
Titre:
Title:

Efficient large-scale heterogeneous debugging using dynamic 
tracing

Auteurs:
Authors: Didier Nadeau, Naser Ezzati-Jivan et Michel R. Dagenais

Date: 2019

Type: Article de revue / Journal article

Référence:
Citation:

Nadeau, D., Ezzati-Jivan, N. & Dagenais, M. R. (2019). Efficient large-scale 
heterogeneous debugging using dynamic tracing. Journal of Systems 
Architecture, p. 1-17. doi:10.1016/j.sysarc.2019.02.016

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/3817/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY-NC-ND

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: Journal of Systems Architecture

Maison d’édition:
Publisher: Elsevier

URL officiel:
Official URL: https://doi.org/10.1016/j.sysarc.2019.02.016

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, 
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

https://publications.polymtl.ca/3817/
https://doi.org/10.1016/j.sysarc.2019.02.016
http://publications.polymtl.ca/


Noname manuscript No.
(will be inserted by the editor)

Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing

Didier Nadeau · Naser Ezzati-Jivan · Michel R. Dagenais

Abstract Heterogeneous multi-core and many-core proces-
sors are increasingly common in personal computers and
industrial systems. Efficient software development on these
platforms needs suitable debugging tools, beyond traditional
interactive debuggers. An alternative, to interactively fol-
low the execution flow of a program, is tracing within the
debugging environment, as long as the tracer has a mini-
mal overhead. In this paper, the dynamic tracing infrastruc-
ture of GNU debugger (GDB) was investigated to under-
stand its performance limitations. Thereafter, we propose
an improved architecture for dynamic tracing on many-core
processors within GDB, and demonstrate its scalability on
highly parallel platforms. In addition, the scalability of the
thread data collection and presentation component was stud-
ied and new views were proposed within the Eclipse Debug-
ging Service Framework and the Trace Compass visualiza-
tion tool. With these scalability enhancements, debuggers
such as GDB can more efficiently help debugging multi-
threaded programs on heterogeneous many-core processors
composed of multi-core CPUs, and GPUs containing thou-
sands of cores.

Keywords debugging · parallel · heterogeneous · multi-
core · scalability · tracing · dynamic instrumentation · trace
visualization · Trace Compass · GDB · LTTng

Didier Nadeau
Polytechnique Montreal
E-mail: didier.nadeau@polymtl.ca

Naser Ezzati-Jivan
Polytechnique Montreal
E-mail: n.ezzati@polymtl.ca

Michel R. Dagenais
Polytechnique Montreal
E-mail: michel.dagenais@polymtl.ca

1 Introduction

Heterogeneous computers systems with multi-core proces-
sors are becoming more popular in many fields. It allows a
computer system to contain different processor architectures
to benefit from the specific strength of each architecture.
Furthermore, multi-core processors allow programs to use
parallel computing and improve their performance. How-
ever, debugging programs on heterogeneous multi-core sys-
tems is an important challenge. The developer can be con-
fused by the large number of threads in the program and
have problems keeping track of its execution [16]. As the
number of threads increases, it becomes harder for the de-
veloper to visualize and control the execution flow. One of
the most important tools is the debugger, a tool to control a
program execution and inspect its state. Unfortunately, most
debugging tools have been in use for a long time, and were
designed to debug single-threaded applications.

Many problems can be created by a mistake in thread
synchronization. One example is a data race, which occurs
when multiple threads try to access a shared variable with-
out concurrency control. In this case, its final value depends
on the order in which each thread accesses it, and the re-
sult may change between different executions as the thread
scheduling varies. Inspecting this type of problem with a de-
bugger can be problematic, as a debugger can be very intru-
sive and disturb the execution of the program. Therefore,
a multi-threading issue may be masked or modified during
debugging, greatly diminishing the usefulness of the debug-
ger [13]. Thus, adapted debugging techniques are needed for
parallel software.

Another challenge is the large amount of data to be han-
dled by the user. Indeed, as parallel software may contain a
great number of threads, there is a lot of information to dis-
play, and a large number of log events can be generated. This
can confuse the developer by overloading him with infor-



2 Didier Nadeau et al.

mation. Therefore, appropriate techniques to visualize and
control multi-threaded software are needed.

There are debuggers that offer specialized features and
views for debugging programs with multiple threads. To-
talView and Allinea DDT [2] propose several views to group
a large number of threads for efficient visualization and con-
trol. However, these programs are closed-source and their
internal algorithms unpublished. One debugging environment,
Eclipse CDT (C/C++ Development Tooling), is open-source
and has some views adapted for multi-thread debugging.
However, the support is still limited [16]. Tracing support
is also limited in debuggers, and the tracing algorithms used
may involve an important overhead. To our knowledge, the
only open-source debugger that supports tracing is GNU De-
bugger (GDB).

In this paper, the above mentioned challenges have been
addressed. The GDB debugger has been enhanced to al-
low dynamic scalable tracing in order to trace parallel pro-
grams with minimal overhead. This enhancement has been
achieved by modifying GDB to address limitations for par-
allel tracing, and using LTTng for trace collection. LTTng
has also been enhanced to allow dynamic event registration.
Finally, the impact of conditional breakpoints has been mea-
sured, and a technique to minimize this impact has been pro-
posed.

Furthermore, Eclipse CDT has been used to propose tech-
niques for the user to interface with the debuggers. A view
that automatically groups threads using their call stack has
been created, and provides an efficient way for the user to
visualize a large number of threads. Another view shows the
threads currently executing on the graphic cards, and groups
them using their position in the data grid sent to the GPU.
Finally, a technique to filter threads executing on the CPU
and the GPU has been proposed. This allows the developer
to remove unneeded information from the debugging con-
text and concentrate on relevant data.

In summary, the main contributions of this papers is twofold.
First we propose a new architecture for low latency dynamic
tracing using the GNU debugger (GDB). The second con-
tribution of this paper is proposing a new interface to effi-
ciently view, analyse and filter large number of threads in
the open-source IDE Eclipse as an example of a large scale
debugging tool.

The expected benefits are an improvement in the nec-
essary time to identify and locate bugs in multi-threaded
applications. It can be used to replace the use of logging
message, as that requires the program to be recompiled each
time. Thus, it is aimed at improving the performance of de-
bugging tools and therefore at reducing development costs,
specially for the applications that cannot easily be stopped
for logging.

Our proposed solution has applications in complex multi-
thread software debugging, including the telecom domain

where each peer must be executed in a certain amount of
time, thus cannot be stopped. It could also be debugging
an application that communicates through network and can-
not be stopped, otherwise it would stop sending heartbeats
and the connection would fail. The provided user interface
is aimed at programs that can be stopped, and to quickly
identify which thread is working where.

The main objectives that we try to reach through this
study are as to:

1. Identify a relevant parallel heterogeneous system to use
for testing.

2. Study the performance of a parallel program controlled
by a debugger, and identify the factors limiting it.

3. Evaluate the capabilities of GUIs to allow the user to
debug easily on parallel heterogeneous systems.

4. Propose solutions to solve problems and limitations iden-
tified with debuggers and graphic interfaces.

5. Integrate these solutions with the free software GDB and
Eclipse CDT and test their performance.

6. Present the advances to industry partners working in the
field.

In this paper, in the related work section, several avail-
able techniques, to debug programs on large scale parallel
systems, are discussed. An overview of available solutions
for interactive debugging and for using tracing, as well as
the limits of each method, are also presented. Then, the pro-
posed contributions to improve interactive debugging in an
open-source integrated development environment, and the
proposed technique for dynamic tracing used in GDB, are
described. Finally, the performance of the various contribu-
tions proposed, to enable large scale heterogeneous debug-
ging using open-source tools, is evaluated.

