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RÉSUMÉ 

La gestion d’inventaire est l’un des problèmes les plus importants dans la fabrication de produits. 

Les décisions de commande sont prises par  des agents qui observent les demandes, 

stochastiques, ainsi que les informations locales tels que le niveau d’inventaire afin de prendre 

des décisions sur les prochaines valeurs de commande. Étant donné que l’inventaire sur place (la 

quantité disponible de stock en inventaire), les demandes non satisfaites (commandes en attente), 

et l’existence de commander sont coûteux, le problème d’optimisation est conçu afin de 

minimiser les coûts. Par conséquent, la fonction objective est de réduire le coût à long terme) 

dont les composantes sont des inventaires en stock, commandes en attente linéaires (pénalité), et 

des coûts de commandes fixes.    

Généralement, des algorithmes de processus de décision markovien, et de la programmation 

dynamique, ont été utilisés afin de résoudre le problème de contrôle d’inventaire. Ces algorithmes 

ont quelques désavantages. Ils sont conçus pour un environnement avec des informations 

disponibles, telles que la capacité de stockage ou elles imposent des limitations sur le nombre 

d’états.  Résultat, les algorithmes du processus de décision markovien, et de la programmation 

dynamique sont inadéquats pour les situations mentionnées ci hauts, à cause de de la croissance 

exponentielle de l’espace d’état. En plus, les plus fameuses politique de getsion d’inventaire, 

telles que politiques standards <s,S> et <R,Q> ne fonctionne que dans les systèmes où les 

demandes d’entrées obtiennent une distribution statistique connues.  

Afin de résoudre le problème, un apprentissage par renforcement approximée est développé dans 

le but d’éviter les défaillances mentionnées ci hauts. Ce projet applique une technique 

d’apprentissage de machine nommé ‘Deep Q-learning’, qui est capable d’apprendre des 

politiques de contrôle en utilisant directement le ‘end-to-end RL’, malgré le nombre énorme 

d’états. Aussi, le modèle est un  ‘Deep Neural Network’ (DNN), formé avec une variante de ‘Q-

learning’, dont l’entrée et la sortie sont l’information locale d’inventaire et la fonction de valeur 

utilisée pour estimer les récompenses futures, respectivement.       

Le Deep Q-learning, qui s’appelle ‘Deep Q-Network’ (DQN), est l’une des techniques pionnières 

‘DRL’ qui inclut une approche à base de simulation dans laquelle les approximations d’actions 

sont menées en utilisant un réseau DNN. Le système prend des décisions sur les valeurs de 
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commande. Étant donnée que la fonction de coût est calculée selon l’ordre ‘O’ et le niveau 

d’inventaire ‘IL’, les valeurs desquelles sont affectées par la demande ‘D’, la demande d’entrée 

ainsi que l’ordre et le niveau d’inventaire peuvent être considérés en tant qu’information 

individuelle d’inventaire. De plus, il y a un délai de mise en œuvre exprimant la latence dans 

l’envoi des informations et dans la réception des commandes.  Le délai de mise en œuvre fournit 

davantage d’information locale incluant ‘IT’ et ‘OO’. Le ‘IT’ et ‘OO’ sont calculés et suivis 

durant les périodes de temps différents afin d’explorer plus d’informations sur l’environnement 

de l’agent d’inventaire. Par ailleurs, la principale information individuelle et la demande 

correspondante comprennent les états d’agents.     

Les systèmes ‘PO’ sont davantage observés dans les modèles à étapes multiples dont les agents 

peuvent ne pas être au courant de l’information individuelle des autres agents. Dans le but de 

créer une approche basée sur le ‘ML’ et fournir quelques aperçus dans la manière de résoudre le 

type d’agent multiple ‘PO’ du problème actuel de contrôle d’inventaire, un agent simple est 

étudié. Cet un agent examine si on peut mettre sur pied une technique ‘ML’ basée sur le ‘DL’ afin 

d’aider à trouver une décision de valeur de commande quasi optimale basée sur la demande et 

information individuelle sur une période à long terme. Afin de le réaliser, dans un premier temps, 

la différence entre la valeur de commande (action) et la demande comme résultat d’un ‘DNN’ est 

estimée. Ensuite, la commande est mise à jour basée sur la commande à jour et la demande 

suivante. Enfin, le coût total (récompense cumulative) dans chaque étape de temps est mis à jour. 

En conséquence, résoudre le problème de valeur de commande d’agent simple suffit pour 

diminuer le coût total sur le long terme. Le modèle développé est validé à l’aide de différents 

ratios des coefficients de coût. Aussi, le rendement de la présente méthode est considéré 

satisfaisant en comparaison avec le ‘RRL’ (RL de régression), la politique <R,Q> et le politique 

<s,S>. Le RL de régression n’est pas capable d’apprendre aussi bien et avec autant de précision 

que le ‘DQN’. En dernier lieu, des recherches supplémentaires peuvent être menées afin 

d’observer les réseaux de chaînes d’approvisionnement multi-agents en série partiellement 

observables.   
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ABSTRACT 

Inventory control is one of the most significant problems in product manufacturing. A decision 

maker (agent) observes the random stochastic demands and local information of inventory such 

as inventory levels as its inputs to make decisions about the next ordering values as its actions. 

Since inventory on-hand (the available amount of stock in inventory), unmet demands 

(backorders), and the existence of ordering are costly, the optimization problem is designed to 

minimize the cost. As a result, the objective function is to reduce the long-run cost (cumulative 

reward) whose components are linear holding, linear backorder (penalty), and fixed ordering 

costs.  

Generally, Markov Decision Process (MDP) and Dynamic Programming (DP) algorithms have 

been utilized to solve the inventory control problem. These algorithms have some drawbacks. 

They are designed for the environment with available local information such as holding capacity 

or they impose limitations on the number of the states while these information and limitations are 

not available in some cases such as Partially Observable (PO) environments. As a result, DP or 

MDP algorithms are not suitable for the above-mentioned conditions due to the enormity of the 

state spaces. In addition, the most famous inventory management policies such as normal <s,S> 

and <R,Q> policies are desirable only for the systems whose input demands obtain normal 

distribution. 

To solve the problem, an approximate Reinforcement Learning (RL) is developed so as to avoid 

having the afore-mentioned shortcomings. This project applies a Machine Leaning (ML) 

technique termed Deep Q-learning, which is able to learn control policies directly using end-to-

end RL, even though the number of states is enormous. Also, the model is a Deep Neural 

Network (DNN), trained with a variant of Q-learning, whose input and output are the local 

information of inventory and the value function utilized to estimate future rewards, respectively.    

Deep Q-learning, which is also called Deep Q-Network (DQN), is one of the types of the pioneer 

Deep Reinforcement Learning (DRL) techniques that includes a simulation-based approach in 

which the action approximations are carried out using a Deep Neural Network (DNN). To end 

this, the agents observe the random stochastic demands and make decisions about the ordering 

values. Since the cost function is calculated in terms of Order (O) and Inventory Level (IL) whose 

values are affected by Demand (D), input demand as well as the order and inventory level can be 
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considered as the individual information of the inventory. Also, there is a lead-time expressing 

the latency on sending information or receiving orders. The lead-time provides more local 

information including Inventory Transit (IT) and On-Order (OO). IT and OO are calculated and 

tracked during different time periods so as to explore more information about the environment of 

the inventory agent. Furthermore, the main individual information and the corresponding demand 

comprise the states of the agent.   

PO systems are observed more in multi-stage models whose agents can be unaware of the 

individual information of the other agents. In order to create a ML-based approach and provide 

some insight into how to resolve the PO multi-agent type of the present inventory control 

problem, a single-agent is studied. This agent examines if one can implement a ML technique 

based on Deep Learning (DL) to assist to learn near-optimal ordering value decision based on 

demand and individual information over long-run time. To achieve this, first, the difference 

between the ordering value (action) and demand as the output of a DNN is approximated. Then, 

the order is updated after observing the next demand. Next, the main individual information of 

the agent called input features of a DNN is updated based on the updated order and the following 

demand. Lastly, the total cost (cumulative reward) in each time step is updated. Accordingly, 

solving the ordering value problem of single-agent suffices to diminish the total cost over long-

run time. The developed model is validated using different ratios of the cost coefficients. Also, 

the performance of the present method is found to be satisfactory in comparison with Regression 

Reinforcement Learning (Regression RL), <R,Q> policy, and <s,S> policy. The regression RL is 

not able to learn as well and accurately as DQN. Finally, further research can be directed to solve 

the partial-observable multi-agent supply chain networks.  
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CHAPTER 1 INTRODUCTION 

1.1  Motivation and Objective 

Inventory control is a well-known problem in the field of product manufacturing. Inventory 

controller (agent) decides about the ordering value based on the input demand in order to reduce 

the long-run total system cost consisting of linear holding, backorder, and fixed ordering costs. 

The unpredictability nature of the demand, which is due to its dynamic and random property, 

makes it reasonable to obtain a new approach to solve the inventory control problem even though 

there is a number of inventory models. Therefore, information-based decision making (using 

agents) is desirable. The current agent-based solutions induce some limitations on the values of 

data, which is not favorable generally. Accordingly, in the present research, a type of Deep 

Reinforcement Learning (DRL) method called Deep Q-Networks (DQN) is utilized to solve the 

inventory control problem.  

A question can be raised why DRL is preferred to the other methods such as Dynamic 

Programming (DP), Reinforcement Learning (RL), and Deep Learning (DL). To answer this 

question, a detailed discussion based on the previous research works by Lin (1993), Van Roy et 

al. (1998), Mnih et al. (2013), Mnih et al. (2015), Van der Pol and Oliehoek (2017), and Sutton 

and Barto (2018) is presented in this section. In addition, a number of RL approaches for 

inventory control are described in Chapter 2. DP is inapplicable in most real problems because it 

is computationally very expensive. Also, most of the RL methods impose some limitations or 

require some pre-knowledge, which are not generally applicable. As a result, one of the long-term 

challenges of RL is to be able to learn how to control the agents directly from enormous inputs, 

similar to speech recognition. Most of the prosperous RL applications utilize hand-made features 

together with linear value functions or policy representation. Therefore, their performance is 

highly dependent on how good the features are. The advancement in DL makes the extraction of 

high-level features from raw datasets possible in some fields such as speech recognition. These 

approaches employed a type of DNN and both Supervised Learning (SL) and unsupervised 

learning. A comparative study of capabilities and incapabilities of RL, DL, and SL is presented 

herein. A RL method faces some challenges from a DL approach standpoint. For instance, DL 

techniques are applicable if a large value of labelled training data are available. However, RL 
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approaches should be able to learn from a frequently sparse, noisy, and delayed scalar reward. A 

large delay in observing the effect of an action on the reward is a negative point especially in 

comparison with the direct input-output relation in SL. Another challenge is that most DL 

approaches consider the independent data samplings, whereas RL techniques face sequences of 

much correlated states. In addition, the data distribution in a number of RL methods changes with 

the new behaviors learnt by the algorithm, whereas this can be a challenge for DL methods in 

which the data distribution is considered to be constant. The present research shows that a DNN 

can tackle the aforementioned problems so as to learn appropriate policies from raw datasets in 

complicated RL systems. To end this, a variant of the Q-learning method (Watkins and Dayan 

1992) are utilized to train DNN using an optimizer for weight updates. The data correlation and 

non-stationary input distribution issues are mitigated by using Experience Replay (ER) sampling 

from the previous transitions at random, which makes the training distribution more accurate and 

smoother.  

A Markov decision process (MDP) is a discrete time stochastic control process made of states, 

actions, rewards, and transition probabilities. Despite the fact that the problem with single 

product, single-stage, and a limited number of states (limitations on individual parameters and 

inputs) can be solved using MDP, the present research work is aimed at exploring a type of DRL 

approaches called DQN, obtaining some insights and examining the possibility of proper 

learning of the ordering value when there is no pre-knowledge or limitation on local information 

such as inventory capacity. This means that to reduce the long-run overall system cost, the 

stochastic random demands are the inputs, which affect the RL algorithm (a variant of Q-

learning) whose actions are the ordering values approximated with the assistance of a DL. The 

inputs of this DNN structure are the important parameters (features) of inventory control 

including inventory level, inventory transit (inventory received in transit), on-order inventory 

(inventory sent but not received yet), ordering, and stochastic demand of the current time. Also, 

the output of DNN is the difference between the next order and the next demand (i.e. X=O-D). 

