9 Conclusion . 66

CHAPTER 6 GENERAL DISCUSSION AND CONCLUSION 68
6.1 Contribution . 68
6.2 Limitations . 69
6.3 Future Research . 70

REFERENCES . 71

APPENDICES . 76

x

LIST OF TABLES

Table 1.1 DBpedia prefixes . 5
Table 1.2 Dependency details . 6
Table 4.1 DBpedia prefixes . 24
Table 4.2 Keywords for question classification 28
Table 4.3 Number and Aggregation question classification 28
Table 4.4 Complex Question Keywords . 34
Table 5.1 DBpedia prefixes . 39
Table 5.2 Question Types per Dataset . 40
Table 5.3 Dependency details . 44
Table 5.4 Lexico-Syntactic Patterns . 53
Table 5.5 POS tags . 55
Table 5.6 POS TAG Patterns . 55
Table 5.7 Dependency-based pattern frequency 59
Table 5.8 POS tag-based pattern frequency . 60
Table 5.9 Impact of LAMA on SQA and QALD 60
Table 5.10 Dependency-based patterns in French 62
Table 5.11 POS tag patterns in French . 63
Table 5.12 POS TAG Patterns . 67
Table 5.13 Lexico-Syntactic Patterns . 67
Table A.1 DBpedia prefixes . 78
Table A.2 Lexical patterns for Aggregation count questions classification 82
Table A.3 Lexical patterns for Aggregation Descending order questions classification 82
Table A.4 Lexical patterns for Aggregation Ascending order question classification 82
Table A.5 Date question classification . 83
Table A.6 Boolean question classification . 83
Table A.7 Location question classification . 83
Table A.8 Lexicon of date properties . 87
Table A.9 Lexicon of location properties . 88
Table A.10 Results on the QALD 7 datasets . 90

xi

LIST OF FIGURES

Figure 3.1 LAMA’s Architecture . 16
Figure 4.1 System Overview . 26
Figure 4.2 Syntactic parsing example . 37
Figure 5.1 LAMA’s Architecture . 42
Figure 5.2 LAMA’s Pipeline . 43
Figure 5.3 Tree representation for the question: Did Tolkien write the hobbit and

the Silmarillion? . 49
Figure 5.4 Dependency parse of a simple query 51
Figure A.1 System Overview. 80

xii

LIST OF SYMBOLS AND ACRONYMS

AMAL Ask Me in Any Language
API Application Programming Interface
CNL Cloud Natural Language
KB Knowledge Base
LAMA Language Adaptive Method for question Answering
LSTM Long Short-Term Memory
NLP Natural Language Processing
OWL Web Ontology Language
POS Part of Speech
QA Question Answering
QALD Question Answering over Linked Data
RDF Resource Description Framework
RDFS RDF Schema
RNN Recurrent Neural Network
SQA Scalable Question Answering
SPARQL SPARQL Protocol and RDF Query Language
URI Uniform Resource Identifier
URL Uniform Resource Locator

xiii

LIST OF APPENDICES

Appendix A AMAL : ANSWERING FRENCH NATURAL LANGUAGE QUES-
TIONS USING DBPEDIA . 76

1

CHAPTER 1 INTRODUCTION

Recent developments and democratization of technology have led to an increasing amount of
available data as well as increasing audience looking to access this information. An increased
audience has also led to more and more less technologically savvy users turning towards the
web for information. This has prompted an increased interest in developing systems aimed
to answer user questions while abstracting most of the technical details and the different
types of data that have to be analyzed to get the answer. This field is also known as
Question Answering (QA) and its aim is to build such systems. QA systems can be classified
as closed-domain, meaning that they handle questions only about a specific topic or open-
domain, meaning that they are not restricted to a single domain and rely on more general
knowledge. Open-domain question answering offers a more interesting challenge given that
it has to deal with much more diverse information in many different topics and it represents
a more realistic use case scenario, making it a more interesting choice for our work.

Generally, an answer can be extracted from different sources using two prevalent methods:
information-retrieval (IR) and knowledge-based question answering. IR question answering
relies on large quantities of textual information in collections such as Wikipedia or other
texts (mainly unstructured data) and aims to find the most relevant documents or passages
for a given question and use those to formulate an answer.

Knowledge-based question answering relies on creating a semantic representation of the ques-
tion and trying to match it to a structured set of data. Such sets, also known as Knowledge
Bases (KB) or more recently linked data, represent information as entities connected together
by one or more relations. One of the advantages of performing question answering over linked
data is that since the data is already structured, a QA system "only" has to transform the
user’s question in a similar logic structure while IR methods have to handle both the question
and answer sources in an unstructured form. This is one of the reasons why we have chosen,
in this work, to focus on question answering using KBs and not unstructured data.

Depending on the information source, different approaches can be used. Deep learning tech-
niques [1] such as word embeddings combined with recurrent neural networks (RNN) have
gathered increasing popularity recently but many more classic deterministic methods such as
rules and string matching are still widely used for question answering. While deep learning
methods offer promising results, they often use a black box approach where their inner pro-
cessing is not clearly detailed, making their answers difficult to justify or explain. We have
opted for a more deterministic approach based on specific rules and patterns with a clearly

2

divided workflow. This white box method also makes it easier to explain and understand
every part of the process and to evaluate the separate segments.

Another aspect considered in this thesis is the ability to answer questions in different lan-
guages, also known as multilingual question answering. Even though there are quite a few
popular QA systems, most of them only accept questions in one language, mainly English.
For those offering functionality in multiple languages, performance tends to be sub-par, com-
pared to monolingual systems. The work presented in this thesis aims to tackle the issue
of balance between general performance and the capability to process questions in multiple
languages. We propose a QA system whose main goal is to translate the user’s question into
a machine-readable query using a specific query language (SPARQL in our case) and return
the data resulting from this query. This QA system can handle questions in both French and
English. The proposed system is an improved version of our QA system AMAL [2] (available
in the annex of this thesis), the winner of the QALD-7 Challenge [3].

In addition, we propose a method for the generation of SPARQL queries that applies to mul-
tiple languages. This method consists of looking for the presence of various lexico-syntactic
patterns in the syntactic representation of the user’s queries and generating SPARQL queries
based on specific rules associated with each pattern. Patterns are divided into two categories:
those based on the question’s syntactic dependencies and those based on the parts of speech
(POS). Both sets can be used independently or together for better performance. The lexico-
syntactic patterns and their SPARQL generation rules are implemented in our QA system
and their effect on the system’s ability to correctly answer questions is then evaluated.

1.1 Problem Definition

As previously stated, the field of knowledge-based question answering consists in developing
systems that often translate natural language questions into structured queries that a machine
can more easily understand.

Existing QA systems do have several limitations as to the way the user has to formulate
their questions. Some systems expect the user to have a certain amount of knowledge of
the knowledge base or the query languages. Other QA systems use a specific grammar that
restricts the way a question can be worded, leading to unnatural questions for the user.

Another issue is the prevalent use of English-only QA systems. While the main goal of Web
Semantics is to abstract the semantics (meaning) of information away from other variables
such as format, syntax or even language, most systems only handle questions given in English.
This can be a disadvantage to users who do not have a working knowledge of English or who

3

prefer to obtain information in their native tongue.

Even for systems that aim for a multilingual approach, the methods used are often very
generic and aim to fit all languages without adapting to their particularities. This can lead
to handling multiple languages at the cost of low performances across all supported languages,
reducing the overall utility of the system.

1.2 Concepts and Definitions

Hereafter, we present some background knowledge on the various fields and methods related
to question answering systems.

1.2.1 Semantic Web

The Semantic Web is an extension of the World Wide Web and is largely expressed by
standards defined by W3C (World Wide Web Consortium). The term was first described by
Tim Berners-Lee [4] when talking about a web of data designed to be processed by machines
rather than humans. This comes as a contrast to most of the web that was designed to be
human readable and does not offer any structured data.

Conceptually, the Semantic Web aims to represent semantically structured knowledge. It can
be represented as a vast graph where every node represents any arbitrary thing and every
edge represents the relationship between two nodes with the addition of assigning a meaning
to the relationship.

A formal graph representation with labeled relationships between entities allows for informa-
tion to be read and exploited not only by humans but also by machines which are already
adapted to work with this form of data structures. Using a common framework to describe
data only through semantics allows for sharing of that information between different appli-
cations, communities, and even languages.

The Semantic Web is realized by the aggregation of various different technologies. Spec-
ifications such as RDF (Resource Description Framework) [5] describe how information is
represented, OWL (Web Ontology Language) [6] aims to adapt ontologies of different do-
mains to the World Wide Web. Structured data on the Web can be either represented
by metadata tags on web pages or stored more permanently in a knowledge base. Those
knowledge bases are mostly accessed by using a query language, SPARQL [7] being the one
recognized as an official standard by the W3C.

4

1.2.2 Knowledge Base

Knowledge bases are a technology used to store complex structured data and are mainly aimed
to be used by a machine or a computer system. KBs can be either domain specific or cross-
domain oriented. The Linked Open Data Cloud [8] community project describes over 1200
publicly available datasets as of March 2019 with DBpedia [9] and Wikidata being among
the largest ones. KBs are also used by commercial products such as Google’s Knowledge
Graph [10] and Wolfram Alpha’s Wolfram Knowledgebase [11], both of which are integrated
in their companies’ search engines.

Unlike normal relational databases, most KBs store their data in a triple format where each
triple contains two entities and a relation, also called property, that links them. This closely
follows the general idea of the Semantic Web where information is represented in a directed
graph format. Since most KBs use RDF, they can be queried using SPARQL as a query
language.

As already mentioned, KBs are designed to be used primarily by machines and not humans
with some of them, such as Wolfram Knowledgebase, being only accessible through specific
systems. Generally, those systems are designed to facilitate the access to the KBs information
by abstracting the way the data is structured to the user and simplifying the way the user
needs to formulate their query. Such tools are also known as Question answering systems or
QA systems.

Throughout this thesis, examples will be given using DBpedia. DBpedia is a large, commu-
nity driven project, aimed to extract structured data from information available in Wikipedia.
DBpedia stores cross-domain data as an open knowledge graph using RDF. Information can
be retrieved using SPARQL queries to the public Virtuoso endpoint1. As of the latest stable
release in 2017, DBpedia contains 9.5 billion RDF triples with 1.3 billion extracted from
the English version of Wikipedia and 5.0 billion originating from other language editions.
DBpedia also provides 125 localized versions with English being the most complete version
with 4.58 million entities. A more detailed look of DBpedia and why it was chosen is given
in section 3.2.

For the sake of readability, Table 1.1 shows the prefixes that will be used for DBPedia URIs
throughout the thesis.

1http://dbpedia.org/sparql/

5

Table 1.1 DBpedia prefixes

dbo http://dbpedia.org/ontology/
dbr http://dbpedia.org/resource/
dbp http://dbpedia.org/property/

1.2.3 SPARQL

SPARQL, a recursive acronym for SPARQL Protocol and RDF Query Language, is a standard
query language designed to manipulate data in RDF format. Given that SPARQL was
designed to manipulate RDF data, its syntax is very similar to RDF’s triple representation.

Generally, SPARQL queries contain a set of triples and represent a subgraph of the RDF
data. Each of the three elements can be a variable. Variables can either be bound to specific
URI or literal or free and take any value in their domain.

A single SPARQL triple can be defined as (s,p,o) ∈ (X ∪ R) × (X ∪ P) × (X ∪ R ∪ L)
where R designates all entities, P all properties and L all literals in the database.

SPARQL queries are constructed using a set of clauses with different functions. The most
basic ones are the SELECT clause which describes what variables are in the query result
and the WHERE clause which contains the SPARQL triples and defines the subgraph that
should be matched in the RDF data. This is also called the SELECT form. For example, if
we want to find who is the wife of Barack Obama, the SPARQL query would look like :

SELECT ?wife
WHERE { dbr:Barack_Obama dbo:spouse ?wife . }

SPARQL also supports the ASK form which does not return information but rather a true
value if the subgraph defined by the SPARQL triples can be matched in the RDF data. For
instance, asking if Barack Obama is married to Michelle Obama takes the following SPARQL
form:

ASK
WHERE { dbr:Barack_Obama dbo:spouse dbr:Michelle_Obama . }

SPARQL’s syntax describes other functions such as DISTINCT for eliminating duplicates,
ORBER BY for result ordering and many others. Users familiar with other query languages,
such as SQL, should be able to recognize most of the similar functions.

6

1.2.4 Lexico-Syntactic Patterns

In linguistics, syntax is defined as the set of rules and principles that describe the structure of
sentences in a particular language. The concept of lexico-syntactic patterns is to find syntactic
structures that occur with enough frequency to be considered significant. Those structures
are then combined with the words they represent to form a lexico-syntactic pattern. In this
thesis, we focus on two types of syntactic representations. A more detailed explanation of
each type of pattern is given in chapter 5 in sections 5.5 and 5.4.

The first syntactic representation is using the part of speech (POS), also known as gram-
matical categories. POS include nouns, verbs, adjectives, etc. POS patterns are represented
as a sequence of POS tags and in order for a segment to match a given pattern, it has to
contain the same tags in the same order as the pattern. For example, if we have the following
pattern: NN VB DET NN, it could match the segment Tolkien(NN) wrote(VB) The(DET)
Hobbit(NN). since its syntactic representation contains the same POS in the same order as
the pattern.

The second representation uses the syntactic dependencies between the words in the question.
A dependency between two words is expressed as a function that has those two words as input
variables. Table 1.2 shows different syntactic dependencies. Similar to the POS patterns,
dependency-based patterns can be matched to a sentence segment only if all of the syntactic
dependencies are present. Unlike POS patterns, there is no particular word order to be
respected. For example, if we have the pattern subj(V,S), dobj(V,O), it could match the
segment Tolkien(S) wrote(V) The(D) Hobbit(O) where the dependency DET(D,O) is ignored
since it is not part of the pattern.

Table 1.2 Dependency details
Dependency Details Example

subj(V,S) Denotes a relation between the
verb V and its subject S subj(be,Obama) => Obama is

dobj(V,O) Dependency between a verb V
and its direct object O dobj(buy,book) => buy a book

amod(N,A) Dependency between adjective A
and the modified noun N amod(building,old) => old building

conj(A,B) Conjunction between two elements conj(Michel,Amal) => Michel and Amal

1.3 Research Objectives

The challenges highlighted in section 1.1 can lead to a few different observations when it
comes to modern QA systems.

7

• Most QA systems expect users to know how a particular query language work or to
abide by restrictive rules when it comes to asking questions.

• Most systems focus partially or entirely on English questions.

Combining those observations, we can formulate the following research question: can an
effective multilingual SPARQL query generation be driven by lexico-syntactic patterns?

Based on both our observations and this question, we can define the following research
objectives :

1. Build a QA system that is able to process natural language questions in multiple lan-
guages.

2. Identify various lexico-syntactic patterns capable to generate SPARQL triples that
represent the content of the question.

3. Implement the proposed patterns in the QA system and evaluate their performance.

The proposed QA system is able to process questions in two languages: French and English,
making it a bilingual system. We do however hypothesize that the results for French can be
representative of other languages.

1.4 Thesis Overview

This thesis is structured in 6 chapters, including two research papers in chapters 4 and 5 as
well as an additional paper in Appendix A. Chapter 2 presents a literature review about the
state of the art for QA systems as well as other connected topics, such as entity and property
disambiguation. Chapter 3 describes the research methodology and explains the link between
the two papers included in this thesis. The first one on the LAMA (Language Adaptive
Method for question Answering) system, in chapter 4, focused on the system’s presentation,
implementation and evaluation. This directly covers the first research objective, aiming to
create a multilingual QA system. This article is followed by a second one in chapter 5 which
enriches LAMA with lexico-syntactic patterns in English and French, and evaluates their
impact on the performance of the QA system. The conclusion in chapter 6 discusses the
system’s limitation as well as potential future work.

In addition, Appendix A contains the original article describing the AMAL (Ask Me in any
Language) system, the predecessor of LAMA. As already mentioned, this system was chosen
due to its performance, earning it the first place in the competition for which it was created.

8

CHAPTER 2 LITERATURE REVIEW

This chapter focuses on exploring works related to our research topic at a high-level of
abstraction. More specific details and references are given in the related work sections in
chapter 4 and 5. In this chapter, we present the research and work done on QA systems
in their various forms. We also look at how various systems handle different aspects of
the answering process such as entity and property extraction, disambiguation and query
generation. Finally, we look at how multilingual systems approach the QA problem.

2.1 Question Answering Systems

Question answering systems have the potential to become one of the most popular ways
for human users to access large knowledge bases, designed to be normally used by software
agents. QA systems have actually existed for quite some time, with BASEBALL [12] being
one of the earliest QA systems in 1961 aimed at answering questions about baseball stats in
the USA baseball league. The system was originally limited to single clause questions and
constructs implying relations like most or highest were prohibited. Modern systems, such as
IBM’s Watson or Facebook’s DrQA [1] have greatly expanded the work on QA systems and
are able to answer open-domain questions without being restricted to a single topic.

With the advent of more structured data and the existence of challenges such as QALD
(Question Answering over Linked Data), many more QA systems have been created, trying
to tackle the problem of answering natural language questions using structured knowledge
bases. These systems are explored in more detail in section 2.1.1.

QA systems are however not limited to using KBs as their information source. Some sys-
tems such as DrQA look for answers in a large corpus of unstructured documents, such as
Wikipedia. DrQA and similar systems use a combination of different machine learning tech-
niques to match a set of paragraphs or articles to a given question. Paragraphs and questions
are tokenized and encoded into vectors using a deep learning network (e.g. long short-term
memory network (LSTM, RNN)) using word embeddings and other features such as POS
tokens or term frequency. Finally, some classifiers are trained to predict the answer’s span
start and end with the vectors produced by the networks explained above (paragraphs and
question). The way questions and paragraphs are encoded and then classified varies between
systems, but deep-learning-based systems share the same high-level logic.

This thesis focuses on QA based on information extraction in KBs. This is a different ap-

9

proach that does not include document matching but rather communication with structured
data. The following section describes in more details the state of the art in QA systems also
based on KB knowledge extraction.

2.1.1 QA Systems’ Architecture

Since QA systems are not constricted by a particular standard, there is no predefined struc-
ture when it comes to their architecture. However, most modern systems share a similar
high-level architecture. The research paper [13] presents a detailed survey of over 15 different
QA systems that have participated in the different QALD challenges between 2011 and 2016
or retrieve information from DBpedia. The survey excludes systems such as CANaLI [14]
which restrict the user’s input or Sparkli [15] which relies on a graphical interface for creating
its SPARQL queries.

Generally, the processing of a question follows a sequence of steps that can be classified into 4
different categories: Question analysis, Word Mapping, Disambiguation, and SPARQL Query
Construction. There is no set order for the steps in the process, varying between systems.
For instance, WDAqua-core1 [16] creates its queries before applying disambiguation while
Xser [17] does the opposite sequence.

Systems that handle unstructured data have some additional steps including Document Re-
trieval and Document Selection that are used to determine whether some document contains
the answer to the question, but since this thesis focuses on a system interacting with KBs,
we will only focus on similar systems.

Question Analysis

In this step, the user’s question goes through an analysis aimed to determine how the ques-
tion should be segmented, which parts correspond to an entity or a property or what are
the dependencies between the different words. NLP tools are sometimes used to extract
additional information about the question, but some systems, such as SINA [18] do not use
any.

An important part of the question analysis is recognizing groups of words corresponding to
a specific resource, also known as named entities. For instance, the questions "Who is the
director of the Titanic ?" contains The Titanic that refers to a film.

There are two main strategies to solve the problem of entity detection. Systems such as SINA
and CASIA [19] try to map a group of words, or n-grams, in the question to a specific entity
in the underlying KB. The n-grams are considered only as a possible named entity if there

10

is at least one resource found. This has the advantage that each discovered named entity
can be mapped to a resource in the KB. However, this method can generate many potential
candidates, rendering the disambiguation task more complicated. Some other systems use
Entity Linking Tools such as DBpedia Spotlight [20] which provide entity detection as well
as entity linking with resources in the KB. Spotlight uses only the context around a potential
entity to return the most likely candidate if more than one is available. This approach is
limited when it comes to questions since the context is very limited, and only constrained to
a single sentence.

Property or relation recognition is handled by much more varied methods by different systems.
The most simple way is by having handmade rules that dictate which words or groups of
words are linked to a given property. Systems such as PowerAqua [21] use regular expressions
to identify question types and map them to a list of templates that indicates which property
is to be used based on the question type and/or the named entities in the question.

POS taggers can also be used to detect properties. Often nouns correspond to entities
and verbs and adjectives correspond to properties. This is however not always true. For
instance, in "Who is the director of the Titanic?", the noun director can refer to the property
dbo:director. Due to this limitation, Xser uses a POS tagger only for building a training set
on which it learns what words are most likely to be a property. It does so by employing
a custom tagger that labels words as: Entity, Relation(property), Variable or None using
rules learned automatically. Rules are learned using POS tags, Named Entity tags and the
question itself as its features.

Property detection can also be handled by using dependency parsing which gives the depen-
dencies between all words in a question. This graph can be used to find relations between
entities and look for properties in those relations. For instance, gAnswer [22] first identifies
named entities and then chooses the shortest path in the dependency graph between them
as a relation.

