

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

 Deep Learning and Reinforcement Learning for Inventory Control

 ZAHRA KHANIDAHAJ

Département de mathématiques et de génie industriel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

Génie industriel

Décembre 2018

© Zahra Khanidahaj, 2018.

POLYTECHNIQUE MONTRÉAL

affiliée à l’Université de Montréal

Ce mémoire intitulé :

Deep Learning and Reinforcement Learning for Inventory Control

présenté par Zahra KHANIDAHAJ

en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Michel GENDREAU, président

Louis-Martin ROUSSEAU, membre et directeur de recherche

Andrea LODI, membre

iii

DEDICATION

To my parents

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Professor Louis-Martin Rousseau, for his

valuable guidance and continuous technical and financial supports during my research. In

addition, I express my sincere gratitude to Dr. Yossiri Adulyasak, for his technical support during

my project.

Also, I would like to express my appreciation to my thesis committee members, Professor Michel

Gendreau and Professor Andrea Lodi for their time and constructive comments. In Addition, I

appreciate my intimate friends for their helps during this period.

Many thanks go to Dr. Joelle Pineau and Dr. Doina Precup at McGill University. I augmented my

knowledge about deep learning and reinforcement learning considerably by the valuable

comments and discussions during their courses.

And last but not least, special thanks to my beloved family. I cannot find any word expressing my

deepest thanks and appreciation. I am highly in my dear family’s debt for their endless support

and unconditional love and encouragement even I am thousands of kilometres far from home.

They have always been helping me to pursing my goals and been supporting me continuously,

throughout my life.

v

RÉSUMÉ

La gestion d’inventaire est l’un des problèmes les plus importants dans la fabrication de produits.

Les décisions de commande sont prises par des agents qui observent les demandes,

stochastiques, ainsi que les informations locales tels que le niveau d’inventaire afin de prendre

des décisions sur les prochaines valeurs de commande. Étant donné que l’inventaire sur place (la

quantité disponible de stock en inventaire), les demandes non satisfaites (commandes en attente),

et l’existence de commander sont coûteux, le problème d’optimisation est conçu afin de

minimiser les coûts. Par conséquent, la fonction objective est de réduire le coût à long terme)

dont les composantes sont des inventaires en stock, commandes en attente linéaires (pénalité), et

des coûts de commandes fixes.

Généralement, des algorithmes de processus de décision markovien, et de la programmation

dynamique, ont été utilisés afin de résoudre le problème de contrôle d’inventaire. Ces algorithmes

ont quelques désavantages. Ils sont conçus pour un environnement avec des informations

disponibles, telles que la capacité de stockage ou elles imposent des limitations sur le nombre

d’états. Résultat, les algorithmes du processus de décision markovien, et de la programmation

dynamique sont inadéquats pour les situations mentionnées ci hauts, à cause de de la croissance

exponentielle de l’espace d’état. En plus, les plus fameuses politique de getsion d’inventaire,

telles que politiques standards <s,S> et <R,Q> ne fonctionne que dans les systèmes où les

demandes d’entrées obtiennent une distribution statistique connues.

Afin de résoudre le problème, un apprentissage par renforcement approximée est développé dans

le but d’éviter les défaillances mentionnées ci hauts. Ce projet applique une technique

d’apprentissage de machine nommé ‘Deep Q-learning’, qui est capable d’apprendre des

politiques de contrôle en utilisant directement le ‘end-to-end RL’, malgré le nombre énorme

d’états. Aussi, le modèle est un ‘Deep Neural Network’ (DNN), formé avec une variante de ‘Q-

learning’, dont l’entrée et la sortie sont l’information locale d’inventaire et la fonction de valeur

utilisée pour estimer les récompenses futures, respectivement.

Le Deep Q-learning, qui s’appelle ‘Deep Q-Network’ (DQN), est l’une des techniques pionnières

‘DRL’ qui inclut une approche à base de simulation dans laquelle les approximations d’actions

sont menées en utilisant un réseau DNN. Le système prend des décisions sur les valeurs de

vi

commande. Étant donnée que la fonction de coût est calculée selon l’ordre ‘O’ et le niveau

d’inventaire ‘IL’, les valeurs desquelles sont affectées par la demande ‘D’, la demande d’entrée

ainsi que l’ordre et le niveau d’inventaire peuvent être considérés en tant qu’information

individuelle d’inventaire. De plus, il y a un délai de mise en œuvre exprimant la latence dans

l’envoi des informations et dans la réception des commandes. Le délai de mise en œuvre fournit

davantage d’information locale incluant ‘IT’ et ‘OO’. Le ‘IT’ et ‘OO’ sont calculés et suivis

durant les périodes de temps différents afin d’explorer plus d’informations sur l’environnement

de l’agent d’inventaire. Par ailleurs, la principale information individuelle et la demande

correspondante comprennent les états d’agents.

Les systèmes ‘PO’ sont davantage observés dans les modèles à étapes multiples dont les agents

peuvent ne pas être au courant de l’information individuelle des autres agents. Dans le but de

créer une approche basée sur le ‘ML’ et fournir quelques aperçus dans la manière de résoudre le

type d’agent multiple ‘PO’ du problème actuel de contrôle d’inventaire, un agent simple est

étudié. Cet un agent examine si on peut mettre sur pied une technique ‘ML’ basée sur le ‘DL’ afin

d’aider à trouver une décision de valeur de commande quasi optimale basée sur la demande et

information individuelle sur une période à long terme. Afin de le réaliser, dans un premier temps,

la différence entre la valeur de commande (action) et la demande comme résultat d’un ‘DNN’ est

estimée. Ensuite, la commande est mise à jour basée sur la commande à jour et la demande

suivante. Enfin, le coût total (récompense cumulative) dans chaque étape de temps est mis à jour.

En conséquence, résoudre le problème de valeur de commande d’agent simple suffit pour

diminuer le coût total sur le long terme. Le modèle développé est validé à l’aide de différents

ratios des coefficients de coût. Aussi, le rendement de la présente méthode est considéré

satisfaisant en comparaison avec le ‘RRL’ (RL de régression), la politique <R,Q> et le politique

<s,S>. Le RL de régression n’est pas capable d’apprendre aussi bien et avec autant de précision

que le ‘DQN’. En dernier lieu, des recherches supplémentaires peuvent être menées afin

d’observer les réseaux de chaînes d’approvisionnement multi-agents en série partiellement

observables.

vii

ABSTRACT

Inventory control is one of the most significant problems in product manufacturing. A decision

maker (agent) observes the random stochastic demands and local information of inventory such

as inventory levels as its inputs to make decisions about the next ordering values as its actions.

Since inventory on-hand (the available amount of stock in inventory), unmet demands

(backorders), and the existence of ordering are costly, the optimization problem is designed to

minimize the cost. As a result, the objective function is to reduce the long-run cost (cumulative

reward) whose components are linear holding, linear backorder (penalty), and fixed ordering

costs.

Generally, Markov Decision Process (MDP) and Dynamic Programming (DP) algorithms have

been utilized to solve the inventory control problem. These algorithms have some drawbacks.

They are designed for the environment with available local information such as holding capacity

or they impose limitations on the number of the states while these information and limitations are

not available in some cases such as Partially Observable (PO) environments. As a result, DP or

MDP algorithms are not suitable for the above-mentioned conditions due to the enormity of the

state spaces. In addition, the most famous inventory management policies such as normal <s,S>

and <R,Q> policies are desirable only for the systems whose input demands obtain normal

distribution.

To solve the problem, an approximate Reinforcement Learning (RL) is developed so as to avoid

having the afore-mentioned shortcomings. This project applies a Machine Leaning (ML)

technique termed Deep Q-learning, which is able to learn control policies directly using end-to-

end RL, even though the number of states is enormous. Also, the model is a Deep Neural

Network (DNN), trained with a variant of Q-learning, whose input and output are the local

information of inventory and the value function utilized to estimate future rewards, respectively.

Deep Q-learning, which is also called Deep Q-Network (DQN), is one of the types of the pioneer

Deep Reinforcement Learning (DRL) techniques that includes a simulation-based approach in

which the action approximations are carried out using a Deep Neural Network (DNN). To end

this, the agents observe the random stochastic demands and make decisions about the ordering

values. Since the cost function is calculated in terms of Order (O) and Inventory Level (IL) whose

values are affected by Demand (D), input demand as well as the order and inventory level can be

viii

considered as the individual information of the inventory. Also, there is a lead-time expressing

the latency on sending information or receiving orders. The lead-time provides more local

information including Inventory Transit (IT) and On-Order (OO). IT and OO are calculated and

tracked during different time periods so as to explore more information about the environment of

the inventory agent. Furthermore, the main individual information and the corresponding demand

comprise the states of the agent.

PO systems are observed more in multi-stage models whose agents can be unaware of the

individual information of the other agents. In order to create a ML-based approach and provide

some insight into how to resolve the PO multi-agent type of the present inventory control

problem, a single-agent is studied. This agent examines if one can implement a ML technique

based on Deep Learning (DL) to assist to learn near-optimal ordering value decision based on

demand and individual information over long-run time. To achieve this, first, the difference

between the ordering value (action) and demand as the output of a DNN is approximated. Then,

the order is updated after observing the next demand. Next, the main individual information of

the agent called input features of a DNN is updated based on the updated order and the following

demand. Lastly, the total cost (cumulative reward) in each time step is updated. Accordingly,

solving the ordering value problem of single-agent suffices to diminish the total cost over long-

run time. The developed model is validated using different ratios of the cost coefficients. Also,

the performance of the present method is found to be satisfactory in comparison with Regression

Reinforcement Learning (Regression RL), <R,Q> policy, and <s,S> policy. The regression RL is

not able to learn as well and accurately as DQN. Finally, further research can be directed to solve

the partial-observable multi-agent supply chain networks.

ix

TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS ... iv

RÉSUMÉ .. v

ABSTRACT ... vii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xii

LIST OF FIGURES .. xiii

LIST OF SYMBOLS AND ABBREVIATIONS .. xiv

CHAPTER 1 INTRODUCTION .. 1

 1.1 Motivation and Objective .. 1

 1.2 Problem Statement ... 3

 1.2.1 Type of Inventory Model ... 5

 1.2.2 DL and RL Components of DRL ... 6

 1.3 Contributions .. 8

 1.4 Thesis Structure ..
8

CHAPTER 2 A REVIEW OF INVENTORY CONTROL ...
9

CHAPTER 3 THEORY AND FORMULATION ... 13

 3.1 Reinforcement Learning ... 13

 3.2 Markov Decision Process ... 13

x

 3.3 Comparison of Different Techniques ...
14

 3.3.1 Reinforcement Learning versus Supervised Learning .. 14

3.3.2 Reinforcement Learning versus Dynamic Programming 15

3.3.3 Q learning versus DQN .. 16

3.4 Different Types of Reinforcement Learning Algorithms .. 17

 3.4.1 Q-learning ..
18

3.4.2 From RL to DQN ... 19

3.4.3 DQN ... 21

3.4.4 Optimizers .. 22

 3.5 Exploration versus Exploitation (ϵ-greedy algorithms) ..
25

 3.6 Improvement of DQN ...
25

CHAPTER 4 INVENTORY CONTROL SOLUTION ..
28

 4.1 Main Features of Inventory Control ..
28

 4.1.1 Random Features ..
28

 4.1.2 Interrelated Features ...
28

4.2 Relations among Features ... 30

4.2.1 Relations among On-Order, Inventory Transition, and Order 30

4.2.2 Relations between Demand and Order ... 30

4.2.3 Relations among Different Features of DNN ... 30

xi

4.3 State Variables ... 31

4.4 Steps of Algorithm .. 32

4.4.1 Implementation of Frame Skipping and ϵ-greedy ... 32

4.4.2 DNN Section of Algorithm ... 33

4.4.3 Implementation of Experience Replay ... 35

4.4.4 Proposed DQN Algorithm .. 36

4.5 Hyperparameters Tuning .. 36

4.5.1 Reward, Inputs/Outputs and Hidden Layers of DQN ... 38

4.5.2 Frame and Batch Size ... 39

4.5.3 Activation Function and Type of Different Layers .. 39

4.5.4 Loss Function and Optimizer ... 40

4.5.5 Size of ER Memory, Updating Frequency, Learning Rate and ϵ 41

 4.5.6 Running Environment and Setting Parameters ...
41

4.6 Experiments and Discussions ... 41

CHAPTER 5 SUMMARY, CONCLUSION, FUTURE WORKS, AND

RECOMMANDATIONS ...

49

BIBLIOGRAPHY ... 51

xii

LIST OF TABLES

Table 1.1 Types of inventory model .. 5

Table 1.2 Components of inventory optimization problem for agent i, time t 6

Table 1.3 Different sections of DRL and its RL and DL sections 7

Table 4.1 Random features ... 29

Table 4.2 Interrelated features .. 29

Table 4.3 Main hyperparameters values ... 38

Table 4.4 The influence of replay and separation of the target Q-network
44

Table 4.5 Comparison between with/without of skipping frame ...
45

Table 4.6 Comparison of average cost for different coefficients and policies
48

xiii

LIST OF FIGURES

Figure 1.1 Input and output on single-stage inventory problem ... 4

Figure 1.2 The general mechanism for the sequence of events .. 5

Figure 3.1 Interaction of agent with environment ... 13

Figure 3.2 Q-learning (Left) versus DQN (Right) .. 17

Figure 3.3 Experience Replay (ER) in DQN ... 26

Figure 4.1 A general list of different parameters of an inventory agent 29

Figure 4.2 A general structure of DQN ... 32

Figure 4.3 Function approximation based on feature extraction ...
 34

Figure 4.4 The general I/O of DL approach for one agent used to estimate of difference

between order and demand based on features of 𝑘 current states ...

