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RÉSUMÉ

Le suivi d’objets est une des tâches fondamentales de la vision par ordinateur. Étant donné
une cible initiale dans la première trame, l’objectif du suivi est de trouver la nouvelle position
de la cible dans les trames subséquentes. Les filtres de corrélation est une technique largement
utilisée dans les applications de reconnaissance de formes pour mettre en correspondance des
objets. Ainsi, de nombreuses méthodes de suivi sont basées sur les filtres de corrélation. Bien
que ces méthodes de suivi atteignent un bon compromis entre la précision et la vitesse de
suivi, leurs performances sont limitées par l’utilisation de caractéristiques d’apparence définies
manuellement. Récemment, les méthodes d’apprentissage profond ont démontré des résultats
impressionnants dans diverses tâches de vision par ordinateur. De ce fait, un grand nombre
de méthodes de suivi basées sur l’apprentissage profond ont été proposées pour améliorer la
robustesse et la capacité à discriminer les objets durant le suivi. Cependant, la représentation
des caractéristiques de la cible par un seul réseau neuronal convolutif (RNC) n’est souvent
pas assez discriminante. De plus, l’architecture du RNC doit être choisie avec soins pour
réduire le temps de calcul lors du suivi. Dans notre travail, nous avons exploré différentes
méthodes pour améliorer le pouvoir discriminant d’un RNC pour le suivi d’un objet. Nous
avons proposé deux méthodes de suivi, MBST (Multi-Branch Siamese Tracker) et MFST
(Multiple Features-Siamese Tracker). Les deux méthodes sont basées sur des RNC avec une
architecture siamoise. Cette architecture définit le suivi comme un problème d’apprentissage
par similarité.

L’algorithme MBST utilise plusieurs branches convolutives pour extraire des représentations
diverses sur l’objet à suivre, notamment des branches dépendantes du contexte et une branche
sémantique. Les branches dépendantes du contexte sont entrainées pour représenter plusieurs
catégories spécifiques d’apparence d’objets, codant ainsi plus d’informations de contexte pour
le suivi. La branche sémantique est entrainée pour résoudre la tâche de classification des
images, ce qui permet de mieux utiliser les informations sémantiques, c’est-à-dire les car-
actéristiques propres à une catégorie d’objets. Afin de mieux utiliser ces branches, nous
avons proposé un mécanisme de sélection en ligne, qui sélectionne de manière dynamique
la meilleure branche en fonction du pouvoir de discrimination calculé à partir de cartes de
corrélation. Basée sur une architecture multibranche et un mécanisme de sélection en ligne,
la méthode MBST obtient des performances supérieures par rapport aux méthodes standards
basées sur l’architecture siamoise.

Observant que les caractéristiques des sorties provenant de différentes couches de convolution



vi

d’un RNC intègrent différents niveaux d’abstraction de la cible, et que les différents canaux
des cartes de caractéristiques du RNC jouent différents rôles dans le suivi, nous avons proposé
la méthode MFST. Pour intégrer les différents niveaux d’abstraction, notre méthode utilise
de façon hiérarchique des cartes de caractéristiques de convolution issues de deux modèles
de réseaux neuronaux convolutifs. Ces cartes de caractéristiques sont aussi recalibrées pour
utiliser les canaux les plus appropriés pour décrire l’objet. Nous proposons également une
nouvelle stratégie de combinaison de caractéristiques afin de fusionner les diverses représen-
tations de la cible, ce qui génère un modèle d’apparence plus riche et robuste. Basée sur une
représentation plus riche de la cible, la méthode MFST permet d’obtenir une précision de
suivi plus élevée et surpassent plusieurs méthodes récentes de l’état de l’art.
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ABSTRACT

In this thesis, we study visual object tracking using deep similarity networks. Visual object
tracking is a fundamental task in computer vision. Many approaches based on correla-
tion filters and deep learning have been proposed to solve this problem. Inspired by deep
learning-based methods, we exploit the siamese network model to address object tracking,
by formulating tracking as a similarity learning problem.

Most deep learning methods only use features extracted from the last convolutional layer of
a single model which lead their tracker to be prone to fail when target appearance changes
significantly. Different features extracted from different convolutional models encode the
target object in different ways. Trackers with diverse feature representations can be adapted
more easily to challenging scenarios. Besides, the discriminative power of features from the
last convolutional layer is very limited. Since convolutional features from different layers
contain different levels of abstraction of the target object, discovering an appropriate scheme
to fuse hierarchical features is also beneficial for tracking.

Based on these observations, we proposed two trackers, MBST (Multi-Branch Siamese Tracker)
and MFST (Multiple Features-Siamese Tracker). Both trackers are built on the siamese ar-
chitecture, addressing tracking as a similarity learning problem. The Multi-Branch Siamese
Tracker employs multiple convolutional models to extract diverse feature representations for
the target object. It consists of context-aware branches, which are trained to track for sev-
eral specific appearance categories, and a semantic branch, which is trained to solve image
classification task and is used to extract semantic information and diversify feature represen-
tation. To make better use of each branch, we propose an online branch selection mechanism
to dynamically select the optimal branch according to their discriminative power. The sec-
ond tracker Multiple Features-Siamese Tracker utilizes convolutional features from multiple
layers of two convolutional models with a feature recalibration mechanism. With diverse
features from different layers and different models, the combined representation embeds not
only the high-level abstraction of the target object but also its detailed representation. We
also propose a feature recalibration mechanism to apply channel-wise weights on the feature
maps, in order to enhance discriminative channels. Both of these two trackers demonstrate
improved performance compared to standard Siamese trackers.
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CHAPTER 1 INTRODUCTION

As a fundamental task in computer vision, visual object tracking plays an important role
in many modern applications. For example, in autonomous driving, sensors must track sur-
rounding obstacles to estimate how those obstacles are moving and predict their trajectories
in the future. With the help of tracking technology, autonomous driving gets much safer. In
video surveillance, different type of targets need to be monitored. Once a target is labeled,
the tracking algorithm focuses on it. Based on this, the surveillance system is able to keep
watch on the target and analyses where the target is and what the target is doing. Besides,
many face beauty camera applications locate and track users’ face using such technologies.
With the known face area, these applications focus on the face and edit this area to ob-
tain better-looking pictures. Furthermore, with visual object tracking technology, unmanned
aerial vehicles get much more intelligent. Once the target is assigned, they track and follow
targets to perform more tasks.

1.1 Motivation

Despite significant progress in recent decades, large appearance changes that arise from oc-
clusion, deformation, illumination variation, abrupt motion, and background clutter are still
challenging for visual object tracking. These obstacles result in an error-prone target repre-
sentation. We summarize them as three main problems, 1) object appearance variations, 2)
appearance model update and drift and 3) target scale variation.

Object appearance variations In the problem of object appearance variations, there are
two vital appearance changes that cause significant difficulties. The first one is, for different
tracking tasks, the target objects may be different. The target objects we need to track can
be a car, a face, a human body or anything else assigned. Different objects have different
appearance which leads to varied input for the object tracking algorithm. The other one is
that after we know the target object, there are still some unstable visual attributes in the
frame sequences as illustrated in Table 1.1.

All these unstable factors may happen in any video sequence in the tracking scenario. There-
fore, the feature representation used in tracking should be robust enough to handle these
challenges.
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Table 1.1 Unstable attributes in the frame sequences in visual object tracking. (This table
is adapted [reprinted] from [1] c© 2015 IEEE)

Attr Description
IV Illumination Variation—The illumination in the target region is

significantly changed
SV Scale Variation—The size of the object changes over different

frames
OCC Occlusion—The target is partially or fully occluded
DEF Deformation—Non-rigid object deformation
MB Motion Blur—The target region is blurred due to the motion of

target or camera
FM Fast Motion—The motion of the target is large
IPR In-Plane Rotation—The target rotates in the image plane
OPR Out-of-Plane Rotation—The target rotates out of the image

plane
OV Out of-View—Some portion of the target leaves the view
BC Background Clutter—The background near the target has the

similar color or texture as the target
LR Low Resolution—The target region has only a few pixels

Appearance model update and drift Either in discriminative correlation filter-based
(DCF) tracking (Section 2.3) or in convolutional neural networks-based (CNNs) tracking
(Section 2.4), most of tracking approaches keep and update an appearance model for tracking.
Using the appearance model, the target is detected in video sequences. In many trackers
[5,16,17], the image patch assigned in the first frame is used to train the appearance model.
This image patch not only contains the target but also includes some context to be more
discriminative. After the target position is detected in the next frame, the appearance model
is updated at the new position. Thus, these tracking approaches use an appearance model
updating strategy that detects and updates for every frame. If a tracking error happens, the
appearance model drifts away from the visual appearance of the target.

Rather than updating the model every frame, ECO [18] uses a sparser updating scheme which
is commonly used in non-DCF trackers. The sparser updating scheme updates the model at
a fixed interval. However, an optimal updating mechanism should update the model once
sufficient changes in the target have occurred and when the target is tracked correctly. In
ECO [18], the model is updated at a fixed interval Ns. The model is optimized every Ns

frames. When Ns is 1, the optimization process would be performed in every frame, as in
standard DCF trackers. Through experiments, they found an empirical interval Ns ≈ 5,
which achieved better tracking performance on average.
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Regardless of updating the model every frame or at a fixed interval, when the tracking is
inaccurate, the output result may introduce negative background information to the appear-
ance model. In the worst case, the appearance model may stop representing the target object
since the target object gets lost gradually, which is called model drift.

To solve this problem, another model updating strategy is proposed in [3]. The model
updating is determined by two criterions which are based on the value of the peak-versus-
noise ratio (PNR) and the maximum value of the response map. Ideally, the response map
generated by DCF trackers should only contain one peak value which should correspond
to the ground truth position of the target object. However, the response may fluctuate
and contain more peak values when the target is occluded as shown in Figure 1.1. In the
meantime, the PNR value decreases significantly. Thus, considering the peak value of the
response map and the PNR value at the same time can avoid unexpected updating when the
occlusion happens. Otherwise, negative background information will be introduced into the
appearance model which lead to model drifting gradually.

Figure 1.1 The model update strategy proposed in [3]. The target object is occluded in the
second frame, which lead to more peak values in the corresponding response map. In the
corresponding map, although Rmax remains large, the PNR value significantly decreases.
Considering the two constraints, the unexpected model updating is avoided. (This image is
adapted [reprinted] from [3] c© 2017 IEEE)

Target scale variations Generally, the target scale changes significantly during tracking
which is not only caused by the target itself, but can also result from camera’s movement.
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The size of target can get larger or smaller at any time. However, the tracking system is
only given the initial bounding box in the first frame. If the tracking system keeps using a
bounding box with the same size to locate the target, the labeled area located by the tracking
system could contain many other neighboring areas and the tracking accuracy will decrease
a lot. Thus, another challenge is to learn to adapt the bounding box against target scale
variations.

The key to solving these problems is to find expressive features and corresponding trackers
that maintains a robust appearance model. The feature representation should allow the
tracker to differentiate the target object from the deceptive background and also tolerate
the appearance changes of the target object. Therefore, the goal of our work is to explore
different ways to represent the target object. Besides, our work also includes finding a robust
model update strategy to deal with the drifting problem and target scale variation.

1.2 Basic Concepts

To obtain a robust and effective feature representation, some works [5, 19] use correla-
tion filters to model the appearance of objects. With the kernel trick employed in these
work [5, 19, 20], these methods achieve almost real-time speed while keeping high accuracy.
At the same time, as the neural networks are getting more and more popular in the last
decade, they show outstanding performance on many computer vision tasks. Convolutional
neural network models have also been used in many approaches [7, 8, 21, 22] to obtain ro-
bust object appearance description. To understand visual object tracking more clearly, we
introduce some basic concepts in this section including kernelized correlation filters, convolu-
tion neural networks (CNN), siamese networks and some frequently-used deep convolutional
neural network models.

1.2.1 Kernelized Correlation Filter

The Kernelized Correlation Filter (KCF) is a well-known single target tracking method,
which has been used in many works [5, 19, 20]. Due to the fact that training examples can
be represented as a circulant matrix, correlation filter methods are very efficient.

Correlation with an example template is a common way to detect patterns in images. Cor-
relation filter-based trackers first model the appearance of target using filters trained on the
template image. Then they detect the object in the next frame by correlation with the filter
inside a search window. The position of maximum value in the output response indicates the
position of the target. An online update is performed based on the detection result.



5

Considering that there is a large number of samples to train, a circulant matrix is used to store
samples since circulant matrix can be diagonalized by Discrete Fourier Transform (DFT). The
off-diagonal elements of the circulant matrix are zero while the diagonal elements represent
eigenvalues which are equal to the DFT transformation of the sample (x). Therefore, the
KCF employs kernel to x transforming data to a feature domain. The kernelized x is shifted
and forms the circulant matrix. Such kernelization operation lead to O(n log(n)) complexity
rather than O(n2) or even higher complexities in other kernel algorithms. Thus, the process
can be formulated as a ridge regression problem:

Eh = min
h

1
2 ‖ y −

C∑
c=1

hc ∗ xc||2 + λ

2

C∑
c=1
||hc||2 (1.1)

where the objective is to minimize Eh given the training sample x and the desired response
y, h is the learned filter. More details are presented in [19].