Since the stochastic demand of the next time is available as the input (D), the greedy calculation 

of the ordering value is conducted to be used by the ϵ-greedy rule. In addition, another input is 

lead-time (LT) which is equal to two. Consequently, the next time values of the other features 

and parameters such as inventory level (IL), inventory transit (IT), and on-order (OO) are 

calculated by the formulae presenting the relations between the different parameters on different 

https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Optimal_control_theory
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time steps (They are explained in more details in Chapter 4). Therefore, the updated versions of 

IL, IT, OO, O, and D are the next inputs while approximation of the difference between the next 

order and next demand (X=O-D) is the output of the next time of DNN (see Tables 1.2 and 1.3). 

The algorithm can be utilized without any limitation on some parameters such as inventory 

level, linear holding cost, linear backorder cost, different lead-time values, and type of demand 

distribution if it is determined.  

1.2  Problem Statement 

It is essential to gain the sufficient knowledge related to inventory control cost so as to respond to 

the inventory challenges. Tracking the inventory level (even positive or negative) and the number 

of times of ordering are unavoidable aspects of a successful inventory management in order to 

minimize the long-run total system cost. The components of this cost are linear holding, linear 

backorder (penalty), and fixed ordering costs associated with positive inventory level, negative 

inventory level, and the times of orders, respectively. The ordering value should be set to a near-

optimal value so that the large number of times of ordering and the large values of holdings and 

backorders are avoided. In product manufacturing, the process of tracking incoming and outgoing 

goods (orders and demands) is called inventory management. The inventory management is 

investigated by an agent which makes decision about new orders (actions). This process is 

conducted after observing the stochastic input demands and by considering the inventory 

parameters in order to reduce the total cost (the long-run system cost).  

Since there are some relations between components of individual information of the agent such as 

inventory transit, on-order value, and inventory level and the corresponding demand and order, in 

each time step, their next value is determined, the cumulative reward is updated, and the process 

continues until the last running time step. It should be mentioned that since the present solution is 

based on RL, “reward” is used instead of “cost” and their concepts are the same in this research. 

Demand is observed as the input of inventory agent, while inventory controller makes decision 

about the order which is sent to the environment as its output (Figure 1.1). This decision is 

made by considering not only demand and order but also individual information of inventory 

such as inventory level. To capture the near-optimal overall cost of inventory, appropriate 

orders should be found as the outputs of inventory management.  
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Figure 1.1 Input and output on single-stage inventory problem  

In order to solve this inventory control problem, an approach based on a combination of DL 

and RL is implemented so as to reduce the cumulative cost of an inventory agent which is 

executed on a long-run time. This aim is realized using a RL algorithm in which the difference 

between the action (order) and input (demand) is learned by a DNN. If the demand and order of 

each time step are considered as the parts of the individual information (state) of the decision 

maker (agent), the state of RL algorithm is the input of the DL section. The validation of the 

proposed technique is examined by comparing some methods such as <s,S> policy, <R,Q> 

policy and the regression RL approach.  

In addition, each agent refers to one-stage decision maker in the inventory control optimization 

problem. There is only one type of ordering product in this research, while the algorithm works 

for multi-product environment whose products are independent from each other. This research 

project is aimed at finding the near-optimal overall cost of single-agent (single-stage) when the 

inventory agent faces the stochastic demands D as the input of the environment during the long-

run time periods T. This optimization is performed by making decisions about the ordering 

value O of each time step. If IL shows inventory level, linear cost for holding (if IL>0) and 

backorder inventory cost (if IL<0), and fixed cost for ordering value (if O>0) are considered in 

the cost function while their cost coefficients are 𝐶ℎ, 𝐶𝑝, and 𝐶𝑜 , respectively.  

The general mechanism for the sequence of events including arriving pipeline order, observing 

the system state, making decision about the order, observing demand, and updating the cost, is 

shown in Figure 1.2. In addition, in each time step 𝑡 of a serial multi-agent system, arriving 

pipeline order illustrates the demand requested from agent 𝑖, which is equal to the order of the 

previous agent 𝑖 − 1 with a latency of lead-time LT. This mean that 𝐷𝑡
𝑖 = 𝑂𝑡−𝐿𝑇

𝑖−1 , if the retailer is 

the first agent. More details about simulating the environment including different parameters and 

their relations are given in Tables 1.2 and 1.3 and Chapter 4. 
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Figure 1.2  The general mechanism for the sequence of events 

1.2.1 Type of Inventory Model 

Table 1.1 displays the different types of the inventory models. The names of the settings of the 

models used in the research are made bold and italic. As shown in the table, demand is stochastic, 

which is selected randomly among one, two, and three, and lead-time is equal to two. Time 

horizon is set to 500, there is one product, unmet demands are allowed, and there is no limit to 

capacity. The unrestricted capacity of inventory is one of the benefits of the present research in 

comparison with the past MDP approaches. The time horizon is reasonably high and its value is 

chosen by considering working 5 days in every working week for two years (or two times 

(morning and evening) in every working day of a year). It is assumed that the system does not 

work for two weeks due to the New Year holiday. The demand and lead-time are the independent 

Table 1.1  Types of inventory model (The methods written in bold, italic format are used in the 

present research)  

Parameters Type Type Type 

Demand Constant Deterministic Stochastic-random(1-3) 

Lead-Time “0”   “>0” -LT=2 Stochastic 

Horizon Single Period Finite (T=500) Infinite 

Products  One Product Multiple Products - 

Capacity  Order/Inventory Limits No Limits - 

Service Meet All Demand Shortages Allowed - 
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parameters coming from the environments and are the real inputs of DQN. However, since the 

lead-time is constant, it is not considered as an input parameter. DQN makes decision about 

ordering-related values as its outputs. The demand is stochastic and is selected randomly among 

one, two, and three, while lead-time is assumed to be constant equal to two.    

1.2.2  DL and RL Components of DRL 

In this inventory control problem, the near-optimal long-run cost function consisting of the 

linear holding, linear backorder, and fixed ordering costs is obtained. This optimization is 

found by making decision about the ordering value. The inputs are demands during different 

time steps and the actions are ordering values. The algorithm utilized in this research project is 

DQN, whose RL algorithm is Q-learning. Since there is a huge possibility for different pairs of 

inputs (demands) and actions (orders), it is impossible to obtain a complete prepared Q-table. 

Therefore, action selection based on inputs is an online approximation process. The actions of 

RL are approximated with a DNN. The output of DL is the difference between orders and 

demands.   

Since the present solution is based on RL, “reward” is used instead of “cost” and their concepts 

are the same in this research. The general goal of DQN is to reduce the long-term cumulative  

Table 1.2  Components of inventory optimization problem for agent i, time t  

(i=1, t<T, T=500) 

Section Detail  

Cost (reward) Cost (Reward) Costt
i = Ch.  ILt

i +
+ Cp.  ILt

i −
 

Costt
i = Costt

i + Co  if  Ot
i > 0 

Input  Demand  Dt
i = 1, 2, 3 (Dynamic Input)  

Lead-Time LT = 2 (Static Input) 

Decision 

Variable 

 

Ordering Value Ot
i  

Inventory Level ILt
i    

On-Order Inventory OOt
i  

Inventory Transit ITt
i 
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cost (reward) of the agent where the cost of the agent at each time is defined in Table 1.2. The 

relations between the parameters are presented in Chapter 4. Also, Table 1.2 defines the 

inventory optimization problem, while Table 1.3 illustrates input/output of DRL as well as the 

different sections of DL and RL. Since the RL makes decision about ordering, it is a 

Reinforcement Learning Ordering Mechanism (RLOM). The reward function, state, and action 

are three main components determining RL and given in Table 1.3. For instance, inventory level 

is one of the components of each state of RL algorithm, while it is one of the parts of each input 

of DL. It should be mentioned that although the lead-time is equal to a constant value in all the 

case studies under study in this research, it can be any positive integer. Since the values of 

parameters are related to the previous time steps, it will be shown that instead of considering one 

time step of each parameter, a frame with size 𝑘 of the parameters gives the real ones. The details  

Table 1.3  Different sections of DRL and its RL and DL sections for agent i, time t 

 (i=1, t<T, T=500)  

Section DL/RL/DRL Detail  

Reward (cost) RL Reward (Cost) Costt
i = Ch.  ILt

i +
+ Cp.  ILt

i −
 

Costt
i = Costt

i + Co  if  Ot
i > 0 

Input 

Parameters  

DRL  Demand Dt
i  (uniform (1-3)) 

DRL Lead-Time LT = 2 

Output DRL Ordering Value Ot+1
i  

Type of Agent  RL RLOM (RL Ordering 

Mechanism) 

- 

Algorithm RL Variant of Q-learning - 

Input/State 

(Observation) 

DL/RL  Demand Dt
i  

DL/RL Ordering Value Ot
i  

DL/RL Inventory Level ILt
i  

DL/RL On-Order Inventory OOt
i  

DL/RL Inventory Transit ITt
i 

Output/Action DL/           

RL 

(Order-Demand)/ 

Ordering Value 

Xt+1
i = Ot+1

i − Dt+1
i / 

Ot+1
i  
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and relations between decision variables are described in Chapter 4. All of the parameters in 

Tables 1.2 and 1.3 are previously defined. In addition, 𝐼𝐿𝑡
𝑖 +

/ 𝐼𝐿𝑡
𝑖 −

shows the inventory level if it is 

larger/lower than zero and the absolute value of 𝐼𝐿𝑡
𝑖  is considered in the cost function. The 

formulae of updating the dependent parameters are presented in the following chapters. 

1.3  Contributions 

The contributions of the present research work are listed as follows: 

The algorithm is designed for an unlimited range of the values of the individual information, 

while as far as the literature reveals, there are some limitations on the range of individual 

information such as inventory level for most of the available MDP models. In addition, there is 

no need to know the input distribution, whereas in the most of the previous works, the demand 

distribution is required to be known a priori. Also, lead-time related parameters such as on-

order inventory and inventory transit are considered. Moreover, the influences of different 

values of hyperparameters on the performance are examined. Finally, the performance of DQN 

method is compared with <s,S> and <R,Q> policies and linear regression RL method.    

1.4  Thesis Structure 

This thesis comprises five chapters which are briefly described below: 

Chapter 1 explains the motivation and objectives, problem statement, and major contributions 

of the present research and outlines the thesis scope. Chapter 2 is devoted to reviewing previous 

studies for inventory control. Chapter 3 describes theory and formulations related to the 

research area of inventory management. Chapter 4 is allocated to the proposed methodology 

adopted herein to solve the problem. It also discusses the results. Finally, Chapter 5 presents a 

summary and the main conclusions of the present research. It also proposes some suggestions 

for future works in this filed. 

  



9 

 

CHAPTER 2 A REVIEW OF INVENTORY CONTROL 

A MDP is a formal way to describe the sequential decision-making problems observed in RL. 

MDP is not only tractable to solve but is also relatively easy to specify as it assumes to have 

perfect knowledge of state. All required information to complete the final task is available in fully 

observable environments. On the other hand, Partially-Observable Markov Decision Processes 

(POMDP) act uniformly with all sources of uncertainty. Information gathering actions are 

permitted in POMDP and yet solving the problem optimally is often highly intractable.  

In the field of inventory optimization, there is a number of research works based on a MDP. Van 

Roy et al. (1997) presented a viable approach based on Neuro-Dynamic Programming (NDP) to 

solve inventory optimization including a retailer. They formulated two dynamic programming 

studies containing 33 and 46 state variables. Since the state-space of DP models was large, they 

could not apply classical DP approaches. Therefore, they implemented the approximate dynamic 

programming method to simulate this approximation with a Neural Network (NN). Their method 

falls into the class of NDP techniques. The efficiency of their results was assessed by comparing 

to S-type policies. Moreover, they examined the reduction in the average inventory cost. The 

results showed that their optimal control technique provided a reward of about ten percent lower 

than the reward obtained by heuristic methods. Their research has several restrictions on some 

parameters such as the number of states and the capacity of inventory. Also, Sui et al. (2010) 

proposed a RL approach to find a replenishment policy in a vendor management inventory system 

with consignment inventory. They did not consider the ordering cost and also divided the state 

space into 50 regions. In contrast, in this research, the ordering cost is included and the real state 

is studied. 

