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RÉSUMÉ

La moelle épinière humaine, qui fait partie du système nerveux central, est la principale
voie responsable de la connexion du cerveau et du système nerveux périphérique. On sait
que la matière grise présente dans la moelle épinière est associée à de nombreux troubles
neurologiques tels que la sclérose en plaques et la sclérose latérale amyotrophique.

L’IRM est souvent utilisée pour étudier les maladies neurologiques et surveiller leur évolution.
À cette fin, la morphométrie extraite de la substance grise de la moelle épinière, telle que le
volume de la substance grise, peut être utilisée pour identifier et comprendre les modifications
tissulaires associées aux troubles neurologiques comme ceux mentionnés précédemment.

Pour extraire des mesures morphométriques de la matière grise de la moelle épinière, une
annotation (label) par voxel est requise pour chaque tranche du volume IRM. L’annotation
manuelle ne peut donc pas être facilement implémenté dans la pratique en raison non seulement
des e�orts fastidieux nécessaires pour annoter manuellement chaque tranche d’un volume
d’IRM, mais aussi du désaccord et des biais introduits par di�érents annotateurs humains.

Toutefois, il existe de nombreuses méthodes semi-automatiques ou entièrement automatiques
pour annoter chaque voxel, mais la plupart d’entre elles sont composées d’approches en
plusieurs étapes pouvant propager des erreurs dans le pipeline, s’appuient sur des dictionnaires
de données ou ne généralisent pas bien lorsqu’il y a des changements anatomiques. Il est
bien connu que les techniques modernes basées sur l’apprentissage par la représentation et
l’apprentissage en profondeur ont obtenu d’excellents résultats dans un large éventail de
tâches allant de la vision par ordinateur à l’imagerie médicale.

Le programme de recherche de ce projet consiste à améliorer les résultats les plus récents des
méthodes existantes au moyen de techniques modernes d’apprentissage en profondeur grâce
à la conception, la mise en œuvre et l’évaluation de ces méthodes pour la segmentation de
la substance grise de la moelle épinière. Dans ce projet, trois techniques principales ont été
développées: en open source, comme décrit ci-dessous.

La première technique consistait à concevoir une architecture d’apprentissage en profondeur
pour segmenter la matière grise de la moelle épinière et a permis d’obtenir de meilleures
résultats comparé à six autres méthodes développées précédemment pour la segmentation de
la matière grise. Cette technique a également permis de segmenter un volume ex vivo avec
plus de 4000 tranches en fournissant au préalable et moins de 30 échantillons annotés du
même volume.
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La deuxième technique a été développée pour tirer profitnon seulement des données anotées,
mais aussides données qui ne le sont pas (données non anotées) au moyen d’une méthode
d’apprentissage semi-supervisée étendue aux tâches de segmentation. Cette méthode a apporté
des améliorations significatives dans un scénario réaliste sous un régime de données réduit en
ajoutant des données non annotées au cours du processus de formation du modèle.

La troisième technique développée est une méthode d’adaptation de domaine non supervisée
pour la segmentation. Dans ce travail, nous avons abordé le problème du décalage de
distribution présent sur les données IRM, qui est principalement causé par di�érents paramètres
d’acquisition. Dans ce travail, nous avons montré qu’en adaptant le modèle à un domaine
cible présenté au modèle sous forme de données non annotées, il est possible d’améliorer de
manière significative la segmentation de la matière grise pour le domaine cible invisible.

Conformément aux principes de la science ouverte pour tous (open science), nous avons ouvert
toutes les méthodes sur des référentiels publics et en avons implémenté certaines sur la Spinal
Cord Toolbox (SCT) 1, une bibliothèque complète et ouverte d’outils d’analyse pour l’IRM
de la moelle épinière. Nous avons également utilisé uniquement des ensembles de données
accessibles au public pour toutes les évaluations et la formation de modèles, ainsi que pour la
publication de tous les articles sur les revues en libre accès, avec une disponibilité gratuite sur
les serveurs d’archives pré-imprimées.

Dans ce travail, nous avons pu constater que les modèles d’apprentissage en profondeur
peuvent en e�et fournir des progrès considérables par rapport aux méthodes précédemment
développées. Les méthodes d’apprentissage en profondeur sont très flexibles et robustes. Elles
permettent d’apprendre de bout en bout l’ensemble des pipelines de segmentation tout en
permettant de tirer profit de données non annotées pour améliorer les performances du même
domaine dans un scénario d’apprentissage semi-supervisé ou en tirant parti de données non
étiquetées pour améliorer les performances des modèles dans des domaines cibles non vus.

Il est également clair que l’apprentissage en profondeur n’est pas une panacée pour l’imagerie
médicale. De nombreux problèmes demeurent en suspens, tels que le décalage de générali-
sation toujours présent lors de l’utilisation de ces modèles sur des domaines non vus. Un
futur axe de recherche inclut le développement en cours de techniques pour éclairer les mod-
èles d’apprentissage automatique avec paramétrisation d’acquisition IRM afin par exemple
d’améliorer la généralisation du modèle à di�érents contrastes, ainsi que d’améliorer la vari-
abilité inhérente de ces images due aux di�érentes machines et aux changements anatomiques.
L’estimation de l’incertitude liée à la distillation des connaissances au cours des phases de
formation des approches décrites dans ce travail constitue un autre domaine de recherche

1
disponible à https://github.com/neuropoly/spinalcordtoolbox.

https://github.com/neuropoly/spinalcordtoolbox
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potentiel. Cependant, les mesures d’incertitude font partie d’un domaine de recherche en
cours d’évolution dans le Deep Learning. En e�et la plupart des méthodes fournissant une
approximation médiocre ou une sous-estimation de l’incertitude épistémique présente dans
ces modèles.

L’imagerie médicale reste un domaine très di�cile pour les modèles d’apprentissage automa-
tique en raison des fortes hypothèses d’identité distributionnelle formulées par les algorithmes
d’apprentissage statistique ainsi que de la di�culté à incorporer de nouveaux biais inductifs
dans ces modèles pour tirer parti de la symétrie, de l’invariance de rotation, entre autres. Néan-
moins, avec la quantité croissante de données disponibles, elles o�rent de grandes promesses
et gagnent lentement en robustesse pour pouvoir entrer dans la pratique clinique.
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ABSTRACT

The human spinal cord, part of the Central Nervous System (CNS), is the main pathway
responsible for the connection of brain and peripheral nervous system. The gray matter
present in the spinal cord is known to be associated with many neurological disorders such as
multiple sclerosis and amyotrophic lateral sclerosis.

Magnetic Resonance Imaging (MRI) is often used to study diseases and monitor the disease
burden/progression during the course of the disease. To that goal, morphometrics extracted
from the spinal cord gray matter such as gray matter volume can be used to identify and
understand tissue changes that are associated with the aforementioned neurological disorders.

To extract morphometrics from the spinal cord gray matter, a voxel-wise annotation is required
for each slice of the MRI volume. Manual annotation becomes prohibitive in practice due to the
time-consuming e�orts required to manually annotate each slice of an MRI volume voxel-wise,
not to mention the disagreement and bias introduced by di�erent human annotators.

Many semi-automatic or fully-automatic methods exist but most of them are composed by
multi-stage approaches that can propagate errors in the pipeline, rely on data dictionaries,
or doesn’t generalize well when there are anatomical changes. It is well-known that modern
techniques based on representation learning and Deep Learning achieved excellent results in a
wide range of tasks from computer vision and medical imaging as well.

The research agenda of this project is to advance the state-of-the-art results of previous
methods by means of modern Deep Learning techniques through the design, implementation,
and evaluation of these methods for the spinal cord gray matter segmentation. In this project,
three main techniques were developed an open-sourced, as described below.

The first technique is the design of a Deep Learning architecture to segment the spinal cord
gray matter that achieved state-of-the-art results when evaluated by a third-party system
and compared to other 6 independently developed methods for gray matter segmentation.
This technique also allowed to segment an ex vivo volume with more than 4000 slices by just
providing less than 30 annotated samples from the same volume.

The second technique was developed to take leverage not only of labeled data but also
from unlabeled data by means of a semi-supervised learning method that was extended to
segmentation tasks. This method achieved significant improvements in a realistic scenario
under a small data regime by adding unlabeled data during the model training process.

The third developed technique is an unsupervised domain adaptation method for segmentation.
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In this work, we addressed the problem of the distributional shift present on MRI data that
is mostly caused by di�erent acquisition parametrization. In this work, we showed that by
adapting the model to a target domain, presented to the model as unlabeled data, it is possible
to achieve significant improvements on the gray matter segmentation for the unseen target
domain.

Following the open science principles, we open-sourced all the methods on public repositories
and implemented some of them on the Spinal Cord Toolbox (SCT) 2, a comprehensive and
open-source library of analysis tools for MRI of the spinal cord. We also used only public
available datasets for all evaluations and model training, and also published all articles on
open-access journals with free availability on pre-print archive servers as well.

In this work, we were able to see that Deep Learning models can indeed provide huge steps
forward when compared to the previously developed methods. Deep Learning methods are
very flexible and robust, allowing end-to-end learning of entire segmentation pipelines while
being able to take leverage of unlabeled data to improve the performance for the same domain
on a semi-supervised learning scenario, or by taking leverage of unlabeled data to improve
the performance of models in unseen target domains.

It is also clear that Deep Learning is not a panacea for medical imaging. Many problems
remain open, such as the generalization gap that is still present when using these models on
unseen domains. A future line of research includes the on-going development of techniques
to inform machine learning models with MRI acquisition parametrization to improve the
generalization of the model to di�erent contrasts, to the inherent variability of these images
due to di�erent machine vendors and anatomical changes, to name a few. Another potential
area of research is the uncertainty estimation for knowledge distillation during training phases
of the approaches described in this work. However, uncertainty measures are still an open
area of research in Deep Learning with most methods providing a poor approximation or
under-estimation of the epistemic uncertainty present in these models.

Medical imaging is still a very challenging field for machine learning models due to the strong
assumptions of distributional identity made by statistical learning algorithms as well as the
di�culty to incorporate new inductive biases into these models to take leverage of symmetry,
rotation invariance, among others. Nevertheless, with the amount of data availability growing,
they show great promises and are slowly gaining robustness enough to be able to enter in
clinical practice.

2
Available at https://github.com/neuropoly/spinalcordtoolbox.

https://github.com/neuropoly/spinalcordtoolbox
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CHAPTER 1 INTRODUCTION

Neuroscientists usually divide the CNS into brain and spinal cord. The human spinal cord,
responsible for connecting the brain and peripheral nervous system, is nearly as thick as
an adult’s little finger and has two basic types of nervous tissues: gray matter and white
matter [5]. It is known, from histopathological studies [6], that tissue changes on the Spinal
Cord Gray Matter (SCGM) and white matter are related to a wide spectrum of neurological
conditions.

Non-invasive imaging techniques such as MRI, that takes leverage of the nuclear magnetic
resonance phenomenon through the use of strong magnetic fields and magnetic field gradients
to provide spatial signal location, are usually employed to assess the spinal cord tissues such
as the aforementioned gray matter and white matter.

In the last two decades, many semi-automated segmentation methods have been proposed for
the estimation of the cord Cross-Sectional Area (CSA), however, individual gray matter tissue
analysis cannot be individually assessed using only the CSA [7]. Given the significance of the
spinal cord gray matter tissue analysis, which was found to be the strongest predictor of the
Expanded Disability Status Scale (EDSS) in multiple sclerosis among many other metrics
such as brain gray matter, brain white matter, FLAIR lesion load, T1-lesion load, and other
metrics [8], the segmentation of the spinal cord gray matter became of greater importance
due to its clinical relevance.

The manual annotation of the spinal cord gray matter is, however, very time-consuming even
for a trained expert. The main properties that make the SCGM area di�cult to segment
are: inconsistent intensities of the surrounding tissues, image artifacts and pathology-induced
changes in the image contrast [9]. There are also many other factors contributing to the
complexity of the task, such as disagreement between di�erent annotators, bias introduced by
di�erent annotators, di�erent voxel sizes, lack of standardization protocols, among others.
Therefore, a fully-automated procedure for the SCGM segmentation is paramount to provide
means for studies that require automatic metrics extraction, tissue analysis, lesion detection,
disorder detection, among others.

Recently, many methods have been proposed for the spinal cord gray matter segmentation [2,7,
10–16]. The scientific community, including our laboratory, recently organized a collaboration
e�ort called “Spinal Cord Gray Matter Segmentation Challenge” (SCGM Challenge) [2], to
assess the state-of-the-art and compare six independently developed methods on a public
dataset created through the collaboration of four internationally recognized research groups
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(University College London, Polytechnique Montreal, University of Zurich and Vanderbilt
University), providing a ground basis for method comparison that was previously unfeasible
due to the lack of standardized datasets.

In the past few years, we were able to witness the unprecedented pace to which Deep
Learning [17] methods had evolved. Since the seminal work of the AlexNet [18], the research
community embraced the successful Deep Learning methods and developed many state-
of-the-art techniques that became pervasive across a wide range of tasks such as image
classification [19], semantic segmentation [20], speech recognition [21] and Natural Language
Processing (NLP) [22], to name a few.

A recent survey [23] that analyzed more than 300 papers from the field of medical imaging,
showed that Deep Learning techniques became pervasive in the entire field of medical image
analysis, with a rapid increase in the number of publications between the years of 2015 and
2016. The survey also found that Convolutional Neural Network (CNN) were more prevalent
in the medical image analysis, with Recurrent Neural Network (RNN) gaining more popularity.

Although the large success of Deep Learning has attracted a lot of attention from the
community, it is clear that Deep Learning also poses some unique challenges such as high
sample complexity, meaning that the amount of labeled data that these techniques usually
require to train a reasonable classifier is very high. Another challenge that is still open is
how to handle the domain shift that is present in many domains and especially in medical
imaging due to the variability of protocols, acquisition devices, and human anatomy. Machine
Learning techniques that follow the Empirical Risk Minimization (ERM) principle, often show
a poor generalization performance when a trained model is evaluated on data from a di�erent
distribution, mainly because of the strong Independend and Identically Distributed (IID)
assumption held by the ERM learning principle.

The first goal of this work is to show how Deep Learning methods can improve on the
current state-of-the-art for the SCGM segmentation, through an extensive evaluation and
comparison with other independently developed methods. The second goal is to show that
even though Deep Learning has a high sample complexity, this can be alleviated through the
use of semi-supervised learning techniques. The third goal is to show how Domain Adaptation
techniques can be used to partially mitigate the poor generalization performance on unseen
data. The fourth and last goal, in the spirit of Open Science principles, is to implement,
document and test all developed software and make it available to the general public under a
permissive open-source license at zero cost.

This thesis is organized as follows. In Chapter 2, we present a short critical literature review
of previous works as well as a review of some concepts important to the themes that will
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be developed later. In Chapter 3 we present an overall methodology and the main research
questions guiding the research agenda. In Chapter 4, we present the first article where
we develop a supervised end-to-end approach to the spinal cord gray matter segmentation
using dilated convolutions; in Chapter 5 we present the second article where we develop a
semi-supervised approach to the spinal cord gray matter segmentation by leveraging unlabeled
data; in Chapter 6 we present the third and last article where we develop an unsupervised
domain adaptation technique to address the generalization gap of Deep Learning models when
applied to unseen domains. In Chapter 7 we present a general discussion and in Chapter 8
we present the conclusion, limitations and recommendations.
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CHAPTER 2 LITERATURE REVIEW

2.1 Medical review

In this section, a brief literature review of the medical concepts linked to the spinal cord and
the clinical relevance of the spinal cord gray matter are presented. This section provides the
basic concepts to help the reader understand the main motivation, rationale and methods
developed, however, it is far from a comprehensive introduction to the Spinal Cord or MRI
concepts.

2.1.1 Spinal Cord

The CNS is often divided by neuroscientists in brain and spinal cord. The human spinal
cord, nearly as thick as an adult’s little finger has two basic types of nervous tissues: gray
matter and white matter [5]. The gray matter forms an H-shape (also called "butterfly shape")
surrounding the central canal of the spinal cord and consists of mainly neuronal cell bodies
and neuropil, while the white matter surrounds the gray matter and consists of axons collected
into overlapping fiber bundles. Many axons in the white matter have a myelin sheath that
allows the rapid nerve impulse conduction and gives the white matter the pale appearance [5].

The three main segments of the spinal cord are shown in the Figure 2.1. Bilateral pairs of
dorsal and ventral roots emerge along its length and form five di�erent sets: cervical (in the
neck above the rib cage), thoracic (associated with the rib cage), lumbar (near the abdomen),
sacral (near the pelvis), and coccygeal (associated with tail vertebrae) [5]. In human, these
spinal nerve pairs sum to 31, and are named according to the intervertebral foramen the pass
through, however, this enumeration can vary between di�erent species.

The spinal cord is the main information channel connecting the brain and the peripheral
nervous system. Information (from nerve impulses) that reaches the spinal cord through
sensory neurons are transmitted up to the brain. In the other direction, signals arising in the
motor areas of the brain travel back down the cord. The spinal cord also contains the Central
Pattern Generator (CPG), neuronal circuits (networks of interneurons) that can produce
self-sustained patterns of behavior, independent of sensory input [24,25]. The spinal cord is
also surrounded by layers of meninges and has a central canal running through it filled with
cerebrospinal fluid.

In the Figure 2.2, a graphical description of a cross-sectional slice of the spinal cord is shown.
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Figure 2.1 Diagram of the human spinal cord showing its segments. Source: Cancer Research
UK / Wikimedia Commons. CC BY-SA license.

If a neuronal tissue is viewed under a microscope without proper histological procedures (such
as fixing and staining), the tissue will appear almost transparent [26]. For that reason, most
tissues prepared for microscopy, are usually stained. Under the microscope one can observe
densely packed neuronal cell bodies (the gray matter) and unmyelinated and myelinated axons
(the white matter).

In the Figure 2.3, a cross-sectional histology slice (microscopy) of the spinal cord is shown.
The distinction between gray matter and the white matter tissue is clear in this image.

Tissue changes in the spinal cord gray matter and white matter has an important clinical
relevance in many neurological disorders. For that reason, spinal cord imaging has come to
play a vital role in the study of disorders such as Multiple Sclerosis (MS) [8,27], Amyotrophic
Lateral Sclerosis (ALS) [28], and traumatic injury [29]. Metrics extracted from the spinal
cord may help to model the clinical outcomes, help to understand disorders, provide detection
mechanisms and be used to monitor the disease progression.

2.1.2 Relevance of the Spinal Cord Gray Matter

As mentioned earlier, the involvement of the spinal cord gray matter was found to have an
important clinical relevance on many neurological disorders. In [8], an in vivo study with 113
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Figure 2.2 Anatomical cross-section of the spinal cord. Source: OpenStax Anatomy and
Physiology, CC-BY license.

multiple sclerosis patients, found that on a regression analysis that the spinal cord gray matter
area was the strongest correlate of disability (using the EDSS scores) in multivariate models
including brain gray matter and white matter volumes, FLAIR lesion load, T1-lesion load,
spinal cord white matter area, number of spinal cord T2 lesions, age, sex, disease duration.

In [28], a study with 29 ALS patients showed evidence that the use of the spinal cord gray
matter as an MR imaging structural biomarker can be used to monitor the evolution of
amyotrophic lateral sclerosis.

These studies, however, depend on manual segmentation of the spinal cord gray matter, which
is a very time-consuming task that requires a trained expert and might introduce the expert’s
biases into the gold standard, not to mention the disagreement between experts (also present
on other tasks such as the manual annotation of MS lesions in the spinal cord, as found
by [30]) and their lack of reproducibility.

While recent cervical cord cross-sectional area (CSA) segmentation methods have achieved
near-human performance [31], the accurate segmentation of the gray matter remains a
challenge [2]. The main properties that make the gray matter area di�cult to segment are:
inconsistent intensities of the surrounding tissues, image artifacts and pathology-induced
changes in the image contrast [9].
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Figure 2.3 A histology slice of the spinal cord showing a clear tissue di�erentiation between
myelinated white matter and gray matter. Best viewed in color. Source: OpenStax Anatomy
and Physiology, CC-BY license.

Recently, given the importance of the spinal cord gray matter segmentation, the scientific
community organized a challenge called “Spinal Cord Gray Matter Segmentation Challenge”
(SCGM Challenge) [2] to characterize the state-of-the-art and compare six independent
developed methods [2,7,10–16] on a public available standard dataset created through the
collaboration of four recognized spinal cord imaging centers (University College London,
Polytechnique Montreal, University of Zurich and Vanderbilt University), providing therefore
a basis for method comparison that was previously unfeasible.

In this work, the same aforementioned dataset and evaluation procedures are used to evaluate
the developed method against other previously-developed methods.
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2.1.3 Magnetic Resonance Imaging (MRI)

Medical magnetic resonance imaging (MRI) uses the signal from the nuclei of the hydrogen
atoms (H) for image generation [1]. Apart from the positive charge, the proton has a spin,
an intrinsic property of elementary particles. The proton has two important properties: the
angular momentum and the magnetic moment [1]. The angular momentum is due to the
rotating mass as the proton acts like a spinning top. Since the rotating mass has an electrical
charge, the magnetic momentum acts like a small magnet and therefore is a�ected by external
magnetic fields and electromagnetic waves [1].

When the hydrogen nuclei are exposed to an external magnetic field (B0), the magnetic
moments do not only align with the field but, undergo precession. This precession of the
nuclei occurs at a speed that is proportional to the strength of the applied magnetic field.
This is called the Larmor frequency and is given by the following equation:

w0 = “0 ú B0 (2.1)

where w0 is the Larmor frequency (MHz), y0 is the gyromagnetic ratio and B0 is the strength
of the magnetic field in Tesla (T).

An MRI machine explores these properties to generate a spatial image volume of the human
body. The MRI machine will produce the main magnetic field B0 that will cause the protons
to align parallel (low-energy) or anti-parallel (high-energy) to the primary field, resulting in a
net magnetic vector M which is in the direction of the primary magnetic field.

The MRI machine also uses a secondary magnetic field that is generated by the gradient coils
in the x, y and z axes. The gradients will perturb the magnetic field and therefore change
the precession rate. The key aspect of the gradients is that they distort the primary magnetic
field in a predictable way, causing the resonance frequency of protons to vary as a function of
position in space, allowing the spatial encoding for the MRI images.

A radio-frequency (RF) pulse (B1) is also applied with the same precession frequency by
means of an antenna coil. All of the longitudinal magnetization is rotated into the transverse
plane by an RF pulse that is strong enough to tip the magnetization by exactly 90° (90° RF
pulse) [1]. Immediately after excitation, the magnetization rotates in the xy-plane, being
called transverse magnetization. It is this transverse magnetization that produces the MR
signal in the RF receiver coil. This MR signal fades very quickly due to two di�erent processes:
T1 relaxation and T2 relaxation [1].

The T1 relaxation happens in the longitudinal axis and is parallel to B0 field (z-axis), while



9

the T2 relaxation happens perpendicular to B0 field (xy-axis). Three main intrinsic features
of biological tissues can contribute to the signal intensity on a MR image: the proton density,
which is the number of excitable spins per unit volume, the T1 time, which is the time it
takes for the excited spins to recover and be available for the next excitation and the T2 time,
that mostly determines how quickly an MR signal fades after excitation [1].

These parameters, depending on which an MR sequence is emphasized, may cause the MR
images to di�er in its tissue-tissue contrast. This mechanism is the basis for the soft-tissue
discrimination on MR imaging [1]. In Table 2.1, we can see intrinsic properties of some
important tissue types.

Table 2.1 The relative proton densities in % and intrinsic T1 and T2 times (msec).
Adapted from [1].

