
Titre:
Title:

Survey and analysis of kernel and userspace tracers on Linux :
design, implementation, and overhead

Auteurs:
Authors: Mohamad Gebai et Michel R. Dagenais

Date: 2018

Type: Article de revue / Journal article

Référence:
Citation:

Gebai, M. & Dagenais, M. R. (2018). Survey and analysis of Kernel and userspace
tracers on Linux : design, implementation, and overhead. ACM Computing
Surveys, 51(2), 26:1-26:33. doi:10.1145/3158644

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/3816/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: ACM Computing Surveys (vol. 51, no 2)

Maison d’édition:
Publisher: ACM

URL officiel:
Official URL: https://doi.org/10.1145/3158644

Mention légale:
Legal notice:

"© Dagenais | ACM 2018. This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was published
in ACM Computing Surveys, https://doi.org/10.1145/3158644."

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213623156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://publications.polymtl.ca/3816/
https://doi.org/10.1145/3158644
http://publications.polymtl.ca/

M. GEBAI ET AL. 1

Survey and Analysis of Kernel and Userspace
Tracers on Linux: Design, Implementation, and

Overhead
Mohamad Gebai, Michel R. Dagenais Polytechnique Montreal

Abstract—As applications and operating systems are becoming
more complex, the last decade has seen the rise of many tracing
tools all across the software stack. This paper presents a hands-
on comparison of modern tracers on Linux systems, both in
user space and kernel space. The authors implement microbench-
marks that not only quantify the overhead of different tracers,
but also sample fine-grained metrics that unveil insights into the
tracers’ internals and show the cause of each tracer’s overhead.
Internal design choices and implementation particularities are
discussed, which helps to understand the challenges of developing
tracers. Furthermore, this analysis aims to help users choose and
configure their tracers based on their specific requirements in
order to reduce their overhead and get the most of out of them.

I. INTRODUCTION

Tracing has proved itself to be a robust and efficient
approach to debugging and reverse-engineering complex
systems. The past decade has seen the rise of many tracers
across all layers of the software stack, and even at the
hardware level [Intel CorporationIntel Corporation2016]
[Sharma and DagenaisSharma and Dagenais2016a]. Some
applications, such as Google Chrome, even provide tracers
natively integrated within the product itself. Fundamentally,
tracing is a sophisticated form of logging, where a software
component, called the tracer, provides a framework that
implements efficient and configurable logging. The most
common use of logging by developers is done via the
printf() function (or an equivalent), although this method
is largely inefficient and limited. Tracers provide more flexible
and robust approaches that can be easily maintained over
time and usually add little overhead. Tracing is common in
user applications, but is also widely used in the Linux kernel,
which provides multiple tracing infrastructures. With complex
online distributed systems, tracing becomes an efficient
way of debugging problems whenever they arise. Although
it is a problem that is often underestimated, the need for
efficient and low-impact tracers is increasing, especially with
modern parallel heterogeneous systems of ever increasing
complexity. The Linux kernel contains over 1000 tracepoints
and the volume of events that can be generated at runtime
reinforces the need for low-impact tracers. In this article, we
focus on the overhead that different tracers add to the traced
applications, both at the user and kernel levels, on Linux
systems. We start by establishing the nomenclature used in
this work, and categorizing the many tools that have been
gathered under the term “tracer”. We explain the differences

between them from the user point of view, we summarize
the mechanisms used by each to perform its tasks, and we
show key design and implementation decisions for each
when relevant. We propose a microbenchmark that aims at
providing reliable low-level and fine-grained metrics for an
in-depth analysis and comparison.

In this work, we highlight the performance and the footprint
of multiple tracers, as well as their underlying infrastructure.
Many commercial and broadly-known tools rely on the tracing
infrastructure variants studied here, and thus the overhead
measured directly applies. The contribution of this paper is
a deep dive into the design principles of modern tracers on
Linux. This work tackles the problem of comparing tracers
by measuring fine-grained and low-level performance metrics,
so that the design choices made by the tracer developers, as
well as the implementation and coding decisions, are taken
into consideration when assessing the impact of a tracing
tool on the traced system. Moreover, the contribution also
encompasses a methodology for low-level benchmarking that
unravels the real behavior of tracers, instead of using platform
and micro-architecture emulators.

The rest of the paper is structured as follows: section II
goes over previous work on tracers benchmarks, section III
includes a reminder of key concepts required to understand
the work presented and sets up the nomenclature used in this
paper, section IV explains the mechanisms used in tracing,
section V introduces the tracers and explains their internals
when relevant, section VI explains the benchmarks, section
VII shows the results of this work, section VIII concludes.

II. PREVIOUS WORK

Bitzes et al. [Bitzes and NowakBitzes and Nowak2014]
studied the overhead of sampling using performance
counters. However, their studies don’t address tracing
in general. It also only focuses on the approaches for
collecting hardware counters data and their performance
overhead, rather than covering the internals of the tracers,
or design and implementation choices. Sivakumar et al.
[Sivakumar and Sundar RajanSivakumar and Sundar Rajan2010]
measured the impact of the LTTng tracer, both in user and
kernel space. The authors ran multiple known general
benchmarks and reported the overhead that the tracer
added. This approach helps to estimate the impact that
LTTng may have on specific workloads but doesn’t
quantify in detail the cost of the instrumentation,

M. GEBAI ET AL. 2

or the cause of the overhead. Mihajlovic et al.
[Mihajlović, Žilić, and GrossMihajlović et al.2014] discuss
their work to enable hardware tracing in virtual environments
by modifying the ARM ISA emulation and show the overhead
added by their approach. While the approach it presents is
interesting, their approach relies on dynamic tracing which is
a specific approach to tracing. Furthermore, it doesn’t cover or
benchmark the fundamental work of tracers. Furthermore, no
detailed comparison with other tracers is presented. Moore et
al. [Moore, Cronk, London, and DongarraMoore et al.2001]
reviewed performance analysis tools for MPI application.
While they cover two of the tracers of this work, the
work focuses primarily on the MPI framework, and doesn’t
address kernel space tracing. The objective of the work also
differs in that fundamental design choices of tracers with
different scopes aren’t covered. In [GhodsGhods2016], the
author explains and analyzes the internals of the Perf tool,
mainly for sampling performance hardware counters. This
work doesn’t cover comparisons with other tracing tools.
The work of Desnoyers [DesnoyersDesnoyers2009] reports
benchmarking results for LTTng and other tracers, albeit only
showing the latency of recording an event, without presenting
a detailed comparison with other tracers.

The infrastructures and frameworks presented in this article
are often the basis for other commercial and more broadly-
known monitoring and performance tools. For instance, the
work by B. Gregg [??bgr2017] makes extensive use of Perf
and eBPF. Flamegraphs are often generated by profiling ap-
plications using Perf, although it is a profiler rather than a
tracer. Another example is SysDig, which uses the tracepoint
infrastructure to extract information from the kernel.

III. DEFINITIONS AND NOMENCLATURE

A. Definitions

This section serves as a reminder of some common terms
in the world of tracing that are essential for understanding the
rest of the paper.

Tracepoint: A tracepoint is a statement placed directly in
the code of an application that provides a hook to invoke a
probe. A tracepoint generally provides a way in which it can
be enabled or disabled dynamically.
Probe: A probe is a function that is hooked to a tracepoint
and is called whenever the tracepoint is encountered at run-
time (if enabled). A probe usually performs a custom task and
is either implemented by the tracer or by the user. Typically,
a probe needs to be as small and fast as possible, to add as
little overhead as possible and reduce the perturbation to the
system.
Event: An event marks the encounter of a tracepoint at run-
time. Depending on the kind of tracing, the event can have
a logical meaning, such as a context switch, or can simply
represent a location in the code, such as a function entry or
exit. An event is punctual and has no duration, and is usually
annotated with a timestamp.
Payload: An event typically holds a payload, which is
additional information related to the event. For instance, the
payload of a context switch may contain the identifiers of the

two tasks involved.
Ring buffer: A data structure that serves as a placeholder
for events. When an event is recorded at run-time, the tracer’s
probe is invoked. The probe records the encountered event by
placing it in memory in the ring buffer (producer). At a later
time, a consumer can read the contents of the ring buffer and
report them to the user. When the data structure is full, the
incoming events may either replace the oldest events (in a
ring-like fashion) or they may be discarded until some events
have been consumed from the buffer.
Atomic operation An atomic operation has the characteristic
of being indivisible, which implies that intermediate values
or intermediate states are invisible to concurrent operations.
Atomic operations usually require support from the hardware
or the operating system, and great care must be taken by
the developer to guarantee atomicity. For instance, on x86
architectures, a mov instruction isn’t guaranteed to be atomic
unless its operands are cache-aligned. Consider the case where
one of the operands is stored across two pages: the mov
instruction will require access to different pages (and poten-
tially cause virtual address translations), making the operation
divisible and non-atomic, as an intermediate unstable value
can be visible if the operand is accessed by another instruction
between these steps.

B. Nomenclature

We previously defined a tracepoint as a location in an
application where a probe can be hooked. This section starts by
introducing the different mechanisms used for probe callback,
as well as their implementations. A mechanism is a known
theoretical approach as to how a callback can be implemented,
but the actual implementation is left to the tracing infrastruc-
ture. For instance, a trampoline is a mechanism that allows
instrumentation at run-time, but the actual implementation of
the trampoline is left to a tracing infrastructure such as DynInst
or Kprobes. Similarly, a tool can support multiple mechanisms
and allow its users to configure the mechanism to be used,
depending on their needs. Tracers can then be built atop
of these technologies to leverage their callback mechanisms,
thus outsourcing this crucial part. Tracers can be built to
support multiple callback mechanisms, for better flexibility
and feature offerings. In summary, a tracer can use one or
many callback implementations, which in turn implement one
or many mechanisms. For instance, LTTng can use either
TRACE_EVENT or Kprobes, and Kprobes can use either a
trap or a trampoline.

We define a tracer as a tool that implements the following
pattern: callback, serialize, write1. The output of a tracer is a
trace, and efforts are dedicated to reducing as much as possible
its overhead. On the other hand, tools such as eBPF and
SystemTap fundamentally follow a different pattern: callback,
compute, update. We refer to them as aggregators, since their
work is often to collect and aggregate metrics in real time or in
a live fashion, on the critical path of the applications, contrary
to the post-mortem nature of trace analysis. To this end,
they provide users with scripting capabilities and advanced

1The write step here refers to a ring buffer rather than to a file

M. GEBAI ET AL. 3

data structures (such as hashmaps) to implement aggregation
methods to be executed upon certain events. As opposed to
tracers, the output of aggregators is the result of the user-
defined probe, which is typically a collection of metrics, an
alert when a threshold is exceeded at runtime, and so on. They
often neglect the timing aspect and don’t implicitly perform a
clock read on each callback.

IV. CALLBACK MECHANISMS

This section introduces the different mechanisms used to
instrument applications. The instrumentation can be static or
dynamic, where the former is built into the binary at compile-
time and tracepoint location is known in advance, and the latter
is inserted at run-time at user-defined locations. This is not to
be confused with dynamic tracing, which means that tracing
can be turned on or off at run-time. Dynamic tracing can be
supported for either static or dynamic instrumentation. To give
better insights on how the mechanisms work, we cover their
implementation in various technologies to show how they are
effectively implemented and used.

A. Function instrumentation

Function instrumentation is a static instrumentation method
that requires support from the compiler. The approach is to
have each function call of an application prefaced by a call to
a common tracing probe. In other words, the binary contains
explicit calls to a specific routine upon each function entry
(and exit in some cases). The implementation of this routine is
left to the developer, or the tracer, and can implement tracing,
profiling or any other monitoring feature.
GCC implements this callback mechanism in various ways.