Word Mapping

Since QA systems have to query a knowledge base using specific URIs, they need to know
how to map words discovered in the first step to KB specific resources. In many cases, this
step is heavily linked with the question analysis, especially in cases where the n-gram method
described above is used.

KBs storing their data in an RDF format provide a label property used to give a human-
readable version for a given resource. All systems described in this chapter try to match a

11

label of at least one resource to segments of the original question.

This method does have some limitations in the case where the segment does not match
exactly a label. This can be due to a spelling mistake or a variation of plurality between
the two strings. This is handled by different distance metrics with Levenshtein and Jaccard
distances being by far the most popular. Systems like PowerAqua that use Lucene to match
labels can use the fuzzy search option of the tools to expand the possible matches.

Another limitation with this method comes with cases where the textual segment and desired
label are semantically equivalent but very different as strings. For instance, the segment
writer and label author are close semantically but not in spelling. Most systems use lexical
databases that are either handcrafted and system-specific or part of available lexicons such
as WordNet. In the case of PowerAqua, using WordNet, each segment s is replaced by a
vector of synonyms [s1...sn] where each synonym is used to match a label.

Most systems try to match segments or some of their forms to labels in the KB. However,
the BOA [23] framework takes the opposite approach and tries to extract natural language
expressions that match a particular propriety P. In the case of BOA, the system extracts
the subject-object pairs (X,Y) connected by P. A large text corpus is then scanned and all
segments between label(X) and label(Y) or label(Y) and label(X) are extracted. The main idea
is that those segments are a natural language representation of P and if found in a question,
can be mapped to the particular property. This method is however very KB-specific. Its
portability can be impacted since different KBs do not always share the same properties.

Disambiguation

Ambiguity can often arise when dealing with the questions, especially if those are asked
in natural language. Most often, ambiguity comes when the word mapping returns multiple
resources for the same segment of a question. For instance, in the case of "Who is the director
of the Titanic?", Titanic clearly references the movie and not the ship. However, both the
film and the ship can logically be returned when trying to bind "Titanic" to an entity in the
KB.

To deal with these ambiguities, all presented systems use at least one of the following methods.
The first method relies on checking the string similarity using some distance metric, between
the segment and the resource. This method is used to rank resources and those with a high
distance correspond to a lower overall ranking. The second method checks if different entities
are actually directly linked together in the KB and is used to exclude some resources. For
instance, "Titanic" the ship is not linked to director while "Titanic" the movie does indeed

12

have a property dbo:director so only the second entity is kept.

Systems that rely on a graph representation such as gAnswer and PowerAqua take the second
method and explore it much further. In the case of gAnswer, the system generates all possible
graphs based on the question and tries to match them to subgraphs in the KB. Graph
representations are then ranked based on how similar the labels of the resources and the
question segments are. PowerAqua does have a similar approach but proceeds iteratively by
individually ranking each potential resource and then trying to match its graphs.

In some cases, ambiguity cannot be tackled completely automatically. This can be due to
a very ambiguous question or to the unreliability of the techniques used by the system. In
those cases, some systems actually rely on the user’s feedback to resolve the ambiguity by
choosing from multiple resources. The Freya [24] relies mainly on user feedback when it deals
with ambiguity.

SPARQL Query Construction

Information from the KB is extracted by querying it using one or more SPARQL queries.
This research focuses on systems using SPARQL but there are some systems [25] that handle
information from KBs without actually using SPARQL queries.

A popular approach used by QAKis [26] and PowerAqua is to use template queries. Templates
are a set of predefined queries with missing slots that have to be completed with information
extracted from the question. QAKiS only allows queries with a single triple while PowerAqua
assumes that questions can be expressed using only one or two triples (maximum of two
predicates) and applies its templates on those triples. As explained above, PowerAqua applies
a graph-based disambiguation process and generates its SPARQL query only after.

Systems such as Freya generate SPARQL queries by parsing, from left to right, a question
where some segments are associated with a particular source in the KB. Those resources are
gathered in triples according to the order of the segments in the question with some variables
being added between segments if a property is followed by another property in order to
respect the Subject-Property-Object order.

QA systems like gAnswer and SemGraphQA [27] use a dependency tree. They generate
a graph where every node is an entity or a variable and every edge is a property linking
the entities. The graph reflects the structure of the final SPARQL query. Disambiguation
techniques can be applied before or after generating all SPARQL queries with the choice of
having an impact on the number of queries generated.

The SINA system also uses a graph-based approach, but the graph is created by connecting

13

two nodes representing an entity by an edge representing a property only if that connection
also exists in the underlying KB. This method is well-suited for systems that focus on keyword
queries but since it ignores the question’s syntax, some questions can be misinterpreted. For
instance, this method does not make a difference between "Who is the father of Barack
Obama?" and "Barack Obama is the father of who?".

2.1.2 Multilingual Systems

QA systems are, as described, quite numerous but almost all of them only focus on answering
questions in a single language. In most cases, the only accepted language is English given its
popularity and a large amount of information already available. The QALD Challenge first
offered a multilingual task over DBpedia in its 6th edition with 8 participating systems1.
Among them, only two answered questions in languages other than English and only one
handled more than one language. The following 2 years, the WDAqua-core1 (originally called
WDAqua-core0) participated claiming to be language-agnostic and able to handle multiple
languages.

WDAqua does indeed handle multiple languages, those being English, French, Spanish, Ital-
ian, and German so far. The system tries to minimize the reliance on the specific language
used in order to improve portability to other languages. The only language-specific part of
the WDAqua system is the creation of a stop word list for each language with stop words be-
ing described as filler words that do not carry a lot of semantic meaning and can be removed
from a question. The system also has a resource lexicon that binds properties to their KB
labels as already described. Given that the system is not limited to a single KB, it uses the
fact that other used KB, such as Wikidata, have a much better lexicalization than DBpedia
and merge all the labels together.

WDAqua approach is decomposed in 4 steps: question expansion, query construction, query
ranking, and response decision. The first step is similar to other systems where all possible
entities and properties are extracted from the original question without limiting their number.
The system then generates all possible SPARQL query using all of the extracted properties
and entities but only for triples that exist in the underlying KB’s graph.

Due to the large set of possible combinations, only SPARQL queries with a maximum of 2
triples are kept and no modifiers are used (ORDER BY, LIMIT, COUNT, etc). Resulting
queries are then ranked based on several criteria: number of words covered by the query, the
edit distance between a word and its associated resource, the number of variables and the

1http://qald.aksw.org/6/documents/qald-6_results.pdf

14

number of triples in the query. The resulting list is then filtered by using a pre-trained logistic
regression model that gives a confidence score between 0 and 1 for a query and applying it
to the first ranked query. If the first query of the list is below a certain threshold, the list is
discarded and the system does not return an answer.

While the method presented by WDAqua-core1 is indeed applicable to multiple languages
with minimal portability cost, the results presented in [28] are somehow limited. For the
QALD7 Task 1 challenge, the F-score for English and French is 0.25 and 0.16 respectively
with other languages being under 0.20. Results for other QALD datasets are somehow better
with results of 0.51 for QALD-4 and QALD-5. No details are given about the difference in
performance between the different datasets.

Our work’s approach to multilingual questions is different than what the WDAqua team
proposes. Given that results produced by language-agnostic approaches are clearly below
an acceptable performance, we have opted for a more language-specific approach. While
this increases portability cost, it is offset by delivering better performance by leveraging the
added benefits that can be obtained by exploiting language-specific realities. Unlike most of
the systems described in literature, we consider both the semantics and the syntax of the
user’s questions. While graph-based systems use syntax and dependency graphs to determine
if some word segments are related together, they do not use it to determine how they are
related. Our work aims to identify syntactic patterns that might help improve QA systems’
performances when dealing with multiple languages.

15

CHAPTER 3 RESEARCH METHODOLOGY

This chapter describes the general approach used in order to complete the different research
objectives and answer the thesis’ main research question. Given that most of the information
in this thesis is explained in the various papers presented in chapters 4 and 5, we focus here
on how the different papers are related and how they complement each other.

3.1 Multilingual Question Answering

As described in section 1.3, the main objective of this research project is to propose, develop
and implement a multilingual QA system that leverages the potential usefulness of different
lexico-syntactic patterns. The proposed system has the additional requirements of allowing
natural language questions without any constraints and also allowing questions in multiple
languages, i.e. French and English in our case.

The final system built for the project and presented in both chapters 4 and 5 is LAMA
(Language Adaptive Method for question Answering). LAMA is the second version of our
QA system AMAL (Ask Me in Any Language), a system presented in the paper in Appendix
A.

AMAL is a French QA system which was originally designed for Task 1 of the QALD2017
Challenge [3] at the 2017 ESWC Conference. Despite its name, AMAL was able to only
answer questions in French and had no real native support for other languages in its original
form. The system also focused on answering Simple questions that are defined as questions
that concern only a single entity and property related to it or two entities and a single
property linking both of them. Simple and Complex questions are described in sections A.3
and 4.3 with more details and examples.

Due to its modular architecture and encouraging results at the QALD 2017 competition,
AMAL was chosen as a starting point for the rest of the research project. The system was
developed throughout the last 2 years in an iterative and incremental fashion with two major
updates, corresponding to the different research objectives being presented in this work.

The first article included in Chapter 4 describes the LAMA system, a successor of AMAL
that was designed for the SQA Challenge [29] at the 2018 ESWC Conference, roughly a year
after AMAL. Unlike its predecessor, LAMA is actually able to process questions in both
French and English, making it truly a multilingual system and thus, completing one of the
main research objectives of the project.

16

Figure 3.1 LAMA’s Architecture

Architecturally, both systems are not very different, LAMA being a refinement of AMAL.
The main differences are the reduced use of manually created rules and a shift towards
automatically generated lexicons and resources such as a Property Lexicon and a Word2Vec
model for the Property Extractor module. Another improvement of the system is that it is
also capable of handling more complex questions and is not limited to the simple questions
as in AMAL. A more detailed description of the system’s implementation and inner working

17

is given throughout the paper. Figure 3.1 shows the system’s most up to data architecture,
as described in Chapter 5. The update adds a Syntax Parser module in the preprocessing
steps but keeps the same general structure.

3.2 Knowledge Base Exploitation

The LAMA system uses DBpedia, currently one of the biggest open knowledge bases. Using
a knowledge base as a source of information can be quite helpful since it offers already
structured data as well as a way to query that data in the form of SPARQL queries. Given
its size multi-domain nature, DBpedia is better suited as a knowledge source than many
other, smaller KBs.

DBpedia also has several other advantages, such as offering a relatively human-readable
interface for entities. This is especially helpful in our case since LAMA only returns URLs to
DBpedia entries, TRUE/FALSE in the case of close-ended questions or simply a number if
the question requires some form of counting or aggregation. For instance: "How many official
languages does Canada have?" returns 2, while "What are the official languages of Canada?"
returns URLs for "French_Language" and "English_Language". The user can then follow
those links for more information.

DBpedia is also available in multiple languages, making it very useful if we want to build
a multilingual QA system that actually returns information in the same language as the
original question.

DBpedia is however not without limitations. While there are indeed versions for languages
other than English, the underlying knowledge graph differs from a language to another. For
example, the French chapter of DBpedia has a different knowledge base compared to the
English chapter, leading to different sets of answers for the same question. Our work shows
that this can impact our performance, especially in French as the same information available
in English is either missing or different in French DBpedia. This is the reason why French
questions were translated to English in AMAL and why the Translation module remains
available in LAMA. In some cases, translating a question or part of it remains a viable
option to get an answer.

DBpedia can also be criticized for its limited use of labels when it comes to properties. For
instance, dbo:author only has two labels : auteur(fr) and author(en). This is quite limiting,
considering that the same property in Wikidata has over 20 labels in 4 different languages 1.
This can be important when creating the property lexicon, as shown in section 3.3.2.

1https://www.wikidata.org/wiki/Property:P50

18

3.3 Entity and Property Extraction

An important part of QA systems that interact with KBs using SPARQL is the detection of
entities and the properties in the user’s questions. A word or group of words can be matched
to an existing entity or property in the KB and we use the URIs of the extracted entities
and properties in our final SPARQL query that is sent to the KB for a final answer.

3.3.1 Entity Extraction

Entity extraction is performed first and it is overall an easier process than property extraction.
We generally look for entities such as people, places, titles or other proper nouns, but we are
not limited to those. We give a brief description of the entity extraction process here.

Entities are extracted by taking the user’s input, removing the question word or words, and
generating all possible substrings by recursively tokenizing the output. All resulting strings
are then appended to the dbr: prefix and ran against DBpedia in order to filter them and
only keep combinations that represent existing DBpedia URIs. This means that if our Entity
Extractor returns a set of potential entities, all of those actually exist as resources in the KB.
To improve our results, we also modify the used strings to generate more possibilities and
handle some cases of ambiguity. A much more detailed description, including examples, is
presented in section 4.3.2.

3.3.2 Property Extraction

Both papers in Chapter 4 and Appendix A discuss the inherent complexity of extracting
properties from questions. The label and string matching methods described in section 4.3.2
show that entity extraction is quite straightforward, but that applying this to properties does
not yield the same effectiveness.

This problem was tackled by creating a custom lexicon that binds specific words to an
existing property URI in DBpedia, e.g. ["wrote":"dbo:author"]. Originally, the lexicon was
created by hand by manually extracting the most common properties and linking them to
the corresponding words in the questions.

To reduce reliance on manually created bindings, we have developed an automated lexicon
creation that generates the bindings by parsing DBpedia properties and mapping their pro-
vided labels to their URIs. Section 4.3.3 provides a more detailed explanation of how the
bindings are created from DBpedia. The method can also be applied for labels in other
languages, with French being the one used in our case.

19

Property extraction and mapping are further helped by word embeddings such as a Word2Vec
model to deal with cases where no property can be directly matched to a word in the question.
Using the cosine similarity given by the embeddings, we can look if the word in our question
is similar enough to other words that are bound to DBpedia properties in our lexicon. For
instance, the word wrote is not bound to a DBpedia property, but its vector representation
is close to author which is a label linked to the dbo:author property.

3.4 Lexico-syntactic patterns

While the first paper presents in detail LAMA’s implementation, the second paper in Chapter
5 focuses much more on the rest of the research’s objectives: the presentation and implemen-
tation of the lexico-syntactic patterns.

In this paper, we present two types of patterns: dependency-based patterns that rely on
the dependency graph of the question and POS-based ones that rely on the POS tags of
the different words in the question. Both types of patterns are described in more detail in
sections 5.4 and 5.5. For each pattern, we provide an example of a real question taken from
the two datasets being used (QALD [3] and SQA [29]). Given that the system is multilingual,
French patterns are also provided in the paper’s appendix in the same format.

3.5 Datasets

Research and evaluation have both been done on two different datasets: SQA and QALD.
As already mentioned, many of the examples given throughout all 3 papers come directly
from either one of the datasets. A brief summary is thus well deserved in order to better
understand the datasets’ particularities and their choice. A more complete and detailed
analysis is done in Section 5.3.

3.5.1 QALD

The QALD dataset is actually a combination from both QALD7 and QALD8 training sets
where all duplicate questions have been removed, providing a final count of 384 unique
questions. Each question is provided with translations in 6 different languages (French,
English, Spanish, Italian, German and Danish) alongside a list of keywords for each language.
We have only kept the French and English translations and all keywords are ignored since we
don’t want to impose keywords on the user’s input. The training sets also provide SPARQL
queries and their answers as a golden standard. Both the query and its answers are only

20

provided for the English version of DBpedia. The QALD dataset is primarily composed of
Simple questions with a total of 78% of its questions being represented by a single SPARQL
triple.

3.5.2 SQA

The SQA dataset is similar in structure to QALD: it also includes the question’s literal, a
SPARQL query and its answers for each entry. However, SQA is not multilingual and only
contains questions in English. SQA is also much bigger than QALD with a total of 5000
questions but unlike QALD, 3853, or 77.1% of the questions are classified as Complex.

Those datasets were chosen due to the fact that AMAL and LAMA were built for challenges
on those datasets. QALD is also interesting due to the possibility of having questions that are
both in French and English and while SQA lacks multiple languages, the high concentration
of complex questions makes it an interesting candidate to test our QA system and use more
complex methods to handle those questions.

3.6 LAMA’s evaluation

The last research objective: the evaluation and validation of the patterns’ impact on the QA
system, is also covered in the second paper as well as the evaluation of the system without
any patterns as a baseline for comparison.

Even if specified in our main research objective, we also compute the frequency of each
pattern to verify that the presented patterns were actually significant enough to have an
impact on the system’s performance, without aiming for a specific frequency threshold.

Due to the particularities of the different datasets used, the evaluation was performed on
both of the datasets separately and both sets of results are kept for the final evaluation.

In all evaluation cases (with or without patterns), evaluation was done by running all ques-
tions of each dataset through the system and comparing the system’s output to the expected
result provided to us by the datasets. Given that results are only given for the English DB-
pedia, evaluation was done using the English version of questions when ran on the QALD
dataset. In order to be consistent throughout our work, closed-ended questions respect the
closed-world hypothesis, meaning that the answer is either TRUE or FALSE and for cases
where no definitive answer can be given, the answer is assumed to be FALSE.

The impact of the patterns was measured by comparing the system’s performance on the
same set of questions using four different methods with the first one being used as a baseline:

21

1. Without any patterns.

2. Using dependency-based patterns only.

3. Using POS-based patterns only.

4. Using a both types of patterns together.

For the evaluation, the F1-score measure was used, defined using the following formula:

F1 = 2 · Precision·Recall
Precision+Recall

The multilingual aspect of the pattern-based approach was evaluated differently given that
only one of the datasets (QALD) had questions in multiple languages but no answers in
French (they were given only in English). Because of this, a more qualitative approach was
used to evaluate French patterns where the generated SPARQL triples were compared to the
expected answer in French and each generated triple set was evaluated manually by humans
(graduate students from the LAMA-WEST Lab) based on two criteria. Both criteria lead to
a binary classification (Yes/No). The first one evaluates if the set is semantically equivalent
to the question or a part of it, i.e., if the generated triples express the same meaning as some
part of or the whole question. The second one evaluates if the set is similar to the English
DBpedia triples given in the gold standard. A detailed description of how the evaluation is
done as well as an example is given in section 5.6.3.

While not focused on time performance, the evaluation was performed on a 4 core i5-4690K
CPU with 8GB of RAM using a hard 5 second timeout for SPARQL queries. This was done
to demonstrate that the LAMA system can be ran on an average laptop without the need
for a particularly powerful hardware.

22

CHAPTER 4 ARTICLE 1 : A LANGUAGE ADAPTIVE METHOD FOR
QUESTION ANSWERING ON FRENCH AND ENGLISH

Authors

Nikolay Radoev1 <nikolay.radoev@polymtl.ca>
Amal Zouaq2, 1 <azouaq@uottawa.ca>
Mathieu Tremblay1 <mathieu-4.tremblay@polymtl.ca>
Michel Gagnon1 <michel.gagnon@polymtl.ca>

1 Département de génie informatique et génie logiciel, Polytechnique Montréal
2 School of Electrical Engineering and Computer Science, University of Ottawa

Presented at : ESWC 2018, Extended Semantic Web Conference, Heraklion, Greece
Published in : Communications in Computer and Information Science, vol 927

Abstract

The LAMA (Language Adaptive Method for question Answering) system focuses on an-
swering natural language questions using an RDF knowledge base within a reasonable time.
Originally designed to process queries written in French, the system has been redesigned to
also function on the English language. Overall, we propose a set of lexico-syntactic patterns
for entity and property extraction to create a semantic representation of natural language
requests. This semantic representation is then used to generate SPARQL queries able to
answer users’ requests. The paper also describes a method for decomposing complex queries
into a series of simpler queries. The use of preprocessed data and parallelization methods
helps improve individual answer times.

4.1 Introduction

An important aspect of using the Semantic Web to its full potential is providing typical users
with an easier way to access the growing amount of structured data available in different
databases [3]. General knowledge bases (KBs), such as DBpedia [30], contain information
extracted from Wikipedia, while many specialized knowledge bases have curated domain-
specific knowledge, such as Dailymed [31]. However, given their reliance on SPARQL, these
knowledge bases are difficult to use for the average user. Moreover, querying these KBs

23

without knowledge of their underlying structure is a very complex task. Developing an
intuitive interface to allow natural language queries is still an open problem [32].

The Scalable Question Answering over Linked Data Challenge (SQA) requires finding a way
to transform a question into a query over a knowledge base, DBpedia being the one used in
this particular challenge. Questions range from simple ones, which target a single fact about
a single entity, to complex questions that involve many entities and require some kind of
additional computation or inference to provide an answer. The training data provided in the
challenge consists of 5000 natural language questions, for which one or more answers must
be extracted from DBpedia.

In addition to being able to answer questions, systems must also be able to give those answers
in a reasonable time and be able to handle a large load of queries in a given time. Assuming
that normally, a QA system is not ran locally by the client, network delay in the user’s
requests must also be taken into account. If the QA system itself acts as a client to external
services, the network delay becomes an important factor in the system’s final performance.