Tissue Proton Density T1 (at 1.5 Tesla) T2 (at 1.5 Tesla)
CSF 100 >4000 >2000
White Matter 70 780 90
Gray Matter 85 920 100
Metastasis 85 1800 85
Fat 100 260 80

Apart from the traditional challenges present in the medical imaging domain, such as anatomy
variability across di�erent subjects, MRI images pose multiple additional challenges for
machine learning models, such as noise, variability across machine vendors, acquisition
parameters, artifacts, to name a few. In the Figure 2.4, the di�erent distribution of the voxel
intensities among di�erent centers shows one of the problems that MRI poses to statistical
learning techniques that shows a tendency to rely on surface statistical regularities [32], such
as deep learning methods.

2.1.4 Magnetic Resonance Imaging of the Spinal Cord

The human anatomy makes it di�cult to "see" the spinal cord without highly invasive and
risky surgical procedures. Therefore, non-invasive techniques such as MRI are paramount
for successful research studies, diagnostic biomarkers detection, and disease progression
monitoring.

In the past, MRI of the spinal cord has been limited due to the poor white and gray matter
contrast di�erentiation, artifacts induced by physiological processes such as cord motion [33].
According to [33], the main inherent challenges present in the spinal cord imaging are:
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Figure 2.4 Unnormalized MRI image intensity distributions for each center using axial slices
from the Spinal Cord Gray Matter Segmentation Challenge [2] dataset. The x-axis represent
the MRI intensities and the y-axis represents the intensity distribution. Best seen in color.

spatially non-uniform magnetic field environment when in an MRI system, the small physical
dimensions of the cord cross-section and the physiological motion.

Tissue segmentation methods that were developed in the past for brain MR images, when
applied for spinal cord images, were largely unsuccessful [15]. Recently, thanks to sequences
such as T2* weighted MRI [34,35], that were able to get higher quality images in reasonably
short acquisition time, they opened the door for the feasibility of tissue segmentation of these
spinal cord structures.

In the Figure 2.5, an axial slice from a 3D multi-echo gradient-echo sequence acquisition is
shown.

Although the human manual segmentation of the spinal cord gray matter is usually easy, the
agreement between di�erent raters is usually nearly 0.90 DSC (Dice-Sørensen coe�cient), a
score that measures the voxel-wise agreement between two binary masks, in average when
compared with the majority voting mask. Before this work, the best algorithm for gray matter
segmentation in terms of the DSC score and as evaluated on the Spinal Cord Gray Matter
Segmentation Challenge [2], had a DSC score of 0.80 [2, 16].

Although it is not clear if the agreement between human raters measured on the work [2]
included the rater in the majority voting, the state-of-the-art methods were still far from the
human performance for the task of the spinal cord gray matter tissue segmentation.
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Figure 2.5 A random axial slice from a random selected subject of the Spinal Cord Gray Matter
Segmentation Challenge [2]. This image was produced by a 3D multi-echo gradient-echo
sequence using a resolution of 0.25x0.25x2.5 mm on a 3T Siemens Skyra machine. The spinal
cord is shown inside the green rectangle.

2.2 Machine Learning Review

In this section, the main concepts related to the machine learning and Deep Learning domains
are introduced. This review is far from an exhaustive review and only describe concepts
required for the understanding of the present work.

2.2.1 Supervised Learning

Machine learning can be described as a sub-domain of Artificial Intelligence where learning
algorithms can learn with data. A widely quoted, and formal definition of the algorithms
studied in machine learning can be found in [36]:

Definition 2.2.1. Learning algorithm. A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E [36].

Machine learning and Artificial Intelligence are moving targets and its definition changed
in the past few years. As an example, some algorithms that were employed in the past for
Artificial Intelligence are no longer nowadays considered learning algorithms by the community,
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therefore, a precise definition of these fields is out of the scope of this work.

Before being able to apply machine learning, one must assume that there is a pattern in the
data and that data is available. The assumption of a pattern is a circular concept, given
that it is evident that is really di�cult for a human to evaluate patterns in data, so learning
algorithms are usually applied even before knowing that a pattern is present in the data.

Machine learning tasks are usually categorized as supervised learning, semi-supervised learning,
unsupervised learning, reinforcement learning or even hybrid approaches. Recently, a new
term called self-supervised also emerged to describe unsupervised tasks where a supervised
sub-task is created to learn a representation or solve a learning problem.

The learning problems can also be categorized depending on the main goal of the task. When
an estimated response is a continuous dependent variable, the task is called a regression.
When this variable is related to the identification of group membership, this task can be called
as a classification task. When a density function is required to be estimated, this problem is
often called a density estimation.

For this present work, we are mostly interested in the supervised learning problem. Where
given a dataset:

D = {(x1, y1), . . . , (xn, yn)} (2.2)

where D is a collection of input samples xn with their respective labels yn. We want to find
a model f◊(x) parametrized by the parameters ◊ that describes the relationship between
the random variable X and the target label Y , therefore we assume a joint distribution
p(X, Y ). In order to evaluate how good the model is, we define a loss function L, evaluated
at L(f◊(x), y) that gives us a penalization for the di�erence between predictions of f◊ and the
true label y.

To evaluate the loss L on all datapoints, we take the expectation of the loss under the
distribution p(X, Y ):

Definition 2.2.2. Risk.

Ex,y≥p[L(f◊(x), y)] =
⁄

L(f◊(x), y)dp(x, y) (2.3)

Under the ERM framework, this is known as R(f), the risk of the hypothesis f . However,
given that we don’t have access to the entire joint distribution p(x, y) but only to a sample of
this distribution by our dataset D, we define the empirical risk as:
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Definition 2.2.3. Empirical risk.

Remp(f) = 1
n

nÿ

i=1
L(f◊(xi), yi) (2.4)

The main idea behind the ERM principle, is to minimize the empirical risk Remp(f◊):

f̂◊ = arg min
◊

Remp(f◊) (2.5)

Even though we’re minimizing the empirical risk, we know through the law of the large
numbers, that Remp(f) æ Ex,y≥p[L(f◊(x), y)] as n æ Œ, which means that the empirical risk
will converge to the risk as the number of samples grows to infinity. Given this formulation,
it is easy to see that ERM can easily overfit the data, however, in practice, the hypothesis
space is constrained to a particular class of hypotheses (such as linear models) or an additive
regularization term is added to the loss, such as L2 regularization.

Supervised learning is perhaps one of the most successful approaches in machine learning due
to the leverage of the supervision signal, however, in medical imaging, providing annotation
for images is seldom easily done as providing labels for natural images [37].

2.2.2 Semi-supervised Learning

In medical imaging, the small data regime is the norm for many tasks. As opposite to tasks
involving natural images, the process of acquiring annotations/labels in medical imaging is
very expensive and time-consuming because it involves the time of experts such as radiologists
and it usually involves dense pixel-wise annotations as well. In the case of the SCGM
Challenge [2], after slicing all volumes in 2D axial plane, the total amount of slices are less
then 3000. When compared to the ImageNet size with millions of images, it is clear that
these over-parametrized Deep Learning models would require extensive regularization and
will su�er with a higher generalization gap.

On the other hand, unlabeled data is usually available, and it is often ignored due to the fact
that the loss for unlabeled samples is undefined for supervised learning. The semi-supervised
learning paradigm is halfway between supervised and unsupervised learning [38], where
in addition to unlabeled data, the learning algorithm is provided with some supervision
information for some samples.



14

Formalizing the semi-supervised learning paradigm, we are given a dataset:

X = {xi}iœ[n] (2.6)

that can be split into two disjoint sets as:

Xl = {x1, . . . , xl}¸ ˚˙ ˝
Labeled set

(2.7)

Xu = {xl+1, . . . , xl+u}
¸ ˚˙ ˝

Unlabeled set

(2.8)

where Xl set represents the set of points where we have the corresponding label set:

Yl = {y1, . . . , yl} (2.9)

and the set Xu is the set of points where we don’t have labels. If the knowledge available in
p(x) that we can obtain from the unlabeled set Xu contains information that can help the
inference problem p(y|x), then it is evident that semi-supervised can bring improvements to
the learning problem [38].

Many assumptions can be made by semi-supervised learning algorithms, and these assumptions
must hold for these learning algorithms to work. One common assumption is the semi-
supervised smoothness assumption [38], that can be defined as:

Definition 2.2.4. Semi-supervised smoothness assumption. If two points x1, x2 in a high-
density region are close, then so should be the corresponding outputs y1, y2.

In the Figure 2.6, we can see a graphical explanation for the motivation behind this smoothness
assumption. In this figure, we can see how the decision boundary represented by a dashed line
can change by adding unlabeled data and assuming the smoothness hypothesis. Therefore,
in some cases, semi-supervised learning can radically change the decision boundary by
incorporating unlabeled data.

There is a large body of published articles on semi-supervised learning methods [39], however,
most of the previous work was developed in the context of classification or regression tasks,
with only a few of them focused on segmentation or even less common, for segmentation
using deep learning methods. Similar to the methods developed in this present work, we
have the Ladder Networks [40] that introduced the later connections into an encoder-decoder
architecture with two branches in parallel where one of the branches take the original input
data, whereas the other branch is fed with the same input but corrupted with noise.
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Recently, in [41], the authors expanded the work by [40] where it di�ers from it by removal
of the parametric nonlinearity and denoising, having two corrupted paths, and comparing
the outputs of the network instead of pre-activation data of the final layer, which was named
temporal ensembling.

In the temporal ensembling [41] technique, at each training step, all the exponential moving
average (EMA) predictions of the samples in the mini-batch are updated based on new
predictions. Therefore, the EMA prediction for each sample is formed by an ensemble of the
model’s current state and those previous states that evaluated the same example. Given that
each target is updated only once per epoch, the information is incorporated into the training
process at a very slow pace. In [42], the authors expanded the work by [41] by overcoming
the limitations of the technique by proposing averaging model weights instead of predictions.
This technique demonstrated significant improvements upon the previous state-of-the-art
semi-supervised methods.

Generative Adversarial Networks (GAN) were also employed for semi-supervised learning
with promising results [43].

It is also important to note that recently, a critical evaluation study [44] demonstrated that
the performance of simple baselines which do not use unlabeled data was often underreported
and that semi-supervised learning methods di�er in sensitivity to the amount of labeled and
unlabeled data, with a significant performance degradation when in presence of out-of-class
examples. It is interesting to note that unlabeled out-of-class examples can change the decision
boundaries of the model towards the unlabeled data domain, this shows evidence of a strong
link between semi-supervised learning and domain adaptation as seen in [42].

Only a few works were developed for semi-supervised learning in the context of segmentation
in medical imaging. Only recently, a U-Net was employed in that context, however, as an
auxiliary embedding [45] and for domain adaptation using a private dataset. In [46] they used
GANs for that purpose, but employed unrealistic dataset sizes when compared to medical
imaging domain datasets, along with ImageNet pre-trained networks. In [46] a technique
using adversarial training was proposed, but with the focus on knowledge transfer between
natural images with pixel-level labels and weakly-labeled images.

2.2.3 Domain Adaptation

The ERM principle has well-known learning guarantees when the training and test data come
from the same domain [47], however, in real-world applications, and especially in the medical
imaging domain, a shift in the distribution of data is very common due to many factors
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Figure 2.6 Top panel: decision boundary based on only two labeled examples (white vs. black
circles). Bottom panel: decision boundary based on two labeled examples plus unlabeled data
(gray circles). Source: Techerin, Wikimedia Commons, CC-BY-SA license.

such as natural anatomy variability, di�erent imaging acquisition parametrization, di�erent
machine vendors, to name a few. Therefore, machine learning models trained under the ERM
framework usually shows a poor generalization when applied on domains that are di�erent
than the domains where the model was trained. This constatation provides the motivation
behind domain adaptation techniques, that are responsible for providing ways to mitigate
these distributional shifts. In the Figure 2.7 we can see a graphical representation of the
positioning of domain adaptation among other kinds of transfer learning.

Definition 2.2.5. Domain A domain can be defined as the combination of an input space
X , and output space Y , and an associated probability distribution p. Given any two domains
D1 and D2, we say they are di�erent if at least one of their components X , Y or p are
di�erent [48].

In medical imaging, examples of realizations from this di�erence among domains are multi-
center studies, di�erent acquisition parameters, di�erent machine vendors, etc. The variability
inherent in medical imaging usually violates the fundamental statistical learning assumptions
that data comes from identical distributions.
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Although this is one of the major problem holding machine learning models from the robustness
required for practical applications [49], it is usually ignored in many studies and machine
learning challenges organized by many entities. The evaluation scheme often used, especially
in multi-center studies, is to have samples from all centers both in training and test sets,
which consequently leads to over-optimistic evaluations of machine learning models, because
in real practice, what happens is that these models are used for new centers where labeled
data isn’t available.

Unsupervised domain adaptation is the field of study where this exact problem is addressed. In
this scenario, we have a source domain DS where we have labeled data and a target domain
DT for which we don’t have labels but want the model to generalize as well, therefore, the
goal is to create a model that can generalize not only on the source domain DS but also on
the unlabeled target domain DT .

Figure 2.7 Distinction between usual machine learning setting and transfer learning, and
positioning of domain adaptation. Source: Emilie Morvant, Wikimedia Commons, CC-BY-SA
license.

While most of the techniques developed for domain adaptation in the past focused mostly on
classification tasks [50,51], recently there was a surge of interest to expand these techniques to
semantic segmentation as well. An example is the work by [52] where the authors expanded
the domain-adversarial training [53] for segmentation tasks and applied it to medical imaging
tasks.

2.2.4 Deep Learning

Deep Learning methods [17] can be characterized as a major shift from the traditional
handcrafted feature engineering to a hierarchical representation learning approach. After
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the seminal work from the AlexNet [18], the research community embraced Deep Learning
techniques. Nowadays, Deep Learning is pervasive and had achieved state-of-the-art results
in many fields such as NLP [54], computer vision [55], speech recognition [56], machine
translation [57], to name a few.

The adoption of Deep Learning techniques in medical imaging also increased significantly in
the past years. According to a recent survey [23] that analyzed more than 300 contributions
to the field, there was a fast growth of the number of papers in 2015 and 2016, with CNNs
being the most used model. The survey also showed that the topic became dominant at major
conferences as well.

Deep Learning techniques are mostly based on neural network models, which are a type of
statistical learning algorithms comprised by neurons (or units), that uses composition of
functions. The basic building block of a neural network is the activation a that can be defined
as:

a = ‡(wT x + b) (2.10)

where a is the activation, b is the bias term and ‡(·) is the activation function such as a
rectified linear unit (ReLU) [58] or sigmoid. This equation is also often written as a = ‡(◊T x)
where the bias term is collapsed into the parameter ◊.

Definition 2.2.6. The Multi-Layer Perceptron (MLP) network uses several layers of these
basic building blocks to form a recursive application of these functions:

p(y|x; ◊) = ‡(◊L‡(◊L≠1 . . . ‡(◊0x))) (2.11)

In Figure 2.8 we can see a graphical depiction of the MLP.

For a regression problem, the last activation function is usually just a linear identity, while for
classification problem, the last layer is usually a softmax layer that squeezes the activations
into a distribution over classes p(y|x; ◊).

The problem of learning these parameters is usually posed into a frequentist optimization
framework where the maximum likelihood estimator is maximized, which for convenience is
treated as a minimization problem by minimizing the negative of the log likelihood:

arg min
◊

nÿ

i=1
≠ log p(y|xi; ◊) (2.12)

In practice, these frequently over-parametrized networks are analytically intractable due
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Figure 2.8 Network graph of a (L + 1)-layer perceptron with D input units and C output
units. The lth hidden layer contains m(l) hidden units. Source: David Stutz, BSD 3-Clause
license.

to the amount of data and model complexity, therefore a mini-batch Stochastic Gradient
Descent (SGD) is used to optimize the parameters using only a portion of the data at each
time. SGD works by iteratively updating the parameters according to the Algorithm 2.2.1.

Algorithm 2.2.1 The general gradient descent algorithm; di�erent choices of the learning
rate “ and the estimation technique for ÒL(◊) may lead to di�erent implementations.

Input: initial weights ◊(0)
, number of iterations T

Output: final weights ◊(T )

1. for t = 0 to T ≠ 1

2. estimate ÒL(◊(t)
)

3. compute �◊(t)
= ≠ÒL(◊(t)

)

4. select learning rate “
5. w(t+1)

:= w(t)
+ “�◊(t)

6. return w(T )

For neural networks, the gradient ÒL(◊(t)) is computed using backpropagation as described
in the Algorithm 2.2.1.

2.2.5 Convolutional Neural Networks (CNN)

Convolutional Neural Networks [59], also known as CNNs, are a class of specialized models
that achieved enormous success in many practical applications. CNNs were inspired by the
neocognitron approach from Kunihiko Fukushima back in 1980, which in turn, were inspired
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Algorithm 2.2.1 Error backpropagation algorithm for a layered neural network represented
as computation graph.
(1) For a sample (xn, yú

n), propagate the input xn through the network to compute the outputs

(vi1 , . . . , vi|V |) (in topological order).

(2) Compute the loss Ln := L(vi|V | , yú
n) and its gradient

ˆLn

ˆvi|V |

. (2.13)

(3) For each j = |V |, . . . , 1 compute

ˆLn

ˆwj
=

ˆLn

ˆvi|V |

|V |Ÿ

k=j+1

ˆvik

ˆvik≠1

ˆvij

ˆwj
. (2.14)

where wj refers to the weights in node ij .

by the biological mechanism that was unveiled by Hubel and Wiesel in the 1950s and 1960s
where two basic visual cell types were identified in the brain: the simple cells that were fired
by straight edges having particular orientations within their receptive field and complex cells
that have larger receptive fields and are insensitive to the exact position of the edges in the
field.

Figure 2.9 (No padding, unit strides) Convolving a 3 ◊ 3 kernel over a 4 ◊ 4 input using unit
strides (i.e., i = 4, k = 3, s = 1 and p = 0). Source: Vincent Dumoulin et al. [4], MIT license.

The main di�erence between a CNN and a vanilla MLP is that the CNN uses shared weights
due to the convolutional component that uses a sliding window to apply the same weights, as
seen in Figures 2.9 and 2.11. Another di�erence is the introduction of pooling layers that can
be seen in Figure 2.12, that acts as a subsampling mechanism that can yield certain levels
of rotation invariance to the network, although recently architectures can work well without
pooling as well, especially for segmentation tasks, that will be discussed in the next section.

In Figure 2.10 we show the architecture of a traditional CNN with convolutional layers followed
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by non-linearities and subsampling layers. At the end of the CNN there is a fully-connected
network, however, this fully-connected layer at the end isn’t that common anymore on modern
architectures such as ResNets [55], that employ a global average pooling before the softmax
activation.

input image
layer l = 0

convolutional layer
with non-linearities

layer l = 1

subsampling layer
layer l = 3

convolutional layer
with non-linearities

layer l = 4

subsampling layer
layer l = 6

fully connected layer
layer l = 7

fully connected layer
output layer l = 8

Figure 2.10 The architecture of the original convolutional neural network, as introduced by
LeCun et al. (1989), alternates between convolutional layers including hyperbolic tangent
non-linearities and subsampling layers. The feature maps of the final subsampling layer
are then fed into the actual classifier consisting of an arbitrary number of fully connected
layers. The output layer usually uses softmax activation functions. Source: David Stutz, BSD
3-Clause license.

input image
or input feature map output feature maps

Figure 2.11 Illustration of a single convolutional layer. If layer l is a convolutional layer, the
input image (if l = 1) or a feature map of the previous layer is convolved by di�erent filters
to yield the output feature maps of layer l. Source: David Stutz, BSD 3-Clause license.
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feature maps
layer (l ≠ 1)

feature maps
layer l

Figure 2.12 Illustration of a pooling and subsampling layer. If layer l is a pooling and
subsampling layer and given m

(l≠1)
1 = 4 feature maps of the previous layer, all feature maps

are pooled and subsampled individually. Each unit in one of the m
(l)
1 = 4 output feature

maps represents the average or the maximum within a fixed window of the corresponding
feature map in layer (l ≠ 1). Source: David Stutz, BSD 3-Clause license.

2.2.6 Convolutional Neural Networks for Semantic Segmentation

Several works [60–62] applied convolutional neural networks for semantic segmentation, also
called dense prediction. In dense prediction, the network usually outputs a prediction map
with the same size of the input of the network with a prediction per each pixel of this output
map.

Majority of the literature in the past were constrained by small models, patch-wise training
due to the memory limitations, post-processing with superpixels, to name a few. One of
the most important works that recently spawned a series of important developments for
semantic segmentation is the work by [63] called Fully Convolutional Network (FCN), where
the authors demonstrated that a fully-convolutional architecture trained end-to-end exceeded
the state-of-the-art results when compared to its predecessors.

The main insight of the FCN was to combine coarse high layer information with fine, low
layer information before up-sampling and producing the final predictions. The coarse features,
coming from high layers contains semantic information that are merged together (simple
summation) with the low layer features that contained the local information related to the
fine spatial grid. By repurposing pre-trained networks into FCNs, the authors were also able
to do transfer learning from networks trained on classification tasks such as ImageNet to
semantic segmentation tasks.

After FCNs [63], a significant amount of follow-up works were developed. In medical imaging,
one of the most prominent models that were developed based on the insights from FCNs is
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the U-Net [64], where two di�erent paths are combined with skip-connections to concatenate
the feature maps. The first part is a downsampling path that uses traditional convolutional
and pooling layers and the upsampling part where ‘up’-convolutions are used to increase the
image size, creating an architectural shape of a U, hence the “U-Net” name.

In the Table 2.2 we show a summary of the currently available methods for the segmentation
of the spinal cord gray matter. These methods are later expanded and described in the
Chapter 4.

Table 2.2 Summary of the available methods for spinal cord gray matter segmentation. These
are the methods that participated into the SCGM Challenge, it doesn’t cover all previously
developed methods.

Method nane Year Initialization Training External data Time p /slice Summary
JCSCS [7] 2016 Auto. No Yes 4-5 min Uses OPAL [12] to detect the spinal cord and then STEPS to

do segmentation propagation and consensus segmentation using
best-deformed templates.

DEEPSEG [16] 2017 Auto. Yes (4h) No <1 s U-Net with pre-trained weights using a restricted Boltzmann Ma-
chine, uses a weighted loss function with two terms to balance
sensitivity and specificity. Uses two models, one for cord segmenta-
tion and another for GM segmentation.

MGAC [15] 2017 Auto. No No 1 s Uses external tool "Jim" (from Xinapse Systems) to provide a initial
guess for an active contour algorithm.

GSBME [2] 2017 Manual Yes (<1m) No 5 - 80 s Semi-automatic method that uses Propseg for cord segmentation
with manual initialization followed by thresholding and outlier de-
tection with image moments.

SCT [11] 2017 Auto. No Yes 8 - 10 s Atlas-based approach using a dictionary of manually segmented
WM/GM volumes projected into a PCA space, segmentation is
done fusing labels.

VBEM [10] 2016 Auto. No No 5 s Semi-supervised, model intensities as a Gaussian Mixture trained
with Expectation-Maximization (EM).
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CHAPTER 3 OVERALL METHODOLOGY

This article based thesis is organized in the following section with the articles described below:

• Article 1: Perone, C. S., Calabrese, E., & Cohen-Adad, J. (2018). Spinal cord gray
matter segmentation using deep dilated convolutions. Nature Scientific Reports, 8(1).
https://doi.org/10.1038/s41598-018-24304-3

• Article 2: Perone, C. S., & Cohen-Adad, J. (2018). Deep semi-supervised segmentation
with weight-averaged consistency targets. DLMIA MICCAI, 1–8.
https://doi.org/10.1007/978-3-030-00889-5

• Article 3: Perone, C. S., Ballester, P., Barros, R. C., & Cohen-Adad, J. (2018).
Unsupervised domain adaptation for medical imaging segmentation with self-ensembling.
Submitted to Elsevier NeuroImage, under review. Short version presented at NIPS 2018
in the Medical Imaging Workshop.