There is a number of RL research studies in the field of inventory control designed for the beer 

game, which is a serial supply chain network containing (mostly) four agents (stages). The game 

has a multi-agent, decentralized, independent learner, and cooperative Artificial Intelligence (AI) 

environment considering holding and back-order costs. No ordering cost is calculated in the beer 

game whose optimal solution results from a base-stock policy. The game was initially introduced 

by a group of faculty members in Sloan School Management at Massachusetts Institute of 

Technology in order to show the difficulty with managing dynamic systems. This game is a 
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sample of a dynamic system in supply chain which delivers beer from a beer producer to the end 

customer. Although supply chain structure and rules of playing the game are very simple, the 

complex behavior of this dynamic system is interesting. The game is categorized in a group of 

games illustrating bullwhip effect (Devika et al. 2016, Croson and Donohue 2006). This effect 

happens unintentionally whenever seeking minimum cost. It happens when the order variation in 

upstream moving node increases in the network. Lee et al. (1997) and Sterman (1989) explained 

some rational and behavioral causes of the occurrence of the aforementioned effect, respectively.  

There is no algorithm to find optimal base-stock levels whenever a stock-out is observed in a 

non-terminal agent. Sterman (1989) analyzed the dynamic of environment by considering the 

dynamic of stock system and the model of environment flows in the beer game. One of the main 

points of the game is that no data sharing, which can be inventory value or cost amount, happens 

until the end of the game. Therefore, each agent has a partial information about environment, 

which leads to observing a POMDP model. The cost function used in his work was the 

summation of linear holding and the stock-out (backorder) cost whose coefficients are 0.5 and 1, 

respectively. This ratio is used in Case Study 2 of the present research. 

Giannoccaro and Pontrandolfo (2002) presented a method to find the best decisions about 

inventory management containing Markov Decision Processes (MDP) and an AI method (RL 

approach) to solve MDP. Their game consisted of 3 agents whose shipment time and lead-time 

were stochastic. The RL approach was applied in order to find a near-optimal inventory policy 

based on maximizing the average reward. The reason for applying RL was due to its stochastic 

property as well as its efficiency in large-scale networks. Giannoccaro and Pontrandolfo’s RL 

methods contained three agents whose inventory levels were state variables discretized into 10 

intervals and the action number could be between one and thirty. Their methods needed to 

discretize the inventory level into ten intervals, while it was not generally possible to find an 

appropriate division of time intervals. This is a defect, which is overcome in this research.  

Kimbrough et al. (2002) recommended an agent-based approach for serial multi-agent so as to 

track demand, delete the Bullwhip effect, discover the optimal policies which were known, and 

find efficient policies under complex scenarios where analytical solutions were not known. Their 

method was a Genetic Algorithm along with a Joint Action Learners (JALs). They used "𝑥 + 𝑦" 

rule, in which "𝑥" refers to the amount of demand or order and based on this amount, order 
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quantity equals "𝑥 + 𝑦". By applying this rule, track demand was carried out and the bullwhip 

influence was eliminated. This resulted in discovering the optimal policies when these policies 

could be found. In order to determine the order quantity, Chaharsooghi et al. (2008) proposed an 

approach similar to the method of Kimbrough et al. (2002) containing two differences. First, they 

worked with four agents, and second, each game had a fixed length equal to 35 time periods and 

their state variable consisted of four inventory positions which were divided into nine different 

intervals. The inventory levels and time intervals were restricted to 4 and 35, respectively, which 

was a limitation to generalize the work. This problem is resolved in the present research.   

Claus and Boutilier (1998) utilized (a simple form of) Q-learning to solve cooperative multi-

agent environments. The effect of different features on the interaction between equilibrium 

selection learning techniques and RL techniques was investigated. They mentioned that 

Independent Learners (ILs) and Joint Action Learners (JALs) were two different types of Multi-

Agent Reinforcement Learning (MARL). A classic type of Q-learning ignoring the other agents 

was applied in ILs. On the other hand, JALs learned their action value of related agents by 

combining RL methods with equilibrium learning methods. Parashkevov (2007) evaluated JALs 

in stochastic competitive games. His approach was able to obtain the safety value of the game 

and adapt to changes in the environment.  

There are two different solutions for the beer game when special conditions arise. In case of 

availability of stock-out cost only at the final agent (retailer), Clark and Scarf (1960) presented an 

algorithm to find the optimum policy for the game as the first solution. In order to determine the 

optimal policy, Chen and Zheng (1994) and Gallego and Zipkin (1999) suggested a similar 

approach based on the division of serial network into several single-stage nodes. They defined a 

convex optimization problem with just one variable at each of these stages. Their method 

suffered from large-volume calculations of numerical integration as well as huge cost of 

implementation. Later, Shang and Song (2003) proposed an effective approach based on heuristic 

methods. The solution of Clark and Scarf (1960) and their followers need to consider the specific 

data distribution, while there is no need to know the data distribution in the present work. 

A stochastic process with fixed joint probability distribution is called a stationary environment. If 

there is no ordering cost and the environment is stationary, the optimal policy of the beer game is 
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base stock. As Gallego and Zipkin (1999) defined, in this policy, the ordering amount was equal 

to the difference between a fixed number and the current inventory position. Clark and Scarf 

(1960) called this constant number a base-stock level and there was no general solution to find 

the optimal value of the base-stock level when there existed a stock-out cost in any agent except 

for the final agents (retailers). Gallego and Zipkin (1999), as well as Cheng and Zheng (1994), 

found optimal solutions by neglecting the stock-out cost. Accordingly, the review of the literature 

signifies that no definite algorithm was presented when general stock-out was available. 

Sterman (1989) presented some relations in order to find the order amount by considering order 

backlog, in and out shipment flow, on-hand inventory, and expected demand, known as the 

second solution. He modeled the reactions to shortage or extra inventory value of a four-part 

serial inventory network. Then, Croson and Donohue (2006) studied the behavioural causes of 

the bullwhip effect and the subsequent behaviour of the beer game. Recently, Edali and Yasarcan 

(2014) provided a mathematical model for the game. 

Classical supervised ML algorithms such as support vector machine, random forest, or supervised 

DNN are inapplicable in this research because of none-availability of historical pairs of 

input/output data. On the other hand, the present research is designed based on DQN. Although 

this research study implements the DQN method into a single-agent model, it can be designed for 

multi-agent inventory whose agents are JALs and POMDP. The agents roughly work similar to 

the beer game. One difference is that the parameters such as inventory level are unlimited and 

there is no restriction on their values. Another difference is that the ordering cost is considered by 

adding the cost per order to the cost function. To the best of the author’s knowledge, there are 

limitations on the values of some parameters such as inventory level as well as ignoring ordering 

cost in most of the past RL approaches. Also, there is a number of research works to solve the 

one-agent MDP whose parameter values are limited such as inventory capacity. As far as the 

literature reveals, this is the first work considering the holding, backorder, and ordering costs 

without any limitation on the values of parameters such as inventory level and without any need 

to know the demand distribution. Also, in the previous MDP studies, lead-time and its related 

parameters such as on-order inventory or inventory transit are ignored, while they are considered 

in the present research study. 
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CHAPTER 3 THEORY AND FORMULATION 

In this chapter, some techniques including RL, DP, and DQN are described and compared. The 

formulation and details of different techniques including DQN are studied. 

3.1  Reinforcement Learning  

One of the best methods to deal with complicated decision making issues is Reinforcement 

Learning (RL) (Sutton and Barto 1998). RL is part of Machine Learning (ML) acting with agents 

whose next status is influenced by action selection. This selection is examined in order to 

maximize/minimize the future reward/cost by interaction of the agent and the environment. 

 

Figure 3.1  Interaction of agent with environment 

3.2  Markov Decision Process  

A Markov Decision Process (MDP) is defined as 𝑀 =  (𝑆, 𝐴, 𝑃, 𝑅), where 𝑆 is a set of states, 𝐴 is 

a set of actions, P(𝑆 ×  𝑆 ×  𝐴 →  [0, 1]) is transition probability distribution, and 𝑅(𝑆 →  𝑅) is 

reward. To be more precise, in each time step 𝑡, a state is the situation of agent and action 𝑎𝑡 is a 

command in order to reach next state 𝑠𝑡+1 from the current state 𝑠𝑡 by following the state policy 

π(s). Generally, policy π is a behaviour function choosing actions given states (𝑎 = π(s)) and 

the transition probability, P(𝑠𝑡+1 = s′|𝑠𝑡 = s, π(s) = 𝑎), shows the probability of transition from 
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state 𝑠 to state s′ by taking action 𝑎. The general goal of RL is to maximize the expected 

discounted sum of the rewards over running on an infinite time horizon (Eq. (3-1)). 

𝐺𝑡 = 𝑟𝑡+1 + γ𝑟𝑡+2 + γ2𝑟𝑡+3 + ⋯ = ∑  γ𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

 (3-1) 

where γ is the discount factor. However, in case of large state-space and long-running time of RL 

approach, P and R are very large and are not previously known while the system is a MDP 

observing the states and rewards after taking an action. The value of a policy is determined by 

solving a linear system or by doing an iteration which is similar to value iteration. Finding the 

optimal policy with unknown P and R is a challenging task. 

3.3  Comparison of Different Techniques 

In order to better understand different approaches, comparisons have been made in this section. 

3.3.1  Reinforcement Learning versus Supervised Learning 

Supervised Learning is able to solve many problems containing image classification and text 

translation. However, supervised learning is unable to play a game efficiently. For instance, a 

dataset containing the history of all the cases of “Alpha-Go” game played by humans could 

potentially use the state as input x and the optimal decisions taken for that state as output labels y. 

Although it would be a nice idea in theory, in practice some drawbacks exist as follows: 

1. The above-mentioned data sets do not exist for the entire domain. 

2. It might be expensive and unfeasible to create the above-mentioned data sets. 

3. The method learns to imitate a human expert instead of really learning the best possible policy. 

RL wants to learn actions by trial and error. The objective function of a RL 

algorithm, 𝐸(∑ 𝑟𝑒𝑤𝑎𝑟𝑑𝑠), is an expectation of a system which is unknown. In contrast, 

supervised learning algorithms tend to find 𝑚𝑖𝑛𝛳𝑙𝑜𝑠𝑠 (𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛), in which 𝛳 shows the 

parameters of the algorithm and (𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) are pairs of training set. The supervised learning 
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algorithms learn the optimal strategy by sampling actions and then observing which one of the 

actions leads to the target output. Contrary to the supervised approach, learning the optimal action 

in RL approach is not conducted based on one label, rather based on some time-delayed labels 

called rewards, which then determine the performance of the action. Therefore, the goal of RL is to 

take actions in order to maximize reward. 

A RL problem is described as a Markov decision process which is memory less so that every 

parameter should be known from the current state. Supervised learning learns by examples of 

pairs of desired inputs and outputs, while RL learns by agents and guesses the correct output. RL 

receives some feedback from the quality of its guess, whereas it does not mention whether this 

output is the correct one and there is probably some delay in seeing the feedback. RL learns either 

by exploration or by trial and error. The three basic problems in the area of RL are the curse of 

dimensionality, learning from interaction, and learning with delayed-consequence. 

3.3.2  Reinforcement Learning versus Dynamic Programming 

Dynamic Programming (DP) is not the same as value or policy iteration conceptually. This is 

because the DP approaches are the planning methods, which means that they are able to calculate 

the value function and an optimal policy iteratively by the given transition and a reward function. 

Dynamic programming is a series of algorithms that can be utilized to calculate optimal policies 

if the whole model of environment is available as a Markov Decision Process (MDP).  

Although classical DP algorithms are less beneficial in RL due to assume a complete model and 

to be computationally expensive, they are still important from a theoretical standpoint. DP needs 

a full description of the MDP, with known transition probabilities and reward distributions that 

are used by a DP algorithm. This property makes it model-based. DP is one part of RL which is 

a value-based, model-based, bootstrapping and off-policy algorithm. In summary, DP is a 

planning method, which means that a value function and optimal policy is computed by giving a 

transition and calculating a reward. On the other hand, Q-learning, which is a special case of 

value iteration, belongs to a model-free class of RL methods due to not utilizing any 

environmental model. However, model-based methods work based on learning a model, while 

contrary to the model-free approaches, the samples are kept even after value estimation. The RL 

methods try to reconstruct the transition and reward in order to have better efficiency. A 
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combination of model-free and planning algorithms is presented in model-based algorithms in 

which fewer sampling is required in comparison with model-free algorithms such as Q-learning. 