2 Background and Related Work

The aim of this research paper is to improve open source
debugging tool for multi-core architectures. In order to es-
tablish a baseline and find limitations of current tools, we
provide a survey of relevant tools and research papers. Some
of this survey is to present the most common tools used for
debugging and tracing. We put an emphasis on open-source
tools as these are easier to use, compare and improve. The
debugging software presented was found through search in
academical database, as well as through the recommenda-
tions of our industrial partners.

The industrial partners develop debugging tools to run
on custom processors that have a large number of cores.
These tools are aimed at real-time application, therefore in
some case the developers might not be able to stop them to
investigate an issue. This means the debuggers must have
a minimal overhead on multi-core processors in order not



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 3

to affect the real-time constraints. Furthermore, the indus-
trial partners need to modify and recompile the tools so they
can work on their custom processors. Therefore, they have a
need for open-source debugging software the help the user
debug programs on large multi-core systems.

The industrial partners provided some references they
had already found. Furthermore, they recommended looking
at the industry-focused conferences such as EclipseCon and
the GCC Developer’s Summit. In order to add to these initial
articles, we searched in databases such as Web of Science
and Ei Compendex for articles related to debugging, tracing,
multi-core and open-source software.

2.1 Debugging

A program that runs a large scale parallel system is, by de-
sign, more complex that a single threaded one, as there must
be multiple threads that interact together to benefit from the
architecture [19]. This brings problems that are not present
in single threaded program, such as a race conditions. Fur-
thermore, it complicates debugging as certain threads might
need other threads to work to be able to continue their ex-
ecution. Stopping the program during interactive debugging
may also mask a bug and make it impossible to find it this
way. Thus, simply stopping a program and stepping a thread
does not always work anymore [17].

There are several debugging tools available for complex
platforms. TotalView and Allinea DDT are the two graph-
ical debuggers most commonly used for high-performance
computer debugging [2]. They have specialized support for
multi-threaded and distributed debugging. These features are
relevant in HPC computing such as Cuda, OpenMP and MPI
debugging. WinDbg and the Visual Studio Debugger are
closed-source debuggers developed by Microsoft and avail-
able only for Microsoft Windows. LLDB [14] is an open-
source debugger developed as part of the LLVM project. It
does not currently have as many features as GDB.

One common enhancement to facilitate large scale de-
bugging is developing new views to conveniently show the
user relevant information. These interfaces aim to show more
essential information to the user without overwhelming him.
This is extremely important on multi-core heterogeneous sys-
tems, since programs usually have very numerous threads
to efficiently use their highly parallel architecture. Without
specialized support, debugging can become inefficient, as
the user will spend too much time understanding the state
of the program. The proprietary debuggers, TotalView and
Allinea DDT, both offer views that group threads based on
various information such as location in the source code, state,
etc [2]. Eclipse CDT has a multi-core visualizer that shows
threads and their state based on their location on a specific
processor core [16]. However, support for multi-core debug-

ging in Eclipse is still limited, as there are few views de-
signed for multi-threaded programs.

Non-stop debugging is a feature of GDB that was de-
veloped for multi-thread debugging. Traditionally, all the
threads of a program are either running of stopped. When
non-stop debugging is enabled, one or more threads can be
stopped while other threads are still running. This allows
the user to debug specialized systems where certain threads
must continue to work, such as when time constraints must
be satisfied or a watchdog timer must be handled [18]. An-
other important feature for debugging is conditional break-
points. The thread stops when hitting the breakpoint only
if a specific condition is met (e.g., a serious erroneous con-
dition was met and the program can be stopped for diag-
nosing the issue). Otherwise, the debugger simply contin-
ues the thread execution and does not notify the user. This
reduces the number of notifications received needlessly by
the user and improves the debugging efficiency. It becomes
even more useful for multi-thread debugging, when the user
is more at risk of being overwhelmed by notifications due to
the complexity of the program. However, the debugger must
still handle the condition evaluation, when a breakpoint is
hit, and context switches are involved. This can slow down
the program if it is frequently hit.

2.2 Tracing

Tracing is a technique that aims to record a sequence of
events that have happened in a program. This technique records
and saves each event that occurred, instead of aggregating
them and giving a summary, as a code profiler would. Hav-
ing this full sequence of events can help the developer to
investigate in depth an issue, and discover not only the pres-
ence of a problem but also its causes [21,23]. Tracing works
by inserting tracepoints in the software code. Tracepoints
call the tracer to record data when they are hit during execu-
tion. In order to give a realistic view of the program, it must
minimize its overhead to limit perturbations [6]. Thus, the
goal of a tracer is to have a low impact and achieve good
performance for data collection.

There are two main instrumentation strategies for user-
space software tracing. The first one is called static tracing,
because it involves inserting code instrumentation into the
program source code before compilation. This means that
the tracing instrumentation is always present in the source
code [10]. However, the instrumentation code is not neces-
sarily active all the time and may simply be disabled during
execution. This type of instrumentation is very efficient as
the compiler can optimize the calls to the tracing functions.
The main limitation of this method for debugging is the re-
compilation time required each time a tracepoint must be in-
serted. When the developers need to insert a new tracepoint



4 Didier Nadeau et al.

while debugging, they have to modify the code and recom-
pile it before continuing, restarting the debugging process.

There are various tools available to statically insert trace-
points into a program. LTTng-UST is the user-space tracer
of the Linux Trace Toolkit : next generation tool suite. It
uses a lockless Read-Copy-Update synchronization to en-
sure scalability on multi-core systems and optimize data col-
lection [6]. UFtrace is a user-space tracer inspired from the
main Linux kernel tracer. It works by compiling a program
with option finstrument-functions to generate profiling code,
and uftrace hooks to this instrumentation to measure metrics
such as function duration [12]. Feather-Trace is a tracer with
wait-free FIFO for multiple writers [4]. There are also pro-
gramming libraries available to insert logging code for de-
bugging, with various integrated development environments
such as Visual Studio. These logging API are not necessarily
tracers but their usage is similar for debugging.

On the other hand, dynamic tracing aims to modify a
program dynamically. It is called dynamic because instru-
mentation is added to the program loaded in memory, after
compilation, and does not involve source code modification
[10]. Bypassing source code modification allows this kind of
tracing to quickly instrument a program. However, its per-
formance is not always as good as static tracing. This cate-
gory of tracing can be subdivided into three types of tracing.

The first type of dynamic tracing works by replacing an
instruction by a trap that is caught by the kernel. The ker-
nel then redirects the program flow to the appropriate instru-
mentation code for tracing. The main drawback of this tech-
nique is the cost associated with the interruption handling,
which significantly slows down the program being traced
[10]. There are multiple available tracers that use this tech-
nique. GDB uses this type of tracepoints for its regular tra-
cepoints [20]. UProbe is a feature of the Linux kernel that
provides this kind of tooling and can be used directly, or as
a back-end for other tracing tools such as Systemtap [5]. The
cost associated with the context switches, from user-space to
kernel, limits its use for low impact tracing.