We present LAMA (Language Adaptive Method for question Answering), an extension to
AMAL [33], a system that was originally created for the QALD2017 [3] Challenge at the
ESWC2017 [34] conference. The first version of our system was built specifically to handle
questions in French. In LAMA, we extend this capability to the English language and
handle more complex questions. Given that the AMAL system was based on the French
syntactic structures, additional work was done to reduce the importance of language-specific
structures. As an example, French often uses a Subject-Object-Verb structure (e.g.Il le mange,
(He it eats) in English), compared to English where the Subject-Verb-Object structure is used
instead (e.g. He eats the apple). In addition, the LAMA system does not enforce a controlled
natural language [35] for the input queries but handles the questions "as-is".

Our approach aims at minimizing the number of manual features and ad hoc heuristics
required to process questions. We also aim to optimize the preprocessing time for each
question to improve scalability for a large number of questions or to deal with complex
questions which may be costly in terms of computational resources. Finally, we propose a
method to decompose complex questions into a series of smaller, simpler queries that can be
more easily processed. This paper is a more detailed version of the one initially submitted [29]
to the SQA2018 challenge.

While DBpedia is mentioned throughout the article, the LAMA system is not completely
specific to the DBpedia knowledge base. Other KBs, such as WikiData [36], can be used
to answer questions as long as some conditions are respected, notably the availability of the
property configurations files 4.3. For readability purposes, we have abbreviated certain URIs

24

by using the prefixes detailed in Table 4.1. For example, http://dbpedia.org/ontology/spouse
becomes dbo:spouse. The dbo: prefix is used to represent classes (aka concepts) from the
DBpedia ontology while the dbr: prefix is used to identify resources from this KB.

4.2 Related Work

Question Answering over linked data is a problem that has already been explored by different
studies in the past. Generally, most QA systems follow a similar approach to produce answers:
the user’s question is taken as input, parsed to extract the various relations between the
entities and then a query (most often written in SPARQL) is generated and submitted to
one or more KBs.

Generally, all systems try to build a semantic representation of the question that relies mainly
on the identification of entities and their properties in the user’s questions. Xser [17] and
WDAqua-core1 [16] rely on string matching and generate all possible interpretations for
every word in the question, i.e. each word can be considered a potential entity or property.
QAnswer [37] uses the Stanford CoreNLP parser to annotate questions and employs a mix
of string matching with both text fragments and synonyms extracted from WordNet and the
information given by the POS tags and lemma provided by the parser. This method has
the added benefit of not relying on a perfect matching, making it more resistant to spelling
mistakes.

While the general approach is similar in all the state of the art, the way the questions are
parsed and what information is extracted vary among systems. Most systems [17], [27], [38]
rely on semantic structures in order to find the answer to a given question. Xser defines
a semantic structure as a structure that can be instantiated in the queried data [17]. For
instance, SemGraphQA [27] generates direct acyclic graphs that represent all possible and
coherent interpretations of the query and only keeps graphs that can be found in DBpedia’s
graph representation. WDAqua-core1 has a similar approach to [27] that ignores the syntax
and focuses on the semantics of the words in a question by extracting as many entities as
possible and trying to find relationships between them by exploring the RDF graph of each
entity. Relying on partial semantics, where only a part of the question is given a semantic
representation, appears to be a reliable approach towards QA given its wide use [17], [16], [27].

Table 4.1 DBpedia prefixes

dbo http://dbpedia.org/ontology/
dbr http://dbpedia.org/resource/
dbp http://dbpedia.org/property/

25

Finally, all of the systems observed used DBpedia or Wikidata as their KB backend, making
the use of SPARQL queries ubiquitous. WDAqua-core1 generates multiple SPARQL queries
and ranks them based on multiple criteria, mainly the number of words in the question that
are linked to resources in the query and how similar the label is to the corresponding resource.
In contrast, QAnswer generates a single SPARQL query at the end of its entity-relationship
extraction phase.

The approach proposed with LAMA is also based on the identification of entities and prop-
erties. However, unlike Xser [17] and others, our entity and property extraction do not rely
only on string matching but also on lexico-syntactic patterns, detailed in sections 4.3.2 and
4.3.3. Additionally, our SPARQL query generator creates multiple queries in order to explore
different possible interpretations of a question but also has some additional pre-processing to
limit unnecessary query generation, unlike WDAqua-core1.

4.3 System Overview

As previously mentioned, LAMA is based on the AMAL system developed for the QALD-
7 challenge and thus keeps the same core architecture. The system is developed using a
modular approach to separate application logic in different subsystems. Each subsystem can
be developed, modified or enabled independently. For example, the translation module can
be toggled on or off based on the initial language of the query: in the original system, parts
of the French requests were translated into English in order to retrieve information from the
English version of DBpedia. While we have attempted to reduce the reliance on language-
specific rules, all main modules of the LAMA system can be extended and adapted to include
such rules if the developers deem it appropriate.

Originally, AMAL’s main focus was to interpret and answer Simple Questions, which are
questions that concern i) only one single entity and a property of this entity, e.g. Who is
the mayor of Montreal? where Montreal is the Entity and dbo:mayorOf is the Property or
ii) a single relationship between two entities (e.g is Valerie Plante the mayor of Montreal?).
The LAMA system now also handles some Complex Questions by converting them into a
set of Simple Questions and processing those smaller parts. The architecture of our system
involves a multi-step pipeline: a Question Type Classifier, an Entity Extractor, a Property
Extractor and a SPARQL Query Generator that generates the final SPARQL query that is
used to retrieve the answer(s) from DBpedia.

The first step is to determine the type of the question and the nature of the expected answer.
Once the system knows the question type, the query is sent to a specific solver that has
been designed for this type of question. For instance, a question such as Is GIMP written in

26

Figure 4.1 System Overview

GTK+? will be sent to the Boolean answerer, and Who died due to Morphine? is handled
by the Resource question solver. Every question solver makes use of one or more submodules
that function as extractors. There are two main extractors: an entity extractor and a property
extractor. Once we obtain a semantic representation of the natural language question using
knowledge base entities and properties, we generate one or more SPARQL queries based on
these entities and properties. Given that multiple valid entities and/or properties can be
found in a single query, all possible SPARQL queries based on these valid combinations are
generated and saved in a queue.

The following sections detail the main steps of our system’s pipeline: the Question Type
Classifier, the Entity Extractor, the Property Extractor and the SPARQL Query Generator
and their general implementation. As previously mentioned, each module can be extended
and modified separately.

4.3.1 Question Type Classifier

Currently, questions are grouped into the following types: Boolean, Date, Number and Re-
source. Resource is the most generic type and designates questions for which the expected
answer is one or more URIs. It is used as the default type for questions that don’t fit any of

27

the other categories. Boolean questions operate on the closed world assumption and always
return a TRUE or FALSE answer, with FALSE being returned in the case where the answer
is unknown. Date questions refer to dates in a standard YYYY-MM-DD format. The ques-
tion type is determined through pattern matching with manually extracted patterns (roughly
5 patterns per question type) from the QALD6 and QALD7 training sets, totalling more than
400 questions. The different patterns and an example for each are given in more detail in
Table 4.2. Questions about location are classified as Resource but have their own patterns
to further help with classification. For example, classifying the question Where is the West-
minster Palace? as a location question type, we can look for properties such as dbo:location
or at least properties that are in the range of dbo:Place.

Classification is done by trying to match the questions to different types in the following
order: Boolean, Date, Number, and Resource. This order is due to the relative complexity
of type matching, with Boolean and Date questions being easier to detect while Number
questions can be more complicated, i.e. requiring counting the number of answers in a set
(e.g. How many languages are spoken in Canada?) or calculating a timespan (e.g. How
long did World War II last?). In the current version of the system, multiple types are not
supported and only the first detected type is considered. The system does however support
subtypes, more specifically, the Aggregation subtype that applies to questions that require
counting or ordering (ascending or descending) of results. Several examples are provided in
Table 4.3.

This pattern-based method has the advantage of being easily transferable between languages
in the context of a multilingual system, as patterns can be easily expressed in different
languages. In fact, after extracting patterns for both French and English, the system was
able to accurately predict the question type in more than 92% of the QALD7 training set.

4.3.2 Entity Extraction

As previously mentioned, the original AMAL project focused on Simple Questions, limited
to at most one entity and one property. For example, a simple question is Who is the father
of Barack Obama?, where ’Barack Obama’ is the entity and ’father of’ is the property. To
extract the entity from the question, we first try to match the words (or a combination of these
words) to existing DBpedia entities. Given that noun groups can contain many more elements
than just the entity, such as adjectives or determinants, we start by removing the question
keywords and consider the remaining string as the longest possible entity. We then generate
all possible substrings by recursively tokenizing the output. All generated combinations are
then appended to the dbr: prefix (see Table 4.1), e.g. dbr:Barack_Obama and are ran against

28

Table 4.2 Keywords for question classification

Contains Example
Boolean question

Does Does Toronto have a hockey team?
Do Do hockey games half halftime?
Did Did Ovechkin play for Montreal?
Was Was Los Angeles the 2014 Stanley Cup winner?
Is Is Corey Crawford Blackhawks’ goalie?

Date question
When When was the Operation Overlord planned?
What time What time is the NHL draft?
What date What date is mother’s day?
Give me the date Give me the date of the FIFA 2018 final?
Birthdate What is the birthdate of Wayne Gretzky?

Location question
Where Where is the Westminster Palace?
In what country/city In what country is the Eiffel Tower?
(Birth)place What is Barack Obama’s birthplace?
In which In which state is Washington DC in?
the location of What was the location of Desert Storm?

Table 4.3 Number and Aggregation question classification

Contains Example

How many How many countries were
involved in World War 2?

Count Count the TV shows whose
network company is based in New York?

List the [..] List the categories of the animal kingdom.

Sum the things Sum the things that are produced
by US companies?

the most/the least What is the most important
worship place of Bogumilus?

first/last What was the last movie
with Alec Guinness?

[ADJ]-est
(biggest, oldest, tallest, etc.)

Name the biggest city
where 1951 Asian Games are hosted?
Who is the tallest player in the NBA?

29

the DBpedia database to find as many valid (i.e. that exist in DBpedia) candidate entities as
possible. For example, Who is the queen of England? generates the following substrings after
removing the question indicator (Who is, a Resource question indicator): queen of England,
queen, England, queen of, of England. Out of those, only the first 3 are kept as valid entities
since queen of and of England are not DBpedia entities. The selected entities are then sorted
by length.

In order to increase the set of considered entities, we add variations of the identified nouns
using normalization and stemming. For example, the noun queen can be transformed to
extract the entities Queens or Queen. If no entities are found using this method, we use
the DBpedia Spotlight [39] tool. Spotlight is a tool for entity detection in texts and its
performance is limited when applied to single phrases so it is only used as a backup method.

Once all the possible candidate entities have been extracted, we use multiple criteria, such
as the length of the entity’s string, the number of modifications needed to find it in DBpedia
and whether we had to translate it, to determine their likelihood of being the right entity.
For example, every modification through normalization and stemming reduces the likelihood
of the entity to be chosen. In our previous example, since Queens requires 2 modifications
(pluralization and capitalization), it is less likely to be selected as the correct entity by the
entity extractor. The formula we currently use to combine these factors is the following,
where e is the entity string:

length(e)− T × length(e)
2 + 2× U × nsp(e) - P

where:
nsp(e) is the number of spaces in e

P is the number of characters added/removed to add/remove pluralization
T = 1 if e has been translated, 0 otherwise
U = 1 if e has not been capitalized, 0 otherwise

According to the formula, the score is penalized by half the length of the entity string if we
used a translation. This only applies for languages other than English since the translation
step is entirely skipped when analyzing an English query. Also, the more words it contains
(a word is delimited by the use of spaces) the higher the score will be, if it has not been
capitalized. For example, In which city is the Palace of Westminster in? we can extract
Palace of Westminster and Westminster. However, using the above formula, Westminster
has a score of 11 while Palace of Westminster has a score of 25. Therefore, we consider it

30

more likely that the correct entity is Palace of Westminster.

During the entity extraction phase, there is very often the issue of ambiguity when deciding
which resource in the knowledge base we are looking for. For example, Victoria can refer
to: Person, Ship, City, Lake, etc. To determine which resource to use to answer the query,
LAMA has a multi-step approach which relies not only on candidate entities but also on
properties, as explained in section 4.3.2 and 4.3.3:

1. For every candidate entity being a disambiguation (dbr:Victora,dbr:Victoria_(name),
dbr:Victoria_(ship), dbr:Queen_Victoria_(ship), etc.) for the word Victoria, we ex-
tract possible disambiguation entities following the disambiguation link provided in
DBpedia and store them in a vector V where the first element is the original entity (i.e.
dbr:Victoria).

2. For each entity in the vector V, we generate a SPARQL query that involves the entity
and the properties extracted by the Property Extractor (see section 4.3.3). We keep
only the entities whose queries return non-empty answers for an ASK SPARQL query
looking for an existing link between the entity and the property.

3. In the case of multiple entities having the same property in their DBpedia description,
we find the intersection between the entity’s label and the original query’s string repre-
sentations (character per character) and compute its length (See the example below).
Results are then sorted by a distance factor (from 0 to 1) based on the ratio of the
intersection’s value and the entity length using the following representation:

distance vector = |intersection set|
entity′s label length

This can be best illustrated with an example using the following question taken from the
SQA training set : Ship Victoria belongs to whom? The property in the query is: dbo:owner
(representing the expression belongs to) but there are 2 candidate entities: dbr:Ship and
dbr:Victoria and as already mentioned, dbr:Victoria has several possible disambiguations
(more than a 100). Most of those can be eliminated as they are not linked to any other
entity by the dbo:owner property. However, some resources do have the property and can
be valid possibilities, most notably: Victoria_(ship) and Queen_Victoria_(ship) where both
entities have a dbo:owner and are both ships. In this case, calculating the intersection’s
length between those entities and the original question’s string, we get an intersection length
of 12 (i.e. there are 12 letters shared between the two strings) for Victoria_(ship) and 13
for Queen_Victoria_(ship). However, the distance factor is 12/12 and 13/17 respectively.

31

Using those metrics, we return a list of ranked entities where Victoria_(ship) is the top
entity.

4.3.3 Property Extraction

Besides the entity extraction, another step for the request’s semantic representation involves
the extraction of properties from the original question to generate SPARQL queries. First,
the potential entities tagged by the Entity Extractor are removed from the query and the
remaining tokens are parsed for potential properties. The process is actually run in parallel
with the entity extraction since some parts of it depend on the existence of entity-property
relations. This also helps with the processing time, since we can do both extractions at the
same time.

To increase performance, we have automatically extracted more than 20000 DBpedia prop-
erties along with their labels, thus building a property lexicon. The information is stored in
a hash table, allowing for a fast (O(1)) access to a property URI based on its label. Without
this lexicon, verifying if a possible label is related to a valid DBpedia property would require
sending a network query to DBPedia, which incurs additional time and computational invest-
ment. While much of the label-URI pairs can be considered noise, e.g. dbp:125TotalPoints,
some can be quite useful for question answering tasks, e.g. ["author": dbo:author], ["spouse":
dbo:spouse], ["birth place": dbo:birthDate] etc. In the case of properties that exist in both
dbo and dbp prefixes 4.1, both properties are added to the label-URI pair with the dbo
URI having priority, e.g. "parent" is a label with both dbp: and dbo: prefixes, but most
entities use the dbo: prefix. Querying for the properties and their labels, with the additional
option to only get labels in a specific language (English in this case) can be done using this
SPARQL query to DBpedia :

SELECT ?pred ?label WHERE {
?pred a rdf:Property .
?pred rdfs:label ?label

FILTER (
LANG(?label)="" || LANGMATCHES(LANG(?label), "en"))

}

This allows us to easily find existing properties based on their label and its presence as a
text fragment in the query. If the entities identified in the natural language request do not
have any of the potential properties in their description, they are simply discarded.

32

The original AMAL system relied on manually annotated mappings between properties and
entities to tackle ambiguities in property selection. This initial reliance on manual bindings
has been reduced in LAMA by adding some basic rules for valid entity-property relations. For
example, the tallest can be ambiguous given that it can both mean height or elevation, with
the first meaning used in a relation with the DBpedia entity type Person, and the second
used with entities that are instances of Natural Place. A valid rule for the tallest would thus
be: the tallest : {height: dbo:Person}, {elevation: dbo:NaturalPlace}

Having such type-based rules can improve performance and speed by exploring only properties
that are part of a valid rule. While those rules are still manually introduced in the system,
generalizing them to the most generic type eliminates the need to add a rule for each instance
of the targeted class.

Unlike entity detection, where entities are often detectable using simple string matching with
the use of some lemmatization techniques, properties are rarely available in their literal form
in a question. For example, the question: Who played Agent Smith in Matrix? can be
answered by using the DBpedia property dbo:portrayer, a word not present in the original
query.

To address this issue, LAMA uses a Word2Vec [40] model to expand the possible properties
that can be extracted from a natural language query. The Word2Vec model is trained on data
from Wikipedia in both French and English. The trained model provides a list of words that
are similar to a given word along with their cosine distance. Currently, the Word2Vec model
only applies to single words so complex expressions are only handled by the lexicon. If a word
is selected as a possible property label, but it does not match one in the property lexicon,
LAMA explores the similarity vector of the word, looking for a label that is contained in the
lexicon. Only words with a cosine distance above 0.5 are kept to minimize false positives.

As an example, using the question Is Michelle Obama the wife of Barack Obama?, the word
wife is identified as the label of a potential property but is not a label present in the property
lexicon. Using the Word2Vec similarity vector for wife, we find spouse with a cosine distance
of 0.723, a word that is also an existing label (mapped to dbo:spouse) in the lexicon. Using
this, the following SPARQL query can be generated to find the answer to the question:

ASK WHERE {
<dbr:Barack_Obama dbo:spouse dbr:Michelle_Obama.>

}

33

4.3.4 SPARQL Query Generation

The last step is building and sending SPARQL queries to DBpedia. The system uses the
standard DBpedia endpoint: http://dbpedia.org. For now, LAMA supports basic SPARQL
queries such as ASK (for checking for existing entities and Boolean questions) and SELECT.
The SPARQL Query Generator supports the ORDER BY modifier, which allows for sorted
answers or a single answer, e.g. "What is the highest mountain...?" or "Who was the youngest
prime minister of Canada?". Queries exist as basic templates in which specific values are
injected in the form of RDF triples. When a question has multiple possible entity-property
combinations, the generated SPARQL queries are sent in parallel since the different combi-
nations are independent from each other. Only queries that return a non-null answer are
kept, with the exception of ASK queries where an empty answer is considered FALSE.

4.4 Complex Question Simplification

As previously indicated, AMAL focused on Simple Questions and as defined, a Simple Ques-
tion is a query that can be represented as a single RDF triple, e.g. Is Valerie Plante the
mayor of Montreal? is represented by:

<dbo:Valerie_Plante dbo:mayor dbo:Montreal>

However, some natural language queries can be more complex, containing multiple relation-
ships between entities in the same sentence. In LAMA, we aim to also analyze and answer
such complex questions. In fact, many of those complex questions can be represented as a
chain of smaller, simpler queries. For example, the question and its respective RDF triple
representation:

Who were involved in the wars where Jonathan Haskell battled?
<dbo:Jonathan_Haskell dbo:battle ?wars>
<?wars dbo: combatant ?answer>

can be transformed into :

What battles was Jonathan Haskell in?
<dbo:Jonathan_Haskell dbo:battle ?wars>
and
Who were the combatants in those wars?.
<?wars dbo: combatant ?answer>

The question is thus separated in two sub-queries with wars being the only shared word.
Currently, deciding when to split a complex question into multiple simple questions is based

34

on the presence of a keyword 4.4, where being the separation marker in this example. The split
is done right before the targeted keyword and the keyword is kept in the second sub-question.
The following table shows the different keywords used to detect Complex Questions.

A special case is made for questions that involve the following structure: [...] both X and
Y [...]. In such questions, two RDF triples are automatically generated that have the same
structure, but the subject of both is X and Y respectively. For example, the question:

Which university was attended by both Richard H. Immerman and
Franklin W. Olin?

generates the following RDF triples :

<dbo:Richard_H._Immerman dbo:education ?university>
<dbo:Franklin_W._Olin dbo:education ?university>

By having a set of Simple Questions, each question can be analyzed separately and with
a reduced amount of tokens in each phrase, the system has a lower probability to gen-
erate erroneous entity-property combination, e.g. linking Jonathan Haskell and involved
(dbo:combatant) together in our example Who were involved in the wars where Jonathan
Haskell battled?. Currently, the system waits for all triples to be generated by each Simple
Question and combines them in a single SPARQL query. This saves on processing and an-
swer time, since only a single SPARQL request is sent for the whole question, instead of an
individual request for each RDF triple.

4.5 Parallel Processing and Scalability

The original version of the AMAL system had a procedural processing cycle which could
bring scalability issues. The system had to wait for every SPARQL query sent to DBpedia to
finish its execution before trying a new one and there was no predefined timeout for a request.
Originally, all answers were expected to be in English, even if the system was designed to

Table 4.4 Complex Question Keywords

Contains Example
Where Who were involved in the wars where Jonathan Haskell battled?
Whose What are the TV shows whose network is also known as the CW?
Which Give me everything owned by networks which are lead by Steve Burke?
Also Name the scientist whose supervisor also supervised Mary Ainsworth?
Who List the resting place of the people who served in Norwalk Trainband

35

handle French queries only, thus requiring an extra layer of translation for every question.
Questions where multiple translations were required were the biggest problem, since the
Google API does not allow for batch querying.