Also, the model-based RL algorithms do not need a model similar to DP approaches such as 

value or policy iteration. Therefore, fewer sampling and independence from DP modeling are 

advantages of model-based RL algorithms in comparison with model-free and classical dynamic 

programming approach, respectively.   

3.3.3  Q-learning versus DQN 

Q-Learning is one of the pioneer RL approaches presented by Watkins (Watkins and Dayan 

1992) and is applied as a baseline of RL results. Although the Q-Learning approach is a powerful 

algorithm, it is not applicable in all cases. This is because it requires to know all pairs of states 

and actions while is generally impossible. Therefore, to tackle this problem, an approximation of 

Q-function can be found by a NN and if NN is replaced by DNN as an action approximator, the 

algorithm is DQN. This algorithm was introduced by the DeepMind company in 2013 and states 

and Q-value of the actions were its inputs and outputs, respectively. 

The general formula for a Q-function is given as: 

Q(s, a) = r + γ maxa′(Q(s′, a′)) (3-2) 

and the general formula for DQN is  

Q(s, a; ϴ) = r + γ maxa′(Q(s′, a′; ϴ̅)) (3-3) 

In the above formulae, 𝑟 and γ are reward and discount factor, 𝑠, 𝑠′, 𝑎, 𝛳 and �̅� are state, next 

state, action, parameters of NN, and parameters to compute the target of NN, respectively. 

On the other hand, in DQN, a neural network is added to a very large Q-table in which there is a 

large number of states and actions. The neural network is applied in order to compress the Q-

table by setting the parameters of neural networks. Also, since the number of NN nodes is 

supposed to be constant, these parameters are restricted to coefficient weights of neural network. 

By smart tuning the configuration parameters of the structure explained, an optimal Q-function 

can be found by various neural network training algorithms. If 𝑓𝛳 is a neural network with weight 

parameters 𝛳 and input 𝑠, the Q-function can be written as 𝑄(𝑠, 𝑎) = 𝑓𝛳(𝑠).  
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A Q-learning environment contains reward and observation and gives them to an agent in order to 

decide an action. In DQN, the agent is replaced with a function showing the weights of a DNN. A 

DRL approach learns a parameterized function 𝑓𝛳; its loss function is differentiable with respect 

to 𝛳 and optimization is performed with gradient-based algorithms. Also, a difference between 

the Q-learning and DQN is presented in Figure 3.2. 𝛳  is a set of features of neural networks (if 

the number of nodes and layers in general structure of DNN are considered constant, 𝛳 is 

considered coefficient weights). Also, 𝑠 and 𝑎 show state and action, respectively.  

 

Figure 3.2  Q-learning (Left) versus DQN (Right) 

3.4  Different Types of Reinforcement Learning Algorithms  

Model-based and model-free are two different types of RL techniques. The model-based agent 

builds a transition model of the environment and plans (e.g. by lookahead) using the model. In 

the model-based algorithms, if there are sufficient samples of each state parameter, the 

estimations of reward and transition probability converge to the correct MDP, value function and 

policy. However, obtaining a sufficient number of samples is still a challenge to be solved. A 

drawback of the model-based method is that the actual MDP model should be made when the 

size of state is too large. In addition, a policy-based RL approach searches directly for the optimal 

policy 𝜋∗ which is the policy achieving maximum future reward. Also, value-based RL approach 

estimates the optimal value function 𝑄∗(𝑠, 𝑎), which is the maximum value achievable under any 

policy. 

The agents of the model-free algorithms such as Q-learning and policy gradient can learn action 

and policy directly. In addition, a policy-based reinforcement learning approach searches directly 

for the optimal policy 𝜋∗ which is the policy achieving maximum future reward. Also, value-
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based RL approach estimates the optimal value function 𝑄∗(s, a) which is the maximum value 

achievable under any policy. Temporal Difference (TD), State-Action-Reward-State-Action 

(SARSA), and Q-learning are some examples of model-free RL algorithms working based on 

temporal difference. The main benefit of model-free RL approaches is the application of function 

approximation in order to represent the value function without having to derive. If function 

approximation with parameters 𝜃 is expressed as 𝑓𝛳(𝑠), TD update is  𝜃 ←  𝜃 +  𝛼(𝑟 +

𝛾𝑓𝛳(𝑠′) − 𝑓𝛳(𝑠))𝛻𝛳𝑓𝛳(𝑠), where 𝑠′ is the next state, 𝛻𝛳𝑓𝛳(𝑠) is the gradient of 𝑓𝛳(𝑠), 𝛼 is 

learning rate and γ is discount factor. This process is similar in SARSA and Q-learning.  

3.4.1  Q-learning 

Q-learning is a model-free approach learning task that applies samples from the environment. It is 

also an off-policy algorithm due to learning with a greedy strategy 𝑎 = 𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎) and it 

guarantees sufficient exploration of states due to following a behaviour distribution. This 

behaviour distribution is chosen by using a ϵ- greedy algorithm, which will be explained in the 

subsequent sections. Q-function is the main part of Q-learning. 𝑄(𝑠, 𝑎) determines the maximum 

discounted future reward by performing action 𝑎 when the current state is s. It also estimates the 

selection of action 𝑎 in state 𝑠. However, “Why is Q-function useful?” and “How is Q-function 

obtained?” are two main questions worth answering. To achieve this, it is better to see the 

structure of Q-function. If a strategy to win a complex game is unknown, the players cannot play 

well. However, the situation is different when a guide book containing hints or solutions is 

available. The Q-function is similar to this guidebook. If a player is in state 𝑠 and there is a need 

for action selection, the player selects the action obtaining the highest Q-value. 𝜋(𝑠) is the action 

associated with state 𝑠 under policy 𝜋  given as: 

π(s) = argmaxa Q(s, a) (3-4) 

Total future reward is 𝑅𝑡 written as: 

Rt = ∑ ri

n

i=t

 (3-5) 

in which 𝑟𝑖 is the reward for each state. 
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Since the environment is stochastic, there is uncertainty about future increases during running 

time steps. As a result, calculation of 𝑅𝑡 is not possible, and consequently, discounted future 

reward is calculated instead of 𝑅𝑡 as follows: 

Rt = rt + γrt + ⋯ + γn−trn (3-6) 

As mentioned previously, the Q-function is the maximum discounted future reward in state 𝑠 and 

action 𝑎 expressed below: 

Q(st, at) = max Rt+1 (3-7) 

Therefore, the Q-function can be expressed as the summation of reward 𝑟 and maximum future 

reward for next state 𝑠′ and action 𝑎′ as follows: 

Q(s, a) = r +  γ ∗  maxa′Q(s′, a′) (3-8) 

This equation is known as Bellman equation. Q-function is solved with an iterative method using 

an experience (𝑠, 𝑎, 𝑟, 𝑠′). Considering 𝑟 +  𝛾 ∗  𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) as an estimator and 𝑟 +  𝛾 ∗

𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) as a predictor, making a Q-table similar to performing a regression. The loss 

function of Q-learning is a Mean Squared Error (MSE) given by: 

ℒ = [r +  γ ∗  maxa′Q(s′, a′) − Q(s, a)]2 

                                          ← − −  target − −→ 

                                          ← − − −  − −TD error − − − −→                                                          

(3-9) 

Optimization of Q-function with an experience (𝑠, 𝑎, 𝑟, 𝑠′) is performed by considering the 

smallest MSE as loss function. If ℒ tends to decrease, the convergence of Q-function to optimal 

value occurs. 

3.4.2  From RL to DQN  

The RL techniques are divided into two categories: Tabular Solution Methods and Approximate 

Solution Methods (Sutton and Barto 1998; Sutton and Barto 2018). If the probability and the 

reward of transition from state 𝑠 to state 𝑠’ by taking action 𝑎 are given, optimal policy could be 

found by linear programming or by a type of dynamic programming method such as value 
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iteration or policy iteration. In most cases, the process is not completely Markov Decision Process 

(MDP), meaning that the history is somehow important, and as a result, a Semi Markov Decision 

Process (SMDP) exists. This means that in a system with reasonable running time, in the cases of 

large state-space and large action-space, finding the optimal policy to solve the MDPs is not 

possible due to curse of dimensionality. In contrast, in the cases with a large number of states or 

action spaces, observing full state spaces is not possible for decision makers (agents). This leads 

to partial observability of state variables called Partial Observable MDP (POMDP). Since it is 

hard to determine the appropriate Q-values in a POMDP, the approximation of Q-values is made 

in the Q-learning algorithm (Sutton and Barto 2018). To end this, first, linear regression was used 

as a function approximator (Melo and Ribeiro 2007), which was replaced by a non-linear 

function approximator such as neural network due to its ability to find more reliable accuracy.  

To utilize function approximation, it was necessary to extract a number of features until the early 

2010’s. For instance, object recognition methods employed hand-made features and linear 

classifier learners (Patel and Tandel 2016). However, from 2012, most of vision techniques 

started utilizing DNN for feature extraction and going towards end-to-end whole pipeline 

optimization (Szegedy et al. 2013). DL is very successful in learning when the features are 

unknown. As a result, a combination of RL and DL called DRL has received much attention 

recently (Li 2017). Mnih et al. (2013) proposed an algorithm for DRL called DQN in 2013. Since 

2013, many researchers have worked on this issue and the algorithm is ameliorated and 

completed significantly (Li 2017). However, the algorithm was not widely used by researchers 

until the DeepMind group released more details of their approach in 2015 (Mnih et al. 2015). 

This is because they encountered some difficulties such as observing unstable or even divergent 

Q-value as Q-function approximator resulting from non-stationary and correlations in the 

sequence of the observations so as to implement neural network (Mnih et al. 2013). To overcome 

the challenge, they used the Experience Replay (ER) first introduced by Watkin and Dayan 

(1992). Schaul et al. (2015) ameliorated their previous research work (Mnih et al. 2015) using the 

prioritized ER technique. Traffic light control in vehicular networks is its application in 

transportation (Liang et al. 2018).  
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3.4.3  DQN 

DQN is a combination of Q-learning and Neural Network (NN), in which the function 

approximation of Q-learning is a DNN. DQN is a Q-learning approach whose action is chosen 

based on a DNN. Actions are related to the outputs of NN, whereas states of the RL are the inputs 

of NN. Also, DQN learns a Q-function by minimizing Temporal Difference (TD) errors. A 

transition (𝑠, 𝑎, 𝑟, 𝑠′) is observed and TD error tends to make 𝑄(𝑠, 𝑎) as close as possible to 𝑟 +

𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′). Action can be selected arbitrarily in off-policy algorithms with a ϵ-greedy 

policy based on the current Q-value. To be more precise, value function 𝑄𝜋(𝑠, 𝑎) is the expected 

total reward from state 𝑠 and action 𝑎 under policy 𝜋 which can be unrolled recursively as 

follows: 

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑟𝑡+1 + γ𝑟𝑡+2 + γ2𝑟𝑡+3 + ⋯ |𝑠, 𝑎] = 𝔼𝑠′[ r + γ 𝑄𝜋(s′, a′)|𝑠, 𝑎] (3-10) 

Also, optimal value function 𝑄∗(𝑠, 𝑎) can be unrolled recursively as: 

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′[ r + γ 𝑚𝑎𝑥𝑎′ 𝑄
∗(s′, a′)|𝑠, 𝑎] (3-11) 

where value iteration algorithms solve the Bellman equation as follows: 

𝑄𝑖+1(𝑠, 𝑎) = 𝔼𝑠′[ r + γ 𝑚𝑎𝑥𝑎′ 𝑄𝑖(s′, a′)|𝑠, 𝑎] (3-12) 

The value function represented by deep Q-network whose parameters are 𝜃 is given by: 

𝑄(𝑠, 𝑎, 𝜃) ≈  𝑄𝜋(𝑠, 𝑎) (3-13) 

The objective function defined by mean-squared error in Q-values is expressed as: 

ℒ = 𝔼[(r +  γ ∗  maxa′Q(s′, a′, �̅�) − Q(s, a, θ))2] 
                                    ← − − target − −→ 

                                    ← − − −  − − − TD error − − − −−→ 

(3-14) 

which leads to the following gradient function: 

∂ℒ(θ)

∂θ
= 𝔼[(r +  γ ∗  maxa′Q(s′, a′, �̅�) − Q(s, a, θ)]

∂Q(s, a, θ)

∂θ
 

(3-15) 
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As a result, the end-to-end RL is optimized by an optimizer using 
∂ℒ(θ)

∂θ
. 