For instance, the -pg flag will generate a binary where
each function has the mcount routine call as a preamble
[FrysingerFrysinger2016]:

$> echo "int main() {}" | gcc -pg -S -x c\
- -o /dev/stdout | grep mcount

call mcount

Since mcount is called at each function entry, additional
efforts need to be put into its implementation to provide tracing
at the lowest cost possible. Ftrace uses the mcount imple-
mentation to trace kernel functions entries, and implements
the mcount routine in platform-specific assembly. LTTng
UST also uses this method for userspace tracing, albeit with
the -finstrument-functions flag of gcc. Similarly to
-pg, calls to specific routines are built into the binary not
only at each function call entry, but also at function exit:

$> echo "int main() {}" | gcc
-finstrument-functions -S -x c - -o \
/dev/stdout | grep cyg_profile

call __cyg_profile_func_enter
call __cyg_profile_func_exit

With the -finstrument-functions
flag, the instrumentation routines are called

__cyg_profile_func_enter() and
__cyg_profile_func_exit() for function entry
and exit respectively.

B. Static Tracepoints

A tracepoint is a static instrumentation approach manually
inserted directly in the application code by the developers.

Unlike regular function calls, tracepoint statements in the
Linux kernel are optimized to have a minimal impact on
performance. As the instrumentation is directly in the code and
always built into the binary (unless the kernel is configured
otherwise), great care must be taken to reduce the added
overhead, especially when tracing is disabled, as is the case
most of the time. The rest of this subsection discusses how
this goal is achieved in the Linux kernel.

A disabled tracepoint has no effect and translates to a simple
condition check for a branch [DesnoyersDesnoyers2016c] (in
case it is enabled). To reduce the overhead for a disabled
tracepoint, a hint is given to the compiler to make the
tracepoint instructions far from the cache lines of the fast path
(which is the regular code). In that way, the cache-friendliness
of the fast path isn’t affected by the unexecuted code of the
tracepoint. Furthermore, for kernel tracing, the tracepoint call
is implemented as a C macro that translates to a branch over
a function call. In that manner, the overhead of the function
call and stack setup is avoided altogether.

Although the overhead impact of this approach is mini-
mal in theory, it still requires reading from main memory
the operand of the condition, to avoid the branch when
the tracepoint is off. This adds non-negligible overhead as
reading from memory not only is a slow process, but ul-
timately affects the efficiency of the pipeline. To overcome
this issue, the Immediate Value infrastructure was set in
place [Desnoyers and DagenaisDesnoyers and Dagenais2008]
by the LTTng project. This mechanism uses a constant value
directly into the instruction’s operand. In that manner, no
read from memory is required for the condition’s operand.
A disassembly of the generated tracepoint code clearly shows
the use of immediate values:

test %edx,%edx
jne [tracepoint tag]

When a tracepoint is turned on, the code is safely modified
on the fly to change the value of the constant test check.
Synchronization implications need to be taken into account
for this process as the code resides in memory, and is shared
amongst multiple CPUs, but copies may exist in instruction
caches.

In the Linux kernel, static tracepoints are implemented
as the TRACE_EVENT macro [RostedtRostedt2010], which
allows developers to easily define a tracepoint that can be in-
serted using the trace tracepoint name() function directly
in the kernel code. Many of the current kernel tracers can
interface to the TRACE_EVENT infrastructure by providing
their own probes. This infrastructure also makes for an easy
mechanism for a developer to implement their own tracer or
aggregator.

M. GEBAI ET AL. 4

For static tracepoints in user space, the LTTng tracer im-
plements this mechanism with the same optimizations as for
kernel space, reducing as much as possible the overhead added
by the instrumentation.

C. Trap

Trap-based instrumentation is a mechanism to dynamically
instrument an application at run-time. It relies on the
operating system support for traps, which it exploits to
insert and execute custom probes at virtually any location
in the kernel or application code. In the Linux kernel, this
mechanism is implemented by the Kprobe infrastructure,
which uses a trap-based approach to dynamically
hook into kernel code [Keniston J.Keniston J.2016]
[Mavinakayanahalli, Panchamukhi, Keniston, Keshavamurthy, and HiramatsuMavinakayanahalli et al.2006].
When a Kprobe is loaded and registered at a given instruction,
that instruction is copied and replaced with a breakpoint
instruction (int3 on x86). When the breakpoint instruction
is later executed by the CPU, the kernel’s breakpoint handler
is invoked. It saves the state of the application (registers,
stack, etc.) and gives control to the Kprobe infrastructure
using the Linux notifier call chain, which ends up calling
the tracing probe. Once this process completes and the trap
has been handled, the copied instruction (that was replaced
by the breakpoint) is finally executed and control continues
normally at the call site. Image 1 shows this entire process.
Kprobes also offer support for pre-handler and post-handler
probes, as well as function return instrumentation (Kretprobe)
which aren’t covered in this study.

Fig. 1: Trap-based callback mechanism with Kprobes

A tracing infrastructure can be built atop Kprobes, where
instead of manually inserting the trace tracepoint name()
statement in the code at the call site, a Kprobe can be
registered at the desired location at run-time. Tracers leverage
this approach to connect their probe to a Kprobe instead
of the TRACE_EVENT macro. In that manner, the callback
mechanism is abstracted and only connecting the tracer’s probe
to different backends provides more flexibility to the user. The
resulting trace is identical to one that is generated using the

TRACE_EVENT macro, but the callback mechanisms used to
invoke the probes are different, which can have an impact
on performance. When a Kprobe is unloaded, the breakpoint
instruction is replaced with the original one, thus removing
completely any trace of the instrumentation.

The Ptrace infrastructure in the kernel
[Haardt and ColemanHaardt and Coleman1999]
[PadalaPadala2002] also uses traps to offer to userspace
applications a mechanism to hook onto processes. It is
important to note that, contrary to what its name suggests,
Ptrace is not a tracer in itself, but rather an infrastructure
provided by the Linux kernel for processes to monitor other
processes. It allows a process to “hook” into another one
and interrupt its execution, inspect its internal data, access
its registers, etc. Many debuggers use Ptrace as a backend,
including GDB.

D. Trampoline

Trampolines are a jump-based approach to dynamically
patch or instrument an application at runtime. They provide
a lower overhead alternative to trap-based mechanisms for
the price of a more complex implementation. In more re-
cent versions, the Linux kernel tries to optimize registered
Kprobes using a jump-based trampoline instead of a costly
breakpoint. The core of the optimization is to have a “detour”
buffer (called the optimized region) to mimic the breakpoint
approach [Keniston J.Keniston J.2016]. Instead of patching an
instruction with a breakpoint instruction that triggers a trap,
it is replaced by a simple jump to the optimized region. The
jump-based approach starts by pushing the CPU’s registers
onto the stack, jumps to a trampoline that acts as an in-
termediate, which in turn jumps to the user-defined probe
[HiramatsuHiramatsu2010]. When it completes execution, the
process is reversed: the code jumps out of the optimized
region, the registers are restored from the stack and execution
of the original path continues. Note that not all loaded Kprobes
use the trampoline approach, as it requires a set of conditions
to be met (e.g., length of the instruction at the target location).
If they aren’t, the kernel falls back to the breakpoint-based
approach described previously.

V. THE TRACERS

This section introduces the tracers studied and benchmarked
in this work. When relevant, details of the design and imple-
mentation are provided for each tracer, and are later correlated
with the results. Table I, presented at the end of this section,
shows a summary of the tracers, as well as the mechanisms
used by each (see section IV for an explanation of the
mechanisms).

This work does not evaluate Dtrace
[Gregg and MauroGregg and Mauro2011] and Ktap
[??kta2017]. The former is a proven tracer on Solaris
and considered one of the pioneers in the field of tracing.
However, it does not appear to be actively developed any
more, with a total of 13 mailing list postings in the first half of
2017 on dtrace.org, its Linux port never reached the stability
or broad usage of the Solaris port, and its strength lied more

M. GEBAI ET AL. 5

in its flexibility and ease of use rather than its optimized
performance and scalability [BrosseauBrosseau2017].
Ktap was an interesting lightweight dynamic tracing tool
experiment based on bytecode, but was quickly superseded
by eBPF which offers similar functionality but sharing a core
infrastructure with other kernel subsystems.

A. Kernel tracers

1) None: The samples marked as ’None’ designate the
baseline, which represents the system with all tracing disabled,
effectively only benchmarking the instrumentation itself which
is negligible (translates to a constant check as explained
earlier).

2) Ftrace: Ftrace is a tracer included in the
Linux kernel and shows insights into its internal
behavior [RostedtRostedt2009a] [RostedtRostedt2016a]
[RostedtRostedt2009b] by tracing all kernel function entries.
It is controlled by a set of files in the debugfs pseudo-
filesystem. Some of the main configurations include which
“subtracer” to use, the size of the trace buffers and which
clock source to use to timestamp the events. It is also possible
to enable and disable specific events. Ftrace can be used in
many ways: function tracing, tracepoints, system calls tracing,
dynamic instrumentation and so on.
Function (and function graph) tracing reports the entry and
exit of all functions at the kernel level. Ftrace can use
the TRACE_EVENT infrastructure for static instrumentation
tracing or the Kprobe infrastructure to dynamically hook into
various parts of the kernel.
When tracing is enabled, the callback mechanism calls
Ftrace’s probe which stores the events in a ring buffer. It
is possible to configure Ftrace to either overwrite the oldest
events or drop incoming events, once the ring buffer is full.
It is interesting to note that the trace is kept in memory and
not flushed to disk, and only made available upon reading
the contents of the trace memory-backed file (it is possible
to manually dump the contents of the trace file to disk). It
is also possible to consume the ring buffer as it is written,
through the trace_pipe file.

By default, Ftrace uses the local clock to timestamp the
events it records. The local clock is a clock source that is
CPU-local and is thus faster to read, but doesn’t provide any
guarantee in terms of monotonicity and synchronization with
the other CPUs’ clocks. It is, however, possible to configure
Ftrace to use other clock sources, such as a global clock (which
is system-wide), a logical counter or even architecture-specific
clocks such as the TSC2 on x86.

Ftrace limits the size of an event, including its payload,
to that of a page. It uses per-CPU buffers, which avoids
the need for synchronization of the buffer when tracing on
multiple cores. Ftrace segments its ring buffers into pages and
manipulates them individually. The ring buffer itself is a linked
list of pages [RostedtRostedt2016b], and internal references
are kept for bookkeeping. For instance, the tail page is a
reference to the page into which the next event should be
written, and the commit page is a reference to the page that

2TimeStamp Counter

last finished a write. Although there can’t be simultaneous
writers to the same page (per-CPU buffers), a writer can still
be interrupted by another writer by the means of interrupts and
NMIs. An example of that can be an event to be written into
the buffer, from an interrupt handler context that was invoked
while a write to the ring buffer was already happening, as
shown in the following sequence:

Start writing
-> Interrupt raised
Enter interrupt handler
Start writing
Finish writing
Exit interrupt handler

Finish writing

These nested writes require the tracer and its ring buffer to
guarantee reentrancy in order to avoid data corruption and
misbehavior. Note that there can be more than two levels
of preemption (normal execution, interrupts, non-maskable
interrupts, machine check exceptions, etc.). The way Ftrace
ensures reentrancy is by dividing the writing process into three
parts: reserving, writing, committing. The writing process
starts by reserving a slot in memory in an atomic fashion,
making it indivisible and thus guaranteeing reentrancy for this
step. Only then can the writing into the reserved slot step
begin. If a nested write occurs, it has to follow the same
pattern, starting with a slot reservation. Since this can only
happen after the preempted write has already completed its slot
reservation (since it is indivisible), there can be no contention
over the writing area, making the writing process safe. Once
the nested write completes, it can commit which seals the
writing transaction. The interrupted write can then complete
its write and commit:

Reserve slot
Start writing
-> Interrupt raised
Enter interrupt handler
Reserve slot
Start writing
Finish writing
Exit interrupt handler

Finish writing

By following this scheme, writing transactions appear as being
atomic, in the sense that no two nested writes can write to
the same slot in the buffer. When nested writes occur, some
subtleties need to be implemented. For instance, the nested
write cannot commit before the write it preempted. Until then,
it is in the “pending commit” state. This is required since
all events prior to the commit page have to be committed
(the commit page actually points to the latest event that was
committed, and masking its least significant bits gives the
address of the page).