In Chapter 4 we present the Article 1 where it is shown the design a Deep Learning methods
for fully-automated segmentation of the spinal cord gray matter tissue from MRI volumes. In
Chapter 5 we present the Article 2 where a semi-supervised learning method is developed to
attack the problem of the low data regime present in medical imaging and finally in Chapter 6
we show the Article 3 where a unsupervised domain adaptation technique was developed
for segmentation tasks in order to address the problem of poor generalization due to the
distributional shift from di�erent domains.

The main research questions we answer with present articles are the following:

• 1. How can deep learning methods improve on the current state-of-the-art results for
segmentation of the spinal cord gray matter tissue ?

• 2. How can these segmentation methods be extended to take leverage of unlabeled data
as well ?

• 3. How can we mitigate the generalization gap when applying these models to realistic
scenarios where we have only unlabeled data from a new, di�erent and unseen domain ?
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CHAPTER 4 ARTICLE 1: SPINAL CORD GRAY MATTER
SEGMENTATION USING DEEP DILATED CONVOLUTIONS

Although the U-Net [64] achieved excellent results in many di�erent tasks, given that the
network architecture uses two distinct paths with contraction and expansion of the feature
maps, the network also su�ers from the increased number of parameters. The U-Net also uses
pooling layers, which can be detrimental for translational equivariance that is important for
segmentation tasks.

In this chapter we show that a network architecture based on the Atrous Spatial Pyramid
Pooling (ASPP) network can achieve better or similar results than the U-Net [64] with 6 times
fewer parameters. Furthermore, we show that this network, when applied to the spinal cord
gray matter segmentation task (both ex vivo and in vivo), achieves state-of-the-art results
in 8 out of 10 di�erent evaluation metrics when compared to other 6 previously developed
methods on the Spinal Cord Gray Matter Challenge [2] dataset by an external third-party
system.

To the best of our knowledge, these results remain the state-of-the-art single-model results
for the spinal cord gray matter segmentation task on the challenge [2] dataset.

The evaluations presented in this work are from the third-party evaluation system from the
SCGM Challenge [2] and were evaluated on a private holdout set by the competition organizers
in order to reduce chance of overfitting. Hyper-parameters of the model were ajusted using a
validation split.

The dataset [2] used by this work is publicly available and contained volumes acquired by 4
independent centers, a summary of the acquisition parameters are described in Table 4.1.

Table 4.1 A summary of the acquistion parameters from each site. Adapted from [2].

Site 1 - UCL Site 2 - Montreal Site 3 - Zurich Site 4 - Vanderbilt
Scanner 3T Philips Achieva 3T Siemens TIM Trio 3T Siemens Skyra 3T Philips Achieva
Sequence 3D Gradient echo 2D spoiled gradient multi-echo 3D multi-echo gradient-echo 3D multi-echo gradient-echo
TE 5 5.41, 12.56, 19.16 19 7.2, 16.1, 25
TR 23 539 44 700
Flip Angle 7 35 11 28
Resolution (mm) 0.5 x 0.5 x 5 0.5 x 0.5 x 5 0.25 x 0.25 x 2.5 0.3 x 0.3 x 5

My contribution to this work was to conceive the method, implement it, conduct the experi-
ments, provide manual segmentations and write the paper.
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• Title: Spinal cord gray matter segmentation using deep dilated convolutions

• Authors: Christian S. Perone 1, Evan Calabrese 2,3, Julien Cohen-Adad 1,4
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matter segmentation using deep dilated convolutions. Nature Scientific Reports, 8.

4.2 Abstract

Gray matter (GM) tissue changes have been associated with a wide range of neurological
disorders and were recently found relevant as a biomarker for disability in amyotrophic lateral
sclerosis. The ability to automatically segment the GM is, therefore, an important task for
modern studies of the spinal cord. In this work, we devise a modern, simple and end-to-end
fully-automated human spinal cord gray matter segmentation method using Deep Learning,
that works both on in vivo and ex vivo MRI acquisitions. We evaluate our method against six
independently developed methods on a GM segmentation challenge. We report state-of-the-art
results in 8 out of 10 evaluation metrics as well as major network parameter reduction when
compared to the traditional medical imaging architectures such as U-Nets.

4.3 Introduction

Gray matter (GM) and white matter (WM) tissue changes in the spinal cord (SC) have
been linked to a large spectrum of neurological disorders [6]. For example, using magnetic
resonance imaging (MRI), the involvement of the spinal cord gray matter (SCGM) area in
multiple sclerosis (MS) was found to be the strongest correlate of disability in multivariate
models including brain GM and WM volumes, FLAIR lesion load, T1-lesion load, SCWM
area, number of spinal cord T2 lesions, age, sex and disease duration [8]. Another study
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showed SCGM atrophy to be a biomarker for predicting disability in amyotrophic lateral
sclerosis [28].

The ability to automatically assess and characterize these changes is, therefore, an important
step [9] in the modern pipeline to study both the in vivo and ex vivo SC. The segmentation
outcome can also be used for co-registration and spatial normalization to a common space.
Moreover, the fully-automated segmentation is useful for longitudinal studies, where the
delineation of gray matter is time consuming [9].

While recent cervical cord cross-sectional area (CSA) segmentation methods have achieved
near-human performance [31], the accurate segmentation of the GM remains a challenge [2].
The main properties that make the GM area di�cult to segment are: inconsistent intensities
of the surrounding tissues, image artifacts and pathology-induced changes in the image
contrast [9].

Additional factors also contribute to the complexity of the GM segmentation task, such as
lack of standardized datasets, di�erences in MRI acquisition protocols, di�erent pixel sizes,
di�erent methods to acquire gold standard segmentations and di�erent performance metrics
to assess segmentation results [2]. Figure 4.1 features several examples of axial MRI acquired
at di�erent centers, demonstrating image variability due variable image acquisition systems
and protocols.

Despite these di�culties, there have been major improvements in acquisition and analysis
methods in recent years, making it possible to obtain reliable GM segmentations. From
the acquisition standpoint, the advances in coil sensitivity [65], multi-echo gradient echo
sequences [66], and phase-sensitive inversion recovery sequences [67] drastically improved the
contrast-to-noise-ratio between the white and gray matter in the cord. From the analysis
standpoint, the scientific community recently organized a collaboration e�ort called "Spinal
Cord Gray Matter Segmentation Challenge" (SCGM Challenge) [2] to characterize the state-
of-the-art and compare six independent developed methods [7,10,11,15,16,68] on a public
available standard dataset created through the collaboration of four internationally recognized
spinal cord imaging research groups (University College London, Polytechnique Montreal,
University of Zurich and Vanderbilt University), providing therefore a ground basis for method
comparison that was previously unfeasible.

In the past few years, we have witnessed the fast and unprecedented development of Deep
Learning [17] methods, that have not only achieved human-level performance but, in many
cases, have surpassed it [69], even in health domain applications [70]. After the results presented
in the seminal paper of the AlexNet [18], the Machine Learning community embraced the
successful Deep Learning approach for Machine Learning and, consequently, many methods
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Figure 4.1 In vivo axial-slice samples from four centers (UCL, Montreal, Zurich, Vanderbilt)
that collaborated to the SCGM Segmentation Challenge [2]. Top row: original MRI images.
Bottom row: a crop of the spinal cord (green rectangle).

have been developed to since become the state-of-the-art and pervasive in many di�erent fields
such as image classification [19], image segmentation [20], speech recognition [21], natural
language processing (NLP), among others.

Deep Learning is characterized by a major shift from traditional handcraft feature extraction
to a hierarchical representation learning approach where multiple levels of automatically
discovered representations are learned from raw data [17].

In a recent survey [23] of over 300 papers that used Deep Learning techniques for medical
image analysis, the authors found that these techniques have spread throughout the entire
field of medical image analysis, with a rapid increase in the number of publications between
the years of 2015 and 2016. The survey also found that Convolutional Neural Networks
(CNNs) were more prevalent in the medical image analysis, with Recurrent Neural Networks
(RNNs) gaining more popularity.

Although the enormous success of Deep Learning has attracted a lot of attention from the
research community, some challenges in the medical imaging domain remain open, such as
data acquisition, which is usually very expensive and requires time-consuming annotation from
image specialists to create the gold standards necessary for algorithm training and validation.
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Standardized datasets remain also a major problem due to variability in equipment from
di�erent vendors, acquisition protocols/parameters/contrasts, especially in the MRI domain.
Furthermore, data availability is limited due to concerns around ethics and regulations on
patient data privacy [23].

In this work, we propose a new simple pipeline featuring an end-to-end learning approach
for fully-automated spinal cord gray matter segmentation using a novel Deep Learning
architecture based on the Atrous Spatial Pyramid Pooling (ASPP) [20,71], where we achieved
state-of-the-art results on many metrics in an in vivo independent dataset evaluation. We
further demonstrate an excellent generalization on an ex vivo high-resolution acquisition
dataset where only a few axial-slices were annotated to accurate segment an MRI volume
with more than 4000 axial slices. Our proposed method is compared with the commonly used
U-Net [64] architecture and with six other independently developed methods.

This work was implemented as the sct_deepseg_gm tool in the Spinal Cord Toolbox (SCT) [72]
and is now freely available at SCT Github repository1. SCT is a comprehensive, free and
open-source library of analysis tools for MRI of the spinal cord.

4.4 Related Work

Many methods for spinal cord segmentation were proposed in the past. Regarding the presence
or absence of manual intervention, the segmentation methods can be separated into two main
categories: semi-automated and fully-automated.

In the work [10], they propose a probabilistic method for segmentation called "Semi-supervised
VBEM", whereby the observed MRI signals are assumed to be generated by the warping of
an averagely shaped reference anatomy [2]. The observed image intensities are modeled as
random variables drawn from a Gaussian mixture distribution, where the parameters are
estimated using a variational version of the Expectation-Maximization (EM) [10] algorithm.
The method can be used in a fully unsupervised fashion or by incorporating training data
with manual labels, hence the semi-supervised scheme [2].

The SCT (Spinal Cord Toolbox) segmentation method [11], uses an atlas-based approach and
was built based on a previous work [12] but with additional improvements such as the use
of vertebral level information and linear intensity normalization to accommodate multi-site
data [11]. The SCT approach first builds a dictionary of images using manual WM/GM
segmentations after a pre-processing step, then the target image is also pre-processed and
normalized, after that, the target image is projected into the PCA (Principal Component

1
https://github.com/neuropoly/spinalcordtoolbox
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Analysis) space of the dictionary images where the most similar dictionary slices are selected
using an arbitrary threshold. Finally, the segmentation is done using label fusion between
the manual segmentations from the dictionary images that were selected [2]. The SCT
method is freely available as open-source software at https://github.com/neuropoly/
spinalcordtoolbox [72].

In the work [7], a method called "Joint collaboration for spinal cord gray matter segmentation"
(JCSCS) is proposed, where two existing label fusion segmentation methods were combined.
The method is based on a multi-atlas segmentation propagation using registration and
segmentation in 2D slice-wise space. In JCSCS, the “Optimized PatchMatch Label Fusion”
(OPAL) [13] is used to detect the spinal cord, where the cord localization is achieved by
providing an external dataset of spinal cord volumes and their associated manual segmentation
[7], after that, the “Similarity and Truth Estimation for Propagated Segmentations” (STEPS)
[14] is used to segment the GM in two steps, first the segmentation propagation, and then
a consensus segmentation is created by fusing best-deformed templates (based on locally
normalized cross-correlation) [7].

In the work [15], the Morphological Geodesic Active Contour (MGAC) algorithm uses an
external spinal cord segmentation tool (“Jim”, from Xinapse Systems) to estimate the spinal
cord boundary and a morphological geodesic active contour model to segment the gray
matter. The method has five steps: first, the original image spinal cord is segmented with
the Jim software and then a template is registered to the subject cord, after which the same
transformation is applied to the GM template. The transformed gray matter template is then
used as an initial guess for the active contour algorithm [15].

The "Gray matter Segmentation Based on Maximum Entropy" (GSBME) algorithm [2] is a
semi-automatic, supervised segmentation method for the GM. The GSBME is comprised of
three main stages. First, the image is pre-processed, in this step the GSBME uses the SCT [72]
to segment the spinal cord using Propseg [31] with manual initialization, after which the
image intensities are normalized and denoised. In the second step, the images are thresholded,
slice by slice, using a sliding window where the optimal threshold is found by maximizing the
sum of the GM and WM intensity entropies. In the final stage, an outlier detector discards
segmented intensities using morphological features such as perimeter, eccentricity and Hu
moments among others [2].

In the Deepseg approach [16], which builds upon the work [68], a Deep Learning architecture
similar to the U-Net [64], where a CNN has a contracting and expanding path. The contracting
path aggregates information while the expanding path upsamples the feature maps in order
to achieve a dense prediction output. To recover spatial information loss, shortcuts are

https://github.com/neuropoly/spinalcordtoolbox
https://github.com/neuropoly/spinalcordtoolbox
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added between contracting/expanding paths of the network. In Deepseg, instead of using
upsampling layers like U-Net, they use an unpooling and "deconvolution" approach such as
in the work [73]. The network architecture possesses 11 layers and is pre-trained using 3
convolutional restricted Boltzmann Machines [74]. Deepseg also uses a loss function with a
weighted sum of two di�erent terms, the mean square di�erences of the GM and non-GM
voxels, thus balancing sensitivity and specificity [2]. Two models were trained independently,
one for the full spinal cord segmentation and another for the GM segmentation.

We compare our method with all the aforementioned methods on the SCGM Challenge [2]
dataset.

Methods and Materials

As in the Related Work section, the majority of the previously developed GM segmentation
methods usually rely on registered templates/atlases, arbitrary distance and similarity metrics,
and/or complex pipelines that are not optimized in an end-to-end fashion and neither e�cient
during inference time.

In this work, we focus on the development of a simple Deep Learning method that can be
trained in an end-to-end fashion and that generalizes well even with a small subset of 2D
labeled axial slices belonging to a larger 3D MRI volume.

4.4.1 Note on U-Nets

Many modern Deep Learning CNN classification architectures use alternating layers of
convolutions and subsampling operations to aggregate semantic information and discard spatial
information across the network, leading to certain levels of translation and rotation invariance
that are important for classification. However, in segmentation tasks, a dense full-resolution
output is required. In medical imaging, the most established architecture for segmentation is
the well-known U-Net [64], where two distinct paths (encoder-decoder/contracting-expanding)
are used to aggregate semantic information and recover the spatial information with the help
of shortcut connections between the paths.

The U-Net architecture, however, causes a major expansion of the parameter space due to
the two distinct paths that form the U-shape. As noted previously [75], the gradient flow in
the high-level layers of the U-Nets (bottom of the U-shape) is problematic. Since the final
low-level layers have access to the earlier low-level features, the network optimization will
find the shortest path to minimize the loss, thus reducing the gradient flow in the bottom of
the network.
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By visualizing feature maps from the U-Net using techniques described in the work [76],
we found that the features extracted in the bottom of the network were very noisy, while
the features extracted in the low-level layers were the only ones that exhibited meaningful
patterns. By removing the bottom layers of the network, we found that the network performed
the same as, or occasionally better than, the deeper network.

4.4.2 Proposed method

Our method is based on the state-of-the-art segmentation architecture called "Atrous Spatial
Pyramid Pooling" (ASPP) [20] that uses "Atrous convolutions", also called "dilated convolu-
tions" [77]. We performed modifications to improve the segmentation performance on medical
imaging by handling imbalanced data with a di�erent loss function, and also by extensively
removing decimation operations from the network such as pooling, trading depth (due to
memory constraints) to improve the equivariance of the network and also parameter reduction.

Dilated convolutions allow us to exponentially grow the receptive field with a linearly increasing
number of parameters, providing a significant parameter reduction while increasing the e�ective
receptive field [78] and preserving the input resolution throughout the network, in contrast to
wide stride convolutions where the resolution is lost. Dilated convolutions work by introducing
"holes" [71] in the kernel as illustrated in Figure 4.2. For 1D signal x[i], the y[i] output of a
dilated convolution with the dilation rate r and a filter w[s] with size S is formulated as:

y[i] =
Sÿ

s=1
x[i + r · s]w[s]. (4.1)

The dilation rate r can also be seen as the stride over which the input signal is sampled
[71]. Dilated convolutions, like standard convolutions, also have the advantage of being
translationally equivalent, which means that translating the image will result in a translated
version of the original input, as seen below:

f(g(x)) = g(f(x)) (4.2)

Where g(·) is a translation operation and f(·) a convolution operation. However, since we don’t
need to introduce pooling to capture multi-scale features when using dilated convolutions,
we can keep the translational equivariance property in the network, which is important for
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Dilated Convolution
(Rate = 1)

3x3 Kernel

Dilated Convolution
(Rate = 2)

3x3 Kernel

Dilated Convolution
(Rate = 3)

3x3 Kernel

Figure 4.2 Dilated convolution. On the left, we have the dilated convolution with dilation
rate r = 1, equivalent to the standard convolution. In the middle with have a dilation r = 2
and in the right a dilation rate of r = 3. All dilated convolutions have a 3x3 kernel size and
the same number of parameters.

spatially dense prediction tasks, given that a translation of the input features should result
also in an equivalent translation of outputs.

The overall proposed architecture can be seen in Figure 4.3. Our architecture works with 2D
slice-wise axial images and is composed of (a) two initial layers of standard 3x3 convolutions,
followed by (b) two layers of dilated convolutions with rate r = 2, followed by (c) six parallel
branches with two layers each of a 1x1 standard convolution, 4 di�erent dilated convolution
rates (6/12/18/24) and a global averaging pooling that is repeated at every spatial position of
the feature map. After that, the feature maps from the six parallel branches are concatenated
and forwarded to (d) a block of 2 layers with 1x1 convolutions in order to produce the final
dense prediction probability map. Each layer is followed by Batch Normalization [79] and
Dropout [80] layers and we did not employ residual connections.

Figure 4.4 illustrates the pipeline of our training/inference process. An initial resampling
step downsamples/upsamples the input axial slice images to a common pixel size space, then
a simple intensity normalization is applied to the image, followed by the network inference
stage.

Contrary to the task of natural images segmentation, the task of GM segmentation in medical
imaging is usually very unbalanced. In our case, only a small portion of the entire axial slice
encompasses the GM (the rest being comprised of other structures such as the white matter,
cerebrospinal fluid, bones, muscles, etc.). Due to this imbalance, we employed a surrogate
loss for the DSC (Dice Similarity Coe�cient) called the Dice Loss, which is insensitive to
imbalancing and was employed by many works in medical imaging [81, 82]. The Dice Loss
can be formulated as:
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Input
Axial Slice
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(a)
(b)

(c)

(d)

Figure 4.3 Architecture overview of the proposed method. The MRI axial slice is fed to the
first block of 3x3 convolutions and then to a block of dilated convolutions (rate 2). Then,
six parallel modules with di�erent rates (6/12/18/24), 1x1 convolution, and a global average
pooling are used in parallel. After the parallel modules, all feature maps are concatenated
and then fed into the final block of 1x1 convolutions to produce the final dense predictions.

Input
Axial Slice

0.20mm x 0.20mm

0.30mm x 0.30mm

0.25mm x 0.25mm

Resampling

Intensity
Normalization

(x  -  μ)  /  σi

Inference

i iP(y  |  x )

Figure 4.4 Architecture pipeline overview. During the first stage, input axial slices are
resampled to a common pixel size space, then intensity is normalized, followed by the network
inference.
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Ldice = ≠ 2 qN
n=1 pnrn + ‘

qN
n=1 pn + qN

n=1 rn + ‘
(4.3)

Where p and r are the predictions and gold standard, respectively. The ‘ term is used to ensure
loss stability by avoiding numerical issues. We experimentally found that the Dice Loss yielded
better results when compared to the weighted cross-entropy (WCE) used by the original
U-Net [64], which is more di�cult to optimize due to the added weighting hyper-parameter.

Medical image datasets are usually smaller than natural image datasets by many orders of
magnitude, therefore regularization and data augmentation is an important step. In this work,
the following data augmentation strategies were applied: rotation, shifting, scaling, flipping,
noise, and elastic deformation [83].

The main di�erences when we compare our proposed architecture with that of the work [20],
are the following:

Initial pooling/decimation: our network does not use initial pooling layers as we found
them detrimental to the segmentation of medical images;

Padding: we extensively employ padding across the entire network to keep feature map sizes
fixed, trading depth to reduce memory usage of the network;

Dilation Rates: since we do not use initial pooling, we retain the parallel dilated convolution
branch with the rate r = 24. As we found improvements by doing so, due to the large
feature map size that doesn’t cause filter degeneration as seen in [20];

Loss: contrary to natural images, our task of GM segmentation is highly unbalanced, therefore
instead of using the traditional cross-entropy, we use the Dice Loss;

Data Augmentation: in this work we apply rotation, shifting, added channel noise, and
elastic deformations [83], in addition to the scaling and flipping used previously [20].

Table 4.2 compares the setup parameters of our approach as well as the participant methods
of the SCGM Segmentation Challenge [2].

U-Net architecture

For the U-Net [64] architecture model that was used for comparison, we employed a 14-layers
network using standard 3x3 2D convolution filters with ReLU non-linearity activations [69].
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Table 4.2 Parameters of each compared method. Time per slice is an estimated value, since
di�erent hardware were employed by the di�erent techniques. Values replicated from the
work [2].

Method Init. Training External data Time p/ slice
JCSCS Auto. No Yes 4-5 min
DEEPSEG Auto. Yes (4 h) No <1 s
MGAC Auto. No No 1 s
GSBME Manual Yes (<1 m) No 5-80 s
SCT Auto. No Yes 8-10 s
VBEM Auto. No No 5 s
Proposed Auto. Yes (19 h) No <1 s

For a fair comparison, we used the same training protocol and loss function. For the data
augmentation strategy, we employed a more aggressive augmentation due to overfitting issues
with the U-Net (see the Discussion section). We also performed an extensive architecture
exploration and used the best performing U-Net model architecture.

4.4.3 Datasets

In this subsection, we present the datasets used for evaluation in this work.

Spinal Cord Gray Matter Challenge

The Spinal Cord Gray Matter Challenge [2] (SCGM Challenge) dataset consists of 80 healthy
subjects (20 subjects from each center). The demographics range from a mean age of 28.3
up to 44.3 years old. Three di�erent MRI systems were used (Philips Achieva, Siemens Trio,
Siemens Skyra) with di�erent acquisition parameters based on a multi-echo gradient echo
sequence. The voxel size range from 0.25x0.25x2.5 mm up to 0.5x0.5x5.0 mm. The dataset
is split between training (40) and test (40) with the test set hidden. For each labeled slice
in the dataset, 4 gold standard segmentation masks were produced by 4 independent expert
raters (one per site). Examples of the datasets from each center are shown in Figure 4.1.

During the development of this work, we found some misclassified voxels in the training set.
These issues were reported, however, for the sake of a fair comparison, all the evaluations
done in this work used the original pristine training dataset.
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Ex vivo high-resolution spinal cord

To evaluate our method on an ex vivo dataset, we used an MRI acquisition that was performed
on an entire human spinal cord, from the pyramidal decussation to the cauda equina using a
7T horizontal-bore small animal MRI system.