3.4.4. Optimizers  

There are many optimizer techniques among which Stochastic Gradient Gdescent (SGD) and 

ADAptive Moment estimator (ADAM) are more favorite. The batch methods utilize the entire 

training sets in order to update the parameters in any iteration with a tendency to converge to 

local optimal. For a large dataset, the speed of finding the cost and gradient of the full training 

data set is very low. Also, a batch optimization approach is not a suitable method to merge new 

data in the online settings. In order to resolve these problems, SGD approaches follow the 

negative gradient of objective after a few training samples. Since the cost of the running 

backpropagation over the entire training set is high, it is helpful to use SGD in neural network 

setting. In SGD, the parameters 𝛳 of objective 𝐽(𝛳) are updated with 𝛳=𝛳− 𝛼𝛻𝛳𝐸[𝐽(𝛳)], where 

𝛻𝛳 is the gradient of 𝛳 and 𝛼 is the learning rate. If SGD uses a few training samples, it easily 

disappears with the update expectation and gradient computation. As a result, the update is given 

by a new formula extracting (𝑥(𝑖), 𝑦(𝑖)), where 𝑥(𝑖) and 𝑦(𝑖) are the 𝑖𝑡ℎ pair of training set, 

from the training data as follows: 

ϴ=ϴ− α∇ϴJ(ϴ; x(i), y(i)) (3-16) 

Updating the parameters in SGD is based on a few trainings or mini-batch samples. This is due to 

variance reduction in the updated parameters, leading to a more stable convergence. Also, it can 

benefit from the optimized matrix operations used in computation of cost and gradient. The 

learning rate of stochastic gradient descent, 𝛼, is lower than that of batch gradient descent due to 

the existence of more updating variance. The decisions are made to find the correct learning rate 

and time of updating the learning value.  

Also, Adaptive Moment Estimation (Adam) computes the adaptive learning rates of each 

parameter which not only stores an exponentially decaying average of past squared gradient 𝑣𝑡, 

but also keeps an exponentially decaying average of past gradients 𝑚𝑡 which is similar to 

momentum. Adam behaviour is similar to heavy ball with friction which prefers to flat minima in 

the error surface, whereas momentum pushes a ball running down a slope. 𝑚𝑡 and 𝑣𝑡 estimate the 
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first (mean) and the second (the uncentered variance) momentum of the gradients, respectively. 

They are expressed by:  

𝑚𝑡= 𝛽1𝑚𝑡−1+ (1 − 𝛽1)𝑔𝑡 (3-17) 

𝑣𝑡= 𝛽2𝑣𝑡+ (1 − 𝛽2)𝑔𝑡
2 (3-18) 

The initialization of 𝑚𝑡 and 𝑣𝑡 are zero vectors, while during the initial time steps and especially 

with a small decay rates (𝛽1 and 𝛽2 are close to 1), there are biases towards zero. To counteract 

this problem, corrections for the first and the second moments of bias are written as follows: 

𝑚�̂�=
𝑚𝑡

1 − 𝛽𝑡
1 

 

(3-19) 

𝑣�̂�=
𝑣𝑡

1 − 𝛽𝑡
2 

(3-20) 

Using the above equations for updating parameters (𝜃𝑡+1), the Adam update rule is given as: 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝜖 + √𝑣�̂�

𝑚�̂� (3-21) 

Also, SGD examines the error calculation and updates the reward. The general formula for the Q-

function is expressed as follows: 

Q(s, a) = r + γ maxa′(Q(s′, a′)) (3-22) 

In Mean Square Error (MSE), Temporal Difference error (TD-error) and target are calculated as 

follows:  

Qπ(s, a) ←  Qπ(s, a)  + γ [(r + maxa′Qπ(s′, a′) − Qπ(s, a)] 
                                                               ← − − target − −→ 

                                                               ← − −  − − TD error − − − −→ 

(3-23) 

in which s′ is 𝑠𝑡+1  and 𝑎′ is 𝑎𝑡+1. 

It should be mentioned that in the aforementioned general formulae, maximization of the reward 

is the goal of the algorithm. However, in this research, the objective is to minimize the average 

reward cost. TD error calculates the difference between expectation of Q-approximation in the 
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future plus the reward and its present value as evaluated by the neural network. If the state is the 

terminal one, then reward at step j, 𝑦𝑗 , is given as: 

yj ← rj (3-24) 

Otherwise, 

yj ← rj + γ. minaQ(sj, aj, ϴ) (3-25) 

Since there is no definite terminal state in this problem, running for a definite number of time 

steps is considered as the terminal state. Although a linear function approximation is mostly 

utilized in RL approaches, a nonlinear function approximation is sometimes used. This nonlinear 

function can be found by a Neural Network (NN). Mnih et al. (2013) employed a neural network 

function approximator with parameters 𝛳 as a Q-network. Training the Q-network can be carried 

out by minimizing a sequence of loss functions ℒ𝑖(𝛳𝑖) which change in each iteration. Also, 𝑦𝑖 is 

the goal of iteration 𝑖 and 𝜌(𝑠, 𝑎) is defined as a probability distribution over sequences 𝑠 and 

action 𝑎. The parameters of the previous iteration 𝛳𝑖−1 are constants during the optimization of 

the loss function ℒ𝑖(𝛳𝑖) expressed as: 

ℒi(ϴi) =  𝔼s,a~ρ(.)[(yj − Q(sj, aj, ϴ))2] (3-26) 

where 𝑦𝑗 is the target of iteration i, which is written as: 

yi =  𝔼s′~ϵ[r + γmaxa′Q(s′, a′; ϴi−1)|s, a] (3-27) 

Another important point is that the targets are dependent on the network weights. In contrast, in 

supervised learning approaches, the weights are considered as constants before starting to 

perform learning. To find Mean Square Error (MSE), a gradient descent is conducted on (yj −

Q(sj, aj, ϴ))2 and since MSE is differentiable, the derivative of the loss function with respect to 

the weights is calculated as follows: 

∇ϴi
ℒi(ϴi) = 𝔼s,a~ρ(.);s′~ϵ[(r + γmina′Q(s′, a′; ϴi−1) − Q(s, a; ϴi)) ∇ϴi

Q(s, a, ϴi)] (3-28) 
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It is suitable to optimize the loss function by stochastic gradient descent, instead of calculating 

the expectation in the above formula. However, if weight updating is conducted in each time step 

and the expectations are replaced by a single sample from the behaviour distribution ρ and the 

environment 𝜖, then a familiar Q-learning algorithm is reached (Mnih et al. 2015). 

3.5  Exploration versus Exploitation (ϵ-greedy algorithms) 

One of main challenges in machine learning algorithms is “exploration versus exploitation”. It is 

similar to real life when a person decides to follow an existing policy or to check out a new 

policy. To obtain the maximum future reward, agents need to find a balance between exploitation 

(greedy) and exploration (ϵ-greedy algorithms). If the dynamic of a system is unknown, exploring 

actions or exploiting the current knowledge gives the best answer. When a bad initial state-action 

is chosen, the algorithm gets stuck in local minimum and can never explore further. To resolve 

this problem, instead of selecting the action based on greedy algorithm, a policy is explored until 

a good estimation of value function is found.  

3.6  Improvement of DQN 

The RL approaches suffer from instability or even divergence when active-values (Q-function) is 

represented by a nonlinear function approximator such as a neural network (Tsitsiklis and Van 

Roy 1997). To reach a more stable learning algorithm, DQN can be improved by different 

techniques including experience replay, target network and skipping frames, leading to more 

stable results. 

3.6.1  Experience Replay  

Lin (1993) applied a mixture of RL and neural network for robots. He integrated back 

propagation and temporal difference. Over-fitting in DNN happens occasionally and easily. As a 

result, it is hard to produce various experiences. In order to tackle this problem, Experience 

Replay (ER) memory stores all important data parameters including reward, action, state, and 

next state. Updating the neural network is carried out by making mini-batches. However, the ER 

technique is a simple, effective technique that resolves the temporal credit assignment problem. 

This technique reduces the correlations among the training data of updating DNN and decreases 
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the variance of the output. Another benefit is that mini-batches increase the learning speed that is 

effective in decreasing time, which is essential to learn huge data. Also, ER reuses transitions 

from historical data which avoids catastrophic forgetting. A general structure of ER is displayed 

in Figure 3.3. In order to provide data-set from the experience of the agent, in each time step 𝑡, 

action 𝑎𝑡 is taken according to ϵ-greedy and then, transition, (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1) = (𝑠, 𝑎, 𝑟, 𝑠′), is 

stored in replay memory 𝐷. Finally, Mean Square Error (MSE) between Q-network and Q-

learning targets is optimized, e.g, ℒ(ϴ) = 𝔼s,a,s′,a′~𝐷[(r + γmina′Q(s′, a′; ϴ) − Q(s, a; ϴ))2] 

 

Figure 3.3 Experience Replay (ER) in DQN 

3.6.2  Target Network 

Target function changes frequently with DNN during the calculation of Temporal Difference 

(TD) error leads to instability and oscillation. This instability makes the training of DNN more 

complicated. It is interesting that targets is related to the network weights which is in contrast 

with the targets used for supervised learning, which are constant before learning starts. To get rid 

of this complexity, parameters of target function are considered constant in most steps. Target Q-

function, Q(s′, a′) is computed w.r.t fixed parameters �̅� as: 

r + γ maxa′Q(𝑠′, a′, �̅�) (3-29) 

where 𝛼 and  𝛾 are learning and discount rate, respectively. Also, 𝑄(𝑠′, 𝑎′) shows the Q-function 

of next state and action. Also, MSE optimizes between Q-network and Q-learning targets as 

follows: 
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ℒ(𝜃) = 𝔼s,a,𝑠′,a′~𝐷 [(r + γmina′Q(s′, a′; �̅�) − Q(s, a; 𝜃))
2

] 
(3-30) 

while the parameters of target function are replaced with those of the last neural network every 

several hundreds or even thousands steps in target network techniques, i.e. �̅�  ←  𝜃. 

3.6.3  Skipping Frames 

Lead-time in a serial network causes delays in observing the influence of action selection on 

reward function. Also, the amount of reward function may be related to the previous multiple 

periods. Therefore, skipping frames is a technique which calculates Q-value every 𝑘 frames and 

Q-value considers the last 𝑘 frames as inputs. This technique reduces the computational cost and 

gathers more experiences. 𝑘 should be a reasonable number showing the minimum time required 

for making a demand to be met. 

3.6.4  Different Loss Function 

Mean Square Error (MSE) of Q-function pays more attention to large errors in comparison with 

Mean Absolute Error (MAE). In contrast, MAE treats large and low errors similarly. The intuition 

behind MSE is that it is better to have a larger priority in order to minimize large errors rather than 

small ones.  



28 

CHAPTER 4 INVENTORY CONTROL SOLUTION 

In order to solve the inventory control problem, an approach based on a combination of DL and 

RL is presented in this chapter. It should be mentioned that since all the formulation in this 

research is planned for multi-agent (multi-stage) problems, all the experiments are carried out for 

only single stage (one agent) whose real input and output are demand and ordering value, 

respectively. The minimization of cumulative long-run system cost whose components are 

holding, backorder, and ordering costs is desired. This selection is made because holding the 

products as well as making an order impose cost for the inventory manager. Also, backorder 

determines the inventory shortfall which represents the number of unmet demands waiting to 

receive inventory. In addition to holding and fixed ordering costs, it is important to track 

backorder value so as to minimize the total cost. To achieve this, some main features of inventory 

such as the inventory position, which is the summation of inventory level and inventory 

transition, should be computed. Accordingly, it is important to find the main features of the agent 

affecting the inventory level and inventory transition values.  

4.1  Main Features of Inventory Control 

There is a number of features which are critical in the field of inventory control. Some are related 

to their past amounts or are interrelated to each other, whereas the others are independent random 

or deterministic variables. These parameters are listed in Tables 4.1 and 4.2. 