It is also possible to use a virtual machine to interpret the
program code at runtime and add instrumentation [10]. This
method has an important overhead since it adds another step
for instruction decoding. However, it can be very flexible
and is used in Valgrind, a very popular tracer and profiler
[24]. Valgrind has multiple functionalities such as call graph
generation or memory leak detection. This technique is not
used for the proposed architecture as its impact is too high.

The third dynamic tracing method replaces an instruc-
tion by a jump instruction to the instrumentation code, where
the context is saved and the instrumentation is executed. Fi-
nally, the original instruction is executed and the program
flow returns to the origin of the jump. This instrumentation
technique has a very low overhead, similar to static instru-
mentation, as the cost of a jump is minimal [10]. However,

it is limited since not every instruction is large enough to be
replaced by a jump. For instance, on the Intel x86 architec-
ture, the instruction must be at least 5 bytes long, or even
longer if the jump target is beyond a certain distance. The
fast tracing architecture in GDB uses this technique to insert
tracepoints. This paper will use this technique as the pro-
posed infrastructure is based on the fast tracepoint architec-
ture in GDB. Furthermore, its cost is low enough to enable
efficient tracing in multi-core systems.

Another important factor in tracing is the event collec-
tion infrastructure. The available tracers use various tech-
niques to collect the data created by the tracepoints. It can
simply involve a lock to access a buffer shared by multi-
ple threads. More sophisticated synchronization methods,
such as atomic instructions used by Ftrace [3], or lock-less
FIFOs by Feather-Trace [4], for collection can offer a sig-
nificant improvement in performance. However, these tech-
niques are limited to fixed size events. The lock-less Read-
Copy-Update synchronization mechanism used by LTTng
provides both scalability on multi-core systems and flexi-
ble event sizes. Another aspect that impacts performance is
trace data transfer. Many tracers save data in a buffer located
inside the program memory and must empty them to allow
further trace frames to be collected. A dedicated thread or
program can be used to do this transfer in the background,
or it can be done by a program also doing other tasks. These
factors have an important impact on the performance and
impact of the tracer.

2.3 User interface

To efficiently use tracing, the developer must have a way to
understand the data. The simplest way to do so is simply to
read the trace data using a text interpreter. This method is
used by GDB to present the collected trace frames [20]. Ba-
beltrace is a tool to convert traces generated by LTTng, or
other compatible tracers, into text format. However, when
the data collected reaches a certain size, it is no longer feasi-
ble for a human to read it all. Thus, various tools exist to pro-
vide views to display trace data [8]. Vampir [15] is a visual-
ization tool focused on massively parallel computer systems.
It provides multiple views to easily understand data such as
a global timeline view, and a view that shows communica-
tion statistics. KCachegrind reads traces generated by the
callgrind tool in Valgrind and give a graphical view to facil-
itate its understanding [24]. Chrome provides a trace viewer
for trace data in its own format or for the ftrace data. Trace
Compass is an Eclipse based visualization tool that provides
various views such as a call graph or a timeline based view,
for trace data generated by LTTng or other compatible trac-
ers [22].

Conventional general-purpose processors found in mod-
ern computers frequently have multiple cores that each have



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 5

their own instruction pointer and data set. This means that
each core can execute a thread independently of the oth-
ers. Processors dedicated for graphics use a different kind
of architecture and multiple cores share the same instruc-
tion pointer. The execution unit in a GPU is a wave, and
consists of a group of data items processed simultaneously
on a group of cores with the same instruction pointer [11].
Thus, every core running the wave executes the same in-
struction concurrently on multiple data items. Due to this
highly parallel architecture, graphics processors can achieve
much higher calculation performance than general-purpose
processors but are greatly impacted by conditional branches
or concurrency control.

2.4 Heterogeneous System Architecture (HSA)

The HSA foundation is an organization involving academic
and industry members that work on heterogeneous systems
development. They promote a standard to provide a generic
programming model for heterogeneous systems consisting
of one or more generic host processors that dispatch work
to agents [9]. These agents receive a function called a ker-
nel and a three dimensions grid of data items. Each of these
data items has an identifier in its work-group, called the local
ID, and an absolute identifier, called the absolute ID. These
identifiers are computed from the position of the data item
in the grid. A work-group contains adjacent grid items dis-
patched together to a compute unit. Multiple compute units
can be contained in a single agent. The compute unit exe-
cutes the kernel function on multiple data items at the same
time. The group of data items processed simultaneously by
a compute unit is called a wave, and multiple waves can be
part of the same work-group. A wave is similar to a thread
using SIMD instructions, as an instruction is applied at the
same time on every data item in the wave. This program-
ming model is applicable for graphics processors, which can
be used as agents in a system implementing the standard.

An open-source implementation of the HSA standard is
currently being developed by AMD. This framework, called
Radeon Open Compute, provides multiple components and
allows shared memory space between the host processor and
the graphics card. A version of GDB adapted for this soft-
ware stack is also in development and currently able to inter-
actively debug assembly code running on the graphics card
[1]. This debugger still uses a small closed source legacy li-
brary for low-level work, that will be replaced to provide a
completely open debugger.

In this section, a survey of available debugging and trac-
ing tools for heterogeneous systems has been presented with
a focus on open-source tools. Various methods and features
to aggregate information and help the user to efficiently de-
bug multi-threaded programs have been detailed. Using trac-
ing in a debugger, where the impact on the program must be

0 5 10 15 20

101

102

Number of threads

To
ta

ld
ur

at
io

n
(s

)

With tracing
No tracing

Fig. 1: Total execution time for a test program as a function of the
number of threads when a fast tracepoint is inserted

kept minimal, and different techniques to do so, have been
discussed. The general programming model used for graph-
ics processors in the HSA Foundation standard have been
outlined, along with an open-source implementation of the
standard. In the following sections, the current features and
performance of GDB and Eclipse are analyzed. Then, the
contributions to debugging tools are explained and their im-
pact is analyzed.

2.5 Limitations of Current Tools

In this section, the Eclipse CDT support for multi-threaded
debugging, and the various views available, have been stud-
ied. The current support for fast tracing in GDB has been
tested and its performance has been evaluated.

The performance of GDB fast tracing has been mea-
sured using benchmarks, and user-space and kernel tracing.
GDB fast tracing was used on a multi-threaded test program
where the tracepoint is very frequently hit, while changing
the number of threads in the program. Three experiments
were conducted, to measure the execution time, to capture
kernel events, and to record access to the GDB tracing func-
tion.

The benchmark executes the test program repeatedly and
the tracepoint is frequently hit in the main loop of the pro-
gram by every thread. The script measures the total execu-
tion time as the number of threads is varied. Figure 1 shows
the results of this test. The total execution time goes from
7.85 seconds for 1 thread to 131.68 seconds for 20 threads.
The tracing impact is clear, as the program execution is ap-
proximately 17 times faster for 20 threads when there is no
tracepoint. Furthermore, the program is significantly faster
even for only one thread, going from 5.01 seconds without
tracepoint to 7.85 seconds, for a 36 % overhead.