For the SQA challenge, we propose a redesign of the system, focusing on optimizing scal-
ability. The following points are the main focus of the optimization techniques and target
different parts of the process in order to maximize results.

• The extra step of translating French into English is no longer required, given that
the questions are in English only. This saves around 15 to 20% of computation time,
depending on the complexity of the question and the amount of translations necessary
to process the equivalent question in French.

• Some parts of the question’s processing have been moved to the client side, most notably
the lookup of valid DBpedia properties, which no longer requires sending requests to
DBpedia. This reduces networking time overhead and access overhead since a hashtable
has an O(1) complexity.

• SPARQL queries for the same question are run in parallel. Since the generated SPARQL
queries are independent, running a query as soon as it is generated by the solver, without
waiting to see if the previous one was successful or not, helps with the scalability of the
system for multiple queries ran at the same time.

4.6 Evaluation

The evaluation of our system was done on the training set for the SQA2018 challenge. The
base benchmark was run on the 5000 provided questions in the training set. The training
set contains roughly 22% of Simple Questions. We have evaluated both the accuracy of the
returned answers and the time to execute all queries. The evaluation was performed on a 4
core i5-4690K CPU with 8GB of RAM using a hard 5 second timeout on SPARQL queries.
The tests were run on a limited environment to demonstrate that the LAMA system can
be run on an average user’s machine without requiring any particularly powerful hardware.
The system was able to answer 2654 out of the 5000 questions, which gives us a 53.3%
accuracy for the answers with a success rate of 74% for Simple Questions and 33.5% for
Complex Questions. The evaluation took a total of 15603 seconds, giving us an average of
3.12 seconds per query.

When our keyword-based query separation method was applied on the SQA training set, we
noted a 20 to 22% improvement in question answering. Not all returned answers sets were

36

complete, given that the method to separate the complex queries is rather basic, but since
the previous system had no way to analyze such questions, it is a notable improvement. More
details on how this can be improved in future are given in Section 4.7.

While the results are not as good as the original AMAL system (74% accuracy), we have
to note that the new version relies much less on case-by-case exception handling and it has
transitioned from a system aimed specifically at French to a multilingual system that handles
French and English questions.

Finally, the SQA challenge also involves evaluating the competing systems on a test set.
We observed that, in contrast to the training set, the test set includes many errors, such
as spelling errors, case errors or incorrectly tokenized questions. We expect a decrease of
LAMA’s performance due to these errors. To evaluate the impact of spelling mistakes, we
have taken 200 questions from the SQA training set and randomly added the same type of
errors (as detailed in section 4.7) to some of the questions. This gives us an accuracy of 41%
and precision of 45%, since some questions were only partially correctly answered. Based on
this, it is clear that spelling has an important impact on the system’s performance.

4.7 System Limitations and Future Work

One of the current limitations of the system is its difficulty to correctly split complex questions
into multiple simple questions. Most of the errors in complex questions are due to the fact
that the keyword used to split the sentence is not in fact a correct separator. For example,
the sentence: Give me the places where people who worked for HBO died in? has been split
into ;

{Give me the places} , {where people} and {who worked for HBO died in?}

This ends up giving 3 sub-queries where the first one (Give me the places) is correct, while
the second one (where people) does not make sense and the last one (who worked for HBO
died in?) is interpreted by LAMA as looking for somebody who work for HBO. The final
result is thus obviously incorrect.

We plan on improving those results with the processing of the Complex Questions using a
syntactic analysis instead of relying on simple keywords. Using a syntactic parser, such as
SyntaxNet, will allow for easier division of queries. Figure 4.2 shows the syntactic analysis
of our example above. Following the POS tagging and relations, the question can be split
into : [...] people who worked for HBO [...] and Give me the places where X [...] died in
where X is the result of the first sub-question. This separation corresponds to the correct
interpretation of the question, which can thus be answered more accurately.

37

Figure 4.2 Syntactic parsing example

Another limitation of LAMA is that it relies on string matching for entity and property
detection. This means that the system is not resistant to typographic mistakes which can
easily produce false results. While working on the system, we discovered that using Google
Translate can sometimes correct spelling mistakes for some words even if asked to translate
from English to English. However, this method is not reliable, providing spelling correction
for only around 30% of the misspelled words and can also incur a non- negligible time cost
if all words are to be translated for spell checking.

Future work for the system should include a spell check module that can correct most common
mistakes. The testing set for SQA2018 has quite a few spelling mistakes and over 75% of
those are simple letter inversions (What becomes Waht) or single missing letter (hve instead
of have). Most of those mistakes can be detected and corrected by a spell checker and thus,
improve entity and property extraction in the users’ questions.

4.8 Conclusion

In this paper we presented the LAMA system, a modification of a currently existing QA
system redesigned for multilingual support and scalability performance. We have modified it
by adding emphasis on scalability and reduced its dependence on ad hoc heuristics and case
by case exception handling. Additional work was done for handling Complex queries that
are defined as questions requiring a SPARQL query with multiple RDF triples. A method
for splitting those complex questions in a series of simple ones was also proposed.

There is still some work to be done, most notably by improving the way complex queries
are decomposed in a sequence of simpler ones. Our approach relies on a string and label
matching approach for entity and property extraction in the users’ questions but suffers from
accuracy issues in case of spelling mistakes. In order to reduce this problem, we plan on
adding a spell checking module to the system’s pipeline.

Acknowledgements. This research has been partially funded through Canada NSERC
Discovery Grant Program.

38

CHAPTER 5 ARTICLE 2 : MULTILINGUAL QUESTION ANSWERING
USING LEXICO-SYNTACTIC PATTERNS

Authors

Nikolay Radoev <nikolay.radoev@polymtl.ca>
Amal Zouaq <amal.zouaq@polymtl.ca>
Michel Gagnon <michel.gagnon@polymtl.ca>

Submitted to : Semantic Web - Interoperability, Usability, Applicability

5.1 Abstract

The abstract should briefly summarize the contents of the paper in 15–250 words.

5.2 Introduction

Many applications rely on the SPARQL standard in order to query data based on an RDF
model. The use of SPARQL does however come with a significant drawback represented by its
steep learning curve. Several systems have been developed to hide SPARQL from the average
user by accepting a specific set of inputs that is used to generate specific SPARQL queries.
Some systems opt in for a keyword search where every word or group of words is considered
as a separate entity and no additional semantic or syntactic properties of the query are being
considered. SPARQL queries are then built by trying different combinations of all the words
and returning only those which obtain some answer. While those systems are effective, they
are reliable only for simple queries and do not deal well with ambiguities. More so, keyword-
only approaches can sometimes feel unnatural to users. Some more sophisticated systems
are able to accept questions entirely written in natural language without imposing additional
constraints to the user. Such systems include [16, 27, 38, 41] and take into consideration
not only keywords but also additional semantic and syntactic representations to build more
accurate and complex SPARQL queries.

While natural language questions written without any restrictions can be complex, it can be
observed that people often ask similar questions and similar structures can be found in dif-
ferent questions [42]. This paper aims to present the question-answering system LAMA [29]
based on various multilingual (French / English) lexico-syntactic patterns that can help

39

generate corresponding SPARQL queries. These patterns can be used in any question-
answering (QA) system that wants to leverage the power of syntax and POS-tagging to
generate SPARQL queries. We show the relevance and effectiveness of the proposed patterns
on two different question-answering datasets [3, 43].

The remainder of the paper is structured as follows. In the next section, we analyze the two
datasets and describe our LAMA system. We then detail the two different types of patterns
used by the system. This is followed by an evaluation on the datasets, both for determining
the patterns’ frequency and their impact on a question answering system. After a discussion
on the evaluation results and a review of related work, we conclude with some final remarks.

5.3 Methodology

In this section, we describe in more detail the datasets and the system used to evaluate
the proposed patterns. A more in-depth description of the datasets allows for a better
understanding of their particularities and the type of questions that can be asked to a QA
system by the average user. A description of the LAMA system also allows us to give an
example of a practical application of the patterns outside of their theoretical description.

While DBpedia is used as the reference knowledge base throughout this paper, the work
presented is not limited to DBpedia and can be applied to any other knowledge base. For
readability purposes, we have abbreviated some of the URIs by using the prefixes in Table
5.1. The dbo: represents classes and concepts in DBpedia’s ontology while dbp: and dbr:
represent properties and resources respectively.

Table 5.1 DBpedia prefixes

dbo http://dbpedia.org/ontology/
dbr http://dbpedia.org/resource/
dbp http://dbpedia.org/property/

5.3.1 Dataset and Question Analysis

The work presented in this paper is based on two different corpora containing questions
designed to be ran against a particular knowledge base, in this case DBpedia. Each question
also contains the expected answer as well as a sample SPARQL query used to obtain that
answer. We classify each question as either simple or complex. A question is defined as simple
if it can be translated into a SPARQL query that contains only one triple pattern, otherwise

40

it is considered as a complex question. For example, the question Who died of malaria? is a
simple question since it can be expressed using the following SPARQL triple pattern:

?x dbo:deathCause dbr:malaria .

The question Who died from malaria in North Borneo? is considered a complex question
since it requires the 2 following triple patterns for a complete answer:

?x dbo:deathCause dbr:malaria .
?x dbo:deathPlace dbr:North_Borneo .

We now present the two datasets that have been used in our experiments.

QALD Dataset

The QALD dataset is a combination of both the QALD7 and QALD8 training datasets
provided for the QALD competition [3] in 2017 and 2018, respectively. Given their similarity,
both datasets were merged for a total of 560 questions. Duplicate questions appearing in
both sets were removed for a final count of 384 unique questions. Filtering was done purely
on complete string match and thus questions like What basketball players were born in X?,
where X is a different location name in each dataset, were kept as different queries.

QALD is overwhelmingly composed of simple questions (298 out of the 384 questions), rep-
resenting 78% overall. The general distribution per type can be seen in Table 5.2. We
partitioned the questions according to the type of the expected answer. The last category
(Resource) designates questions for which the expected answer is one or more URIs and for
which no other more appropriate category was found The dataset is mostly composed of
Resource questions but has a non-negligible amount of Boolean questions.

Table 5.2 Question Types per Dataset

Question Type QALD SQA
Date 6.5% 1.3%

Number 6.8% 2.7%
Boolean 21.0% 7.4%
Resource 65.8% 88.6%

41

The QALD questions are also translated in multiple languages (6 different languages including
French, English, Spanish, Italian, German and Danish) but only the French and English
translations were considered in our experiments. The provided SPARQL query and answers
only contain references to the English version of DBpedia and no alternative answers are
provided.

SQA Dataset

The SQA dataset is similar to the QALD in its structure but does only contain questions
in English while still providing both the answers to the questions and the SPARQL queries
used to obtain those answers.

Despite having a larger number of questions than QALD, the SQA dataset contains many
questions that are redundant in their structure. For example, the question "Who was married
to X?" appears 7 times in the dataset with different entities at position X. Just like QALD,
those types of questions are kept in the final dataset.

As for the question type distribution, SQA differs from QALD by presenting a high amount
(3853 or 77.1%) of complex questions. The general type distribution is provided in Table 5.2
and shows a significant bias towards Resource type questions.

It is to be noted that the SQA dataset contains a non-negligible amount of noise represented
by spelling mistakes, wrong capitalization and missing words in some of the provided ques-
tions. This can have an impact on the final performance analysis since both syntactic parsing
and POS tagging are sensitive to such noise, especially if some words are missing.

5.3.2 Overview of the LAMA System

One of the main reasons for exploring a pattern-based approach to generate SPARQL queries
from natural language questions was to enhance our question answering system LAMA [29]
and reduce its reliance on ad-hoc heuristics and pre-defined rules.

LAMA (Language-Adaptive Method for Question Answering) is a system originally designed
to answer simple questions in both French and English. Even though it has been originally
targeted to simple questions, the first version of LAMA (AMAL, [33]) was still able to
answer a very limited amount of complex questions.The system is modular and offers multiple
components that can be modified and replaced with custom ones if a different behaviour is
desired, as long as a corresponding adapter is provided for the new endpoint. Some of the
components are optional, such as the Translation Module, which can be used to translate
questions in English and use the answering module for this language, thus leveraging the

42

Figure 5.1 LAMA’s Architecture

larger amount of data in English.

Figure 5.1 shows a high-level representation of the system’s architecture. The system adopts
a module-oriented structure where every module is responsible for a specific task and can be
swapped for a different module if desired. The preprocessing modules (Syntax Parser and
Question Classifier) generate additional information (dependency tree, POS tags, question

43

Figure 5.2 LAMA’s Pipeline

type) that is passed to the core module: the Question Solver module.

This module exposes an interface with a single method, GetAnswer(string question). The
interface can be implemented based on the needs of the system and can use the different
modules represented inside the Question Solver box in the figure. The three main com-
ponents, Entity Extractor, Property Extractor and SPARQL Generator, are required for a
correct query processing while the Translation Module is optional and the Lexicon Generator
can be omitted if a lexicon is already provided or not used at all. A more detailed explanation
of the different modules is given in the following sections.

The architecture also interacts with several external resources: DBpedia, Wikipedia and the
Google Translate API. In the case of Wikipedia, it is not an active component of the system
since it was used only to train a Word2Vec model for the Property Extractor module in both
English and French [44]. Other Word2Vec models [45] can be used, but given the wealth of
data and the proximity between DBpedia and Wikipedia, Wikipedia remains a good source
for model training in multiple languages.

44

Figure 5.2 offers a more detailed look of the system’s process and how the architecture is
translated in a processing pipeline. LAMA’s pipeline is composed of 3 main steps, indicated
by different colors between the initial question and the final answer : Pre-Processing, Syntax
Tree Representation and SPARQL Query Generation. Each step uses one or more of the
components shown in Figure 5.1 with more details given in the following sections.

Question Parsing.

There are many different existing frameworks for parsing natural language sentences, focusing
on different particularities of the language. We rely on Google’s Cloud Natural Language
API [46] (CNL), which combines multiple tools for different tasks. Based on the SyntaxNet
projet, Cloud Natural Language API offers syntactic parsing, POS tagging, dependency
parsing and basic entity annotation. Another interesting property of this tool is that it
supports many languages.

CNL’s parsing is done on pre-trained models, with English being based on the Penn Treebank
and OntoNotes corpora [47]. To keep uniformity in this paper and all the given examples,
the Universal Dependencies project notation is used. As an example, using this notation on
the sentence When was the statue of liberty built?, we generate the following POS-tags :

When(ADV) was(VERB) the(DET) Statue(NOUN) of(ADP) Liberty(NOUN) built(VERB)
?

As for the dependency parsing, the universal annotation is also being used. As not all
dependencies are represented in all languages, Table 5.3 presents the most used dependencies,
as well as a brief explanation for each.

Table 5.3 Dependency details
Dependency Details Example

subj(V,S) Denotes a relation between the
verb V and its subject S subj(be,Obama) => Obama is

dobj(V,O) Dependency between a verb V
and its direct object O dobj(buy,book) => buy a book

amod(N,A) Dependency between adjective A
and the modified noun N amod(building,old) => old building

conj(A,B) Conjunction between two elements conj(Michel,Amal) => Michel and Amal

Pre-processing and Question Type Classification.

The Pre-processing step involves parsing the input query to extract the sentence’s syntactic
tree representation as well as the POS tag for each word. This step is explained in more
detail in sections 5.3.2 and 5.5. Retrieved data is saved and passed forward into the pipeline.

45

Following this step, the system classifies the question into one of the following categories
: Boolean, Date, Number and Resource. An additional subtype, Aggregation is applied to
questions that require counting or ordering (descending or ascending) of results.

Classification is done by using patterns that have been manually extracted from the QALD6
and QALD7 training data sets [29]. The pattern-based approach is relatively easy to imple-
ment and can be adapted to a multilingual setting by requiring a separate set of user-defined
patterns for a new language. Applied only to French and English, the question classification
was able to accurately predict the question type of 92% of the QALD7 test set. The re-
maining 8% were instances where a more specific type was not detected and was declared as
Resource by default. In some cases, information stored in DBpedia uses the wrong format.
For instance, when asking for the budget of the Lego Movie, the answer is a string literal
and not a number. The impact of a wrong classification is minimal as long as a question is
not classified as Boolean, given that those type of questions are answered with an ASK query
that only returns true or false.

Based on the classification result, the question is passed to a specific Question Solver that
implements custom rules and heuristics to better answer particular question types. For
example, The solver for Date type questions will try to look for keywords such as When,
What time, What date, etc or words representing time such as birthdate, ending, etc.

Lexicon Generation.

In order to help with the property extraction, we built a property lexicon based on our
chosen knowledge base DBpedia. For each property we extracted its URI as well as the
corresponding labels in different languages, French and English in our case. Some properties
in the dbo: domain have labels for both languages, such as dbo:author : author(en) and
auteur(fr) while others only have English labels. The extraction was ran both on the dbo:
and dbp: domains. Extraction was also ran on the dbp: domain of the French version of
DBpedia since language-specific properties are defined in this domain and not dbo:. For each
label, we mapped all corresponding URIs. When several URIs exists in dbo and dbp, we
favor the URI of the dbo: domain first. For instance, the label "parent" has 2 URIs in the
namespaces dbp: and dbo: and thus lead to the following mapping :

{"parent" : [dbo:parent, dbp:parent] }

The generated lexicon is stored as a hashtable, allowing for a fast lookup with an average
complexity of O(1) and reducing the number of network calls required per query analysis.

46

It allows us to find existing properties based on their label and its presence in the question.
When working with languages other than English, the translation of the potential property
can be used for properties that do not have labels for the original language.

While our lexicon is extracted automatically from DBpedia, it can still be enriched by adding
additional bindings that are either generated by other means or created manually. This can
be especially helpful in cases where a certain property is expressed using literals that are
quite different than the label used in the Knowledge Base. LAMA uses a different approach
for such cases relying on word embeddings as explained in the next section.

Entity and Property Extraction.

After the question is parsed and classified, the system tries to extract as much semantic
information from the question as possible, starting with the entities.

First, a coarse-grained extraction is done by identifying and removing the question word
(who is, who are, when was, etc.). The remaining string is then decomposed into all possible
substrings, which are searched in the target knowledge base (DBpedia in this case) after
appending the dbr: prefix and replacing the space character by the underscore character. All
valid entities (i.e. the ones that exist in the knowledge base) are kept as possible candidates.
One of the advantages of this method is that only existing entities are kept and the system
guarantees that if an entity is used, its URI points to an existing entry in the knowledge
base.

For example,Who is the queen of England? generates the following sub-strings after removing
the question indicator (who is): queen of England, queen, England, queen of, of England.
Out of those, only the first 3 are kept as valid entities since queen of and of England are not
DBpedia entities. Based on the assumption that entities are most likely a noun or a part
of a NP (queen of England for example), potential entities extracted from nouns are ranked
higher than potential candidates from verbs or other grammatical groups. To increase the set
of potential entities, we add lemmatization and capitalization but penalize entities discovered
by these transformations. For example, the word queen can also lead to queens, Queen and
Queens but all those have a lower score than the original word. If no entities are found using
all these methods, DBpedia Spotlight [39] is used as a back-up tool.

In the case of languages other than English, an optional translation step can be taken where
the initial question is translated to English using Google Translate. In fact, the French
DBpedia chapter is less complete than its English counterpart and all the question answering
competitions (QALD, SQA) expect a URI from the English DBpedia. This translation

47

increases the chance of finding an entity, especially in languages with limited presence in a
knowledge base (KB), but comes with a potential risk of a false negative since we cannot
guarantee that the provided translation matches the English label in the KB.

The different modifications (capitalization, translation, stemming) are combined to calculate
a score that is used to rank the entities. The score is computed as follows, with e being the
entity string:

S(e) = length(e)− T × length(e)
2 + 2× U × nsp(e) - P

where:
nsp(e) is the number of spaces in e

P is the number of characters added or removed if plural form was added or removed,
respectively.

T = 1 if e was translated, 0 otherwise
U = 1 if e has no capitalization applied, 0 otherwise

We consider the number of spaces for entities that span multiple words, often names or titles
of movies, paintings, etc. This is however only considered if some of the words in the entity
are already capitalized. This is done to reduce the risk of transforming unrelated word into
entities. For instance the creator can be transformed into the Creator, an existing entity
in DBpedia but incorrect in this case. Similarly, translated word groups incur a penalty
proportional to their length. This is done to prioritize words in the native language of the
query and to reduce translation errors. The penalty factor of 2 was determined empirically
in the first versions of the system. With this formula and our previous example, the entity
queen of England (score of 18) is ranked higher than the other two based on its length and
the fact that it is composed of many words.

Both dependency (Table 5.4) and POS (Table 5.6) patterns rely on identifying particular
words as subjects or objects in the sentence, that will be reused in the generated SPARQL
query. In order to facilitate the transformation from a string literal to a valid URI, the
system offers the function getEntity(x), which matches the label x to one of the already
detected entities in the question. If more than one valid entity (in the case of multi-word
entities) are found, they are all returned along with their respective rankings. For instance,
the question Did Tolkien write the Hobbit? can be matched with a lexico-syntactic pattern
that recognizes the subject Tolkien and the object Hobbit, which are respectively tagged as
the potential subject and object in the SPARQL triple. The application getEntity(Tolkien)
will return dbr:J._R._R._Tolkien, while getEntity(Hobbit) will return both dbr:Hobbit (the

48

fictional race) and dbr:The_Hobbit (the book). Based on the score computed as explained
before, dbr:The_Hobbit is correctly chosen as the most likely candidate for the SPARQL
triple.