Furthermore, in order to consume tracing data, Ftrace keeps
an additional page, called the reader page, which is not a part
of the ring buffer. Rather, it is used as an interim to extract the
trace data from the buffer. When a reader wants to consume
trace data, the reader page is atomically swapped with the

M. GEBAI ET AL. 6

head page. The head page is simply an internal reference to
the page that should be read next. As this swap happens, the
old reader page becomes part of the ring buffer, and the old
head page can be safely consumed. This swapping happens in
an atomic fashion using CAS (compare-and-swap) operations.
After the swap happens, the head page pointer is updated to
reference the next page to be read.

We explained earlier in this section that Ftrace manipulates
pages individually in its ring buffer. Although this imple-
mentation choice has benefits such as avoiding lazy memory
allocations (and often a lazy TLB update), it also results in two
main limitations: the size of an event (including its payload) is
limited to the size of a page, and memory barriers are required
at page boundaries. The former limitation is due to the fact that
single pages are consumable. Consumption of the buffer can
be done at page granularity, which implies that a single event
cannot be stored across page boundaries. The latter limitation
is less obvious; a page of the buffer can only be read once
it is full. Thus, page management variables are required for
internal bookkeeping, such as flagging a page as ready to be
consumed. These variables are shared by the writer and any
reader. To guarantee coherent ordering between buffer data and
buffer management variables, memory barriers are required to
ensure that a page is not flagged as full before its data is
actually propagated to main memory.

3) LTTng: LTTng was created in 2006
[Desnoyers and DagenaisDesnoyers and Dagenais2006b]
[DesnoyersDesnoyers2009] [Desnoyers and DagenaisDesnoyers and Dagenais2009],
around the same time as Ftrace and thus both tracers share
many similarities design-wise. However, LTTng isn’t part
of the mainline Linux kernel and is rather deployed
as a group of loadable kernel modules for the kernel
tracing part, and a userspace component for tracing
management and trace consumption (as opposed to Ftrace’s
debugfs interface). LTTng was designed and implemented
with the objective of minimal performance impact
[Desnoyers and DagenaisDesnoyers and Dagenais2006a]
while being fully-reentrant, interrupt-safe and NMI-
safe. Similarly to Ftrace, LTTng uses per-CPU variables
and buffers to avoid concurrent writes and the need
for synchronization. Reentrancy is guaranteed by
the means of atomic slot reservation using local
CAS (Compare-And-Swap) to permit nested writes
[Desnoyers and DagenaisDesnoyers and Dagenais2012],
similarly to what was explained in section V-A2. Image 2
shows how having (local) atomic slot reservation guarantees
reentrancy. As the figure shows, in sub-buffer 1 of buffer
0 (on CPU 0), a first event was written into the buffer. A
slot was reserved after it for writing, but the process was
interrupted midway through by another write. We see that
this nested write completes successfully, and doesn’t affect
the end result of the interrupted write, as its slot is already
reserved.

The low-overhead requirements of the LTTng project have
lead to the creation of local atomic operations in the Linux
kernel [DesnoyersDesnoyers2016b], which aim to provide a
lower performance cost than regular atomic operations, by
leveraging the fact that some data is CPU-local (that is, data

Fig. 2: Anatomy of LTTng’s sub-buffers

that won’t be accessed by another CPU). When that is the
case, atomic operations accessing local-only data don’t require
the use of the LOCK prefix (which locks the memory bus)
or memory barriers to ensure read coherency between CPUs,
which leads to local atomic operations. This performance
improvement comes at the cost of a higher usage complexity,
and care is needed when accessing the data from other CPUs
due to weak ordering. It is worth mentioning that local atomic
operations disable preemption around the call site to avoid
CPU migration when accessing local variables from a process
context (as opposed to interrupt context). Ftrace also makes
use of local atomic operations.

To guarantee wait-free reads of tracing management
variables (such as enabling/disabling tracing,
filters to be applied, etc.), LTTng uses RCU3

for the synchronization of concurrent accesses
[McKenney and SlingwineMcKenney and Slingwine1998]
[Desnoyers and DagenaisDesnoyers and Dagenais2010].
Since writes to these variables are rare, but reads are
abundant and concurrent, RCU is ideal for such an access
pattern since it avoids all waiting on the reader side.

Contrary to Ftrace, LTTng doesn’t use pages as the finest-
grained entity for ring buffer management. Instead, it uses
per-CPU sub-buffers. The advantage of this approach is that
the size of an event can be greater than the size of a
page, and the performance hit of memory barriers is better
amortized (barriers are only required at sub-buffer boundaries
instead of page boundaries). Sub-buffer boundaries require
memory barriers mainly to guarantee in-order memory writes
to the sub-buffer data and its management variables. In other
words, out-of-order memory accesses to sub-buffer data and
the sub-buffer management variables can result in incoherent
perception from the reader’s side, where a sub-buffer can be

3Read-Copy-Update

M. GEBAI ET AL. 7

flagged as ready to be read while the tracing data hasn’t been
propagated to memory yet. It is interesting to note that the
impact of memory barriers is negligible on x86 64. Since the
architecture guarantees Total Store Ordering (TSO) between
CPUs [Hennessy and PattersonHennessy and Patterson2011],
write memory barriers do not actually create a fence but
resolve to nops and simply avoid instructions reordering at
compile-time. On architectures with other memory orderings
such as ARM, the use of memory barriers at sub-buffer
boundaries (page boundaries for Ftrace) has a larger impact
on the overhead.

4) LTTng-kprobe: We introduce LTTng-kprobe as a stan-
dalone tracer for simplicity purposes. In reality, it is sim-
ply the LTTng tracer configured to use Kprobes instead of
TRACE_EVENT for probe callback. Other than the callback
mechanism, there are no differences for the probes or the ring
buffer, and the same internals and guarantees as LTTng are
valid for this tracer.Comparing the benchmark results between
LTTng-kprobe and LTTng will highlight the impact of using
Kprobes instead of TRACE_EVENT. This comparison can help
developers assess the overhead of Kprobes-based tracers in
their applications when low overhead is key.

5) Perf: Perf is a performance monitoring tool integrated
into the mainline kernel. Its use case is typically different than
that of Ftrace or LTTng. Perf is targeted for sampling and
profiling applications, although it can interface with the tra-
cepoint infrastructure within the kernel and record tracepoints
(including system calls). Perf can also gather hardware-level
PMU4 such as different level of cache misses, TLB misses,
CPU cycles, missed branch predictions, and so on. Contrary
to Ftrace, Perf’s monitoring scope is restricted to a single
process. The events and counters reported by Perf are those
which occurred within the context of the traced process and
thus have been accounted for it. This property makes Perf
more suited to analyze the behavior of a given program and
can help answer practical questions such as cache-friendliness
of the code, or the amount of time spent in each function.

The Perf tool itself is built on top of the kernel’s
perf_events subsystem [GhodsGhods2016] which is the
part that actually implements the tracing, profiling and sam-
pling functionalities. Perf can also use Ftrace’s architecture
to hook to tracepoints, and trace similarly to Ftrace and
LTTng. Perf_events internally uses a ring buffer which
can be mapped to userspace to be consumed. Through the
perf_event_open() system call, a userspace process can
obtain a file descriptor on the metric/counter it wants to
measure. The file descriptor can then be mmap()’d and
accessed from the userspace process’s memory space.

6) eBPF: eBPF has evolved from the Berke-
ley Packet Filter [Schulist J.Schulist J.2016]
[McCanne and JacobsonMcCanne and Jacobson1993] to
a standalone monitoring tool included in the Linux kernel. It
allows users to write programs (similarly to probes) which
can be dynamically inserted at any location in the kernel
using Kprobes (section IV-C). eBPF programs are compiled
to bytecode which is interpreted and executed by the kernel

4Performance Monitoring Units

in a limited context to ensure security. The kernel also
supports just-in-time compilation for sections of the generated
bytecode [Sharma and DagenaisSharma and Dagenais2016b].
It is important to note that eBPF isn’t a tracer, as it doesn’t
follow the callback, serialize, write scheme, but rather an
aggregator. The eBPF interpreter provides data structures
to its users, such as simple arrays and hashmaps, which
makes it a great tool for aggregation, bookkeeping, and live
monitoring. As eBPF provides arrays that can be shared from
the kernel space to user space, a tracer-like behavior can
be implemented. For the purpose of this study, we wrote a
minimal eBPF program that samples the clock and writes a
data structure holding a timestamp and a payload to an eBPF
array. We hook this program to the same static tracepoint
used for benchmarking other tracers using Kprobes. Although
the data is never read, this program simulates the behavior of
a tracer, making its benchmarking relevant for this study. As
of version 4.7, the Linux kernel supports eBPF tracing, which
hooks directly into the TRACEPOINT infrastructure. The
same eBPF program was then ran on a 4.12 Linux kernel,
with the only difference being a direct hook onto kernel
tracepoints instead of going through Kprobes.

7) SystemTap: SystemTap is similar to eBPF
(section V-A6) as it provides a simple language
to write probes for aggregation and live monitoring
[Prasad, Cohen, Eigler, Hunt, Keniston, and ChenPrasad et al.2005].
SystemTap provides an easy scripting language for users to
create custom probes to monitor their systems. The users can
provide kernel or userspace symbols to hook on. SystemTap
programs are then translated to C code and compiled into
a loadable kernel module [EiglerEigler2006]. Once loaded,
the module dynamically inserts the probe into the kernel’s
code using Kprobes. Similarly to eBPF, since SystemTap
follows the callback, compute, update pattern, it is, in
fact, an aggregator rather than a tracer. However, for the
purposes of our work, a tracing behavior can be simulated by
implementing a probe that samples the time and writes the
value along with a constant payload to an internal array.

8) Strace: Strace is a tool for sys-
tem calls tracing [KerriskKerrisk2010]
[Johnson and TroanJohnson and Troan2004]. Using Ptrace
(section IV-C), it hooks into a process and intercepts all its
system calls, along with their arguments. The result is written
to a file descriptor for later analysis. Due to the heavy trap
mechanism, along with the scheduling costs (as multiple
processes are involved, the monitored and the monitoring),
Strace typically adds a large overhead which doesn’t usually
suit production environments. Other tracers, such as LTTng
and Ftrace, can provide the same information using different
tracing mechanisms.

9) SysDig: SysDig [Selij and van den HaakSelij and van den Haak2014]
is a modern commercial tool used for monitoring systems.
It covers a wide range of applications, from containers,
to web services, etc. SysDig also allows users to write
Chisels [??chi2017], which are lua scripts capable of custom
analysis similar to eBPF and SystemTap. SysDig leverages
the TRACEPOINT infrastructure in the kernel, which was
introduced by the LTTng project, to hook onto available

M. GEBAI ET AL. 8

tracepoints and provide system and application monitoring.
Upon loading, the SysDig kernel modules register to context
switch and system calls events. The work presented in this
article does not cover SysDig for two main reasons. Primarily,
SysDig doesn’t allow the users to control the kernel tracing
part of the product, and this aspect is only used to gather a
few metrics about the monitored applications, such as reads,
writes and CPU usage. Moreover, SysDig doesn’t follow the
callback, serialize, write pattern, but rather uses tracepoints
for on-the-fly metric gathering. Finally, as SysDig uses the
same underlying infrastructure as LTTng and Ftrace, the
overhead of SysDig is implicitly covered when studying the
TRACEPOINT infrastructure.