1.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a class of feedforward neural networks
containing convolutional calculations with a deep structure. Generally, the CNN architecture
consists of an input layer, output layer, and multiple hidden layers. The hidden layers
contain convolutional layers, pooling layers, activation layers, fully connected layers, and
normalization layers.

The convolution operation includes two functions of a real-value argument. With x as an
input, the convolution operation is denoted as:

s(t) = (x ∗ w)(t) (1.2)

where the function w is referred to as the kernel, the output is typically referred to as the
feature map. An example of 2D convolution is shown as Figure 1.2.

1.2.3 Deep CNN Models

Since the pioneering work of AlexNet [23] that proposed to address the ImageNet [24] classi-
fication task, a large number of follow-up deep CNN models [2,25–27] were proposed. Many
experiments show that deep CNNs are able to handle most kinds of computer vision tasks
very well. Here we present two deep CNN models that are frequently used in object tracking.
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Figure 1.2 An example of 2D convolution without kernel flipping.

AlexNet The original AlexNet [23] was proposed to solve a classification task, which clas-
sifies high-resolution images into 1000 classes. It consists of five convolutional layers, three
fully-connected layers and a number of max-pooling layers following the convolutional lay-
ers. The final classification result is produced by a 1000-way softmax. Due to its efficient
feature representation ability, many works take the first five convolutional layers of AlexNet
to extract feature representations while ignoring the fully-connected layers. The architecture
of AlexNet [23] is shown as Figure 1.3.

Figure 1.3 An illustration of the architecture of AlexNet.

VGG To investigate the effect of the convolutional network depth on its accuracy in the
large-scale image recognition setting, Simonyan et al. [2] proposed an architecture with very
small (3 × 3) convolution filters, VGG networks. The proposed VGG networks show a sig-
nificant improvement and pushes the depth of networks to 16-19 weight layers as shown in
Table 1.2. It is remarkable that by stacking 3 × 3 conv. filter layers, 7 × 7 and 5 × 5 conv.
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filter layers can be superseded, and fewer parameters are required. Besides, more non-linear
layers can be incorporated, which makes the decision function more discriminative.

Table 1.2 The network configuration of VGG [2] networks. (This table is adapted [reprinted]
from [2] c© 2015 ICLR)

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input(224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max
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1.2.4 Siamese Networks

Nowadays, many deep learning-based trackers use siamese networks as basic framework. The
siamese networks are a special type of network structure. It consists of two identical neural
networks, each taking one of two input images. The last layers of the two networks are then
fed to the loss function. The structure of the siamese network is as shown in Figure 1.4.
Intuitively, we can put the exemplar image and the search image into the network to extract
feature representations for them. Taking the feature representation of the exemplar image
as a filter, a cross-correlation can be performed on the feature representation of the search
image to generate a response map. Each value of pixels in the response map indicates the
possibility to be the new location of the target. To train the network, the loss is defined to
be the mean of the individual difference between the response map and a ground truth map.

Figure 1.4 The structure of siamese networks. It contains two identical networks, each of
them takes one of the inputs and their outputs are fed to the loss function.

1.3 Research Objectives

The main objective of this thesis is to discover a robust and efficient feature representation
for visual object tracking, which is able to deal with appearance variations. Furthermore, our
work aims at solving the model drifting problem and scale variation problems. Therefore,
the research objectives of this work can be summarized as follows:

• To discover a robust and efficient feature representation for visual object tracking, which
can handle appearance variations.
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• To investigate the combination of various features which can make full use of feature
representation extracted by our system.

• To develop a model update strategy that addresses the model drifting problem and is
aware of object scale variations.

1.4 Thesis Outline

Our thesis is organized as follows. We first introduce some related work and the evaluation
metrics in Chapter 2. Then, we give an overview of the approaches we proposed in Chapter
3. Our approaches are described in Chapter 4 and Chapter 5. Chapter 6 presents general
discussion and Chapter 7 concludes the thesis.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, we define and discuss the visual object tracking (VOT) problem and some
related concepts. We also introduce the main state-of-the-art approaches in VOT.

2.1 Visual Object Tracking

Visual object tracking (VOT) can be defined as the process of locating a region of interest in a
video sequence, which contains four steps: target initialization, appearance modeling, motion
prediction, and target positioning [28]. The first step, target initialization, is to annotate the
target object with any of the following representations: centroid, ellipse, object bounding
box, object contour or object skeleton. Usually, the target object is annotated in the first
frame of the video sequence with a bounding box, and the trackers locate the target object
in the following frames.

Appearance modeling consists of extracting visual features for a better representation of the
target object, and in constructing mathematical models which are used for object detection
with learning approaches. Then, the position of the target is predicted in the motion pre-
diction step for subsequent frames. The target positioning step outputs the location of the
target by greedy search or maximum posterior prediction. The VOT process is challenging
due to many real-world difficulties:

• loss of information in image projection;

• low image quality;

• uncertainties of target object;

• movements of target object;

• illumination variation;

• object occlusion;

• real-time tracking constraints.

Tracking problems can be simplified by applying constraints on the appearance and motion
models. For example, we can assume that there are no significant appearance changes in
sequential frames and the motion of the target object is smooth. Furthermore, we can also
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assume that the velocity of the moving target is constant or accelerates constantly. The
visual object tracking process is illustrated as Figure 2.1.

Figure 2.1 The illustration of visual object tracking process. It includes target initialization,
appearance model, motion prediction and target positioning. Appearance model is updated
by new target appearance.

Several works have been conducted on object tracking. The main differences between these
works come from different object representation, image features and the model they used.
To represent the tracked object, three types of methods can be used, hand-crafted features,
correlation filters, and deep features. Our review focuses on different object representations
and two types of methods are described in Section 2.3 and Section 2.4.

2.2 Feature Descriptors

To distinguish between the target and the surrounding environment, different feature descrip-
tors can be used to represent them. In this section, we introduce three popular handcrafted
feature descriptors: Color Histogram, Color Name (CN) and Histogram of Oriented Gradi-
ents (HOG), which are the most frequently used in visual object tracking in the last few years
for methods that are not based on deep learning.

Color Histogram and Color Name Color is one of the important characteristics of our
world. As such, it is also a significant feature in computer vision to describe images and
objects. However, its description is complicated since there are lots of uncertainties in many
tasks. To understand visual data better, it is crucial to make better use of color information.

Color histogram is a summarization of the color distribution in an image, it can be built
from images in various color spaces, like RGB or HSV. To collect the color distribution, we
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can divide the color values into several bins. The number of pixels in each bin will be used
as the value of the corresponding histogram. The color histogram represents the statistics
of different types of color, which is typically used in appearance modeling in visual object
tracking.

Color names (CN), which are linguistic color labels representing colors, showed excellent
results for computer vision tasks. The work [29] concludes that there are eleven basic color
terms: red, orange, yellow, green, blue, purple, grey, black, pink, white and brown. Thus,
color naming is associating RGB observations with color labels. Weijier et al. [30] proposed
an approach mapping RGB values with color names, which are automatically learned from
real-world image. Danelljan et al. [31] investigated the color contribution in a tracking-by-
detection framework with a color mapping. The adaptive color names-based approach shows
superior performance for object tracking.

Histogram of Oriented Gradients In computer vision, the histogram of oriented gra-
dients (HOG) is a texture descriptor based on shape and edge, which can be used to detect
objects. The basic idea of HOG is to use gradient information to reflect the edge information
of the target image and to characterize the local appearance and shape of the image through
the value of the local gradient. Bhat et al. [15] used HOG features and other features in
object tracking and obtained good results.

Figure 2.2 Illustration of HOG descriptor. (This image is adapted [reprinted] from [4] c©
2014 ELSEVIER)

HOG feature extraction can be represented by the process shown in Figure 2.2: (1) normalize
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the color space to reduce the influence of illumination and background, (2) divide the detec-
tion windows into cells of the same size and extract corresponding gradient information, (3)
combine adjacent cells into large overlapping blocks, which can effectively utilize overlapping
edges information and be used to build the histogram statistics of the whole block, (4) the
gradient histogram in each block is normalized to further reduce the influence of background
and noise, (5) the HOG features of all blocks in the whole window are collected and the
feature vectors are used to represent the features. In this process, the parameters template
of different scale, the selection of gradient direction, the size of overlapping blocks and cells,
as well as the normalization factor, will affect the final results.

2.3 Tracking based on Correlation filter

Correlation is a common measure in pattern recognition. In spite of much known weakness,
its efficiency and simplicity have attracted continuous research on it. A common way to
use correlation is the correlation filter-based tracking approaches. Given the target object
in the first frame, the correlation filter-based trackers train filters on the specific region to
encode the target appearance. From this point on, the trackers detect the target object in the
subsequent frames and update the filters based on the newly detected object. The tracking
process starts from correlating the filter over a sub-window in the next frame and generate a
response map. The value of each pixel indicates the possibility of being the new position of
the target. Thus, the location of the maximum value is regarded as the result. The filter is
updated on the new location then.

To speed up tracking, correlation is employed in the Fourier domain with the Fast Fourier
Transform (FFT). First, the input image f and the filter h are transformed:

F = F(f)

H = F(h).
(2.1)

It is known that correlation is an element-wise multiplication in the Fourier domain, which
can be a form of:

G = F �H∗ (2.2)

where � denotes the element-wise multiplication operation and ∗ indicates the complex
conjugate. Afterward, the outputG is transformed back into the spatial domain by the inverse
FFT. With the use of FFT, correlation filters-based approaches obtain high computational
efficiency. The performance of correlation filters has been greatly extended in object tracking.
The following subsections discuss in detail about kernelized correlation filters and MOSSE [16]
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filters.

2.3.1 Kernelized Correlation Filters

Most correlation filter trackers are discriminative classifiers, whose purpose are to classify
the target and surrounding environment. Considering that these trackers are trained with
translated and scaled sample patches, Henriques et al. [5] proposed kernelized correlation
filters which shift training samples into circulant matrix and use kernelized regression for
detection.

Cyclically shifted samples Since discriminative classifiers are trained online with sam-
ples collected during tracking, the tracking speed is seriously affected by the potentially large
number of samples. Whereas, limiting the training samples may be at the cost of discrimi-
nation performance. Henriques et al. [32] observed that this problem can be solved by using
circulant structure.

The circulant structure consists of a base sample and several virtual samples by translating
the base sample. Regarding an n×1 vector v as the target patch, using a cyclic shift operator
can model 1D translations:

C =



0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
... ... . . . . . . ...
0 0 . . . 1 0


(2.3)

The product C(v) = [vn,v1,v2, . . . ,vn−1]T shifts v by one element, modeling a small trans-
lation. A larger translation can be obtained by chaining u shifts as Cuv. A negative u shifts
in the reverse direction. Examples are shown in Figure 2.3 and Figure 2.4.

The circulant structure used can encode the convolution of vectors, which is close to what
we do when evaluating a classifier at many different subwindows. Due to the properties of
circulant matrices, they can be computed in the Fourier domain, which makes the learning
extremely fast while the detection still performs well.

Ridge regression with shifted samples Since the ridge regression admits a close-form
solution and can achieve outstanding performance, it can be used to train correlation filters.
The objective of training is to find a correlation function f(v) = wT v that minimizes the
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Figure 2.3 An example of translating 1D signal to generate a circular matrix. The rows are
cyclic shifts of the base sample. (This image is adapted [reprinted] from [5] c© 2015 IEEE)

Figure 2.4 Illustration of vertical cyclic shifts of a base sample. (This image is adapted
[reprinted] from [5] c© 2015 IEEE)

Euclidean distance between the samples v and the expected outputs y with a regularization
term:

min
w

∑
(f(v)− y)2 + λ||w||2 (2.4)

To solve the regression problem, all possible cyclic shifts can be used as a circulant matrix
V :

V = C(v) =



v1 v2 v3 . . . vn

vn v1 v2 . . . vn−1

vn−1 vn v1 . . . vn−2
... ... ... . . . ...
v2 v3 v4 . . . v1


(2.5)

The first row is the base sample v, then each row is shifted one element to the right as
Figure 2.3 illustrates. With the circulant matrix, the training process is much more efficient
by diagonalizing. Besides, the "kernel trick" can be used to advance the training. Since the
optimization problem is linear, the complexity of evaluating the regression function is linearly
associated with the number of samples. However, with kernel trick, the inputs of a linear
problem can be mapped to a non-linear feature-space.
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2.3.2 MOSSE Filters

The core idea of Minimum Output Sum of Squared Error (MOSSE) [16] is to produce cor-
relation filters with fewer training images. Taking a set of training images fi and expected
outputs gi, typically, gi is generated from ground truth which has a compact 2D Gaussian
shaped peak in the training image fi centered on the target object. By applying the training
in the Fourier domain, a simple element-wise relationship can be built for the input and the
output as shown in Equation 2.6.