34

Figure 4.5 The general structure of ϵ-greedy with DNN to update the state of one agent 34

Figure 4.6 The general implementation of ER with one agent in each time step 36

Figure 4.7 Comparison of different regression metrics and different optimizers 43

Figure 4.8 Comparison of different amount of learning rate and experience replay…........... 43

Figure 4.9 Overall cost of different methods ..
45

Figure 4.10 Step-cost, IL, and O of different methods ...
46

Figure 4.11 IT, and OO of different methods ...
47

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

ADAM ADAptive Moment estimation

AI Artificial Intelligence

BP Back Propagation

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-Network

DRL

ER

Deep Reinforcement Learning

Experience Replay

FC Fully Connected

IID Independent and Identically Distributed

MAE Mean Absolute Error

MDP Markov Decision Process

ML Machine Learning

MSE Mean Square Error

NN Neural Network

POMDP Partial Observable Markov Decision Process

PReLU Parametric Rectified Linear Unit

ReLU Rectified Linear Unit

RL Reinforcement Learning

SARSA State-Action-Reward-State-Action

SGD Stochastic Gradient Descent

TD Temporal Difference

1

CHAPTER 1 INTRODUCTION

1.1 Motivation and Objective

Inventory control is a well-known problem in the field of product manufacturing. Inventory

controller (agent) decides about the ordering value based on the input demand in order to reduce

the long-run total system cost consisting of linear holding, backorder, and fixed ordering costs.

The unpredictability nature of the demand, which is due to its dynamic and random property,

makes it reasonable to obtain a new approach to solve the inventory control problem even though

there is a number of inventory models. Therefore, information-based decision making (using

agents) is desirable. The current agent-based solutions induce some limitations on the values of

data, which is not favorable generally. Accordingly, in the present research, a type of Deep

Reinforcement Learning (DRL) method called Deep Q-Networks (DQN) is utilized to solve the

inventory control problem.

A question can be raised why DRL is preferred to the other methods such as Dynamic

Programming (DP), Reinforcement Learning (RL), and Deep Learning (DL). To answer this

question, a detailed discussion based on the previous research works by Lin (1993), Van Roy et

al. (1998), Mnih et al. (2013), Mnih et al. (2015), Van der Pol and Oliehoek (2017), and Sutton

and Barto (2018) is presented in this section. In addition, a number of RL approaches for

inventory control are described in Chapter 2. DP is inapplicable in most real problems because it

is computationally very expensive. Also, most of the RL methods impose some limitations or

require some pre-knowledge, which are not generally applicable. As a result, one of the long-term

challenges of RL is to be able to learn how to control the agents directly from enormous inputs,

similar to speech recognition. Most of the prosperous RL applications utilize hand-made features

together with linear value functions or policy representation. Therefore, their performance is

highly dependent on how good the features are. The advancement in DL makes the extraction of

high-level features from raw datasets possible in some fields such as speech recognition. These

approaches employed a type of DNN and both Supervised Learning (SL) and unsupervised

learning. A comparative study of capabilities and incapabilities of RL, DL, and SL is presented

herein. A RL method faces some challenges from a DL approach standpoint. For instance, DL

techniques are applicable if a large value of labelled training data are available. However, RL

2

approaches should be able to learn from a frequently sparse, noisy, and delayed scalar reward. A

large delay in observing the effect of an action on the reward is a negative point especially in

comparison with the direct input-output relation in SL. Another challenge is that most DL

approaches consider the independent data samplings, whereas RL techniques face sequences of

much correlated states. In addition, the data distribution in a number of RL methods changes with

the new behaviors learnt by the algorithm, whereas this can be a challenge for DL methods in

which the data distribution is considered to be constant. The present research shows that a DNN

can tackle the aforementioned problems so as to learn appropriate policies from raw datasets in

complicated RL systems. To end this, a variant of the Q-learning method (Watkins and Dayan

1992) are utilized to train DNN using an optimizer for weight updates. The data correlation and

non-stationary input distribution issues are mitigated by using Experience Replay (ER) sampling

from the previous transitions at random, which makes the training distribution more accurate and

smoother.

A Markov decision process (MDP) is a discrete time stochastic control process made of states,

actions, rewards, and transition probabilities. Despite the fact that the problem with single

product, single-stage, and a limited number of states (limitations on individual parameters and

inputs) can be solved using MDP, the present research work is aimed at exploring a type of DRL

approaches called DQN, obtaining some insights and examining the possibility of proper

learning of the ordering value when there is no pre-knowledge or limitation on local information

such as inventory capacity. This means that to reduce the long-run overall system cost, the

stochastic random demands are the inputs, which affect the RL algorithm (a variant of Q-

learning) whose actions are the ordering values approximated with the assistance of a DL. The

inputs of this DNN structure are the important parameters (features) of inventory control

including inventory level, inventory transit (inventory received in transit), on-order inventory

(inventory sent but not received yet), ordering, and stochastic demand of the current time. Also,

the output of DNN is the difference between the next order and the next demand (i.e. X=O-D).

Since the stochastic demand of the next time is available as the input (D), the greedy calculation

of the ordering value is conducted to be used by the ϵ-greedy rule. In addition, another input is

lead-time (LT) which is equal to two. Consequently, the next time values of the other features

and parameters such as inventory level (IL), inventory transit (IT), and on-order (OO) are

calculated by the formulae presenting the relations between the different parameters on different

https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Optimal_control_theory

3

time steps (They are explained in more details in Chapter 4). Therefore, the updated versions of

IL, IT, OO, O, and D are the next inputs while approximation of the difference between the next

order and next demand (X=O-D) is the output of the next time of DNN (see Tables 1.2 and 1.3).

The algorithm can be utilized without any limitation on some parameters such as inventory

level, linear holding cost, linear backorder cost, different lead-time values, and type of demand

distribution if it is determined.

1.2 Problem Statement

It is essential to gain the sufficient knowledge related to inventory control cost so as to respond to

the inventory challenges. Tracking the inventory level (even positive or negative) and the number

of times of ordering are unavoidable aspects of a successful inventory management in order to

minimize the long-run total system cost. The components of this cost are linear holding, linear

backorder (penalty), and fixed ordering costs associated with positive inventory level, negative

inventory level, and the times of orders, respectively. The ordering value should be set to a near-

optimal value so that the large number of times of ordering and the large values of holdings and

backorders are avoided. In product manufacturing, the process of tracking incoming and outgoing

goods (orders and demands) is called inventory management. The inventory management is

investigated by an agent which makes decision about new orders (actions). This process is

conducted after observing the stochastic input demands and by considering the inventory

parameters in order to reduce the total cost (the long-run system cost).

Since there are some relations between components of individual information of the agent such as

inventory transit, on-order value, and inventory level and the corresponding demand and order, in

each time step, their next value is determined, the cumulative reward is updated, and the process

continues until the last running time step. It should be mentioned that since the present solution is

based on RL, “reward” is used instead of “cost” and their concepts are the same in this research.

Demand is observed as the input of inventory agent, while inventory controller makes decision

about the order which is sent to the environment as its output (Figure 1.1). This decision is

made by considering not only demand and order but also individual information of inventory

such as inventory level. To capture the near-optimal overall cost of inventory, appropriate

orders should be found as the outputs of inventory management.

4

Figure 1.1 Input and output on single-stage inventory problem

In order to solve this inventory control problem, an approach based on a combination of DL

and RL is implemented so as to reduce the cumulative cost of an inventory agent which is

executed on a long-run time. This aim is realized using a RL algorithm in which the difference

between the action (order) and input (demand) is learned by a DNN. If the demand and order of

each time step are considered as the parts of the individual information (state) of the decision

maker (agent), the state of RL algorithm is the input of the DL section. The validation of the

proposed technique is examined by comparing some methods such as <s,S> policy, <R,Q>

policy and the regression RL approach.

In addition, each agent refers to one-stage decision maker in the inventory control optimization

problem. There is only one type of ordering product in this research, while the algorithm works

for multi-product environment whose products are independent from each other. This research

project is aimed at finding the near-optimal overall cost of single-agent (single-stage) when the

inventory agent faces the stochastic demands D as the input of the environment during the long-

run time periods T. This optimization is performed by making decisions about the ordering

value O of each time step. If IL shows inventory level, linear cost for holding (if IL>0) and

backorder inventory cost (if IL<0), and fixed cost for ordering value (if O>0) are considered in

the cost function while their cost coefficients are 𝐶ℎ, 𝐶𝑝, and 𝐶𝑜 , respectively.

The general mechanism for the sequence of events including arriving pipeline order, observing

the system state, making decision about the order, observing demand, and updating the cost, is

shown in Figure 1.2. In addition, in each time step 𝑡 of a serial multi-agent system, arriving

pipeline order illustrates the demand requested from agent 𝑖, which is equal to the order of the

previous agent 𝑖 − 1 with a latency of lead-time LT. This mean that 𝐷𝑡
𝑖 = 𝑂𝑡−𝐿𝑇

𝑖−1 , if the retailer is

the first agent. More details about simulating the environment including different parameters and

their relations are given in Tables 1.2 and 1.3 and Chapter 4.

5

Figure 1.2 The general mechanism for the sequence of events

1.2.1 Type of Inventory Model

Table 1.1 displays the different types of the inventory models. The names of the settings of the

models used in the research are made bold and italic. As shown in the table, demand is stochastic,

which is selected randomly among one, two, and three, and lead-time is equal to two. Time

horizon is set to 500, there is one product, unmet demands are allowed, and there is no limit to

capacity. The unrestricted capacity of inventory is one of the benefits of the present research in

comparison with the past MDP approaches. The time horizon is reasonably high and its value is

chosen by considering working 5 days in every working week for two years (or two times

(morning and evening) in every working day of a year). It is assumed that the system does not

work for two weeks due to the New Year holiday. The demand and lead-time are the independent

Table 1.1 Types of inventory model (The methods written in bold, italic format are used in the

present research)

Parameters Type Type Type

Demand Constant Deterministic Stochastic-random(1-3)

Lead-Time “0” “>0” -LT=2 Stochastic

Horizon Single Period Finite (T=500) Infinite

Products One Product Multiple Products -

Capacity Order/Inventory Limits No Limits -

Service Meet All Demand Shortages Allowed -

6

parameters coming from the environments and are the real inputs of DQN. However, since the

lead-time is constant, it is not considered as an input parameter. DQN makes decision about

ordering-related values as its outputs. The demand is stochastic and is selected randomly among

one, two, and three, while lead-time is assumed to be constant equal to two.

1.2.2 DL and RL Components of DRL

In this inventory control problem, the near-optimal long-run cost function consisting of the

linear holding, linear backorder, and fixed ordering costs is obtained. This optimization is

found by making decision about the ordering value. The inputs are demands during different

time steps and the actions are ordering values. The algorithm utilized in this research project is

DQN, whose RL algorithm is Q-learning. Since there is a huge possibility for different pairs of

inputs (demands) and actions (orders), it is impossible to obtain a complete prepared Q-table.

Therefore, action selection based on inputs is an online approximation process. The actions of

RL are approximated with a DNN. The output of DL is the difference between orders and

demands.

Since the present solution is based on RL, “reward” is used instead of “cost” and their concepts

are the same in this research. The general goal of DQN is to reduce the long-term cumulative

Table 1.2 Components of inventory optimization problem for agent i, time t

(i=1, t<T, T=500)

Section Detail

Cost (reward) Cost (Reward) Costt
i = Ch. ILt

i +
+ Cp. ILt

i −

Costt
i = Costt

i + Co if Ot
i > 0

Input Demand Dt
i = 1, 2, 3 (Dynamic Input)

Lead-Time LT = 2 (Static Input)

Decision

Variable

Ordering Value Ot
i

Inventory Level ILt
i

On-Order Inventory OOt
i

Inventory Transit ITt
i

7

cost (reward) of the agent where the cost of the agent at each time is defined in Table 1.2. The

relations between the parameters are presented in Chapter 4. Also, Table 1.2 defines the

inventory optimization problem, while Table 1.3 illustrates input/output of DRL as well as the

different sections of DL and RL. Since the RL makes decision about ordering, it is a

Reinforcement Learning Ordering Mechanism (RLOM). The reward function, state, and action

are three main components determining RL and given in Table 1.3. For instance, inventory level

is one of the components of each state of RL algorithm, while it is one of the parts of each input

of DL. It should be mentioned that although the lead-time is equal to a constant value in all the

case studies under study in this research, it can be any positive integer. Since the values of

parameters are related to the previous time steps, it will be shown that instead of considering one

time step of each parameter, a frame with size 𝑘 of the parameters gives the real ones. The details

Table 1.3 Different sections of DRL and its RL and DL sections for agent i, time t

 (i=1, t<T, T=500)

Section DL/RL/DRL Detail

Reward (cost) RL Reward (Cost) Costt
i = Ch. ILt

i +
+ Cp. ILt

i −

Costt
i = Costt

i + Co if Ot
i > 0

Input

Parameters

DRL Demand Dt
i (uniform (1-3))

DRL Lead-Time LT = 2

Output DRL Ordering Value Ot+1
i

Type of Agent RL RLOM (RL Ordering

Mechanism)

-

Algorithm RL Variant of Q-learning -

Input/State

(Observation)

DL/RL Demand Dt
i

DL/RL Ordering Value Ot
i

DL/RL Inventory Level ILt
i

DL/RL On-Order Inventory OOt
i

DL/RL Inventory Transit ITt
i

Output/Action DL/

RL

(Order-Demand)/

Ordering Value

Xt+1
i = Ot+1

i − Dt+1
i /

Ot+1
i

8

and relations between decision variables are described in Chapter 4. All of the parameters in

Tables 1.2 and 1.3 are previously defined. In addition, 𝐼𝐿𝑡
𝑖 +

/ 𝐼𝐿𝑡
𝑖 −

shows the inventory level if it is

larger/lower than zero and the absolute value of 𝐼𝐿𝑡
𝑖 is considered in the cost function. The

formulae of updating the dependent parameters are presented in the following chapters.