B. Userspace tracers

1) Printf: Printf() is a rudimentary form of tracing,
but is the easiest to use. It uses a string as input as well
as some variables for pretty-printing. Printf() uses an
internal buffer to store the data before it is flushed to a
file descriptor. Thus, we can implement a basic tracer using
printf() by sampling the time and printing it along with
a payload into printf()’s internal buffer. This satisfies the
definition of a tracer given in section III-A.
Glibc’s implementation of printf() is thread-safe
[PeekPeek1996], although multiple threads within the same
application share the same global buffer for the output stream.
Printf() uses an internal lock to protect the output buffer
and avoid corruption on contention. However, reentrancy
is not guaranteed, and calling printf() from different
contexts (such as from a signal handler that interrupts
printf()) might have unexpected results.

2) LTTng UST: LTTng UST (UserSpace Tracer)
[Blunck, Desnoyers, and FournierBlunck et al.2009]
is a port to userspace of LTTng (section V-A3).
Although they are independent, both tracers share the
same design, using a ring buffer to store the trace
[Fournier, Desnoyers, and DagenaisFournier et al.2009],
RCU mechanism for data structure synchronization
and atomic operations for reentrancy. To this effect,
the RCU mechanism was ported to userspace as well,
creating the URCU (Userspace Read-Copy-Update) project
[Desnoyers, McKenney, Stern, Dagenais, and WalpoleDesnoyers et al.2012].
All programs to be traced with LTTng UST should be linked
against the library, as well as libust (the tracing library).
Similarly to its kernel counterpart, LTTng UST was designed
and implemented to perform tracing at low cost, while
guaranteeing reentrancy, interrupt-safety, signal-safety, etc.
No tracing data is copied and no system calls are invoked by
the tracer, removing the typical sources of overhead.

3) LTTng using tracef(): Since part of printf()’s la-
tency is split between pretty printing the input and storing to an
internal buffer, we added LTTng’s tracef() function for a
more equitable/fair comparison. Tracef() is a function that
combines, from the developer’s point of view, LTTng’s tracer
and printf(). Instead of implementing actual tracepoints
that can be called within the code, tracef() generates
a lttng_ust_tracef event which holds as payload a

pretty-printed string similarly to printf(). In that manner,
LTTng’s internal ring buffer mechanism is used, while includ-
ing the cost of pretty printing for a more equitable comparison
with printf(). In that way, we compare more accurately
the actual serialization to a ring buffer between LTTng and
printf().

Since tracef() uses LTTng’s internals and only affects
the serialization part, the same guarantees as tracing using
regular tracepoints apply, such as reentrancy, thread-safety,
interrupt-safety and so on.

4) Extrae: Extrae is a tracer developed at the
Barcelona Supercomputing Center (BSC) as part of a
tracing and analysis infrastructure for high-performance
computing. It has complementary software such as Paraver
[Pillet, Labarta, Cortes, and GironaPillet et al.1995] for trace
visualization and analysis. In this paper, we focus exclusively
on the tracing part. The tracer supports many mechanisms for
both static and dynamic instrumentation, as shown in Table
I. It also uses LD_PRELOAD to intercept MPI library calls
at runtime and instrument them. In addition, Extrae supports
sampling hardware counters through the PAPI interface
[Terpstra, Jagode, You, and DongarraTerpstra et al.2010],
and other features which aren’t covered in this study as they
are beyond the scope of tracing [??ext2016]. Extrae also uses
internal per-thread buffers to store the data on the fly. Static
tracepoints have limited features: only one type of tracepoint
exists which is called Extrae_event, having two fields as
a payload. The fields are a pair of integers, the first one being
a number representing the type of event that occurred, and
the other flags either a function entry or exit. This provides
less flexibility to the user to create and use custom tracepoints
with variable payloads.

5) VampirTrace: VampirTrace is
a high-performance computing tracer
[Knüpfer, Brunst, Doleschal, Jurenz, Lieber, Mickler, Müller, and NagelKnüpfer et al.2008]
[Müller, Knüpfer, Jurenz, Lieber, Brunst, Mix, and NagelMüller et al.2007]
[Schöne, Tschüter, Ilsche, and HackenbergSchöne et al.2010],
with the ability to interface with large-scale computing
frameworks such as MPI. Similarly to Extrae, it offers
many ways to instrument applications, either statically or
dynamically. For static tracing, VampirTrace uses a different
approach and relies on the developer to define the sections of
code to be analyzed. When tracing of a section is disabled
through a delimiter, an event is generated and written
to the buffer. VampirTrace uses per-thread buffers to avoid
synchronization and maintain scalability. The microbenchmark
of this paper for VampirTrace consists of a tight loop that
enables and disables tracing. This implementation defines
an empty section to trace, but generates an event on each
loop, due to disabling tracing on each loop so that a behavior
similar to other tracers is achieved.

6) Lightweight UST: Lightweight UST (LW-ust) is an in-
house minimal tracer built for the purpose of this study. It
targets the fastest possible naive tracing implementation, at the
cost of actual usability, reentrancy, and thread-safeness. The
purpose of this tracer is to show a baseline of how fast tracing
can be achieved, which is a simple clock read and a copy into
an internal buffer. LW-ust uses per-CPU circular buffers to

M. GEBAI ET AL. 9

write data, which are cache line-aligned to avoid false sharing.
The data copied into the buffer is simply an integer referring to
the tracepoint type, a timestamp (using clock_gettime(),
similarly to other tracers) as well as another integer as the
tracepoint payload. No effort is made towards reentrancy
or thread-safety, and thus data integrity is not guaranteed.
Although LW-ust can not be used on production systems, it is
still interesting to benchmark it as it provides a lower bound
on the impact of a tracer.

VI. BENCHMARKING

A. Objectives

The objective of this study is to quantify the overhead
added by tracing, taking into consideration different callback
mechanisms, internal tracers’ architectures, and the guarantees
they provide. We focus on the cost of individual tracepoints,
rather than analyzing the impact on more general workloads.
By analyzing the results, we hope to help the users configure
the tracers to adapt them for their specific use cases when low
overhead is a requirement in production systems.

B. Approach

1) Overview: We start by explaining our benchmark related
to kernel tracing as well as the metrics we measured. Our
objective is to measure the cost of tracing an event using
the different tracers. To be able to get this metric with the
best possible precision, two conditions have to be met: first,
all tracers must be running in the overwrite mode. That way,
we guarantee that all tracepoints are executed, even when the
internal ring buffers are full, as opposed to benchmarking a
test and nop operation (testing the buffer size and jumping
over the tracepoint if the buffer is full). Secondly, when
possible, we launch tracers in a producer-only mode. This
requirement helps to cancel outside noise that might interfere
with the benchmarking. In our case, the consumer process
might preempt the traced process, or the action of writing
to the disk or the network might also interfere in some way
with the producer. Although we are only measuring isolated
tracepoints, and preemption doesn’t directly affect the duration
of executing a tracepoint, it still, however, impacts the duration
of a tracepoint since it might invalidate caches (including the
TLB for which misses are particularly expensive).
The actual measurement is done in a microbenchmark which
is simply a tight loop executing a tracepoint call. The payload
of the event is 4 bytes. The microbenchmark is implemented
in a kernel module to avoid the overhead of switching between
user and kernel spaces. A single ioctl() call to the module
(via the sysfs pseudo-filesystem) triggers the benchmark and
blocks until its completion.
The time is measured prior and after the call at the nanosecond
granularity. We point out that there is no system call for
reading the time since the benchmark is already running in
kernel space (although some clock access functions can be
used in user space to avoid a system call, such as the mono-
tonic clock). Hardware performance counters are also read
before and after the tracepoint, allowing us to track specific
metrics that give insight into each kernel’s implementation.

The benefit of sampling many hardware counters in a single
run, instead of sampling a single counter across many runs
(to reduce the impact of these samplings) is that it is possible
a posteriori to make correlations between many metrics for a
single recorded event. For instance, we can verify if the slow
path (given by sampling the number of instructions) can be
further optimized by reducing cache misses (given by sampling
the number of cache misses). Due to hardware limitations, only
four hardware counters can be sampled at a time. Thus, two
runs of the benchmark are executed, each sampling different
counters. Furthermore, in order to avoid interruption while
the tracepoint is executing, which would interfere with the
measurements, we disable interrupts before each call and
enable them after. Since this approach doesn’t disable NMIs
(which are, by definition, non-maskable), we read the NMI
count prior to and after each tracepoint call, discarding the
result values in case an NMI is detected. Algorithm 1 shows
the pseudo-code of the benchmark. The results shown in this
paper are gathered by running the tight loop 5000 times in a
steady state for each benchmark run. For scalability tests, the
tight loop iterates 5000 times per core (in parallel) in a steady
state for each benchmark run.

Algorithm 1: Pseudo-code of the kernel tracer benchmark
Input: numberOfLoops
Output: ArrayOfResults

payload = (int32 t) 0;
results = allocateArray();
i = 0;
while i != numberOfLoops do

disableInterrupts();
numberNMI = getNumberNMI();
readPMU(metric1 start);
readPMU(metric2 start);
readPMU(metric3 start);
readPMU(metric4 start);
start time = gettime();
tracepoint(payload);
end time = gettime();
readPMU(metric1 end);
readPMU(metric2 end);
readPMU(metric3 end);
readPMU(metric4 end);
enableInterrupts();
if numberNMI == getNumberNMI() then

results[i].duration = end time - start time;
results[i].metric1 = metric1 end - metric1 start;
results[i].metric2 = metric2 end - metric2 start;
results[i].metric3 = metric3 end - metric3 start;
results[i].metric4 = metric4 end - metric4 start;
i++;

end
end
return results;

The final results array is then dumped in a CSV
(Comma-Separated Value) file, which is used to generate the
graphs shown in section VII. The same algorithm is used for
both kernel and user space.

Benchmarking system calls and analyzing the results require
a different methodology than regular tracepoints. The added
cost of the actual system call, as well as the fact that the Linux

M. GEBAI ET AL. 10

TABLE I: Callback mechanisms for kernel and userspace tracers
’X’ indicates that a callback mechanism is supported by the tracer and is covered in this work
’O’ indicates that the mechanism is supported by the tracer but wasn’t benchmarked in this work

Kernel space User space

Static Dynamic Static Dynamic

Mechanism Static tracepoint Function tracing Trap Trampoline Static tracepoint Function tracing Trampoline Trap

Implementation TRACE EVENT Compiler Kprobe Optimized kprobe Function call Compiler DynInst Uprobe Ptrace

LTTng X X X X O O

Ftrace X O O O

Perf X O O

eBPF O X X

SystemTap X X O X

Strace X

Printf X

Extrae X O

LW-ust X

kernel automatically instruments system call entry and exit,
make getting fine-grained metrics about the tracing mechanism
only more difficult. Since actual work is done by the system
call, PMU counters values aren’t representative of the tracing
mechanism solely, but also include the system call’s execution.
In addition, the CPU transitions from user mode to kernel
mode through a trap that represents the actual kernel invoca-
tion. This is a relatively costly process, since it requires saving
the state of the stack, registers, and switching CPU rings
[Tanenbaum and BosTanenbaum and Bos2014]. This proce-
dure is therefore implicitly accounted for the tracepoint in the
benchmark. The analysis and benchmarking of system calls
are thus done at a higher level, with coarse-grained results.
It is worth mentioning that system calls tracing is a subset
of kernel tracing, which we presented in the previous section.
In other words, writing to the ring buffer is done in the same
fashion, and only serializing the payload differs from a regular
tracepoint.

In order to reduce as much as possible the duration of
the system call’s actual work and get samples that are as
close as possible to the cost of instrumentation solely, we
benchmarked an empty ioctl() system call. For the purpose
of this work, we wrote a kernel module that exports an entry in
procfs. We implemented its ioctl() function as an empty
function, such that calling ioctl() on the file descriptor
returns as quickly as possible, and ends up being only the
tracing instructions and a CPU context switch to kernel space
and back.