MR images of the entire spinal cord were acquired in seven separate overlapping segments.
The segment field of view was 8 x 2 x 2 cm with 1 cm of overlap on each end. Between
each acquisition, the specimen was advanced precisely 7 cm through the magnet bore using a
custom-machined gantry insert. T2*-weighted anatomic images were acquired using a 3D
gradient echo sequence with an acquisition matrix of 1600 x 400 x 400, resulting in 50 micron
isotropic resolution. Scan parameters included: TR = 50 ms, TE = 9 ms, flip angle = 60°,
bandwidth = 100 kHz and number of averages = 1. Per-segment acquisition time was 2
hours 22 minutes, resulting in a total acquisition time of approximately 16 hours. Individual
image segments were composed into a single volume using automated image registration and
weighted averaging of overlapping segments.

Although the acquisition was obtained from a deceased adult male with no known history
of neurologic disease, the review of images revealed a clinically occult SC lesion close to
the 6th thoracic nerve root level, with imaging features suggestive of a chronic compressive
myelopathy or possible sequela of a previous viral infection such as herpes zoster.

The volume is comprised of a total 4676 axial slices with 100 µm isotropic resolution.

The annotations (gold standard) for axial slices of this dataset were made by a researcher
with the help of an expert radiologist. The annotation procedure was as follows: first, the
contour of the GM was delineated using a gradient method from MIPAV [84] software. After
that, a pixel-wise fine-tuning was performed using the fslview tool from FSL [85].

4.4.4 Training Protocol

Spinal Cord Gray Matter Challenge

The training protocol for the SCGM Challenge [2] dataset experiments are described in Table
4.3 and the data augmentation parameters are described in Table 4.4.

Contrary to the smooth decision boundaries characteristic of models trained using cross-
entropy, the Dice Loss has the property of creating sharp decision boundaries and models
with high recall rate. We found experimentally that thresholding the dense predictions with
a threshold · = 0.999 provided a good compromise between precision/recall, however, no
optimization was employed to choose the threshold · value for the output predictions.
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Table 4.3 Training protocol for the Spinal Cord Gray Matter Challenge dataset.

Resampling and Cropping
All volumes were resampled to a voxel size of 0.25x0.25 mm, the highest
resolution found between acquisitions. All the axial slices were center-cropped
to a 200x200 pixels size.

Normalization We performed only mean centering and standard deviation normalization of
the volume intensities.

Train/validation split

For the train/validation split, we used 8 subjects (2 from each site) for
validation and the rest for training. The test set was defined by the challenge.
We haven’t employed any external data or used the vertebral information
from the provided dataset. Only the provided GM masks were used for
training/validation.

Batch size We used a small batch size of only 11 samples.
Optimization We used Adam [86] optimizer with a small learning rate ÷ = 0.001.
Batch Normalization We used a momentum „ = 0.1 for BatchNorm due to the small batch size.
Dropout We used a dropout rate of 0.4.

Learning Rate Scheduling
Similar to the work [20], we used the "poly" learning rate policy where the
learning rate is defined by ÷ = ÷t0 ú (1 ≠ n

N )p where ÷t0 is the initial learning rate,
N is the number of epochs, n the current epoch and p the power with p = 0.9.

Iterations We trained the model for 1000 epochs (w/ 32 batches at each epoch).

Data augmentation

We applied the following data augmentations: rotation, shift, scaling, channel shift,
flipping and elastic deformation [83]. The data augmentation parameters were chosen
using random search. More details about the parameters of the data augmentation
are presented in Table 4.4.

Table 4.4 Data augmentation parameters used during the training stage of the Spinal Cord
Gray Matter Challenge dataset.

Augmentation Parameter Probability
Rotation (degrees) [-4.6, 4.6] 0.5
Shift (%) [-0.03, 0.03] 0.5
Scaling [0.98, 1.02] 0.5
Channel Shift [-0.17, +0.17] 0.5
Elastic Deformation [83] – = 30.0, ‡ = 4.0 0.3

Since the test dataset is hidden from the challenge participants, to evaluate our model we
sent our produced test predictions to the challenge website for automated evaluation. Results
are presented in Table 4.5 under the column "Proposed Method", alongside with the six other
previously developed methods and 10 di�erent metrics.

The training time on a single NVIDIA P100 GPU took approximately 19 hours using single-
precision floating-point and TensorFlow 1.3.0 with cuDNN 6, while inference time took less
than 1 second per subject.
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Table 4.5 Comparison of di�erent segmentation methods that participated in the SCGM
Segmentation Challenge [2] against each of the four manual segmentation masks of the test
set, reported here in the format: mean (std). For of fair comparison, the metrics are the same
as used in the study [2] and the results from other methods are replicated here, where we have:
Dice similarity coe�cient (DSC), mean surface distance (MSD), Hausdor� surface distance
(HSD), skeletonized Hausdor� distance (SHD), skeletonized median distance (SMD), true
positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), Jaccard index
(JI) and conformity coe�cient (CC). In bold font, we represent the best-obtained results on
each metric. We also note that MSD, HSD, SHD and SMD metrics are in millimeters and
that lower values mean better results.

JCSCS DEEPSEG MGAC GSBME SCT VBEM Proposed Method
DSC 0.79 (0.04) 0.80 (0.06) 0.75 (0.07) 0.76 (0.06) 0.69 (0.07) 0.61 (0.13) 0.85 (0.04)
MSD 0.39 (0.44) 0.46 (0.48) 0.70 (0.79) 0.62 (0.64) 0.69 (0.76) 1.04 (1.14) 0.36 (0.34)
HSD 2.65 (3.40) 4.07 (3.27) 3.56 (1.34) 4.92 (3.30) 3.26 (1.35) 5.34 (15.35) 2.61 (2.15)
SHD 1.00 (0.35) 1.26 (0.65) 1.07 (0.37) 1.86 (0.85) 1.12 (0.41) 2.77 (8.10) 0.85 (0.32)
SMD 0.37 (0.18) 0.45 (0.20) 0.39 (0.17) 0.61 (0.35) 0.39 (0.16) 0.54 (0.25) 0.36 (0.17)
TPR 77.98 (4.88) 78.89 (10.33) 87.51 (6.65) 75.69 (8.08) 70.29 (6.76) 65.66 (14.39) 94.97 (3.50)
TNR 99.98 (0.03) 99.97 (0.04) 99.94 (0.08) 99.97 (0.05) 99.95 (0.06) 99.93 (0.09) 99.95 (0.06)
PPV 81.06 (5.97) 82.78 (5.19) 65.60 (9.01) 76.26 (7.41) 67.87 (8.62) 59.07 (13.69) 77.29 (6.46)
JI 0.66 (0.05) 0.68 (0.08) 0.60 (0.08) 0.61 (0.08) 0.53 (0.08) 0.45 (0.13) 0.74 (0.06)
CC 47.17 (11.87) 49.52 (20.29) 29.36 (29.53) 33.69 (24.23) 6.46 (30.59) -44.25 (90.61) 64.24 (10.83)

Inter-rater variability as label smoothing regularization

The training dataset provided by the SCGM Challenge is comprised of 4 di�erent masks that
were manually and independently created by raters for each axial slice. As in the study [68],
we used all the di�erent masks as our gold standard. We also found that this approach shares
the same principle of using label smoothing as seen in work [87].

Label smoothing is a mechanism that has the e�ect of reducing the confidence of the model by
preventing the network from assigning a full probability to a single class, which is commonly
evidence of overfitting. In the study [88], a link was found between label smoothing and
the confidence penalty through the direction of the Kullback–Leibler divergence. Since the
di�erent gold standard masks for the same axial slices diverges usually only in the border of
the GM, it is easy to see that this has a label smoothing e�ect on the contour of the GM,
thereby encouraging the model to be less confident in the contour prediction of the GM, a
kind of “empirical contour smoothing”.

This interpretation suggests that one could also incorporate this contour smoothing by
artificially adding label smoothing on the contours of the target anatomy, where raters usually
disagree on the manual segmentation, leading to a potentially better model generalization on
many di�erent medical segmentation tasks where the contours are usually the region of raters
disagreement.
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We leave the exploration of this contour smoothing to future work.

Ex vivo high-resolution spinal cord

The training protocol for the ex vivo high-resolution spinal cord dataset experiments are
described in Table 4.6 and the data augmentation parameters are described in the Table 4.7.

Table 4.6 Training protocol for the ex vivo high-resolution spinal cord dataset.

Cropping All the slices were center-cropped to a 200x200 pixels size.

Normalization We performed only mean centering and standard deviation normalization of
the volume intensities.

Train/validation split

For the training set we selected only 15 evenly spaced axial slices out of 4676
total slices from the volume. For the validation set, we selected 7 (evenly spaced)
axial slices and our test set was comprised of 8 axial slices (also evenly distributed
across the entire volume).

Batch size We used a small batch size of only 11 samples.
Optimization We used Adam [86] optimizer with a small learning rate ÷ = 0.001.
Batch Normalization We used a momentum „ = 0.1 for BatchNorm due to the small batch size.
Dropout We used a dropout rate of 0.4.

Learning Rate Scheduling
Similar to the work [20], we used the "poly" learning rate policy where the
learning rate is defined by ÷ = ÷t0 ú (1 ≠ n

N )p where ÷t0 is the initial learning rate,
N is the number of epochs, n the current epoch and p the power with p = 0.9.

Iterations We trained the model for 600 epochs (w/ 32 batches at each epoch).

Data augmentation

For this dataset, we used the following aforementioned augmentations: rotation, shift,
scaling, channel shift, flipping and elastic deformation [83]. We didn’t employed random
search to avoid overfitting due to the dataset size. More details about the parameters
of the data augmentation are presented in Table 4.7.

Table 4.7 Data augmentation parameters used during the training stage of the ex vivo
high-resolution spinal cord dataset.

Augmentation Parameter Probability
Rotation (degrees) [-5.0, 5.0] 0.5
Shift (%) [-0.1, 0.1] 0.5
Scaling [0.9, 1.1] 0.5
Channel Shift [-0.3, +0.3] 0.5
Flipping Horizontal 0.5
Elastic Deformation [83] – = 30.0, ‡ = 4.0 0.3

Like in the SCGM Segmentation task, we used a threshold · = 0.999 to binarize the prediction
mask.

The training time on a single NVIDIA P100 GPU took approximately 2 hours using single-
precision floating-point and TensorFlow 1.3.0 with cuDNN 6. While inference time took
approximately 25 seconds to segment 4676 axial slices.
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4.4.5 Data Availability

The SCGM Challenge dataset analyzed during the current study is available on the SCGM
Challenge repository at http://rebrand.ly/scgmchallenge. The ex vivo dataset analyzed
during the current study is not publicly available, but is available from the corresponding
author on reasonable request.

4.5 Results

In this section, we discuss the experimental evaluation of the method in the presented datasets.

4.5.1 Spinal Cord Gray Matter Challenge

In this subsection, we show the evaluation on SCGM Challenge [2] dataset.

Qualitative Evaluation

In Figure 4.5, we show the segmentation output of our model in four di�erent subjects, from
acquisitions performed at the four di�erent centers, on the test set of the SCGM Segmentation
Challenge. The majority voting segmentation was taken from the study [2]. As we can see in
Figure 4.5, our approach was able to capture many properties of the GM anatomy, providing
good segmentations even in presence of blur, as seen in the samples from Site 1 and Site 3.

When compared with the segmentation results from Deepseg [16], that uses a U-Net like
structure with pre-training and 3D-wise training, we can see that our method succeeds at
segmenting the gray commissure of the GM structure, which was observed to pose a problem
for Deepseg, as indicated in Figure 4 of the work [2].

Quantitative Evaluation

As we can see in Table 4.5 and Figure 4.6, our approach achieved state-of-the-art results in
8 out of 10 di�erent metrics and surpassed 4 out of 6 previous methods on all metrics. A
description of the metrics used in this work is given in Table 4.8.

We can also see that the Dice Loss is not only an excellent surrogate for the Dice Similarity
Coe�cient (DSC) but also a surrogate for distance metrics, as we note that our model not
only achieved state-of-the-art results on overlap metrics (i.e. DSC) but also on distance and
statistical metrics.

http://rebrand.ly/scgmchallenge
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Figure 4.5 Qualitative evaluation of our proposed approach on the same axial slice for subject
11 of each site. From top to bottom row: input image, majority voting segmentation gold
standard, and the result of our segmentation method. Adapted from the work [2].

The True Negative Rate (TNR) and Positive Predictive Value (PPV) or precision, were
metrics for which the proposed method did not achieve the best results. However, we note
that the TNR was very close to the results of other methods. We also hypothesize that
the suboptimal results of the precision (PPV) are an e�ect of the sharp decision boundary
produced by our model due to the Dice Loss. We are confident that the prediction threshold
optimization can yield better results, however, this cost optimization would require further
investigations.

When compared to the Deepseg [16] method, the only method using Deep Learning in the
challenge, where an U-Net based architecture was employed, our proposed approach performed
better in 8 out of 10 metrics, even though our method did not employ 3D convolutions, pre-
training, or threshold optimization as was done in Deepseg [16].

4.5.2 Ex vivo high-resolution spinal cord

In this subsection, we show the evaluation on the ex vivo high-resolution spinal cord dataset.
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Figure 4.6 Test set evaluation results from the SCGM segmentation challenge [2] for each
evaluated metric, with the Dice similarity coe�cient (DSC), mean surface distance (MSD),
Hausdor� surface distance (HSD), skeletonized Hausdor� distance (SHD), skeletonized median
distance (SMD), true positive rate (TPR), true negative rate (TNR), positive predictive
value (PPV), Jaccard index (JI) and conformity coe�cient (CC). Our method is shown as
"Proposed". Best viewed in color.
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Table 4.8 Description of the validation metrics. Adapted from the work [2].

Metric Name Abbr. Range Interpretation Category
Dice Similarity Coe�cient DSC 0 - 1 Similarity between masks Overlap
Jaccard Index JI 0 - 100 Similarity between masks Overlap

Conformity Coe�cient CC <100
Ratio between mis-segmented and
correctly segmented. Range can be
between (≠Œ, 1] as defined in [3]

Overlap

Symmetric Mean Absolute
Surface Distance MSD >0 Mean euclidean distance between

mask contours (mean error) Distance

Hausdor� Surface Distance HSD >0 Longest euclidean distance between
mask contours (absolute error) Distance

Skeletonized Hausdor� Distance SHD >0 Indicator of maximal local error Distance
Skeletonized Median Distance SMD >0 Indicator of global errors Distance

True Positive Rate or Sensitivity TPR 0 - 100 Low values mean that method tends
to under-segment Statistical

True Negative Rate or Specificity TNR 0 - 100 Quality of segmented background Statistical
Positive Predictive Value
or Precision PPV 0 - 100 Low values mean that method tends

to over-segment Statistical

Qualitative Evaluation

In Figure 4.7, we show a qualitative evaluation of the segmentations produced by our method
and those of U-Net model, contrasting the segmentations against the original and gold
standard images.

As can be seen in the test sample depicted in the first column of Figure 4.7, the predictions
of the U-Net “leaked” the gray matter segmentation into the cerebrospinal fluid (CSF) close
to the dorsal horn (see green rectangle on first column), while our proposed segmentation was
much more contained in the gray matter region only.

Also, in the third column of the Figure 4.7, the U-Net significantly oversegmented a large
portion of the GM region, extending the segmentation up to the white matter close to the
right lateral horn of the GM anatomy (see the green rectangle), while our proposed method
performed well.

We also provide in Figure 4.8 a 3D rendered representation of the segmented gray matter
using our method.

Quantitative Evaluation

As seen in Table 4.9, which shows the quantitative results of our approach, our method
achieved better results on 6 out of 8 metrics. One of the main advantages that we can see
from these results is that our method uses 6x fewer parameters than the U-Net architecture,
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Figure 4.7 Qualitative evaluation of the U-Net and our proposed method on the ex vivo high-
resolution spinal cord dataset. Each column represents a random sample of the test set (regions
from left to right: sacral, thoracic, cervical). Green rectangles frame the oversegmentations of
the U-Net model predictions.
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Figure 4.8 Lumbosacral region 3D rendered view of the ex vivo high-resolution spinal cord
dataset segmented using the proposed method. The gray matter is depicted in orange color
while the white matter and other tissues are represented in transparent gray color.

leading to less chance of overfitting and potentially better generalization.

Table 4.9 Quantitative metric results comparing a U-Net architecture and our proposed
approach on the ex vivo high-resolution spinal cord dataset.

Metric name U-Net Proposed
Num. of Params. 776,321 124,769
Dice 0.9027 (0.07) 0.9226 (0.04)
Mean Accuracy 0.9626 (0.02) 0.9561 (0.03)
Pixel Accuracy 0.9952 (0.01) 0.9968 (0.00)
Recall 0.9287 (0.05) 0.9135 (0.06)
Precision 0.8831 (0.10) 0.9335 (0.04)
Freq. Weighted IU 0.9913 (0.01) 0.9938 (0.00)
Mean IU 0.9121 (0.06) 0.9280 (0.04)

During the training of the two architectures (U-Net and our method), we noticed that even
with a high dropout rate of 0.4, the U-Net was still overfitting, forcing us to use a more
aggressive data augmentation strategy to achieve better results, especially for the shifting
parameters of the data augmentation; we hypothesize that this is an e�ect of the decimation
on the contracting path of the U-Net, that disturbs the translational equivariance property of
the network, leading to a poor performance on segmentation tasks.
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4.6 Discussion

In this work, we devised a simple, e�cient and end-to-end method that achieves state-of-
the-art results in many metrics when compared to six independently developed methods, as
detailed in Table 4.5. To the best of our knowledge, our approach is the first to achieve better
results in 8 out of the 10 metrics used in the SCGM Segmentation Challenge [2].

One of the main di�erences with other methods from the challenge is that our method employs
an end-to-end learning approach, whereby the entire prediction pipeline is optimized using
backpropagation and gradient descent. This is in contrast to the other methods, which
generally employ separate registrations, external atlases/templates data and label fusion
stages. As we can also see in Table 4.9, when we compare our method to the most commonly
used method (U-Net) for medical image segmentation, our method provides not only better
results for many metrics, but also a major parameter reduction (more than 6 times).

In the lens of Minimum Description Length (MDL) theory [89], which describes models
as languages for describing properties of the data and sees inductive inference as finding
regularity in the data [90], when two competing explanations for the data explains the data
well, MDL will prefer the one that provides a shorter description of the data. Our approach
using dilated filters provides more than 6x parameter reduction compared to U-Nets, but
is also able to outperform other methods in many metrics, an evidence that the model is
parameter-e�cient and that it can capture a more compact description of the data regularities
when compared with more complex models such as U-Nets.

The proposed approach has been tested on data acquired using Phase-Sensitive Inversion
Recovery (PSIR) sequence, and as expected, the method did not work given that the model
was not trained on PSIR samples and that these data exhibit very di�erent contrast than the
T2* images the model was trained on. This can be solved by aggregating the PSIR data into
the existing datasets before training the model or even by training a specific model for PSIR
data. Other techniques in the field of Domain Adaptation, which is currently a very active
research area, could also be useful to generalize the existing model without even requiring
annotated PSIR data, depending on the technique. These investigations will be the focus of
follow-up studies.

Our approach is limited to 2D slices, however, the model does not restrict the use of 3D
dilated convolutions and we believe that incorporating 3D context information into the model
would almost certainly improve the segmentation results, however, at the expense of increased
memory consumption.

Although we believe that this method can be extended to the GM segmentation in the presence
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of many di�erent neurological conditions such as multiple sclerosis, this will need to be further
confirmed in follow-up studies in which patients would be included in the training/validation
dataset.

We also believe that our method can be expanded to take advantage of semi-supervised
learning approaches due to the strong smoothness assumption that holds for axial slices in
most volumes, especially in ex vivo high-resolution spinal cord MRI.
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CHAPTER 5 ARTICLE 2: DEEP SEMI-SUPERVISED SEGMENTATION
WITH WEIGHT-AVERAGED CONSISTENCY TARGETS

It is well known that Deep Learning models have a high sample complexity, which means
that the required amount of data to learn a good predictor is usually large. Classical bounds
don’t explain generalization properties of these over-parametrized networks [91], and this is
an active area of research in Deep Learning methods.

Although transfer learning [92] can be used to partially mitigate the problem in a small data
regime scenario, which is the most common scenario in medical imaging, pre-training a model
to do transfer learning usually involves the existence of a large and related dataset.

For natural images, models are usually pre-trained on ImageNet [37], however, in medical
imaging, large datasets such as ImageNet are usually prohibitive due to the time-consuming
task of annotating data (especially in segmentation tasks) and the cost to acquire data, not
to mention regulations.

In the Chapter 4 we saw an excellent performance of the spinal cord gray matter segmentation
on an annotated dataset, however, in practice, it is very common to have only a few samples
labeled and many samples unlabeled. Recently, many methods were developed in which a
learning algorithm can learn not only from labeled data but as well from unlabeled data, by
taking leverage of semi-supervised learning techniques. However, most of these works, such as
in [42], are only developed with classification tasks in mind and are usually evaluated on the
natural image domain.

In this work, we extend the semi-supervised method from [42] to segmentation tasks and
evaluate it on a realistic small data regime for the spinal cord gray matter segmentation task
and show that significant performance improvements can be achieved even on a very small
data regime.

My contribution to this work was to conceive the method, implement it, conduct the experi-
ments and write the paper.
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5.2 Abstract

Recently proposed techniques for semi-supervised learning such as Temporal Ensembling
and Mean Teacher have achieved state-of-the-art results in many important classification
benchmarks. In this work, we expand the Mean Teacher approach to segmentation tasks and
show that it can bring important improvements in a realistic small data regime using a publicly
available multi-center dataset from the Magnetic Resonance Imaging (MRI) domain. We also
devise a method to solve the problems that arise when using traditional data augmentation
strategies for segmentation tasks on our new training scheme.

5.3 Introduction

In the past few years, we witnessed a large growth in the development of Deep Learning
techniques, that surpassed human-level performance on some important tasks [69], including
health domain applications [70]. A recent survey [23] that examined more than 300 papers
using Deep Learning techniques in medical imaging analysis, made it clear that Deep Learning
is now pervasive across the entire field. In [23], they also found that Convolutional Neural
Networks (CNNs) were more prevalent in the medical imaging analysis, with end-to-end
trained CNNs becoming the preferred approach.

It is also evident that Deep Learning poses unique challenges, such as the large amount of
data requirement, which can be partially mitigated by using transfer learning [93] or domain
adaptation approaches [94], especially in the natural imaging domain. However, in medical
imaging domain, not only the image acquisition is expensive but also data annotations, that
usually requires a very time-consuming dedication of experts. Besides that, other challenges
are still present in the medical imaging field, such as privacy and regulations/ethical concerns,
which are also an important factor impacting the data availability.

According to [23], in certain domains, the main challenge is usually not the availability of the
image data itself, but the lack of relevant annotations/labeling for these images. Traditionally,
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systems like Picture Archiving and Communication System (PACS) [23], used in the routine
of most western hospitals, store free-text reports, and turning this textual information
into accurate or structured labels can be quite challenging. Therefore, the development of
techniques that could take advantage of the vast amount of unlabeled data is paramount for
advancing the current state of practical applications in medical imaging.

Semi-supervised learning is a class of learning algorithms that can take leverage not only
of labeled samples but also from unlabeled samples. Semi-supervised learning is halfway
between supervised learning and unsupervised learning [38], where the algorithm uses limited
supervision, usually only from a few samples of a dataset together with a larger amount of
unlabeled data.

In this work, we propose a simple deep semi-supervised learning approach for segmentation
that can be e�ciently implemented. Our technique is robust enough to be incorporated in
most traditional segmentation architectures since it decouples the semi-supervised training
from the architectural choices. We show experimentally on a public Magnetic Resonance
Imaging (MRI) dataset that this technique can take advantage of unlabeled data and provide
improvements even in a realistic scenario of small data regime, a common reality in medical
imaging.