1.3 Contributions

The contributions of the present research work are listed as follows:

The algorithm is designed for an unlimited range of the values of the individual information,

while as far as the literature reveals, there are some limitations on the range of individual

information such as inventory level for most of the available MDP models. In addition, there is

no need to know the input distribution, whereas in the most of the previous works, the demand

distribution is required to be known a priori. Also, lead-time related parameters such as on-

order inventory and inventory transit are considered. Moreover, the influences of different

values of hyperparameters on the performance are examined. Finally, the performance of DQN

method is compared with <s,S> and <R,Q> policies and linear regression RL method.

1.4 Thesis Structure

This thesis comprises five chapters which are briefly described below:

Chapter 1 explains the motivation and objectives, problem statement, and major contributions

of the present research and outlines the thesis scope. Chapter 2 is devoted to reviewing previous

studies for inventory control. Chapter 3 describes theory and formulations related to the

research area of inventory management. Chapter 4 is allocated to the proposed methodology

adopted herein to solve the problem. It also discusses the results. Finally, Chapter 5 presents a

summary and the main conclusions of the present research. It also proposes some suggestions

for future works in this filed.

9

CHAPTER 2 A REVIEW OF INVENTORY CONTROL

A MDP is a formal way to describe the sequential decision-making problems observed in RL.

MDP is not only tractable to solve but is also relatively easy to specify as it assumes to have

perfect knowledge of state. All required information to complete the final task is available in fully

observable environments. On the other hand, Partially-Observable Markov Decision Processes

(POMDP) act uniformly with all sources of uncertainty. Information gathering actions are

permitted in POMDP and yet solving the problem optimally is often highly intractable.

In the field of inventory optimization, there is a number of research works based on a MDP. Van

Roy et al. (1997) presented a viable approach based on Neuro-Dynamic Programming (NDP) to

solve inventory optimization including a retailer. They formulated two dynamic programming

studies containing 33 and 46 state variables. Since the state-space of DP models was large, they

could not apply classical DP approaches. Therefore, they implemented the approximate dynamic

programming method to simulate this approximation with a Neural Network (NN). Their method

falls into the class of NDP techniques. The efficiency of their results was assessed by comparing

to S-type policies. Moreover, they examined the reduction in the average inventory cost. The

results showed that their optimal control technique provided a reward of about ten percent lower

than the reward obtained by heuristic methods. Their research has several restrictions on some

parameters such as the number of states and the capacity of inventory. Also, Sui et al. (2010)

proposed a RL approach to find a replenishment policy in a vendor management inventory system

with consignment inventory. They did not consider the ordering cost and also divided the state

space into 50 regions. In contrast, in this research, the ordering cost is included and the real state

is studied.

There is a number of RL research studies in the field of inventory control designed for the beer

game, which is a serial supply chain network containing (mostly) four agents (stages). The game

has a multi-agent, decentralized, independent learner, and cooperative Artificial Intelligence (AI)

environment considering holding and back-order costs. No ordering cost is calculated in the beer

game whose optimal solution results from a base-stock policy. The game was initially introduced

by a group of faculty members in Sloan School Management at Massachusetts Institute of

Technology in order to show the difficulty with managing dynamic systems. This game is a

10

sample of a dynamic system in supply chain which delivers beer from a beer producer to the end

customer. Although supply chain structure and rules of playing the game are very simple, the

complex behavior of this dynamic system is interesting. The game is categorized in a group of

games illustrating bullwhip effect (Devika et al. 2016, Croson and Donohue 2006). This effect

happens unintentionally whenever seeking minimum cost. It happens when the order variation in

upstream moving node increases in the network. Lee et al. (1997) and Sterman (1989) explained

some rational and behavioral causes of the occurrence of the aforementioned effect, respectively.

There is no algorithm to find optimal base-stock levels whenever a stock-out is observed in a

non-terminal agent. Sterman (1989) analyzed the dynamic of environment by considering the

dynamic of stock system and the model of environment flows in the beer game. One of the main

points of the game is that no data sharing, which can be inventory value or cost amount, happens

until the end of the game. Therefore, each agent has a partial information about environment,

which leads to observing a POMDP model. The cost function used in his work was the

summation of linear holding and the stock-out (backorder) cost whose coefficients are 0.5 and 1,

respectively. This ratio is used in Case Study 2 of the present research.

Giannoccaro and Pontrandolfo (2002) presented a method to find the best decisions about

inventory management containing Markov Decision Processes (MDP) and an AI method (RL

approach) to solve MDP. Their game consisted of 3 agents whose shipment time and lead-time

were stochastic. The RL approach was applied in order to find a near-optimal inventory policy

based on maximizing the average reward. The reason for applying RL was due to its stochastic

property as well as its efficiency in large-scale networks. Giannoccaro and Pontrandolfo’s RL

methods contained three agents whose inventory levels were state variables discretized into 10

intervals and the action number could be between one and thirty. Their methods needed to

discretize the inventory level into ten intervals, while it was not generally possible to find an

appropriate division of time intervals. This is a defect, which is overcome in this research.

Kimbrough et al. (2002) recommended an agent-based approach for serial multi-agent so as to

track demand, delete the Bullwhip effect, discover the optimal policies which were known, and

find efficient policies under complex scenarios where analytical solutions were not known. Their

method was a Genetic Algorithm along with a Joint Action Learners (JALs). They used "𝑥 + 𝑦"

rule, in which "𝑥" refers to the amount of demand or order and based on this amount, order

11

quantity equals "𝑥 + 𝑦". By applying this rule, track demand was carried out and the bullwhip

influence was eliminated. This resulted in discovering the optimal policies when these policies

could be found. In order to determine the order quantity, Chaharsooghi et al. (2008) proposed an

approach similar to the method of Kimbrough et al. (2002) containing two differences. First, they

worked with four agents, and second, each game had a fixed length equal to 35 time periods and

their state variable consisted of four inventory positions which were divided into nine different

intervals. The inventory levels and time intervals were restricted to 4 and 35, respectively, which

was a limitation to generalize the work. This problem is resolved in the present research.

Claus and Boutilier (1998) utilized (a simple form of) Q-learning to solve cooperative multi-

agent environments. The effect of different features on the interaction between equilibrium

selection learning techniques and RL techniques was investigated. They mentioned that

Independent Learners (ILs) and Joint Action Learners (JALs) were two different types of Multi-

Agent Reinforcement Learning (MARL). A classic type of Q-learning ignoring the other agents

was applied in ILs. On the other hand, JALs learned their action value of related agents by

combining RL methods with equilibrium learning methods. Parashkevov (2007) evaluated JALs

in stochastic competitive games. His approach was able to obtain the safety value of the game

and adapt to changes in the environment.

There are two different solutions for the beer game when special conditions arise. In case of

availability of stock-out cost only at the final agent (retailer), Clark and Scarf (1960) presented an

algorithm to find the optimum policy for the game as the first solution. In order to determine the

optimal policy, Chen and Zheng (1994) and Gallego and Zipkin (1999) suggested a similar

approach based on the division of serial network into several single-stage nodes. They defined a

convex optimization problem with just one variable at each of these stages. Their method

suffered from large-volume calculations of numerical integration as well as huge cost of

implementation. Later, Shang and Song (2003) proposed an effective approach based on heuristic

methods. The solution of Clark and Scarf (1960) and their followers need to consider the specific

data distribution, while there is no need to know the data distribution in the present work.

A stochastic process with fixed joint probability distribution is called a stationary environment. If

there is no ordering cost and the environment is stationary, the optimal policy of the beer game is

12

base stock. As Gallego and Zipkin (1999) defined, in this policy, the ordering amount was equal

to the difference between a fixed number and the current inventory position. Clark and Scarf

(1960) called this constant number a base-stock level and there was no general solution to find

the optimal value of the base-stock level when there existed a stock-out cost in any agent except

for the final agents (retailers). Gallego and Zipkin (1999), as well as Cheng and Zheng (1994),

found optimal solutions by neglecting the stock-out cost. Accordingly, the review of the literature

signifies that no definite algorithm was presented when general stock-out was available.

Sterman (1989) presented some relations in order to find the order amount by considering order

backlog, in and out shipment flow, on-hand inventory, and expected demand, known as the

second solution. He modeled the reactions to shortage or extra inventory value of a four-part

serial inventory network. Then, Croson and Donohue (2006) studied the behavioural causes of

the bullwhip effect and the subsequent behaviour of the beer game. Recently, Edali and Yasarcan

(2014) provided a mathematical model for the game.

Classical supervised ML algorithms such as support vector machine, random forest, or supervised

DNN are inapplicable in this research because of none-availability of historical pairs of

input/output data. On the other hand, the present research is designed based on DQN. Although

this research study implements the DQN method into a single-agent model, it can be designed for

multi-agent inventory whose agents are JALs and POMDP. The agents roughly work similar to

the beer game. One difference is that the parameters such as inventory level are unlimited and

there is no restriction on their values. Another difference is that the ordering cost is considered by

adding the cost per order to the cost function. To the best of the author’s knowledge, there are

limitations on the values of some parameters such as inventory level as well as ignoring ordering

cost in most of the past RL approaches. Also, there is a number of research works to solve the

one-agent MDP whose parameter values are limited such as inventory capacity. As far as the

literature reveals, this is the first work considering the holding, backorder, and ordering costs

without any limitation on the values of parameters such as inventory level and without any need

to know the demand distribution. Also, in the previous MDP studies, lead-time and its related

parameters such as on-order inventory or inventory transit are ignored, while they are considered

in the present research study.

13

CHAPTER 3 THEORY AND FORMULATION

In this chapter, some techniques including RL, DP, and DQN are described and compared. The

formulation and details of different techniques including DQN are studied.

3.1 Reinforcement Learning

One of the best methods to deal with complicated decision making issues is Reinforcement

Learning (RL) (Sutton and Barto 1998). RL is part of Machine Learning (ML) acting with agents

whose next status is influenced by action selection. This selection is examined in order to

maximize/minimize the future reward/cost by interaction of the agent and the environment.

Figure 3.1 Interaction of agent with environment

3.2 Markov Decision Process

A Markov Decision Process (MDP) is defined as 𝑀 = (𝑆, 𝐴, 𝑃, 𝑅), where 𝑆 is a set of states, 𝐴 is

a set of actions, P(𝑆 × 𝑆 × 𝐴 → [0, 1]) is transition probability distribution, and 𝑅(𝑆 → 𝑅) is

reward. To be more precise, in each time step 𝑡, a state is the situation of agent and action 𝑎𝑡 is a

command in order to reach next state 𝑠𝑡+1 from the current state 𝑠𝑡 by following the state policy

π(s). Generally, policy π is a behaviour function choosing actions given states (𝑎 = π(s)) and

the transition probability, P(𝑠𝑡+1 = s′|𝑠𝑡 = s, π(s) = 𝑎), shows the probability of transition from

14

state 𝑠 to state s′ by taking action 𝑎. The general goal of RL is to maximize the expected

discounted sum of the rewards over running on an infinite time horizon (Eq. (3-1)).

𝐺𝑡 = 𝑟𝑡+1 + γ𝑟𝑡+2 + γ2𝑟𝑡+3 + ⋯ = ∑ γ𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

 (3-1)

where γ is the discount factor. However, in case of large state-space and long-running time of RL

approach, P and R are very large and are not previously known while the system is a MDP

observing the states and rewards after taking an action. The value of a policy is determined by

solving a linear system or by doing an iteration which is similar to value iteration. Finding the

optimal policy with unknown P and R is a challenging task.

3.3 Comparison of Different Techniques

In order to better understand different approaches, comparisons have been made in this section.

3.3.1 Reinforcement Learning versus Supervised Learning

Supervised Learning is able to solve many problems containing image classification and text

translation. However, supervised learning is unable to play a game efficiently. For instance, a

dataset containing the history of all the cases of “Alpha-Go” game played by humans could

potentially use the state as input x and the optimal decisions taken for that state as output labels y.

Although it would be a nice idea in theory, in practice some drawbacks exist as follows:

1. The above-mentioned data sets do not exist for the entire domain.

2. It might be expensive and unfeasible to create the above-mentioned data sets.

3. The method learns to imitate a human expert instead of really learning the best possible policy.

RL wants to learn actions by trial and error. The objective function of a RL

algorithm, 𝐸(∑ 𝑟𝑒𝑤𝑎𝑟𝑑𝑠), is an expectation of a system which is unknown. In contrast,

supervised learning algorithms tend to find 𝑚𝑖𝑛𝛳𝑙𝑜𝑠𝑠 (𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛), in which 𝛳 shows the

parameters of the algorithm and (𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) are pairs of training set. The supervised learning

15

algorithms learn the optimal strategy by sampling actions and then observing which one of the

actions leads to the target output. Contrary to the supervised approach, learning the optimal action

in RL approach is not conducted based on one label, rather based on some time-delayed labels

called rewards, which then determine the performance of the action. Therefore, the goal of RL is to

take actions in order to maximize reward.

A RL problem is described as a Markov decision process which is memory less so that every

parameter should be known from the current state. Supervised learning learns by examples of

pairs of desired inputs and outputs, while RL learns by agents and guesses the correct output. RL

receives some feedback from the quality of its guess, whereas it does not mention whether this

output is the correct one and there is probably some delay in seeing the feedback. RL learns either

by exploration or by trial and error. The three basic problems in the area of RL are the curse of

dimensionality, learning from interaction, and learning with delayed-consequence.