2) Test setup: We ran the benchmarks on an Intel i7-3770
CPU running at a 3.40 GHz frequency with 16 GB of RAM,
running a 4.5.0 vanilla Linux kernel, and a 4.7.0 Linux kernel
for eBPF tracing (as it is the first version that introduced
built-in eBPF tracing). We built manually the following
software: LTTng from its 2.9-rc1 branch, SystemTap from
its master branch at version 3.0/0.163, and Extrae at version
3.3.0, and VampirTrace at version 5.14.4.

3) Configuration: Benchmarking at such a low granularity
proves to be a tedious task relatively to higher level

benchmarks [Kalibera and JonesKalibera and Jones2013].
Optimizations, both at the operating system level as well as
the hardware level, can interfere greatly with the results. Not
only are the results biased, but reproducibility of the results
is also affected. For instance, dynamically adjustable CPU
frequency has a direct impact on the latency of a tracepoint.
In order to have the most control over the environment,
we disabled the following features at the hardware level:
hyperthreading, C-states, dynamic frequency and Turbo
Boost.

Furthermore, we configured the tracers to have as much
of the same behavior as possible to obtain relatively fair
results. For instance, as shown in section V-A2, Ftrace uses a
CPU-local clock source to sample the time, whereas LTTng
uses a global clock. At the nanosecond scale, as we are
benchmarking, this behavioral difference can have a major
impact on the results. We configured Ftrace to use the global
clock so that the same time sampling mechanism is used by
all tracers. We configured LTTng to use 2 sub-buffers per CPU
buffer, each of 8 KB, and Ftrace to use a 16 KB buffer per CPU
(same ring buffer size). We also configured LTTng to trace in
flight recorder mode, in which the contents of the ring buffer
are never flushed to disk, and new tracing data overwrites
the older one. This guarantees that flushing to disk doesn’t
interfere with the benchmark, which is also the behavior of
Ftrace.

4) Steady state: Another important factor that impacts the
accuracy of the results is benchmarking in a steady state. When
tracing is first enabled, the tracer typically allocates memory
for the internal ring buffer. Running in the steady state means
that all code paths have been covered at least once (and hence
are in some cache level), all memory locations have been
touched at least once, virtual addresses have been resolved
and stored in the TLB, and all other initialization routines
have been covered. For instance, when memory is allocated, it
typically isn’t physically reserved until it is actually touched by
the owner process. This mechanism happens by the means of a
page fault, which implies a frame allocation by the operating
system. The overhead of this procedure is accounted to the

M. GEBAI ET AL. 11

process, and particularly during the call to tracepoint()
(or its equivalent), which might be misleading and not rep-
resentative of the actual cost of the tracepoint. Note that this
particular example doesn’t apply for LTTng and Ftrace as they
make sure memory frame allocation is done at allocation time,
avoiding postponed page faults and lazy TLB filling. Thus,
running in a transient state may result in biased numbers for
the tracepoint() call, since a costly TLB miss due to
an initial virtual address resolution will get accounted to the
tracepoint. On the other hand, earlier runs have shown that Perf
varies greatly between the transient state and the steady state,
due to internal initialization being done on the critical path
of tracepoints. In the remainder of this paper, all benchmarks
results are done in a steady state.

The steady state is reached once the amount of trace data is
equal to the size of the tracers’ internal buffers to guarantee
that all locations have been accessed at least once. We make
sure we that the entire ring buffer has been filled at least
once before results are recorded. Since tracers are configured
to overwrite mode, all calls to tracepoint should happen in
optimal conditions, with all memory allocated, hot code in
the cache, and data and instruction addresses in the TLB.

5) Metrics: Table II shows the collected metrics for each
executed tracepoint. The raw data generated by the bench-
marks contains the value of these metrics for each recorded
event. These values are sampled using the perf_events
infrastructure from the kernel space, for kernel tracing, and the
perf_event_open() system call, for user space tracing.

TABLE II: Metrics

Metric Meaning

Latency Time to execute a tracepoint in nanoseconds
L1 misses Number of first level cache misses
Cache misses Number of all levels cache misses
CPU cycles Number of CPU cycles
Instructions Number of instructions
TLB misses Number of TLB misses
Bus cycles Number of memory bus cycles
Branch misses Number of mispredicted branch instructions
Branch instructions Number of branch instructions

Some of these metrics are more significant than others,
as the results section will show. We start by explaining the
runtime penalty of some of these metrics.
A TLB (Translation lookaside buffer) miss happens when a
virtual address to physical address mapping isn’t stored in
the TLB. The penalty is the page walk process, which needs
to perform the translation from virtual to physical addresses.
Depending on the architecture, this process might be more
or less costly. On x86 64, a page walk results in 4 memory
accesses (one for each level of the page tables) which is a
major performance setback, given the low frequency of the
memory bus relative to the frequency of modern CPUs.

A branch miss indicates a branch misprediction from the
compiler or the hardware itself. The compiler can optimize
the fast path of an application by predicting branches based
on hints given by the developer. The CPU can also predict
branches at run-time, depending on the path that is most
often taken. Instruction and data caches, as well as overall

pipeline efficiency, are optimized for the fast path by fetching
instructions prematurely, before the branching instruction has
been evaluated. The penalty of a branch miss is having to
load the instructions that were assumed unused, as well as
any data related to them. This fetching might occur from
either main memory or from higher levels of the cache (L2 or
L3). Consequently, this process reduces the efficiency of the
pipeline as it stalls while the data and instructions are fetched.

VII. RESULTS

A. Kernel tracing

We now present the results of the benchmark for the kernel
tracers. Unless stated otherwise, all results are gathered from
single-core benchmark runs. We start by showing in Table III
an overview of the results which we will try to explain using
the more detailed graphs. The standard deviation is provided
when the results indicate an average value. The 90th percentile
helps filtering out corner cases where tracepoint latency is
exceptionally high.

TABLE III: Average latency of a kernel space tracepoint

Average (ns) STD 90th percentile

None 17 0 17
LTTng 92 5 89
Ftrace 116 7 114
Perf 121 1 118
LTTng-Kprobe 123 5 121
eBPF-tracing 128 5 124
SystemTap 130 5 125
eBPF 140 10 126

In the graphs that follow, we show, for each run, the value
of different metrics for each tracepoint call. By showing the
results of all tracepoint calls for each tracer, it is much easier
to find trends in the usage of different resources. Furthermore,
this approach helps explaining corner cases, where a given
set of circumstances influences the cost of a single tracepoint
and helps setting an upper bound for the cost of an individual
tracepoint, once the steady state is reached.

As explained in section VI-B, we sample performance
counters at the beginning and end of each tracepoint invocation
in order to precisely measure different metrics, such as the
number of instructions executed, the number of cycles, or
the number of cache misses. The number of instructions is
directly related to the code logic and should not bring any
surprise. Furthermore, although the number of instructions
as an absolute value is not significant in isolation (compiler
versions, options, etc. directly influence this value), it still is
an interesting metric to capture, as it uncovers the different
code paths that are taken by the program at runtime. Other
metrics such as the number of cycles and the number of
cache misses are interesting to show any erratic behavior. For
instance, a larger number of cycles per instruction 5 (much

5This value depends on the architecture of the CPU. Superscalar processors
can have multiple pipelines to achieve parallelism within a single processor.
When that is the case, we can see a number of cycles per instructions that
is lower than 1 (multiple instructions per cycle per processor). This paper
focuses on multi-core scalar processors, which typically have one pipeline
per processor.

M. GEBAI ET AL. 12

higher than 1) might be due to contention over the memory
bus, or to inefficient instructions. A lower number of cycles
per instruction (closer to 1) could be a good sign, but it can
often hint at potential optimizations, such as doing calculations
in advance and caching them for future use. Added latency
might be caused by an abnormally high number of page faults,
and might help discover hard-to-detect and unexpected issues.
On the other hand, these low-level metrics can confirm that
everything is running smoothly, for instance, when most of the
tracepoints seem to indicate a ratio of instructions per cycle
close to 1.

For all of the following graphs, the y-axis always shows
the tracepoint latencies whereas the x-axis shows the values
of different counters.

Looking at Figure 3 a) and b), it is interesting to note the
lack of direct effect of the cache misses on the tracepoint
latency. Contrary to what would have been expected, more
L1 misses do not impact in any significant manner the cost
of a tracepoint. We can make this assessment since the
tracepoints that triggered 0 L1 misses range widely in the
latency spectrum. Furthermore, tracepoints with higher L1
misses record similar latency as the ones with no misses.
Of course, cache misses do affect latency, but their impact
is diluted by other factors. We also notice that benchmarking
in a steady state helps to keep the number of cache misses to
a minimum, as shown in b).

On the other hand, CPU cycles have a direct linear relation
with the latency of a tracepoint. However, this is more a
consequence than a cause, since tracepoints are uninterruptible
in our setup (interrupts disabled and the ones interrupted by
NMIs are ignored) and the CPU frequency is maintained at a
maximum, it is only natural that the more costly tracepoints
require more CPU cycles. The interesting thing to note is
that the nearly-perfect linear relation between CPU cycles
and latency doesn’t exist with dynamic CPU frequency
enabled. Since the CPU frequency can change dynamically, a
high latency tracepoint can actually record a low number of
cycles, changing the trend between latency and CPU cycles.
A few outliers exist, potentially caused by an imprecision
by sampling the pipeline to extract CPU cycles values
[Wilhelm, Grund, Reineke, Schlickling, Pister, and FerdinandWilhelm et al.2009].

Figure 3 d) shows a metric that directly impacts latency:
the number of instructions. As the number of instructions
grows, the groups of samples are higher on the latency axis.
As we might have expected, more instructions per tracepoint
usually implies more time to complete and thus record a higher
latency. With that said, the graph suggests that other factors
impact the latency, as even for tracepoints that require the
same number of instructions, their distribution on the latency
spectrum is quite wide (tracepoints recorded using Ftrace that
required 1052 instructions range between 110ns and 225ns).

Another interesting point that we can take from Figure 3
d) is the code path for each tracer. Looking at tracepoints
sampled for LTTng, we can easily guess the three internal code
paths of the tracer: the samples are grouped into three possible
number of instructions: 870 instructions, 927 instructions, or
1638 instructions (for this particular build of LTTng and
kernel). As explained in section V-A3, LTTng uses internal

sub-buffers with their size being a multiple of a page for its
ring buffer. We might guess that these three code paths shown
in the graph represent the tracepoints that cross boundaries: the
tracepoints requiring 870 instructions to complete are the most
frequent ones and execute the fast path. Storing the tracepoint
into a sub-buffer is straightforward and translates to a simple
memcpy(). The middle path, requiring 927 instructions, is
covered when storing a tracepoint is still within the same
sub-buffer but crosses page boundaries. The memory area
backing a sub-buffer is manually managed by LTTng, and
thus pages that make up a sub-buffer aren’t contiguous: LTTng
doesn’t use virtual addresses but rather uses physical memory
frames, which requires page stitching when data needs to be
stored across (or read from) more than a single page. Finally,
the slow path, requiring 1638 instructions, is covered by the
tracepoints that cross sub-buffer boundaries (and implicitly
page boundaries, as sub-buffers are page-aligned). LTTng then
requires internal bookkeeping, such as writing some header
data into the sub-buffer, which adds instructions to the critical
path and further latency. Thus, if tracepoint latency is an issue,
avoiding the slow path is possible by allocating larger sub-
buffers and reducing the frequency of the slow path (although
this might lead to other problems, such as events loss). With
this information, it is possible to predict how many instructions
an event might require, depending on the empty space left
in the sub-buffer at the moment the tracepoint is hit. In
other words, the middle and slow paths are taken at regular
intervals. The middle path is taken every (PAGE_SIZE /
EVENT_SIZE) events, and the slow path is taken every
(SUB-BUFFER_SIZE / EVENT_SIZE) events, assuming
all events are the same size.