5.4 Semi-supervised segmentation using Mean Teacher

Given that the classification cost for unlabeled samples is undefined in supervised learning,
adding unlabeled samples into the training procedure can be quite challenging. Traditionally,
there is a dataset X = (xi)iœ[n] that can be divided into two disjoint sets: the samples Xl =
(x1, . . . , xl) that contains the labels Yl = (y1, . . . , yl), and the samples Xu = (xl+1, . . . , xl+u)
where the labels are unknown. However, if the knowledge available in p(x) that we can get
from the unlabeled data also contains information that is useful for the inference problem
of p(y|x), then it is evident that semi-supervised learning can improve upon supervised
learning [38].

Many techniques were developed in the past for semi-supervised learning, usually creating
surrogate classes as in [95], adding entropy regularization as in [96] or using Generative
Adversarial Networks (GANs) [97]. More recently, other ideas also led to the development
of techniques that added perturbations and extra reconstruction costs in the intermediate
representations [40] of the network, yielding excellent results. A very successful method called
Temporal Ensembling [41] was also recently introduced, where the authors explored the idea of
a temporal ensembling network for semi-supervised learning where the predictions of multiple
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previous network evaluations were aggregated using an exponential moving average (EMA)
with a penalization term for the predictions that were inconsistent with this target, achieving
state-of-the-art results in several semi-supervised learning benchmarks.

In [98], the authors expanded the Temporal Ensembling method by averaging the model
weights instead of the label predictions by using Polyak averaging [99]. The method described
in [98] is a student/teacher model, where the student model architecture is replicated into the
teacher model, which in turn, get its weights updated as the exponential moving average of
the student weights according to:

◊Õ
t = –◊Õ

t≠1 + (1 ≠ –)◊t (5.1)

where – is a smoothing hyperparameter, t is the training step and ◊ are the model weights.
The goal of the student is to learn through a composite loss function with two terms: one
for the traditional classification loss and another to enforce the consistency of its predictions
with the teacher model. Both the student and teacher models evaluate the input data by
applying noise that can come from Dropout, random a�ne transformations, added Gaussian
noise, among others.

In this work, we extend the mean teacher technique [98] to semi-supervised segmentation.
To the best of our knowledge, this is the first time that this semi-supervised method was
extended for segmentation tasks. Our changes to extend the mean teacher [98] technique for
segmentation are simple: we use di�erent loss functions both for the task and consistency
and also propose a new method for solving the augmentation issues that arises from this
technique when used for segmentation. For the consistency loss, we use a pixel-wise binary
cross-entropy, formulated as

C(◊) = ExœX [≠y log(p) + (1 ≠ y) log(1 ≠ p)] , (5.2)

where p œ [0, 1] is the output (after sigmoid activation) of the student model f(x; ◊) and
y œ [0, 1] is the output prediction for the same sample from the teacher model f(x; ◊Õ), where
◊ and ◊Õ are student and teacher model parameters respectively. The consistency loss can be
seen as a pixel-wise knowledge distillation [100] from the teacher model. It is important to
note that both labeled samples from Xl and unlabeled samples from Xu contribute for the
consistency loss C(◊) calculation. We used binary cross-entropy, instead of the mean squared
error (MSE) used by [98] because the binary cross-entropy provided an improved model
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performance for the segmentation task. We also experimented with confidence thresholding
as in [101] on the teacher predictions, however, it didn’t improve the results.

For the segmentation task, we employed a surrogate loss for the Dice Similarity Coe�cient,
called the Dice loss, which is insensitive to imbalance and was also employed by [102] on the
same segmentation task domain we experiment in this paper. The Dice Loss, computed per
mini-batch, is formulated as

L(◊) = ≠ 2 q
i piyiq

i pi + q
i yi

, (5.3)

where pi œ [0, 1] is the ith output (after sigmoid non-linearity) and yi œ {0, 1} is the
corresponding ground truth. For the segmentation loss, only labeled samples from Xl

contribute for the L(◊) calculation. As in [98], the total loss used is the weighted sum of both
segmentation and consistency losses. An overview detailing the components of the method
can be seen in the Figure 5.1, while a description of the training algorithm is described in the
Algorithm 5.4.1.

Algorithm 5.4.1 Semi-supervised segmentation algorithm.

Require: xi = training samples
Require: yi = labels for the labeled inputs i œ Yl

Require: t = global step (initialized with zero)
Require: w(t) = consistency weight ramp-up function
Require: f◊(·) = neural network model with parameters ◊
Require: g„(·) = stochastic input augmentation procedure with parameters „

for k in [1, num_epochs] do
for each minibatch B do

ziœB Ω f◊(g„(xiœB)) Û evaluate augmented inputs with student model
z̃iœB Ω f◊Õ(g„Õ(xiœB)) Û teacher model evaluation w/ di�erent perturbations
loss ΩL(z, y) + w(t) 1

|B|
q

iœB C(zi, z̃i) Û supervised and unsupervised loss components
update ◊ using, e.g., Adam Û update student model parameters
t Ω t + 1 Û increment the global step counter
◊Õ

t Ω –◊Õ
t≠1 + (1 ≠ –)◊t Û update teacher model parameters with using EMA

end for
end for
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Figure 5.1 An overview with the components of the proposed method based on the mean
teacher technique. (1) A data augmentation procedure g(x; „) is used to perturb the input
data (in our case, a MRI axial slice), where „ is the data augmentation parameter (i.e. N (0, „)
for a Gaussian noise), note that di�erent augmentation parameters are used for student and
teacher models. (2) The student model. (3) The teacher model that is updated with an
exponential moving average (EMA) from the student weights. (4) The consistency loss used
to train the student model. This consistency will enforce the consistency between student
predictions on both labeled and unlabelled data according to the teacher predictions. (5) The
traditional segmentation loss, where the supervision signal is provided to the student model
for the labeled samples.

5.4.1 Segmentation data augmentation

In segmentation tasks, data augmentation is very important, especially in the medical imaging
domain where data availability is limited, variability is high and translational equivariance
is desirable. Traditional augmentation methods such as a�ne transformations (rotation,
translation, etc) that change the spatial content of the input data, as opposed to pixel-wise
additive noise, for example, are also applied with the exact same parameters on the label to
spatially align input and ground truth, both subject to a pixel-wise loss. This methodology,
however, is unfeasible in the mean teacher training scheme. If two di�erent augmentations (one
for the student and another for the teacher) causes spatial misalignment, the spatial content
between student and teacher predictions will not match during the pixel-wise consistency loss.

To avoid the misalignment during the consistency loss, such transformations can be applied
with the same parametrization both to the student and teacher model inputs. However, this
wouldn’t take advantage of the stronger invariance to transformations that can be introduced
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through the consistency loss. For that reason, we developed a solution that applies the
transformations in the teacher in a delayed fashion. Our proposed method is based on the
application of the same augmentation procedure g(x; „) before the model forward pass only
for the student model, and then after model forward pass in the teacher model predictions,
making thus both prediction maps aligned for the consistency loss evaluation, while still taking
leverage of introducing a much stronger invariance to the augmentation between student and
teacher models. This is possible because we do backpropagation of the gradients only for the
student model parameters.

5.5 Experiments

5.5.1 MRI Spinal Cord Gray Matter Segmentation

In this work, in order to evaluate our technique on a realistic scenario, we use the pub-
licly available multi-center Magnetic Resonance Imaging (MRI) Spinal Cord Gray Matter
Segmentation dataset from [2].

Dataset

The dataset is comprised of 80 healthy subjects (20 subjects from each center) and obtained
using di�erent scanning parameters and also multiple MRI systems. The voxel resolution of
the dataset ranges from 0.25x0.25x2.5 mm up to 0.5x0.5x5.0 mm. A sample of one subject
axial slice image can be seen in Figure 5.1. We split the dataset in a realistic small data
regime: only 8 subjects are used as training samples, resulting in 86 axial training slices. We
used 8 subjects for validation, resulting in 90 axial slices. For the unlabeled set we used 40
subjects, resulting in 613 axial slices and for the test set we used 12 subjects, resulting in 137
slices. All samples were resampled to a common space of 0.25x0.25 mm.

Network Architecture

To evaluate our technique, we used a very simple U-Net [64] architecture with 15 layers, Batch
Normalization, Dropout and ReLU activations. U-Nets are very common in medical imaging
domain, hence the architectural choice for the experiment. We also used a 2D slice-wise
training procedure with axial slices.



56

Training procedure

For the supervised-only baseline, we used Adam optimizer with —1 = 0.9 and —2 = 0.999,
mini-batch size of 8, dropout rate of 0.5, Batch Normalization momentum of 0.9 and L2
penalty of ⁄ = 0.0008. For the data augmentation, we used rotation angle between ≠4.5° and
4.5° and pixel-wise additive Gaussian noise sampled from N (0, 0.01). We used a learning rate
÷ = 0.0006 given the small mini-batch size, also subject to a initial ramp-up of 50 epochs and
subject to a cosine annealing decay as used by [98]. We trained the model for 1600 epochs.

For the semi-supervised experiment, we used the same parameters of the aforementioned
supervised-only baseline, except for the L2 penalty of ⁄ = 0.0006. We used an EMA – = 0.99
during the first 50 epochs, later we change it to – = 0.999. We also employed a consistency
weight factor of 2.9 subject to a ramp-up in the first 100 epochs. We trained the model for
350 epochs.

Results

As we can see in Table 5.1, our technique not only improved the results on 5/6 evaluated metrics
but also reduced the variance, showing a better regularized model in terms of precision/recall
balance. The model also showed a very good improvement on overlapping metrics such
as Dice and mean intersection over union (mIoU). Given that we exhausted the challenge
dataset [2] to obtain the unlabeled samples, a comparison with [102] was unfeasible given
di�erent dataset splits. We leave this work for further explorations given that incorporating
extra external data would also mix domain adaptation issues into the evaluation.

Table 5.1 Result comparison for the Spinal Cord Gray Matter segmentation challenge using
our semi-supervised method and a pure supervised baseline. Results are 10 runs average
with standard deviation in parenthesis where bold font represents the best result. Dice is the
Dice Similarity Coe�cient and mIoU is the mean intersection over union. Other metrics are
self-explanatory.

Dice mIoU Accuracy Precision Recall Specificity

Supervised 67.915
(0.313)

53.679
(0.327)

99.745
(0.005)

57.948
(0.788)

92.495
(0.907)

99.775
(0.010)

Semi-supervised 70.209
(0.229)

55.509
(0.253)

99.792
(0.003)

64.732
(0.773)

86.112
(0.936)

99.846
(0.006)



57

5.6 Related Work

Only a few works were developed in the context of semi-supervised segmentation, especially in
the field of medical imaging. Only recently, a U-Net was used as auxiliary embedding in [45],
however, with focus on domain adaptation and using a private dataset.

In [46], they use a Generative Adversarial Networks (GAN) for the semi-supervised segmenta-
tion of natural images, however, they employ unrealistic dataset sizes when compared to the
medical imaging domain datasets, along with ImageNet pre-trained networks.

In [103] they propose a technique using adversarial training, but they focus on the knowledge
transfer between natural images with pixel-level annotation and weakly-labeled images with
image-level information.

5.7 Conclusion

In this work we extended the semi-supervised mean teacher approach for segmentation tasks,
showing that even on a realistic small data regime, this technique can provide major improve-
ments if unlabeled data is available. We also devised a way to maintain the traditional data
augmentation procedures while still taking advantage of the teacher/student regularization.
The proposed technique can be used with any other Deep Learning architecture since it
decouples the semi-supervised training procedure from the architectural choices.

It is evident from these results that future explorations of this technique can improve the
results even further, given that even with a small amount of unlabeled samples, we showed
that the technique was able to provide significant improvements.
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CHAPTER 6 ARTICLE 3: UNSUPERVISED DOMAIN ADAPTATION
FOR MEDICAL IMAGING SEGMENTATION WITH SELF-ENSEMBLING

Empirical risk minimization (ERM), discussed in Section 2.2, has well-known learning guar-
antees [47] when training and test data come from the same domain or distribution. However,
when models trained on a data distribution are applied on another domain with a di�erent
distribution during inference time, they often show a poor generalization.

In medical imaging, and especially in MRI, the variability present on the acquired images
can be significant enough to make Deep Learning models generalize poorly when a di�erent
parametrization is used. A concrete example is the di�erence among T1 and T2 contrasts, but
variability is also present among di�erent machine vendors, natural anatomical di�erences, to
name a few.

Although this is a very common problem in medical imaging, the fact remains usually ignored
on the design of many experiments and on many challenges organized in the field, which
contains often in multi-center studies, both in training and test data, samples coming from all
centers. This is not an ideal evaluation of generalization because, in reality, these models will
be applied on data coming from new centers, therefore, these evaluations will be over-optimistic
and will not represent the performance of the model on a real scenario.

In the Section 2.2.3, we saw that the techniques that can make a model adapt to new unseen
domains is called domain adaptation. In this work, we extend the aforementioned technique
from semi-supervised learning called Mean Teacher [42] to perform unsupervised domain
adaptation similar to the work [101], but extending it to segmentation tasks and evaluating it
on multiple centers on a realistic evaluation scenario.

The main insight on the relationship between semi-supervised learning techniques and unsu-
pervised domain adaptation is that given semi-supervised learning can change the decision
boundary of a model, being sometimes even detrimental [44] for the semi-supervised learning
scheme if data comes from a di�erent domain. The same technique can be used with unlabeled
data from another domain, in order to change the decision boundary towards the new unseen
domain without requiring annotations.

My contributions to this work were the method conception, implementation, evaluation, and
paper writing.
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6.2 Abstract

Recent advances in deep learning methods have come to define the state-of-the-art for many
medical imaging applications, surpassing even human judgment in several tasks. Those models,
however, when trained to reduce the empirical risk on a single domain, fail to generalize
when applied to other domains, a very common scenario in medical imaging due to the
variability of images and anatomical structures, even across the same imaging modality. In
this work, we extend the method of unsupervised domain adaptation using self-ensembling
for the semantic segmentation task and explore multiple facets of the method on a small
and realistic publicly-available magnetic resonance (MRI) dataset. Through an extensive
evaluation, we show that self-ensembling can indeed improve the generalization of the models
even when using a small amount of unlabelled data.

6.3 Introduction

In the past few years, the research community has witnessed the fast developmental pace
of deep learning [17] approaches for unstructured data analysis, arguably establishing an
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important scientific milestone. Deep neural networks constitute a paradigm shift from
traditional machine learning approaches for unstructured data. Whereas the latter rely
on hand-crafted feature engineering for improving learning over images, text, audio, and
similarly unstructured inputs, deep neural networks are capable of automatically learning
robust hierarchical features, in what is known as representation learning. Deep learning
approaches have achieved human-level performance on many tasks and, indeed, sometimes
even surpassing it in applications such as natural image classification [69], or arrhythmia
detection [70].

Due to its popularity and compelling results in many domains, deep learning attracted a lot of
attention from the medical imaging community. A recent survey by Litjens et al. [23] analyzed
more than 300 medical imaging studies, and found that deep neural networks have become
pervasive throughout the field of medical imaging, with a significant increase in the number of
publications between 2015 and 2016. The survey also identified that the most addressed task
is image segmentation, likely due to the importance of quantification of anatomical structures
and pathologies [104] for disease diagnosis and prognosis, as opposed to less informative
tasks such as classification of pathologies or detection of structures, which can be posed as a
segmentation tasks as well, but not the opposite.

Deep neural networks are thus becoming the norm in medical imaging, though there are
still several unsolved challenges that remain to be addressed. For instance, one of the most
well-known problems is the high sample complexity, or how much data deep learning requires
to accurately learn and perform well on unseen images, which is related to the concepts of
model complexity and generalization, active areas of research in learning theory [105].

The large amount of required data to train deep neural networks can be partially mitigated
with techniques such as transfer learning [93,106]. However, transfer learning is problematic
in medical imaging because a large dataset is still required so the models can benefit from the
inductive transfer process. Unlike the case of natural images, where annotations can be easily
provided by non-experts, medical images require careful and time-consuming analysis from
trained experts such as radiologists.

Yet another challenge when deploying deep learning models to medical imaging analysis –
and perhaps one of the most di�cult to solve – is the so-called data distribution shift, wherein
di�erent imaging scenarios (e.g. parameter choices, di�erent protocols) can result in vastly
di�erent data distributions, despite imaging a common object. Therefore, models trained
under the empirical risk minimization (ERM) principle, might fail to generalize to other
domains due to its strong assumptions. ERM is the statistical learning principle behind
many machine learning methods, and it o�ers good learning guarantees and bounds if its
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assumptions hold, such as the fact that the training and test datasets derive from similar
domains. However, in practice, this assumption is often violated.

When a deep learning model that assumes independent and identically-distributed (iid) data is
trained with images from one domain and is subsequently deployed on images from a di�erent
domain (e.g. distinct imaging center), that follow a distinct data distribution, its performance
often degrades by a large margin. An example of domain shift can be seen in magnetic
resonance imaging (MRI), where the same machine vendor, using the same protocol, and for
the same subject, can nevertheless produce di�erent images. Variability tends to be even
greater between di�erent centers where machine vendor, software versions, radio-frequency
coils and sequence parameters (e.g., slice positioning, image resolution) often vary. Figure 6.1
illustrates those inter-center di�erences in data distribution, based on data from the Gray
Matter (GM) segmentation challenge [2]. Figure 6.2 illustrates the associated voxel intensity
distribution for the same dataset.

Figure 6.1 Samples of axial MRI from four di�erent centers (UCL, Montreal, Zurich, Vanderbilt)
that participated in the SCGM Segmentation Challenge [2]. Top row: original MRI images.
Bottom row: crop of the spinal cord (green rectangle). Reproduced from [107]. Best viewed
in color.

Although this distribution shift is common in medical imaging, the problem is surprisingly
ignored during the design of many di�erent challenges in the field. It is common to have the
same domain data (same machine, protocol, etc.) on both training and test sets. However, this
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Figure 6.2 MRI axial-slice pixel intensity distribution from four di�erent centers (UCL,
Montreal, Zurich, Vanderbilt) that collaborated to the SCGM Segmentation Challenge [2].

homogeneous data split often does not represent the reality and in many cases will produce
over-optimistic evaluation results. In practice, it is rare to have labeled data available from a
new center before training a model, hence it is common to use a pre-trained model from a
di�erent domain on completely di�erent data. Therefore, it is paramount to have a proper
evaluation avoid contaminating the test set with data from the same domain that is present in
the training set. Incurring the risk of the detrimental e�ects of inadequate evaluations [108].
The name given to learn a classifier model or any other predictor with a shift between the
training and the target/test distributions is known as “domain adaptation” (DA). In this work
we expand upon a previously-developed method [109] for DA based on the Mean Teacher [110]
approach, to segmentation tasks, the most addressed task in medical imaging.

We provide the following contributions: (i) we extend the unsupervised DA method using
self-ensembling for the semantic segmentation task; to the best of our knowledge, this is the
first time this method is used for semantic segmentation in medical imaging; (ii) we explore
some model components such as di�erent consistency losses, and evaluate the performance of
our method on a series of experiments using a realistic small MRI dataset; (iii) we perform
an ablation experiment to provide strong evidence that unlabeled data is responsible for the
observed performance improvement, ruling out the e�ects of the exponential moving average;
(iv) we provide visualizations to derive insight into the model dynamics of the unsupervised
DA task.
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This paper is organized as follows. In Section 6.4 we present related work, in Section 6.5 we give
a brief treatment to the unsupervised DA task and its connection to semi-supervised learning.
In Section 6.6 we describe our method in terms of model architecture and corresponding
design decisions. In Section 6.7 we describe the dataset used in our experiments and how we
performed the data split for the DA scenario. In Section 6.8 we provide the experiment results,
followed by an ablation study in Section 6.9. In Section 6.10 we provide visual insights from
the adaptation dynamics of the model for multiple domains. Finally, in Section 6.11 we discuss
our findings and limitations of our work. In the spirit of open science and reproducibility, we
also provide more information regarding data and source-code availability in Section 6.12.

6.4 Related work

Deep learning methods for medical imaging has become a popular research focus in recent
years [23]. Before the development of deep learning models, initial work was focused mostly
on patch-based [111] segmentation. With the growing interest in deep learning for computer
vision, the first attempts using Convolutional Neural Networks (CNNs) for image segmentation
processed image patches through a sliding window, to yield segmented patches, which were
then stitched together to yield the final segmented image [112]. The main drawbacks of
this approach are computational cost (i.e., several forward passes are required to produce
the segmented images) and inconsistency in predictions, the latter of which can be fixed or
partially mitigated by overlapping sliding windows, depending on the network architecture.

Though patch-wise methods continue to be actively researched [113] and have led to several
advances in segmentation [112], presently, the most common deep architecture for segmentation
is or is based on the so-called Fully Convolutional Network (FCN) [114]. This architecture
is solely based on convolutional layers with the final result not depending on the use of
fully-connected layers. FCNs can provide a fully-segmented image within a single forward
step, and with variable output size depending on the size of the input tensor. One of the
most well-known FCNs for medical imaging is the U-net [64], which combines convolutional,
downsampling, and upsampling operations with skip non-residual connections. In this work
we used the U-Net architecture, although the proposed framework is decoupled from the
choice of network architecture, as further discussed in Section 6.6.3.

Deep Domain Adaptation (DDA), which is a field unrelated in essence to medical imaging, has
been widely studied in the recent years [115]. We can divide the literature on DDA as follows:
(i) methods based on building domain-invariant feature spaces through auto-encoders [116],
adversarial training [117], GANs [118, 119], or disentanglement strategies [120, 121]; (ii)
methods based on the analysis of higher-order statistics [122, 123]; (iii) methods based on
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explicit discrepancy between source and target domains [124]; and (iv) self-ensembling methods
based on implicit discrepancy [109,110].

In [118], the authors trained GANs with cycle-consistent loss functions [125] to remap the
distribution from the source to the target dataset, thereby creating target domain specific
features for completing the task. In [119], GANs were employed as a means of learning aligned
embeddings for both domains. Similarly, disentangled representations for each domain have
been proposed [120, 121] with the goal of generating a feature space capable of separating
domain-dependent and domain-invariant information.

In [122], the authors proposed to change parameters of the neural network layers for adapting
domains by directly computing or optimizing higher-order statistics. More specifically, they
proposed an alternative for batch normalization called Adaptive Batch Normalization (AdaBN)
that computes di�erent statistics for the source and target domains, hence creating domain-
invariant features that are normalized according to the respective domain. In a similar fashion,
Deep CORAL [123] provides a loss function for minimizing the covariances between target
and source domain features.

Discrepancy-based methods pose a di�erent approach to DDA. By directly minimizing the
discrepancy between activations from the source and target domain, the network learns to
generate reasonable predictions while incorporating information from the target domain. The
seminal work of Tzeng et al. [124] directly minimizes the discrepancy between a specific layer
with labeled samples from the source set and unlabeled samples from the target set.

Implicit discrepancy-based methods such as self-ensembling [109] have become widely used for
unsupervised domain adaptation. Self-ensembling is based on the Mean Teacher network [110],
which was first introduced for semi-supervised learning tasks. Due to the similarity between
unsupervised domain adaptation and semi-supervised learning, there are very few adjustments
that need to be made to employ the method for the purposes of DDA. Mean Teacher optimizes
a task loss and a consistency loss, the latter minimizing the discrepancy between predictions
on the source and target dataset. We further detail how Mean Teacher works in Section 6.6.1.

There are a few studies that report results of using di�erent data domains for medical imaging
by making use of the unsupervised domain adaptation literature. The work [126] discusses the
impact of deep learning models across di�erent institutions, showing a statistically significant
performance decrease in cross-institutional train-and-test protocols. A few studies have
applied domain adaptation to medical imaging directly by using adversarial training [127–132],
with some studies using generative models to augment training [133,134]. Nevertheless, to the
best of our knowledge, this present work is the first to address the problem of domain shift in
medical image segmentation by extending the unsupervised DA self-ensembling method to
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semantic segmentation tasks.