H∗i = Gi

Fi

(2.6)

where Fi, Gi are the Fourier transform of fi and gi, H is the correlation filter to be trained.

To find the optimal filter that maps the training inputs to the expected outputs, MOOSE
proceeds by minimizing the Sum of Squared Errors (SSE) to solve this problem, as shown in
Equation 2.7.

min
H∗

∑
i

|Fi ·H∗ −Gi|2 (2.7)

The idea of using SSE to find the correlation filter has been used many correlation filters-
based tracking methods. Whereas, rather than assuming that the target was always centered
in the input and the output was fixed. MOSSE customize every output gi. Since the target
is not always centered in the tracking problem, the Gaussian shaped peak moves following
the target in the input, the idea of customizing every output gi is more reasonable.

2.4 Tracking based on CNNs

Nowadays, many computer vision tasks have benefited from convolutional neural networks
(CNNs), such as image classification, object detection, semantic segmentation, and many
others. Visual object tracking also takes advantage of CNNs due to its feature representation
ability. In this section, we introduce CNN-based tracking approaches, including tracking
by regression networks, tracking by siamese networks, tracking with the combination of
representation learning and correlation filter and tracking with visual attention.

2.4.1 Tracking by regression networks

Li et al. [6] proposed DeepTrack, using a complex Convolutional Neural Network model for
learning effective feature representations of multiple input cues. The CNN model consists of
two convolutional layers and two fully-connected layers. The ReLU (Rectified Linear Unit)
is adopted as the activation function, and max-pooling operators are used for dimension-



17

Figure 2.5 The CNN architecture of DeepTrack with multiple image cues. The gray dashed
blocks are the independent CNN channels for different image cues, the green dashed block
is the fusion layer where a linear mapping is learned. (This image is adapted [reprinted]
from [6] c© 2016 IEEE)

reduction. They use locally normalized image patches as input, which draws a balance
between the representation power and computational load. After convolutional layers, a 72-
dimensional feature vector is generated. Then, fully connected layers map the 72-D feature
vector into a 2-D confidence vector which corresponds to the positive score and negative score
for the image patch. The CNN architecture of DeepTrack is shown in Figure 2.5.

Even though DeepTrack [6] has achieved remarkable performance improvement over correla-
tion filter-based trackers, the tracking speed of those trackers [6,33] trained online are limited.
Held et al. [7] proposed a regression network-based method GOTURN, which is trained of-
fline, tracking objects at 100 fps. Without online training, the GOTURN tracker learns a
generic relationship between object motion and appearance. The network architecture of
GOTURN is shown in Figure 2.6.

Figure 2.6 The network architecture of GOTURN [7]. It first extracts features of target
object and searches region by a set of convolutional layers. Features are then fed through the
fully connected layers to estimate the movement of the target object. (This image is adapted
[reprinted] from [7] c© 2016 Springer)

Using regression networks, GOTURN [7] formulates the tracking problem as an image com-



18

parison problem. It employs a sequence of convolutional layers to extract the deep feature of
the target object and the search region. Then, the outputs are fed through three fully con-
nected layers. The fully connected layers compare the features of the target object and the
features of the search region in the current frame to find the movement of the target object.
Since the networks are fully trained offline on a collection of videos and no online training is
needed in tracking, it tracks novel objects in a fast and accurate and robust manner.

2.4.2 Tracking by siamese networks

Trackers based on regression networks [6,7,33] predict the bounding box of the target object
directly. Unlike regression networks-based trackers [6,7,33], siamese networks-based trackers
[8,34,35] address tracking as a similarity learning problem. The pioneering work, SiamFC [8],
takes two identical branches to extract deep features from the exemplar image and the search
image. The identical feature extraction branches are fully convolutional layers. After that,
the feature map extracted from the exemplar image is regarded as the filter to perform
correlation on the feature map extracted from the search image. By computing the similarity
of all translated sub-window effectively, the position of maximum value in the output response
map is the location of the target object. The architecture of SiamFC [8] is as shown in Figure
2.7.

Figure 2.7 The architecture of SiamFC [8]. The inputs are the exemplar image and the search
image. Then, two identical branches made up of fully convolutional neural networks, extract
feature representations for inputs. The output is a score map produced by correlation using
feature representation of exemplar image on search image. In this example, the value of red
and blue pixels indicate the similarities for the corresponding sub-windows. (This image is
adapted [reprinted] from [8] c© 2016 Springer)
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2.4.3 Representation learning for correlation filter

Correlation Filter trains a linear template to classify the target and surrounding environment.
These correlation filter based trackers [5, 19, 20] adopt features that are either manually
designed or trained for a different task. While on the other hand, deep features which are
learned from data show robust representation to describe objects. SiamFC [8] focuses on
learning a similarity function to discriminate whether two images patches contain the same
object or not, by exploiting deep features. However, a fixed metric learned offline prevents
the tracker from utilizing any video-specifies cues which may be helpful for discrimination. In
light of these limitations, Valmadre et al. [9] incorporates a Correlation Filter into a siamese
network. Instead of using the convolutional feature of the target object directly, they employ
a correlation filter learner in the network which enables learning features coupled to the
correlation filter. The architecture of CFNet is shown as Figure 2.8.

Figure 2.8 The network architecture of CFNet. The first part is two identical branches made
up of fully convolutional neural networks like SiamFC [8]. The difference between CFNet [9]
and SiamFC [8] is that CFNet employs an additional correlation filter learner layer to learn
filter on the feature representation of the exemplar image. (This image is adapted [reprinted]
from [9] c© 2017 IEEE)

After incorporating a correlation filter layer into the similarity network during training, it
enables shallow networks to rival their slower, deeper counterparts. CFNet [9] can achieve
the same tracking accuracy as the basic siamese tracker SiamFC [8].

CFNet [9] learns correlation filter on the feature from the last convolutional layer. Different
from CFNet [9], Ma et al. [21] utilize features from different convolution layers to learn the
correlation filters. They observed that features from different levels of convolution layers
contain different information, which is complementary. The last layers of CNNs are efficient
to capture semantics. However, they are insufficient for capturing details. On the contrary,
the earlier layers, are precise in localization since more details are kept, while they are unable
to capture semantics as illustrated in Figure 2.9. Based on this observation, they adaptively
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learn correlation filters on each convolution layer to encode target appearance.

Figure 2.9 Visualization of deep hierarchical feature. Features from earlier layers contain
more low-level information similar to the response map of Gabor filters [10]. On the contrary,
features from deeper layers capture more semantic information and less spatial details. (This
image is adapted [reprinted] from [11] c© 2018 IEEE)

2.4.4 Tracking with Visual Attention

The visual attention scheme has been widely exploited for many computer vision applications,
including image classification, image captioning, pose estimation, etc. SAGAN [36] utilizes
the self-attention module presented in [37], to capture long-range dependencies. With this
attention mechanism, the long-range dependencies are embedded in the feature maps. It is
complementary to the convolutions, whose advantage lies in modeling local dependencies.
Different from the self-attention module used in SAGAN [36], DSiamM [12] learns a spatial
weight maps to fuse multi-level deep features. More specifically, when the target is near the
center of the search region, the shallower layer features get more weight at the center region
while the background region gets less weight. The weight of the deeper layer is the opposite
as illustrated in Figure 2.10. Owing to the fact that features from the deeper layer help to
remove the background interference while features from the shallower layer can get precise
localization of the target, the complementary role of response maps from different layers
is reflected in the attention maps. It is helpful to obtain a better tracking performance.
Besides, another way to take advantage of visual attention is exploited in [38]. They regard
object tracking as a two-stage problem, drawing some samples in the search image first
and classifying these samples as target or background. The attention maps they used are the
partial derivative output of the first layer, which indicates the importance of each pixel in the
input sample to affect the classification accuracy. Through a reciprocative learning scheme,
the attention maps cover the whole target region gradually, and the tracking performance is
improved even if target objects undergo large movements.
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Figure 2.10 The spatial weight maps learned in DSiamM [12], the left map is learned for the
shallower layer of AlexNet, the right map is learned for the deeper layer of AlexNet. (This
image is adapted [reprinted] from [12] c© 2017 IEEE)

2.5 Evaluation Metrics

Wu et al. [1] proposed the OTB benchmark, which has been widely used to evaluate state-of-
the-art trackers. It consists of three datasets, OTB-2013, OTB-50 and OTB-100. The OTB-
2013 dataset contains sequences with 51 target objects, the OTB-50 and the OTB-100 include
sequences with 50 target objects and 100 target objects, respectively. All sequences are
categorized according to 11 attributes as illustrated in Table 1.1. The benchmark considers
two evaluation metrics, the center location error and the overlap score.

The center location error is known as the Precision plot, which computes the average squared
error between the center locations of the ground-truth labels and the tracked targets of all
the frames. Since the average error is prone to be affected by bias results, it does not measure
the tracking performance with much accuracy. Thus, the percentage of frames in which the
precision is within a given threshold is reported. The precision at the threshold of 20 pixels
is typically used to rank trackers.

The overlap score is known as the Success plot, which computes intersection over union
(IoU) between the ground-truth labels and the tracked targets. Given a score threshold,
the overlap scores demonstrate whether a tracker successfully tracks the target object in one
frame. As the threshold varies between 0 and 1, the corresponding success rates are drawn
as the Success plot. The area under curve (AUC) of each success plot is usually used to rank
trackers, which corresponds to the average success rates for all sampled overlap thresholds.
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2.6 Discussion

In this chapter, we introduced the process of VOT and the background knowledge. In addi-
tion, we also discussed some the state-of-the-art approaches from two perspective, correlation
filter-based trackers and deep learning-based trackers. Finally, we presented the standard
evaluation metrics used for VOT.

Correlation with an example template is a common way to detect target object in VOT. Be-
sides, with the help of kernel trick, the tracking speed of most KCF-based trackers [5,19,20]
has been increased by an order of magnitude. The correlation filter works well if the appear-
ance of the tracking target does not change a lot. Whereas, in most visual object tracking
scenario, the target object undergoes significant appearance changes. To improve the robust-
ness of tracking, many works [6–8] train convolutional neural networks to represent features.
In the meantime, some works [9, 21] combine CNNs with correlation filters, alleviating the
depth and the number of parameters of CNNs. However, their performances are still limited
when target objects undergo large movements. Since there are lots of uncertainties in the
tracking objects, only a single pretrained networks can not generate discriminative enough
feature representations. To optimize the representation ability of CNNs in VOT, we explore
strategies including multiple branches, online selection, and hierarchical feature fusing, in
our work. By using multiple branches, diverse representations can be generated. For dif-
ferent tracking situations, we can choose the optimal representation via our online selection
mechanism against the target appearance changes. In addition, combining hierarchical con-
volutional features to encode the target can enhance the representation power comparing
with features from the only last convolutional layer.
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CHAPTER 3 OVERVIEW

In this thesis, we propose approaches to address challenges in visual object tracking. Specifi-
cally speaking, in visual object tracking scenarios, target object appearance can be affected by
object motion, changes in viewpoint, lighting variation, and other disturbing factors. In our
work, we employ a more robust and efficient feature representation against those disturbing
factors. The proposed methods are described in Chapter 4 and Chapter 5.

3.1 Multi-Branch Siamese Networks with Online Selection

In our first article, we present MBST, a multi-branch Siamese tracker. Considering that the
feature representation ability is not robust enough especially when facing those disturbing
factors mentioned above, our goal is to explore strategies to enrich the feature representation
of neural networks-based trackers. Hence, we proposed two strategies to improve the discrim-
inative ability of pretrained models. The first one is training the network in different contexts,
corresponding to different context-dependent branches. Since each branch is fine-tuned in a
different context, they can have different performance in different tracking scenarios. The
second strategy is to add networks designed and trained for different tasks. In our approach,
we utilize the pretrained AlexNet [23], which is designed for image classification task and
trained in ImageNet [24] dataset.

After we get multiple branches, different branches have different performance in different
tracking scenarios. Combining these different branches can diversify the feature represen-
tation of our approach. Thus, we need to find a way to ensemble these branches together
and maximize the tracking performance of the whole network. Given more discriminative
response maps usually generate more accurate tracking results, we proposed an online branch
selection mechanism to select branches when tracking. The online branch selection mech-
anism selects the branch to be used in tracking according to the response maps which are
calculated by the feature representations generated in these branches. Besides, to deal with
the problem of target scale variations, we input the target object over three scales and update
the size of the bounding box by the scale obtaining the maximum response value.