6 Didier Nadeau et al.

Fig. 2: Representation of program state during normal execution

Fig. 3: Representation of program state while tracing it with the default GDB fast tracing architecture

Kernel tracing records kernel events and system calls. It
gives the state of each thread during execution and provides
a good insight into issues such as resource starvation. Trace
Compass, an open-source Eclipse plugin program, is used
to visualize the kernel trace collected when GDB is trac-
ing a program. Figure 2 represents the test program execut-
ing in GDB without tracing. Each line is a different kernel
thread, and the one with TID 8677 is the test program ex-
ecuted with only one thread. This thread stays in the same
state, executing, for most of its duration, as it simply does
floating-point calculations in a loop. Figure 3 represents the
test program when fast tracing is enabled in GDB. In Fig-
ures 2 and 3 yellow and red show the blocking states, green
depicts the running in the user-space mode while blue rep-
resents the system-call execution mode. As shown in Fig-
ure 3, the thread doing the calculation is the one with TID
8088 and its state changes multiple times. It stays most of
the time blocked, as shown by its grey color, while thread
8051 of GDBServer is transferring the data. These two fig-
ures show the high penalty incurred when the program is
stopped to flush the trace buffer, which explains why the ex-
ecution time is higher, even for only one thread, when GDB
tracing is enabled.

The last test to analyze the behavior of the tracer is record-
ing the access to the tracing code in GDB. The collection
function code, in the In-Process Agent library, is instrumented
using LTTng-UST. This collection function is called when-
ever a standard GDB fast tracepoint is hit. One event for
function entry and another for function exit are defined. The
test program is started with 10 threads using GDB, and a fast
tracepoint is inserted into its calculation loop. Then, access

to the trace collection function in GDB is recorded for each
thread using LTTng-UST.

Figure 4 shows the trace data in a Trace Compass view.
A custom view was defined using the XML plugin. This
view shows one line per thread. Each line is either in the nor-
mal state or in the tracing state. The mouse pointer in Fig-
ure 4 points to a thread in the normal state. Underneath the
mouse pointer, we can see the notification window shown
when the mouse points to a thread in the normal state, i.e.,
outside the tracepoint. The other state, in yellow, indicates
that the thread is in the collection function. Figure 4 shows
that there is only one thread in the tracing state at a time.
This implies that there is a critical section in the tracepoint
and mutual exclusion applies. A review of the jump pad
code, that calls the collection function, reveals that there is
a spin lock inside the jump pad. Therefore, only one thread
can have this lock at a time, which explains why there is
never more than one thread in the tracing state. Furthermore,
we can see that there is almost always one thread that is in
the tracing state. This implies that there is at least one thread
waiting for the lock most of the time, and that it goes into
the collection function as soon as possible. This lock is nec-
essary, as there is a single buffer where every thread stores
its trace data. However, it greatly limits scalability and is the
most important contributor to the performance hit shown in
Figure 1 when the number of threads is increased.

The support to debug code running on general purpose
graphics processors in GDB is limited. Nvidia offers a de-
bugger based on GDB to debug CUDA code on its graph-
ics processors. This debugger is based on CUDA, which
is closed-source and limited to Nvidia graphics processors.



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 7

Fig. 4: Timeline of threads state when a tracepoint has been inserted. Green is tracing and yellow is the normal execution.

Fig. 5: Main Eclipse CDT view to shows threads in the Debug
perspective

AMD is working on a version of GDB to support code run-
ning on its graphics processors using standards of the Het-
erogeneous Systems Architecture (HSA) foundation. This
version of GDB is based on the Radeon Open Compute en-
vironment and is called ROCm-GDB. The current version of
ROCm-GDB still uses an old closed-source library to sup-
port GPU debugging but it will be replaced with an open-
source version. Furthermore, the programming model used
is an open standard and could be applied to devices from
other vendors.

Support for debugging code running on heterogeneous
and multi-core platforms is limited in open-source devel-
opment environments. Nvidia offers a version of Eclipse,
Nvidia Nsight, to develop and debug code running on its
graphics processors using CUDA. Nsight is open-source as
it is based on Eclipse but it uses CUDA and has the same
limits as CUDA-GDB. Both TotalView and Allinea DDT
offer various methods and views to deal with a large number
of threads, but both of these programs are closed-source.

Eclipse CDT offers support for multi-threaded debug-
ging. The main debug view shows each thread of the pro-
gram being debugged in an expandable tree, with the parent
processes and the stack of each thread. Selecting a thread
in this view allows the user to get more information on its
context, such as registers and local variables values. Eclipse
CDT also offers support for non-stop debugging, or reverse
debugging, when used in combination with a version of GDB
that allows it. The multi-core visualizer is a debugging view
that shows CPU cores and the threads running on them. It
gives an overview of the state of the program to the user,
and can display more threads that the main debug view.

The scalability of the main debug view is limited. In-
deed, as it represents a list of threads that can be expanded to
see their stacks, it can be difficult for the debuggers to con-
trol a large number of threads. The stacks must be expanded
to know where a thread is stopped, but this mean that there
are multiple elements shown for each thread. When there are
many threads, the view quickly becomes full. For example,
as shown in Figure 5, the number of elements makes it hard
to see where each thread is. Furthermore, the screen is al-
most full with 11 threads shown, and we see the stack trace
of only 3 of them. This forces the user to scroll or collapse



8 Didier Nadeau et al.

elements and makes it harder to keep track of the program
state.

Code executed on the graphics processors using the HSA
specifications consists of a function applied to each element
in a three dimensions grid. The GPU executes the function
in waves, and each wave contains multiple units, that are at
the same step in the function but are applied to different el-
ements of the grid. A typical graphics processor can contain
significantly more than a hundred waves executing simulta-
neously. Therefore, these waves can not realistically be dis-
played in the same way as CPU threads, because it would
be inefficient for the user to deal with a list of hundreds of
elements.

In conclusion, Eclipse CDT has support to allow the
developer to debug multi-threaded programs on a proces-
sor. However, it needs significant enhancements and new
features to be able to do so efficiently on large multi-core
platforms. Support for graphics processors debugging is not
present at the moment. Furthermore, the fast tracing archi-
tecture used in GDB has issues that strongly limit its perfor-
mance on multi-threaded programs. In the next section, con-
tributions to both Eclipse CDT and GDB will be proposed
in order to optimize debugging on heterogeneous multi-core
systems.

3 Proposed Solution

As heterogeneous multi-core systems become increasingly
used, debugging tools must be enhanced for these systems.
In order to maximize productivity, tools must follow this
trend. Many aspects of debugging need improvements to fa-
cilitate this process. In the following sections, we detail our
work on dynamic tracing using GDB and enhancing interac-
tive debugging using Eclipse.

3.1 Dynamic Tracing

Many tracers and loggers work by providing functions called
in the source code and require recompilation to be included
in the program. On the other hand, dynamic tracing works
by modifying the program in memory, after compilation, in
order to instrument it. As explained in the related work sec-
tion, there are various techniques used to achieve this goal. A
first technique inserts a breakpoint and the handler redirects
the execution flow to the instrumentation code. It is also pos-
sible to interpret the code instead of executing it, thus allow-
ing the interpreter to insert instrumentation on the fly. How-
ever, these techniques have an important overhead as the first
method requires interruption handling by the operating sys-
tem, while the second one needs to regenerate instructions
before executing them [10]. Another option, called fast tra-
cepoints in GDB, involves modyfing the program in mem-

GDBServerGDB

Program

In-Process
Agent

liblttng-ust

LTTng
Consumer

LTTng
Session

Commands

Events

Control
Tracepoint jump

Data Collection

Data transfer

Commands

Control

Fig. 6: Proposed fast tracing architecture using LTTng

ory to jump to the instrumentation code. This method has
a significantly lower overhead than the previous techniques
[17].