6.5 Semi-supervised learning and
unsupervised domain adaptation

A common approach for improving training when few labeled examples are available is semi-
supervised learning, which is defined as follows: given a labeled dataset with distribution
P (Xl) and unlabeled data with distribution P (Xu), learn from both labeled and unlabeled
data in order to improve a supervised learning task (say, classification) or an unsupervised
learning task (say, clustering).

Semi-supervised learning methods tend to perform well when unlabeled data actually come
from the same distribution as the labeled data. This allows the learning algorithm to leverage
its knowledge using unlabeled data, which usually represents the majority of samples. As
promising as semi-supervised learning is, the assumption that the distribution of unlabeled
data P (Xu) is similar to P (Xl) often fails in real-world applications. We refer the reader to a
thorough evaluation of semi-supervised learning methods and their limitations in [135].

It often happens that models are applied in situations that are largely di�erent from those
in which they were originally trained. Examples include di�erent weather conditions for
outdoor activity recognition, or di�erent cities for training driverless vehicles. Those changes
in scenario shift the data distribution P (X), reducing the quality of the predictions in cases
where the model was not properly adapted to the desired condition.

The di�erence between the distributions from the examples used in training and test sets
is called domain shift. Consider a source dataset with input distribution P (Xs) and label
distribution P (Y |Xs), as well as a target dataset with input distribution P (Xt) and labels
P (Y |Xt), P (Xs) ”= P (Xt). Domain adaptation can be addressed via a supervised approach
where labeled data from the target domain is available, or via unsupervised learning where
only unlabeled data is available for the target domain.

When a method addresses the problem of domain adaptation using unlabeled data for the
target domain, which is the most common and useful scenario, the task at hand is called
unsupervised domain adaptation. Unsupervised domain adaptation methods assume that
distributions P (Xs), P (Y |Xs) and P (Xt) are available, while P (Y |Xt) is not. In other words,
only the source dataset provides labeled examples. Hence, the task is to leverage knowledge
from the target domain using the unlabeled data available in P (Xt).
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6.6 Method

This section details the base domain adaptation methods that we used for the medical image
application. We further discuss the changes that are needed to enable unsupervised domain
adaptation for segmentation tasks, as opposed to the typical classification scenario.

6.6.1 Self-ensembling and mean teacher

Self-ensembling was originally conceived as a viable strategy for generating predictions on
unlabeled data [136]. The original paper proposes two di�erent models for self-ensembling.
The first model, called �, employs a consistency loss between predictions on the same input.
Each input from a batch is passed twice through a neural network, each time with distinct
augmentation parameters, to yield two di�erent predictions. A squared di�erence between
those predictions is minimized along with the cross-entropy for the labeled examples. The
second model, called temporal ensembling, works under the assumption that as the training
progresses, averaging the predictions over time on unlabeled samples may contribute to a
better approximation of the true labels. This pseudo-label is then considered as a target
during training. The squared di�erence between the averaged predictions and the current one
is minimized along with the cross-entropy for labeled examples. The network performs the
exponential moving average (EMA) to update the generated targets at every epoch:

f Õ(x)t = –f Õ(x)t≠1 + (1 ≠ –)f(x)t (6.1)

Where t is the step, x is the data, f(·) is the network and – is a momentum term that controls
how far the ensemble reaches training history data.

Self-ensembling was extended to directly combine model weights instead of predictions. This
adaptation is called the Mean Teacher [110] model. Considering Eq. (6.1) for updating the
target pseudo-labels, Mean Teacher updates the model weights at each step, thus generating
a slightly improved model compared to the model without the EMA, a framework which is
linked to the Polyak-Ruppert Averaging [137, 138]. In this scenario, the EMA model was
named teacher, and the standard model, student. The update function is as follows:

◊Õ
t = –◊Õ

t≠1 + (1 ≠ –)◊t (6.2)

where ◊ are the model parameters, t is the step and – is the hyperparameter regulating
the importance of the current model’s weights with respect to previous models. The best
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results are achieved when – is increased later on during training, causing the model to forget
more about the parameters during earlier stages of training than later when the network is
performing better.

Each training step involves a loss component for both labeled and unlabeled data. All samples
from a batch are evaluated by both the student and teacher models, with their respective
predictions compared via the consistency loss. The labeled data, however, is also compared
to its ground truth, as traditionally performed in segmentation tasks, in what we call the
task loss:

J(◊) = Jtask(◊) + “Jconsistency(◊) + ⁄R(◊) (6.3)

where “ and ⁄ are the Lagrange multipliers that represent, respectively, the consistency
and regularization weights. The “ hyperparameter was empirically found to improve results
when it varied through time, given that in the earlier training steps the network continues
to generate poor results. The consistency weight follows a sigmoid ramp-up saturating at a
given user-defined value.

Mean Teacher follows the dynamics of model distillation [139]. In this scenario, a trained model
is used for predicting instances and its output is used as labels for another, smaller model.
This is considered a good practice as soft labels tend to better represent the characteristics
of the classes (e.g., the representation distance between a Siberian Husky and an Alaskan
Malamute should arguably be smaller than the distance between a Siberian Husky and a
Persian Cat). Unlike traditional distillation formulations, the Mean Teacher framework also
uses the teacher model to generate labels for unlabeled data and represents a model of the
same size that is simultaneously updated during training.

The Mean Teacher framework was also extended for unsupervised domain adaptation in [109].
Among the proposed changes, the authors modified the data batches such that each batch
consists of images from both the source and target domains. At each step, the student model
evaluates images from the source domain and computes derivatives via a task loss based on
the ground truth. The target domain images, which are unlabeled, are used to compute the
consistency loss by comparing predictions from both student and teacher models. It di�ers
from its original formulation in that the teacher model only has access to unlabeled examples
(in this case, examples from the target domain). Each loss function is thus responsible for
improving learning at a single domain. The task loss is evaluated by comparing the predictions
against the ground truth for the labeled examples (source domain). For the consistency loss,
MSE is often used to evaluate the predictions from both student and teacher models for the
unlabeled examples (target domain).
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6.6.2 Adapting mean teacher for segmentation tasks

Both the original and adapted Mean Teacher versions for unsupervised domain adaptation
rely on the cross-entropy classification cost. Given that we are not dealing with classification
but with a segmentation task, we need to minimize a di�erent loss function that takes into
consideration the particularities of that task. Originally proposed in [140], the Dice loss
generates reliable segmentation predictions due to its low sensitivity to class imbalance:

Jtask(◊) = ≠ 2 ú qN
i pigi

qN
i pi + qN

i gi
(6.4)

where pi and gi are flattened predictions and ground truth values for an instance, respectively.
Dice was kept as the task loss for both baseline and adaptation experiments. Note that the
dice loss is computed for the entire batch at once, unlike the typical strategy of averaging
when using cross-entropy, for instance.

A second problem when training the student and teacher models for segmentation tasks is the
inconsistency introduced between training samples of the student and teacher models when a
spatial transformation (e.g., translation, rotation, or any similar spatial transformation for
the purpose of data augmentation) is applied with di�erent parameters to both inputs of the
teacher and student models. To solve that problem we used the same approach employed
by [141] as shown in Figure 6.5. The spatial transformation g(x; „), where x is the input data
and „ are the transformation parameters (i.e., rotation angle), is applied to the student model
before feeding data into the model. For the teacher model, the same transformation g(x; „) is
applied to the predictions of the teacher model, causing both predictions to be aligned for
the consistency loss. This framework is possible because backpropagation only occurs for the
student model and therefore there is no need for di�erentiation on the delayed augmentation of
the teacher model. The proposed method is illustrated in Figure 6.4. Examples of images after
data augmentation and their respective compensated ground truth are shown in Figure 6.3.

Figure 6.3 Data augmentation result of random MRI axial-slices samples from the SCGM
Segmentation Challenge [2]. The ground truth is shown in green with the same transformation
parameters applied. Best viewed in color.
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Figure 6.4 Overview of the proposed method. The green panel represents the traditional
supervision framework. (1) The source domain input data is augmented by the g(x; „)
transformation and fed into the student model. (2) The teacher model parameters is updated
with an exponential moving average (EMA) from the student weights. (3) The traditional
segmentation loss, where the supervision signal is provided with the source domain labels.
(4) The input unlabeled data from the target domain is transformed with g(x; „Õ) before
the student model forward pass (note the di�erent parametrization „Õ). (5) The teacher
model prediction is transformed with g(x; „Õ) (same transformation as in Step 4). (6) The
consistency loss, which enforces consistency between student and teacher predictions.
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Figure 6.5 Data augmentation scheme used to overcome the spatial misalignment between
student and teacher model predictions. The same augmentation parameters are used for the
input data for the student model and on the teacher model predictions.
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6.6.3 Model architecture

Since the U-net [64] is widely applied in medical imaging field for diverse tasks, in order to
provide results that can generalize to a wide spectrum of applications, for all experiments we
employed the U-net [64] model architecture with 15 layers, group normalization [142], and
dropout. The rationale behind group normalization and not batch normalization is discussed
later.

To provide a fair comparison, we followed the recommendations from [44] and kept the same
model for the baseline and for our method. While the Mean Teacher model also acts as
a regularizer, we kept the same regularization weights for all comparisons. Regularization
weights can be fine-tuned, however, possibly improving even further the results of Mean
Teacher.

6.6.4 Baseline employed

We conducted an extensive hyperparameter search to find a proper baseline model, yielding a
mini-batch size of 12 and a dropout rate of 0.5. For training, we used the Adam optimizer [86]
with L2 penalty factor of ⁄ = 6 ◊ 10≠4, —1 = 0.99, and —2 = 0.999. For learning rate, we
used a sigmoid learning rate ramp-up strategy until epoch 50 followed by a cosine ramp-down
until epoch 350. Eq. (6.5) shows the sigmoid ramp-up strategy:

Rup(m) = –e≠5(1≠m)2
(6.5)

where – is the highest learning rate and m represents the ratio between current epoch and
the total ramp-up epochs. Eq. (6.6) presents the cosine ramp-down strategy:

Rdown(r) = –
cos(fir) + 1

2 (6.6)

where – is the highest learning rate and r is the ratio between the number of epochs after the
ramp-up procedure and the total number of epochs expected for training.

For a fair comparison, and to be able to assess the specific benefits of domain adaptation, no
hyperparameter from the baseline model was changed in the adaptation scenario. The only
change concerned the hyperparameters, which only a�ect the domain adaptation training
procedure.
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6.6.5 Consistency loss

The consistency loss is one of the most important aspects of Mean Teacher. If the di�erence
between predictions from teacher and student is not representative enough for distilling the
knowledge on the student model, the method will not properly work or training may even
diverge. In the original implementation of the Mean Teacher method, the mean squared error
(MSE) was proposed:

JMSE(◊) =
qN

i (pi ≠ gi)2

N
(6.7)

where pi and gi are flattened predictions from student and teacher, respectively.

As an alternative, the cross-entropy is more commonly used for classification tasks. The
cross-entropy is defined as:

JCE(◊) = ≠
Nÿ

i

pi log gi (6.8)

where pi and gi are predictions from student and teacher, respectively. However, cross-entropy
is also known to be sensitive to class imbalance.

Our preliminary experiments led to use MSE with di�erent weights per class to address the
problem of class imbalance. However, this approach relies on thresholding predictions from
the teacher to define binary expected voxel values for the student. Defining both the correct
weights and the threshold value is a di�cult task that did not seem to improve overall results.

The same problem happens with more complex losses, e.g., the Focal Loss [143], due to
additional hyperparameters (in this case, “ and —).

We have thus explored other losses: the Dice loss, presented in Section 6.6, and the Tversky
loss [144]. The Tversky loss is a variation of the dice loss that aims at mitigating the problem
of class imbalance, which is common in medical image segmentation tasks. It is defined as:

Jtversky(◊) = ≠
qN

i p0ig0i
qN

i p0ig0i + –
qN

i p0ig1i + —
qN

i p1ig0i
(6.9)

where p0i and g0i represent the predicted probabilities and expected ground-truth of a voxel
that belongs to the correct tissue, whereas p1i and g1i respectively represent the predicted
probabilities and expected ground-truth (0 or 1) of a voxel that belongs to any other tissue.
The – and — hyperparameters address the problem of class imbalance. The Tversky loss,
however, is hampered by the di�culty of determining more hyperparameters alongside the
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consistency weight value (same issue as noted above with the weighted MSE).

We have also noticed that both Dice and Tversky coe�cients are problematic when used as
consistency losses. Albeit properly representing the nature of the task, their formulation is
based on multiplication and it is assumed that the ground-truth is binary, i.e. gi œ {0, 1}.
However, given that we use the teacher soft outputs (i.e., not binary), both Dice and Tversky
losses do not obey the proper score orientation: S(G, y) > S(Gú, y), where S is the scoring
function and y is the ground truth. This relationship should hold only if G is a better
probabilistic forecast, which is not the case for Tversky and Dice when using soft targets.

For example, if pi = 0.9 and gi = 1.0, the numerator yields 0.9. However, when pi = 0.9 and
gi = 0.9, the score should increase (because the predicted and ground-truth are the same),
but instead the numerator decreases to 0.81 and the output score also decreases.

One way to overcome this issue is to threshold the teacher’s predictions such that the loss
functions can work as expected. However, identifying suitable threshold values is not trivial
since they drastically impact how the network adapts, and reduces the benefits of using a
distillation-based [139] approach. An alternative to thresholding is to modify the formulations
of the loss functions such that they can properly handle non-binary labels. A detailed analysis
of such modifications falls outside the scope of this paper so we left it for future work.

6.6.6 Batch Normalization and Group Normalization
for domain adaptation

Batch Normalization [79] is a method used to improve the training of deep neural networks
through the stabilization of the distribution of layer inputs. Nowadays, Batch Normalization
is pervasive in most deep learning architectures, enabling the use of large learning rates and
helping with convergence.

Initially thought to help with the internal covariate shift (ICS) problem [79], Batch Normal-
ization was recently found [145] to smooth the optimization landscape of the network due to
the improvement of the Lipschitzness, or —-smoothness [145] of both loss and gradients.

Batch Normalization works di�erently for training and inference. During training, the
normalization happens using the batch statistics, while on inference it uses the population
statistics, usually estimated with moving averages on each batch during the training procedure.
This strategy, however, is problematic for domain adaptation via Mean Teacher, given that
there are multiple distributions being fed during training, causing the Batch Normalization
statistics to be computed with both source and target data.

One possible approach to overcome that issue is to use di�erent batch statistics for the source
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and the target domains as done in AdaBN [122]. Implementing this approach within the
training procedure is easily achieved using modern frameworks because it only requires to
forward the batch to each domain separately [109]. However, in the implementation of French
et al., both source and target domain data were used to compute the running average at
inference. One should ideally perform running averages and population statistics on both
domains separately, though at the expense of increased complexity on training, especially
when running on a multi-GPU scenario with small batch sizes, a very common scenario in
segmentation tasks where synchronization is also required.

Besides the mentioned issues, Batch Normalization also su�ers from sub-optimal results when
using small batch sizes [142], which are very common in segmentation tasks due to memory
requirements. For those reasons, we chose Group Normalization [142], an alternative to Batch
Normalization where channels are divided into groups and where mean and variance are
computed within each group regardless of batch sizes. Group Normalization works consistently
better than Batch Normalization with small batch sizes (typically <15) and does not require
storing running averages for the population statistics, simplifying the training and inference
procedures and providing better results for our scenario that involves domain adaptation and
segmentation tasks.

6.6.7 Hyperparameters for unsupervised
domain adaptation

A problem shared by many techniques for unsupervised domain adaptation is how to set proper
hyperparameters such as the learning rate or the consistency weight. In unsupervised settings,
there are no labeled data from the target domain so the estimation of hyperparameters
from the source distribution alone can be completely di�erent from those from the target
distribution.

An alternative method to solve this issue is to use reverse cross-validation [146], which was
also used in [117]. However, once again, this approach comes at the expense of increasing
the complexity of the validation process. Nevertheless, we found that the estimation of
hyperparameters for Mean Teacher on the source domain yielded robust results, therefore we
adopted them in our experiments. We are aware that such a simple strategy is a limitation
of our evaluation procedure since we could probably achieve better results for our proposed
method by incorporating a more sophisticated hyperparameter estimation procedure.
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6.7 Materials

The Spinal Cord Gray Matter Challenge [2] dataset is a multi-center, multi-vendor, and
publicly-available MRI data collection that is comprised of 80 healthy subjects with 20 subjects
from each center.

The demographics of the dataset range from a mean age of 28.3 up to 44.3 years old.
Three di�erent MRI systems were employed (Philips Achieva, Siemens Trio, Siemens Skyra)
with distinct acquisition parameters. The voxel size resolution of the dataset ranges from
0.25 ◊ 0.25 ◊ 2.5 mm up to 0.5 ◊ 0.5 ◊ 5.0 mm and the number of axial slices ranged from 3
to 28. The dataset is split between training (40) and test (40) sets, and the test set labels
are hidden (not publicly available). For each labeled slice in the dataset, 4 gold-standard
segmentation masks were manually created by 4 independent experts (one per participating
center). For more detailed information regarding the dataset (e.g., the MRI parameters),
please see [2].

Since the Spinal Cord Gray Matter Challenge dataset contains data from all 4 centers both
in the training and test sets, we used a non-standard split in order to evaluate our technique
within the domain adaptation scenario, where the domain present in the test set is not
contaminated by the training data domain. Therefore, we used centers 1 and 2 as the training
set, center 3 as the validation set, and center 4 as the test set.

We used the unlabeled data from center 4 test set (which does not contain publicly-available
labels) as the unlabeled data for the target domain, and we used the training data from center
4 (with labels) as the test set to evaluate the final performance of our model. We also slice all
3D samples into 2D axial slices and resampled each slice to 0.25 ◊ 0.25 mm. An overview of
the dataset is presented in Figure 6.6.

6.8 Experiments

We have designed several experiments to understand the behavior of di�erent aspects of
domain adaptation on the medical imaging domain. We have also performed ablation studies
and evaluated multiple metrics for each center.

6.8.1 Adapting to di�erent centers

We trained the network with both centers 1 and 2 in a supervised fashion. We then adapted
the network to centers 3 and 4 separately. With this setup, we were able to address three
related research questions on adaptation and semi-supervised learning:
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MRI Data

Labels

Center 2

MRI Data

Labels

Training set

Unlabeled
MRI Data

Center 3

Adaptation

MRI Data

Labels
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Unlabeled
MRI Data

Center 4

MRI Data

Labels

Test set

Adaptation

Figure 6.6 Overview of the data splitting method for training machine learning models. Each
colored square represents a single subject of the dataset (containing multiple axial slices).
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Table 6.1 Evaluation results in di�erent centers. The evaluation and adaptation columns
represent, respectively, the centers where testing and adaptation data were collected. Results
are averages and standard deviations over 10 runs (with independent initialization of random
weights). Values highlighted represent the best results at each center. All experiments were
trained in both centers 1 and 2 simultaneously. Dice represents the Sørensen–Dice coe�cient
and mIoU represents the mean Intersection over Union.

Evaluation Adaptation Dice mIoU Recall Precision Specificity Hausdor�

Center 1
Baseline 47.25 ± 0.10 31.46 ± 0.08 94.90 ± 0.29 32.18 ± 0.09 99.66 ± 0.0 2.88 ± 0.01
Center 3 47.71 ± 0.16 31.84 ± 0.14 94.18 ± 0.16 32.69 ± 0.15 99.67 ± 0.0 2.85 ± 0.01
Center 4 48.42 ± 0.92 32.47 ± 0.80 94.51 ± 0.57 33.33 ± 0.93 99.68 ± 0.02 2.86 ± 0.02

Center 2
Baseline 50.69 ± 0.09 34.44 ± 0.08 94.79 ± 0.24 35.32 ± 0.10 99.61 ± 0.00 2.89 ± 0.01
Center 3 51.05 ± 0.25 34.76 ± 0.23 93.78 ± 0.42 35.83 ± 0.31 99.62 ± 0.01 2.87 ± 0.01
Center 4 51.29 ± 0.67 34.98 ± 0.61 93.87 ± 0.91 36.06 ± 0.82 99.63 ± 0.02 2.87 ± 0.02

Center 3
Baseline 82.81 ± 0.33 71.05 ± 0.36 90.61 ± 0.63 77.09 ± 0.34 99.86 ± 0.0 2.14 ± 0.02
Center 3 84.72 ± 0.18 73.67 ± 0.28 87.43 ± 1.90 83.17 ± 1.62 99.91 ± 0.01 2.01 ± 0.03
Center 4 84.45 ± 0.14 73.30 ± 0.19 87.13 ± 1.77 82.92 ± 1.76 99.91 ± 0.01 2.02 ± 0.03

Center 4
Baseline 69.41 ± 0.27 53.89 ± 0.31 97.22 ± 0.11 54.95 ± 0.35 99.70 ± 0.00 2.50 ± 0.01
Center 3 73.27 ± 1.29 58.50 ± 1.57 94.92 ± 1.48 60.93 ± 2.51 99.77 ± 0.03 2.36 ± 0.06
Center 4 74.67 ± 1.03 60.22 ± 1.24 93.33 ± 1.96 63.62 ± 2.42 99.80 ± 0.02 2.29 ± 0.05

1. How do predictions change at inference time when images from domains di�erent than
the source domain are presented?

2. How does the network change its predictions to the novel domain after performing
domain adaptation?

3. How well does an adapted network generalize when presented with images that were not
used during training, neither as a supervised signal nor as an unsupervised adaptation
component?

Results of this first experiment are presented in Table 6.1.

Regarding Question 1. Both centers 1 and 2 are included in the training set and we would
like to assess whether additional unsupervised data from di�erent domains (centers 3 or 4)
improve generalization on the centers 1 and 2. For both adapted centers 3 and 4, results
for all metrics (except for recall) outperform the baseline, suggesting a positive change in
prediction performance for the source domain after domain adaptation on unseen domains
leveraging unlabelled data.

To answer Question 2, one can analyze the rows where both evaluation and adaptation centers
are the same (3 or 4). Both rows present the highest values for almost all metrics (again,
excepted for recall). This suggests that domain adaptation is working properly for that
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scenario.

Regarding Question 3, by looking at evaluation on center 3 and adaptation using center 4
(and vice-versa), we observe gains over the baseline once again for most metrics, suggesting
that domain adaptation improves generalization for unseen centers.

6.8.2 Varying the consistency loss

We executed multiple runs of the Mean Teacher algorithm by varying the consistency loss to
determine which one works best. We focused just on losses that do not contain additional
hyperparameters. The Tversky Loss [144], for instance, is quite similar to the Dice loss but
with two additional hyperparameters (– and —).

Our choices of losses were thus limited to cross-entropy, mean squared error (MSE), and
Dice, as previously described in Section 6.6. We believe, however, that a thorough analysis of
distinct loss functions is of great importance for domain adaptation and should be explored
in future work.

6.8.3 Behavior of Dice loss and thresholding

A well-known fact regarding the Dice loss is that it usually produces predictions concentrated
around the upper and lower bounds of the probability distribution, with very low entropy.
As in [107], we used a high threshold value (0.99) for the Dice predictions to produce a
balanced model. We have found, however, that the domain adaptation method also regularizes
the network predictions, shifting the Dice probability distribution outside of the probability
bounds. For that reason, we have decreased the Dice prediction threshold to 0.9 (instead of
0.99), which produced a more balanced model in terms of precision and recall.