With our multiple branches architecture and online branch selection mechanism, our tracker
obtains improved performance compared to standard Siamese network trackers on object
tracking benchmarks [1, 13].
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3.2 Multiple Features of Siamese Networks

In the second paper, we improve the discriminative power of feature representations by
utilizing features from different convolutional layers and two CNN models and using a feature
recalibration mechanism. A Multiple Features-siamese Tracker (MFST) is proposed in this
paper. It is well known that deep features from the last convolutional layer embed semantic
information of the target, which is invariant to appearance changes. However, since the
receptive field of the convolutional features from the deeper layer is large, it cannot get a
precise spatial localization which is very important in object tracking. On the contrary,
features from shallower layers contain more details and can get more precise localization
but they are prone to fail when appearance changes. Besides, as we observed from multi-
branch tracking methods, the combination of multiple CNN models can diversify the feature
representation, to ensure a more efficient and robust tracking. To make better use of features
extracted from the CNN models, we combine multiple features from different convolutional
layers and different CNN models. To combine these features appropriately, we exploit three
types of combination schemes, hard weight, soft mean and soft weight. The optimal strategy
is used in our tracker to obtain the best feature representation of the target object.

In addition, we employ a feature recalibration mechanism in our approach, the Squeeze-and-
Excitation block. It extracts the channel descriptor first and then applies a two layers MLP
to learn the channel-wise dependencies. Since different channels of the features play different
roles in tracking, by using the feature recalibration mechanism, the discriminative channels
of the features are enhanced while the others are weakened.

With the combination of hierarchical features from different models and the feature recal-
ibration mechanism, a much-improved feature representation is obtained with our method.
The MFST achieves comparable performance among some recent state-of-the-art tracker on
the OTB benchmarks [1, 13].

3.3 Experimentation

To validate the robustness of feature representation proposed in both of our trackers, we
evaluated our methods on the visual object tracking benchmarks OTB2013 [13], OTB50 [13]
and OTB100 [1]. After training our models offline, the learned models are used for tracking.
The evaluation experiments were executed multiple times, which ensures the reliability of
results. We also did an ablation study to assess the contribution of each module in our
method. In addition, our method was evaluated in different tracking scenarios with different
challenges. More details are presented in Chapter 4 and Chapter 5.
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4.1 Abstract

In this paper, we propose a robust object tracking algorithm based on a branch selection
mechanism to choose the most efficient object representations from multi-branch siamese
networks. While most deep learning trackers use a single CNN for target representation,
the proposed Multi-Branch Siamese Tracker (MBST) employs multiple branches of CNNs
pre-trained for different tasks, and used for various target representations in our tracking
method. With our branch selection mechanism, the appropriate CNN branch is selected de-
pending on the target characteristics in an online manner. By using the most adequate target
representation with respect to the tracked object, our method achieves real-time tracking,
while obtaining improved performance compared to standard Siamese network trackers on
object tracking benchmarks.

Keywords: Object tracking, Siamese networks, Online branch selection.
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4.2 Introduction

Model-free visual object tracking is one of the most fundamental problems in computer vision.
Given the object of interest marked in the first video frame, the objective is to localize the
target in subsequent frames, despite object motion, changes in viewpoint, lighting variation,
among other disturbing factors. One of the most challenging difficulties with model-free
tracking is the lack of prior knowledge on the target object appearance. Since any arbitrary
object may be tracked, it is impossible to train a fully specialized tracker.

Recently, convolutional neural networks (CNNs) have demonstrated strong power in learning
feature representations. To fully exploit the representation power of CNNs in visual tracking,
it is desirable to train them on large datasets specialized for visual tracking, and covering
a wide range of variations in the combination of target and background. However, it is
truly challenging to learn a unified representation based on videos that have completely
different characteristics. Some trackers [7] train regression networks for tracking in an entirely
offline manner. Other works [8, 9, 34] propose to train deep CNNs to address the general
similarity learning problem in an offline phase and evaluate the similarity online during
tracking. However, since these works have no online adaptation, the representations they
learned offline are general but not always discriminative.

Rather than applying a single fixed network for feature extraction, we propose to use multiple
network branches with an online branch selection mechanism. It is well known that different
networks designed and trained for different tasks have diverse feature representations. With
the online branch selection mechanism, our tracker dynamically selects the most efficient and
robust branch for target representation, even if the target appearance changes. Our goal is
to improve the generalization capability with multiple networks.

The main contributions of our work are summarized as follows. First, we propose a multi-
branch framework based on a siamese network for object tracking. The proposed architec-
ture is designed to extract appearance representation robust against target variations and
changing contrast with background scene elements. Second, to make the full use of the
different branches, we propose an effective and generic branch selection mechanism to dy-
namically select branches according to their discriminative power. Third, on the basis of
multiple branches and branch selection mechanism, we present a novel deep learning tracker
achieving real-time and improved tracking performance. Our extensive experiments compare
the proposed Multi-Branch Siamese Tracker (MBST) with state-of-the-art trackers on OTB
benchmarks [1, 13].
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4.3 Related Work

Siamese Network Based Trackers. Object tracking can be addressed using similarity
learning. By learning a deep embedding function, we can evaluate the similarity between
an exemplar image patch and a candidate patch in a search region. These procedures allow
to track the target to the location that obtains the highest similarity score. Inspired by
this idea, the pioneering work of SiamFC [8] proposed a fully-convolutional Siamese Network
in which the similarity learning with deep CNNs is addressed using a Siamese architecture.
Since this approach does not need online training, it can easily achieve real-time tracking.
Due to the robustness and real-time performance of the SiamFC [8] approach, several subse-
quent works proceeded along this direction to address the tracking problem. In this context,
EAST [39] employs an early-stopping agent to speed up tracking where easy frames are
processed with cheap features, while challenging frames are processed with deep features.
CFNet [9] incorporates a Correlation Filter into a shallow siamese network, which can speed
up tracking without accuracy drop comparing to a deep Siamese network. TRACA [14]
applies context-aware feature compression before tracking to achieve high tracking perfor-
mance. SA-Siam [34] utilizes the combination of semantic features and appearance features
to improve generalization capability. In our work, we use the Siamese Network as embedding
function to extract feature representations. All branches use the Siamese architecture to
apply identical transformation on target patch and search region.

Multi-Branch Tracking Frameworks. The diversity of target representation from a single
fixed network is limited. The learned features may not be discriminative in all tracking
situations. There are many works using diverse features with context-aware or domain-aware
scheme.

TRACA [14] is a multi-branch tracker, which utilizes multiple expert auto-encoders to ro-
bustly compress raw deep convolutional features. Since each of expert auto-encoders is
trained according to a different context, it performs context-dependent compression. MD-
Net [33] is composed of shared layers and multiple branches of domain-specific layers. Bran-
chOut [40] employs a CNN for target representation, with a common convolutional layers
and multiple branches of fully connected layers. It allows different number of layers in each
branch to maintain variable abstraction levels of target appearances.

A common insight of these multi-branch trackers is the possibility to make a robust tracker
by utilizing different feature representations. Our method shares some insights and design
principles with other multi-branch trackers. Our network architecture is composed of multiple
branches separately trained offline and focusing on different types of CNN features. In
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addition, we use an AlexNet [23] branch in our framework that is designed and pretrained for
image classification. In our multi-branch frameworks, the combination of branches trained
in different scenarios ensures a better use of diverse feature representations.

Online Branch Selection. Different models produce various feature maps on different
tracked targets in different scales, rotations, illumination and other factors. Using all fea-
tures available for a single object tracking is neither efficient nor effective. BranchOut [40]
selects a subset of branches randomly for model update to diversify learned target appear-
ance models. MDNet [33] learns domain-independent representations from pretraining, and
identifies branches through online learning.

In our online branch selection mechanism, we analyse the feature representation of each
branch to select the most robust branch at every T frames. This allows us to use diverse
feature representations and to handle various challenges in the object tracking problem more
efficiently.

4.4 Multi-Branch Siamese Tracker

We propose a multi-branch siamese network for tracking. Given that different neural network
models produce diverse feature representations, we use many of them as branches in our
tracker to produce diverse feature representations and select the most robust branch with
our online branch selection mechanism.

4.4.1 Network Architecture

Using multiple target representations is shown to be beneficial for object tracking [34, 41],
as different CNNs can provide various feature representations. In our work, we ensemble
Ne siamese networks including Ns context-dependent branches and one AlexNet branch as
Ne = Ns + 1. The context-dependent branches have the same structure as SiamFC [8] and
the AlexNet branch has the same structure as AlexNet [23]. Each branch of the tracker
is a siamese network applying identical transformation ϕi to both inputs and combining
their representation by a cross-correlation layer. The architecture of the proposed tracker is
illustrated in Fig. 4.1.

The input consists of a target patch cropped from the first video frame and another patch
containing the search region in the current frame. The target patch z has a size ofWz×Hz×3,
corresponding to the width, height and color channels of the image patch. The search region
X has a size of WX ×HX × 3 (Wz < WX and Hz < HX), representing also the width, height
and color channels of the search region. X can be considered as a collection of candidate
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Figure 4.1 The architecture of our MBST tracker. Context-dependent branches are indicated
by green blocks and AlexNet branch is indicated by purple blocks.

patches x in the search region with the same dimension as z.

From what we observed, there are two strategies to improve the discriminative ability of the
tracking networks. The first one is training the network in different contexts, while the second
one is to use multiple networks designed and trained for different tasks. In our approach,
we utilize context-dependent branches pretrained in different contexts in addition to another
branch pretrained for image classification task to improve our tracking performance. We
note that more branches could be added with other pre-trained networks at the cost of
slower performances.

Context-dependent branches: We use Nc context-dependent branches and one general
branch as Ns = Nc + 1. All these branches have the same architecture as the SiamFC
network [8]. Context-dependent branches are trained in three steps. Firstly, we train the basic
siamese network on the ILSVRC-2015 [24] video dataset (henceforth ImageNet), including
4,000 video sequences and around 1.3 million frames containing about 2 million tracked
objects. We keep the basic siamese network as the general branch. Then, we perform
contextual clustering on the low level feature map from the ImageNet Video dataset to find
Nc (Nc = 10) context-dependent clusters. Finally, we use the Nc clusters to train Nc context-
dependent branches initialized by the basic siamese network. These branches take (z,X) as
input and extract their feature maps. Then, using a cross correlation layer we combine their
feature maps to get a response map. The response map of context-dependent branches is
calculated as:

hsi
(z,X) = corr(fsi

(z), fsi
(X)), (4.1)

where si indicates the contextual index including the general branch (i = 0), f(·) denotes
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Figure 4.2 Online branch Selection mechanism and response map example.

features generated by the network.

The AlexNet branch: We use AlexNet [23] pretrained on the image classification task as
a branch with a network trained for a different task. Small modifications are made on the
stride to ensure that the output response map has the same dimension as other branches.
Since AlexNet is trained for image classification and the deeper layers encode more semantic
information of targets, target representations from this branch are more robust to signifi-
cant appearance variations. The network output corresponds to (z,X) as input, while the
generated features are denoted as fa(·). The response map is expressed as:

ha(z,X) = corr(fa(z), fa(X)). (4.2)

In our implementation, MBST is composed of context-dependent branches and AlexNet
branch. The output of each branch is a response map indicating the similarity between tar-
get z and candidate patch x within the search region X. The branch selection mechanism
compares the maps from each branch to select the most discriminative one. The correspond-
ing branch is then used for T − 1 frames.

4.4.2 Online Branch Selection Mechanism

Different branches trained in different scenarios can be used to diversify the target represen-
tation. To ensure the optimal exploitation of the diverse representations from our branches,
we designed a branch selection mechanism to monitor the tracking output and automatically
select the most discriminative branch as illustrated in Fig. 4.2.

Given the input image pair, each branch applies identical transformation to both inputs and
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calculates the response map h using a cross-correlation layer. Since the ranges of feature
values from different branches are different, we apply response weights wi on response map of
each branches to normalize their range difference. The discriminative power is then measured
based on the weighted response maps from all branches. The heuristic approach we used to
measure the discriminative power of branches is formulated as:

R(wihBi
) = wi(P (hBi

)−M(hBi
)), (4.3)

where hBi
is the response map for each branch Bi, PBi

is the peak value of the response map
hBi

, and MhBi
is the minimum value of the response map hBi

.

The objective function of our branch selection mechanism can be written as:

B∗ =Bi
R(wihBi

), (4.4)

where B∗ is the selected branch to transform inputs.

4.5 Experiments

The first aim of our experiments is to investigate the effect of incorporating multiple feature
representations with an online branch selection mechanism. For this purpose, we performed
ablation analysis on our framework. We then compare our method with state-of-the-art track-
ers. The experimental results demonstrate that our method achieves improved performance
with respect to the basic SiamFC tracker [8].

4.5.1 Implementation Details

Network structure: The context-dependent branches have exactly the same structure as
the SiamFC network [8]. For the AlexNet branch, we use AlexNet [23] pretrained on ImageNet
dataset [24] with a small modification to ensure that the output response map has the same
dimension as other branches, which is 17× 17. Other branches could also be used based on
other network architectures.