After extracting the entities, the system detects and extracts possible properties from the
question. Unlike entities, in most cases, the expression of the property cannot be directly
matched with its representation in the knowledge base. For example, using the same ques-
tion as before, dbr:J._R._R._Tolkien and dbr:The_Hobbit are connected by the dbo:author
property in DBpedia, while in the question this property is expressed by the word write.
We first try to match the label to an existing property in our property lexicon either by a
full match to the word label or to its derivative. A derivative is defined as a literal with a
Levenstein distance of less than 3, applied only to the end of the initial word label. While
this is helpful, it does not cover cases where the desired property is significantly different
from the word label.

To alleviate this problem, LAMA uses a Word2Vec word embeddings model trained on
Wikipedia to match a potential word to a valid property as long as the cosine similarity
between the vector representation of the words is above a certain threshold (0.6 in our case).
To reduce the number of false positives, a property is considered valid only if it exists in
the target base and is used in relation with at least one of the extracted entities. Taking
write as an example, we cannot find a direct valid property, but its derivative writer can
be mapped to dbo:writer, a valid property in our lexicon. This however does not satisfy the
second condition since neither of the two entities uses it as a property. Using the Word2Vec
model, we find a cosine similarity of 0.719 between writer and author, a word that can be
mapped to the DBpedia property dbo:author, which is also related to both entities. In the
case of multiple properties matching all the criteria, they are all saved and ranked based on
their cosine similarity.

Like the entity extractor, the property extractor module offers a helper function called get-
Property(X) where X is the word denoting the potential property. In some questions, no
expression can be targeted as a potential property since the relation between two entities is
implicit. In those cases, X is a pair of entities and the system tries to find at least one valid
property that connects those entities. For example, the question "Was Margaret Thatcher a
chemist?" contains the entities dbr:Margaret_Thatcher and dbr:Chemist but no other words
denoting a relationship since Was is a question word and is thus removed. However, look-
ing into DBpedia, we find that both of those entities are connected by the dbo:profession
property which is the property returned by the getProperty() function.

49

Syntax Tree Representation

After each extraction step, the original syntactic tree representation is modified by replac-
ing words with their corresponding entities or properties while maintaining the dependency
between those new nodes. In some cases, multiple words are replaced by a single node,
such as noun phrases representing a single entity. In such cases, dependencies between the
words are removed as they are merged into a single node. During this process, the tree is
no longer a purely syntactic representation but has semantic information injected into it.
Finally, words that are not mapped to an entity or a property are considered as filler words
and are removed. Such words are most often question markers such as who, when, where,
etc. or left-over determinants. It is important to note that for question markers such as
when, which denote a DATE type question, their information is still kept, but not in the tree
representation.

(a) Syntactic tree

(b) Semantic representation after
entity and property extraction

Figure 5.3 Tree representation for the question: Did Tolkien write the hobbit and the Sil-
marillion?

For example, as seen in Figure 5.3 the question Did Tolkien write the Hobbit and the
Silmarillion? is transformed in [dbr:J._R._R._Tolkien] [dbo:author] [dbr:The_Hobbit]
[dbr:The_Silmarillion] with the word Did being pruned and the determinants the being
merged into the new entities.

This process allows to simplify the question’s representation by removing useless words and
gradually building partial semantic data for some segments. This is particularly useful when
handling complex questions. For some complex questions, the resulting representation can be
analyzed as separate simple questions.The syntax tree traversal is done inorder, i.e. traversing
it in a left - root - right pattern.

For example, the question What cars made in Canada are electric? can be represented as
[What cars made in Canada] - [are] - [electric], where the left sub-tree is analyzed separately
and mapped to a variable X which is the reused as the left node of the rest of the tree: [X]

50

- [are] - [electric].

SPARQL Query Generation

The last step of the process pipeline is the building of the SPARQL query. The query
generated by LAMA can either take the form of ASK (for Boolean questions) or SELECT
queries for all other type of questions. The system also supports the ORDER BY modifier and
the COUNT function when handling sorted or aggregation-based questions. After building
and executing the SPARQL query, only non-null answers are kept, with the exception of ASK
queries, which always return either true or false.

The SPARQL Pattern Extractor takes information from the various patterns (these are de-
tailed in the next section) applied to the initial question and generates the corresponding
triple or set of triples as represented in Tables 5.4 and 5.6. The result of this step along with
information generated by previous steps is passed on to the SPARQL Request Builder that
creates the final SPARQL query. In the case of multiple possible triples and/or combinations,
the different possibilities are also generated and stored. For example, if there are 2 different
possible properties for a a triple, 2 different SPARQL triples are generated, each with one of
the two properties.

The generated queries that are independent from each other are ran in parallel against the
standard DBpedia endpoint : https://dbpedia.org/sparql with a built-in timeout of 5 seconds
to prevent system lock and to limit computation time. A query that times out is considered
as returning an empty answer (or false for Boolean questions).

5.3.3 SPARQL queries and triple patterns

A standard SPARQL query, according to the standard definition [7], contains three parts :

• a body section describing the data to be retrieved

• an optional section describing the data that can be retrieved if available

• a modifier section with all the additional modifications to be applied to the data re-
trieved from the previous sections

In this paper, we are mainly interested in the first section, the body of the SPARQL request.
The body is composed of triple patterns, similar to RDF triples.

Given a set of patterns P , we aim to generate the set S containing one or more SPARQL
triples that represent the semantics of a given question. A single pattern p ∈ P generates at

51

least one SPARQL triple. When more than one triple are generated, some of the variables
can be shared. For example, the question Who are the people who played a sport in the
Olympics? can be expressed using the following SPARQL triple set where the object of the
first triple is also the subject of the second one:

?people dbo:playedIn ?x .
?x dbo:sportOf dbr:Olympic_Games .

In theory, such triple chaining can be done with potentially an unlimited amount of triples.
However, in practice, most questions rarely require such a large number of triples. These
queries can also be split in individual triple queries that can be ran in a sequence, allowing
for all the intermediate results to be available for storage and additional use.

Each of the three elements in a SPARQL triple can be a variable. Variables can either be
bound to specific URI or literal or free and take any value in their domain. In the case of
free variables, they are expressed using the ?x form. Let R be all resources, P all properties
and L all literals in the knowledge base being targeted by the SPARQL query and let X be
the set of all variables usable in the SPARQL query. A single SPARQL triple can be defined
as (s,p,o) ∈ (X ∪ R) × (X ∪ P) × (X ∪ R ∪ L). In the following sections, we detail the
dependency-based and parts-of-speech patterns used in LAMA.

5.4 Dependency-based Patterns

5.4.1 Dependency Parsing

As already stated, our work is based on using SyntaxNet as a dependency parser. SyntaxNet
is a transition-based dependency parser [48], meaning it processes data from left to right and
it creates dependency arcs between the different tokens in the initial query. After the parsing,
SyntaxNet produces a single direct acyclic graph representing the dependencies between all
words in a given sentence. Figure 5.4 shows a graphic representation of a simple question
and its dependency parse tree.

Figure 5.4 Dependency parse of a simple query

52

For every dependency arc in the tree representation, we can create pairs of head and modifier
tokens inside a dependency relation. For example, write and Hobbit are represented as
dobj(write,Hobbit) with dobj(v,o) being the dependency relation. We do not need to transform
all dependency arcs into pairs, since not all dependencies have the same usefulness. Such
dependencies can be ignored and even classified as noisy and thus be removed in order
to simplify the analysis of a question. One frequent case is the dependency between a
determinant and its head noun.

5.4.2 Lexico-Syntactic Pattern Representation

As previously mentioned, the first set of patterns presented are based on the dependency
graph generated by the parser. For each pattern, we show both a visual representation as
well as the dependency relations based on the universal representation. We also give the
generated SPARQL triples representing the semantics of the pattern. The list of patterns is
shown in Table 5.4.

Pattern detection can be best illustrated with a specific example. Using the question Did
Tolkien write the Hobbit and the Silmarillion?, we can observe the presence of the last pattern
described in Table 5.4.

The dependency tree of the question is already presented in Figure 5.4 and using that rep-
resentation, we can extract the following dependency relations (Note that we have here a
distributive interpretation of the conjunction):

• subj(Tolkien,write)

• dobj(write, Hobbit)

• dobj(write, Silmarillion)

• conj(Hobbit, Silmarillion)

We now recognize our last pattern where we can use the following mapping :

• S = Tolkien

• V = write

• O1 = Hobbit

• O2 = Silmarillion

53

And using our SPARQL helper functions, we can generate the following SPARQL triples:

dbr:Tolkien dbo:author dbr:Hobbit.
dbr:Tolkien dbo:author dbr:Silmarillion.

The same example can also work if we replace Did Tolkien write ... with Who wrote In
this case, the pattern also applies, but the subject of the generated triple is replaced by the
free variable ?x based on the question word Who. The only difference in the final SPARQL
query is that the absence of a free variable leads to an ASK form, while its presence indicates
the need to use the SELECT form.

Table 5.4 Lexico-Syntactic Patterns
Diagram Dependency pattern SPARQL Example

1
S V O

subj obj subj(v, s)
obj(v, o)

getEntity(s)
getProperty(v)
getEntity(o).

Did Barrack
marry Michelle ?

2
X Y

amod amod(x/ADJ ,y/NN)
getEntity(y)
getProperty()
getEntity(x).

Canadian athlete

3

V1 S1 D1

V2 D2

subj

dobj

subj

dobj subj(V1,S1) dobj(V1,D1)
subj(V2,D1) dobj(V2,D2)

getEntity(s1)
getProperty(v1)

?x.

?x
getProperty(v2)
getEntity(d2)

Give me people
who played a sport

that is in the Olympics.

4

S V

O1 O2

subj

dobj

conj
subj(S,V)
dobj(V , O1),
conj(O1,O2)

getEntity(s)
getProperty(v)
getEntity(o1).

getEntity(s)
getProperty(v)
getEntity(o2)

Did Tolkien write
the Hobbit and
the Silmarillion?

5.5 POS-based Patterns

5.5.1 POS Tagging

In addition to dependency patterns, the Request Builder module of our system also uses
POS-based patterns.

54

We rely on a POS (Part of Speech) tagger that assigns a tag that specifies the grammatical
function of each of the words in a given sentence. For words that may have many functions,
depending on the context, the tagger will select the correct one. For example, the word saw
that can be a verb as in I saw the Hobbit movie last night or in He saw the table in half or
a noun as in I bought a new saw.

In our experiments, we used the SyntaxNet tagger, with the default configuration. It is based
on the Universal Dependencies project with some minor modifications in notation [49]. A
full list can be see in Table 5.5. For the sake of readability, NN and VB are used instead of
NOUN and VERB throughout this paper. It is however important to note that NN does not
represent only singular nouns as in the Penn Treebank Project but all type of nouns. The
tagger used offers a coarse-grained level of POS tagging represented by the tags in Table 5.5.

5.5.2 POS Pattern Representation

In this section, we show a few POS-based patterns that can be mapped to one or more
SPARQL triples in order to generate a SPARQL query representing the semantics of the
original question. The patterns are presented in more detail in Table 5.6.

POS patterns can be used by themselves or in conjunction with dependency-based patterns,
as it is the case in LAMA. Using POS patterns can help by covering additional use cases,
confirming already generated triples or generating a correct tagging when the sentence is
inaccurately handled by the syntactic parser. For instance, both first patterns in Tables 5.4
and 5.6 detect similar representations so only one type of pattern is necessary to cover these
specific cases. However, this redundancy can help by extracting patterns using POS that
are missed due to an incorrect dependency parse. POS tagging using SyntaxNet (Parsey
McParseface) has a very high rate of accuracy : 96.27% for French and 95.34% for English.

For each pattern, we give the pattern itself represented in the format Xtag where X is the
token and tag is the POS tag associated with it. We used the � symbol to represent tokens
that may be ignored. We sometimes associate a tag to this symbol to specify a word that
must be present with this tag, but that will not be used in the query.

For the POS-based patterns, the order of the words matters and has to be as is in the original
question for the pattern to be recognized. However, some tags can be ignored, most notably
the DET tag which often does not change the meaning of the question. Such elements are
denoted by using the [X] notation where X is the tag that can be ignored. For example,
in the question : "Who invented the plane?" we have WP VERB [DET] NN as tags but the
word the represented by [DET] can be dropped without altering the original question. In

55

Table 5.5 POS tags

POS tag Meaning
ADJ Adjective

ADP Adposition
(preposition and postposition)

ADV Adverb
CONJ Conjunction
DET Determiner

NOUN/NN Noun
NUM Cardinal number
PRON Pronoun
PRT Particle

PUNCT Punctuation
VERB/VB Verb (all tenses and modes)

WP Wh-pronoun
X Others

AFFIX Affix

Table 5.6 POS TAG Patterns
Pattern SPARQL Example

1 XNN YV B [�DET] ZNN

getEntity(X)
getProperty(Y)
getEntity(Z)

Did Barrack marry Michelle ?

2 XW P YV B ZNN

getEntity(Z)
getProperty(Y)

?answer
Who developed Skype ?

3 XADV �V B YNN ZV B

getEntity(Y)
getProperty(Z)

?answer
When was the Statue of Liberty built?

4 XDET YNN �
?answer
typeOf

getEntity(X)
Which presidents were born after 1945?

5 WP 〈TO BE〉 XNN 〈OF〉 YNN

getEntity(Y)
getProperty(X)

?answer

What is the official color of
the University of Oxford?

6 〈TO BE〉 YNN [�DET] ZNN

getEntity(Y)
getProperty(Y, Z)

getEntity(Z)
Was Margaret Thatcher a chemist?

7
[...] XCONJ〈 BOTH | AND 〉

OR
X

ADV 〈BOTH | AND〉 [...]

The RDF triple is repeated
and the entity targeted

by the conjunction or adverb X
is replaced in each triple

What cars are fabricated in Canada
AND the USA?

56

some cases, a pattern requires to have specific tokens to be present and are represented by
using 〈X〉 notation where X is the token of set of tokens required for the pattern.

For each pattern, we also show how the SPARQL request is built, using the helper functions
already described in a previous section. The use of the pattern is also illustrated using a
question from one of the two corpora.

As an example, we can take the following question from the QALD-7 dataset: Who developed
Skype? along with its representation given by the POS tagger: [WP VERB NN]. Based on
the tags, we are able to apply the second pattern given in Table 5.6. In this case, we can
map specific words of our question to the different variables of the pattern:

• XW P = Who

• YV B = developed

• ZNN = Skype

Using our SPARQL helper functions and replacing our question word Who with a SPARQL
variable, we generate the following SPARQL triple :

dbr:Skype dbo:developer ?X .

Which gives us the following result when ran on DBpedia :

• http://dbpedia.org/resource/Microsoft

• http://dbpedia.org/resource/Skype_Technologies

Based on the gold standard provided for the question, we can affirm that the generated triple
can indeed provide the correct answer to the question.

While the first example was quite simple and the input question matches exactly the used
pattern, our patterns can be chained together in order to present more complex queries.
For instance, starting from the previous question and adding more information : Was the
developer of Skype and Windows founded before 2010 ?, we get a more complex question that
is a combination of our 2nd and 7th pattern. We have our initial question while adding a
conjunction that targets both Skype and Windows and additional information about a time
limit (before 2010). As per the 7th pattern, we apply the same triple twice by replacing the
first target of the conjunction by the second. Here, Skype is the subject of the triple, so we

57

generate a second triple where the subject is Windows while the predicate and object remain
dbo:developer and ?x respectively.

The new SPARQL triples generated now are as follows :

dbr:Skype dbo:developer ?X .
dbr:Windows dbo:developer ?X .

While the time restriction is not handled by our patterns, they help simplify the question so
it can be analyzed by the rest of the system. After our patterns, the original question can
be written as Was ?x founded before 2010? which leads us to create the following SPARQL
segments :

?X dbo:foundingYear ?Y .
FILTER (?Y < 2010)

Combining both segments, we get the final complete SPARQL query that can answer the
question :

ASK WHERE {
dbr:Skype dbo:developer ?X .
dbr:Windows dbo:developer ?X .
?X dbo:foundingYear ?Y .
FILTER (?Y < 2010)

}

The ability to use multiple patterns on the same query can help to more accurately understand
the question and generate as much of the final request as possible. The SPARQL triples
retrieved after applying the patterns can be applied in a system’s pipeline as its done in
LAMA or can be used to test if an automatically generated question contains valid semantic
structures.

5.6 Experiments and Evaluation Results

We evaluate our lexico-syntactic patterns based on two different criteria : i) the presence of
each pattern in the two datasets QALD and SQA, and ii) the relative impact of the patterns
on the LAMA system’s performance.

58

5.6.1 Pattern presence in datasets

The first evaluation aims to verify the presence of the different patterns in both the QALD and
SQA datasets and thus their usefulness. The aim of this experiment is not to obtain a presence
of 100% for every pattern since it would indicate that either i) the pattern is too generic and
matches almost anything or ii) the dataset lacks variety and is not very representative of the
real world. Patterns are also not mutually exclusive, as multiple patterns can be present in
the same question. For example : What french athletes won a gold medal? has both the first
and the second dependency-based patterns with {athletes,won,medal} matching the first one
and {french athletes} matching the second one.

Both QALD and SQA are described in detail in sections 5.3.1 and 5.3.1 which show the
particularities for both datasets.

Table 5.7 shows the distribution between the different dependency-based patterns in the
datasets. A pattern is counted as long as it is detected in a question and patterns detected
multiple times in the same question are only counted once.

QALD analysis

Looking at the results for the QALD dataset, we can see that as far as the dependency-based
patterns are considered, pattern 1 is much more frequent than others while the last two occur
less than 20% of the time. This can be explained by looking at the composition of the QALD
dataset: 78% is represented by simple questions that very often match the subject, verb,
object pattern directly. Even complex questions can often contain the same pattern. For
example, the question Did Rowling write the first book of the Harry Potter series? matches
the first pattern with {Rowling,write, book}. The relatively low occurrence of the last two
patterns can also be explained by the bias towards simple questions in QALD and the fact
that those patterns generate two SPARQL triples and are thus exclusively targeted towards
complex questions. However, it is interesting to note that 32% of the QALD questions are
classified as complex and patterns 3 and 4 collectively cover 29.6% of questions, meaning
that almost all complex questions in the QALD dataset are covered by those patterns.

Analysis for the POS tag-based patterns for QALD shows similar results with patterns 1
and 2 much more present than the rest. This is most likely due to the higher occurrence of
simple questions. Since both Did Gustave build the Eiffel Tower (pattern 1) and Who built
the Eiffel Tower (pattern 2) match the first dependency-based pattern, it can explain their
lowered frequency, but also shows that using both patterns can offer some redundancy and
increased accuracy. As for the patterns 4 and 5 we observe a much lower frequency, around

59

5% for both. As explained above, a low frequency does not correlate directly to a bad pattern
as the examples given in Table 5.4 show questions that can occur naturally.

SQA analysis

Compared to QALD, dependency-based patterns frequency in SQA is more balanced, espe-
cially when it comes to patterns 3 and 4. This is explained by the larger presence of complex
questions in the dataset as well as more general variation between questions. This indicates
that dependency-based patterns are more present and can be potentially more useful in a
context where the questions are more complex and varied. Increased complexity in questions
also means that there is an increased chance of questions containing more than one pattern,
allowing for a combination of patterns to produce more complex SPARQL queries.

Frequeencies of POS tagging patterns for SQA are similar to the results obtained for QALD.
There are however some differences for pattern 3 which are explained by the fact that ques-
tions that match the pattern What/Which X [...] are much more frequent. Similar to
QALD, patterns 4 and 5 have a lower frequency but as explained in the previous section,
should still be considered representative. Finally, the last pattern is much more present in
SQA, mostly due to the higher presence of complex questions and the fact that this pattern
targets specifically those types of questions.

5.6.2 Patterns Impact on the LAMA system

In order to verify that lexico-syntacic patterns are not only present but can be actually useful
for answering natural language questions, they were introduced in the LAMA’s development
pipeline. The system was then tested with both datasets using dependency-based and POS-
tag-based patterns separately, as well as a combination of both pattern sets. In all cases, the
F-score was computed on the final answers returned by the question answering system and
not only by considering the generated SPARQL query. In fact, only a single SPARQL query
was provided in the gold standard and there can be multiple valid SPARQL queries for the
same question. As per LAMA’s original design, partial answers were not accepted, i.e., if

Table 5.7 Dependency-based pattern frequency

Pattern QALD SQA
1 0.714 0.573
2 0.341 0.472
3 0.122 0.308
4 0.174 0.445

60

Table 5.8 POS tag-based pattern frequency

Pattern QALD SQA
1 0.443 0.568
2 0.331 0.447
3 0.247 0.365
4 0.376 0.342
5 0.065 0.095
6 0.054 0.106
7 0.154 0.378

the number of items in the answers returned by the system is a subset of the answers in the
golden standard, the question is considered as wrongly answered.

Table 5.9 shows the F-score for the different experiments separated by dataset. Looking at
the data for QALD we can see that using one of the two types of patterns to the pipeline
leads to a small increase in performance but the combination of both approaches leads to an
improvement of 10% or 8% globally.