In this paper, large-scale is used to describe systems that
are strongly parallel and have a large number of cores. There
is no exact limitation on what constitutes a large number
of cores, but it implies that there are enough cores to bring
concurrency challenges. Large multi-core platforms include
multi-processor computers or specialized many-core proces-
sors such as the Xeon Phi, which can have more than 60
cores. For this paper, the computer used for testing has 4
processors with 16 cores each, for a total of 64 cores. The
graphics processor used for GPU debugging is the AMD R9
Nano with 4096 processing units, using the Radeon Open
Compute stack 1.1.0.

Previously, tracing only involved GDB, GDBServer and
the In-Process Agent library. The user interacted with GDB
that sent commands to GDBServer. The In-Process Agent
library was preloaded into the debugged program and con-
tained a buffer accessed by the threads, in mutual exclusion
enforced by a spinlock. Once the buffer was full, the pro-
gram was stopped and GDBServer transferred the data into
its own buffer before restarting the experiment.

The proposed architecture offers performance improve-
ments by using the LTTng tracer developed by our research
group (Figure 6). It has a more sophisticated tracing infras-
tructure that avoids the penalty caused by locking and stop-
ping. The tracer creates one ring buffer per processor core in
a memory space shared between the liblttng-ust library and
the consumer daemon. Each buffer contains multiple sub-
buffers, and the size and number of these sub-buffers can
be modified. Atomic instructions are used by the producer
and the reader to keep track of the sub-buffer being cur-
rently read and the one being written to [7]. Furthermore,
the producer uses local atomic instructions that only affect
its core and not the whole processor to minimize overhead.
The consumer uses a standard compare-and-swap instruc-



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 9

Tracepoint

Program

Jump pad

Spinlock

Buffer full ?

Trace
collection

Program

Flush buffer

Yes
No

Tlock

TJumppad

Tcollect Tflush

Fig. 7: Standard fast tracepoint workflow

tion, although its overhead is limited because it only uses it
once a whole sub-buffer has been read. This allows multi-
ple threads to write trace data simultaneously, and does not
require to stop the program to empty the buffer.

Furthermore, we have extended the LTTng tracer to en-
able dynamic tracing. One limitation of the standard LTTng-
UST tracer is that events must be defined before compila-
tion. We propose a method to circumvent this limitation, as
we need to dynamically register tracepoints. We leverage the
CTF trace format used by LTTng that store the trace defini-
tion in a single header file. We define multiple tracepoint
at runtime that take char array of various size at runtime.
When the user inserts a fast tracepoint in GDB, we calculate
the total size needed for the desired tracepoint. Then, GDB
selects a tracepoint that has a char array of sufficient size
and links it by dynamically modifying the program. When
the experiment is completed, we modify the trace definition
in the header, replacing the char array argument by multiple
arguments of the correct type. This method allows us to use
the standard LTTng tracer packaged by many Linux distri-
bution. Thus, usage is simplified as a developer can install
the standard package from an available repository.

Tracepoint insertion is handled by GDBServer. It first
checks if there is a large enough instruction, at the line where
the user wants the tracepoint. On x86 processors, the instruc-
tion must be at least 5 bytes long. GDBServer replaces this
instruction by a jump to a pad where the context is saved
and the tracing function of the In-Process agent is called.
The original instruction is executed at the end of the jump
pad when the tracer returns.

Figure 7 shows the workflow for the original tracing
technique. Once the thread is in the jump pad, it waits until it

Tracepoint

Program

Jump pad

Trace
collection

liblttng-ust

Program

TJumppad

Tcollect

Fig. 8: Proposed LTTng tracepoint workflow

can acquire the spinlock. Then, it goes into the tracing func-
tion and reserves space in the buffer. If there is not enough
space, it triggers a breakpoint to tell GDBServer to empty
the buffer. After GDBServer has restarted the program, the
thread saves the data, releases the lock and executes the orig-
inal instruction before returning to the instruction following
the inserted jump.

Ttracepoint = Tjumppad+Tlock+Tcollection+Tflushing (1)

The time penalty imposed by the default fast tracepoint
implementation is given in equation 1. The values of Tjumppad

and Tcollection are constants with respect to the number of
threads. The value of Tjumppad comes from the time it takes
to jump to the tracepoint instructions and save the context.
The time taken by Tcollection comes from saving values into
the buffer. The component Tflushing is affected by the total
number of trace frames collected, as the data transfer from
the In-Process Agent buffer to the GDBServer buffer oc-
curs only when enough trace frames have been collected for
the In-Process Agent buffer to be full. Tlock is the compo-
nent that strongly limits scalability. Indeed, it represents the
time spent trying to acquire the spinlock. As the number of
threads increases, the tracepoint is hit more frequently and
an increasing number of threads try to acquire the lock at the
same time. This causes a large penalty, as multiple threads
are stuck trying to acquire the spinlock.

Figure 8 represents the workflow when a tracepoint is
hit in the proposed architecture. First, the context is saved
by the jump pad, as for standard fast tracepoints. Then, the
data is collected and sent to an appropriate tracing function
in the liblttng-ust library. Finally, the thread returns to the
program.

Ttracepoint = Tjumpad + Tcollection (2)



10 Didier Nadeau et al.

Fig. 9: Stack Aggregation view implemented within Eclipse CDT to
display active threads

Equation 2 gives the time penalty of a fast tracepoint
using LTTng. The first component, Tjumpad, is the same
as in the default implementation. The second component,
Tcollection, is extremely similar to the first, as it only uses a
different function call to transfer data. It still is constant, un-
affected by the number of threads. Both Tlock and Tflushing

are removed for LTTng tracepoints, as there is no lock needed
for data flushing.

The proposed implementation brings performance en-
hancements by using a combination of the GDB dynamic
tracing architecture and the LTTng tracer developed by our
research group. GDB dynamic tracing enables the developer
to insert tracepoints using a simple jump, a few instruc-
tions and a call to a function. The cost of this solution is
lower than for dynamic tracing using a breakpoint that trig-
gers interruptions. However, the standard GDB fast tracing
uses a single lock-protected buffer in the library to save the
data. Furthermore, when the buffer is full, the program is
stopped by GDBServer to transfer the data and empty the
buffer. Both of these factors contribute to slow down a pro-
gram traced on a large-scale parallel system. The proposed
implementation enhances the existing fast tracing architec-
ture by removing these two limitations. By using circular
buffers in shared memory to store data from tracepoints, no
lock is needed to access the buffers and the program is not
stopped while the consumer daemon transfers the data. This
allows tracing to scale well when the number of threads is
increased.

function BUILDTREE(CallStacks)
TreeNode
i ← 0
while i < CallStacks.size do

APPENDTREE(TreeNode, CallStacks[i])
i ← i+ 1

end while
end function

function APPENDTREE(TreeNode, head)
if head == null then return
end if
child = TreeNode.find(head)
if child �= null then

APPENDTREE(head.next)
else

TreeNode.insert(head)
APPENDTREE(head.next)

end if
end function

Fig. 10: Algorithm to build the tree structure for the call stack view.