4.1.1  Random Features 

Demand and lead-time are random features of inventory control as shown in Table 4.1, in which 

superscript 𝑖 of 𝐷𝑡
𝑖 and 𝐿𝑇𝑡

𝑖 is the agent’s (stage’s) index number. This is done in order to 

generalize the current single-agent model to multi-agent model. As a result, the agent 𝑖 − 1 and 

𝑖 + 1 are seen in Tables 4.1 and 4.2, showing the interaction of one agent with its superior/prior 

agent in general. However, the problem is solved for one agent in this research (i=1).  

4.1.2  Interrelated Features 

Some of the features in inventory control are related to each other. The relations of these 

parameters given in Table 4.2, will be presented in the next sections. It should be noted that 𝐷𝑡
𝑖 is 
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Table 4.1  Random features 

Feature Description 

𝐷𝑡
𝑖 demand received from agent 𝑖 − 1 at time 𝑡 

𝐿𝑇𝑡
𝑖 lead-time for agent 𝑖 at time 𝑡 

 

Table 4.2  Interrelated features  

Feature Description 

𝐼𝐿𝑡
𝑖  inventory level at time 𝑡 for agent 𝑖 

𝐼𝑇𝑡
𝑖 inventory transition at time 𝑡 for agent 𝑖  

𝐷𝑡
𝑖 demand received at time t from agent 𝑖 − 1 

𝑂𝑡
𝑖 order sent to agent 𝑖 + 1 at time t 

𝑂𝑂𝑡
𝑖 on-order item (ordered item from agent 𝑖 + 1 but not received yet) at time t 

 

displayed in both Tables 4-1 and 4-2 because although it is independent of the other features, it 

changes stochastically and randomly each time, and as a result, its effect on the other features 

changes over time. In contrast, 𝐿𝑇𝑡
𝑖 is considered constant at all times (𝐿𝑇𝑡

𝑖 = 2), and therefore, 

its effect on the other features does not change over time. Thus, it is not seen in the interrelated 

features. Also, a general list of the different parameters of single-echelon inventory agent for a 

time step is illustrated in Figure 4.1. If lead-time equals two, on-order consists of part 1 and part 

2 displaying the orders sent in the previous time step and the current time step, respectively. All 

of the other parameters are defined in Table 4.1. 

 

Figure 4.1  A general list of the different parameters of an inventory agent 
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4.2  Relations among Features 

4.2.1  Relations among On-Order, Inventory Transition, and Order 

In general, the 𝑂𝑂𝑡 is the number of on-order items at time 𝑡, which is calculated based on 

inventory transits as follows: 

OOt = ∑ ITt+v

LT

v=1

 (4-1) 

For instance, if lead-time is equal to two, then the on-order value at the current time is the 

summation of inventory transit at the next two times. This means that all inventories transited at 

the next 𝐿𝑇 time steps are added to obtain on-order at the current time while it is sufficient to find 

inventory transition in order to find on-order inventory. The inventory transition is the ordering 

value which arrives LT time steps after ordering, expressed in the following relation: 

ITt+LT = Ot (4-2) 

Therefore, it is important to find a relation between demand and order at each time. 

4.2.2  Relations between Demand and Order  

Kimbrough et al. (2002) presented a relation between demand and order mentioning that at each 

time t and in each agent i, order 𝑂𝑖
𝑡 is the summation of demand 𝐷𝑖

𝑡 and a value 𝑥𝑖
𝑡. Also, there is 

a number of time step delays in observating the rewards. As a result, a memory of states with size 

𝑘 is considered, where 𝑘 is the number of the recent observations of demands and orders.  

4.2.3  Relations among Different Features of DNN 

If lead-time (LT) is two for all interactions of an agent, the features are updated using Eqs. (4-3) 

to (4.10). Eq. (4-3) is based on Kimbrough rule. Eq. (4-4) mentions that on-order at each time is 

the summation of the current order and the previous order, which results from the value of lead-

time (𝐿𝑇 = 2). Also, since lead-time is two, the inventory transit at the next time is the ordering 

value at the previous time (Eq. (4-5)) and the change in the inventory level is the summation of 

inventory transit minus demand (Eq. (4-6)). Eq. (4-7) expresses the relation between order and 
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inventory transit, showing that the inventory transit after passing the lead-time is the current 

order. Consequently, Eqs. (4-8) to (4-10) indicate that the overall cost is the summation of linear 

holding cost, linear shortage cost, and fixed ordering cost, in which the linear holding cost is 

holding coefficient 𝐶ℎ times positive inventory level, the linear shortage cost is shortage 

coefficient 𝐶𝑝 times negative inventory level, and if there is an order, the ordering cost is 𝐶ℎ.  𝐷𝑡
𝑖 

represents the demand at time 𝑡 and 𝑥𝑡
𝑖 shows the difference between order and demand. Also, 𝐷𝑡

𝑖 

and 𝑥𝑡 
𝑖  are extracted from observation and learning with a DNN, respectively. Order is assumed 

to be non-negative. 

Ot+1
i  =  Dt

i +  xt
i , Ot+1

i ≥ 0 (4-3) 

OOt+1
i  =  Ot

i +  Ot+1
i  (4-4) 

ITt+1
i  =  Ot−1

i  (4-5) 

ILt+1
i =  ITt

i +  ILt 
i - Dt

i  (4-6) 

ITt+LT
i = Ot

i  (4-7) 

Costt+1
i = Ch.   ILt+1

i +
+ Cp.   ILt+1

i −
, Costt+1

i = Costt+1
i + Co     if   Ot+1

i > 0 (4-8) 

ILt+1
i +

= ILt+1
i         if     ILt+1

i > 0, ILt+1
i −

=  −ILt+1
i         if    ILt+1

i < 0 (4-9) 

Min ∑ CostT
i , 𝑖𝑓 Cost0

i = 0, 𝑇 = 500, 𝑖 = 1 
(4-10) 

4.3  State Variables  

The environment is non-stationary because data is unpredictable and cannot be forecasted. The 

total observations for agent 𝑖 over time 𝑡 are given as: 

OBt
i = [IL1

i , OO1
i , D1

i , IT1
i , a1

i , … , ILt
i , OOt

i , Dt
i , ITt

i, at
i ] (4-11) 

Since there is no sharing information except demand/order, the environment is Partial Observable 

(PO). Also, 𝑂𝐵𝑡
𝑖 determines states and since its size grows over time, it is difficult for DQN to 

find 𝑂𝐵𝑡
𝑖. Therefore, it is not logical to consider all of the observations from the starting point. In 

order to tackle this problem, skipping frames (the last 𝑘 periods of states) are considered as state 

variables and the size of input remains fixed (See Section 4.4.1). Also, there are limits in running 
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time, and as a result, the environment is restricted and it is not completely observable, leading the 

environment to become a Partial Observable Markov Decision Process (POMDP).  

4.4  Steps of Algorithm 

A general structure of DQN is displayed in Figure 4.2. A state is a number of features given as 

inputs of a DNN whose parameters are 𝛳. By choosing a policy 𝜋𝛳 based on state 𝑠, DNN 

parameters 𝛳 and action 𝑎, a new action is taken. As a result, the corresponding reward is found. 

The next state is found after observing the demand from input and updating the other parts of a 

state. The DNN parameters including weighting coefficients, numbers of nodes and layers show 

the structure of the DNN. Since a fixed number of layers and nodes are used after some training, 

the main parameters of DNN can be reduced to the weighting coefficients between the layers. The 

frequency of updating the weighting coefficients of a network is one of the hyperparameters of 

the problem. Figure 4.2. shows the general structure of DQN when the state is the input of  DNN, 

the parameter of  DNN is 𝛳, an action is taken by policy 𝜋𝛳(𝑠, 𝑎). After calculating reward and 

observing one parameter from input, the next state is found. 

 

Figure 4.2  A general structure of DQN 

4.4.1  Implementation of Frame Skipping and ϵ-greedy 

The 𝑘-frames technique is important to be utilized because in case of availability of lead-time, 

there is some latency in the environment even in sending or receiving. The size of the frame 
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should be greater than the summation of latency to send an order and receive it from the 

environment. Therefore, a frame memory whose size is greater than or equal to this summation 

should be defined as the input (Figure 4.4). In order to consider a memory of size 𝑘, small 

changes in the definition of the current and next states of one agent are applied as follows: 

St+1 = [ITtt+1, OOtt+1, ILtt+1, Ott+1, Dtt+1]tt=t−k+1
t  (4-12) 

Also, since the above equation considers only the last 𝑚 observed states, the considered 

environment is a partially observable Markov decision process. In addition, ϵ-greedy is 

implemented in order to trade-off between exploration and exploitation. ϵ is the percentage of 

time steps in which agent takes an action randomly rather than taking the action based on the 

minimum reward (Figure 4.5). Although each state is a frame of input parameters with size 𝑘 

(Eq. (4-12)), to make Figure 4.5 simpler and more understandable, a general form of the figure 

without framing is displayed instead of showing a frame of inputs. 

4.4.2  DNN Section of Algorithm 

The DNN is applied so as to find a function approximation of RL. DNN can be utilized instead of 

linear, kernel methods, or general neural networks. Direct training based on complex inputs is 

feasible in DNN. Features are extracted from one state and a function approximator uses these 

features as well as certain parameters to extract the cost to go to next state (see Figure 4.3). An 

approximator is essential due to the huge size of states and this approximation is conducted with 

a DNN. The inputs and outputs of this DNN are states and Q-value of actions, respectively. As a 

result, the size of output is equal to the number of possible actions. This leads to some limitations 

in the cardinality of action space, though there is no limitation on action space in the theory. The 

general structure of DL section containing k frames of states is shown in Figure 4.4, in which a 

state is a set of interrelated features. The figure displays that the output of DNN is 𝑥, which is the 

difference between order and demand. One parameter is the next demand whose value is 

observable at the beginning of the next time. Then, the next ordering value is calculated. Also, IT, 

OO, and IL are updated based on the relations given in the previous sections (Eqs. (4-3) to (4-7)). 

These three parameters as well as their corresponding ordering value and demand are used as the 

inputs of the next state.  
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Figure 4.3  Function approximation based on feature extraction 

 

 
 

Figure 4.4  The general input/output of DL approach for one agent used to find estimation of 

difference between order and demand (𝑥 = 𝑂 − 𝐷) based on features of 𝑘 current states 

 

 

Figure 4.5  The general structure of ϵ-greedy with DNN to update the state of one agent  
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The parameters of the next state 𝑆𝑡+1 are 𝐼𝑇𝑡+1, 𝑂𝑂𝑡+1, 𝐼𝐿𝑡+1, 𝑂𝑡+1 and Dt+1. Finally, if the 

holding, shortage, and ordering coefficient costs are available, the cost of time step can be 

calculated by considering the inventory level and ordering  values (Eqs. (4-8) to (4-9)). 

4.4.3  Implementation of Experience Replay 

Experience Replay (ER) is an important method contributing to most of the latest advances in 

DRL. In RL method, the agent observes a series of experiences and then utilizes these experiences 

to update their internal beliefs. A tuple of action, reward, current state, and next state could be the 

current experience and the agent is able to use this experience in order to update the value-

function by utilizing TD-learning. After using the current experience for the updates, standard 

classical RL algorithms ignore the current experience, whereas the recent advanced algorithms 

take it into account. An experience in standard RL algorithms is thrown away after being utilized 

for an update. Recent advances in RL introduce ER, a method which stores experiences in a 

memory buffer with a constant size. Since the size of buffer is constant, when this buffer is full 

and new experiences are observed, the oldest experiences in memory buffer are discarded. In 

every time step, sampling of a random batch of experiences from buffer is made so as to update 

the parameters of the agent.  

In order to remove the correlation in sequence (transition between two states), reduce the overall 

variance of the transition, and make the variance smoother against a variation in data distribution, 

ER is applied as an improvement for the algorithm. Consequently, < 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1 > is 

considered as the current experience 𝑒𝑡 which is used for selecting the optimized behaviour. 