3.3.2 Reinforcement Learning versus Dynamic Programming

Dynamic Programming (DP) is not the same as value or policy iteration conceptually. This is

because the DP approaches are the planning methods, which means that they are able to calculate

the value function and an optimal policy iteratively by the given transition and a reward function.

Dynamic programming is a series of algorithms that can be utilized to calculate optimal policies

if the whole model of environment is available as a Markov Decision Process (MDP).

Although classical DP algorithms are less beneficial in RL due to assume a complete model and

to be computationally expensive, they are still important from a theoretical standpoint. DP needs

a full description of the MDP, with known transition probabilities and reward distributions that

are used by a DP algorithm. This property makes it model-based. DP is one part of RL which is

a value-based, model-based, bootstrapping and off-policy algorithm. In summary, DP is a

planning method, which means that a value function and optimal policy is computed by giving a

transition and calculating a reward. On the other hand, Q-learning, which is a special case of

value iteration, belongs to a model-free class of RL methods due to not utilizing any

environmental model. However, model-based methods work based on learning a model, while

contrary to the model-free approaches, the samples are kept even after value estimation. The RL

methods try to reconstruct the transition and reward in order to have better efficiency. A

16

combination of model-free and planning algorithms is presented in model-based algorithms in

which fewer sampling is required in comparison with model-free algorithms such as Q-learning.

Also, the model-based RL algorithms do not need a model similar to DP approaches such as

value or policy iteration. Therefore, fewer sampling and independence from DP modeling are

advantages of model-based RL algorithms in comparison with model-free and classical dynamic

programming approach, respectively.

3.3.3 Q-learning versus DQN

Q-Learning is one of the pioneer RL approaches presented by Watkins (Watkins and Dayan

1992) and is applied as a baseline of RL results. Although the Q-Learning approach is a powerful

algorithm, it is not applicable in all cases. This is because it requires to know all pairs of states

and actions while is generally impossible. Therefore, to tackle this problem, an approximation of

Q-function can be found by a NN and if NN is replaced by DNN as an action approximator, the

algorithm is DQN. This algorithm was introduced by the DeepMind company in 2013 and states

and Q-value of the actions were its inputs and outputs, respectively.

The general formula for a Q-function is given as:

Q(s, a) = r + γ maxa′(Q(s′, a′)) (3-2)

and the general formula for DQN is

Q(s, a; ϴ) = r + γ maxa′(Q(s′, a′; ϴ̅)) (3-3)

In the above formulae, 𝑟 and γ are reward and discount factor, 𝑠, 𝑠′, 𝑎, 𝛳 and �̅� are state, next

state, action, parameters of NN, and parameters to compute the target of NN, respectively.

On the other hand, in DQN, a neural network is added to a very large Q-table in which there is a

large number of states and actions. The neural network is applied in order to compress the Q-

table by setting the parameters of neural networks. Also, since the number of NN nodes is

supposed to be constant, these parameters are restricted to coefficient weights of neural network.

By smart tuning the configuration parameters of the structure explained, an optimal Q-function

can be found by various neural network training algorithms. If 𝑓𝛳 is a neural network with weight

parameters 𝛳 and input 𝑠, the Q-function can be written as 𝑄(𝑠, 𝑎) = 𝑓𝛳(𝑠).

17

A Q-learning environment contains reward and observation and gives them to an agent in order to

decide an action. In DQN, the agent is replaced with a function showing the weights of a DNN. A

DRL approach learns a parameterized function 𝑓𝛳; its loss function is differentiable with respect

to 𝛳 and optimization is performed with gradient-based algorithms. Also, a difference between

the Q-learning and DQN is presented in Figure 3.2. 𝛳 is a set of features of neural networks (if

the number of nodes and layers in general structure of DNN are considered constant, 𝛳 is

considered coefficient weights). Also, 𝑠 and 𝑎 show state and action, respectively.

Figure 3.2 Q-learning (Left) versus DQN (Right)

3.4 Different Types of Reinforcement Learning Algorithms

Model-based and model-free are two different types of RL techniques. The model-based agent

builds a transition model of the environment and plans (e.g. by lookahead) using the model. In

the model-based algorithms, if there are sufficient samples of each state parameter, the

estimations of reward and transition probability converge to the correct MDP, value function and

policy. However, obtaining a sufficient number of samples is still a challenge to be solved. A

drawback of the model-based method is that the actual MDP model should be made when the

size of state is too large. In addition, a policy-based RL approach searches directly for the optimal

policy 𝜋∗ which is the policy achieving maximum future reward. Also, value-based RL approach

estimates the optimal value function 𝑄∗(𝑠, 𝑎), which is the maximum value achievable under any

policy.

The agents of the model-free algorithms such as Q-learning and policy gradient can learn action

and policy directly. In addition, a policy-based reinforcement learning approach searches directly

for the optimal policy 𝜋∗ which is the policy achieving maximum future reward. Also, value-

18

based RL approach estimates the optimal value function 𝑄∗(s, a) which is the maximum value

achievable under any policy. Temporal Difference (TD), State-Action-Reward-State-Action

(SARSA), and Q-learning are some examples of model-free RL algorithms working based on

temporal difference. The main benefit of model-free RL approaches is the application of function

approximation in order to represent the value function without having to derive. If function

approximation with parameters 𝜃 is expressed as 𝑓𝛳(𝑠), TD update is 𝜃 ← 𝜃 + 𝛼(𝑟 +

𝛾𝑓𝛳(𝑠′) − 𝑓𝛳(𝑠))𝛻𝛳𝑓𝛳(𝑠), where 𝑠′ is the next state, 𝛻𝛳𝑓𝛳(𝑠) is the gradient of 𝑓𝛳(𝑠), 𝛼 is

learning rate and γ is discount factor. This process is similar in SARSA and Q-learning.

3.4.1 Q-learning

Q-learning is a model-free approach learning task that applies samples from the environment. It is

also an off-policy algorithm due to learning with a greedy strategy 𝑎 = 𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎) and it

guarantees sufficient exploration of states due to following a behaviour distribution. This

behaviour distribution is chosen by using a ϵ- greedy algorithm, which will be explained in the

subsequent sections. Q-function is the main part of Q-learning. 𝑄(𝑠, 𝑎) determines the maximum

discounted future reward by performing action 𝑎 when the current state is s. It also estimates the

selection of action 𝑎 in state 𝑠. However, “Why is Q-function useful?” and “How is Q-function

obtained?” are two main questions worth answering. To achieve this, it is better to see the

structure of Q-function. If a strategy to win a complex game is unknown, the players cannot play

well. However, the situation is different when a guide book containing hints or solutions is

available. The Q-function is similar to this guidebook. If a player is in state 𝑠 and there is a need

for action selection, the player selects the action obtaining the highest Q-value. 𝜋(𝑠) is the action

associated with state 𝑠 under policy 𝜋 given as:

π(s) = argmaxa Q(s, a) (3-4)

Total future reward is 𝑅𝑡 written as:

Rt = ∑ ri

n

i=t

 (3-5)

in which 𝑟𝑖 is the reward for each state.

19

Since the environment is stochastic, there is uncertainty about future increases during running

time steps. As a result, calculation of 𝑅𝑡 is not possible, and consequently, discounted future

reward is calculated instead of 𝑅𝑡 as follows:

Rt = rt + γrt + ⋯ + γn−trn (3-6)

As mentioned previously, the Q-function is the maximum discounted future reward in state 𝑠 and

action 𝑎 expressed below:

Q(st, at) = max Rt+1 (3-7)

Therefore, the Q-function can be expressed as the summation of reward 𝑟 and maximum future

reward for next state 𝑠′ and action 𝑎′ as follows:

Q(s, a) = r + γ ∗ maxa′Q(s′, a′) (3-8)

This equation is known as Bellman equation. Q-function is solved with an iterative method using

an experience (𝑠, 𝑎, 𝑟, 𝑠′). Considering 𝑟 + 𝛾 ∗ 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) as an estimator and 𝑟 + 𝛾 ∗

𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) as a predictor, making a Q-table similar to performing a regression. The loss

function of Q-learning is a Mean Squared Error (MSE) given by:

ℒ = [r + γ ∗ maxa′Q(s′, a′) − Q(s, a)]2

 ← − − target − −→

 ← − − − − −TD error − − − −→

(3-9)

Optimization of Q-function with an experience (𝑠, 𝑎, 𝑟, 𝑠′) is performed by considering the

smallest MSE as loss function. If ℒ tends to decrease, the convergence of Q-function to optimal

value occurs.

3.4.2 From RL to DQN

The RL techniques are divided into two categories: Tabular Solution Methods and Approximate

Solution Methods (Sutton and Barto 1998; Sutton and Barto 2018). If the probability and the

reward of transition from state 𝑠 to state 𝑠’ by taking action 𝑎 are given, optimal policy could be

found by linear programming or by a type of dynamic programming method such as value

20

iteration or policy iteration. In most cases, the process is not completely Markov Decision Process

(MDP), meaning that the history is somehow important, and as a result, a Semi Markov Decision

Process (SMDP) exists. This means that in a system with reasonable running time, in the cases of

large state-space and large action-space, finding the optimal policy to solve the MDPs is not

possible due to curse of dimensionality. In contrast, in the cases with a large number of states or

action spaces, observing full state spaces is not possible for decision makers (agents). This leads

to partial observability of state variables called Partial Observable MDP (POMDP). Since it is

hard to determine the appropriate Q-values in a POMDP, the approximation of Q-values is made

in the Q-learning algorithm (Sutton and Barto 2018). To end this, first, linear regression was used

as a function approximator (Melo and Ribeiro 2007), which was replaced by a non-linear

function approximator such as neural network due to its ability to find more reliable accuracy.

To utilize function approximation, it was necessary to extract a number of features until the early

2010’s. For instance, object recognition methods employed hand-made features and linear

classifier learners (Patel and Tandel 2016). However, from 2012, most of vision techniques

started utilizing DNN for feature extraction and going towards end-to-end whole pipeline

optimization (Szegedy et al. 2013). DL is very successful in learning when the features are

unknown. As a result, a combination of RL and DL called DRL has received much attention

recently (Li 2017). Mnih et al. (2013) proposed an algorithm for DRL called DQN in 2013. Since

2013, many researchers have worked on this issue and the algorithm is ameliorated and

completed significantly (Li 2017). However, the algorithm was not widely used by researchers

until the DeepMind group released more details of their approach in 2015 (Mnih et al. 2015).

This is because they encountered some difficulties such as observing unstable or even divergent

Q-value as Q-function approximator resulting from non-stationary and correlations in the

sequence of the observations so as to implement neural network (Mnih et al. 2013). To overcome

the challenge, they used the Experience Replay (ER) first introduced by Watkin and Dayan

(1992). Schaul et al. (2015) ameliorated their previous research work (Mnih et al. 2015) using the

prioritized ER technique. Traffic light control in vehicular networks is its application in

transportation (Liang et al. 2018).

21

3.4.3 DQN

DQN is a combination of Q-learning and Neural Network (NN), in which the function

approximation of Q-learning is a DNN. DQN is a Q-learning approach whose action is chosen

based on a DNN. Actions are related to the outputs of NN, whereas states of the RL are the inputs

of NN. Also, DQN learns a Q-function by minimizing Temporal Difference (TD) errors. A

transition (𝑠, 𝑎, 𝑟, 𝑠′) is observed and TD error tends to make 𝑄(𝑠, 𝑎) as close as possible to 𝑟 +

𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′). Action can be selected arbitrarily in off-policy algorithms with a ϵ-greedy

policy based on the current Q-value. To be more precise, value function 𝑄𝜋(𝑠, 𝑎) is the expected

total reward from state 𝑠 and action 𝑎 under policy 𝜋 which can be unrolled recursively as

follows:

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑟𝑡+1 + γ𝑟𝑡+2 + γ2𝑟𝑡+3 + ⋯ |𝑠, 𝑎] = 𝔼𝑠′[r + γ 𝑄𝜋(s′, a′)|𝑠, 𝑎] (3-10)

Also, optimal value function 𝑄∗(𝑠, 𝑎) can be unrolled recursively as:

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′[r + γ 𝑚𝑎𝑥𝑎′ 𝑄
∗(s′, a′)|𝑠, 𝑎] (3-11)

where value iteration algorithms solve the Bellman equation as follows:

𝑄𝑖+1(𝑠, 𝑎) = 𝔼𝑠′[r + γ 𝑚𝑎𝑥𝑎′ 𝑄𝑖(s′, a′)|𝑠, 𝑎] (3-12)

The value function represented by deep Q-network whose parameters are 𝜃 is given by:

𝑄(𝑠, 𝑎, 𝜃) ≈ 𝑄𝜋(𝑠, 𝑎) (3-13)

The objective function defined by mean-squared error in Q-values is expressed as:

ℒ = 𝔼[(r + γ ∗ maxa′Q(s′, a′, �̅�) − Q(s, a, θ))2]
 ← − − target − −→

 ← − − − − − − TD error − − − −−→

(3-14)

which leads to the following gradient function:

∂ℒ(θ)

∂θ
= 𝔼[(r + γ ∗ maxa′Q(s′, a′, �̅�) − Q(s, a, θ)]

∂Q(s, a, θ)

∂θ

(3-15)

22

As a result, the end-to-end RL is optimized by an optimizer using
∂ℒ(θ)

∂θ
.