3.2 Visual Debugging

The first view, implemented to help the user debug a pro-
gram with a large number of threads, is a call stack aggrega-
tion view and is shown in Figure 9. This view automatically
groups the threads by their call stacks to display important
information in a limited space to the user. The call stacks
of each thread are retrieved and merged together to create
a tree. Therefore, two threads that have the same call stack
will be shown in the same leaf of the three. If their call stacks
have the same first functions but diverge at some point, this
will be shown in the view. This user interface shows groups
of thread that are likely to do related work, as they have a
similar call stack. It helps the developers to focus on spe-
cific parts of the program, as they can collapse parts of the
tree, if the threads in this section are doing work they are not
interested in. Furthermore, the threads are logically grouped
together, which should help the users to better understand
the program work flow, as compared to the standard debug
view that simply provides a very long, linear, list of threads.

The intended use of this call stack view is multi and
many-core systems running programs with a large number
of threads. Therefore, we need a scalable algorithm to build
a tree structure for the viewer from the call stacks. TotalView
provides a similar interface, however the algorithms to build
the data structure are unpublished. Figure 10 shows the al-
gorithm to build the tree. It takes an array of pointers to the
head of each thread call stack. The AppendTree function is
called only once for each stack frame. Furthermore, we have
chosen to use an hash table to contain a node children. It en-
sures O(1) complexity to insert or find a children. This gives
the algorithm to build the tree a total running time of O(kn),
where k is the number of thread and n the average call stack
depth. This ensures scalability on multi-threaded programs,



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 11

as the running time is limited by the total number of stack
frames read by the algorithm.

To further improve efficiency of multi-threaded debug-
ging, we propose a filter to be applied on threads. Even with
specialized views, overwhelming the developer is still a pos-
sibility. The large number of simultaneously active threads
increases the frequency of events such as breakpoint hits.
Multi-threaded programs running on large systems can con-
tain multiple groups of threads that are doing separate work.
Nonetheless, the user could be interested in debugging only
one of of these groups. However, some functions can be
shared between the groups to reuse code, and inserting a
breakpoint can lead to unneeded notifications, complicating
the debugging process. While it is possible to use condi-
tional breakpoints in these cases, the user has to manually
specify the list of threads concerned for each breakpoint.
Using a filter, the users can select the threads they needs
to debug, and the filter removes the other threads from per-
spective. The developer is not notified of breakpoint hits
for threads not included in the perspective, the threads are
simply resumed. Furthermore, the filter removes unselected
threads from the different debugging views. This enables the
developer to focus completely on the problematic parts of
the program, without seeing the other threads or receiving
unneeded notifications.

Even with specialized views, overwhelming the devel-
oper is still a possibility. The large number of simultane-
ously active threads increases the frequency of events such
as breakpoint hits. Multi-threaded programs running on large
systems can contain multiple groups of threads that are do-
ing separate work. Nonetheless, the user could be interested
in debugging only one of these groups. However, some func-
tions can be shared between the groups, to reuse code and in-
serting a breakpoint can lead to unneeded notifications, com-
plicating the debugging process. To solve this issue, we pro-
pose a filter concept inspired from conditional breakpoints.
These breakpoints are only triggered if a specific condition
is met, thus using a filter to reduce the number of notifi-
cations. We generalize this concept by filtering the threads
themselves. The filtering not only applies to breakpoints but
also to views, and threads that are not in focus would not
be shown. This enables the developer to focus completely
on the problematic parts of the program, without seeing the
other threads or receiving notifications.

Displaying GPU waves is a difficult challenge. As pre-
viously outlined, a graphics processor can run more than a
hundred waves simultaneously, and each of these waves ex-
ecutes a kernel function on multiple data items. The large
number of elements to be displayed simply cannot be shown
in a list, as it would be almost unusable. Therefore, a method
to automatically group the waves and reduce the displayed
information must be used. A call stack aggregation view,
as proposed for CPU threads, is not possible. Indeed, func-

tions calls are inlined on the GPU and there is no call stack.
However, it is possible to take advantage of the program-
ming model used. Each wave process data items contained
in a range of the data grid. Furthermore, waves are con-
tained in work-group that have an identifier along the x,y
and z axis. We have used these identifiers to show ranges of
work-groups in the debug view. The view uses a four level
structure, with the first three levels respectively specifying
ranges along the x,y, and z axis. The last level contains a list
of waves.

For GPU waves, filtering could not be done in the same
way, as every wave in a dispatch is executing the same func-
tion. Thus, the waves are not in different sections of the code
and cannot be filtered as CPU threads. Due to the specific
programming model, another type of filtering is possible.
Indeed, as a grid of items is sent to the GPU, it is possi-
ble to filter the waves according to their position in the grid,
and reduce the number of waves and events that the devel-
oper has to handle. The first goal of this filtering is simply
to reduce information overloading, in case there is a generic
problem in a function that occurs everywhere in the grid. If
the problem occurs everywhere, the filter could show only
one wave to remove the parallel component from the per-
spective and facilitate debugging. On the other hand, some
problems could occur only in specific sections of the grid, if
the function gives an unexpected result for a certain input. In
this case, filtering can be used to remove the sections of the
grid where there is no problem. Thus, the developer would
be able to insert breakpoints anywhere in the function but
avoid useless notifications.

4 Evaluation

In this section, we evaluate and validate the proposed con-
tributions. In the first part, the proposed tracing architecture
has been tested and its performance measured. Then, the ca-
pabilities of the proposed Eclipse views and features are pre-
sented and discussed.

The tracing tests were performed on a Linux Fedora 24
computer using Linux kernel version 4.7.9-200.fc24.x86 64.
The computer has four Intel Xeon E7-8867 processors at
a frequency of 2.50 GHz. Each processor has 16 physical
cores with hyperthreading, for a total of 64 physical cores
and 128 logical ones. Each processor has a total of 45 MB
of cache, and the computer has a total of 256 GB of physical
random access memory installed. LTTng version 2.8.0-pre is
used for tracing. The work on GDB tracing is based on the
GDB 7.11 branch. The work on GPU debugging is based on
the ROCm-GDB 1.0 version, on an Intel Core i7-4790 pro-
cessor, with an AMD R9 Nano card using Eclipse Neon 4.6.
Table 1 and 2 show the computers used for the evaluation of
this research.



12 Didier Nadeau et al.

Element Quantity Description

Operating System ND Ubuntu 14.04.5
Processor 1 Intel Core i7-4790, 3.90 GHz
Graphic Card 1 AMD Radeon R9 Nano
RAM 4 Kingston DIMM DDR3 1600 MHz de 8 GB

Table 1: Computer used for calculations.

Element Quantity Description

Operating System ND Fedora 24
Processor 4 E7-8867 v3, 2.50 GHz
Graphic Card 0 ND
RAM 4 TBD

Table 2: Server with 64 physical cores used for tracing.