Instead of running the simulation based on state and action, the system saves a set of state, action, 

reward, and next state. To enjoy the benefits of batch normalization, a batch with size 𝑏 of ER is 

implemented. Also, learning section and gaining experience need to be combined so as to 

improve the policy. This policy causes another behaviour which should explore the near-optimal 

actions applied for learning. In addition, since the applied loss function is designed for DQN 

without ER, it should be revised by feeding < 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1 > into DQN.  
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Figure 4.6  The general implementation of ER with one agent in each time step 

Another point is to maintain two DNNs with parameters 𝜃 and �̅� and switch one of them with the 

other. This assists the stability of the algorithm when a non-linear approximate function is 

applied. �̅� defines the alternate frozen version of weighting coefficients. The parameters of target 

Q-Network are updated every n steps. Figure 4.6 illustrates the structure of DQN when ER is 

added to stabilize it. Figure 4.6 shows how to implement ER when the cost function is 

maximized. In this figure, 𝑠′ is the next state and 𝑎′ is the next action. 

4.4.4  Proposed DQN Algorithm 

Algorithm 1 is a DQN designed for the above-mentioned inventory control problem and can be 

utilized in order to find the orders which reduce the overall cost of one inventory agent. 

4.5  Hyperparameters Tuning 

The DQN approach is examined in order to reduce the cost of one-agent (one-stage) inventory 

control. A number of hyper parameters are checked so as to find the best solution. A list of 

settings for the main hyperparameters in deep Q-learning is presented in Table 4.3. 
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Algorithm 1: DQN Algorithm for Inventory Control 

Inputs:  

 replay memory size 𝐌,  

 mini-batch size 𝐁,  

 greedy parameter 𝛜,  

 pre-train time steps 𝐩𝐫,  

 target network update rate 
𝟏

𝐧
 (update one time of every n steps), 

            discount factor 𝛄. 

Parameters: 

 parameters of the primary/target neural network 𝛉/�̅�, 

 replay memory 𝐞, 

 step number 𝐭.        

     For episodes =  𝟏 ∶  𝐍  {/*N: max episodes*/  

 /*initialize*/ 

 Initialize Experience Replay Memory, 𝐞 = [ ] /*e is a memory with size 𝐌 of state*/ 

 [𝐈𝐋, 𝐎, 𝐎𝐎, d, IT]=[𝐈𝐋𝟎,0,0,𝐝𝟎,0] /*starting scenario of state*/  

 For t = 1 : T {/*T: max running time step*/  

                       Observe demand and current state 

   /* ϵ greedy algorithm: exploration vs exploitation */ 

   𝐚𝐭 = ϵ × random(𝐚𝐭)  + (1-ϵ) ×  𝐚𝐫𝐠𝐦𝐢𝐧𝐚𝐐(𝐬𝐭, 𝐚; 𝚹) 

   Execute action 𝐚𝐭, observe 𝐫𝐭, and 𝐬𝐭+𝟏 

                                  If memory size > M: 

                                   Remove oldest from memory 

    Add <𝐬𝐭,𝐚𝐭, 𝐫𝐭, 𝐬𝐭+𝟏> to 𝐞 

                                  If |e| > B and episodes > 𝐩𝐫:  

                                              Select a mini-batch(B) of experiences <𝐬𝐭,𝐚𝐭, 𝐫𝐭, 𝐬𝐭+𝟏 > from  𝐞 

                                 /*calculated the Q-function and updating the reward*/ 

            If episode=T: /*if the final state*/ 

                        Set 𝐲𝐣 ← 𝐫𝐣 

            Otherwise /*if it is not final state*/ 
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                                                     𝐲𝐣 ← 𝐫𝐣 + 𝛄. 𝐦𝐢𝐧𝐚𝐐(𝐬𝐣, 𝐚𝐣, 𝚹) 

    /*Gradient Descent: FF BP to optimize loss function*/  

    /*Run Feed Forward (F.F) and Backward Propagation (B.P)  

    Find Mean Square Error (MSE): 

                                                     Find Gradient Descent on (𝐲𝐣 − 𝐐(𝐬𝐣, 𝐚𝐣, 𝚹 ))𝟐 */ 

       /*updating the weight of NN*/  

    update one time of every n iterations 

                                              update ϵ 

   }/* for t  =  1 : T */ 

  } /* for episodes =  1 : N*/ 

______________________________________________________________________________ 

  

 

Table 4.3  Main hyperparameter values 

Hyperparameters Value 

Mini-batch size 32 

Replay-memory size 100000 

Agent history length (frame) 5 

Learning rate 0.001 

Discount factor 0.995 

Exploration decay 0.95 

Initial exploration 1 

Final exploration 0.01 

Loss Function MSE 

4.5.1  Reward, Inputs/Outputs and Hidden Layers of DQN  

Inventory level IL, inventory transit IT, ordering value O, on-ordering value OO, and demand D 

are five main parameters of inventory control constituting a state which is an input into DNN. In 

fact, a frame of these five main parameters of inventory control and the difference between 

ordering value and demand are the inputs and output of a DNN, respectively. In addition to the 

input and output layers, the DNN network consists of three hidden layers including 135, , 80, and 
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 50 nodes. The network is Fully Connected (FC) with an activation function except for the last 

layer which obtains a linear activation function. DNN is used as a function approximator whose 

output layer’s nodes are related to a possible action. As a result, the number of nodes in the 

output layer is selected by the action space which follows the Kimbrough's rule and the 

difference between ordering value and its corresponding demand is found. Also, reward (cost) of 

each time step is calculated based on inventory level, backorder, and a constant value if there is 

an order. The ordering value is the summation of the current observed demand and approximate 

action. This approximation of action is made with a DNN whose input is state. The related 

relations are presented in the primary sections of this chapter.   

4.5.2  Frame and Batch Size 

Since the results of consecutive steps are correlated, the size of frame is determined by 

considering the summation of lead-time of making an order and lead-time of receiving it. In both 

cases, the lead-time is considered to be equal to two. As a result, any frame size greater than four 

seems to be appropriate. Therefore, in this research project, the frame size is set to five (Table 

4.3). Nevertheless, sometimes the latency of observing the effect of one change in inventory level 

may be greater than the above-mentioned summation. This problem is resolved by ER, which was 

demonstrated in the previous sections. In order to eliminate the correlation between observation 

and reduction of the output variance, ER is applied and a mini-batch is chosen in each training 

step. The mini-batch selects a batch of actions from the starting point until now because the effect 

of selecting an action may be seen with a delay of several steps. On the other hand, it is also 

important that the batch size be large enough so as to eliminate the observation of noisy loss 

function. This is because small batch size makes the loss function noisier. However, it cannot be 

set to a very large number due to time complexity. The batch size selected in this research is 32. 

4.5.3  Activation Function and Type of Different Layers 

DNN is utilized to select action and the most common activation function for DNN is 

𝑅𝑒𝐿𝑈.  𝑅𝑒𝐿𝑈 is demonstrated by ℎ = 𝑚𝑎𝑥(0, 𝑎), where 𝑎 = 𝑊𝑥 + 𝑏. The major benefits of 

ReLU are training network fast, being sparse and reducing the likelihood of vanishing gradient. 

Since 𝑅𝑒𝐿𝑈 is mostly linear and zero for all positive and negative values, it does not have a 
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complex formula, and as a result, it does not take a long time to train or run in comparison with 

Sigmoid or Tanh. The 𝑅𝑒𝐿𝑈 speed of convergence is high and changes linearly mostly. Also, the 

likelihood reduction of the vanishing gradient arises when 𝑎 > 0 and the gradient is constant 

while the gradient of 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 goes down as the absolute value of 𝑥 goes up. The constant 

gradient of 𝑅𝑒𝐿𝑈 provides training fast. In addition, the 𝑅𝑒𝐿𝑈 is more sparse when 𝑎 ≤ 0. In 

contrast, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 is mostly a non-zero value, which results in dense representations. 

The DNN is a FC neural network and the activation function is chosen as given below. In order 

to solve the dying problem of 𝑅𝑒𝐿𝑈, 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 is preferred. For instance, a large gradient 

flowing through 𝑅𝑒𝐿𝑈 could make updating the weight difficult. 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈 tries to solve 

the dying problem of 𝑅𝑒𝐿𝑈. To achieve this, 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈  has a small negative slope 

(~0.1) instead of being zero for negative input. 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈 function is written as 𝑓(𝑥) =

1(𝑥 < 0)(𝛼𝑥) + 1(𝑥 >= 0), where 𝛼 is a small constant. Another benefit of 𝐿𝑒𝑎𝑟𝑘𝑦 − 𝑅𝑒𝐿𝑈 is 

to be more balanced by keeping the mean activation close to zero and probably the speed of 

learning is greater than 𝑅𝑒𝐿𝑈. The activation function suffers from inconsistency. This problem 

is somehow solved with parametric 𝑅𝑒𝐿𝑈, which is 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈, whose 𝛼 is variable. 

Therefore, this activation function is utilized for all of the layers except for the last layer whose 

activation function is linear.  

4.5.4  Loss Function and Optimizer 

Mean Absolute Error (MAE), Mean Square Error (MSE), Huber and Log-Cosh are different 

regression loss functions verified in order to select the best loss function. Since MSE pays more 

attention to large errors in comparison with MAE, it is chosen as the loss function. In addition, 

similar to DeepMind's paper, the linear approximation is applied to observe the effect of using 

DQN. For comparison, the DNN is replaced by a linear approximation of input layer into output 

layer without considering any hidden layer. Adam optimizer adaptively updates the learning rate 

and also considers both first-order and second-order moments by using the SGD procedure. 

Recently, it is claimed that the proper tuned SGD surpasses the adaptive method similar to Adam 

(Keskar and Socher 2017). However, Adam is still selected because it is practically popular in Q-

learning with a function approximation (Lillicrap et al. 2016; Mnih et al. 2016). A larger number 

of hyperparameters for SGD makes its proper tuning harder, and therefore, SGD need more 
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training due to a lower speed. Also, since the speed of convergence of Adam optimizer is fast and 

it is an adaptive approach attaining acceptable overall performance in comparison with other back 

propagation optimization approaches (Kingma and Ba 2015), Adam optimizer is selected.  

4.5.5  Size of ER Memory, Updating Frequency, Learning Rate and ϵ 

The size of memory of ER is 100,000 and the system is running over 100,000 episodes. The 

parameters of the DNN are updated and saved every 𝑛 iteration. Different amounts including 500, 

5000, and 10000 for updating the parameters of DNN are evaluated and finally 𝑛 is chosen as 

5000. Training starts at step 300 to observe the behaviour of system before training. The learning 

rate is low due to getting rid of dying 𝑅𝑒𝐿𝑈. For instance, if the learning rate is too high, it can be 

seen that a large percentage of neurons never be activated during the whole training dataset. 

When the learning rate is set properly, the problem of dying 𝑅𝑒𝐿𝑈 is less frequently observed. 

The learning rate is set to 0.001 and ϵ decreases from 1 to 0.01 with a decay rate of 0.995. 

4.5.6  Running Environment and Setting Parameters 

The program is coded in Python 3.6 with Tensorflow 1.10.0 and Keras 2.1.6. The code is 

executed on Compute Canada allocated one GPU and 64 GB memory. The running times are 

different based on the computations needed by different algorithms and their settings. The lead-

time is set to a constant value equal to two and demand is considered to be randomly selected 

among [1,2,3].  

4.6  Experiments and Discussions 

The selection of the benchmark algorithm could be considered from two different points of view. 

On the one hand, most of the last works on inventory control optimization with RL were 

compared with a type of S policy (Van Roy et al. 1998, Giannoccaro et al. 2002). On the other 

hand, DQN approach presented by DeepMind (Mnih et al. 2015) was compared with a linear 

function approximator, a disable/enable experience replay or a target Q-network, and a 

professional human games player (Mnih et al. 2015). The stock-out rate is an essential parameter 

to calculate classic <s,S> and <R,Q> policy. It is not considered directly in the present cost 

function, whereas it affects indirectly the cost function based on the ratios of the different cost 
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coefficients. Since the demand is randomly selected among [1,2,3], it does not follow the 

distribution such as normal or is combined with some noise, whereas the classical <s,S> and 

<R,Q> policies are designed based on predefined demand distribution. Therefore, their classical 

versions are inappropriate to be a baseline. Van Roy et al. (1998) performed the exhaustive 

search to determine the best order-up to level. In order to make the <s,S> and <R,Q> policies 

more trustable baselines, the inputs data of DQN which are the demands are saved. Then, the 

optimal values of pairs of <s,S>  and <R,Q>  are extracted by a grid search on the input data. 