3.4.4. Optimizers

There are many optimizer techniques among which Stochastic Gradient Gdescent (SGD) and

ADAptive Moment estimator (ADAM) are more favorite. The batch methods utilize the entire

training sets in order to update the parameters in any iteration with a tendency to converge to

local optimal. For a large dataset, the speed of finding the cost and gradient of the full training

data set is very low. Also, a batch optimization approach is not a suitable method to merge new

data in the online settings. In order to resolve these problems, SGD approaches follow the

negative gradient of objective after a few training samples. Since the cost of the running

backpropagation over the entire training set is high, it is helpful to use SGD in neural network

setting. In SGD, the parameters 𝛳 of objective 𝐽(𝛳) are updated with 𝛳=𝛳− 𝛼𝛻𝛳𝐸[𝐽(𝛳)], where

𝛻𝛳 is the gradient of 𝛳 and 𝛼 is the learning rate. If SGD uses a few training samples, it easily

disappears with the update expectation and gradient computation. As a result, the update is given

by a new formula extracting (𝑥(𝑖), 𝑦(𝑖)), where 𝑥(𝑖) and 𝑦(𝑖) are the 𝑖𝑡ℎ pair of training set,

from the training data as follows:

ϴ=ϴ− α∇ϴJ(ϴ; x(i), y(i)) (3-16)

Updating the parameters in SGD is based on a few trainings or mini-batch samples. This is due to

variance reduction in the updated parameters, leading to a more stable convergence. Also, it can

benefit from the optimized matrix operations used in computation of cost and gradient. The

learning rate of stochastic gradient descent, 𝛼, is lower than that of batch gradient descent due to

the existence of more updating variance. The decisions are made to find the correct learning rate

and time of updating the learning value.

Also, Adaptive Moment Estimation (Adam) computes the adaptive learning rates of each

parameter which not only stores an exponentially decaying average of past squared gradient 𝑣𝑡,

but also keeps an exponentially decaying average of past gradients 𝑚𝑡 which is similar to

momentum. Adam behaviour is similar to heavy ball with friction which prefers to flat minima in

the error surface, whereas momentum pushes a ball running down a slope. 𝑚𝑡 and 𝑣𝑡 estimate the

23

first (mean) and the second (the uncentered variance) momentum of the gradients, respectively.

They are expressed by:

𝑚𝑡= 𝛽1𝑚𝑡−1+ (1 − 𝛽1)𝑔𝑡 (3-17)

𝑣𝑡= 𝛽2𝑣𝑡+ (1 − 𝛽2)𝑔𝑡
2 (3-18)

The initialization of 𝑚𝑡 and 𝑣𝑡 are zero vectors, while during the initial time steps and especially

with a small decay rates (𝛽1 and 𝛽2 are close to 1), there are biases towards zero. To counteract

this problem, corrections for the first and the second moments of bias are written as follows:

𝑚�̂�=
𝑚𝑡

1 − 𝛽𝑡
1

(3-19)

𝑣�̂�=
𝑣𝑡

1 − 𝛽𝑡
2

(3-20)

Using the above equations for updating parameters (𝜃𝑡+1), the Adam update rule is given as:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝜖 + √𝑣�̂�

𝑚�̂� (3-21)

Also, SGD examines the error calculation and updates the reward. The general formula for the Q-

function is expressed as follows:

Q(s, a) = r + γ maxa′(Q(s′, a′)) (3-22)

In Mean Square Error (MSE), Temporal Difference error (TD-error) and target are calculated as

follows:

Qπ(s, a) ← Qπ(s, a) + γ [(r + maxa′Qπ(s′, a′) − Qπ(s, a)]
 ← − − target − −→

 ← − − − − TD error − − − −→

(3-23)

in which s′ is 𝑠𝑡+1 and 𝑎′ is 𝑎𝑡+1.

It should be mentioned that in the aforementioned general formulae, maximization of the reward

is the goal of the algorithm. However, in this research, the objective is to minimize the average

reward cost. TD error calculates the difference between expectation of Q-approximation in the

24

future plus the reward and its present value as evaluated by the neural network. If the state is the

terminal one, then reward at step j, 𝑦𝑗 , is given as:

yj ← rj (3-24)

Otherwise,

yj ← rj + γ. minaQ(sj, aj, ϴ) (3-25)

Since there is no definite terminal state in this problem, running for a definite number of time

steps is considered as the terminal state. Although a linear function approximation is mostly

utilized in RL approaches, a nonlinear function approximation is sometimes used. This nonlinear

function can be found by a Neural Network (NN). Mnih et al. (2013) employed a neural network

function approximator with parameters 𝛳 as a Q-network. Training the Q-network can be carried

out by minimizing a sequence of loss functions ℒ𝑖(𝛳𝑖) which change in each iteration. Also, 𝑦𝑖 is

the goal of iteration 𝑖 and 𝜌(𝑠, 𝑎) is defined as a probability distribution over sequences 𝑠 and

action 𝑎. The parameters of the previous iteration 𝛳𝑖−1 are constants during the optimization of

the loss function ℒ𝑖(𝛳𝑖) expressed as:

ℒi(ϴi) = 𝔼s,a~ρ(.)[(yj − Q(sj, aj, ϴ))2] (3-26)

where 𝑦𝑗 is the target of iteration i, which is written as:

yi = 𝔼s′~ϵ[r + γmaxa′Q(s′, a′; ϴi−1)|s, a] (3-27)

Another important point is that the targets are dependent on the network weights. In contrast, in

supervised learning approaches, the weights are considered as constants before starting to

perform learning. To find Mean Square Error (MSE), a gradient descent is conducted on (yj −

Q(sj, aj, ϴ))2 and since MSE is differentiable, the derivative of the loss function with respect to

the weights is calculated as follows:

∇ϴi
ℒi(ϴi) = 𝔼s,a~ρ(.);s′~ϵ[(r + γmina′Q(s′, a′; ϴi−1) − Q(s, a; ϴi)) ∇ϴi

Q(s, a, ϴi)] (3-28)

25

It is suitable to optimize the loss function by stochastic gradient descent, instead of calculating

the expectation in the above formula. However, if weight updating is conducted in each time step

and the expectations are replaced by a single sample from the behaviour distribution ρ and the

environment 𝜖, then a familiar Q-learning algorithm is reached (Mnih et al. 2015).

3.5 Exploration versus Exploitation (ϵ-greedy algorithms)

One of main challenges in machine learning algorithms is “exploration versus exploitation”. It is

similar to real life when a person decides to follow an existing policy or to check out a new

policy. To obtain the maximum future reward, agents need to find a balance between exploitation

(greedy) and exploration (ϵ-greedy algorithms). If the dynamic of a system is unknown, exploring

actions or exploiting the current knowledge gives the best answer. When a bad initial state-action

is chosen, the algorithm gets stuck in local minimum and can never explore further. To resolve

this problem, instead of selecting the action based on greedy algorithm, a policy is explored until

a good estimation of value function is found.

3.6 Improvement of DQN

The RL approaches suffer from instability or even divergence when active-values (Q-function) is

represented by a nonlinear function approximator such as a neural network (Tsitsiklis and Van

Roy 1997). To reach a more stable learning algorithm, DQN can be improved by different

techniques including experience replay, target network and skipping frames, leading to more

stable results.

3.6.1 Experience Replay

Lin (1993) applied a mixture of RL and neural network for robots. He integrated back

propagation and temporal difference. Over-fitting in DNN happens occasionally and easily. As a

result, it is hard to produce various experiences. In order to tackle this problem, Experience

Replay (ER) memory stores all important data parameters including reward, action, state, and

next state. Updating the neural network is carried out by making mini-batches. However, the ER

technique is a simple, effective technique that resolves the temporal credit assignment problem.

This technique reduces the correlations among the training data of updating DNN and decreases

26

the variance of the output. Another benefit is that mini-batches increase the learning speed that is

effective in decreasing time, which is essential to learn huge data. Also, ER reuses transitions

from historical data which avoids catastrophic forgetting. A general structure of ER is displayed

in Figure 3.3. In order to provide data-set from the experience of the agent, in each time step 𝑡,

action 𝑎𝑡 is taken according to ϵ-greedy and then, transition, (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1) = (𝑠, 𝑎, 𝑟, 𝑠′), is

stored in replay memory 𝐷. Finally, Mean Square Error (MSE) between Q-network and Q-

learning targets is optimized, e.g, ℒ(ϴ) = 𝔼s,a,s′,a′~𝐷[(r + γmina′Q(s′, a′; ϴ) − Q(s, a; ϴ))2]

Figure 3.3 Experience Replay (ER) in DQN

3.6.2 Target Network

Target function changes frequently with DNN during the calculation of Temporal Difference

(TD) error leads to instability and oscillation. This instability makes the training of DNN more

complicated. It is interesting that targets is related to the network weights which is in contrast

with the targets used for supervised learning, which are constant before learning starts. To get rid

of this complexity, parameters of target function are considered constant in most steps. Target Q-

function, Q(s′, a′) is computed w.r.t fixed parameters �̅� as:

r + γ maxa′Q(𝑠′, a′, �̅�) (3-29)

where 𝛼 and 𝛾 are learning and discount rate, respectively. Also, 𝑄(𝑠′, 𝑎′) shows the Q-function

of next state and action. Also, MSE optimizes between Q-network and Q-learning targets as

follows:

27

ℒ(𝜃) = 𝔼s,a,𝑠′,a′~𝐷 [(r + γmina′Q(s′, a′; �̅�) − Q(s, a; 𝜃))
2

]
(3-30)

while the parameters of target function are replaced with those of the last neural network every

several hundreds or even thousands steps in target network techniques, i.e. �̅� ← 𝜃.

3.6.3 Skipping Frames

Lead-time in a serial network causes delays in observing the influence of action selection on

reward function. Also, the amount of reward function may be related to the previous multiple

periods. Therefore, skipping frames is a technique which calculates Q-value every 𝑘 frames and

Q-value considers the last 𝑘 frames as inputs. This technique reduces the computational cost and

gathers more experiences. 𝑘 should be a reasonable number showing the minimum time required

for making a demand to be met.

3.6.4 Different Loss Function

Mean Square Error (MSE) of Q-function pays more attention to large errors in comparison with

Mean Absolute Error (MAE). In contrast, MAE treats large and low errors similarly. The intuition

behind MSE is that it is better to have a larger priority in order to minimize large errors rather than

small ones.

28

CHAPTER 4 INVENTORY CONTROL SOLUTION

In order to solve the inventory control problem, an approach based on a combination of DL and

RL is presented in this chapter. It should be mentioned that since all the formulation in this

research is planned for multi-agent (multi-stage) problems, all the experiments are carried out for

only single stage (one agent) whose real input and output are demand and ordering value,

respectively. The minimization of cumulative long-run system cost whose components are

holding, backorder, and ordering costs is desired. This selection is made because holding the

products as well as making an order impose cost for the inventory manager. Also, backorder

determines the inventory shortfall which represents the number of unmet demands waiting to

receive inventory. In addition to holding and fixed ordering costs, it is important to track

backorder value so as to minimize the total cost. To achieve this, some main features of inventory

such as the inventory position, which is the summation of inventory level and inventory

transition, should be computed. Accordingly, it is important to find the main features of the agent

affecting the inventory level and inventory transition values.

4.1 Main Features of Inventory Control

There is a number of features which are critical in the field of inventory control. Some are related

to their past amounts or are interrelated to each other, whereas the others are independent random

or deterministic variables. These parameters are listed in Tables 4.1 and 4.2.

4.1.1 Random Features

Demand and lead-time are random features of inventory control as shown in Table 4.1, in which

superscript 𝑖 of 𝐷𝑡
𝑖 and 𝐿𝑇𝑡

𝑖 is the agent’s (stage’s) index number. This is done in order to

generalize the current single-agent model to multi-agent model. As a result, the agent 𝑖 − 1 and

𝑖 + 1 are seen in Tables 4.1 and 4.2, showing the interaction of one agent with its superior/prior

agent in general. However, the problem is solved for one agent in this research (i=1).

4.1.2 Interrelated Features

Some of the features in inventory control are related to each other. The relations of these

parameters given in Table 4.2, will be presented in the next sections. It should be noted that 𝐷𝑡
𝑖 is

29

Table 4.1 Random features

Feature Description

𝐷𝑡
𝑖 demand received from agent 𝑖 − 1 at time 𝑡

𝐿𝑇𝑡
𝑖 lead-time for agent 𝑖 at time 𝑡

Table 4.2 Interrelated features

Feature Description

𝐼𝐿𝑡
𝑖 inventory level at time 𝑡 for agent 𝑖

𝐼𝑇𝑡
𝑖 inventory transition at time 𝑡 for agent 𝑖

𝐷𝑡
𝑖 demand received at time t from agent 𝑖 − 1

𝑂𝑡
𝑖 order sent to agent 𝑖 + 1 at time t

𝑂𝑂𝑡
𝑖 on-order item (ordered item from agent 𝑖 + 1 but not received yet) at time t

displayed in both Tables 4-1 and 4-2 because although it is independent of the other features, it

changes stochastically and randomly each time, and as a result, its effect on the other features

changes over time. In contrast, 𝐿𝑇𝑡
𝑖 is considered constant at all times (𝐿𝑇𝑡

𝑖 = 2), and therefore,

its effect on the other features does not change over time. Thus, it is not seen in the interrelated

features. Also, a general list of the different parameters of single-echelon inventory agent for a

time step is illustrated in Figure 4.1. If lead-time equals two, on-order consists of part 1 and part

2 displaying the orders sent in the previous time step and the current time step, respectively. All

of the other parameters are defined in Table 4.1.

Figure 4.1 A general list of the different parameters of an inventory agent

30

4.2 Relations among Features

4.2.1 Relations among On-Order, Inventory Transition, and Order

In general, the 𝑂𝑂𝑡 is the number of on-order items at time 𝑡, which is calculated based on

inventory transits as follows:

OOt = ∑ ITt+v

LT

v=1

 (4-1)

For instance, if lead-time is equal to two, then the on-order value at the current time is the

summation of inventory transit at the next two times. This means that all inventories transited at

the next 𝐿𝑇 time steps are added to obtain on-order at the current time while it is sufficient to find

inventory transition in order to find on-order inventory. The inventory transition is the ordering

value which arrives LT time steps after ordering, expressed in the following relation:

ITt+LT = Ot (4-2)

Therefore, it is important to find a relation between demand and order at each time.