The proposed tracing architecture has been tested with
an open-source parallel file compression program, pbzip2.
This program is a parallel implementation of the serial file
algorithm bzip2 that uses the Burrows-Wheeler algorithm to
compress a single file. The benchmarks are done using ver-
sion 1.1.13 of pbzip2. The program is compiled with debug
symbols enabled, 01 optimisation level, and function inlin-
ing disabled to facilitate debugging. It is statically linked
with the bzip2 library, version 1.0.6 compiled from source.
A combination of bash and python scripting is used. There
is a total of 15 426 444 tracepoint hits distributed among the
different number of threads in each experiment. The same
100 MB randomly generated file is used in each experiment.
Figure 11 shows the total execution time for the proposed
GDB implementation using LTTng tracepoints, the default
implementation using fast tracepoints and the baseline us-
ing GDB without tracepoints.

As expected, we can see in Figure 11 that the proposed
implementation using LTTng tracepoints scales well as the
tracer architecture is designed for parallel tracing. The de-
fault GDB implementation using fast tracepoints has a sig-
nificantly higher cost than tracing using LTTng. In the case
of a single thread, the total time using GDB with LTTng is
32.5 seconds, less than half the time it takes for the default
fast tracepoints in GDB at 85.0 seconds. In this case, no time
is lost while waiting to acquire the lock, as there is only a
single thread. However, there is a penalty associated with
the stops for data transfers while the proposed architecture
does not stop the program to transfer data.

When the number of threads is increased, the perfor-
mance gain of the proposed architecture over the standard
fast tracepoints becomes even more noticeable. The LTTng
GDB tracing follows the baseline with a small time penalty
and it achieves a very similar speedup to the baseline, as
seen in Figure 12. On the other hand, the performance of
the default tracer is slightly better for two threads than one,
and starts to decreases for a larger number of threads. For

0 5 10 15 20

101

102

Number of threads

To
ta

ld
ur

at
io

n
(s

) Baseline
Proposed GDB
Default GDB

Fig. 11: Total execution time to compress a 100 MB file using pbzip2

instance, its execution time with 5 threads is longer than
for a single thread. Contention for the spinlock, as multi-
ple threads try to acquire it at a high frequency, is the reason
for this performance issue on multi-threaded software. The
performance improvement of the proposed architecture on
large multi-core systems becomes clear, with the results in
Figure 11.

The default GDB tracing implementation uses the tool
Trace Visualizer in the console. This visualizer allows the
developer to navigate between captured trace frames and
look into the data contained by these frames. A similar in-
terface has been proposed. This interface is implemented
within GDB in Python, and uses Babeltrace to read trace
data. The commands are very similar to what already exists
in GDB. Figure 13 shows how this appears on the console.
One advantage of using Python to create the commands for
trace visualization is the flexibility. Indeed, it is easy for the
end-user to modify how the trace data will appear on the
terminal and does not necessitate recompilation to work.



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 13

0 5 10 15 20
0

2

4

6

Number of threads

Sp
ee

du
p

Baseline
Proposed GDB
Default GDB

Fig. 12: Speed up of pbzip2 debugging using GDB standard and
proposed tracing

Fig. 13: Trace data visualization with the proposed GDB fast tracing
architecture

Another advantage of the proposed tracer architecture is
the ability to enable kernel tracing at the same time as user-
space tracing while debugging. Kernel traces can be eas-
ily visualized in Trace Compass, as seen in Figure 3. This
can help to find issues such as resource starvation or mutex
contention. Furthermore, interpreting large amounts of trace
data can be hard for a developer. The default fast tracer only
provides a terminal based interface to read trace data. The
proposed implementation also save the trace data to a file
where it can be read by Trace Compass. This visualisation
tool allows the developer to write XML analysis and easily
create views that display the trace data. An example of an
XML view in Trace Compass is shown in Figure 4.

Using Figure 9, we can easily realize that there are two
groups of threads. The first contains only one thread waiting
in pthread join, while the other contains nine threads doing
work in dragon draw worker. A quick overview also shows

that three threads of the second group are waiting on a bar-
rier. When a program contains more threads, the developers
can collapse a section of the tree, if threads are working on
some parts of the code they are not interested in.

The proposed thread filter has been implemented within
GDB. We have decided to use the stack aggregation view
to set the filter for the threads, as it already shows logical
groups of threads. To enable filtering, the users simply se-
lects the threads they want to remove, as shown in Figure 9
and clicks the Remove from Selection button. Eclipse CDT
sends the information to GDB, and the filter is created. The
selected threads are not shown the next time the program
stops. As we can see in Figure 14, the threads selected in
Figure 9 are not present because the filter has been applied.
Furthermore, if one of the selected thread hits a breakpoint,
GDB simply continues and does not notify the user. Filter-
ing has been implemented within GDB to maximize perfor-
mance. It avoids communication between Eclipse CDT and
GDB to decide if a thread is in the selection, and acceler-
ates breakpoint handling. Furthermore, it reduces the size
and number of messages sent, as it does not need to send
information related to threads excluded by the filter.

The GPU waves have been included in the main debug
view using work-groups, as shown in Figure 15. There are
four levels in the tree, one for each dimension of the grid,
and the final one to display the waves in a work-group. With
this view, the developer is able to have a better overview of
the program than a long linear list of all the waves. It gives
the necessary information to the developer, and allows him
to select a specific rang in the data grid to inspect.

The GPU waves filter has also been implemented within
GDB. A simple Eclipse view allows the developers to spec-
ify the range of position they want to set the focus on. The
user can select a combination of ranges along one or more
axis. An example is shown in Figure 16. In this case, the
ranges selected are 0 to 63 for the X axis, 0 to 47 for the
Y axis and 0 to 1 for the Z axis. Then, the debug view, that
previously displayed every GPU waves as shown in Figure
15, only display waves that are in the focus region. Figure
17 shows that the only waves displayed are the one that are
inside the focus set in Figure 16. The reduced quantity of in-
formation helps the users focus on the problems. The users
can also reduce the range of the filter as they narrow down on
the origin of the problem. This helps the users stay focused
on the problem. Furthermore, it allows them to abstract the
parallel aspect, by choosing a specific wave of focus, on a
problematic region of the grid.

In summary, we have demonstrated the advantages of
the proposed architecture over the default tracer. It allows
significant performance gains for single-threaded software
and even more important gains on multi-core systems. The
terminal reader for the traces is easily customizable by the
user, without recompilation. Furthermore, it allows the de-



14 Didier Nadeau et al.

Fig. 14: Debug view and Stack Aggregation view when the filter has been applied.

Fig. 15: Eclipse CDT main debug view with GPU waves shown

veloper to combine kernel and user-space tracing easily, and
Trace Compass can be used to obtain helpful data visualiza-
tion.

5 Threats to Validity

There are some threats to validity related to our proposed
solution that need to be considered.

5.1 Tracing and conditional debugging

The first threat related to the fast dynamic tracing is that
there is a minimum size to replace an instruction. Indeed, on
architectures with instructions of variable size, such as Intel
x86-64, the instruction must at least be the size of a jump. On
Intel, that corresponds to a 5-byte instruction. Therefore, we
cannot insert quick trace points anywhere, and this can be
problematic. This limitation is known, as denoted in Chapter
3.



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 15

Fig. 16: GPU focus view to filter HSA waves

Fig. 17: Eclipse CDT main debug view with GPU waves and an active GPU focus

5.2 Display of execution waves

The waves of execution on a graphic processor are grouped
in a tree structure based on their position in the data grid.
However, only the nodes of the first level of the tree are dis-
played, since there is a very large number of waves. The
developers need to enlarge manually the groups they want
to explore. This can complicate the use of the view, as the
users have to navigate in the tree.