However, there is no pre-knowledge of the input data for DQN. In addition, since in most of 

selected case studies, the results of the <R,Q> policy are slightly better than those of the <s,S> 

policy,  the <R,Q> policy is used as a baseline to evaluate the performance of DQN. Since the 

ratio of the coefficient of backorder cost to that of the holding cost was considered to be two in 

several previous works following Sterman (1989), this ratio is utilized in case study 2. The results 

of the case study whose <𝐶ℎ, 𝐶𝑝, 𝐶0> coefficients are <1,100,20>, are illustrated in the 

following. 

To evaluate the performance of DQN, the average of long-run system cost for some algorithms 

and different settings of several case studies are compared. Also, the fluctuation of the different 

parameters is studied to observe the behaviour of each case study. The average reward of DQN 

reasonably decreases during training while suffering from the instability demonstrated by the 

fluctuations of average reward. This instability might be attributed to catastrophic forgotten 

(McCloskey and Cohen 1989) which happens by overwriting new training samples, which leads 

to losing the stored information. Several settings for the parameters of different algorithms were 

examined to address this problem. To alleviate this instability, experience replay is implemented, 

which somehow mitigates the stability issues.  

Also, the performance of two different regression metrics Mean Square Error (MSE) and Mean 

Absolute Error (MAE) are compared in Figure 4.7 (Left). The result of each point is produced by 

calculating the average of overall costs in every 1000 episodes. As displayed in this figure, both 

of them start with a large deviation and then gradually level off. However, MSE drops sooner 

than MAE and is smoother in the final steps. The cost becomes stable after about 65000 episodes. 

Since the large cost is undesirable, MSE is more useful. 



43 

 

  

Figure 4.7   Comparison of different regression metrics and different optimizers.  

The performance of two main optimizers ADAM and SGD are compared in Figure 4.7 (Right). 

The number of tuning parameters for ADAM is lower than that for SGD with Momentum, which 

leads to easier tuning the ADAM optimizer. It is demonstrated that the performance of SGD is 

worse than that of ADAM during the first episodes. However, after passing approximately 55000 

episodes, the differences between the results of SGD and ADAM gradually decrease. This trend 

continues until the results of SGD coincide with those of ADAM in the last 7000 episodes.  

  

Figure 4.8  Comparison of different values of learning rate (Left) and experience replay (Right) 

One of the major considerations during tuning is the learning rate. The effect of different ranges 

of learning rate are shown in Figure 4.8 (Left). A high learning rate leads to dying the activation 

function and fast decaying the cost. Consequently, it is unable to settle in an appropriate point. In 
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contrast, a low learning rate results in a small decay and needs much time to reduce cost 

sufficiently. However, a proper learning rate has a smaller chance of dying in comparison with 

the results of the low learning rate and has a greater chance to diminish the cost and obtain a 

near-optimal cost. Nevertheless, the cost is still a little noisy, which might be due to a small batch 

size. If the learning rate LR is too high (i.e. LR=0.1), the final cost is very large. The cost 

decreases with decreasing the learning rate until the rate reaches 0.001. Then, when the learning 

rate is too low (i.e. LR=0.0001), the final cost increases. Therefore, finding the fitted learning 

rate is an important factor in the performance of the algorithm.   

The influence of enabling and disabling ER is displayed in Figure 4.8 (Right). The results 

become smoother with increasing the number of episodes and the final value of cost is lower 

when the amount of memory of ER increases. If ER is disabled, the results are not as stable as the 

case where ER is enabled. Also, the effects of enabling/disabling ER and target Q-network on the 

results for different case studies are presented in Table 4.4. It is clearly demonstrated that 

disabling the target Q-network and specially the replay memory has detrimental impacts on the 

algorithm performance. This is because by random selection of the parameters, the correlations in 

the observation sequence vanish. ER benefits from the ability to improve the data efficiency and 

makes the training more stable. ER can find the experiences from the previous time, which can be 

effective when learning is carried out several times. The DQN with ER leads to a better 

convergence when the function approximation is trained. This is attributed to the fact that data is 

assumed to be independent and identically distributed (i.i.d.) in most of proofs for the 

convergence of supervised learning approaches. This ability makes the algorithm more efficient 

in comparison with the others.  

Table 4.4 The influence of replay and separation of the target Q-network 

Coefficient W* Replay, 

W** target Q 

W Replay, 

WO target Q 

WO Replay, 

W target Q 

WO Replay, 

WO target Q 

1-100-5 6.676 8.732 37.042 56.324  

1-10-16 9.948 21.942  65.572 67.57 

1-100-20 12.582 29.044 49.200 62.336 

*W: with, **WO: without 
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The impact of skipping frame is shown in Table 4.5. The results show the skipping frame is a 

very effective factor in performance. This is reasonable because there is a delay in observing the 

influence of an action on the cost function. This delay which is mainly due to availability of lead-

time, makes the parameters of consecutive steps dependent. Therefore, it is important to consider 

a frame of parameters instead of just considering parameters of the current time step.  

Table 4.5 Comparison between with/without of skipping frame 

Coefficient With skipping frame WithOut skipping frame 

1-100-5 6.676 66.784 

1-10-16 9.948 99.012 

1-100-20 12.582 69.662 

The overall cost and different parameters of inventory control for case study <1,100,20> are 

compared with other methods such as <R,Q>, <s,S> policies and linear regression Q-learning in 

Figures 4.9-11. As displayed in Figure 4.9 (right), the overall cost of DQN is appropriate even 

from the first steps. One interesting point is that the results for DQN are suitable, even though the 

values of different parameters of local information for DQN approach do not follow the behaviors 

of the other famous techniques. The results demonstrate that the range of step-cost and inventory 

level for DQN are proper compared to the other techniques (Figures 4.10 and 4.11).    

  

Figure 4.9  Overall cost of different methods (left: all time-steps, right: first 125 time-steps) 
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Figure 4.10  Step-cost, IL, and O of different methods 
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Figure 4.11  IT and OO of different methods 

The fluctuations of main parameters of these approaches are compared (Figures 4.10 and 4.11). 

The number of times of stock-out for DQN is equal to and less than those of <s,S> and <R,Q> 

policies, respectively (see the step-cost in Figure 4.10). Since the second coefficient is one 

hundred times greater than the first cost coefficient and five times higher than the third cost 

coefficients, the near-optimal solution is obtained with a few number of stock-out. The average 

cost of DQN are compared for some algorithms such as linear Regression Q-learning (RQL) 

which is an algorithm by DeepMind Company (Mnih et al. 2013) used for evaluating the 

performance of DQN in Atari games. Its structure is similar to DQN and the only difference is the 

omission of deep layers. The other comparisons are made with famous inventory management 

policies such as constant <R,Q> and <s,S> policies. The performance of the algorithm is 

acceptable compared with other approaches.  
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The DQN algorithm is evaluated for different cost coefficients in Table 4.6. The different cost 

ratios are chosen in terms of the real values as well as the values whose level of stock-out for 

their optimized solution are very low. Overall, the present DQN selects appropriate actions in 

comparison with the <s,S>, <R,Q> policies and regression RL. The number of times of stock-out 

for DQN for case studies 1 to 8 is 348, 199, 0, 35, 39, 1, 0, and 34, showing that there is a few 

number of times of stock-out when the second coefficient is higher than the others. As shown in 

Table 4.6, the performance of DQN is satisfactory, while Regression Q-learning is the worst case 

except for the coefficients of <1-50-2> whose result is in the second place. In addition, the gap 

between the DQN results and the best results of the other methods is calculated and given in 

Table 4.6. 

Table 4.6 Comparison of average cost for different coefficients and techniques 

No. Coefficient RQL* DQN <R,Q>  <s,S>  Gap 

1 1-1-1 17.148 2.034 2.382 3.836 -14.6% 

2 1-2-5 26.162 4.644 5.334 6.194 -12.9% 

3 1-100-5 48.696 6.676 8.328 8.248 -19.0% 

4 1-17-27 95.248 11.948 15.982 16.042 -25.2% 

5 1-10-16 113.204 9.47 11.736 12.07 -19.3% 

6 1-100-20 71.33 12.582 14.574 14.87 -13.6% 

7 1-50-2 4.886 3.96 6.234 6.898 -18.9% 

8 1-5-8 29.894 6.898 7.604 8.466 -9.2% 

*RQL: Regression Q-learning  
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CHAPTER 5 SUMMARY, CONCLUSION, FUTURE WORKS, AND 

RECOMMANDATIONS 

The recent technological advancements provides huge data generation. It is often challenging to 

deal with these large volumes of data. To handle huge data generation, some research areas such 

as speech recognition utilize ML algorithms and especially DL techniques. In contrast, most of 

product manufacturing problems such as inventory control are currently solved by imposing 

constraints to the datasets. In order to solve the inventory control problem handling enormous 

raw datasets, a data-driven ML technique is implemented in the present research.  

The present inventory control problem aims to reduce the long-run overall cost which is obtained 

by finding orders based on input demands. The overall cost is the summation of linear holding 

(inventory on-hand), linear shortage (unmet demand), and fixed ordering (each time of ordering) 

costs. The above-mentioned inventory control problem for single-agent is solved to provide an 

insight into sequential multi-agent inventory control problems, which are hard to be put into 

practice as most of their solutions highly need many details about local and communicated 

information while the data is not available. For instance, the inventory capacities should be pre-

known and limited or discretized if they are unrestricted, although even the best discretization 

may lead to losing the precision. Also, in reality, the agents do not share their individual 

information in POMDPs or even a single agent is a POMDP as it considers a part of observation 

of its local information due to some limitation when implemented. This property makes the past 

RL methods unusable. In contrast, the present algorithm not only does not need to know the 

constraints on the individual information such as inventory capacity, but it is also able to solve a 

POMDP environment which does not have access to the whole individual data. 

The proposed approach in the present research is a type of DRL called DQN which can solve the 

problem by employing both RL and DL even the environment is a Partial Observable (PO). Also, 

since there are some latencies, lead-time related parameters such as on-order inventory and 

inventory transit in addition to inventory level, demand, and orders are considered as the 

parameters of state, which is useful. MDP is able to model uncertain decision making problems, 

while the DL part of DRL brings an ability to MDPs so as to resolve problems of a larger size of 

states. RL is applied for reduction of the overall cost based on making decision about action, i.e. 
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order, while its state is individual information of an inventory. In addition, DL is used to learn 

ordering minus demand based on the state which is a combination of local information. DQN is 

an off-policy and on-line learning method, and as a result, it obtains not only to learn the 

environment with any type of input demand distribution, but also to learn the PO environment 

with an unlimited or unknown range of the individual information such as inventory level and 

vast state spaces (e.g. long-run environments  or unlimited capacity).  

To be more precise, since successful RL policies directly learn from inputs, DQN provides the 

ability of being independent of some details of local information such as inventory level. 

Therefore, there is no limitation on the state spaces, which is one of the shortcomings of the 

available RL. Also, DQN is efficient for the PO environment whose agents do not see some parts 

of their local information or that of the other agents, while this condition occurs in some cases 

such as in multi-agent environments. In addition, online learning capability of DQN makes it able 

to learn even the type of input demand distributions is unknown, whereas the well-known method 

such as normal <s,S> policy is only desired in the normal distribution demand. 

A frame of states is considered due to the probable effects of recent states on the current state. An 

amelioration is a batch of combination of action, two consecutive states, and reward, where the 

batch is made of a random selection of experiences from the starting point rather than the batch 

made of consecutive states. A memory buffer with a certain size containing two consecutive 

states and related action and reward is called experience replay, leading to a more stable 

algorithm. Also, different values of some hyperparameters or disabling/enabling these 

hyperparameters are studied to examine their impacts on the overall cost and stability for some 

case studies. Since the stability is very critical, DQN provides a stable solution to deep value-

based RL. The stability is investigated by ER to break the correlations in data, bring them back to 

i.i.d input data, and to learn from all past policies. In addition, freezing the target Q-network is 

applied in order to avoid oscillations and break correlations between Q-network and target. Based 

on the results obtained for several case studies, it is found that the present method outperforms 

the linear regression RL. Also, the performance of DQN is comparable with traditional techniques 

such as <s,S> and <R,Q> policies. The present approach can also be extended in future to solve 

serial sequential decision making (multi-agent) supply chain networks even though they are PO.  
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