4.2.2 Relations between Demand and Order

Kimbrough et al. (2002) presented a relation between demand and order mentioning that at each

time t and in each agent i, order 𝑂𝑖
𝑡 is the summation of demand 𝐷𝑖

𝑡 and a value 𝑥𝑖
𝑡. Also, there is

a number of time step delays in observating the rewards. As a result, a memory of states with size

𝑘 is considered, where 𝑘 is the number of the recent observations of demands and orders.

4.2.3 Relations among Different Features of DNN

If lead-time (LT) is two for all interactions of an agent, the features are updated using Eqs. (4-3)

to (4.10). Eq. (4-3) is based on Kimbrough rule. Eq. (4-4) mentions that on-order at each time is

the summation of the current order and the previous order, which results from the value of lead-

time (𝐿𝑇 = 2). Also, since lead-time is two, the inventory transit at the next time is the ordering

value at the previous time (Eq. (4-5)) and the change in the inventory level is the summation of

inventory transit minus demand (Eq. (4-6)). Eq. (4-7) expresses the relation between order and

31

inventory transit, showing that the inventory transit after passing the lead-time is the current

order. Consequently, Eqs. (4-8) to (4-10) indicate that the overall cost is the summation of linear

holding cost, linear shortage cost, and fixed ordering cost, in which the linear holding cost is

holding coefficient 𝐶ℎ times positive inventory level, the linear shortage cost is shortage

coefficient 𝐶𝑝 times negative inventory level, and if there is an order, the ordering cost is 𝐶ℎ. 𝐷𝑡
𝑖

represents the demand at time 𝑡 and 𝑥𝑡
𝑖 shows the difference between order and demand. Also, 𝐷𝑡

𝑖

and 𝑥𝑡
𝑖 are extracted from observation and learning with a DNN, respectively. Order is assumed

to be non-negative.

Ot+1
i = Dt

i + xt
i , Ot+1

i ≥ 0 (4-3)

OOt+1
i = Ot

i + Ot+1
i (4-4)

ITt+1
i = Ot−1

i (4-5)

ILt+1
i = ITt

i + ILt
i - Dt

i (4-6)

ITt+LT
i = Ot

i (4-7)

Costt+1
i = Ch. ILt+1

i +
+ Cp. ILt+1

i −
, Costt+1

i = Costt+1
i + Co if Ot+1

i > 0 (4-8)

ILt+1
i +

= ILt+1
i if ILt+1

i > 0, ILt+1
i −

= −ILt+1
i if ILt+1

i < 0 (4-9)

Min ∑ CostT
i , 𝑖𝑓 Cost0

i = 0, 𝑇 = 500, 𝑖 = 1
(4-10)

4.3 State Variables

The environment is non-stationary because data is unpredictable and cannot be forecasted. The

total observations for agent 𝑖 over time 𝑡 are given as:

OBt
i = [IL1

i , OO1
i , D1

i , IT1
i , a1

i , … , ILt
i , OOt

i , Dt
i , ITt

i, at
i] (4-11)

Since there is no sharing information except demand/order, the environment is Partial Observable

(PO). Also, 𝑂𝐵𝑡
𝑖 determines states and since its size grows over time, it is difficult for DQN to

find 𝑂𝐵𝑡
𝑖. Therefore, it is not logical to consider all of the observations from the starting point. In

order to tackle this problem, skipping frames (the last 𝑘 periods of states) are considered as state

variables and the size of input remains fixed (See Section 4.4.1). Also, there are limits in running

32

time, and as a result, the environment is restricted and it is not completely observable, leading the

environment to become a Partial Observable Markov Decision Process (POMDP).

4.4 Steps of Algorithm

A general structure of DQN is displayed in Figure 4.2. A state is a number of features given as

inputs of a DNN whose parameters are 𝛳. By choosing a policy 𝜋𝛳 based on state 𝑠, DNN

parameters 𝛳 and action 𝑎, a new action is taken. As a result, the corresponding reward is found.

The next state is found after observing the demand from input and updating the other parts of a

state. The DNN parameters including weighting coefficients, numbers of nodes and layers show

the structure of the DNN. Since a fixed number of layers and nodes are used after some training,

the main parameters of DNN can be reduced to the weighting coefficients between the layers. The

frequency of updating the weighting coefficients of a network is one of the hyperparameters of

the problem. Figure 4.2. shows the general structure of DQN when the state is the input of DNN,

the parameter of DNN is 𝛳, an action is taken by policy 𝜋𝛳(𝑠, 𝑎). After calculating reward and

observing one parameter from input, the next state is found.

Figure 4.2 A general structure of DQN

4.4.1 Implementation of Frame Skipping and ϵ-greedy

The 𝑘-frames technique is important to be utilized because in case of availability of lead-time,

there is some latency in the environment even in sending or receiving. The size of the frame

33

should be greater than the summation of latency to send an order and receive it from the

environment. Therefore, a frame memory whose size is greater than or equal to this summation

should be defined as the input (Figure 4.4). In order to consider a memory of size 𝑘, small

changes in the definition of the current and next states of one agent are applied as follows:

St+1 = [ITtt+1, OOtt+1, ILtt+1, Ott+1, Dtt+1]tt=t−k+1
t (4-12)

Also, since the above equation considers only the last 𝑚 observed states, the considered

environment is a partially observable Markov decision process. In addition, ϵ-greedy is

implemented in order to trade-off between exploration and exploitation. ϵ is the percentage of

time steps in which agent takes an action randomly rather than taking the action based on the

minimum reward (Figure 4.5). Although each state is a frame of input parameters with size 𝑘

(Eq. (4-12)), to make Figure 4.5 simpler and more understandable, a general form of the figure

without framing is displayed instead of showing a frame of inputs.

4.4.2 DNN Section of Algorithm

The DNN is applied so as to find a function approximation of RL. DNN can be utilized instead of

linear, kernel methods, or general neural networks. Direct training based on complex inputs is

feasible in DNN. Features are extracted from one state and a function approximator uses these

features as well as certain parameters to extract the cost to go to next state (see Figure 4.3). An

approximator is essential due to the huge size of states and this approximation is conducted with

a DNN. The inputs and outputs of this DNN are states and Q-value of actions, respectively. As a

result, the size of output is equal to the number of possible actions. This leads to some limitations

in the cardinality of action space, though there is no limitation on action space in the theory. The

general structure of DL section containing k frames of states is shown in Figure 4.4, in which a

state is a set of interrelated features. The figure displays that the output of DNN is 𝑥, which is the

difference between order and demand. One parameter is the next demand whose value is

observable at the beginning of the next time. Then, the next ordering value is calculated. Also, IT,

OO, and IL are updated based on the relations given in the previous sections (Eqs. (4-3) to (4-7)).

These three parameters as well as their corresponding ordering value and demand are used as the

inputs of the next state.

34

Figure 4.3 Function approximation based on feature extraction

Figure 4.4 The general input/output of DL approach for one agent used to find estimation of

difference between order and demand (𝑥 = 𝑂 − 𝐷) based on features of 𝑘 current states

Figure 4.5 The general structure of ϵ-greedy with DNN to update the state of one agent

35

The parameters of the next state 𝑆𝑡+1 are 𝐼𝑇𝑡+1, 𝑂𝑂𝑡+1, 𝐼𝐿𝑡+1, 𝑂𝑡+1 and Dt+1. Finally, if the

holding, shortage, and ordering coefficient costs are available, the cost of time step can be

calculated by considering the inventory level and ordering values (Eqs. (4-8) to (4-9)).

4.4.3 Implementation of Experience Replay

Experience Replay (ER) is an important method contributing to most of the latest advances in

DRL. In RL method, the agent observes a series of experiences and then utilizes these experiences

to update their internal beliefs. A tuple of action, reward, current state, and next state could be the

current experience and the agent is able to use this experience in order to update the value-

function by utilizing TD-learning. After using the current experience for the updates, standard

classical RL algorithms ignore the current experience, whereas the recent advanced algorithms

take it into account. An experience in standard RL algorithms is thrown away after being utilized

for an update. Recent advances in RL introduce ER, a method which stores experiences in a

memory buffer with a constant size. Since the size of buffer is constant, when this buffer is full

and new experiences are observed, the oldest experiences in memory buffer are discarded. In

every time step, sampling of a random batch of experiences from buffer is made so as to update

the parameters of the agent.

In order to remove the correlation in sequence (transition between two states), reduce the overall

variance of the transition, and make the variance smoother against a variation in data distribution,

ER is applied as an improvement for the algorithm. Consequently, < 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1 > is

considered as the current experience 𝑒𝑡 which is used for selecting the optimized behaviour.

Instead of running the simulation based on state and action, the system saves a set of state, action,

reward, and next state. To enjoy the benefits of batch normalization, a batch with size 𝑏 of ER is

implemented. Also, learning section and gaining experience need to be combined so as to

improve the policy. This policy causes another behaviour which should explore the near-optimal

actions applied for learning. In addition, since the applied loss function is designed for DQN

without ER, it should be revised by feeding < 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1 > into DQN.

36

Figure 4.6 The general implementation of ER with one agent in each time step

Another point is to maintain two DNNs with parameters 𝜃 and �̅� and switch one of them with the

other. This assists the stability of the algorithm when a non-linear approximate function is

applied. �̅� defines the alternate frozen version of weighting coefficients. The parameters of target

Q-Network are updated every n steps. Figure 4.6 illustrates the structure of DQN when ER is

added to stabilize it. Figure 4.6 shows how to implement ER when the cost function is

maximized. In this figure, 𝑠′ is the next state and 𝑎′ is the next action.

4.4.4 Proposed DQN Algorithm

Algorithm 1 is a DQN designed for the above-mentioned inventory control problem and can be

utilized in order to find the orders which reduce the overall cost of one inventory agent.

4.5 Hyperparameters Tuning

The DQN approach is examined in order to reduce the cost of one-agent (one-stage) inventory

control. A number of hyper parameters are checked so as to find the best solution. A list of

settings for the main hyperparameters in deep Q-learning is presented in Table 4.3.

37

Algorithm 1: DQN Algorithm for Inventory Control

Inputs:

 replay memory size 𝐌,

 mini-batch size 𝐁,

 greedy parameter 𝛜,

 pre-train time steps 𝐩𝐫,

 target network update rate
𝟏

𝐧
 (update one time of every n steps),

 discount factor 𝛄.

Parameters:

 parameters of the primary/target neural network 𝛉/�̅�,

 replay memory 𝐞,

 step number 𝐭.

 For episodes = 𝟏 ∶ 𝐍 {/*N: max episodes*/

 /*initialize*/

 Initialize Experience Replay Memory, 𝐞 = [] /*e is a memory with size 𝐌 of state*/

 [𝐈𝐋, 𝐎, 𝐎𝐎, d, IT]=[𝐈𝐋𝟎,0,0,𝐝𝟎,0] /*starting scenario of state*/

 For t = 1 : T {/*T: max running time step*/

 Observe demand and current state

 /* ϵ greedy algorithm: exploration vs exploitation */

 𝐚𝐭 = ϵ × random(𝐚𝐭) + (1-ϵ) × 𝐚𝐫𝐠𝐦𝐢𝐧𝐚𝐐(𝐬𝐭, 𝐚; 𝚹)

 Execute action 𝐚𝐭, observe 𝐫𝐭, and 𝐬𝐭+𝟏

 If memory size > M:

 Remove oldest from memory

 Add <𝐬𝐭,𝐚𝐭, 𝐫𝐭, 𝐬𝐭+𝟏> to 𝐞

 If |e| > B and episodes > 𝐩𝐫:

 Select a mini-batch(B) of experiences <𝐬𝐭,𝐚𝐭, 𝐫𝐭, 𝐬𝐭+𝟏 > from 𝐞

 /*calculated the Q-function and updating the reward*/

 If episode=T: /*if the final state*/

 Set 𝐲𝐣 ← 𝐫𝐣

 Otherwise /*if it is not final state*/

38

 𝐲𝐣 ← 𝐫𝐣 + 𝛄. 𝐦𝐢𝐧𝐚𝐐(𝐬𝐣, 𝐚𝐣, 𝚹)

 /*Gradient Descent: FF BP to optimize loss function*/

 /*Run Feed Forward (F.F) and Backward Propagation (B.P)

 Find Mean Square Error (MSE):

 Find Gradient Descent on (𝐲𝐣 − 𝐐(𝐬𝐣, 𝐚𝐣, 𝚹))𝟐 */

 /*updating the weight of NN*/

 update one time of every n iterations

 update ϵ

 }/* for t = 1 : T */

 } /* for episodes = 1 : N*/

__

Table 4.3 Main hyperparameter values

Hyperparameters Value

Mini-batch size 32

Replay-memory size 100000

Agent history length (frame) 5

Learning rate 0.001

Discount factor 0.995

Exploration decay 0.95

Initial exploration 1

Final exploration 0.01

Loss Function MSE

4.5.1 Reward, Inputs/Outputs and Hidden Layers of DQN

Inventory level IL, inventory transit IT, ordering value O, on-ordering value OO, and demand D

are five main parameters of inventory control constituting a state which is an input into DNN. In

fact, a frame of these five main parameters of inventory control and the difference between

ordering value and demand are the inputs and output of a DNN, respectively. In addition to the

input and output layers, the DNN network consists of three hidden layers including 135, , 80, and

39

 50 nodes. The network is Fully Connected (FC) with an activation function except for the last

layer which obtains a linear activation function. DNN is used as a function approximator whose

output layer’s nodes are related to a possible action. As a result, the number of nodes in the

output layer is selected by the action space which follows the Kimbrough's rule and the

difference between ordering value and its corresponding demand is found. Also, reward (cost) of

each time step is calculated based on inventory level, backorder, and a constant value if there is

an order. The ordering value is the summation of the current observed demand and approximate

action. This approximation of action is made with a DNN whose input is state. The related

relations are presented in the primary sections of this chapter.