Results for the SQA dataset are however more interesting. We can observe a significant
improvement in F-score when adding patterns to the answering process. This is most likely
due to the increased proportion of complex questions in the dataset compared to QALD.
Also, as seen in the previous section, around 40% of the questions in SQA match patterns
based on the presence of conjunctions. As already established, the SQA dataset offers a more
varied set of questions and using syntax and POS-tag patterns seems to significantly improve
the performance of the system, especially when it comes to complex questions.

Table 5.9 Impact of LAMA on SQA and QALD

Method F-score
QALD

No patterns 0.844
Dependency patterns 0.886
POS-tag patterns 0.872
Both patterns 0.905

SQA
No patterns 0.535

Dependency patterns 0.783
POS-tag patterns 0.754
Both patterns 0.816

61

5.6.3 Multilingual analysis

As already mentioned, the aim of the presented patterns is to apply common patterns to
different languages in order to extract semantic information from questions. Throughout
this article, we have used both English and French as example languages and thus, we
need to evaluate the patterns’ performance in both languages. While the English evaluation
is relatively straightforward and based on measuring the impact of patterns on LAMA’s
performance, evaluating French queries is a bit more complicated. The additional challenge
is brought by both the available datasets and the knowledge base being used. Among both
datasets, only QALD offers questions in more that one language but the answers and the
SPARQL queries are only given based on the English version of DBpedia (e.g. property
labels are in English). Since different versions of DBpedia do not contain the same data or
the same properties between entities, we cannot guarantee that all questions from the dataset
can be answered correctly or even at all using French DBpedia. Translating the entities in
the provided answers can’t be guaranteed to be correct for the same reasons.

For example, if we take the question Which museum exhibits The Scream by Munch? / Dans
quel musée est exposé Le Cri de Munch? from the QALD dataset, we get the following entity:
dbr:National_Gallery_(Norway) for the English DBpedia (same as the answer provided in
the dataset) and dbr:Musée_Munch for the French one. While the French answer is different
than what is provided, it is correct since the entity Le_Cri (The Scream) is indeed related
to Musée_Munch by the dbo:museum property.

In order to focus on evaluating the viability of pattern-generated SPARQL triples without
the limitations of the knowledge base, the multilingual evaluation is done differently. For
each pattern, we look at the SPARQL triples generated from questions in French. Each
triple or set of triples is compared to the generated triple in English. The comparison is a
binary classification (yes/no) that the generated triples are i) semantically equivalent to the
question or a part of it and ii) similar to the ones generated in English. This qualitative
evaluation is done by asking a person familiar with SPARQL and DBpedia, but not with the
patterns being used, to determine if the two criteria have been respected.

For instance, the question Qui est connu pour le projet Manhattan et le prix Nobel de la paix?/
Who is known for the Manhattan Project and Nobel peace prize generated the following triples
:

?x dbo:knownFor dbr:Projet_Manhattan .
?x dbo:knownFor dbr:Prix_Nobel_de_la_paix .

This satisfies both criteria since it the triples convey the same meaning as the original ques-

62

tion and are similar to the triples generated in English : same property and same entities
(similarity can be proved by the fact that they are linked using the sameAs property). In
the case of the POS tag patterns, the 5th one is not used since it does not exist in French and
the 6th one is replaced by the following pattern :

〈Est-ce que〉 XNN 〈ÊTRE〉 YNN

where être is the infinitive of the verb to be

Results from the evaluation are presented in Table 5.10 and 5.11. Results show that SPARQL
triples generated in French are quite close to the expected results with POS-based patterns
being a bit less accurate than dependency-based ones. This is mostly due to the fact that
French tends to be more verbose than English and adding additional words can generate
more POS tags and reduce the accuracy of pattern matching. Some frequent cases, such
as ignoring the auxiliary verb avoir (have) used in French’s past tense, are handled but the
parsing does not cover some other uses cases.

5.6.4 Error analysis

While syntax and POS-tagging approaches have shown to be a promising tool in improving
QA-systems’ performance, they are not infallible and pose certain limitations, especially
when it comes to generating the SPARQL triples associated to each pattern.

First of all, given that both approaches rely on an accurate parsing of the question, they
are directly dependant on the accuracy of the parser. The parser can be affected by the
quality of the model on which it was trained as well as the quality of the original question.
While most syntax parsers in English are quite accurate [46, 50], other languages do not
have such high quality tools. This can be sometimes corrected by translating the question
in English but it can be a source of error if the translation is erroneous or modifies the
semantics of the question. This can be however the only option for languages that do not
have any syntax parsers available. The CoNLL Shared Task [50] evaluates the performance
of the ParseySaurus (now just called Parsey) dependency parser with an average labeled

Table 5.10 Dependency-based patterns in French

Pattern SPARQL Accuracy
1 0.933
2 0.905
3 0.916
4 0.925

63

Table 5.11 POS tag patterns in French

Pattern SPARQL Accuracy
1 0.892
2 0.904
3 0.860
4 0.854
5 N/A
6 0.917
7 0.931

attachemend score (LAS) of 77.93%. While languages such as English and French have a
score of 84.45% and 83.1% respectively, some other languages such as Latvian are at 52.52%.

The quality of the question can also negatively affect the pattern detection. By quality, we
consider the amount of grammatical and orthographic errors that can change how the parser
or POS tagger interprets the words. Sometimes, missing only one letter can change how an
entire sentence is interpreted.

For example, by only removing the letter e in our verb we get the question : Who creatd the
Eiffel Tower?. Instead of matching the first lexico-syntactic pattern (subj(v,s), obj(v,s)), we
now have Tower as the subject and Who as an attribute to the verb, a structure that does
not match that pattern.

In this case, it is also important to note that using both types of patterns (dependency
and POS) can help reduce the risk of incorrect pattern detection. In our previous example,
the spelling mistake has caused the dependency parsing of the question to change, however
the POS tagging has remained the same and this question is still matched with the second
POS-tag pattern.

There is however no guarantee that one or more mistakes will not significantly alter the
correct syntax and POS parsing and if a pattern is missed or wrongly recognized, it can lead
to an incorrect SPARQL query generation and thus, to a wrong answer.

5.7 Future Work

The evaluation of our pattern-based approach shows that there is a net benefit in using
lexico-syntactic patterns, based both on dependency and POS, in order to translate natural
language questions into more formal and structured SPARQL query representations. The
patterns presented in this paper, with a few exceptions, also aim at covering more than just
the English language. Our LAMA system is now able to answer simple and complex questions

64

in both English and French. Additional work can be done to enrich the set of existing patterns
by either targeting more cross-language patterns that apply to as many languages as possible
or by focusing on language specific patterns. Language specific patterns can be especially
powerful when trying to analyze spoken questions rather than written ones. With the recent
development in the field of smart assistants and voice recognition, questions are more often
spoken than written. In fact, spoken questions often exhibit much less formal or sometimes
even incorrect syntax and word structures. This can be seen in questions such as Qui a gagné
le mondial 2018? (Who won the 2018 world cup?) that are very likely to be phrased as follows
when spoken : C’est qui qui a gagné le mondial 2018 ? (Who is it that won the 2019 world
cup?), changing the sentence’s dependency parse.The question is whether question answering
systems should adapt to incorrect phrase structures. Deep learning networks might be better
able to handle these cases.

5.8 Related Work

While Question Answering over Linked Data systems are not recent inventions, progress
has been made in the field, especially in the last few years. Pattern based approaches have
also been in used in QA systems as well as other parts of the Web Semantics field. This
section aims to explore some of the related work done in both QA systems and pattern-based
approaches.

Generally, QA systems follow a similar approach to produce answers: the user’s question is
taken as input, parsed to extract the different relations between the entities and then a query
(most often written in SPARQL) is generated and submitted to one or more KBs [16,17,29].
These systems try to answer questions relying mainly on the identification of entities and
their properties and then trying to form coherent SPARQL requests that can be ran against
the target KBs. Systems such as WDAqua-core1 [16] and Xser [17] make use of string
matching to generate different possible interpretations for the words in a given question, i.e.
considering each word as a potential entity or property. Some other systems use parsers to
annotate questions such as QAnswer [37] that uses the Stanford CoreNLP parser for POS
tagging and HAWK [51] that makes use of clearNLP [52] for its POS tags. Using information
from parsers can help improve the system’s performance and reduce vulnerability to spelling
mistakes and other shortcomings of string matching methods.

Most of the promising systems [16, 17, 27, 38, 51] rely on semantic structures in order to find
answers to a given question. SemGraphQA [27] generates direct acyclic graphs representing
possible interpretations of the query and only keeps the graphs that can be found in DBpedia’s
graph representation. In a similar fashion, WDAqua-core1 [16, 28] ignores the syntax and

65

focuses on the semantic of the extracted entities of the question and explores the RDF graphs
of the different entities to determine the appropriate relationships.

WDAqua-core1 is also a multilingual system than handles questions in five different lan-
guages: English,French,Spanish,Italian and German. It does not take in consideration the
language of the original query and makes no use of NLP tools which makes it resistant to
malformed questions. While the system is indeed truly multilingual with only very few ad-
justments required to add a new language, the performance is quite limited with an F-score
of 0.37 and 0.27 for French and English respectively on their QALD-7, Task 4 benchmark.

While those systems rely on a semantic representation and POS tags for some of them [51,52],
LAMA also uses dependency parsing in addition to POS tags. Additionally, the semantic
representation in LAMA derives from an initial syntax tree representation that is modified
after entity and property extraction.

Several works in the Web Semantics field, not all related to question answering, have adopted
a pattern-based approach for solving different issues. The BOA [23] system aims to extract
structured data as RDF from unstructured data. BOA has a set of manually crafted patterns
but also presents an algorithm for generating new patterns by training a supervised machine
learning model over different corpora or knowledge bases. Patterns are generated for each
property p by looking for a pair of entities or labels {s,o} such as that the triple {s,p,o} is
found in the used knowledge base. Patterns are only saved as such if they are above a certain
threshold for the number of occurrences in the training dataset. This method is again based
on semantics only and does not take in consideration syntax or part of speech. This method
works well for generating RDF data from text, but it has a limited use for QA systems such
as LAMA since both s and o need to be existing entities in the KB and questions often
generate triples that contain free variables, not bound to a particular entity.

SPARQL2NL [53] is a system that aims to verbalize SPARQL queries, i.e., convert them
into natural language and it uses syntax dependencies in order to do so. Query verbalization
is done based on on the predicate p of the {s,p,o} triple. Depending if p’s realization is
a verb, a noun or a variable, different dependency patterns are applied to the triple. For
instance, if p is a verb, an equivalent of our 1st dependency pattern is applied to the triple.
While SPARQL2NL does the inverse of what LAMA aims to do, its dependency rule have
helped extract some of LAMA’s own dependency patterns. However, since LAMA works
with natural language queries, it can leverage the use of POS patterns for SPARQL triple
generation.

66

5.9 Conclusion

In this paper we present lexico-syntactic patterns aimed at improving question answering
systems. The patterns are separated in two different categories : dependency-based patterns
and POS (part of speech) tag patterns. We also present LAMA, a multilingual QA system
that leverages the use of the shown patterns to improve its performance. Our evaluation
on the SQA and QALD datasets shows that the use of patterns does indeed increase the
performance of the system, especially in the case of complex queries. In addition, we have
evaluated the use of patterns in languages other than English, more precisely in French.

There are potential improvements that could be made to the system, most notably the enrich-
ment of dependency and POS patterns. Through our error analysis, we have identified that
spelling mistakes and grammatical errors can negatively impact the system’s performance.
In future work, we should aim to reduce the impact of such factors on the system and enrich
the set of available patterns. We will also explore the semantics of the returned URIs and
see whether they are compliant to the expected output. Finally, future development should
also take in account the increasing use of "smart assistants" that consider spoken questions
and not just written queries.

67

Table 5.12 POS TAG Patterns
Pattern SPARQL Example

1 XNN YV B [�DET] ZNN

getEntity(X)
getProperty(Y)
getEntity(Z)

Est-ce que Barack
a marié Michelle ?

2 XW P YV B ZNN

getEntity(Z)
getProperty(Y)

?answer
Qui a développé Skype ?

3 XADV YNN �V B ZV B

getEntity(Y)
getProperty(Z)

?answer

Quand la Statue de Liberté
a été construite ?

4 XDET YNN �
?answer
typeOf

getEntity(X)

Quels presidents
sont nés après 1945?

5 〈EST-CE QUE〉 YNN 〈ÊTRE〉 ZNN

getEntity(Y)
getProperty(Y,)
getEntity(Z)

Est-ce que Margaret Thatcher
a été chemiste ?

6
[...] XCONJ〈 AINSI QUE | ET 〉

OR
X

ADV 〈AINSI QUE | ET〉 [...]

The RDF triple is repeated
and the entity targeted

by the conjunction or adverb X
is replaced in each triple

Quelles voitures sont fabriquées
au Canada ET les États-Unis ?

Table 5.13 Lexico-Syntactic Patterns
Diagram Dependency pattern SPARQL Example

1
S V O

subj obj subj(v, s)
obj(v, o)

getEntity(s)
getProperty(v)
getEntity(o).

Est-ce que Barack
a marié Michelle ?

2
X Y

amod amod(x/ADJ ,y/NN)
getEntity(y)
getProperty()
getEntity(x).

athlète canadien

3

V1 S1 D1

V2 D2

subj

dobj

subj

dobj subj(V1,S1) dobj(V1,D1)
subj(V2,D1) dobj(V2,D2)

getEntity(s1)
getProperty(v1)

?answer.

?answer
getProperty(v2)
getEntity(d2)

Donne-moi les personnes
qui jouent un sport

qui est dans les Olympiques.

4

S V

O1 O2

subj

dobj

conj
subj(S,V)
dobj(V , O1),
conj(O1,O2)

getEntity(s)
getProperty(v)
getEntity(o1).

getEntity(s)
getProperty(v)
getEntity(o2)

Est-ce que Tolkien a écrit
le Hobbit et

le Silmarillion?

68

CHAPTER 6 GENERAL DISCUSSION AND CONCLUSION

This final chapter concludes the presentation of our research project. We give a brief summary
of our work as well as the limitations of our system and the proposed methods. Finally, we
present some potential future works or research that can be done on the topic of multilingual
QA systems.

6.1 Contribution

In summary, this thesis aims to complete the following objectives: create a multilingual
QA system using multiple lexico-syntactic patterns. Taking a question in natural language
(English/French) as input, LAMA was able to automatically generate an equivalent SPARQL
query based on the DBpedia ontology and knowledge base. Throughout our work, we followed
an incremental and iterative process to complete each of those objectives. This process is
presented in the 3 papers in Chapters 4 and 5 and Appendix A, each giving an approximate
snapshot of the work done roughly every 8 months since 2017. Our work was also presented at
the ESWC conferences in 2017 and 2018 resulting in two published conference papers [2,29].

The creation of our QA system was done in three steps. First, the AMAL system was created,
aimed at answering simple questions with the help of some lexical patterns and without real
support for multiple languages, being able to only answer questions in French. Second, the
AMAL system led to LAMA, a more complex QA system that incorporates multilingual
support by allowing questions in both French and English and improves various components
of the original system. Finally, LAMA was enhanced by adding a dependency parsing module
and a pattern-based processing step in its pipeline and introduced lexico-syntactic patterns.
The presented patterns are separated into two different groups: dependency-based and POS-
based ones. Each pattern is presented with its corresponding generated SPARQL query. An
evaluation was done over two different datasets for each pattern type separately as well as a
combination of both pattern types. Results show that the impact of using patterns in our
QA system is noticeable, especially on the SQA dataset where an improvement of 0.28 on
the F-score can be observed (from 0.535 to 0.816). Experiments on the QALD dataset show
a smaller impact of 0.061, mostly due to the type of questions in the dataset. In addition to
this, an was done to compute the relative frequency of each pattern in order to determine if
they were really representative enough to be considered.

Comparison with other multilingual QA systems shows that while more generic approaches

69

that are language-agnostic and that do not depend on NLP tools are easier to adapt to new
languages, their performance is much lower and is hindered by their generic nature. There is
an inherent complexity added to portability when focusing on language-specific patterns and
methods. Some patterns can be transferred between languages but this does not apply all
the time. In our case, while French and English are similar, their syntax is different enough
to require changes to the applied patterns. This can be observed when comparing Tables
5.12 and 5.13 to the English patterns in Chapter 5. Language portability is however still
a possibility, provided that the developer has a good enough understanding of the target
language’s syntax and rules and access to sample questions. Data sets such as QALD that
provide the question as well as the corresponding SPARQL query can be particularly helpful.
Our approach relies much more on NLP tools, takes into account the language of the question,
and leads to better overall performance.

6.2 Limitations

While the system has improved over time, allowing for the processing of more complicated
questions, there are some limitations to our work.

Having no context awareness, the system is thus limited to individual questions only: each
question is treated as an independent event without knowledge of prior queries. For instance,
a user cannot ask : Who created Batman? When were they born? as two sequential questions.
Instead, he would have to create a single sentence: When were the creators of Batman
born?. This has an impact on how questions are structured and can lead to some potentially
unnatural question structures when the user is forced to rephrase everything in a single
question.

Due to the use of various NLP tools such as a syntactic parser and a POS tagger, our QA
system’s performance is directly linked to the tools performance and accuracy. While both
the POS tagger Parsey and SyntaxNet have rather good performances for languages such
as French or English, this is not the case for less popular ones. Relying on syntax and
POS limits the input questions to phrases that have correct spelling and especially, correct
syntactic structure. This eliminates keyword queries or ill-formed questions that can lead to
errors. In the case of the patterns, the ones that we propose were handcrafted and, as already
described, do not cover all possible cases in the available datasets. This limits to some extent
the generation of some SPARQL queries where the system requires additional processing
in order to be able to fully translate questions into SPARQL. For example, questions that
deal with counting or ordering are not handled by patterns and need further processing.
Additionally, patterns are language-specific, meaning that they are limited to their language

70

and there is no guarantee that they can be used with other languages.

6.3 Future Research

Limitations described in Section 6.2 show that there are potential improvements to the work
presented in the thesis. The external tools as well as our Entity and Property Extractors were
shown to be vulnerable to spelling errors and incorrect syntax. While correcting the syntax of
the user’s questions can be hard without imposing restrictive rules onto them, spelling can be
more easily managed with various spell check methods and tools. This can be done directly
with the original questions or assumptions can be made throughout the process, similar to
how Google’s search engine deals with spelling mistakes.

Evaluation of the described patterns shows that there is a noticeable impact of their use on
a QA system. Improving performance further can be achieved by either focusing on more
language-specific patterns, trying to cover as many use cases as possible per language or by
trying to find more generic patterns that can be applied to as many languages as possible.
In the first case, the focus on specific languages can improve performance on individual
languages while sacrificing portability while the second option offers easier cross-language
portability but has shown lower performance gains if used exclusively.

The patterns currently described have been extracted manually and the effort required to
expand them without any automation can be considerable. Additional work and research can
be done to automatically extract new patterns from existing questions. With the continued
work of challenges such as SQA and QALD that have enriched the set of questions alongside
with their SPARQL query representation, a large enough corpus can be created from which
significant data could be extracted.

71

REFERENCES

[1] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-domain
questions,” Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2017.

[2] N. Radoev, M. Tremblay, M. Gagnon, and A. Zouaq, “Answering Natural Language
Questions on RDF Knowledge base in French,” in 7th open challenge in Question An-
swering over Linked Data (QALD-7), Portoroz, Slovenia, May 2017.

[3] “Qald2017 challenge – eswc 2017 – hobbit,” https://project-hobbit.eu/challenges/
qald2017/, (Accessed on 03/29/2018).

[4] T. Berners-Lee and O. Lassila, “The semantic web,” Scientific American, May 2001.

[5] “Rdf 1.1 concepts and abstract syntax,” Feb 2014. [Online]. Available: https:
//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[6] “Owl 2 web ontology language document overview (second edition),” Dec 2012.
[Online]. Available: https://www.w3.org/TR/owl2-overview/

[7] “Sparql 1.1 query language,” Mar 2013. [Online]. Available: https://www.w3.org/TR/
sparql11-query/

[8] J. P. McCrae, “The linked open data cloud.” [Online]. Available: https://lod-cloud.net/

[9] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, and Sören Auer and Christian Bizer, “Dbpedia - a large-scale,
multilingual knowledge base extracted from wikipedia,” Semantic Web, vol. 6, pp. 167–
195, 2015.

[10] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
and W. Zhang, “Knowledge vault,” Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD 14, 2014.

[11] S. Wolfram, “Alpha: Making the world’s knowledge computable.” [Online]. Available:
https://www.wolframalpha.com/

[12] B. F. Green, A. K. Wolf, C. Chomsky, and K. Laughery, “Baseball,” Papers presented
at the May 9-11, 1961, western joint IRE-AIEE-ACM computer conference on - IRE-
AIEE-ACM 61 (Western), 1961.

https://project-hobbit.eu/challenges/qald2017/
https://project-hobbit.eu/challenges/qald2017/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://lod-cloud.net/
https://www.wolframalpha.com/

72

[13] D. Diefenbach, V. Lopez, K. Singh, and P. Maret, “Core techniques of
question answering systems over knowledge bases: a survey,” Knowledge and
Information Systems, vol. 55, no. 3, pp. 529–569, Jun 2018. [Online]. Available:
https://doi.org/10.1007/s10115-017-1100-y

[14] G. M. Mazzeo, “Canali : A system for answering controlled natural language questions
on rdf knowledge bases ucla csd technical report number : 160004,” 2016.