Data Dimensions: In our experiment, the target image patch z has a dimension of 127×
127 × 3, and the search region X has a dimension of 255 × 255 × 3. But since all branches
are fully convolution layers, they can also be adapted to any other dimension easily. The
embedding output for z and X has a dimension of 6×6×256 and 22×22×256 respectively.

Training: We use the ImageNet dataset [24] for training and only consider color images.
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For simplicity, we randomly pick a pair of images, we crop z in the center and X in the center
of another image. Images are scaled such that the bounding box, plus an added margin for
context, has a fixed area. The basic siamese branch is trained for 50 epochs with an initial
learning rate of 0.01. The learning rate decays after every epoch with a decay factor δ of
0.869. The context-dependent branches are fine-tuned based on the parameters of the general
branch with a learning rate 0.00001 for 10 epochs. For the AlexNet branch, we directly use
AlexNet [23] pretrained on ImageNet dataset [24].

Our experiments are performed on a PC with a Intel i7-3770 3.40 GHz CPU and a Nvidia
Titan X GPU. We evaluated our results using the Python implementation of the OTB toolkit.
The average testing speed of MBST is 17 fps.

Hyperparameters: The weights wi for context-dependent branches have the same value of
1.0. For AlexNet branch, we perform a grid search from 8.0 to 12.0 with step 0.5. Evaluation
suggests that the best performance is achieved when wi is 10.5. This value is thus used for
all the test sequences. In order to handle scale variations, we rescale the inputs into three
different resolutions.

4.5.2 Dataset and Evaluation Metrics

OTB: We evaluate the proposed tracker on the OTB benchmarks [1,13] with eleven interfer-
ence attributes for the video sequences. The OTB benchmark uses the precision and success
rate for quantitative analysis. For the precision plot, we calculate the average Euclidean
distance between the center locations of the tracked targets and the manually labeled ground
truth. Then the average center location error over all the frames of one sequences is used to
summarize the overall performance. As the representative precision score for each tracker,
we use the score for the threshold of 20 pixels. For the success plot, we compute the IoU (in-

Table 4.1 Ablation study of MBST on OTB benchmarks. Various combinations of general
siamese branch, context-dependent branches and AlexNet branch are evaluated.

OTB-2013 OTB-50 OTB-100
General Context AlexNet AUC Prec. AUC Prec. AUC Prec. FPS
X 0.600 0.791 0.519 0.698 0.585 0.766 65.0

X 0.601 0.798 0.523 0.707 0.584 0.768 18.6
X 0.581 0.761 0.501 0.678 0.560 0.741 63.6

X X 0.594 0.784 0.535 0.721 0.587 0.770 16.9
X X 0.605 0.796 0.536 0.718 0.599 0.783 42.9

X X 0.616 0.811 0.570 0.767 0.614 0.806 16.9
X X X 0.620 0.816 0.573 0.773 0.617 0.811 16.9
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tersection over union) between the tracked and ground truth bounding boxes. A success plot
is obtained by evaluating the success rate at different IoU thresholds. The area-under-curve
(AUC) of the success plot is reported.

4.5.3 Ablation Analysis

To verify the contribution of each branch and the online branch selection mechanism of our
algorithm, we implemented several variations of our approach and evaluated them on the
OTB benchmarks.

Multiple branches improve the tracking result. We compared our full branches al-
gorithm with various combination of branches as illustrated in Table 4.1. We evaluate the
performances of the original branch, context-dependent branches and AlexNet branch alone.
Note that branch selection is applied only when we evaluate the context-dependent branches,
since many branches are available. For the other experiments in Table 4.1, we combine these
branches with online branch selection for testing. Results clearly demonstrate that the pro-
posed multiple branches architecture allows a better use of diverse feature representations.
The best FPS is achieved by the general siamese branch, which is expected since it needs less
computations with only one branch.

Online branch selection for every frame is not necessary. As shown in Fig. 4.3,
we conduct experiments on the branch selection interval T by changing the value: T =
1, 3, 5, 7, 10, 13. When the value of branch selection interval is less than 7 frames, the tracking
performance is reduced. This can be explained by the fact that a frequent execution of the
selection mechanism increases the possibility of selecting an inappropriate branch. When the
value of branch selection interval is more than 7 frames, the tracking performance is also
decreased because we keep for a too long period a branch that is not discriminative anymore.
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Figure 4.3 Curve for the branch selection interval T on OTB2013 benchmark [13].
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In our experiments, the optimal value of branch selection interval T was 7 frames.

4.5.4 Comparison with State-of-the Art Trackers

We compare MBST with CFNet [9], SiamFC [8], Staple [42], LCT [43], Struck [44], MEEM [45],
SCM [46], LMCF [47], MUSTER [48], TLD [49] on OTB benchmarks. The precision plots
and success plots of one path evaluation (OPE) are shown in Fig. 4.4. Based on precision
and success plots, the overall comparison suggests that the proposed MBST achieved the
best performance among these state-of-the-art trackers on OTB benchmarks. Notably, it
outperforms SiamFC [8] as well as its variation CFNet [9] on all datasets. This demonstrates
that diverse feature representations are important to improve tracking, as feature maps from
various CNNs can be quite different. Fig. 4.5 demonstrates that our tracker effectively han-
dles all kinds of challenging situations that often require high-level semantic understanding.
For example, our tracker significantly outperforms SiamFC in the case of deformation, occlu-
sion and out-of-plane rotations because the contrast between the object and the background
changes and switching to another feature map may give a better discriminativity. Therefore,
our approach is beneficial each time the appearance of the object changes significantly during
its tracking.

4.6 Conclusion

In this paper, we propose a Multi-Branch Siamese Network with Online Selection. We ensem-
ble multiple siamese networks to diversify target feature representations. Using our online
branch selection mechanism, the most discriminative branch is selected against target appear-
ance variations. Our tracker benefits from the diverse target representation, and can handle
all kinds of challenging situations in visual object tracking. Our experiment results show
improved performances compared to standard Siamese network trackers, while outperform
several recent state-of-the-art trackers.
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Figure 4.4 The success plots and precision plots on OTB benchmarks. Curves and numbers
are generated with Python implemented OTB toolkit.
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Figure 4.5 The Success plot on OTB50 for eight challenge attributes: deformation, fast
motion, in-plane rotation, motion blur, occlusion, out-of-plane rotation, out-of-view, scale
variation.
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5.1 Abstract

Recently, Siamese trackers demonstrated high performance in object tracking due to their
balanced accuracy-speed. Unlike classification-based CNNs, deep similarity networks are
specifically designed to address the image similarity problem, and thus are inherently more
appropriate for the tracking task. However, Siamese trackers mainly use the last convolutional
layers for similarity analysis and target search, which restricts their performance. In this
paper, we argue that using a single convolutional layer as feature representation is not the
optimal choice within the deep similarity framework. We present a Multiple Features-Siamese
Tracker (MFST), a novel tracking algorithm exploiting several hierarchical feature maps for
robust deep similarity tracking. Since Convolutional layers provide several abstraction levels
in characterizing an object, fusing hierarchical features allows to ensure a richer and more
efficient representation. Moreover, we handle the target appearance variation by calibrating
deep features extracted from two different CNN models. Based on this advanced feature
representation, our method achieves high tracking accuracy, while outperforming standard
Siamese trackers on object tracking benchmarks.

Keywords: object tracking, siamese networks, feature combination, hierarchical convolu-
tional features, feature representation, deep learning
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5.2 Introduction

Visual object tracking (VOT) is one of the most fundamental tasks in computer vision. Given
a target object in the first frame, the objective of visual object tracking is to determine
the object state in the following frames. With the rapid development of computer vision,
visual object tracking has been employed in many applications, such as autonomous driving,
visual analysis and video surveillance. For example, with the help of visual object tracking,
autonomous driving systems can predict obstacle movements and decide where to go.

During the last years, deep learning trackers achieved stimulating, by bringing new ideas
to object tracking. This paradigm has become successful mainly due the use of convolu-
tional neural network (CNN)-based features for appearance modeling and their discriminative
ability to represent target objects. While most tracking methods used classification-based
CNN models, that are built following the principals of visual classification tasks, another
approach [8] formulated the tracking task as a deep similarity learning problem, where a
Siamese network in trained to locate the target within a search image. This method uses
feature representations extracted by CNNs and performs correlation operation with a sliding
window to calculate a similarity map for target location. Rather than detecting by cor-
relation, other deep similarity trackers [7, 22, 35] generate the bounding box for the target
object by regression networks. For example, GOTURN [7] predicts the bounding box of the
target object with a simple CNN model. The trackers [35] and [22] generate a number of
proposals for the target after extracting feature representations. Classification and regression
procedures are then applied to produce the final tracking.

By formulating object tracking as a deep similarity problem, Siamese trackers achieved signif-
icant progress in terms of both speed and accuracy. However, less efforts have been devoted
to advance the feature representation power of these models. Siamese trackers typically use
only features from the last convolutional layers for similarity analysis and target state predic-
tion. We argue that this is not the optimal choice and demonstrate that features from earlier
layers are also beneficial for more accurate deep similarity tracking. Indeed, the combination
of different convolutional layers was shown to be efficient for robust tracking [11, 21]. As
we go deeper in a CNN, the receptive field becomes wider, therefore, features from different
layers contain different levels of information. In this way, the last convolutional layers retain
general characteristics represented in summarized fashion, while the first convolutional layers
provide low-level features. These latter are extremely valuable for precise localization of the
target, as they are more object-specific and capture spatial details. Furthermore, instead
of using features from a single CNN model, we propose to exploit different models within
the deep similarity framework. Diversifying feature representations significantly improves
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tracking performance. Such strategy is shown to ensure a better robustness against target
appearance variation, one of the most challenging tracking difficulties [50].

Based on these principals, we propose a Multiple Features-Siamese Tracker (MFST). Our
tracker utilizes diverse features from several convolutional layers and two models with proper
feature fusing strategies to achieve an improved tracking performance. Our contributions can
be summarized as follows. Firstly, we explore feature fusing strategies with a feature recali-
bration module to make a better use of feature representations. Secondly, we exploit feature
representations from several hierarchical convolutional layers as well as different models for
object tracking. Thirdly, we present the MFST tracking algorithm, that achieves strong
performance with respect to recent state-of-the-art trackers on popular OTB benchmarks.

The paper is organized as follows. We present related work in Section 5.3, the proposed
MSFT tracker in Section 5.4, and the experimental results in Section 5.5 respectively. Finally,
Section 5.6 concludes the paper.

5.3 Related Work

Siamese Trackers VOT can be formulated as a similarity learning problem. Once the
deep similarity network is trained during an offline phase to learn a general similarity func-
tion, the model is applied for online tracking, by analyzing the similarity between the two
network inputs: the target template and the current frame. The pioneering work SiamFC [8]
applied two identical branches made up of fully convolutional neural networks to extract the
feature representations, on which cross correlation is computed to generate the tracking re-
sult. SiamFC outperformed most of the best trackers at that time, while achieving real-time
speed. Rather than performing correlation on deep features directly, CFNet [9] trains a cor-
relation filter based on the extracted features of object to speed up tracking without drop in
accuracy. MBST [50] improved the tracking performance by using multiple siamese networks
as branches to enhance the diversity of the feature representation. SA-Siam [34] encodes the
target by a semantic branch and an appearance branch to improve the robustness of track-
ing. However, since these siamese trackers only take the output of the last convolutional
layers, more detailed target specific information from earlier layers is not used. In our work,
we adopt a Siamese architecture to extract deep features for the target and search region,
but combine features from different layers of networks for tracking. With multiple levels of
abstraction embedded, the target representation becomes more efficient.

Hierarchical Convolutional Features in Tracking CNNs have been commonly used
in many computer vision tasks owing to their discriminative feature representations. Most
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CNN-based trackers used only use the output of the last convolutional layer, containing
semantic information represented in a summarized fashion. However, different convolutional
layers embed different levels of visual abstraction. In fact, convolutional layers provide several
detail levels in characterizing an object, and the combination of different convolutional levels
is demonstrated to be efficient for robust tracking [21, 51]. In this context, the pioneering
algorithm HCFT [21] tracks the target using correlation filters learned on each layer. With
HCFT, the representation ability of hierarchical convolutional features is demonstrated to
be better than features from a single layer. Subsequently, [11] presented a visualization of
features extracted from different convolutional layers. In their work, they employed three
convolutional layers as the target object representations, which are then convolved with the
learned correlation filters to generate the response map, and a long-term memory filter to
correct results. The use of hierarchical convolutional features allowed their trackers to be
much more robust.