This analysis can help the users choose the right buffer
size to configure their tracer. In order to reduce the average
tracepoint latency, the slow path should be avoided as much
as possible. This is possible by setting larger sub-buffers.
On the other hand, since sub-buffers can only be flushed
once they are full, having larger sub-buffers usually implies a
higher probability of event loss. Flushing large buffers requires
more time, and if the events are recorded at a high rate,
the ring buffer has time to loop and start overwriting unread
sub-buffers before a single sub-buffer is consumed entirely.
For a fixed buffer size, a trade-off has to be made between
the number of sub-buffers and their size. Smaller sub-buffers
reduce the risk of lost events, but larger sub-buffers result in
faster tracepoints on average. We conclude this by mentioning
that comparing the number of instructions per event between
tracers isn’t necessarily a relevant metric, as the number of
cycles an instruction requires may vary greatly and isn’t a
direct indicator of latency (unless the numbers of instructions
differ greatly). However, it is still interesting to analyze the
number of instructions for the same tracer to deconstruct
different code paths that have been taken, and get a deeper
understanding of a tracer’s internals.

A similar observation can be made for Ftrace. However, we
can only group the samples as executing one of two paths:
1052 instructions or 1341 instructions, which we reference
respectively as the fast path and the slow path. The reason
Ftrace samples only show two code paths, instead of 3 like

M. GEBAI ET AL. 13

Fig. 3: All tracepoints latencies in kernel space against different hardware counters (Part 1)

LTTng, is the fact that Ftrace doesn’t use the notion of sub-
buffers and only manipulates pages, albeit manually similarly
to LTTng. Thus, a tracepoint recorded with Ftrace can only
cover one of two cases: it either fits directly into a page, or it
crosses page boundaries. This behavior can be achieved with
LTTng if the size of the sub-buffers is set to the page size.

Figure 4 a), indicating the number of bus cycles per
tracepoint, shows a result similar to Figure 3 c), which is
naturally expected. Figure 4 b) shows that all tracepoints
for all tracers are recorded without triggering any TLB
misses. This is due to the fact that the events are sam-
pled in the steady state and all TLB misses have already
gradually been fulfilled. This is also to be expected as
there are no outliers in the samples, since a TLB miss is
costly relatively to the average tracepoint latency (memory
accesses are orders of magnitude slower than cache accesses
[Hennessy and PattersonHennessy and Patterson2011]).

Finally, Figure 4 c) showing the branch misses can support
the theory about the slow and fast paths we discussed for
Ftrace and LTTng. The binary is typically optimized for the
fast path by the compiler (and by the pipeline at run-time),
and thus should trigger no branch misses [SmithSmith1981].
Figure 4 c) validates this theory as most of the samples have
0 branch misses. When the tracepoint data to be written into

the ring buffer crosses a page boundary, a branch miss should
occur when the remaining free size in the current page of
the buffer is tested against the size of the event. This process
explains sample where 1 branch miss happens. Looking at
the raw data, we can confirm that all cases going through the
slow (and middle) paths for Ftrace and LTTng trigger exactly
1 branch miss. The reciprocate of this hypothesis is also valid:
all samples that trigger at least one branch miss are executing
either the middle or slow path.

The difference in tracepoint latency between LTTng and
LTTng-kprobe highlights the impact of the callback mecha-
nism used by the tracer. We see that using Kprobes increases
the frequency of L1 misses (Figure 3 a)) as well as the number
of instructions per tracepoint (Figure 3 d)) which contribute
to a higher overall latency. Table III shows that changing the
callback mechanism from TRACE_EVENT to Kprobes adds
around 30 ns of overhead.

Figure 5 shows how the kernel tracers scale as the number
of cores involved in the tracing effort grows. Notice that the la-
tency axis is in logarithmic scale. Ftrace, eBPF and SystemTap
show poor scalability, while LTTng and Perf scale with almost
no added overhead. Such a significant performance impact on
parallel systems usually indicates the use of an internal lock.
It is indeed the case for Ftrace, as the global clock is protected

M. GEBAI ET AL. 14

Fig. 4: All tracepoints latencies in kernel space against different hardware counters (Part 2)

Fig. 5: Average tracepoint latency in kernel space against the
number of cores (Log scale)

using a spin lock [LoveLove2005]. When configured to use a
global clock, Ftrace internally manages a data structure used
as a clock source to timestamp all events. This data structure

simply holds the timestamp of the last clock value at the last
timestamp, so that consecutive clock reads perceive the time
as strictly monotonically increasing. However, as this clock
is global to the system and shared amongst CPUs, proper
synchronization is required to avoid concurrent writes. The
following code, taken from the kernel source tree, shows a
snippet of the global clock read function in Ftrace. In the
following snippet, function sched_clock_cpu() reads the
local CPU clock.

u64 notrace trace_clock_global(void)
{

unsigned long flags;
int this_cpu;
u64 now;

...

this_cpu = raw_smp_processor_id();
now = sched_clock_cpu(this_cpu);
/*
* If in an NMI context then dont risk lockups

* and return the cpu_clock() time:

*/
if (unlikely(in_nmi()))

M. GEBAI ET AL. 15

goto out;

arch_spin_lock(&trace_clock_struct.lock);

if ((s64)(now - trace_clock_struct.prev_time) < 0)
now = trace_clock_struct.prev_time + 1;

trace_clock_struct.prev_time = now;

arch_spin_unlock(&trace_clock_struct.lock);

...

out:
return now;

}

This implementation choice might be eligible for optimiza-
tion as the global clock is, in fact, most often used for highly
parallel workloads, making the use of an internal lock counter-
intuitive. On the other hand, our micro-benchmark implements
an extreme case, where a CPU has a hold of the lock at any
given time, which might not be the case in real-life workloads
unless the event rate is unusually high. Once again, discretion
is given to the user on the choice of the clock. Figure 6
shows that when choosing the CPU local clock, the scalability
of Ftrace is greatly improved and the added overhead is
acceptable (ftrace-local). The Figure also shows the scalability
of a global counter as a clock source, which doesn’t require a
lock but rather uses atomic operations to increment the variable
at each clock read. The use of a global counter also shows
somewhat poor scalability and makes its choice less than ideal
for parallel workloads with a high event density. It is worth
noting that atomic operations use the LOCK prefix to lock the
memory bus, which explains the poor scalability.

Although great care was taken to use per-CPU arrays
for eBPF and SystemTap programs, both tracers show poor
scalability and the results suggest that they use internal locks
either to access per-CPU data or the system clock.

B. Userspace tracing

As with kernel tracing, we start by showing an overview of
the results for userspace tracing in Table IV.

TABLE IV: Average latency of a userspace tracepoint

Average (ns) STD 90th percentile

None 17 0 17
LW-UST 66 2 64
VampirTrace 84 87 72
Extrae 120 7 118
LTTng-UST 158 27 150
Printf 250 65 242
LTTng-tracef 446 73 433
SystemTap 1039 52 1020

Figure 7 shows the same metrics as the ones for kernel
tracing. For simplicity purposes, as the results are more scarce

if ((s64)(now - trace_clock_struct.prev_time) < 0)
now = trace_clock_struct.prev_time + 1;

arch_spin_unlock(&trace_clock_struct.lock);

Fig. 6: Average tracepoint latency in kernel space for Ftrace
using different clock sources against the number of cores (Log
scale)

than for kernel space, the Figure only shows 1000 sample for
each tracer, instead of 5000 for the previous Figures 3 and 4.
The user space results can be interpreted in the same manner as
for kernel space: L1 misses aren’t a major factor of tracepoint
latency since events that caused between 0 and 20 L1 miss
range in the same latency spectrum. However, one of the main
differences with kernel tracing is that the order of magnitude
of the metrics is much higher. Looking at the number of
instructions of individual tracepoints in Figure 7 d), we notice
that LTTng has two main code path (for the regular and the
tracef() variants). We’ve explained in section V-A3 that
LTTng uses internal sub-buffers to write tracing data. The slow
path in the Figure indicates events write that cross sub-buffer
boundaries. Contrary to kernel space, LTTng UST doesn’t
handle individual physical frames of memory that make up the
sub-buffer, which explains why the middle path seen for the
kernel tracer that covers page boundaries doesn’t exist in user
space. Extrae, the high-performance computing tracer, only
seems to have a single code path in the steady state for all
events. As explained earlier, this performance gain comes at
the price of lesser flexibility for the user. Furthermore, it is
interesting to mention that the tracef() average tracepoint
cost is almost equal to the sum of LTTng’s and printf’s
costs. This was to be expected as the tracef() function
simply combines LTTng’s regular tracepoint mechanisms to
printf()’s pretty-printing functionality.

LTTng UST version 2.9, used in this work, brings major per-
formance improvements. Previous benchmarks ran on slightly
older versions of the tracer had suggested that tracepoints were
72% slower. Version 2.9 introduces a faster inline memcpy,
inlining some ring-buffer access functions, as well as other
internal improvements regarding shared memory management.
Additionally, defining the _LGPL_SOURCE macro in the
benchmark code, which causes liburcu6 to inline functions,
further improves performance by 5 nanoseconds per tracepoint

6Userspace RCU library, required by LTTng UST

M. GEBAI ET AL. 16

on average. On the other hand, a major performance setback
for LTTng UST is the usage of the getcpu() system call on
each tracepoint, as this information is part of the payload of all
events. Furthermore, scheduling is disabled around the call-site
to avoid CPU migration while the CPU number is being read
which further adds overhead. It is eligible for improvement in
the near future as a new mechanism might be integrated into
the Linux kernel for a faster access to kernel data from user
space. The patch which introduces the restartable sequences
as an alternative to getcpu() [DesnoyersDesnoyers2016a],
is submitted by the creator of the LTTng project, and imple-
ments the Prepare-Write-Restart pattern. Instead of disabling
scheduling, the user space process alerts the kernel of the
operation it wants to perform (the prepare step). It then
tries to read the CPU number and is forced to restart if the
information is invalid (the thread was migrated to another
CPU) by the time it has been read, thus the restart step of the
pattern. A cleanup function has to be provided to handle the
case where the sequence is aborted and has to be restarted.
Restartable sequences promise major improvements for user
space tracepoints as they directly shorten their critical path.
Preliminary benchmarks have shown the latency of tracepoints
to drop to a little over 100ns per event (instead of 158ns)
with a kernel supporting restartable sequences and a version
of LTTng which takes advantage of them. Reading the CPU
number and shared memory abstraction in user space are
the two major causes of the performance difference between
LTTng in kernel space and user space.

Although the Extrae tracer shows low overhead, it is still
eligible for improvement. Sampling the clock either uses
the TSC7 (x86 only), or rusage8 to query the operat-
ing system about user and kernel CPU usage (respectively
rusage.utime and rusage.stime). The latter case,
although not used in this work, adds significant overhead to
the critical path of each event write, as interaction with the
operating system via a system call is required. The tracer also
keeps internal states between which it switches when entering
and leaving a tracepoint. When entering a tracepoint, the tracer
checks for the amount of free memory in the buffer for the
event to be written. When the amount of the remaining free
memory is too low, the buffer is flushed synchronously before
the event can be recorded. Although this approach has the
advantage of not dropping any events, it may significantly
alter the behavior of the traced application. Moreover, Extrae
samples hardware counters using PAPI9 at each event write.
Extrae uses arrays to store per-thread data, where each element
of the array is specific to a thread. However, because the array
isn’t cache-aligned, false sharing might occur when the traced
application is multi-threaded, which might slightly impact the
pipeline efficiency. Additional experimental runs did in fact
show that L1 Data cache misses increase when Extrae is
tracing a multi-threaded software. Finally, browsing the Extrae
source code shows the use of many levels of unnecessary
function calls. For instance, some functions have the sole role

7TimeStamp Counter
8Resource Usage
9Performance API, a Linux infrastructure to access hardware counters

of assigning values to global variables and, in some cases,
two functions only differ by the value they assign to the
same global variable. Although some of these function calls
might be inlined by the compiler, they can contribute to the
performance overhead in case they are not. In all cases, the
critical path of the tracepoint code goes through many layers
of function calls that are not eligible for inlining. Having the
instruction pointer move across a large memory region might
increase the number of cache misses (L1 Instruction cache),
in addition to the regular procedure of setting up the stack for
each function call and exit. Moreover, some functions in the
Extrae code do not contribute to time nor space optimization,
and can potentially be replaced by C macros to maintain code
readability. It is worth mentioning that Extrae isn’t reentrant,
and thus can have a much more straightforward probe with
regard to writing the tracing data, since there is no need for
synchronization nested writes.