6.8.4 Training stability

For unsupervised domain adaptation, it is important to have a stable training procedure.
Since, in the most di�cult scenarios, there are no annotations for validating the adaptation,
an unstable training may produce sub-optimal adaptation results.

To evaluate the training stability, we tried distinct consistency weights for each possible
consistency loss and we evaluated the di�erence between the best values that were found and
the final results after 350 epochs. Table 6.2 summarizes results of this analysis.

We can observe that cross-entropy consistently fails, even with di�erent weights, potentially
due to the class imbalance of this particular task. Though it also achieves high dice values in



78

Table 6.2 Results on evaluating on center 3. The training set includes centers 1 and 2
simultaneously, with unsupervised adaptation for center 3. Values within parentheses represent
the best validation results for each metric. The remaining values represent the final result
after 350 epochs.

Loss Weight Dice mIoU Recall Precision Specificity Hausdor�

CE

5 0.00 (85.50) 0.00 (74.91) 0.00 (95.01) 0.00 (98.90) 100.0 (100.00) 0.00 (0.00)
10 0.00 (80.73) 0.00 (69.54) 0.00 (83.21) 0.00 (98.78) 100.0 (100.00) 0.00 (0.00)
15 6.43 (37.03) 4.89 (26.06) 5.38 (77.05) 17.34 (65.85) 100.0 (100.00) 0.28 (0.00)
20 2.30 (67.61) 1.86 (52.55) 2.09 (65.00) 7.94 (96.57) 100.0 (100.00) 0.12 (0.03)

Dice

5 76.76 (80.74) 62.76 (68.16) 97.88 (99.66) 63.72 (72.50) 99.71 (99.81) 2.36 (2.16)
10 4.77 (10.55) 2.45 (5.64) 96.25 (99.99) 2.45 (5.85) 79.59 (99.75) 8.80 (2.57)
15 2.30 (7.74) 1.16 (4.12) 99.95 (100.00) 1.16 (4.62) 55.07 (99.80) 11.75 (2.50)
20 1.79 (4.43) 0.90 (2.27) 99.99 (100.00) 0.90 (2.30) 42.02 (99.84) 12.68 (2.43)

MSE

5 83.7 (83.88) 72.2 (72.46) 91.24 (98.19) 78.1 (78.57) 99.87 (99.93) 2.1 (2.00)
10 84.38 (84.38) 73.19 (73.19) 90.15 (99.07) 80.12 (80.12) 99.88 (99.94) 2.05 (1.89)
15 84.59 (84.59) 73.49 (73.50) 89.19 (98.52) 81.28 (81.28) 99.89 (99.89) 2.03 (2.03)
20 84.5 (84.50) 73.36 (73.37) 90.36 (94.63) 80.16 (80.16) 99.88 (99.98) 2.05 (1.46)

its best scenario during training. Thus cross-entropy becomes a possible alternative to MSE
when a few annotated images are available for validation in the target domain. Figure 6.7
shows how the training diverges for cross-entropy after several iterations.

We can observe that both Dice and cross entropy have trouble stabilizing the training after
achieving high results. However, MSE tends to be more invariant to consistency weight, thus
being a robust approach when no annotated data is available at the target center. As in [109],
we also tried confidence thresholding, although we did not observe improvements.

6.9 Ablation studies

This section describes the ablation analyses, the purpose of which was to better understand
the behavior of di�erent components in the domain adaptation scenario.

6.9.1 Exponential moving average (EMA)

The improvement seen in Table 6.1 could also be explained by introducing the exponential
moving average (EMA) during the training procedure, since it averages and smoothes the
SGD trajectories.

To demonstrate that the improvement is specific to using unlabeled data and does not only
come from the exponential average component, we performed an ablation experiment that
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Figure 6.7 Per-epoch validation results for the teacher model at center 3 with cross-entropy
as the consistency loss. Training was conducted in both centers 1 and 2 simultaneously, and
adapted to center 3 with consistency weight “ = 5. Best viewed in color.

leaves the EMA active but sets the consistency weight to zero. This experiment allowed us to
evaluate the impact of the exponential average in the absence of the unlabeled data used to
enforce consistency.

We reproduced the same experimental setup from the Table 6.1 but with the consistency
weight set to zero. Results are presented in Table 6.3 and show that the EMA model (teacher)
presents no gains over the non-averaged model (the supervised baseline). This could arguably
be due to a poorly chosen –. However, note that Mean Teacher, which heavily relies on the
EMA model, was nevertheless able to outperform a purely-supervised method by a great
margin as seen in Table 6.1.

Table 6.3 Results of the ablation experiment where the baseline model was trained and
compared against its exponential moving average (EMA) model without using Mean Teacher
training scheme with unlabeled data. All experiments were trained in both center 1 and 2
simultaneously. Center 3 is the validation set and Center 4 is the test set.

Evaluation Version Dice mIoU Recall Precision Specificity Hausdor�

Center 3 Baseline 83.06 71.36 90.98 77.24 99.86 2.13
EMA 83.09 71.40 90.97 77.30 99.86 2.13

Center 4 Baseline 69.41 53.90 97.20 54.98 99.70 2.48
EMA 69.50 54.00 97.19 55.09 99.71 2.48
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(a) A visualization of the t-SNE 2D non-

linear embedding projection for the super-

vised learning scenario. The colors represent

data from di�erent centers.

(b) A visualization of the t-SNE 2D non-

linear embedding projection for the domain

adaptation scenario. The colors represent

data from di�erent centers.

Figure 6.8 Execution of t-SNE algorithm for two di�erent scenarios. Best viewed in color.

6.10 Domain shift visualization

Next, we investigated how domain adaptation a�ects the prediction space of segmentation at
distinct centers. By using t-SNE [147], a non-linear dimensionality reduction technique, we
were able to assess changes on the predictive perception of the network regarding unsupervised
data. All data presented in the following figures were not used for training.

We created two baselines for this experiment. The first model was trained in a supervised
fashion following the same hyperparameters presented in Section 6.6.4. The second was an
adaptation scenario where both centers 1 and 2 were used as supervised centers and 3 as
adaptation target. The vectors projected with t-SNE represents the features from the network
prior to the final sigmoid activation.

Both t-SNE executions had a learning rate set to 10, perplexity to 30, and were executed
for about 1,000 iterations1. We notice that more iterations than 1,000 preserved the groups’
structure but further compressed them. This made visualizing the centers harder, so 1,000
was a good trade-o� between identifying emerging groups and interpretability.

Results from the supervised experiment are shown in Figure 6.8a. Note that there is a clear
separation between data from centers used during training (1 and 2) and unseen centers (3

1
We used the TensorBoard embedding projector, available at https://github.com/tensorflow/

tensorboard

https://github.com/tensorflow/tensorboard
https://github.com/tensorflow/tensorboard
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and 4). This shows that the network predictions greatly di�er according to the center to
which the sample belongs to.

When adapting the network with unlabelled samples from a di�erent domain, predictions
become more di�use, at least for centers presented during training. Results from the unsuper-
vised adaptation experiment are shown in Figure 6.8b. In that scenario, centers with labeled
data (centers 1 and 2) form clusters with domains seen only in an unsupervised manner (3)
or not presented to the network at all (4). A possible explanation for the close proximity
of clusters (1, 4) and of clusters (2, 3) is the similarity of intensity distribution within each
pair of clusters, as highlighted in Figure 6.2. See appendix for more details regarding the
relationship between the data distribution and the t-SNE clusters.

6.11 Conclusion and limitations

Variability and scarcity of annotations in the medical imaging context is still challenging for
machine learning. The large set of parameters that can be used to acquire image modalities
and the lack of standardized protocols or industry standards are pervasive across the entire
field.

In this work, we have shown that unsupervised domain adaptation, without depending on
annotations, is an e�ective way to increase the performance of machine learning models for
medical imaging across multiple centers.

Through the evaluation of multiple metrics in a large set of experiments, we have shown
how self-ensembling methods can improve generalization on unseen domains through the
leverage of unlabeled data from multiple domains. We also performed an ablation study
that demonstrated strong evidence that the improvements come by the introduction of the
unlabeled data and not only due to the exponential moving average.

We assessed how cross-entropy (when used as a consistency loss function) fails at maintaining
training stability when the number of epochs progresses. We have discussed how this can lead
to potential problems in more challenging scenarios for multiple centers. We also discussed
issues related to the Dice loss when used as consistency loss.

We acknowledged the following limitations in our study. Firstly, we did not evaluate adversarial
training methods for domain adaptation. Even considering the Mean Teacher as the current
state-of-the-art method on many datasets, we believe that further analyses on the same
realistic small data regime could significantly increase the importance of our contributions,
and thus we leave that aspect for future work.

Secondly, the single-task evaluation of the gray matter segmentation could be extended to
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other tasks in other domains. Increasing the number of centers alongside the number of tasks
would be relevant for confirming results obtained in the present study.

Further work on the field could lead to methods capable of measuring the risk of adaptation
to particular centers or domains. This would be an important step towards understanding
the limitations of the domain adaptation methods.

We believe that the problems that arise from the variability of medical imaging modalities
require rethinking some of the strong assumptions made in machine learning models and
training procedures. An important step in that direction is to reassess the importance of
proper multi-domain evaluation in studies and medical imaging challenges, which rarely
provide a test set from di�erent domains (such as di�erent centers, machines, etc) that contain
the variability found in real-world scenarios.

6.12 Source-code and dataset availability

In the spirit of Open Science and reproducibility, the source-code used to perform the
experiments presented in this study is publicly available 2.

The dataset used for this work is also available on the Spinal Cord Gray Matter Segmentation
Challenge website3.
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6.14 Article Appendix: Extended visualizations

In Figure 6.9 we show an extended visualization of the t-SNE embeddings from the domain
adaptation scenario where the underlying raw intensity distribution is described together with
their respective clusters.

Figure 6.9 Extended visualization based on t-SNE embedding from the domain adaptation
scenario in Figure 6.8b. The chart in the middle represents the pixel distribution from each
center. Note how similar distributions tend to form clusters on the prediction space. Best
viewed in color.
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CHAPTER 7 GENERAL DISCUSSION

In this section, a general discussion is presented regarding the relationship between the articles
and the proposed research questions.

In Chapter 4, where a method was developed and evaluated to segment the spinal cord gray
matter, we answer the question of how modern Deep Learning methods can improve on the
current state-of-the-art results. The developed method achieved better results in 8 out of
10 metrics when evaluated against other 6 independently developed methods, showing that
modern Deep Learning architectures can indeed improve on the previous results even when
compared to the U-Net [64], one of the most used architectures for segmentation tasks.

In Chapter 5, a semi-supervised method was developed not only the supervision signal from
labeled data samples but also from the unlabeled data that are more commonly available in
medical imaging. This work answers the research question on how can segmentation methods
be extended to take leverage of unlabeled data. By extending a previous work on semi-
supervised learning, we developed a semi-supervised training procedure that uses unlabeled
data while still using all traditionally data augmentation techniques. This work demonstrated
that by introducing unlabeled data during the training procedure, it was possible to achieve
better results than only using the supervision signal from annotated data.

In Chapter 6, an unsupervised domain adaptation technique was developed to address the
generalization gap present when a Deep Learning model that was trained on a source domain,
is applied to another slightly di�erent domain. This work answers the question regarding
how this generalization can be mitigated using only unlabeled data from the target domain.
This work builds upon the previous semi-supervised segmentation work and shows that when
evaluated with unseen domains, this technique can achieve significantly better results when
compared to the same model using only labeled data from the source domain.

It is important to note that the three mentioned themes used a publicly available and multi-
center dataset that contained a realistic dataset size. For domain adaptation, this dataset
was split on a non-standard way in order to avoid contamination from all centers in the test
set and provide a careful realistic evaluation of a practical scenario.

These methods were also open-sourced on public GitHub repositories or as a tool inside the
Spinal Cord Toolbox (SCT) framework that is also open-source and freely available.
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CHAPTER 8 CONCLUSION, LIMITATIONS AND RECOMMENDATIONS

Given the evaluations presented in this work, it is clear that Deep Learning methods are very
promising. It was shown in this research that in the pure supervised context, Deep Learning
showed significant improvements when compared to previously developed methods. When
comparing the Dice score, that measures the overlapping between predicted segmentations
and gold standards, the developed method achieved 0.85 while the best previous approach
achieved 0.80. These are, to the best of our knowledge, the state-of-the-art single model
results up to the moment of publication of this thesis. A limitation of this work is that
only healthy subjects were evaluated, however, we believe that an extensive evaluation with
diseased patients with multiple sclerosis, or ALS is paramount to assess its performance out
of the healthy control groups.

It also clear that by taking unlabeled data, which is often unused for model training in
medical imaging, semi-supervised learning approaches can indeed improve the segmentation
results without requiring any additional labeled sample. When comparing the Dice score,
our method using unlabeled data achieved a value of 0.70, while the supervised only result
was 0.67. A limitation of this work on semi-supervised learning is a single dataset evaluation
with multiple methods, however, this is a di�cult task because there is a lack of standard
datasets and as mentioned in [44], realistic evaluation of these methods requires an equal
budget hyper-parameter optimization procedures and same network architectures, that takes
a lot of e�ort and might still be biased due to the pre-defined range of hyper-parameter priors.

We have also shown that improvements can be achieved to reduce the generalization gap
often present on models trained on the source domain data and then applied to a di�erent
target domain, as is common in multi-center studies. Our results showed that by using our
technique, a model trained on source domain and adapted to an unseen domain, achieved 0.74
Dice score when evaluated in the same unseen domain, while a purely supervised technique
achieved only a 0.69 Dice score. A limitation of this work on domain adaptation is the lack of
hyper-parameter optimization for the target domain, which is a di�cult matter that was left
for further research avenues given that if there is no labeled data in the target domain, the
choice of hyper-parameters might be suboptimal.

In this work, we showed 3 main methods to improve the segmentation performance of the
spinal cord gray matter, although not limited to spinal cord gray matter only. Deep Learning,
however, is not a panacea for medical imaging. It still has many open challenges, such as
the generalization gaps found when these models are applied to data coming from di�erent
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distributions, a quite common scenario with medical images. In practice, medical imaging
often breaks the assumptions where machine learning models rely on, such as the identical
distribution between training and test sets. This is an active area of research, however, since
it’s an issue that touches a fundamental assumption of these models, it is definitely not trivial
to deal with.

While more and more data is being made available, the lack of annotations is still a problem
in the medical imaging community, not to mention the usual scenario of using private
datasets that makes studies almost unfeasible to compare. It is clear that privacy-preserving
techniques [148] can mitigate the problem, however, these techniques are still in the early
stages of development.

Further developments are also ongoing, such as the development of techniques that can be
used to inform machine learning models with the MRI parametrization, therefore improving
the generalization of a single model to di�erent contrasts. We believe that these techniques
can provide important improvements when used to a wide variety of contrasts.

Other potential research opportunities are related to the introduction of better/di�erent
inductive biases. Examples of inductive biases can include rotational invariance, symmetry,
or anatomical structure priors. Nowadays, CNNs only provide a certain level of rotation
invariance, for example, not to mention that it is very cumbersome to incorporate anatomical
priors [149] into these models. However, it is clear that by adding more inductive biases, these
models will be able to generalize better and potentially have a lower sample complexity.

Another important line of study is regarding the transition from research to clinical practice.
Many other techniques can improve the results of this work, such as ensemble of models,
test-time data augmentation, better pre-processing and post-processing techniques, to name
a few. However, without large and labeled datasets, it becomes really di�cult to evaluate the
performance of these models for practical applications. Evaluations are often over-optimistic
due to the reasons mentioned in the Chapter 6, where proper evaluation splits are often
ignored in many challenges and studies of the field, therefore we would like to emphasize the
importance of proper evaluation techniques that can reflect a realistic practical scenario.

It is also important to focus on fundamental aspects of machine learning models, such as
the aforementioned issues related to the strong assumptions made by employed learning
principles. Applied research is important, however, without a long term agenda on these
fundamental issues, the field can enter into a stage of diminishing returns where only very
small improvements will be able to be achieved without rethinking the underlying learning
principles.



87

BIBLIOGRAPHY

[1] D. Weishaupt, V. D. Kochli, and B. Marincek, How does MRI work? : an introduction
to the physics and function of magnetic resonance imaging. Springer, 2006.

[2] F. Prados, J. Ashburner, C. Blaiotta, T. Brosch, J. Carballido-Gamio, M. J. Cardoso,
B. N. Conrad, E. Datta, G. Dávid, B. D. Leener, S. M. Dupont, P. Freund, C. A. G.
Wheeler-Kingshott, F. Grussu, R. Henry, B. A. Landman, E. Ljungberg, B. Lyttle,
S. Ourselin, N. Papinutto, S. Saporito, R. Schlaeger, S. A. Smith, P. Summers, R. Tam,
M. C. Yiannakas, A. Zhu, and J. Cohen-Adad, “Spinal cord grey matter segmentation
challenge,” NeuroImage, vol. 152, pp. 312–329, 2017.

[3] H.-H. Chang, A. H. Zhuang, D. J. Valentino, and W.-C. Chu, “Performance measure
characterization for evaluating neuroimage segmentation algorithms,” NeuroImage,
vol. 47, no. 1, pp. 122–135, aug 2009.

[4] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” ArXiv
e-prints, mar 2016.

[5] L. R. Squire, D. Berg, F. E. Bloom, S. Du Lac, A. Ghosh, and N. C. Spitzer, Fundamental
Neuroscience: Fourth Edition, 2012.

[6] S. A. Amukotuwa and M. J. Cook, “Spinal Disease: Neoplastic, Degenerative, and
Infective Spinal Cord Diseases and Spinal Cord Compression,” Clinical Gate, pp. 511–
538, 2007.

[7] F. Prados, M. J. Cardoso, M. C. Yiannakas, L. R. Hoy, E. Tebaldi, H. Kearney, M. D.
Liechti, D. H. Miller, O. Ciccarelli, C. A. M. G. Wheeler-Kingshott, and S. Ourselin,
“Fully automated grey and white matter spinal cord segmentation,” Scientific Reports,
vol. 6, no. June, p. 36151, 2016.

[8] R. Schlaeger, N. Papinutto, V. Panara, C. Bevan, I. V. Lobach, M. Bucci, E. Caverzasi,
J. M. Gelfand, A. J. Green, K. M. Jordan, W. A. Stern, H. C. Von B??dingen,
E. Waubant, A. H. Zhu, D. S. Goodin, B. A. C. Cree, S. L. Hauser, and R. G.
Henry, “Spinal cord gray matter atrophy correlates with multiple sclerosis disability,”
Annals of Neurology, vol. 76, no. 4, pp. 568–580, 2014.



88

[9] B. De Leener, M. Taso, J. Cohen-Adad, and V. Callot, “Segmentation of the human
spinal cord,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 29,
no. 2, pp. 125–153, 2016.

[10] C. Blaiotta, P. Freund, A. Curt, J. Cardoso, and J. Ashburner, “A probabilistic
framework to learn average shaped tissue templates and its application to spinal cord
image segmentation,” Proceedings of the 24th Annual Meeting of ISMRM, Singapore,
vol. 1449, 2016.

[11] S. M. Dupont, B. De Leener, M. Taso, A. Le Troter, S. Nadeau, N. Stikov, V. Callot,
and J. Cohen-Adad, “Fully-integrated framework for the segmentation and registration
of the spinal cord white and gray matter,” NeuroImage, vol. 150, pp. 358–372, 2017.

[12] A. J. Asman, F. W. Bryan, S. A. Smith, D. S. Reich, and B. A. Landman, “Groupwise
multi-atlas segmentation of the spinal cord’s internal structure,” Medical Image Analysis,
vol. 18, no. 3, pp. 460–471, 2014.

[13] R. Giraud, V. T. Ta, N. Papadakis, J. V. Manjón, D. L. Collins, and P. Coupé, “An
Optimized PatchMatch for multi-scale and multi-feature label fusion,” NeuroImage, vol.
124, pp. 770–782, 2016.

[14] M. Jorge Cardoso, K. Leung, M. Modat, S. Keihaninejad, D. Cash, J. Barnes, N. C. Fox,
and S. Ourselin, “STEPS: Similarity and Truth Estimation for Propagated Segmentations
and its application to hippocampal segmentation and brain parcelation,” Medical Image
Analysis, vol. 17, no. 6, pp. 671–684, 2013.

[15] E. Datta, N. Papinutto, R. Schlaeger, A. Zhu, J. Carballido-Gamio, and R. G. Henry,
“Gray matter segmentation of the spinal cord with active contours in MR images,”
NeuroImage, vol. 147, pp. 788–799, 2017.

[16] A. Porisky, T. Brosch, E. Ljungberg, L. Y. W. Tang, Y. Yoo, B. De Leener, A. Traboulsee,
J. Cohen-Adad, and R. Tam, Grey Matter Segmentation in Spinal Cord MRIs via
3D Convolutional Encoder Networks with Shortcut Connections. Cham: Springer
International Publishing, 2017, pp. 330–337.

[17] Y. LeCun, Y. Bengio, G. Hinton, L. Y., B. Y., and H. G., “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Advances In Neural Information Processing Systems,
pp. 1–9, 2012.



89

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778.

[20] L.-C. Chen, G. Papandreou, F. Schro�, and H. Adam, “Rethinking Atrous Convolution
for Semantic Image Segmentation,” arXiv preprint, 2017.

[21] D. Amodei, R. Anubhai, E. Battenberg, C. Carl, J. Casper, B. Catanzaro, J. Chen,
M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han,
A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger,
J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang,
B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu, “Deep-speech 2: End-to-end speech
recognition in English and Mandarin,” Jmlr W&Cp, vol. 48, p. 28, 2015.

[22] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,
“Deep contextualized word representations,” NAACL, 2018.

[23] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.
van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in
medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[24] S. Grillner, “Interaction between Sensory Signals and the Central Networks Controlling
Locomotion in Lamprey, Dogfish and Cat,” in Neurobiology of Vertebrate Locomotion.
London: Palgrave Macmillan UK, 1986, pp. 505–512.

[25] V. Dietz, “Spinal cord pattern generators for locomotion,” Clinical Neurophysiology,
vol. 114, no. 8, pp. 1379–1389, aug 2003.

[26] C. Y. Saab, The spinal cord. Chelsea House Publishers, 2006.

[27] M. Filippi and M. A. Rocca, “Linking disability and spinal cord imaging outcomes in
MS,” Nature Reviews Neurology, vol. 9, no. 4, pp. 189–190, apr 2013.

[28] M.-Ê. Paquin, M. El Mendili, C. Gros, S. Dupont, J. Cohen-Adad, and P.-F. Pradat,
“Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis,” American Journal
of Neuroradiology, 2017.

[29] P. Freund, A. Curt, K. Friston, and A. Thompson, “Tracking Changes following Spinal
Cord Injury,” The Neuroscientist, vol. 19, no. 2, pp. 116–128, apr 2013.



90

[30] C. Gros, B. De Leener, A. Badji, J. Maranzano, D. Eden, S. M. Dupont, J. Talbott,
R. Zhuoquiong, Y. Liu, T. Granberg, R. Ouellette, Y. Tachibana, M. Hori, K. Kamiya,
L. Chougar, L. Stawiarz, J. Hillert, E. Bannier, A. Kerbrat, G. Edan, P. Labauge,
V. Callot, J. Pelletier, B. Audoin, H. Rasoanandrianina, J.-C. Brisset, P. Valsasina,
M. A. Rocca, M. Filippi, R. Bakshi, S. Tauhid, F. Prados, M. Yiannakas, H. Kearney,
O. Ciccarelli, S. Smith, C. A. Treaba, C. Mainero, J. Lefeuvre, D. S. Reich, G. Nair,
V. Auclair, D. G. McLaren, A. R. Martin, M. G. Fehlings, S. Vahdat, A. Khatibi,
J. Doyon, T. Shepherd, E. Charlson, S. Narayanan, and J. Cohen-Adad, “Automatic
segmentation of the spinal cord and intramedullary multiple sclerosis lesions with
convolutional neural networks,” NeuroImage, vol. 184, pp. 901–915, jan 2019.