Multi-Branch Tracking One of the most challenging problem in object tracking is the
varying appearance of the tracked objects. The appearance of the tracked objects may
change a lot during tracking and for different scenarios. Thus, a single fixed networks cannot
guarantee to generate discriminative feature representations in all tracking situations. To
handle the problem of target appearance variations, TRACA [14] trained multiple auto-
encoders, each for different appearance categories. These auto-encoders compress the feature
representation for each category. The best expert auto-encoder is selected by a pretrained
context-aware network. By selecting a specific auto-encoder for the tracked object, a more
robust representation can be generated for the tracking. MDNet [33] applied a fixed CNN for
feature extraction, but used multiple regression branches for objects belonging to different
tracking scenarios. More recently, MBST [50] extracted the feature representation for the
target object through multiple branches and selected the best branch according to their
response maps. With multiple branches MBST can obtain diverse feature representations
and select the most discriminative one under the prevailing circumstance. In their study,
we can observe that the greater the number of branches, the more robust the tracker is.
However, this is achieved at the cost of a higher computational time. In this work, we can get
a diverse feature representation of a target at lower cost because some of the representations
are extracted from the many layers of the CNNs. Therefore, we do not need a large number
of siamese branches.
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Figure 5.1 The architecture of our MFST tracker. Two CNN models are utilized as feature
extractors and their features are calibrated by Squeeze-and-Excitation (SE) blocks. Then,
correlations are applied over the features of the search region with the features of the exemplar
patch and the output response maps are fused to calculate the new position of the target.
Bright orange: SiamFC (S) and dark orange: AlexNet (A).

5.4 Multiple Features-Siamese Tracker

We propose a Multiple Features-Siamese Tracker for object tracking. For the design of our
method, we considered that features from different convolutional layers contain different
level of abstractions and that the different channels of the features play different roles in
tracking. Therefore, we recalibrated deep features extracted from the CNN models and
combined hierarchical features to make a more efficient representation. Besides, since models
trained for different tasks can diversify the feature representation as well, we built our siamese
architecture with two CNN models to achieve better performance.

5.4.1 Network Architecture

As many recent object tracking approaches [8,9,50] did, we formulate the tracking problem as
a similarity learning problem and utilize the siamese architecture to address it. The network
architecture of our tracker is shown in Figure 5.1. We use two different pretrained CNN
models as feature extractors, SiamFC [8] and AlexNet [23], as indicated in Figure 5.1. The
two models denoted as S and A respectively in the following explanations. Both of them are
five layers fully convolutional neural networks.

The input of our method consists of an exemplar patch z cropped according to the initial
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bounding box or the result of last frame and search region x. The exemplar patch has
a size of Wz × Hz × 3 and the search region has a size of Wx × Hx × 3 (Wz < Wx and
Hz < Hx), representing the width, height and the color channels of the image patches. Since
our method formulates the tracking task as a similarity learning problem, let x be considered
as a collection of candidate patches.

With the two CNN models, we obtain the deep features Sli , Ali (l = c3, c4, c5, i = z, x)
from conv3, conv4, conv5 layers of each model. These are the preliminary deep feature
representations of the inputs. Then, all the features are recalibrated through a Squeeze-
and-Excitation blocks (SE-blocks) [52]. The recalibrated features are denoted as S∗li , A

∗
li
,

respectively for the two models. The details of SE-blocks is illustrated in Fig. 5.2. There
blocks are trained to explore the importance of the different channels for tracking. They
learn weights for the different channels to recalibrate features extracted from the preliminary
models.

Once the feature representations are generated, we apply cross-correlation operations for each
recalibrated feature map pairs to generate response maps. The cross-correlation operation
can be implemented by a convolution layer using the feature of the exemplar as filter. Then
we fuse these response maps to produce the final response map. The corresponding location
of the maximum value in the response map is the new position of the target object.

5.4.2 Feature Extraction

Hierarchical Convolutional Features Deep learning has been widely used to solve com-
puter vision problems. However, most works use the last convolutional layer to represent the
image. It is well known that the last convolutional layer encode more semantic information
which is invariant to significant appearance variations, compared to earlier layers. However,
its resolution is too coarse (due to the large receptive field) for precise localization. On the
contrary, features from earlier layers contain less semantic information, but they retain more
spatial details and are more precise in localization. Thus, we propose to exploit multiple
hierarchical levels of features to build a better representation of the target.

In our work, we use the convolutional layers of two pretrained CNN models as feature ex-
tractors: SiamFC [8] and AlexNet [23]. The two models are trained for object tracking and
image classification tasks, respectively. We take features extracted from the 3rd, 4th, 5th
layers as the preliminary target representations.

Feature Recalibration Considering that different channels of deep features play different
roles in tracking, we apply SE-blocks [52] over the raw deep features extracted from the basic
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Figure 5.2 The illustration of SE-block. It consists of two step, squeeze step and excitation
step. The squeeze step uses average pooling operation to generate the channel descriptor,
the excitation step uses a two layers MLP to capture the channel-wise dependencies.

models. An illustration of SE-block is shown in Fig. 5.2. The SE-block consists of two steps:
1) squeeze and 2) excitation. The squeeze step corresponds to an average pooling operation.
Given a 3D feature map, this operation generates the channel descriptor ωsq as follows:

ωsq = 1
W ×H

W∑
m=1

H∑
n=1

vc(m,n), (c = 1, ..., C) (5.1)

where W , H, C are the width, height and the number of channels of the deep feature, and
vc(m,n) is the corresponding value in the feature map. The subsequent step is the Excitation
through a two layers Multi-layer perceptron (MLP). Its goal is to capture the channel-wise
dependencies that can be expressed as:

ωex = σ(W2δ(W1ωsq)) (5.2)

where σ is a sigmoid activation, δ is a ReLU activation, W1 ∈ RC
r
×C and W2 ∈ RC×C

r are the
weights for each layer, and r is the channel reduction factor used to change the dimension.
After the excitation operation, we obtain the channel weight ωex. The weight is used to
rescale the feature maps extracted by the basic models:

F ∗li = ωex · Fli (5.3)

where · is a channel-wise multiplication and F = (S,A). Note that ωex is learned for each
layer in a basic model, but the corresponding layers for the CNNs of the exemplar patch and
the search region use the same channel weight. We train the SE-blocks to obtain six ωex in
total.



44

5.4.3 Response Maps Combination Mechanism

Once the feature representations from convolutional layers of each model are obtained, we ap-
ply cross-correlation operation, which is implemented by convolution, over the corresponding
feature maps to generate the response map r as:

r(z, x) = corr(F ∗(z), F ∗(x)) (5.4)

where F ∗ is the weighted feature maps generated by the CNN model and SE-block. The
response maps are then combined. For a pair of image input, six response maps are generated,
denoted as rS

c3, rS
c4, rS

c5, rA
c3, rA

c4 and rA
c5. Note that we do not need to rescale the response

maps for combination, since they have the same size (see Section 5.5.1, Data Dimensions).

The response maps are combined hierarchically. After fusing rS and rA for the two CNN
models, we combine the two response maps to get the final map. The combination is per-
formed by considering three strategies: hard weight (HW), soft mean (SM) and soft weight
(SM) [11], illustrated as follows:

Hard weight: r∗ =
N∑

t=1
wtrt (5.5)

Soft mean: r∗ =
N∑

t=1

rt

max(rt)
(5.6)

Soft weight: r∗ =
N∑

t=1

wtrt

max(rt)
(5.7)

where r∗ is the combined response map, N is the number of response maps to be combined
together, and wt is the empirical weight for each response map. Finally, the corresponding
location of the maximum value in the final response map is the new location of the target.

5.5 Experiments

The first objective of our experiments is to investigate the contribution of each module in order
to find the best response map combination strategy corresponding to optimal representations.
For this purpose, we perform an ablation analysis. Secondly, we compare our method with
basic CNN model-based methods and recent state-of-the-art trackers. The experiment results
show that our method significantly outperforms basic CNN-based methods, while obtaining
competitive performance with respect to the recent state-of-the-art trackers.
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5.5.1 Implementation Details

Network Structure We use SiamFC [8] and AlexNet [23] as deep feature extractors. The
SiamFC network is a fully convolutional neural network, containing five convolutional layers.
It has an AlexNet-like architecture, but it is trained on a video dataset for object tracking.
The AlexNet network consists of five convolutional layers and three fully connected layers
trained on an image classification dataset. We slightly modified the stride of AlexNet to
obtain the same dimensions for the outputs of both CNN models. Since only deep features
are needed to represent the target, we remove the fully connected layers of AlexNet and only
keep the convolutional layers to extract features.

Data Dimensions The inputs of our method consist in the exemplar patch z and the
search region x. The size of z is 127× 127 and the size of x is 255× 255. The output feature
maps of z have sizes of 10× 10× 384, 8× 8× 384 and 6× 6× 256 respectively. The output
feature maps of x have sizes of 26× 26× 384, 24× 24× 384 and 22× 22× 256 respectively.
Taking the features of z as filters to perform a convolution on the features of x, the size of
the output response maps are all the same, 17 × 17. The final response map is resized to
the size of the input to locate the target. Since the two CNN models we used are all fully
convolutional neural networks, the size of inputs can also be adapted to any other dimension.

Training The SiamFC model is trained on the ImageNet dataset ( [24]) and only color
images are considered. The ImageNet dataset contains more that 4,000 sequences, about
1.3 million frames and 2 million tracked objects with ground truth bounding boxes. For
the input, we take a pair of images and crop the exemplar patch z in the center and the
search region x in another image. The SiamFC model is trained for 50 epochs with an initial
learning rate of 0.01. The learning rate decays with a factor of 0.86 after each epoch. The
AlexNet model is pretrained on the ImageNet dataset for the image classification task. We
trained the SE-blocks for the two models separately in the same manner. For each model,
the original parameters are fixed. We then apply SE-blocks on the output of each layer and
take the recalibrated output of each layer as the output feature to generate the result for
training. The SE-blocks are trained on the ImageNet dataset with 50 epochs with an initial
learning rate of 0.01. The learning rate decays with a factor of 0.86 after each epoch.

We performed our experiments on a PC with an Intel i7-3770 3.40 GHz CPU and a Nvidia
Titan X GPU. The benchmark results are calculated by the Python implementation of the
OTB toolkit ( [1]). The average testing speed of our tracker is 39 fps.
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Hyperparameters The channel reduction factor r in SE-blocks is 4. The empirical weights
wts for rS

c3, rS
c4, rS

c5, rA
c3, rA

c4 and rA
c5 are 0.1, 0.3, 0.7, 0.1, 0.6 and 0.3. The empirical weights

wts for rS and rA are 0.3 and 0.7. To handle scale variations, we search the target object
over three scales 1.025{−1,0,1} during evaluation and testing.

5.5.2 Dataset and Evaluation Metrics

OTB Benchmarks We evaluate our method on the OTB benchmarks [1,13], which consist
of three datasets, OTB50, OTB2013 and OTB100. They contain 50, 51, 100 video sequences
with ground truth target labels for object tracking. The benchmarks proposed two evaluation
metrics for quantitative analysis, the center location error and the overlap score which used
to produce precision plots and success plots respectively. To obtain the precision plot, we
calculate the the average euclidean distance between the center location of the tracking results
and the ground truth labels. The threshold of 20 pixels is used to rank the results. For the
success plot, we compute the IoU (intersection over union) between the tracking results and
the ground truth labels for each frame. The AUC (area-under-curve) is used to rank the
results.

5.5.3 Ablation Analysis

To investigate the contributions of each module and the optimal strategies to combine rep-
resentations, we perform an ablation analysis with several variations of our method.

A proper combination of features is better than features from single layer As
illustrated in Table 5.1, we experimented using features from a single layer as the target
representation and combined features from several layers with different combination strategies
on the two CNN models. The results show that, taken separately, conv3, conv4, conv5 give
similar results. Since object appearance changes, conv3 that should give the most precise
location does not always achieve good performance. However, with a proper combination,
the representation power of the combined feature gets much improved.

Features get enhanced with recalibration Due to the Squeeze-and-Excitation opera-
tions, recalibrated features achieves better performance than the preliminary features. Re-
calibration through SE-block thus improves the representation power of features from single
layer, which results in a better representation of the combined features.
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Table 5.1 Experiments with several variations of our method, where A and S denote using
the AlexNet as the basic model or using the SiamFC as the basic model.