4.5.2 Frame and Batch Size

Since the results of consecutive steps are correlated, the size of frame is determined by

considering the summation of lead-time of making an order and lead-time of receiving it. In both

cases, the lead-time is considered to be equal to two. As a result, any frame size greater than four

seems to be appropriate. Therefore, in this research project, the frame size is set to five (Table

4.3). Nevertheless, sometimes the latency of observing the effect of one change in inventory level

may be greater than the above-mentioned summation. This problem is resolved by ER, which was

demonstrated in the previous sections. In order to eliminate the correlation between observation

and reduction of the output variance, ER is applied and a mini-batch is chosen in each training

step. The mini-batch selects a batch of actions from the starting point until now because the effect

of selecting an action may be seen with a delay of several steps. On the other hand, it is also

important that the batch size be large enough so as to eliminate the observation of noisy loss

function. This is because small batch size makes the loss function noisier. However, it cannot be

set to a very large number due to time complexity. The batch size selected in this research is 32.

4.5.3 Activation Function and Type of Different Layers

DNN is utilized to select action and the most common activation function for DNN is

𝑅𝑒𝐿𝑈. 𝑅𝑒𝐿𝑈 is demonstrated by ℎ = 𝑚𝑎𝑥(0, 𝑎), where 𝑎 = 𝑊𝑥 + 𝑏. The major benefits of

ReLU are training network fast, being sparse and reducing the likelihood of vanishing gradient.

Since 𝑅𝑒𝐿𝑈 is mostly linear and zero for all positive and negative values, it does not have a

40

complex formula, and as a result, it does not take a long time to train or run in comparison with

Sigmoid or Tanh. The 𝑅𝑒𝐿𝑈 speed of convergence is high and changes linearly mostly. Also, the

likelihood reduction of the vanishing gradient arises when 𝑎 > 0 and the gradient is constant

while the gradient of 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 goes down as the absolute value of 𝑥 goes up. The constant

gradient of 𝑅𝑒𝐿𝑈 provides training fast. In addition, the 𝑅𝑒𝐿𝑈 is more sparse when 𝑎 ≤ 0. In

contrast, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 is mostly a non-zero value, which results in dense representations.

The DNN is a FC neural network and the activation function is chosen as given below. In order

to solve the dying problem of 𝑅𝑒𝐿𝑈, 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 is preferred. For instance, a large gradient

flowing through 𝑅𝑒𝐿𝑈 could make updating the weight difficult. 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈 tries to solve

the dying problem of 𝑅𝑒𝐿𝑈. To achieve this, 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈 has a small negative slope

(~0.1) instead of being zero for negative input. 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈 function is written as 𝑓(𝑥) =

1(𝑥 < 0)(𝛼𝑥) + 1(𝑥 >= 0), where 𝛼 is a small constant. Another benefit of 𝐿𝑒𝑎𝑟𝑘𝑦 − 𝑅𝑒𝐿𝑈 is

to be more balanced by keeping the mean activation close to zero and probably the speed of

learning is greater than 𝑅𝑒𝐿𝑈. The activation function suffers from inconsistency. This problem

is somehow solved with parametric 𝑅𝑒𝐿𝑈, which is 𝐿𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈, whose 𝛼 is variable.

Therefore, this activation function is utilized for all of the layers except for the last layer whose

activation function is linear.

4.5.4 Loss Function and Optimizer

Mean Absolute Error (MAE), Mean Square Error (MSE), Huber and Log-Cosh are different

regression loss functions verified in order to select the best loss function. Since MSE pays more

attention to large errors in comparison with MAE, it is chosen as the loss function. In addition,

similar to DeepMind's paper, the linear approximation is applied to observe the effect of using

DQN. For comparison, the DNN is replaced by a linear approximation of input layer into output

layer without considering any hidden layer. Adam optimizer adaptively updates the learning rate

and also considers both first-order and second-order moments by using the SGD procedure.

Recently, it is claimed that the proper tuned SGD surpasses the adaptive method similar to Adam

(Keskar and Socher 2017). However, Adam is still selected because it is practically popular in Q-

learning with a function approximation (Lillicrap et al. 2016; Mnih et al. 2016). A larger number

of hyperparameters for SGD makes its proper tuning harder, and therefore, SGD need more

41

training due to a lower speed. Also, since the speed of convergence of Adam optimizer is fast and

it is an adaptive approach attaining acceptable overall performance in comparison with other back

propagation optimization approaches (Kingma and Ba 2015), Adam optimizer is selected.

4.5.5 Size of ER Memory, Updating Frequency, Learning Rate and ϵ

The size of memory of ER is 100,000 and the system is running over 100,000 episodes. The

parameters of the DNN are updated and saved every 𝑛 iteration. Different amounts including 500,

5000, and 10000 for updating the parameters of DNN are evaluated and finally 𝑛 is chosen as

5000. Training starts at step 300 to observe the behaviour of system before training. The learning

rate is low due to getting rid of dying 𝑅𝑒𝐿𝑈. For instance, if the learning rate is too high, it can be

seen that a large percentage of neurons never be activated during the whole training dataset.

When the learning rate is set properly, the problem of dying 𝑅𝑒𝐿𝑈 is less frequently observed.

The learning rate is set to 0.001 and ϵ decreases from 1 to 0.01 with a decay rate of 0.995.

4.5.6 Running Environment and Setting Parameters

The program is coded in Python 3.6 with Tensorflow 1.10.0 and Keras 2.1.6. The code is

executed on Compute Canada allocated one GPU and 64 GB memory. The running times are

different based on the computations needed by different algorithms and their settings. The lead-

time is set to a constant value equal to two and demand is considered to be randomly selected

among [1,2,3].

4.6 Experiments and Discussions

The selection of the benchmark algorithm could be considered from two different points of view.

On the one hand, most of the last works on inventory control optimization with RL were

compared with a type of S policy (Van Roy et al. 1998, Giannoccaro et al. 2002). On the other

hand, DQN approach presented by DeepMind (Mnih et al. 2015) was compared with a linear

function approximator, a disable/enable experience replay or a target Q-network, and a

professional human games player (Mnih et al. 2015). The stock-out rate is an essential parameter

to calculate classic <s,S> and <R,Q> policy. It is not considered directly in the present cost

function, whereas it affects indirectly the cost function based on the ratios of the different cost

42

coefficients. Since the demand is randomly selected among [1,2,3], it does not follow the

distribution such as normal or is combined with some noise, whereas the classical <s,S> and

<R,Q> policies are designed based on predefined demand distribution. Therefore, their classical

versions are inappropriate to be a baseline. Van Roy et al. (1998) performed the exhaustive

search to determine the best order-up to level. In order to make the <s,S> and <R,Q> policies

more trustable baselines, the inputs data of DQN which are the demands are saved. Then, the

optimal values of pairs of <s,S> and <R,Q> are extracted by a grid search on the input data.

However, there is no pre-knowledge of the input data for DQN. In addition, since in most of

selected case studies, the results of the <R,Q> policy are slightly better than those of the <s,S>

policy, the <R,Q> policy is used as a baseline to evaluate the performance of DQN. Since the

ratio of the coefficient of backorder cost to that of the holding cost was considered to be two in

several previous works following Sterman (1989), this ratio is utilized in case study 2. The results

of the case study whose <𝐶ℎ, 𝐶𝑝, 𝐶0> coefficients are <1,100,20>, are illustrated in the

following.

To evaluate the performance of DQN, the average of long-run system cost for some algorithms

and different settings of several case studies are compared. Also, the fluctuation of the different

parameters is studied to observe the behaviour of each case study. The average reward of DQN

reasonably decreases during training while suffering from the instability demonstrated by the

fluctuations of average reward. This instability might be attributed to catastrophic forgotten

(McCloskey and Cohen 1989) which happens by overwriting new training samples, which leads

to losing the stored information. Several settings for the parameters of different algorithms were

examined to address this problem. To alleviate this instability, experience replay is implemented,

which somehow mitigates the stability issues.

Also, the performance of two different regression metrics Mean Square Error (MSE) and Mean

Absolute Error (MAE) are compared in Figure 4.7 (Left). The result of each point is produced by

calculating the average of overall costs in every 1000 episodes. As displayed in this figure, both

of them start with a large deviation and then gradually level off. However, MSE drops sooner

than MAE and is smoother in the final steps. The cost becomes stable after about 65000 episodes.

Since the large cost is undesirable, MSE is more useful.

43

Figure 4.7 Comparison of different regression metrics and different optimizers.

The performance of two main optimizers ADAM and SGD are compared in Figure 4.7 (Right).

The number of tuning parameters for ADAM is lower than that for SGD with Momentum, which

leads to easier tuning the ADAM optimizer. It is demonstrated that the performance of SGD is

worse than that of ADAM during the first episodes. However, after passing approximately 55000

episodes, the differences between the results of SGD and ADAM gradually decrease. This trend

continues until the results of SGD coincide with those of ADAM in the last 7000 episodes.

Figure 4.8 Comparison of different values of learning rate (Left) and experience replay (Right)

One of the major considerations during tuning is the learning rate. The effect of different ranges

of learning rate are shown in Figure 4.8 (Left). A high learning rate leads to dying the activation

function and fast decaying the cost. Consequently, it is unable to settle in an appropriate point. In

44

contrast, a low learning rate results in a small decay and needs much time to reduce cost

sufficiently. However, a proper learning rate has a smaller chance of dying in comparison with

the results of the low learning rate and has a greater chance to diminish the cost and obtain a

near-optimal cost. Nevertheless, the cost is still a little noisy, which might be due to a small batch

size. If the learning rate LR is too high (i.e. LR=0.1), the final cost is very large. The cost

decreases with decreasing the learning rate until the rate reaches 0.001. Then, when the learning

rate is too low (i.e. LR=0.0001), the final cost increases. Therefore, finding the fitted learning

rate is an important factor in the performance of the algorithm.

The influence of enabling and disabling ER is displayed in Figure 4.8 (Right). The results

become smoother with increasing the number of episodes and the final value of cost is lower

when the amount of memory of ER increases. If ER is disabled, the results are not as stable as the

case where ER is enabled. Also, the effects of enabling/disabling ER and target Q-network on the

results for different case studies are presented in Table 4.4. It is clearly demonstrated that

disabling the target Q-network and specially the replay memory has detrimental impacts on the

algorithm performance. This is because by random selection of the parameters, the correlations in

the observation sequence vanish. ER benefits from the ability to improve the data efficiency and

makes the training more stable. ER can find the experiences from the previous time, which can be

effective when learning is carried out several times. The DQN with ER leads to a better

convergence when the function approximation is trained. This is attributed to the fact that data is

assumed to be independent and identically distributed (i.i.d.) in most of proofs for the

convergence of supervised learning approaches. This ability makes the algorithm more efficient

in comparison with the others.

Table 4.4 The influence of replay and separation of the target Q-network

Coefficient W* Replay,

W** target Q

W Replay,

WO target Q

WO Replay,

W target Q

WO Replay,

WO target Q

1-100-5 6.676 8.732 37.042 56.324

1-10-16 9.948 21.942 65.572 67.57

1-100-20 12.582 29.044 49.200 62.336

*W: with, **WO: without

45

The impact of skipping frame is shown in Table 4.5. The results show the skipping frame is a

very effective factor in performance. This is reasonable because there is a delay in observing the

influence of an action on the cost function. This delay which is mainly due to availability of lead-

time, makes the parameters of consecutive steps dependent. Therefore, it is important to consider

a frame of parameters instead of just considering parameters of the current time step.

Table 4.5 Comparison between with/without of skipping frame

Coefficient With skipping frame WithOut skipping frame

1-100-5 6.676 66.784

1-10-16 9.948 99.012

1-100-20 12.582 69.662

The overall cost and different parameters of inventory control for case study <1,100,20> are

compared with other methods such as <R,Q>, <s,S> policies and linear regression Q-learning in

Figures 4.9-11. As displayed in Figure 4.9 (right), the overall cost of DQN is appropriate even

from the first steps. One interesting point is that the results for DQN are suitable, even though the

values of different parameters of local information for DQN approach do not follow the behaviors

of the other famous techniques. The results demonstrate that the range of step-cost and inventory

level for DQN are proper compared to the other techniques (Figures 4.10 and 4.11).

Figure 4.9 Overall cost of different methods (left: all time-steps, right: first 125 time-steps)

46

Figure 4.10 Step-cost, IL, and O of different methods

47

Figure 4.11 IT and OO of different methods

The fluctuations of main parameters of these approaches are compared (Figures 4.10 and 4.11).

The number of times of stock-out for DQN is equal to and less than those of <s,S> and <R,Q>

policies, respectively (see the step-cost in Figure 4.10). Since the second coefficient is one

hundred times greater than the first cost coefficient and five times higher than the third cost

coefficients, the near-optimal solution is obtained with a few number of stock-out. The average

cost of DQN are compared for some algorithms such as linear Regression Q-learning (RQL)

which is an algorithm by DeepMind Company (Mnih et al. 2013) used for evaluating the

performance of DQN in Atari games. Its structure is similar to DQN and the only difference is the

omission of deep layers. The other comparisons are made with famous inventory management

policies such as constant <R,Q> and <s,S> policies. The performance of the algorithm is

acceptable compared with other approaches.