5.3 Filters

Filters allow the users not to be notified of events that oc-
cur outside the focus. However, the debugger still receives
these events, and must manage them. That makes so that the
program can be slowed even if the users do not receive an
event. It is a similar limitation as the one presented by nor-
mal breakpoints.



16 Didier Nadeau et al.

5.4 Comparison to other tools

Having an open-source tool was an important requirement
for the industrial partners. In order to use any possible tools
developed as part of this project, they need to recompile and
adapt the tools for their custom multi-core systems. There-
fore, closed-source tools were not given as much consider-
ation because they could not be adapted for their custom
processors. This limitation was imposed by the initial re-
quirements of the industrial partner.

6 Conclusion

In this paper, we have shown the limitations of current de-
buggers for large scale parallel systems. We have presented
various methods currently available in both open and closed
source software. We have analyzed the performance of the
tracer available with GDB and the features offered in Eclipse
CDT for multi-thread debugging.

An improved technique for dynamic tracing in GDB was
proposed based on the results of the analysis. This archi-
tecture uses both GDB and LTTng-UST to ensure scalabil-
ity of the dynamic user-space tracer. The performance of
the proposed implementation has been compared to the per-
formance of the default GDB fast tracer. The test results
have shown that fast tracepoints using LTTng scale well,
while fast tracepoints using the standard GDB implemen-
tation are greatly penalized by the lock protecting buffer
access and data transfer. Tracing performance quickly de-
teriorates when multiple threads hit a breakpoint frequently,
while the LTTng tracepoints performance is not affected by
multi-threading.

We have evaluated the performance improvement of our
tracing tool using a parallelized file compression tool. For
instance, our tool creates an overhead of 90% when 15 threads
are used to compress the file, while the default tracing tool
causes an overhead of 3294%. As our tool does not cause
the program to slow down by two orders of magnitude, it
could conceivably be used to inspect software used in pro-
duction. One could attach this tool to various functions in a
web server application used in production, record variables
at key points and understand how a problematic code path
could be taken.

A view to group threads by their call stack has been pre-
sented and evaluated. The algorithm to build this view has
been developed to ensure scalability on large multi-threaded
programs. The main Eclipse debug view has been enhanced
to include GPU waves for heterogeneous debugging. A fil-
ter was developped to exclude irrelevant waves and threads
from the debugging views to reduce unneeded information.
These contributions help the developer by providing a bet-
ter view of the debugging context to focus on the problems
to solve. It can be of use to analyze complex program. For

instance, one could use this view to efficiently group the nu-
merous threads used by a finite element solver and quickly
understand what each thread is doing.

These contributions are a first step to adapt debugging
tools for modern large scale heterogeneous systems. The
tracing technique efficiently provides data to help the user.
However, it still requires an instruction large enough to re-
place it by a jump. This limitation could be removed by dis-
placing a function frame and instrumenting it. The proposed
views and the filter simplify and enhance the user experi-
ence. The feedback was obtained from three software engi-
neers working at Ericsson on open-source debugging tools
(Eclipse and GDB). These engineers frequently interact with
multiple teams internally at Ericsson and discuss with them
to understand their needs. Therefore, these engineers were
well-positioned to evaluate the appeal of the proposed solu-
tion.

The handling of excluded threads works in the same way
as for conditional breakpoints, and could be improved as
it involves costly context switches that carry an important
overhead.

Acknowledgment

We would like to gratefully acknowledge the Natural Sci-
ences and Engineering Research Council of Canada (NSERC),
Prompt, Ericsson, and EfficiOS for funding this project.

References

1. Inc. Advanced Micro Devices. Gpuopen, 2016.
2. KB Antypas. Allinea ddt as a parallel debugging alternative to

totalview. Lawrence Berkeley National Laboratory, 2007.
3. Tim Bird. Measuring function duration with ftrace. In Proceed-

ings of the Linux Symposium, pages 47–54. Citeseer, 2009.
4. B Brandenburg and J Anderson. Feather-trace: A lightweight

event tracing toolkit. In Proceedings of the third international
workshop on operating systems platforms for embedded real-time
applications, pages 19–28, 2007.

5. Jonathan Corbet. Uprobes in 3.5, 2012.
6. Mathieu Desnoyers and Michel R Dagenais. The lttng tracer: A

low impact performance and behavior monitor for gnu/linux. In
OLS (Ottawa Linux Symposium), volume 2006, pages 209–224.
Citeseer, 2006.

7. Mathieu Desnoyers and Michel R. Dagenais. Lockless multi-core
high-throughput buffering scheme for kernel tracing. SIGOPS
Oper. Syst. Rev., 46(3):65–81, December 2012.

8. Naser Ezzati-Jivan and Michel Dagenais. Multi-scale navigation
of large trace data : A survey. Concurrency and Computation :
Practice and Experience, 2017.

9. HSA Foundation. Hsa programmer’s reference manual: Hsail vir-
tual isa and programming model, compiler writer, and object for-
mat (brig) 1.1. Technical Report 1.1, HSA Foundation, February
2016.

10. Kim Hazelwood. Dynamic binary modification: Tools, techniques,
and applications. Synthesis Lectures on Computer Architecture,
6(2):1–81, 2011.



Efficient Large-Scale Heterogeneous Debugging using Dynamic Tracing 17

11. John L Hennessy and David A Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., 2011.

12. Namhyung Kim. uftrace - function (graph) tracer for user-space,
2017.

13. L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and
G. Venolia. Debugging revisited: Toward understanding the de-
bugging needs of contemporary software developers. In 2013
ACM / IEEE International Symposium on Empirical Software En-
gineering and Measurement, pages 383–392, Oct 2013.

14. LLVM Project. The LLDB debugger, 2017.
15. Wolfgang E Nagel, Alfred Arnold, Michael Weber, Hans-

Christian Hoppe, and Karl Solchenbach. Vampir: Visualization
and analysis of mpi resources. 1996.

16. Andreas Olofsson and Marc Khouzam. Cdt and parallella multi-
core debugging for the masses, 2014.

17. Stan Shebs. Gdb tracepoints, redux. Proceedings of the GCC
Developers Summit. GCC Summit. Montréal, Canada, pages 105–
112, 2009.

18. Nathan Sidwell, Vladimir Prus, Pedro Alves, Sandra Loosemore,
and Jim Blandy. Non-stop multi-threaded debugging in gdb. In
GCC Developers Summit, volume 117, 2008.

19. A. Spear, M. Levy, and M. Desnoyers. Using tracing to solve the
multicore system debug problem. Computer, 45(12):60–64, Dec
2012.

20. Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging
with GDB. Free Software Foundation, 10 edition, 2017.

21. The LTTng Project. The lttng documentation, december 2016.
22. Trace Compass Project. Trace compass user guide, 2017.
23. Adrien Verg, Naser Ezzati-Jivan, and Michel R. Dagenais.

Hardware-assisted software event tracing. Concurrency and Com-
putation: Practice and Experience, pages e4069–n/a, 2017. e4069
cpe.4069.

24. Josef Weidendorfer. Sequential performance analysis with call-
grind and kcachegrind. In Tools for High Performance Computing,
pages 93–113. Springer, 2008.