OTB-2013 OTB-50 OTB-100
Model Conv3 Conv4 Conv5 Fusion SE AUC Prec. AUC Prec. AUC Prec.
A X 0.587 0.740 0.474 0.618 0.559 0.712
A X X 0.603 0.755 0.504 0.642 0.587 0.747
A X 0.632 0.789 0.536 0.692 0.614 0.778
A X X 0.637 0.801 0.544 0.707 0.623 0.795
A X 0.582 0.763 0.496 0.665 0.557 0.735
A X X 0.573 0.762 0.507 0.696 0.575 0.769
A X X X HW 0.623 0.774 0.515 0.657 0.605 0.763
A X X X SM 0.633 0.797 0.542 0.705 0.616 0.784
A X X X SW 0.630 0.795 0.538 0.699 0.616 0.786
A X X X HW X 0.627 0.798 0.537 0.700 0.617 0.790
A X X X SM X 0.631 0.799 0.542 0.706 0.621 0.792
A X X X SW X 0.635 0.811 0.545 0.716 0.627 0.803
S X 0.510 0.661 0.439 0.574 0.512 0.656
S X X 0.545 0.709 0.465 0.608 0.532 0.687
S X 0.584 0.757 0.507 0.666 0.570 0.742
S X X 0.592 0.772 0.518 0.686 0.581 0.758
S X 0.600 0.791 0.519 0.698 0.586 0.766
S X X 0.606 0.801 0.535 0.722 0.588 0.777
S X X X HW 0.614 0.794 0.532 0.692 0.602 0.776
S X X X SM 0.612 0.787 0.539 0.697 0.607 0.777
S X X X SW 0.615 0.808 0.534 0.705 0.600 0.780
S X X X HW X 0.627 0.823 0.542 0.716 0.606 0.787
S X X X SM X 0.591 0.761 0.501 0.649 0.575 0.736
S X X X SW X 0.603 0.780 0.518 0.673 0.590 0.759

Multiple models are better than a single model Our approach utilizes two CNN
models as feature extractors. Here we also conducted experiments to verify the benefit of
using two CNN models. As illustrated in Table 5.2, we evaluate the performance of using
one CNN model and using the combination of two CNN models. The results show that the
combination of two models is more discriminative than only one model regardless of the use
SE-blocks.

A proper strategy is important for the response maps combination We applied
three strategies to combine the response maps: hard weight (HW), soft mean (SM) and soft
weight (SW). Since the two CNN models we used are trained for different tasks and features
from different layers embed different level of information, different types of combination
strategies should be applied to make the best use of features. The experimental results
show that generally, combined features are more discriminative than independent features,
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Table 5.2 Experiments on combining response maps from the two CNN models. Aconv5 is only
taking features from the last convolutional layer of AlexNet network, Sconv5 is only taking
features from the last convolutional layer of SiamFC network. Acom is the combined response
maps from AlexNet network by soft weight combining, Scom is the combined response maps
from SiamFC network by hard weight combining.

OTB-2013 OTB-50 OTB-100
A S Fusion SE AUC Prec. AUC Prec. AUC Prec.

Aconv5 0.582 0.763 0.496 0.665 0.557 0.735
Acom 0.630 0.795 0.538 0.699 0.616 0.786
Acom X 0.635 0.811 0.545 0.716 0.627 0.803

Sconv5 0.661 0.854 0.581 0.764 0.647 0.831
Scom 0.614 0.794 0.532 0.692 0.602 0.776
Scom X 0.627 0.823 0.542 0.716 0.606 0.787

Acom Scom HW 0.637 0.815 0.555 0.720 0.625 0.801
Acom Scom SM 0.647 0.819 0.560 0.728 0.638 0.816
Acom Scom SW 0.647 0.818 0.564 0.734 0.637 0.813
Acom Scom HW X 0.667 0.852 0.583 0.761 0.644 0.824
Acom Scom SM X 0.640 0.810 0.557 0.718 0.632 0.804
Acom Scom SW X 0.667 0.854 0.581 0.764 0.647 0.831

while a proper strategy can improve the performance significantly as illustrated in Table 5.1
and Table 5.2. In addition, we observe that the soft weight strategy is generally the most
appropriate, except for combining hierarchical features from the SiamFC model.

5.5.4 Comparisons

We compare our tracker MFST with MBST [50], LMCF [47], CFNet [9], SiamFC [8], Sta-
ple [42], Struck [44], MUSTER [48], LCT [43], MEEM [45] on OTB benchmarks [1,13]. The
precision plot and success plot are shown in Fig. 5.3. Both plots show that our tracker MFST
achieves the best performance among these recent state-of-the-art trackers on OTB bench-
marks, except on the OTB-50 benchmark precision plot. The feature calibration mechanism
we employed is beneficial for tracking as well. It demonstrates that by using the combined
features, the target representation of our method is more efficient and robust. From the
results, although we use siamese networks to address the tracking problem as SiamFC, and
take SiamFC as one of our feature extractor, our tracker achieves much improved perfor-
mance over SiamFC. Besides, despite the fact that MBST tracker employs diverse feature
representations from many CNN models, our tracker achieves better results with only two
CNN models, in terms of both tracking accuracy and speed.
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5.6 Conclusion

In this paper, we presented a Multiple Features-Siamese Tracker (MFST) that exploits di-
verse feature hierarchies within the Siamese framework. We utilize features from different
hierarchical levels and from different models using three combination strategies. Based on
the feature combination, different levels of abstraction of the target are encoded into a fused
feature representation. Moreover, the tracker greatly benefits from the new feature represen-
tation due to our calibration mechanism applied to different channels to recalibrate features.
As a result, MFST achieved strong performance with respect to recent state-of-the-art track-
ers on OTB benchmarks.
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Figure 5.3 The evaluation results on OTB benchmarks. The plots are generated by the
Python implemented OTB toolkit.
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CHAPTER 6 GENERAL DISCUSSION

This chapter presents a general discussion of our work. We discuss how our research pro-
gressed to achieve our objectives and present other explored directions.

Multiple CNN models diversify the feature representation of tracking Our work
started from investigating different deep learning-based trackers. Compared with the regres-
sion network-based trackers, the fully CNN architecture of siamese trackers allows them to
make full use of training data and be more discriminative. Besides, in visual object tracking,
the balanced accuracy and speed achieved by siamese trackers has an important role in mod-
ern applications. Thus, we used the siamese networks as the main architecture of our models.
On the other hand, most deep learning-based trackers are pretrained offline and are deployed
with a single CNN model which make it difficult for them to adapt to the appearance changes
of the target. It is also well known that training model online is time-consuming. Therefore,
we proposed to employ multiple models in a siamese architecture. These models are con-
structed by different strategies with respect to the appearance categories and model diversity.
Considering that the target appearance could change significantly at any time, features from
multiple models in our method represent the target from different aspects. Some of them are
robust to illumination variation, while others can handle rotations.

Since feature extraction is time-consuming, it is inefficient to extract features from all these
models for every frame. To make full use of these models, we designed the online selection
mechanism which selects branches according to their discriminative power. We investigated
different ways to measure the discriminative power, including counting the number of response
peak, calculating the normalized peak value of the response maps and the response sum of the
peak area. The experiment showed that the best way to measure the discriminative power is
calculating the distance between the peak value and minimum value of the weighted response
maps. Based on the online selection mechanism, the process time gets much reduced and the
best feature representation is selected.

Combination of hierarchical convolutional features embeds more discriminative
information of the target The idea of multi-branch improves the discriminative power
by employing diverse feature representations against the appearance changes. To further
improve the representation ability, we exploited hierarchical convolutional features since dif-
ferent levels of abstraction of the target are embedded in different convolutional layers. More
specifically, we took the output of the last three layers of five layers fully CNNs. We ignored
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the outputs of the first two layers since they are limited by the size of the receptive field,
which makes them unable to extract enough information to describe the target.

From conv3 to conv5, the receptive field increases gradually so that not only fine-grain spa-
tial details but also semantic information can be obtained in these feature representations.
Hence, we considered the ideas of multi-branch and hierarchical features together and pro-
posed a new feature representation with a proper feature combination strategy achieving a
further improved performance. Besides, the proposed method also got benefit from a feature
recalibration mechanism which reweights the features for the tracking.

A proper design is needed to apply visual attention in tracking Different designs
of visual attention mechanism can play different roles in tracking. Some of them can reweight
the feature maps, making trackers more focused on the target region, while others can cap-
ture long-range dependencies in the feature maps. During our research, we attempted to
apply visual attention in our methods. We first tried to learn attention maps during offline
training to reweight feature maps. But since the position of the target is unknown, the offline
learned attention maps cannot provide accurate weights for the target, which may mislead
the tracking. On the other hand, we applied non-local neural networks after the fully convolu-
tional neural networks to capture long-range dependencies of deep features. The experiments
demonstrated that both ideas for applying visual attention cannot improve the discriminative
power of our methods.
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CHAPTER 7 CONCLUSION

In this chapter, we summarize our work and present fulfillment of objectives and limitations
of our algorithms. Based on what we observed and recent progress in this field, we also
discuss some ideas that may advance our work in the future.

7.1 Summary of Works and Contributions

Our thesis focuses on visual object tracking in video surveillance. More specifically, our goal
is to improve the robustness of feature representation used in tracking algorithms. Starting
from introducing the background of visual object tracking, we discussed challenges and our
objectives in Chapter 1. Then, we presented recent works in visual object tracking in Chapter
2, like KCF [5] and SiamFC [8]. We also presented some state-of-the-art works based on
correlation filters and deep learning and standard evaluation metrics. In Chapter 3, we
provided an overview of our algorithms, including MBST [50] and MFST. Chapter 4 and
Chapter 5 presented our contributions. The MBST [50] presented in Chapter 4, proposed
an architecture with multiple branches and online selection mechanism, showing improved
representation power over the baseline it used. The MFST presented in Chapter 5, explored
the effectiveness of the combination of feature maps from different convolutional layers and
different CNN models with a feature recalibration mechanism.

7.2 Fulfillment of Objectives

Our main objective of this thesis is to investigate a robust and efficient feature representation
for visual object tracking. More specifically, our goal is to: 1) discover a robust and efficient
feature representation for visual object tracking, 2) develop a feature combination strategy,
3) develop a model update strategy for problems of model drifting and scale variations.

To discover a robust and efficient feature representation, we tried the following strategies:
1) assembling multiple CNNs models to extract deep features, and using online selection to
select the optimal target representation, 2) fusing response maps from different CNNs models
to complement each other, 3) fusing response maps from different convolutional layers of the
CNNs model to integrate semantic features and features encoding fine-grained spatial details.
Since a single model cannot guarantee to provide robust feature representations, there are
many failure cases when only a single model is employed. However, as we are adding more
branches into our architecture, the optimal representation can be selected when difficult
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cases occur, which leads to better tracking performance. In Figure 4.5, the results show
that MBST [50] assembling multiple feature representations achieves better performance in
challenging situations. Since AlexNet [23] is trained for the image classification task, the
output features from deeper convolutional layers contain more semantic information and are
more invariant to object appearance changes. Since SiamFC [8] is trained to address general
similarity learning problem, these semantic features extracted by AlexNet are complementary
to the features extracted by SiamFC. In this manner, the fusion of features from AlexNet
and SiamFC achieved improved performance as shown in Table 5.1, 5.2. As deep features
and shallow features are complementary, fusing deeper and shallow layer features is able to
enhance the robustness and effectiveness as well. As discussed in Chapter 5, features from
shallower layers typically generate accurate predictions but is short of semantics, which leads
to difficulties, when the target has significant appearance changes. Deeper features generally
are invariant to appearance changes but lack details. Thus, a combination of deeper features
and shallower features shows enhanced performance as illustrated in Table 5.1.

For the feature combination strategy, we tried three paradigms: 1) soft mean, normalizing
each feature map by its maximum value and fusing them, 2) hard weight, assigning weight
parameters for each feature map, 3) soft weight, using both normalization and assigned weight
parameters. The experiment results are shown in Table 5.1.

To address the model drifting problem, we tried updating the appearance model every frame
and keeping the first frame as the appearance model all the time. The experiment results
show that updating the template model every frame does not improve the performances but
increases the processing time. Thus, we keep the first frame as the appearance model in
our trackers. Besides, in MBST, the multiple branches and the dynamic online branch selec-
tion are also beneficial for solving the model drifting problem since the most discriminative
representation model is selected.

For the scale variations, we search for the object over three scales. The corresponding scale
of the maximum response is considered as the best scale and is used to adjust the bounding
box for tracking.

7.3 Limitations of the proposed approaches

From the experimental results, we observed some limitations in the methods we proposed.
The first one is the accuracy of the bounding box. We scale the input images and adjust the
bounding box according to the best scale, in which the maximum response value is obtained.
However, we cannot scale the input images by any scale factor, as the scale factor we used
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is fixed. Thus, the ratio of height to width of the bounding boxes is always the same which
is entirely different from the real situation. Another limitation is the discrimination ability.
The backgrounds of the training data we used are usually non-semantic, and they do not
contain real object to distract the tracking. Since the siamese network we used is for learning
a similarity function, it works well in discriminating foreground from the non-semantic back-
grounds. When there are semantic distractors in the background, its performance is more
limited. For example, the methods can work well in tracking a human body in an empty
room, but it is difficult to track a human body on a busy city sidewalk. In addition, since
multiple CNN models are employed to extract features, the tracking speed is affected. There
is a trade-off between the tracking performance, which is related to the number of models,
and the tracking speed.