[15] S. Ferré, “Sparklis: an expressive query builder for sparql endpoints with guidance in
natural language,” Semantic Web, vol. 8, no. 3, pp. 405–418, 2017.

[16] D. Diefenbach, K. Singh, and P. Maret, “Wdaqua-core1: A question answering
service for rdf knowledge bases,” in Companion Proceedings of the The Web
Conference 2018, ser. WWW ’18. Geneva, Switzerland: International World Wide
Web Conferences Steering Committee, 2018, pp. 1087–1091. [Online]. Available:
https://doi.org/10.1145/3184558.3191541

[17] K. Xu, S. Zhang, Y. Feng, and D. Zhao, “Answering natural language questions via
phrasal semantic parsing,” in Natural Language Processing and Chinese Computing,
C. Zong and J.-Y. Nie, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
333–344.

[18] S. Shekarpour, E. Marx, A.-C. N. Ngomo, and S. Auer, “Sina: Semantic interpretation
of user queries for question answering on interlinked data,” Journal of Web Semantics,
vol. 30, p. 39–51, 2015.

[19] H. Shizhu, Z. Yuanzhe, L. Kang, Z. Jun et al., “Casia@ v2: A mln-based question
answering system over linked data,” 2014.

[20] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, “Improving efficiency and accuracy
in multilingual entity extraction,” in Proceedings of the 9th International Conference on
Semantic Systems. ACM, 2013, pp. 121–124.

[21] V. Lopez, M. Fernández, E. Motta, and N. Stieler, “Poweraqua: Supporting users in
querying and exploring the semantic web,” Semantic Web, vol. 3, no. 3, pp. 249–265,
2012.

[22] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao, “Natural language question
answering over rdf: a graph data driven approach,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, 2014, pp. 313–324.

https://doi.org/10.1007/s10115-017-1100-y
https://doi.org/10.1145/3184558.3191541

73

[23] D. Gerber and A.-C. N. Ngomo, “Extracting multilingual natural-language patterns for
rdf predicates,” in Knowledge Engineering and Knowledge Management, A. ten Teije,
J. Völker, S. Handschuh, H. Stuckenschmidt, M. d’Acquin, A. Nikolov, N. Aussenac-
Gilles, and N. Hernandez, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 87–96.

[24] D. Damljanovic, M. Agatonovic, and H. Cunningham, “Freya: An interactive way of
querying linked data using natural language,” in Extended Semantic Web Conference.
Springer, 2011, pp. 125–138.

[25] N. Aggarwal and P. Buitelaar, “A system description of natural language query over
dbpedia,” Proc. of Interacting with Linked Data (ILD 2012)[37], pp. 96–99, 2012.

[26] E. Cabrio, J. Cojan, F. Gandon, and A. Hallili, Querying Multilingual DBpedia with
QAKiS. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 194–198. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-41242-4_23

[27] R. Beaumont, B. Grau, and A.-L. Ligozat, “Semgraphqa@qald-5: Limsi participation
at qald-5@clef,” 09 2015.

[28] D. Diefenbach, A. Both, K. Singh, and P. Maret, “Towards a question answering system
over the semantic web,” Semantic Web, p. 1–19, 2019.

[29] N. Radoev, A. Zouaq, M. Tremblay, and M. Gagnon, “A language adaptive method
for question answering on french and english,” in Semantic Web Challenges, D. Bus-
caldi, A. Gangemi, and D. Reforgiato Recupero, Eds. Cham: Springer International
Publishing, 2018, pp. 98–113.

[30] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, DBpedia: A
Nucleus for a Web of Open Data. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 722–735. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-76298-0_52

[31] N. I. of Health et al., “Daily med,” 2014. [Online]. Available: https://www.healthdata.
gov/dataset/dailymed

[32] P. Gupta, “A survey of text question answering techniques,” International Journal of
Computer Applications, 2012.

[33] N. Radoev, M. Tremblay, M. Gagnon, and A. Zouaq, “Amal: Answering french nat-
ural language questions using dbpedia,” in Semantic Web Challenges, M. Dragoni,

http://dx.doi.org/10.1007/978-3-642-41242-4_23
http://dx.doi.org/10.1007/978-3-540-76298-0_52
https://www.healthdata.gov/dataset/dailymed
https://www.healthdata.gov/dataset/dailymed

74

M. Solanki, and E. Blomqvist, Eds. Cham: Springer International Publishing, 2017,
pp. 90–105.

[34] “14th eswc 2017 |,” https://2017.eswc-conferences.org/, (Accessed on 03/29/2018).

[35] G. Mazzeio, “Answering controlled natural language questions on RDF knowledge
bases,” https://openproceedings.org/2016/conf/edbt/paper-259.pdf, 2016.

[36] D. Vrandečić and M. Krötzsch, “Wikidata: A free collaborative knowledgebase,” Commun. ACM,
vol. 57, no. 10, pp. 78–85, Sep. 2014. [Online]. Available: http://doi.acm.org/10.1145/2629489

[37] S. Ruseti, A. Mirea, T. Rebedea, and S. Trausan-Matu, “Qanswer - enhanced entity matching for
question answering over linked data,” in CLEF, 2015.

[38] D. Sorokin and I. Gurevych, “End-to-end representation learning for question answering with weak
supervision,” in Semantic Web Challenges, M. Dragoni, M. Solanki, and E. Blomqvist, Eds. Cham:
Springer International Publishing, 2017, pp. 70–83.

[39] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, “Improving efficiency and accuracy in multi-
lingual entity extraction,” in Proceedings of the 9th International Conference on Semantic Systems
(I-Semantics), 2013.

[40] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector
space,” CoRR, vol. abs/1301.3781, 2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[41] A. Both, D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, and C. Lange, “Qanary–a methodology
for vocabulary-driven open question answering systems,” in International Semantic Web Conference.
Springer, 2016, pp. 625–641.

[42] P. Achananuparp, X. Hu, X. Zhou, and X. Zhang, “Utilizing sentence similarity and question type
similarity to response to similar questions in knowledge-sharing community.”

[43] M. Dubey, “Lc-quad qald format,” Feb 2018. [Online]. Available: https://figshare.com/articles/
LC-QuAD_QALDformat/5818452/6

[44] C. Schöch, “A word2vec model file built from the french wikipedia xml dump using gensim.” Oct. 2016.

[45] M. Fares, A. Kutuzov, S. Oepen, and E. Velldal, “Word vectors, reuse, and replicability: Towards a com-
munity repository of large-text resources,” in Proceedings of the 21st Nordic Conference on Computa-
tional Linguistics, NoDaLiDa, 22-24 May 2017, Gothenburg, Sweden. Linköping University Electronic
Press, Linköpings universitet, 2017, pp. 271–276.

[46] S. Petrov, “Announcing SyntaxNet: The world’s most accurate parser goes open source,” https://
research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html, 2016.

[47] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov, and M. Collins,
“Globally normalized transition-based neural networks,” CoRR, vol. abs/1603.06042, 2016. [Online].
Available: http://arxiv.org/abs/1603.06042

https://2017.eswc-conferences.org/
https://openproceedings.org/2016/conf/edbt/paper-259.pdf
http://doi.acm.org/10.1145/2629489
http://arxiv.org/abs/1301.3781
https://figshare.com/articles/LC-QuAD_QALDformat/5818452/6
https://figshare.com/articles/LC-QuAD_QALDformat/5818452/6
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
http://arxiv.org/abs/1603.06042

75

[48] J. Nivre, “Algorithms for deterministic incremental dependency parsing,” Computational Linguistics,
vol. 34, no. 4, pp. 513–553, 2008. [Online]. Available: https://doi.org/10.1162/coli.07-056-R1-07-027

[49] Petrov, Das, Dipanjan, Ryan, and McDonald, “A universal part-of-speech tagset,” Apr 2011. [Online].
Available: https://arxiv.org/abs/1104.2086v1

[50] Alberti, Chris, Daniel, Ivan, Collins, Michael, Gillick, Dan, Kong, Koo, and et al., “Syntaxnet models
for the conll 2017 shared task,” Mar 2017. [Online]. Available: https://arxiv.org/abs/1703.04929

[51] R. Usbeck, A.-C. N. Ngomo, L. Bühmann, and C. Unger, “Hawk – hybrid question answering using
linked data,” in The Semantic Web. Latest Advances and New Domains, F. Gandon, M. Sabou, H. Sack,
C. d’Amato, P. Cudré-Mauroux, and A. Zimmermann, Eds. Cham: Springer International Publishing,
2015, pp. 353–368.

[52] J. D. Choi and M. Palmer, “Getting the most out of transition-based dependency parsing,”
in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies: Short Papers - Volume 2, ser. HLT ’11. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2011, pp. 687–692. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2002736.2002869

[53] A.-C. Ngonga Ngomo, L. Bühmann, C. Unger, J. Lehmann, and D. Gerber, “Sorry, i don’t speak
sparql: Translating sparql queries into natural language,” in Proceedings of the 22Nd International
Conference on World Wide Web, ser. WWW ’13. New York, NY, USA: ACM, 2013, pp. 977–988.
[Online]. Available: http://doi.acm.org/10.1145/2488388.2488473

[54] V. Lopez, C. Unger, P. Cimiano, and E. Motta, “Evaluating question answering over linked data,” Web
Semantics Science Services And Agents On The World Wide Web, vol. 21, pp. 3–13, 2013.

[55] C. Unger, A.-C. N. Ngomo, and E. Cabrio, 6th Open Challenge on Question Answering over Linked
Data (QALD-6). Cham: Springer International Publishing, 2016, pp. 171–177. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-46565-4_13

[56] E. Cabrio, J. Cojan, B. Magnini, F. Gandon, and A. Lavelli, “QAKiS @ QALD-2,” in 2nd open
challenge in Question Answering over Linked Data (QALD-2), Heraklion, Greece, May 2012. [Online].
Available: https://hal.inria.fr/hal-01171122

[57] R. Usbecka, M. Rödera, M. Hoffmanna, F. Conradsa, J. Huthmanna, A.-C. Ngonga-Ngomoa, C. Demm-
lera, and C. Ungerb, “Benchmarking question answering systems,” Semantic Web, 2016.

https://doi.org/10.1162/coli.07-056-R1-07-027
https://arxiv.org/abs/1104.2086v1
https://arxiv.org/abs/1703.04929
http://dl.acm.org/citation.cfm?id=2002736.2002869
http://doi.acm.org/10.1145/2488388.2488473
http://dx.doi.org/10.1007/978-3-319-46565-4_13
https://hal.inria.fr/hal-01171122

76

APPENDIX A AMAL : ANSWERING FRENCH NATURAL LANGUAGE
QUESTIONS USING DBPEDIA

Authors

Nikolay Radoev1 <nikolay.radoev@polymtl.ca>
Mathieu Tremblay1 <mathieu-4.tremblay@polymtl.ca>
Michel Gagnon1 <michel.gagnon@polymtl.ca>
Amal Zouaq2 <azouaq@uottawa.ca>
1 Département de génie informatique et génie logiciel, Polytechnique Montréal
2 School of Electrical Engineering and Computer Science, University of Ottawa

Presented at : ESWC 2017, Extended Semantic Web Conference, Portoroz, Slovenia
Published in : Communications in Computer and Information Science, vol 769

Abstract

While SPARQL is a powerful way of accessing linked data, using natural language is more
intuitive for most users. A few question answering systems already exist for English, but
none focus specifically on French. Our system allows a user to query the DBpedia knowledge
by asking questions in French separated in specific types, which are automatically translated
into SPARQL queries. To our knowledge, this is the first French-based question answering
system in the QALD competition.

A.1 Introduction

A crucial aspect of making the Semantic Web relevant is providing typical Web users with
an intuitive and powerful interface to access the growing amount of structured data. Among
the datasets that are currently accessible to the public, there are general knowledge bases
(KBs), such as DBpedia [30], which contains information extracted from Wikipedia, and
many specialized knowledge bases that have curated domain-specific knowledge, such as
Dailymed [31]. However, given their reliance on SPARQL [7], they are difficult to use for the
average user. Moreover, querying these KBs without knowledge of their underlying structure
is a very complex task. Developing an intuitive interface to allow natural language queries
is a problem that has been explored in some of the previous QALD challenges [54].

77

QALD is a series of evaluation campaigns on question answering over linked data. Multiple
systems have already been developed in the past years to solve this problem with up to
0.89 F-Score for English on Task 1 of the QALD competition [55] (Multilingual question
answering over DBpedia). In this competition, most systems have been focused on English,
primarily because of the amount of resources available in existing KBs [9] and its popularity
worldwide. However,we have chosen to tackle questions asked in the French language using
both the French and English chapters of DBpedia.

Because of French’s specific language-dependent syntactic structures, it is not possible to
directly reuse techniques that are available for the English language. For example, adjective
placement in English precedes the noun while most of the time in French the adjective follows
the noun it describes. Also, the syntactic rules to express verb tenses in French differ greatly
from English: simple past in English may be expressed in French by a simple past form or a
compound form (talked vs parla and a parlé), there is no gerund form in French (is talking
vs est en train de parler), future tense is expressed by an auxiliary in English and by a suffix
in French (will talk vs parlera), etc.

Interpreting a question given in a natural language is a well-known but unsolved problem [32].
In general, it requires the extraction of a semantic representation that is the result of a
multiple-phase approach. The question must be processed to extract keywords and terms
that may represent some entities available in different KBs. Then, those keywords and terms
must be mapped to resources, classes, and properties in the KBs. This is a complex task
given the fact that (i) those keywords and terms might not exist as resources in the KBs
and (ii) natural language syntax creates ambiguity that cannot be resolved without proper
context. Questions such as Who made Titanic? (We are looking for the producer of the 1997
movie) are a good example of an ambiguity between the ship and the film and a need to infer
the property http://dbpedia.org/ontology/producer from the verb made.

Some previous works on the problem used controlled natural language (CNL) [35] approaches
to restrict grammar and syntax rules of the input question. Such approaches have the merit
of reducing ambiguity and increasing the accuracy of the proposed answers. However, we
consider the rigidity of an imposed grammar to be awkward for an average user and we do not
impose any constraints on the questions given as input. This paper is a more detailed version
of the one initially submitted [2] to the QALD-7 challenge. During the Open Challenge
on Question Answering over Linked Data, the AMAL (Ask Me In Any Language) system
distinguished itself for being the only system that focuses specifically on French.

For readability purposes, we have abbreviated certain URIs by using the prefixes detailed in
Table A.1. For example, http://dbpedia.org/ontology/spouse becomes dbo:spouse. The dbo:

78

prefix is used to represent classes (aka concepts) from the DBpedia ontology while the dbr:
prefix is used to identify resources from this KB. The yago: prefix refers to entities defined
in the Yago knowledge base.

A.2 Related Work

Previous work has already been done to answer natural language questions on a multilingual
KB. We have focused our work on answering questions with the DBpedia [30] KB. This KB
has been extracted from Wikipedia to represent general knowledge in multiple languages.
Some systems also use Wikidata [36] to answer questions. The main difference between
these two KBs is that DBpedia is automatically extracted from Wikipedia while Wikidata is
manually created and supports the knowledge contained in Wikipedia.

QAKIS is a system that answers questions in English with the use of the French, English,
Italian and German chapters of DBpedia [26]. It uses the WikiFramework repository (which
contains relational patterns automatically extracted from Wikipedia) [56] to solve the prob-
lem of finding lexicalizations of properties from the DBpedia ontology. Finding lexicalizations
is a common problem in question answering since different wordings can be used to ask the
same question.

WDAqua-core0 is another system presented at the 2017 ESWC conference that accepts many
languages: French, English, German and Italian, with English being used with both DBpedia
and Wikidata, whereas only Wikidata is used for other languages. The system is integrated
in the Qanary Ecosystem [41] and uses some of its other features, most notably the speech
recognition module. Just like QAKIS, WDAqua-core0 focuses on simple questions by trans-
lating natural language queries to SPARQL queries. Multilingual queries do not implement
custom rules but rely on generic ones.

Our system differs from these because it is able to process questions in French and answer
over the knowledge contained in DBpedia. QAKIS only processes English queries and while
WDAqua-core0 can process questions in French, only knowledge from Wikidata is used and
not DBpedia as specified in the QALD challenge. As far as we know, AMAL is the only
system that specifically targets the French language.

Table A.1 DBpedia prefixes

dbo http://dbpedia.org/ontology/
dbr http://dbpedia.org/resource/
yago http://dbpedia.org/class/yago/

79

A.3 System Overview

AMAL (Ask Me in Any Language) was developed using a modular approach to separate
application logic in different systems. Each subsystem can be developed, modified and im-
proved independently. With our system, users can ask questions in French that are analyzed
and answered with information found in the English DBpedia, as specified in the description
of Task 1 of the QALD challenge, for which this system was created.

Our system is the first version of a work in progress. It focuses on Simple Questions, which
we define as questions that concern only one single entity and a single property of this entity,
such as Qui est le père de Barack Obama? (Who is the father of Barack Obama?), where
’Barack Obama’ is the entity and ’father of’ is the property. We are still working on handling
more complex questions involving multiple entity/property relations.

Our approach consists of a multiple-step pipeline: question type identification, entity extrac-
tion, property identification and question answering through a SPARQL query builder. The
first step determines the type and possible subtype of the question using a Question Type
Analyzer. Our system currently supports the following types: Boolean, Date, Number and
Resource. Boolean questions are questions that can only be answered by TRUE or FALSE.
Date questions refer to specific dates in a standard YYYY-MM-DD format. Number ques-
tions are questions that have answers in a numeric literal that is a value of one single property
and not derived by using arithmetic manipulation. Finally, Resource questions are questions
with answers given under the form of a DBpedia URI such as dbr:Barack_Obama. Two sub-
types may be added to some of those main types: List and Aggregation. List questions, which
can be subtype of both Resource and Date questions, are questions whose answer contains
several elements. Aggregation questions include (i) questions that require an ascending or
descending order such as looking for the most or least of something and (ii) questions that
require counting, most often the number of elements that satisfy one or more conditions.
Date, Number and Resource questions are the ones that may have Aggregation as a subtype.
Our approach to classify questions is explained in Section A.4.1.

Once the system knows the question type, the query is sent to specific Question Solvers.
For instance, a question such as Is Michelle the name of Barack Obama’s wife? will be
sent to the boolean solver, and When was Barack Obama born? is handled by the date
question solver. Aggregation Questions necessitate additional computation which is detailed
in Section A.5.3.Every question solver makes use of one or more submodules that function
as extractors. There are two main extractors: an entity extractor and a property extractor,
as shown on Figure A.1, which are used to identify the entities and properties in a given

80

question. Specific question solvers require specific property extractor heuristics (more details
are given in Section A.4.3). Before the question is passed to its specific question solver, all
question indicators, as seen in Tables A.5, A.6, A.7 are stripped from the question. In the
case of Aggregation questions, the ordering indicators from Tables A.2, A.3 and A.4 are also
removed.

The AMAL system was created specifically for the 2017 QALD Task 1 challenge, where all
answers are required to be extracted from the English version of DBpedia. Given that we
focus on French questions, we need a way to translate the entities and/or properties found
by our system. The Translator module handles the translation from French to English using
Google Translate API for most queries. However, in our experience, Google Translate does
sometimes give a different translation term than the one used by DBpedia. In those cases,
the system uses custom translations to obtain the correct terms for the final query. As an
example, the term portée (which means span when used as an attribute of a bridge or a road)
is translated as scope instead of span and thus requires a specific rule to be correctly used.
This is the last step before constructing the final SPARQL query. The additional overhead
of French to English translation was added in order to conform with the competition’s rules.

Figure A.1 System Overview.

A.4 System details

This section presents the details of the four main steps of our pipeline, which are ques-
tion classification, entity extraction, property extraction and SPARQL query building. The

81

description of each specific type of question solver is the subject of Section A.5.

A.4.1 Question classification

By analyzing the questions given in the 2016 and 2017 train datasets, we extracted various
keywords and patterns that occur most often in a given question type. The extracted patterns
rely both on lexical matching and positioning (start of a sentence or just their presence at
any position in the question). For example, pronoun inversions such as existe-t-il(elle) (where
the general form is VERB-t-il(elle)) appear only in close-ended (Boolean) questions.

Classification is made by matching the question string against the list of extracted patterns
and if a match is found, the question gets assigned a specific type. The type matching is
done by trying to match the questions to different types in the following order: Boolean,
Number, Date and Resource. This order is due to the relative complexity of type matching
with Boolean questions being easier to detect than Date questions, which might require
additional work (see Section A.5.1). In the current version of the system, multiple types
are not supported and the first detected type is considered the only one. The system does
however support subtypes, as explained later.

If no match is found after going through all extracted keywords and patterns, we assign a
default value of Resource question type. The same method is then applied for the subtypes
with a few additional tweaks. For List questions, we look for question words or verbs that
indicate multiple answers, such as Qui sont les (Who are the). For Aggregation, we try to
determine whether the answers require being sorted in a descending or an ascending order.
This classification is made using a list of keywords and patterns extracted from the training
datasets. Some patterns require the expression to occur only in the beginning of the sentence
or anywhere in the sentence as highlighted by the first row of each table.