VampirTrace is more optimized than Extrae. First, data
accessed by the tracing probe is cache-aligned to avoid false
sharing. Furthermore, it makes extensive use of macros along
the critical path of the probe, to avoid costly function calls.
Similarly to Extrae, a check for the free size of the buffer
is made on the critical path and causes a flush to disk
when not enough free memory is left. The implementation of
VampirTrace is straightforward and is highly optimized, but
doesn’t guarantee reentrancy. Finally, as shown in Table IV,
the standard deviation shown in VampirTrace numbers is due
to the slow path that causes trace data to be flushed, which has
a small period compared to other tracers. In our benchmark,
the flush rate was exactly 85 events, which means that every
85 events a flush to the filesystem had to be made. Lastly,
Table IV shows that the 90th percentile of latency values for
VampirTrace is much lower (17% lower) than the average,
comparatively to other tracers, and is actually very close to
LW-ust’s. This information is valuable as it shows how much
VampirTrace is optimized for the fast path (shown by the 90th
percentile). The 8 nanoseconds difference between LW-ust and
VampirTrace fast paths values is quite negligible and is a low
price to pay on top of LW-ust to get a usable tracer. This slight
overhead is due to verifying the remaining space in the buffer,
on top of other internal minor procedures. VampirTrace is very
close to the lower bound we set for userspace tracing.

1) Printf: Figure 8 shows how userspace tracers scale with
the number of cores when multiple threads simultaneously
trace as part of the same application. Other than printf()
and SystemTap, all tracers show good scalability as they
leverage per-CPU or per-thread data structures to guarantee a
lockless buffering scheme. Printf() shows poor scalability:
the average tracepoint latency more than doubles going from
a single-threaded application to a two-threaded one and again
when four threads are spawned. These results confirm that
printf() uses an internal lock to protect the buffer where
pretty-printed strings are stored.

C. System calls

We explained in section VI-B that we benchmarked system
calls through an empty ioctl() function to a procfs

M. GEBAI ET AL. 17

Fig. 7: All tracepoints latencies in userspace against different hardware counters

file exposed by a custom kernel module. Table V shows
the results for system call tracing with different tracers. We
notice Strace’s overwhelming performance overhead, making
an empty ioctl() call almost 19 times slower. We mention
that our benchmark redirects Strace’s output to /dev/null
to avoid all overhead due to writing to a file or the terminal.
We also used the -t flag to assign a timestamp to each
system call, although the performance impact is similar even
without timestamping. The large performance overhead added
by Strace is due to the Ptrace infrastructure and mechanism,
where a trap has to be generated by the operating system on
each system call entry and exit. Along with this trap, the traced
process needs to be put in the blocked state, and the tracer
is woken up from the blocked state. Context switches and
moving processes from the blocked to the running state by the
operating system also contribute to the overhead. Furthermore,
Strace doesn’t implement its own low-cost internal buffer for
storing collected data, and simply outputs the results to a file
descriptor.

Although Ftrace and LTTng use a different mechanism than
Strace to trace system calls, they provide the same information

at a much lower cost, with even more context information
than Strace. However, it is interesting to note that for system
calls tracing, Ftrace shows limited information compared to
Strace and LTTng. Often times, the parameters of a system
call are required for investigation, rather than the system call
itself (for instance, when looking at open() system calls to
investigate files opened by a certain process). Ftrace records
system calls, but data structures and literal strings received as
parameters aren’t resolved and presented in the trace. Instead,
the value of the pointers to those arguments is recorded, which
usually has no significance a posteriori. On the other hand,
resolving string literals as LTTng does has the effect of adding
some overhead, as copying of internal data will be required.
This added information explains the difference in system call
tracing performance between LTTng and Ftrace. Although
LTTng showed better performance for regular tracepoints,
Ftrace has a lower latency for system calls. To prove this
artifact, we benchmarked (latency only) the open() system
call, depending on the length of the file name to open. The
results are shown in Figure 9. Except for an empty file name,
which we assume causes open() to return early without

M. GEBAI ET AL. 18

Fig. 8: Average tracepoint latency in userspace against the
number of threads/cores

reaching the Virtual File System, tracing the system call using
Ftrace takes 700 ns regardless of the length of the file’s name.
However, tracing with LTTng adds overhead that is in linear
relation to the file name length. Once again, a trade-off has
to be made between overhead and usability. The requirements
and needs of a specific use case can lead the users to choose
either one of those tracers. Finally, Strace provides the most
ease of use at a much higher cost.

TABLE V: Average latency of an empty ioctl() system
call for multiple tracers

Average (ns) STD 90th percentile

None 63 0 61
Ftrace 300 13 296
LTTng 327 13 320
Strace 18991 351 18288

D. Additional analysis

To dig a little further into the reasons for tracepoint latency,
we decided to compare the amount of time spent in the
different steps of recording an event for the two most efficient
tracers. As was presented in section III-B, recording an event
for an enabled tracepoint is summed up to the callback mecha-
nism, the probe, and the write to a ring buffer. The serialization
part can be further divided into sampling the clock, and
formatting the event and its payload into data to be written
in the buffer (LTTng uses CTF [DesnoyersDesnoyers2012] as
a format and Ftrace can be configured to use a binary format
as well). Table III showed that recording an event requires
about 92 ns with LTTng and 116 ns with Ftrace. Figure 10
shows the profile of these latencies for each tracer and breaks
down the time spent at each step.

We showed in Table I that we benchmark both LTTng and
Ftrace for tracing static tracepoints using the TRACE_EVENT

Fig. 9: Latency to trace the open() system call according to
the file name length

macro. This callback mechanism is optimized to have the
lowest cost possible and ends up requiring only 4 ns. As
presented in section VI-B3, we configured Ftrace to use a
global clock (instead of the default local clock) for time
sampling, similarly to LTTng. Reading a global clock requires
32 ns which accounts for 34% and 27% of the total time
for LTTng and Ftrace respectively. Serialization is the part
that differentiates the most the overhead between the tracers.
LTTng’s serialization step takes 29 ns, which accounts for 31%
of its total time, while Ftrace requires 56 ns, which accounts
for 47% of the entire process. Writing to the ring buffer,
as they share similar designs, shows very similar overhead,
although LTTng’s ring buffer is slightly slower due to the sub-
buffer granularity and additional checks for boundaries. This
analysis shows where Ftrace requires more time than LTTng, at
the serialization step, which could be eligible for improvement.

Fig. 10: Time distribution for different steps of a tracepoint
for LTTng and Ftrace

E. Summary

As a reference, Table VI consolidates all the results and
shows a summary of all tracers. The table is sorted by
ascending values of the average latency. Other metrics that
were only shown as graphs previously are also included.

The results of table VI allow us not only to compare tools
among themselves, but also different underlying mechanisms.

M. GEBAI ET AL. 19

TABLE VI: Summary of the overhead per tracepoint for all tracers (Average and Standard Deviation) sorted by latency average

Latency (in ns) L1 misses Cache misses Instructions CPU cycles

Average STD Average STD Average STD Average STD Average STD

VampirTrace (Userspace) 84 87 0 8 0 6 670 233 695 299

LTTng 92 5 0 0 0 0 870 24 629 18

Ftrace 116 7 0 0 0 0 1053 18 709 26

Extrae (Userspace) 117 7 1 2 0 0 750 0 672 25

Perf 121 1 0 0 0 0 1099 0 720 6

LTTng-Kprobe 123 5 0 0 0 0 1012 20 731 18

eBPF-tracing 128 5 0 0 0 0 1138 0 746 18

SystemTap 130 5 0 0 0 0 1157 0 753 20

eBPF 140 10 0 0 0 0 1157 0 782 32

LTTng-UST (Userspace) 158 27 0 3 0 0 1228 117 944 161

Printf (Userspace) 245 144 0 6 0 3 1916 168 1250 492

LTTng-tracef (Userspace) 446 73 0 4 0 0 3211 205 1917 253

SystemTap (Userspace) 1046 45 4 2 0 0 2111 68 3958 155

Strace 18224 252 336 14 0 0 10666 362 11984 447

The TRACEPOINT infrastructure is the most efficient callback
mechanism, compared to Kprobes and other mechanisms. The
choice of the tracer to use can be difficult depending on the
needs of the developer. For kernel tracing, LTTng and Ftrace
serve similar purposes and both add little overhead to the
system when tracing. Ftrace is more configurable than LTTng,
for low-level tweaking such as the choice of the clock. Ftrace
is integrated into the Linux kernel in most distributions, and as
a result is more easily accessible. On the other hand, LTTng is
more feature-rich in terms of usability. For example, the CTF
output allows LTTng to be compatible with visualization and
analysis tools that understand this format. Tracing using Perf
is the best choice when quick statistics are needed. Its ease of
use is overwhelming compared to Ftrace and LTTng, but its
output (as a tracer) is a short summary and hides the details
that are provided by other kernel tracers. SystemTap and eBPF
serve similar roles, although eBPF is gaining more traction in
recent kernel versions. eBPF adds slightly more overhead than
SystemTap due to the need of an in-kernel virtual machine,
while SystemTap translates user scripts into loadable kernel
modules. The wide availability of targeted tools for kernel
subsystems make eBPF, particularly within the BCC project
[??bcc2017], a more user-friendly tool than SystemTap. As for
high performance applications, VampirTrace performs better
than Extrae, and provides similar features as well, making it
a better choice in terms of added overhead.

VIII. CONCLUSION

In this paper, we explained the designs of different kernel
and user space tracers. The benchmark results not only helped
to quantify the overhead that each tracer adds to the traced ap-
plication, but also point out specific details about the internals
of each tracer. By sampling low-level performance counters,
this analysis helps users determine where the overhead usually
originates from, and how to configure tracers to reduce their
footprint depending on their requirements. Lastly, this research
also helps tracer developers, as we were able to point out
potential optimizations in some tracers, and showed design
limitations in others. In conclusion, designing a tracer is a
trade-off between usability, features and overhead. Fundamen-
tal designs choices have to be made that dictate how the tracer
behaves under critical conditions.

REFERENCES

[??ext2016] 2016. EXTRAE website. (Aug. 2016). http://www.vi-hps.org/
tools/extrae.html

[??bcc2017] 2017. BCC project. (Aug. 2017). https://github.com/iovisor/bcc
[??bgr2017] 2017. Brendan Gregg Linux Performance. (July 2017). http:

//www.brendangregg.com/
[??chi2017] 2017. Chisels User Guide. (July 2017). https://github.com/

draios/sysdig/wiki/Chisels-User-Guide
[??kta2017] 2017. KTap: A lightweight script-based dynamic tracing tool for

Linux. (July 2017). https://github.com/ktap/ktap
[Bitzes and NowakBitzes and Nowak2014] Georgios Bitzes and Andrzej

Nowak. 2014. The overhead of profiling using PMU hardware counters.
CERN openlab report (2014).

[Blunck, Desnoyers, and FournierBlunck et al.2009] Jan Blunck, Mathieu
Desnoyers, and Pierre-Marc Fournier. 2009. Userspace application
tracing with markers and tracepoints. In Proceedings of the Linux
Kongress.

[BrosseauBrosseau2017] Yannick Brosseau. 2017. A userspace
tracing comparison: Dtrace vs LTTng UST. (July
2017). http://www.dorsal.polymtl.ca/fr/blog/yannick-brosseau/
userspace-tracing-comparison-dtrace-vs-lttng-ust

[DesnoyersDesnoyers2009] Mathieu Desnoyers. 2009. Low-impact operating
system tracing. Ph.D. Dissertation. École Polytechnique de Montréal.