48

The DQN algorithm is evaluated for different cost coefficients in Table 4.6. The different cost

ratios are chosen in terms of the real values as well as the values whose level of stock-out for

their optimized solution are very low. Overall, the present DQN selects appropriate actions in

comparison with the <s,S>, <R,Q> policies and regression RL. The number of times of stock-out

for DQN for case studies 1 to 8 is 348, 199, 0, 35, 39, 1, 0, and 34, showing that there is a few

number of times of stock-out when the second coefficient is higher than the others. As shown in

Table 4.6, the performance of DQN is satisfactory, while Regression Q-learning is the worst case

except for the coefficients of <1-50-2> whose result is in the second place. In addition, the gap

between the DQN results and the best results of the other methods is calculated and given in

Table 4.6.

Table 4.6 Comparison of average cost for different coefficients and techniques

No. Coefficient RQL* DQN <R,Q> <s,S> Gap

1 1-1-1 17.148 2.034 2.382 3.836 -14.6%

2 1-2-5 26.162 4.644 5.334 6.194 -12.9%

3 1-100-5 48.696 6.676 8.328 8.248 -19.0%

4 1-17-27 95.248 11.948 15.982 16.042 -25.2%

5 1-10-16 113.204 9.47 11.736 12.07 -19.3%

6 1-100-20 71.33 12.582 14.574 14.87 -13.6%

7 1-50-2 4.886 3.96 6.234 6.898 -18.9%

8 1-5-8 29.894 6.898 7.604 8.466 -9.2%

*RQL: Regression Q-learning

49

CHAPTER 5 SUMMARY, CONCLUSION, FUTURE WORKS, AND

RECOMMANDATIONS

The recent technological advancements provides huge data generation. It is often challenging to

deal with these large volumes of data. To handle huge data generation, some research areas such

as speech recognition utilize ML algorithms and especially DL techniques. In contrast, most of

product manufacturing problems such as inventory control are currently solved by imposing

constraints to the datasets. In order to solve the inventory control problem handling enormous

raw datasets, a data-driven ML technique is implemented in the present research.

The present inventory control problem aims to reduce the long-run overall cost which is obtained

by finding orders based on input demands. The overall cost is the summation of linear holding

(inventory on-hand), linear shortage (unmet demand), and fixed ordering (each time of ordering)

costs. The above-mentioned inventory control problem for single-agent is solved to provide an

insight into sequential multi-agent inventory control problems, which are hard to be put into

practice as most of their solutions highly need many details about local and communicated

information while the data is not available. For instance, the inventory capacities should be pre-

known and limited or discretized if they are unrestricted, although even the best discretization

may lead to losing the precision. Also, in reality, the agents do not share their individual

information in POMDPs or even a single agent is a POMDP as it considers a part of observation

of its local information due to some limitation when implemented. This property makes the past

RL methods unusable. In contrast, the present algorithm not only does not need to know the

constraints on the individual information such as inventory capacity, but it is also able to solve a

POMDP environment which does not have access to the whole individual data.

The proposed approach in the present research is a type of DRL called DQN which can solve the

problem by employing both RL and DL even the environment is a Partial Observable (PO). Also,

since there are some latencies, lead-time related parameters such as on-order inventory and

inventory transit in addition to inventory level, demand, and orders are considered as the

parameters of state, which is useful. MDP is able to model uncertain decision making problems,

while the DL part of DRL brings an ability to MDPs so as to resolve problems of a larger size of

states. RL is applied for reduction of the overall cost based on making decision about action, i.e.

50

order, while its state is individual information of an inventory. In addition, DL is used to learn

ordering minus demand based on the state which is a combination of local information. DQN is

an off-policy and on-line learning method, and as a result, it obtains not only to learn the

environment with any type of input demand distribution, but also to learn the PO environment

with an unlimited or unknown range of the individual information such as inventory level and

vast state spaces (e.g. long-run environments or unlimited capacity).

To be more precise, since successful RL policies directly learn from inputs, DQN provides the

ability of being independent of some details of local information such as inventory level.

Therefore, there is no limitation on the state spaces, which is one of the shortcomings of the

available RL. Also, DQN is efficient for the PO environment whose agents do not see some parts

of their local information or that of the other agents, while this condition occurs in some cases

such as in multi-agent environments. In addition, online learning capability of DQN makes it able

to learn even the type of input demand distributions is unknown, whereas the well-known method

such as normal <s,S> policy is only desired in the normal distribution demand.

A frame of states is considered due to the probable effects of recent states on the current state. An

amelioration is a batch of combination of action, two consecutive states, and reward, where the

batch is made of a random selection of experiences from the starting point rather than the batch

made of consecutive states. A memory buffer with a certain size containing two consecutive

states and related action and reward is called experience replay, leading to a more stable

algorithm. Also, different values of some hyperparameters or disabling/enabling these

hyperparameters are studied to examine their impacts on the overall cost and stability for some

case studies. Since the stability is very critical, DQN provides a stable solution to deep value-

based RL. The stability is investigated by ER to break the correlations in data, bring them back to

i.i.d input data, and to learn from all past policies. In addition, freezing the target Q-network is

applied in order to avoid oscillations and break correlations between Q-network and target. Based

on the results obtained for several case studies, it is found that the present method outperforms

the linear regression RL. Also, the performance of DQN is comparable with traditional techniques

such as <s,S> and <R,Q> policies. The present approach can also be extended in future to solve

serial sequential decision making (multi-agent) supply chain networks even though they are PO.

51

BIBLIOGRAPHY

Atkeson, C.G., Santamaria, J.C. A comparison of direct and model-based reinforcement learning.

Proceedings of the International Conference on Robotics and Automation (ICRA) (1997) 3557-

3564.

Bertsekas, D.P., Tsitsiklis, J. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA,

(1996).

Bruin, T., Kober, J., Tuyls, K., Babuska, R. The importance of experience replay database

composition in deep reinforcement learning. Deep Reinforcement Learning Workshop, NIPS,

(2015).

Chaharsooghi, S.K., Heydari, J., Zegordi, S.H. A reinforcement learning model for supply chain

ordering management: An application to the beer game. Decision Support Systems 45 (2008)

949-959.

Chen, F., Zheng, Y.-S. Lower bounds for multi-echelon stochastic inventory systems.

Management Science 40(11) (1994) 1426-1443.

Clark, A.J., Scarf, H. Optimal policies for a multi-echelon inventory problem. Management

science 6(4) (1960) 475-490.

Claus, C., Boutilier, C. The dynamics of reinforcement learning in cooperative multi agent

systems. AAAI/IAAI (1998) 746-752.

Cox III, J.F., Walker II., E.D. The poker chip game: A multi-product, multi-customer, multi-

echelon, stochastic supply chain network useful for teaching the impacts of pull versus push

inventory policies on link and chain performance. INFORMS Transactions on Education 6(3)

(2008) 3-19.

Croson, R., Donohue, K. Behavioural causes of the bullwhip effect and the observed value of

inventory information. Management Science 52 (3) (2006) 323-336.

52

Devika, K.L., Jafarian, A., Hassanzadeh, A., Khodaverdi, R. Optimizing of bullwhip effect and

net stock amplification in three-echelon supply chains using evolutionary multi-objective

metaheuristics. Annals of Operations Research 242(2) (2016) 457-487.

Edali, M., Yasarcan, H. A mathematical model of the beer game. Journal of Artificial Society

Simulation 17 (2014) 2-14.

François-Lavet, V., Henderson, P., Islam, I., Bellemare, M.G., Pineau, J. An Introduction to Deep

Reinforcement Learning. Foundations and Trends in Machine Learning 11(3-4) (2018), DOI:

10.1561/2200000071.

Gallego, G., Zipkin, P. Stock positioning and performance estimation in serial production-

transportation systems. Manufacturing & Service Operations Management 1 (1999) 77-88.

Giannoccaro, I., Pontrandolfo, P. Inventory management in supply chains: A reinforcement

learning approach. International Journal of Production Economics 78(2) (2002) 153-161.

Goodfellow, I., Bengio, Y., Courville, A. Deep Learning, MIT Press, (2016).

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D.,

Piot, B., Azar, M., Silver, D. Rainbow. Combining improvements in deep reinforcement learning.

arXiv preprint arXiv:1710.02298 (2017).

Hieber, R., Hartel, I. Impact of SCM order strategies evaluated by simulation-based beer-game.

Production Planning and Control 14 (2003) 122-134.

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Talks_files/deep_rl.pdf

http://www.cs.cmu.edu/afs/cs/academic/class/15780-s16/www/slides/rl.pdf

Ioffe, S., Szegedy, C. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).

Kaelbling, L.P., Littman, M.L., Moore, A.W. Reinforcement Learning: A Survey. Journal of

Artificial Intelligence Research 4 (1996) 237-285.

53

Katanyukul, T., Chong, E.K.P. Intelligent Inventory Control via Ruminative Reinforcement

Learning. Journal of Applied Mathematics (2014) Article ID 238357, 8 pages.

Keskar, N.S., Socher, R. Improving generalization performance by switching from Adam to

SGD. arXiv preprint arXiv:1712.07628 (2017).

Kimbrough, S.O., Wu, D.-J., Zhong, F. Computers play the beer game: Can artificial agents

manage supply chains? Decision support systems 33(3) (2002) 323-333.

Kingma, D.P., Ba, J.L. ADAM. A method for stochastic optimization arXiv preprint arXiv:

1412.6980 (2015).

Lee, H., Padmanabhan, V., Whang, S. Information distortion in a supply chain: The bullwhip

effect, Management Science 43(4) (1997) 546-558.

Liang, X., Du, X., Wang, G., Han, Z. Deep reinforcement learning for traffic light control in

vehicular networks, IEEE Trans. Veh. Technol., arXiv preprint arXiv: 1803.11115 (2018).

Lillicrap, T.P., Hunt, J.J, Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.

Continuous control with deep reinforcement learning. International Conference on Learning

Representations (ICLR) arXiv preprint arXiv:1509.02971 (2016).

Lin, L.J. Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis, Carnegie

Mellon University, Pittsburgh, PA (1993).

Li, Y. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274 (2017).

McCloskey, M., Cohen, N.J. Catastrophic interference in connectionist networks: The sequential

learning problem. Psychology of learning and motivation 24 (1989) 109-165.

Melo, F.S., Ribeiro, M.I. Q-learning with linear function approximation. International

Conference on Computational Learning Theory (2007) 308-322.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.

Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

54

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,

Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,

I., King, H., Kumaran, D., Wiersta, D., Legg, S., Hassabis, D. Human-level control through deep

reinforcement learning. Nature 518(7540) (2015) 529-533.

Mnih, V., Puigdomenech Badia, A., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,

Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. International

Conference on Machine Learning (ICML) (2016) 1928-1937.

Narottambhai Patel, M., Tandel, P. A Survey on Feature Extraction Techniques for Shape based

Object Recognition IJCA 137(6) (2016) 16-20.

Parashkevov, I. Joint Action Learners in Competitive Stochastic Games. Thesis, Cambridge,

Massachusetts, (2007).

Puterman, M.L. Markov Decision Processes-Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc., New York, NY, 1994.

Schaul, T., Quan, J., Antonoglou, I., Silver, D. Prioritized experience replay. International

Conference on Learning Representations. arXiv preprint arXiv:1511.05952 (2016).

Shang, K.H., Song, J.S. Newsvendor bounds and heuristic for optimal policies in serial supply

chains. Management Science 49 (5) (2003) 618-638.

Silver, E.A. Inventory Management. An Overview, Canadian Publications, Practical Applications

and Suggestions for Future Research. INFORM 46(1) (2008) 15-28.

Soria Olivas, E., David Martin Guerrero, J., Martinez Sober, M., Rafael Magdalena Benedito J.,

Jose Serrano Lopez, A. Handbook of Research on Machine Learning Applications and Trends:

Algorithms, Methods and Techniques (2 Volumes), 1st Edition, (2009).

Sterman, J.D. Business Dynamics. Systems Thinking and Modeling for a Complex World.

Boston, MA: Irwin/McGraw-Hill (2000).

55

Sterman, J.D. Modeling managerial behavior: Misperceptions of feedback in a dynamic decision

making experiment. Management Science 35(3) (1989) 321-339.

Szegedy, C., Toshev, A., Erhan, D. Deep neural networks for object detection. Advances in

Neural Information Processing Systems (2013) 2553-2561.

Sui, Z., Gosavi, A. and Lin. L. A Reinforcement Learning Approach for Inventory

Replenishment in Vendor-Managed Inventory Systems with Consignment Inventory.

Engineering Management Journal 22(4) (2010) 44-53.

Sutton, R.S., Barto, A.G. Reinforcement learning: An introduction. MIT Press, Cambridge,

(1998).

Sutton, R.S., Barto, A.G. Reinforcement learning: An introduction. Second edition. MIT Press,

Cambridge, (2018).

Tsitsiklis, J., Roy, B.V. An analysis of temporal-difference learning with function approximation.

IEEE Trans. Automatic Control 42 (1997) 674-690.

Van Roy, B., Bertsekas, D.P., Lee, Y., Tsitsiklis, J.N. A neuro-dynamic programming approach

to retailer inventory management, Technical report, Laboratory for Information and Decision

Systems, Massachusetts Institute of Technology, Cambridge, MA (1997).

Van der Pol, E., Oliehoek, F.A. Coordinated deep reinforcement learners for traffic light control.

NIPS’16 Workshop on Learning, Inference and Control of Multi-Agent Systems (2017).

Watkins, C.J.C.H., Dayan, P. Q-learning. Machine Learning 3 (1992) 279-292.

Zheng, Y.S. On properties of stochastic inventory systems. Management Science 38(1) (1992)

87-103.