To determine if a question is an aggregation question, we use the rules described in Tables
A.2, A.3 and A.4. The first column of each table describes the patterns used to classify a
question in that category and the second one contains examples of questions. We only check
whether a sentence contains this expression to determine if it is an aggregation question.

In the same fashion, Tables A.5, A.6, A.7 shows our rules to classify a question as Boolean,
Date or Location. For example, Est-ce que les grenouilles sont des amphibiens? is a boolean
question starting with the expression Est-ce que, but Quand est-ce que le Carey Price est
né? would not be considered as such, since it does not start with the est-ce que pattern,
but rather in the middle of the question. According to Table A.5, it is classified as a Date
question.

82

Table A.2 Lexical patterns for Aggregation count questions classification

Starts with Example
Combien de Combien de livres a écrit Isaac Asimov
Combien d’ Combien d’enfants a eu Barack Obama
Combien y Combien y a-t-il de magasins Aldi

Table A.3 Lexical patterns for Aggregation Descending order questions classification

Contains Example
le plus vieux/la plus vieille Donnez-moi le plus vieux président des États-Unis
le plus âgé/la plus âgée Donnez-moi l’enfant le plus âgé de Barack Obama
le premier/la première Donnez-moi le premier enfant de Barack Obama

A.4.2 Entity extraction

Once our system has identified the type of the question, it extracts the entity from the
sentence. For example, with Quand est-ce que Carey Price est né?, we extract Carey Price
from the sentence. To do so, we use a syntactic parser to identify the noun groups and we
then find the ones that correspond to an existing entity in DBpedia. Given that noun groups
can contain many more elements than just the entity, such as adjectives or determinants,
we start by taking the longest string in the question and generate all possible substrings
by recursively tokenizing the output. All generated combinations are then ran against the
DBpedia database to generate as many valid entities as possible. For example, Who is the
queen of England? generates the following substrings after removing the question indicator
(Who is) : queen of England, queen, England, queen of, of England. Out of those, only the
first 3 are kept as valid entities since queen of and of England are not DBpedia entities.
Having multiple possible entities can help increase the chance of obtaining more accurate
answers. Note that we translated the example "Who is the queen of England" in English for
readability purposes but this step is actually done on a French question.

Table A.4 Lexical patterns for Aggregation Ascending order question classification

Contains Example
le plus jeune/la plus jeune Qui est le plus jeune enfant de Barack Obama
le plus haut/la plus haute Quelle est la plus haute montagne d’Australie
le plus long/la plus longue Quel est le pont le plus long
le dernier/la dernière Qui est le dernier enfant de Barack Obama
le plus grand/la plus grande Quelle est la plus grande montagne d’Australie

83

Table A.5 Date question classification

Contains Example
Quand Quand a eu lieu l’Opération Overlord
Quelle est la date Quelle est la date de naissance de Rachel Stevens
Donne moi la date Donne moi la date de naissance de Rachel Stevens
À quelle date À quelle date est née Rachel Stevens
Quelle est l’année/le mois Quel est l’année de naissance de Rachel Stevens

Table A.6 Boolean question classification

Starts with Contains Example
Est-ce que Est-ce que le titanic est un bateau
Ont/Sont Sont les grenouilles un type d’amphibien
Peut-on Peut-on trouver des frèsques en Crète

est-il/est-elle/
sont-ils/sont-elles Les grenouilles sont-elles des amphibiens

Table A.7 Location question classification

Contains Example
Où Où est situé le Palais de Westminster
Dans quel pays/quelle ville Dans quelle ville est la Tour Eiffel
Lieu Quel est le lieu de naissance de Barack Obama
Endroit À quel endroit se trouve la Tour Eiffel

84

Since the question is in French, the sameAs link is used to find the corresponding URI in
the English version of DBpedia, considering that only URIs from that DBpedia version are
considered valid answers for the task 1 of QALD.

If no such link is available, we use the previously described Translator module to generate
a possible English entity. For the question: Donne-moi les ingrédients d’un biscuit aux
brisures de chocolat (Give me the ingredients of a chocolat chip cookie), there is no French
page dbr:Cookie_aux_brisures_de_chocolat, but using Google translate we are able to find
dbr:Chocolate_chip_cookie, which is a valid DBpedia entity. Entities extracted this way
however have a lower chance of being selected as the right entity given the uncertainty
created by the translation.

To improve our results, we add variations of the identified nouns by applying modifications
such as plurality indicators and capitalization. Every modification reduces the chance of the
entity to be chosen as the main one. For example, the entity queen can also be manipu-
lated in order to extract the entity Queens. However, since Queens requires 2 modifications
(pluralization and capitalization), it is less likely to be selected than queen.

Once all the possible entities have been extracted, we use multiple criteria, such as the length
of the entity’s string, the number of modifications needed to extract it from DBpedia and
whether we had to translate it, to determine their likelihood of being the right entity. The
formula we currently use to combine these factors is the following, where e is the entity string:

length(e)− T × length(e)
2 + 3× U × nsp(e)

where

nsp(e) is the number of spaces in e

T = 1 if e has been translated, 0 otherwise
U = 1 if e has not been capitalized, 0 otherwise

According to this formula, the score is penalized by half the length of the entity string if we
used a translation. Also, the more words it contains (whose value is obtained by counting
the number of spaces) the higher the score will be, if it has not been capitalized. For
example, Dans quelle ville se trouve le Palais de Westminster? we can extract Palais de
Westminster and Westminster. However, Westminster by itself has a score of 11 while Palais
de Westminster has a score of 27. Therefore, we consilder it more likely that the correct
entity is Palais de Westminster. For the question Quels sont les ingrédients d’un biscuit au

85

brisures de chocolat we can extract biscuit and chocolat, with scores of 7 and 8. By translating
the question to What are the ingredients of a chocolate chip cookie?, we can extract chocolate
chip cookie with a score of 10.5, chocolate chip with a score of 10, chocolate with a score of
4.5 and cookie with a score of 3.

A.4.3 Property Extraction

Once the entity is extracted from the sentence, the property is found by removing the entity
from the question and analyzing the remaining tokens to find all nouns or verbs. To find
properties in the question, we use the DBpedia ontology and the RDF description of the
selected entity in DBpedia. A property is found when we find a label that matches an URI in
DBpedia and that is also present in the selected entity’s description. As an example, in the
question Qui a créé Batman? (Who created Batman?), the selected entity is Batman and
we test if dbr:Batman contains a property that is also present in the phrase. In this specific
case, the verb created, mapped to dbo:creator in our custom lexicon, does indeed appear in
the description of dbr:Batman.

To facilitate the identification of the predicates to be used in the SPARQL query that cor-
responds to the question sentence, we built a lexicon by mapping a list of common DBpedia
properties to French expressions, in addition to manually adding bindings that were not
present in the French DBpedia. The creation of such a lexicon was necessary given the lack
of similar resources in the French DBpedia or other external solutions that focus on French.
For example, dbo:spouse and http://fr.dbpedia.org/property/conjoint are both mapped to con-
joint (spouse), épouse (wife), femme (wife) and mari (husband). With such bindings, the
system is able to take into account the various ways of expressing the property in French:
Qui est la conjointe/l’épouse/la femme de Barack Obama? (Who is the spouse/wife/ wife of
Barack Obama?)

A.4.4 SPARQL Query Builder

The last step is building and sending SPARQL queries to DBpedia. The system uses the
standard DBpedia endpoint: http://dbpedia.org. For now, AMAL supports basic SPARQL
queries such as ASK and SELECT. In addition, COUNT and ORDER BY queries are sup-
ported for Aggregation questions. Queries exist as basic templates in which specific values are
injected in the form of RDF triples. For example, in Qui est l’épouse de Barack Obama?, once
we have extracted dbr:Barack_Obama and dbo:spouse, our system will build the following
query: SELECT DISTINCT ?uri WHERE {dbr:Barack_Obama dbo:spouse ?uri} and send
it to DBpedia, which will return the answer. The library used is available on the following

86

GitHub link: https://www.github.com/Mathos1432/dotNetSPARQL.

A.5 Simple Question Analysis

As previously mentioned, in our current implementation, we deal mostly with simple ques-
tions, limited to at most one entity and one property. In the case of boolean questions, we
also process Entity - Entity relations, for example Est-ce que la femme de Barack Obama est
Michelle Obama? (Is Michelle Obama the wife of Barack Obama?).

We start by identifying the type of the question, as explained in Section A.4.1. Once this is
done, we extract properties and entities. From there, we proceed to answering the question.
To do so, we start with the most likely entity that was extracted, using the likelihood formula
defined in Section A.4.2, and execute SPARQL queries to determine whether an element in
the rest of the question is a property of the entity. If the property exists, the object of the
property is usually our answer.

When the entity does not have any of the extracted properties, we attempt disambiguation
on the entity by following the Wikipage disambiguation link, if such a link is available. This
link provides a way to find other entities that can be a possible match. For example, in
Who is the producer of Titanic?, our system would extract the entity Titanic. Using the
disambiguates link in Titanic, we can find Titanic(film) ,Titanic(album) and other possible
entities. The property dbo:producer can be found in the Titanic(film) resource description,
thus allowing the system to select the correct entity.

A.5.1 Date and Location Questions

Some queries require that our system find dates or locations for events such as the birth of a
person or the place of a war. For most of these questions, the label for the property is directly
present in the query string. For example, in the question Quelle est la date de naissance de
Rachel Stevens (What is Rachel Stevens birth date?), the property is given explicitly in the
question (birth date). There are also questions where this is not the case and the property
must be inferred, for example in Quand Rachel Stevens est-elle née? (When was Rachel
Stevens born?). Our solution for this problem is using a lexicon that maps commonly used
words or expressions such as "année de naissance" (year of birth) or "est né(e)" (was born)
to the dbo:dateOfBirth property. Other types of dates, such as death date and end of career
date, can also easily be handled in the same way.

Date questions require some additional work when comparison and ordering are involved and
this is explained with more details in Section A.5.3. Tables A.8 and A.9 show the lexicons

https://www.github.com/Mathos1432/dotNetSPARQL

87

we built to handle date and location questions.

Location Questions

An additional step is done for location questions. Once our system found answers, it
filters them to make sure we only consider the relevant ones. For example, the ques-
tion Dans quelle ville est situé le Palais de Westminster? (In which city is the Palace of
Westminster located?), if we query dbr:Palace_of_Westminster for its dbo:location, we will
get dbr:City_of_Westminster, dbr:Greater_London, dbr:United_Kingdom and dbr:England.
Since we are only looking for the city, we need to filter the answers to those that are of the
right type using the property rdfs:type, which in this case is the type yago:City108524735,
thus eliminating all entities except dbr:City_of_Westminster.

A.5.2 Boolean Questions

The first step in the processing of boolean questions is to determine whether the question
involves other entities, as in Is Michelle Obama the wife of Barack Obama? (note that in this
example Barack Obama is identified as the concerned entity). If it is the case, the program
verifies whether a relation exists between the entities and if it is the right type (in this case,
a relation of type spouse). When the question does not involve other entities, it is about
whether a property exists for a specific entity. We can consider the example Existe-t-il un
jeu vidéo appelé Battle Chess? (Is there a video game called Battle Chess?). In this case,
we simply need to find all entities with a label Battle Chess and find out if one of them is
a video game. Here again, we rely on the presence of Existe and look for a rdf:type relation
using a mapping available in our lexicon. The last type of question supported by our system
is whether an entity is of a specific type. For instance, Are tree frogs a type of Amphibian?.

Table A.8 Lexicon of date properties

Keywords Possible properties
mort death date
année de naissance birth year
naissance, né birth date
dissolue dissolution date
commencé active years start date, active years start year
terminaison active years end date, active years end year
terminé completion date
fondé founding year
indépendance founding date

88

Table A.9 Lexicon of location properties

Keywords Possible properties
mort death place
naissance birth place
commence route start, source country
enterré resting place, place of burial
vin wine produced
fondé founding year
vit residence

In this case, we extract the entity from the sentence (tree frog) and verify if it has the right
type (Amphibian).

A.5.3 Aggregation Questions

Aggregation questions are divided into two different categories. The first category contains
questions that are looking for a numeric answer, such as Combien de langues sont parlées
en Colombie?(How many languages are spoken in Colombia?). This type of question is
characterized by the presence of numeric indicators, such as: How many, All, Number of, etc.
In order to determine the entity subject to enumeration, all possible entities and properties are
extracted from the question, with entities/properties immediately after the numeric indicator
being considered as more likely to be the main subject. In the case of specific numeric
indicators, additional work must be done since the counting is done based on the sentence’s
verb and not a particular entity. For example, Combien de fois s’est mariée Jane Fonda?
(How often did Jane Fonda get married?), the enumeration is done on the number of spouses
(dbo:spouse) and not Jane Fonda.

The second category contains questions that involve ordering result sets in a specific order.
Key indicators of this question type are superlative adjectives present in the query. Expres-
sions such as le plus grand (the most), le plus gros (the biggest), etc., are used to decide the
sorting order.The queries are parsed before the Question Solver module and if a superlative
adjective is found, it is compared to prebuilt custom lists to determine if an ascending or
descending order is required. Adjectives such as le plus grand, le plus gros (biggest, largest)
are marked as Descending indicators while le plus petit, le plus facile (smallest, easiest) are
Ascending ones. The only exception to this rule are queries about dates or age (a type of
implicit date) given that asking for le plus jeune (the youngest) of something is equivalent to
looking for the highest date when ordering potential results. As an example for the following
two dates : 1970-24-04 and 1969-23-11, the first date would be considered as youngest even

89

if 1970 is bigger than 1969.

Once the ordering indicator is found and classified, it is removed from the query. This allows
for an easier analysis of the question and reduces any possible ambiguity. As an example, in
Quelle est la plus haute montagne d’Australie? (What is the highest mountain in Australia?),
our system identifies la plus haute (the highest) as a Descending order indicator. After the
question indicator Quelle est (What is) and the order indicator (the highest) are removed
from the query, the two entities dbo:Mountain and dbo:Australia can be extracted. The
system can then try to find a relationship between them, specifically looking for all entities
of type dbo:Mountain that have a property with a value of dbo:Australia and then sorting
them by the property dbo:elevation in a Descending order.

The relation between adjectives and entities can be somewhat ambiguous in most KBs.
In fact, the adjective la plus haute(the tallest) can be applied to both a Person and Object
(mountain for example). However, in the first case, the KBs property would be height, while in
the second, we need to be looking for elevation. Our system offers a limited context awareness
by using manually created (adjective:entity),property pairs. In the previously given example,
the system is looking for dbo:elevation, since the pair {("la plus haute": dbo:NaturalPlace),
dbo:elevation} and {("la plus haute": dbo:Person), dbo:height} exist in the predefined custom
pairs and dbo:mountain is of type dbo:NaturalPlace.

The system does not currently support superlative ordering with multiple answers. Queries
asking for the N most or least Entities, such as Donnez-moi les 5 premiers présidents des
États-Unis(Give me the five first presidents of the United-States) will currently only return
the first result.

A.5.4 List Questions

List questions are those that can but do not necessarily require an answer containing multiple
entries. They can be seen as a subset of aggregation questions, but without additional sorting
or counting over the result set. For example, Who are the founders of DBpedia? is a list
question that returns multiple resources. Given that the type of results can vary, list questions
are first analyzed based on their type.

Some types, such as Boolean and Number, are guaranteed to have only a single possible
answer and all additional answers beyond the first ones that are returned by the SPARQL
query are ignored. Resource and Dates types can return multiple possible answers, so all
results returned by the SPARQL queries are added to the final result set. In the current
version of the system, there is no imposed limit to the number of elements returned given

90

the inherent difficulty of predicting the expected size of the answer for some questions.

Some questions can ask for a single entity but actually have multiple answers, such as Qui
était le successeur de John F. Kennedy? (Who was the successor of John F. Kennedy?),
which has 3 different answers in DBpedia (Lyndon B. Johnson, Benjamin A. Smith III and
Tip O’Neill) despite us looking for a single entity.For this reason, our system does not restrict
the result set to a single answer. An exception is made for Aggregation questions, since the
results of a Aggregation-Counting question is processed as a Number response using a single
literal as an answer. For example, Combien de livres a écrit Isaac Asimov? (How many books
did Isaac Asimov write) is supported. But we do not currently support Aggregation-Ordering
queries that return more than a single result, such as Donnez-moi les 5 premiers présidents
des États-Unis (Give me the five first presidents of the United-States).

A.6 Evaluation

To evaluate the efficiency of our system, we used the train and test datasets for Task 1 of
QALD-7. Table A.10 shows, for each dataset, the number of questions and precision, recall
and F-Score. The train dataset was evaluated using GERBIL-QA [57], while the test set
was manually compared to the provided answers provided for the competition. Any results
provided by our system that did not exactly match the provided answers (containing more
or less elements for multiple element answers) were considered as failed.

A.7 Future work

For further improvement of the AMAL system, we have considered many possible approaches.
First, we would like to be able to improve our disambiguation algorithm. In its current
version, AMAL looks through all possible disambiguation resources, whenever available, and
attempts to find the property it extracted in the description of each resource. However,
this can quickly fail when many entities have the property, especially when looking for more
generic properties such as a birth date or location.

To improve our entity extraction, we plan to look at whether possible entities contain prop-

Table A.10 Results on the QALD 7 datasets

Dataset Number of questions Precision Recall F-Score
QALD-7 train dataset 214 0.9708 0.6967 0.8112
QALD-7 test dataset 50 0.7046 0.88 0.7825

91

erties from the question. This would allow us to be more precise in our extraction and limit
the amount of disambiguation we have to do, or at least help with it. For example, for the
sentences What is Battleship’s budget? and Which platforms support Battleship?, we can
extract both the Battleship movie and the Battleship video game. However, in the first case,
with the budget property we rank the movie with a higher likeliness of being the right entity.
In the case of the video game, we can use the platform property to determine that we are
looking for a video game rather than a movie.

There is also the possibility to add more lexicalization of DBpedia properties to our system
as it only covers the ones we thought were most important for the challenge. To do so,
an automated approach would help improve our results while reducing the amount of time
it takes to build such a dataset. The WikiFramework could be used, or the lexicalization
dataset from DBpedia-spotlight.

We also plan to process more complex queries involving more than one entity and property,
starting by processing queries with multiple properties. This will be achieved by chaining
requests until no properties are left to answer in the sentence. For example, Quelle est la
date de naissance du créateur de Dracula? (What is the birthdate of the creator of Dracula),
we can extract dbo:birthDate and dbo:creator from the sentence. Once this is done, we use
our question solvers to link the properties in reverse order. In this case, we query DBpedia
for Dracula’s creator and then for this answer’s birth date. This approach does not cover
more complex cases but it is a realistic improvement goal.

Given that our system was built by using separate modules, we hope to be able to extend the
custom logic modules that are directly affected by the French languages particularities allow-
ing for an implementation of the system in other languages, mainly English, thus rendering
it a truly multilingual Question-Answering system.

The use of multiple KBs to answer questions is another improvement that could be made in
the future, which would allow the use of a greater body of knowledge to answer questions.
The use of Wikidata would improve our ability to answer general knowledge questions.

A.8 Conclusion

The AMAL system is one of systems in the QALD competition that supports the French
language. However, unlike other systems, AMAL focuses specifically on French questions and
is thus able to obtain better and more accurate results. In this paper we have outlined the
main functionality of the system and its modular, custom rule driven approach to Question
Answering over Linked Data. Possible improvements are also outlined as both an analysis of

92

the system current limitations and a source of any future work done on our system.

In its current version, DBpedia is offered in more than 30 languages including English, French,
Spanish and many others. While the English version is by far the most complete and rich
knowledge base, other versions can offer a substantial amount of information and knowledge.
We hope that our work on a system that focuses on a language other than English can benefit
other works that focus on more than the single dominating language that is English in the
present time.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Problem Definition
	1.2 Concepts and Definitions
	1.3 Research Objectives
	1.4 Thesis Overview

	2 LITERATURE REVIEW
	2.1 Question Answering Systems

	3 RESEARCH METHODOLOGY
	3.1 Multilingual Question Answering
	3.2 Knowledge Base Exploitation
	3.3 Entity and Property Extraction
	3.4 Lexico-syntactic patterns
	3.5 Datasets
	3.6 LAMA's evaluation

	4 ARTICLE 1 : A LANGUAGE ADAPTIVE METHOD FOR QUESTION ANSWERING ON FRENCH AND ENGLISH
	4.1 Introduction
	4.2 Related Work
	4.3 System Overview
	4.4 Complex Question Simplification
	4.5 Parallel Processing and Scalability
	4.6 Evaluation
	4.7 System Limitations and Future Work
	4.8 Conclusion

	5 ARTICLE 2 : MULTILINGUAL QUESTION ANSWERING USING LEXICO-SYNTACTIC PATTERNS
	5.1 Abstract
	5.2 Introduction
	5.3 Methodology
	5.4 Dependency-based Patterns
	5.5 POS-based Patterns
	5.6 Experiments and Evaluation Results
	5.7 Future Work
	5.8 Related Work
	5.9 Conclusion

	6 GENERAL DISCUSSION AND CONCLUSION
	6.1 Contribution
	6.2 Limitations
	6.3 Future Research

	REFERENCES
	APPENDICES
	A.1 Introduction
	A.2 Related Work
	A.3 System Overview
	A.4 System details
	A.5 Simple Question Analysis
	A.6 Evaluation
	A.7 Future work
	A.8 Conclusion