[DesnoyersDesnoyers2012] Mathieu Desnoyers. 2012. Common trace format
(CTF) specification (v1. 8.2). Common Trace Format GIT repository
(2012).

[DesnoyersDesnoyers2016a] Mathieu Desnoyers. 2016a. Restartable se-
quences system call. (Aug. 2016). http://www.mail-archive.com/
linux-kernel@vger.kernel.org/msg1213826.html

[DesnoyersDesnoyers2016b] Mathieu Desnoyers. 2016b. Semantics and
Behavior of Local Atomic Operations. Documentation/local ops.txt.
(2016). Linux kernel version 4.5.0.

[DesnoyersDesnoyers2016c] Mathieu Desnoyers. 2016c. Tracepoints doc-
umentation in the Linux kernel. Documentation/trace/tracepoints.txt.
(2016). Linux kernel version 4.5.0.

[Desnoyers and DagenaisDesnoyers and Dagenais2006a] Mathieu Desnoy-
ers and Michel Dagenais. 2006a. Low disturbance embedded system
tracing with linux trace toolkit next generation. In ELC (Embedded Linux
Conference), Vol. 2006. Citeseer.

[Desnoyers and DagenaisDesnoyers and Dagenais2008] Mathieu Desnoyers
and Michel Dagenais. 2008. LTTng: Tracing across execution layers,
from the hypervisor to user-space. In Linux symposium, Vol. 101.

[Desnoyers and DagenaisDesnoyers and Dagenais2006b] Mathieu Desnoy-
ers and Michel R Dagenais. 2006b. The LTTng tracer: A low impact
performance and behavior monitor for GNU/Linux. In OLS (Ottawa
Linux Symposium), Vol. 2006. Citeseer, 209–224.

[Desnoyers and DagenaisDesnoyers and Dagenais2009] Mathieu Desnoyers
and Michel R Dagenais. 2009. Lttng, filling the gap between kernel
instrumentation and a widely usable kernel tracer. (2009).

[Desnoyers and DagenaisDesnoyers and Dagenais2010] Mathieu Desnoyers
and Michel R Dagenais. 2010. Synchronization for fast and reentrant
operating system kernel tracing. Software: Practice and Experience 40,
12 (2010), 1053–1072.

M. GEBAI ET AL. 20

[Desnoyers and DagenaisDesnoyers and Dagenais2012] Mathieu Desnoyers
and Michel R Dagenais. 2012. Lockless multi-core high-throughput
buffering scheme for kernel tracing. ACM SIGOPS Operating Systems
Review 46, 3 (2012), 65–81.

[Desnoyers, McKenney, Stern, Dagenais, and WalpoleDesnoyers et al.2012]
Mathieu Desnoyers, Paul E McKenney, Alan S Stern, Michel R
Dagenais, and Jonathan Walpole. 2012. User-level implementations
of read-copy update. IEEE Transactions on Parallel and Distributed
Systems 23, 2 (2012), 375–382.

[EiglerEigler2006] Frank Ch Eigler. 2006. Problem solving with systemtap.
In Proc. of the Ottawa Linux Symposium. Citeseer, 261–268.

[Fournier, Desnoyers, and DagenaisFournier et al.2009] Pierre-Marc
Fournier, Mathieu Desnoyers, and Michel R Dagenais. 2009. Combined
tracing of the kernel and applications with LTTng. In Proceedings of
the 2009 linux symposium. Citeseer, 87–93.

[FrysingerFrysinger2016] M. Frysinger. 2016. Function tracer guts.
Documentation/trace/ftrace-design.txt. (2016). Linux kernel version
4.5.0.

[GhodsGhods2016] Amir Reza Ghods. 2016. A Study of Linux Perf and
Slab Allocation Sub-Systems. (2016).

[Gregg and MauroGregg and Mauro2011] Brendan Gregg and Jim Mauro.
2011. DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD. Prentice Hall Professional.

[Haardt and ColemanHaardt and Coleman1999] M Haardt and M Coleman.
1999. ptrace (2) Linux Programmer’s Manual. (1999).

[Hennessy and PattersonHennessy and Patterson2011] John L Hennessy and
David A Patterson. 2011. Computer architecture: a quantitative ap-
proach. Elsevier.

[HiramatsuHiramatsu2010] M. Hiramatsu. 2010. Kprobes jump optimization
support. (Feb. 2010). https://lwn.net/Articles/375232/

[Intel CorporationIntel Corporation2016] Intel Corporation. 2016. Intel R© 64
and IA-32 Architectures Software Developer’s Manual. Number 325462-
045US.

[Johnson and TroanJohnson and Troan2004] Michael K Johnson and Erik W
Troan. 2004. Linux application development. Addison-Wesley Profes-
sional.

[Kalibera and JonesKalibera and Jones2013] Tomas Kalibera and Richard
Jones. 2013. Rigorous benchmarking in reasonable time. In ACM
SIGPLAN Notices, Vol. 48. ACM, 63–74.

[Keniston J.Keniston J.2016] Hiramatsu M Keniston J., Panchamukhi P. S.
2016. Kernel Probes (Kprobes). Documentation/kprobes.txt. (2016).
Linux kernel version 4.5.0.

[KerriskKerrisk2010] Michael Kerrisk. 2010. The Linux programming inter-
face. No Starch Press.

[Knüpfer, Brunst, Doleschal, Jurenz, Lieber, Mickler, Müller, and NagelKnüpfer et al.2008]
Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz,
Matthias Lieber, Holger Mickler, Matthias S Müller, and Wolfgang E
Nagel. 2008. The vampir performance analysis tool-set. In Tools for
High Performance Computing. Springer, 139–155.

[LoveLove2005] Robert Love. 2005. Linux Kernel Development (Novell
Press). Novell Press.

[Mavinakayanahalli, Panchamukhi, Keniston, Keshavamurthy, and HiramatsuMavinakayanahalli et al.2006]
Ananth Mavinakayanahalli, Prasanna Panchamukhi, Jim Keniston, Anil
Keshavamurthy, and Masami Hiramatsu. 2006. Probing the guts of
kprobes. In Linux Symposium, Vol. 6.

[McCanne and JacobsonMcCanne and Jacobson1993] Steven McCanne and
Van Jacobson. 1993. The BSD Packet Filter: A New Architecture for
User-level Packet Capture.. In USENIX winter, Vol. 46.

[McKenney and SlingwineMcKenney and Slingwine1998] Paul E McKen-
ney and John D Slingwine. 1998. Read-copy update: Using execution
history to solve concurrency problems. In Parallel and Distributed
Computing and Systems. 509–518.

[Mihajlović, Žilić, and GrossMihajlović et al.2014] Bojan Mihajlović,
Željko Žilić, and Warren J Gross. 2014. Dynamically instrumenting
the QEMU emulator for Linux process trace generation with the GDB
debugger. ACM Transactions on Embedded Computing Systems (TECS)
13, 5s (2014), 167.

[Moore, Cronk, London, and DongarraMoore et al.2001] Shirley Moore,
David Cronk, Kevin London, and Jack Dongarra. 2001. Review of
performance analysis tools for MPI parallel programs. In European
Parallel Virtual Machine/Message Passing Interface Users’ Group
Meeting. Springer, 241–248.

[Müller, Knüpfer, Jurenz, Lieber, Brunst, Mix, and NagelMüller et al.2007]
Matthias S Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber,
Holger Brunst, Hartmut Mix, and Wolfgang E Nagel. 2007. Developing
Scalable Applications with Vampir, VampirServer and VampirTrace.. In
PARCO, Vol. 15. Citeseer, 637–644.

[PadalaPadala2002] Pradeep Padala. 2002. Playing with ptrace, Part I. Linux
Journal 2002, 103 (2002), 5.

[PeekPeek1996] J.S. Peek. 1996. System and method for creating thread-
safe shared libraries. (Jan. 2 1996). https://www.google.com/patents/
US5481706 US Patent 5,481,706.

[Pillet, Labarta, Cortes, and GironaPillet et al.1995] Vincent Pillet, Jesús
Labarta, Toni Cortes, and Sergi Girona. 1995. Paraver: A tool to
visualize and analyze parallel code. In Proceedings of WoTUG-18:
Transputer and occam Developments, Vol. 44. mar, 17–31.

[Prasad, Cohen, Eigler, Hunt, Keniston, and ChenPrasad et al.2005] Vara
Prasad, William Cohen, FC Eigler, Martin Hunt, Jim Keniston, and J
Chen. 2005. Locating system problems using dynamic instrumentation.
In 2005 Ottawa Linux Symposium. Citeseer, 49–64.

[RostedtRostedt2009a] Steven Rostedt. 2009a. Debugging the kernel using
Ftrace - Part 1. (2009). https://lwn.net/Articles/365835/

[RostedtRostedt2009b] Steven Rostedt. 2009b. Finding origins of latencies
using ftrace. Proc. RT Linux WS (2009).

[RostedtRostedt2010] S. Rostedt. 2010. Using the trace event macro. (March
2010). http://lwn.net/Articles/379903/

[RostedtRostedt2016a] S. Rostedt. 2016a. ftrace - Function Tracer.
Documentation/trace/ftrace.txt. (2016). Linux kernel version 4.5.0.

[RostedtRostedt2016b] S. Rostedt. 2016b. Lockless Ring Buffer Design.
Documentation/trace/ring-buffer-design.txt. (2016). Linux kernel ver-
sion 4.5.0.

[Schöne, Tschüter, Ilsche, and HackenbergSchöne et al.2010] Robert
Schöne, Ronny Tschüter, Thomas Ilsche, and Daniel Hackenberg. 2010.
The VampirTrace plugin counter interface: introduction and examples.
In European Conference on Parallel Processing. Springer, 501–511.

[Schulist J.Schulist J.2016] Starovoitov A. Schulist J., Borkmann D.
2016. Linux Socket Filtering aka Berkeley Packet Filter (BPF).
Documentation/networking/filter.txt. (2016). Linux kernel version 4.5.0.

[Selij and van den HaakSelij and van den Haak2014] Jan-Willem Selij and
Eric van den Haak. 2014. A visitation of sysdig. (2014).

[Sharma and DagenaisSharma and Dagenais2016a] Suchakrapani Sharma
and Michel Dagenais. 2016a. Hardware-Assisted Instruction Profiling
and Latency Detection. The Journal of Engineering 1, 1 (2016).

[Sharma and DagenaisSharma and Dagenais2016b] Suchakrapani Datt
Sharma and Michel Dagenais. 2016b. Enhanced Userspace and
In-Kernel Trace Filtering for Production Systems. Journal of Computer
Science and Technology 31, 6 (2016), 1161–1178.

[Sivakumar and Sundar RajanSivakumar and Sundar Rajan2010] Narendran
Sivakumar and Sriram Sundar Rajan. 2010. Effectiveness of tracing in
a multicore environment. (2010).

[SmithSmith1981] James E Smith. 1981. A study of branch prediction
strategies. In Proceedings of the 8th annual symposium on Computer
Architecture. IEEE Computer Society Press, 135–148.

[Tanenbaum and BosTanenbaum and Bos2014] Andrew S Tanenbaum and
Herbert Bos. 2014. Modern operating systems. Prentice Hall Press.

[Terpstra, Jagode, You, and DongarraTerpstra et al.2010] Dan Terpstra,
Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
performance data with PAPI-C. In Tools for High Performance
Computing 2009. Springer, 157–173.

[Wilhelm, Grund, Reineke, Schlickling, Pister, and FerdinandWilhelm et al.2009]
Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling,
Markus Pister, and Christian Ferdinand. 2009. Memory hierarchies,
pipelines, and buses for future architectures in time-critical embedded
systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28, 7 (2009), 966.

	2018_Gebai_Survey_analysis_kernel_userspace_tracers