[31] B. De Leener, S. Kadoury, and J. Cohen-Adad, “Robust, accurate and fast automatic
segmentation of the spinal cord,” NeuroImage, vol. 98, pp. 528–536, 2014.

[32] J. Jo and Y. Bengio, “Measuring the tendency of CNNs to Learn Surface Statistical
Regularities,” 2017.

[33] P. W. Stroman, C. Wheeler-Kingshott, M. Bacon, J. M. Schwab, R. Bosma, J. Brooks,
D. Cadotte, T. Carlstedt, O. Ciccarelli, J. Cohen-Adad, A. Curt, N. Evangelou, M. G.
Fehlings, M. Filippi, B. J. Kelley, S. Kollias, A. Mackay, C. A. Porro, S. Smith, S. M.
Strittmatter, P. Summers, and I. Tracey, “The current state-of-the-art of spinal cord
imaging: Methods,” NeuroImage, vol. 84, pp. 1070–1081, jan 2014.

[34] M. Yiannakas, H. Kearney, R. Samson, D. Chard, O. Ciccarelli, D. Miller, and
C. Wheeler-Kingshott, “Feasibility of grey matter and white matter segmentation
of the upper cervical cord in vivo: A pilot study with application to magnetisation
transfer measurements,” NeuroImage, vol. 63, no. 3, pp. 1054–1059, nov 2012.

[35] P. Held, U. Dorenbeck, J. Seitz, R. Frund, and H. Albrich, “MRI of the abnormal
cervical spinal cord using 2D spoiled gradient echo multiecho sequence (MEDIC) with
magnetization transfer saturation pulse. A T2* weighted feasibility study.” Journal of
neuroradiology. Journal de neuroradiologie, vol. 30, no. 2, pp. 83–90, mar 2003.

[36] T. M. Mitchell, Machine Learning, ser. McGraw-Hill International Editions. McGraw-
Hill, 1997.

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.
211–252, 2015.



91

[38] C. Olivier, B. Schölkopf, and A. Zien, “Semi-Supervised Learning,” Interdisciplinary
sciences computational life sciences, vol. 1, no. 2, p. 524, 2006.

[39] X. Zhu, “Semi-supervised learning literature survey,” Computer Science, University of
Wisconsin-Madison, vol. 2, no. 3, p. 4, 2006.

[40] A. Rasmus, H. Valpola, and M. Berglund, “Semi-Supervised Learning with Ladder
Network,” arXiv, pp. 1–17, 2015.

[41] S. Laine and T. Aila, “Temporal Ensembling for Semi-Supervised Learning.”

[42] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results,” 2017.

[43] T. Miyato, S.-I. Maeda, M. Koyama, and S. Ishii, “Virtual Adversarial Training: a
Regularization Method for Supervised and Semi-supervised Learning,” 2017.

[44] A. G. B. Oliver, A. G. B. Odena, C. G. B. Ra�el, E. G. B. Cubuk, and I. J. G. B.
Goodfellow, “Realistic Evaluation of semi-supervised learning algortihms,” International
conference on Learning Representations, pp. 1–15, 2018.

[45] C. Baur, S. Albarqouni, and N. Navab, “Semi-supervised Deep Learning for Fully
Convolutional Networks,” Miccai-2017, pp. 311–319, 2017.

[46] N. Souly, C. Spampinato, and M. Shah, “Semi Supervised Semantic Segmentation Using
Generative Adversarial Network,” in 2017 IEEE International Conference on Computer
Vision (ICCV). IEEE, oct 2017, pp. 5689–5697.

[47] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman, “Learning Bounds for
Domain Adaptation,” Tech. Rep.

[48] W. M. Kouw, “An introduction to domain adaptation and transfer learning,” Tech.
Rep., 2018.

[49] C. S. Perone and J. Cohen-Adad, “Promises and limitations of deep learning for medical
image segmentation,” Journal of Medical Artificial Intelligence, vol. 2, no. 0, 2019.

[50] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual Domain Adaptation: A
survey of recent advances,” IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 53–69,
may 2015.

[51] G. Csurka, “Domain Adaptation for Visual Applications: A Comprehensive Survey,”
2017.



92

[52] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon,
A. Nori, A. Criminisi, D. Rueckert, and B. Glocker, “Unsupervised domain adaptation
in brain lesion segmentation with adversarial networks,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 10265 LNCS, pp. 597–609, 2017.

[53] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand, and V. Lempitsky, “Domain-Adversarial Training of Neural Networks,” Journal
of Machine Learning Research, vol. 17, pp. 1–35, 2015.

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” oct 2018.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9908 LNCS, pp. 630–645, 2016.

[56] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen,
M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan, C. Fougner, T. Han,
A. Hannun, B. Jun, P. LeGresley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger,
J. Raiman, S. Satheesh, D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang,
B. Xiao, D. Yogatama, J. Zhan, and Z. Zhu, “Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin,” dec 2015.

[57] G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. . A. Ranzato, “Phrase-Based &
Neural Unsupervised Machine Translation,” Tech. Rep.

[58] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines,” Proceedings of the 27th International Conference on Machine Learning,
no. 3, pp. 807–814, 2010.

[59] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural
Computation, vol. 1, pp. 541–551, 1989.

[60] D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber, “Deep neural networks
segment neuronal membranes in electron microscopy images,” Advances in neural {. . . },
pp. 1–9, 2012.



93

[61] C. Farabet, C. Couprie, L. Najman, and Y. Lecun, “Learning hierarchical features
for scene labeling,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 8, pp. 1915–1929, 2013.

[62] Y. Ganin and V. Lempitsky, “N4-Fields: Neural Network Nearest Neighbor Fields for
Image Transforms,” jun 2014.

[63] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 07-12-June, 2015, pp. 3431–3440.

[64] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp.
234–241, 2015.

[65] J. Cohen-Adad and L. L. Wald, “Array Coils,” in Quantitative MRI of the Spinal Cord.
Elsevier, 2014, pp. 59–67.

[66] M. C. Yiannakas, H. Kearney, R. S. Samson, D. T. Chard, O. Ciccarelli, D. H. Miller, and
C. A. M. Wheeler-Kingshott, “Feasibility of grey matter and white matter segmentation
of the upper cervical cord in vivo: A pilot study with application to magnetisation
transfer measurements,” NeuroImage, vol. 63, no. 3, pp. 1054–1059, nov 2012.

[67] N. Papinutto, R. Schlaeger, V. Panara, E. Caverzasi, S. Ahn, K. J. Johnson, A. H. Zhu,
W. A. Stern, G. Laub, S. L. Hauser, and R. G. Henry, “2D phase-sensitive inversion
recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically
feasible acquisition times,” Journal of Magnetic Resonance Imaging, vol. 42, no. 3, pp.
698–708, sep 2015.

[68] T. Brosch, L. Y. Tang, Y. Yoo, D. K. Li, A. Traboulsee, and R. Tam, “Deep 3D
Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration
Applied to Multiple Sclerosis Lesion Segmentation,” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1229–1239, 2016.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” Proceedings of the IEEE International
Conference on Computer Vision, vol. 11-18-Dece, pp. 1026–1034, 2016.



94

[70] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-
Level Arrhythmia Detection with Convolutional Neural Networks,” arXiv preprint,
2017.

[71] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic Image
Segmentation with Deep Convolutional Nets and Fully Connected CRFs,” Iclr, pp. 1–14,
2014.

[72] B. De Leener, S. Lévy, S. M. Dupont, V. S. Fonov, N. Stikov, D. Louis Collins, V. Callot,
and J. Cohen-Adad, “SCT: Spinal Cord Toolbox, an open-source software for processing
spinal cord MRI data,” NeuroImage, vol. 145, pp. 24–43, 2017.

[73] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional networks for mid
and high level feature learning,” Proceedings of the IEEE International Conference on
Computer Vision, pp. 2018–2025, 2011.

[74] B. H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning of hierarchical
representations with convolutional deep belief networks,” in Proceedings of the 26th
Annual International Conference on Machine Learning, 2009, pp. 95–103.

[75] L. Zhang, Y. Ji, and X. Lin, “Style Transfer for Anime Sketches with Enhanced Residual
U-net and Auxiliary Classifier GAN,” CoRR, 2017.

[76] J. Yosinski, C. Je�, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding Neural
Networks Through Deep Visualization,” in Deep Learning Workshop, International
Conference on Machine Learning (ICML), 2015.

[77] F. Yu and V. Koltun, “Multi-Scale Context Aggregation by Dilated Convolutions,”
ICLR, pp. 1–9, 2016.

[78] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the E�ective Receptive Field
in Deep Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.
Curran Associates, Inc., 2016, pp. 4898–4906.

[79] S. Io�e and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” in Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume 37. JMLR.org, 2015, pp.
448–456.



95

[80] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine
Learning Research, vol. 15, pp. 1929–1958, 2014.

[81] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Net-
works for Volumetric Medical Image Segmentation,” in 3D Vision (3DV), 2016 Fourth
International Conference on, 2016, pp. 565–571.

[82] M. Drozdzal, G. Chartrand, E. Vorontsov, L. Di Jorio, A. Tang, A. Romero, Y. Bengio,
C. Pal, and S. Kadoury, “Learning Normalized Inputs for Iterative Estimation in Medical
Image Segmentation,” arXiv preprint, 2017.

[83] P. Simard, D. Steinkraus, and J. Platt, “Best practices for convolutional neural networks
applied to visual document analysis,” Seventh International Conference on Document
Analysis and Recognition, 2003. Proceedings., vol. 1, no. Icdar, pp. 958–963, 2003.

[84] M. J. McAuli�e, F. M. Lalonde, D. McGarry, W. Gandler, K. Csaky, and B. L.
Trus, “Medical Image Processing, Analysis and Visualization in clinical research,” in
Proceedings 14th IEEE Symposium on Computer-Based Medical Systems, no. February.
IEEE Comput. Soc, 2001, pp. 381–386.

[85] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens,
H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, R. K. Niazy,
J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J. M. Brady, and P. M. Matthews,
“Advances in functional and structural MR image analysis and implementation as FSL,”
in NeuroImage, vol. 23, no. SUPPL. 1. Academic Press, jan 2004, pp. S208–S219.

[86] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimization,” Interna-
tional Conference on Learning Representations 2015, pp. 1–15, 2015.

[87] C. Szegedy, V. Vanhoucke, S. Io�e, J. Shlens, and Z. Wojna, “Rethinking the Inception
Architecture for Computer Vision,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2818–2826.

[88] G. Pereyra, G. Tucker, J. Chorowski, £. Kaiser, and G. Hinton, “Regularizing Neural
Networks by Penalizing Confident Output Distributions,” arXiv preprint, 2017.

[89] J. Rissanen, “A universal prior for integers and estimation by minimum description
length,” The Annals of statistics, pp. 416–431, 1983.

[90] P. D. Grünwald, The Minimum Description Length Principle. MIT Press, 2007.



96

[91] M. Hardt and O. Vinyals, “Understanding Deep Learning Requires Re- Thinking
Generalization,” International Conference on Learning Representations 2017, pp. 1–15,
2017.

[92] S. Kornblith, J. Shlens, and Q. V. Le Google Brain, “Do Better ImageNet Models
Transfer Better?” Tech. Rep.

[93] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep
neural networks?” Advances in Neural Information Processing Systems 27 (Proceedings
of NIPS), vol. 27, pp. 1–9, 2014.

[94] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand, V. Lempitsky, U. Dogan, M. Kloft, F. Orabona, and T. Tommasi, “Domain-
Adversarial Training of Neural Networks,” Journal of Machine Learning Research,
vol. 17, pp. 1–35, 2016.

[95] D.-H. Lee, “Pseudo-label: The simple and e�cient semi-supervised learning method for
deep neural networks,” ICML 2013 Workshop: Challenges in Representation Learning,
pp. 1–6, 2013.

[96] Y. Grandvalet and Y. Bengio, “Semi-supervised Learning by Entropy Minimization,”
Advances in Neural Information Processing Systems - NIPS’04, vol. 17, pp. 529–536,
2004.

[97] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved Techniques for Training GANs,” 2016.

[98] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results,” 2017.

[99] B. T. Polyak and A. B. Juditsky, “Acceleration of Stochastic Approximation by Av-
eraging,” SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838–855,
1992.

[100] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network,”
mar 2015.

[101] G. French, M. Mackiewicz, and M. Fisher, “Self-ensembling for domain adaptation,” pp.
1–15, 2017.

[102] C. S. Perone, E. Calabrese, and J. Cohen-Adad, “Spinal cord gray matter segmentation
using deep dilated convolutions,” oct 2017.



97

[103] H. Xiao, Y. Wei, Y. Liu, M. Zhang, and J. Feng, “Transferable Semi-supervised Semantic
Segmentation,” 2017.

[104] C. Gros, B. De Leener, A. Badji, J. Maranzano, D. Eden, S. M. Dupont, J. Talbott,
R. Zhuoquiong, Y. Liu, T. Granberg, R. Ouellette, Y. Tachibana, M. Hori, K. Kamiya,
L. Chougar, L. Stawiarz, J. Hillert, E. Bannier, T. Shepherd, E. Charlson, S. Narayanan,
and J. Cohen-Adad, “Automatic segmentation of the spinal cord and intramedullary
multiple sclerosis lesions with convolutional neural networks,” may 2018.

[105] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring generalization
in deep learning,” in Advances in Neural Information Processing Systems, 2017, pp.
5947–5956.

[106] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese, “Taskonomy:
Disentangling task transfer learning,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[107] C. S. Perone, E. Calabrese, and J. Cohen-Adad, “Spinal cord gray matter segmentation
using deep dilated convolutions,” Nature Scientific Reports, vol. 8, no. 1, 2018.

[108] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oermann,
“Confounding variables can degrade generalization performance of radiological deep
learning models,” 2018.

[109] G. French, M. Mackiewicz, and M. Fisher, “Self-ensembling for visual domain adaptation,”
arXiv preprint arXiv:1706.05208, 2017.

[110] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results,” in Advances in
neural information processing systems, 2017, pp. 1195–1204.

[111] P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles, and D. L. Collins, “Patch-
based segmentation using expert priors: Application to hippocampus and ventricle
segmentation,” NeuroImage, vol. 54, no. 2, pp. 940–954, 2011.

[112] M. Lai, “Deep learning for medical image segmentation,” arXiv preprint
arXiv:1505.02000, 2015.

[113] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz, “Patch-based
convolutional neural network for whole slide tissue image classification,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2424–2433.



98

[114] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[115] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing,
2018.

[116] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, “Deep reconstruction-
classification networks for unsupervised domain adaptation,” in European Conference
on Computer Vision. Springer, 2016, pp. 597–613.

[117] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marc-
hand, and V. Lempitsky, “Domain-adversarial training of neural networks,” The Journal
of Machine Learning Research, vol. 17, no. 1, pp. 2096–2030, 2016.

[118] J. Ho�man, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and
T. Darrell, “Cycada: Cycle-consistent adversarial domain adaptation,” arXiv preprint
arXiv:1711.03213, 2017.

[119] S. Sankaranarayanan, Y. Balaji, C. D. Castillo, and R. Chellappa, “Generate To Adapt:
Aligning Domains using Generative Adversarial Networks,” Proceedings - 31th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, 2018.

[120] Y.-C. Liu, Y.-Y. Yeh, T.-C. Fu, S.-D. Wang, W.-C. Chiu, and Y.-C. F. Wang, “Detach
and Adapt: Learning Cross-Domain Disentangled Deep Representation,” Proceedings
- 31th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
2018.

[121] J. Cao, O. Katzir, P. Jiang, D. Lischinski, D. Cohen-Or, C. Tu, and Y. Li, “Dida:
Disentangled synthesis for domain adaptation,” arXiv preprint arXiv:1805.08019, 2018.

[122] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normalization for practical
domain adaptation,” arXiv preprint arXiv:1603.04779, 2016.

[123] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain adaptation,”
in European Conference on Computer Vision. Springer, 2016, pp. 443–450.

[124] E. Tzeng, J. Ho�man, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion:
Maximizing for domain invariance,” arXiv preprint arXiv:1412.3474, 2014.

[125] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” arXiv preprint, 2017.



99

[126] E. A. AlBadawy, A. Saha, and M. A. Mazurowski, “Deep learning for segmentation
of brain tumors: Impact of cross-institutional training and testing,” Medical physics,
vol. 45, no. 3, pp. 1150–1158, 2018.

[127] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane, D. Menon,
A. Nori, A. Criminisi, D. Rueckert et al., “Unsupervised domain adaptation in brain
lesion segmentation with adversarial networks,” in International Conference on Infor-
mation Processing in Medical Imaging. Springer, 2017, pp. 597–609.

[128] C. Chen, Q. Dou, H. Chen, and P.-A. Heng, “Semantic-Aware Generative Adversarial
Nets for Unsupervised Domain Adaptation in Chest X-ray Segmentation,” 2018.

[129] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The Unreasonable
E�ectiveness of Deep Features as a Perceptual Metric,” 2018.

[130] M. W. Lafarge, J. P. Pluim, K. A. Eppenhof, P. Moeskops, and M. Veta, “Domain-
adversarial neural networks to address the appearance variability of histopathology
images,” Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10553 LNCS, pp. 83–91,
2017.

[131] M. Javanmardi and T. Tasdizen, “DOMAIN ADAPTATION FOR BIOMEDICAL
IMAGE SEGMENTATION USING ADVERSARIAL TRAINING Scientific Computing
and Imaging Institute , University of Utah,” no. Isbi, pp. 554–558, 2018.

[132] Q. Dou, C. Ouyang, C. Chen, H. Chen, and P.-A. Heng, “Unsupervised Cross-Modality
Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial
Loss,” Tech. Rep., 2018.

[133] F. Mahmood, R. Chen, and N. J. Durr, “Unsupervised Reverse Domain Adaptation for
Synthetic Medical Images via Adversarial Training,” IEEE Transactions on Medical
Imaging, vol. PP, no. c, p. 1, 2018.

[134] A. Madani, M. Moradi, A. Karargyris, and T. Syeda-Mahmood, “Semi-supervised
learning with generative adversarial networks for chest x-ray classification with ability
of data domain adaptation,” IEEE 15th Symposium on Biomedical Imaging, no. Isbi,
pp. 1038–1042, 2018.

[135] A. Odena, A. Oliver, C. Ra�el, E. D. Cubuk, and I. Goodfellow, “Realistic evaluation
of semi-supervised learning algorithms,” 2018.



100

[136] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning,” arXiv preprint
arXiv:1610.02242, 2016.

[137] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by averaging,”
SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838–855, 1992.

[138] D. Ruppert, “E�cient estimations from a slowly convergent robbins-monro process,”
Cornell University Operations Research and Industrial Engineering, Tech. Rep., 1988.

[139] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[140] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural net-
works for volumetric medical image segmentation,” in 3D Vision (3DV), 2016 Fourth
International Conference on. IEEE, 2016, pp. 565–571.

[141] C. S. Perone and J. Cohen-Adad, “Deep semi-supervised segmentation with weight-
averaged consistency targets,” DLMIA MICCAI, pp. 1–8, sep 2018.

[142] Y. Wu and K. He, “Group Normalization,” 2018.

[143] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” IEEE transactions on pattern analysis and machine intelligence, 2018.

[144] S. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Tversky loss function for image
segmentation using 3d fully convolutional deep networks,” in International Workshop
on Machine Learning in Medical Imaging. Springer, 2017, pp. 379–387.

[145] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How Does Batch Normalization Help
Optimization? (No, It Is Not About Internal Covariate Shift),” 2018.

[146] E. Zhong, W. Fan, Q. Yang, O. Verscheure, and J. Ren, “Cross validation framework to
choose amongst models and datasets for transfer learning,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 6323 LNAI, no. PART 3, 2010, pp. 547–562.

[147] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[148] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in 2015 53rd Annual
Allerton Conference on Communication, Control, and Computing, Allerton 2015. IEEE,
sep 2016, pp. 909–910.



101

[149] O. Oktay, E. Ferrante, K. Kamnitsas, M. Heinrich, W. Bai, J. Caballero, S. Cook,
A. D. Marvao, D. O. Regan, B. Kainz, B. Glocker, and D. Rueckert, “Anatomically
Constrained Neural Networks ( ACNN ): Application to Cardiac Image Enhancement
and Segmentation,” vol. XX, no. X, pp. 1–10, 2017.


	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Medical review
	2.1.1 Spinal Cord
	2.1.2 Relevance of the Spinal Cord Gray Matter
	2.1.3 Magnetic Resonance Imaging (MRI)
	2.1.4 Magnetic Resonance Imaging of the Spinal Cord

	2.2 Machine Learning Review
	2.2.1 Supervised Learning
	2.2.2 Semi-supervised Learning
	2.2.3 Domain Adaptation
	2.2.4 Deep Learning
	2.2.5 Convolutional Neural Networks (CNN)
	2.2.6 Convolutional Neural Networks for Semantic Segmentation


	3 OVERALL METHODOLOGY
	4 ARTICLE 1: SPINAL CORD GRAY MATTER SEGMENTATION USING DEEP DILATED CONVOLUTIONS
	4.1 Article metadata
	4.2 Abstract
	4.3 Introduction
	4.4 Related Work
	4.4.1 Note on U-Nets
	4.4.2 Proposed method
	4.4.3 Datasets
	4.4.4 Training Protocol
	4.4.5 Data Availability

	4.5 Results
	4.5.1 Spinal Cord Gray Matter Challenge
	4.5.2 Ex vivo high-resolution spinal cord

	4.6 Discussion
	4.7 Acknowledgments
	4.8 Author Contributions
	4.9 Additional Information

	5 ARTICLE 2: DEEP SEMI-SUPERVISED SEGMENTATION WITH WEIGHT-AVERAGED CONSISTENCY TARGETS
	5.1 Article metadata
	5.2 Abstract
	5.3 Introduction
	5.4 Semi-supervised segmentation using Mean Teacher
	5.4.1 Segmentation data augmentation

	5.5 Experiments
	5.5.1 MRI Spinal Cord Gray Matter Segmentation

	5.6 Related Work
	5.7 Conclusion
	5.8 Acknowledgements

	6 ARTICLE 3: UNSUPERVISED DOMAIN ADAPTATION FOR MEDICAL IMAGING SEGMENTATION WITH SELF-ENSEMBLING
	6.1 Article metadata
	6.2 Abstract
	6.3 Introduction
	6.4 Related work
	6.5 Semi-supervised learning and  unsupervised domain adaptation
	6.6 Method
	6.6.1 Self-ensembling and mean teacher
	6.6.2 Adapting mean teacher for segmentation tasks
	6.6.3 Model architecture
	6.6.4 Baseline employed
	6.6.5 Consistency loss
	6.6.6 Batch Normalization and Group Normalization  for domain adaptation
	6.6.7 Hyperparameters for unsupervised  domain adaptation

	6.7 Materials
	6.8 Experiments
	6.8.1 Adapting to different centers
	6.8.2 Varying the consistency loss
	6.8.3 Behavior of Dice loss and thresholding
	6.8.4 Training stability

	6.9 Ablation studies
	6.9.1 Exponential moving average (EMA)

	6.10 Domain shift visualization
	6.11 Conclusion and limitations
	6.12 Source-code and dataset availability
	6.13 Acknowledgments
	6.14 Article Appendix: Extended visualizations

	7 GENERAL DISCUSSION
	8 CONCLUSION, LIMITATIONS AND RECOMMENDATIONS
	BIBLIOGRAPHY