7.4 Future Research

Bounding box regression As we mentioned above, the aspect ratio of bounding boxes
in our methods is fixed, which limits the tracking accuracy. Based on this, our future work
could focus on bounding box regression. Using regression networks, the tracking result can
be more flexible. We thus suggest investigating the appropriate way to integrate regression
networks in our siamese architecture.

Distractor-aware mechanism The siamese networks we used work well only when the
background is non-semantic. The next step to improve our work would be to make our
algorithm distractor-aware. To solve this problem, we cannot only increase the background
diversity of the training data, but we also need to propose a distractor-aware mechanism. A
distractor-aware target representation would significantly advance the discriminative power
of visual object tracking algorithms.

The trade-off between precision and speed Although the use of multiple CNN models
can diversify the feature representations, extracting multiple feature representations is time-
consuming. However, decreasing the number of features may lead to performance reduction.
The optimal trade-off between precision and speed remains an open VOT problem to explore.
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APPENDIX A SUPPLEMENTARY DETAILS OF ARTICLE 1

A.1 Motivation and Discussion

As the deep learning technologies are widely used in many computer vision tasks, similarity 
learning based methods and regression networks based methods are put forward to advance 
this field. In our method, we take the pioneering similarity learning based approach SiamFC 
as our basic model due to its high tracking performance and speed. To complement the feature 
representation, we used AlexNet which shows satisfactory performance when it is applied in 
the siamese architecture for object tracking. In addition, we also explored employing VGG [2] 
for object tracking. We observed that its performance on most video sequences is usually 
lower than SiamFC and AlexNet. Adding VGG model into our architecture with some 
adaptations does not improve our performance. Besides, utilizing other learning models in 
our method needs more adaptation to fit the size of the input and output, so we used SiamFC 
and AlexNet as our basic models.

A.2 Contextual Classification f or Context-dependent branches

The Nc context-dependent branches are trained on the Nc context-dependent classes on 
ImageNet [24]. We do not use the class labels identified in ImageNet [24] as illustrated in A. 
Since ImageNet contains more than one million annotated frames, it is impractical to cluster 
all these frames directly. We train a context-aware network on the VOC2012 [53] dataset 
to group the frames of ImageNet into 10 categories. The context-aware network consists of 
two convolutional layers and three fully connected layers. The two convolutional layers are 
directly cloned from a pretrained VGG-M model [25], and the output dimensions of the three 
fully connected layers are 4096, 1024, 10. To train the network, there are four steps including 
low level feature generation, feature dimension reduction, feature grouping, and training.

Low level feature generation Since features from earlier convolution layers contain more 
spatial details, we take the outputs of the second convolutional layer of the pretrained VGG-
M model as the low level feature representation of the frames of the VOC dataset, indicated 
by Set{fV OC}. The inputs are the region of interest objects which are cropped and scaled to 
the dimension of 255 × 255, and the dimension of the outputs features are 30 × 30 × 256.
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Feature dimension reduction After that, we apply PCA on these feature maps reducing
their dimensions from 30 × 30 × 256 to 32 × 900 so that redundancies are removed before
the clustering. To reduce their dimensions, we first reshape the feature maps to the size
of 256 × 900. Then, we utilize PCA to reduce the first dimension from 256 to 32. The
compressed feature maps are indicated by Set{f ′V OC}.

Feature grouping and training The next step is performing k-means on Set{f ′V OC} to
group them into 10 clusters. The clustering results on VOC dataset are as illustrated in
Figure A.1. After we obtain the clustering labels of the VOC dataset Set{lV OC}, we take
the labels and the corresponding cropped images to train the context-aware network.

Finally, we use the context-aware network to classify the ImageNet to get the context-
dependent subdatasets which are then used to train each context-dependent branch.

A.3 Tracking

Input Data Processing We first initialize the MBST tracker with the initial frame I0 and
the coordinates of the bounding box of the target object which is denoted by b0{x0, y0, w0, h0}.
As we mentioned in 4.5.1, the size of the target path z is 127× 127 and the size of the search
region x is 255 × 255. To make the inputs compatible with our siamese network, we scale
the initial frame such that the bounding box plus an added margin has area A, which can
be formulated as:

s(w + 0.5(w + h))× s(h+ 0.5(w + h)) = A (A.1)

where s is the scale factor and A = 1272 is the scaled box centered on the corresponding
position of (x0, y0). Then, we use the area of the exemplar image as input, generate the
exemplar feature maps of each branch, which are denoted as f 0

Bi
(i = 0, 1, ..., 11). For the

following frames In(n = 1, 3, 4...), we scale the images with the same scale factor s and crop
the images based on the last center position of the target object (for I1, it is the center
position of the initial bounding box). Since inputs are scaled into the fixed sizes 127 × 127
for the initial target object and 255× 255 for search regions, video sequences with any sizes
can be fed into the tracker.

Correlation Operation Correlation operation is used in our methods to measure the
similarity between the exemplar feature map and the candidate feature maps. The search
region X can be considered as a collection of candidate patches x in the search region with



64

the same dimension as z. Thus, for each branch, the correlation operation is implemented
by taking the exemplar feature map f 0

Bi
as a filter and correlating the filter over a search

window in the feature map of the search region. The output similarity scores are collected
in the response map of each branch.

Branch Selection and Prediction Once the second frame I1 is fed into the tracker, these
multiple branches generate the feature maps of the scaled and cropped search region, f 1

Bi
.

Then, we apply cross-correlation operation with the filter f 0
Bi

in f 1
Bi

to produce the response
maps hBi

. Since the ranges of feature values from different branches are different, the value
ranges of the output response maps are different, we measure their discriminative ability by
Equation 4.3 to select the optimal branch B∗ containing the maximum value as mentioned
in 4.4.2. The new position of the target object is predicted by locating the corresponding
position of the maximum value in the output response map of the optimal branch. After
the optimal branch is selected, only the optimal branch is activated for the following T − 1
frames to avoid unnecessary branch selections. The correspond exemplar feature map fB∗ is
used as the correlation filter within these frames.

Multiple Scale Searching To handle the scale variations, instead of only cropping the
original search region, we search for the target object over three scales 1.025{−1,0,1}. So,
we also crop another two search regions based on the same center point but with larger
and smaller size. They are all rescaled to 255 × 255 to generate the feature maps. The
corresponding scale which obtains the maximum value in its response map is used to adjust
the bounding box as the new bounding box.

A.4 Hyperparameters

Number of Contextual Clusters TRACA [14] applies context-aware feature compres-
sion for object tracking. It is shown in their work that the optimal value is 10 for the number
of contextual cluster for the ImageNet, which is validated with the OTB2013 benchmarks [13]
as shown in Figure A.2. We can notice that the tracking performance decreases when the
number of contextual cluster is less than 10, since the contextual variety of the ImageNet is
ignored. The tracking performance also decreases when the number of contextual cluster is
more than 10, which is caused by lacking training data for each category. In addition, since
the number of categories identified in ImageNet is larger, and objects from the categories do
not always have the same texture which is important in tracking, we do not take the original
categories from ImageNet.
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Branch Selection Interval As we mentioned in 4.5.3, the optimal value of branch selec-
tion interval T is 7. When T is less than 7, the tracking performance is reduced. When T is
more than 7, the tracking performance is decreased as well. As we know that the appearance
of the target object typically changes smoothly between frames, which means that within a
frame sequence, the target object keeps a similar appearance while the appearance is different
compared to another frame sequence. Thus, we do not have to change the branch at each
frame but using the same branch for a long time may reduce the tracking performance as
illustrated in Figure 4.3.
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Figure A.1 The clustering results on VOC dataset, each row is the top 10 results of each
cluster.
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Figure A.2 Tracking performance of TRACA [14] with different numbers of the contextual
clusters on OTB2013 benchmark [13]. (This image is adapted [reprinted] from [14] c© 2018
IEEE)
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APPENDIX B SUPPLEMENTARY DETAILS OF ARTICLE 2

B.1 Motivation and Discussion

In this approach, we take the pretrained SiamFC and AlexNet as our basic models since 
both of them show satisfactory performance in MBST [50]. As we mentioned in Article 
2, different convolutional layers embed different levels of visual abstraction, features from 
deeper layers embed more semantic information while features from shallower layers contain 
more spatial details. Thus, the corresponding response maps of deep features are typically 
more robust, and the predictions are more reliable but coarse. On the contrary, the response 
maps of shallow features usually have sharp peaks providing accurate localization but less 
robust against distractors, as shown in Figure B.1. In this approach, instead of propagating 
features from earlier layers to the final layer like ResNet [26], we take pretrained models and 
utilize the raw hierarchical features directly as our preliminary features.

Figure B.1 Visualization of the response maps generated by deep features, shallow features
and the combined response map. (This image is adapted [reprinted] from [15] c© 2018
Springer)

B.2 Response Map Combination

We explored three different response map combination strategies in 5.4.3. Since the sizes of
the exemplar feature maps are 10× 10× 384, 8× 8× 384 and 6× 6× 256, and the sizes of
the feature maps of the search region are 26× 26× 384, 24× 24× 384 and 22× 22× 256, the
correlation outputs(response maps) have the same size 17 × 17. We do not need to rescale
these response maps for combination. In Table 5.1, we tried the three strategies, HW, SM
and SM to generate the combined response maps separately, which are then used to track
and evaluated on the OTB benchmarks. The optimal experimental weights of HW and SW
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are obtained by these experiments. Then we choose the corresponding strategy that achieves
the best performance on the OTB benchmarks to generate the combined response maps from
each model, which are denoted as rS and rA. After that, as illustrated in Table 5.2, we test
the three different strategies again to find the best strategy to combine rS and rA.

B.3 Tracking

As for the tracking process in MBST [50], we also initialize the MFST tracker proposed in
Article 2 with the initial frame and the coordinates of the bounding box of the target object.
The only difference is that we do not select feature representations but need to combine
response maps. After we scaled and cropped the initial frame and obtained the exemplar
patch, it is fed into the basic SiamFC model and AlexNet model to generate the preliminary
feature representations Slz , Alz(l = c3, c4, c5). Then SE-block is applied to produce the
recalibrated feature maps S∗lz , A∗lz , which are then used to produce response maps for tracking
the target object for all the following frames.
After the feature maps of the target object are obtained, to track the target, the next frame
is fed into the tracker. The tracker crops the region centered on the last center position of
the target object, generate the feature representations and output the response maps by a
correlation operation with the feature maps of the target object. The corresponding position
of the maximum value in the final combined response map indicates the center point of the
new position of the target object and the bounding box keeps the same size unless other
scales obtain higher response value, which is almost the same as A.

B.4 VOT Results

In addition to the OTB benchmarks [1, 13], we evaluate the MFST tracker on VOT2018
benchmark [54, 55] with some recent the state of the art trackers: ANT [56], ASMS [57],
BST [58], CSRDCF [59], Staple [42], SiamFC [8], FragTrack [60], IVT [61], MEEM [45],
Struck [44]. The results are produced by the VOT toolkit [54] as illustrate in Table B.1.

B.5 Tracking Speed

The tracking speed of our trackers and some recent the state-of-the-art trackers is illustrated
in Table B.2.
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Table B.1 Evaluation results of our trackers and some recent the state of the art trackers on
VOT2018 benchmark. Red: best, blue: second best, green: third best.

baseline unsupervised realtime
A-R rank EAO Speed Overlap Speed EAO
Overlap Failures EAO FPS AUC FPS EAO

ANT 0.4559 40.1593 0.1684 3.2621 0.2789 4.1372 0.0590
ASMS 0.4884 36.5313 0.1692 134.4992 0.3374 148.6762 0.1669
BST 0.2662 55.1275 0.1160 1.7453 0.1494 1.3682 0.0531

CSRDCF 0.4846 23.5731 0.2561 8.7522 0.3421 9.4407 0.0993
Staple 0.5244 44.0194 0.1694 47.0093 0.3346 54.2630 0.1696
SiamFC 0.5002 34.0259 0.1880 31.8890 0.3445 35.2402 0.1820
FragTrack 0.3790 116.2327 0.0681 2.1171 0.1798 2.0917 0.0678

IVT 0.3884 104.7370 0.0757 8.9206 0.1304 9.8347 0.0652
MEEM 0.4558 33.6046 0.1925 4.1227 0.3275 4.8773 0.0725
Struck 0.4163 80.3253 0.0966 16.9827 0.1969 14.8882 0.0927
MFST 0.4973 42.7676 0.2000 26.4975 0.3478 33.2252 0.2000

Table B.2 The tracking speed of our trackers and some recent the state of the art trackers
evaluated on the OTB benchmarks.

Tracker MFST MBST [50] SiamFC [8] Staple [42] LCT [43] LMCF [47]
Speed(fps) 39.1 16.9 86.0 41.1 27.4 65.6
Tracker CFNet [9] Struck [44] MUSTer [48] SCM [46] MEEM [45] -

Speed(fps) 75.0 9.8 4.5 0.1 21.8 -
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