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RÉSUMÉ

Nous proposons une méthode éléments finis formulée pour des quantités d’intérêt. L’objectif
est d’accroître la précision des solutions numériques pour ces quantités, choisies par l’utilisateur,
sans pour autant perdre en précision globale.

Les approches traditionnelles visant à contrôler l’erreur en quantité d’intérêt utilisent habituelle-
ment la solution d’un problème adjoint pour: (i) estimer l’erreur en quantité d’intérêt; et (ii)
savoir comment adapter la discrétisation afin d’obtenir un espace éléments finis capable de
mieux représenter les quantités d’intérêt de la solution. Ces approches s’inscrivent donc dans
un procédé itératif de prédictions-corrections. Nous proposons d’utiliser cette même solution
adjointe conjointement avec un probleme primal modifié, tel que sa solution soit ajustée à
une valeur plus précise de la quantité d’intérêt. Ainsi, nous résolvons dans un espace qui est
déjà adapté à la quantité d’intérêt.

L’originalité de la présente approche consiste à utiliser la solution du problème adjoint
non pas en tant que substitut de la solution exacte/référence pour l’estimation d’erreur et
l’adaptation, mais en extrayant de celle-ci des valeurs des quantités d’intérêt extrêmement
précises. Ces valeurs sont ensuite utilisées dans une minimisation sous contrainte de l’énergie
(problème primal contraint) afin d’obtenir une solution plus précise en quantité d’intérêt.

Ensuite, nous étendons cette approche en quantité d’intérêt à un contexte de réduction de
modèles en utilisant la PGD. Ces méthodes reposent généralement sur des représentations
spectrales, et sont de plus en plus utilisées pour simuler des problèmes en haute dimension.
En ne considérant que les principaux modes propres de la solution, ces méthodes déjouent
la malédiction de la dimensionnalité et rendent possibles des simulations auparavant inenvis-
ageables.
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ABSTRACT

We present a finite element formulation of boundary-value problems that aims at constructing
approximations specifically tailored for the estimation of quantities of interest of the solution,
hence the name goal-oriented finite element method.

The main idea is to formulate the problem as a constrained minimization problem that
includes refined information in the goal functionals, so that the resulting model is capable
of delivering enhanced predictions of the quantities of interest. This paradigm constitutes
a departure from classical goal-oriented approaches in which one computes first the finite
element solution and subsequently adapts the mesh via a greedy approach, by controlling
error estimates measured in terms of quantities of interest using a posteriori dual-based error
estimates.

The formulation is then extended to the so-called Proper Generalized Decomposition method,
an instance of model order reduction methods, with the aim of constructing reduced-order
models tailored for the approximation of quantities of interest. Model order reduction meth-
ods aim at circumventing the curse of dimensionality arising from the high number of pa-
rameters of a given problem, by uncovering and/or exploiting lower dimensional structures
present in the model or in the solution.

Numerical examples are disseminated throughout the dissertation. They appear at the end
of each of the three main chapters and Chapter 5 consists of an application example, namely
a parametrized electrostatic cracked composite material.
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CHAPTER 1 INTRODUCTION

“The ancients considered mechanics in a twofold respect; as rational, which proceeds accurately
by demonstration, and practical. To practical mechanics all the manual arts belong, from
which mechanics took its name. But as artificers do not work with perfect accuracy, it comes
to pass that mechanics is so distinguished from geometry, that what is perfectly accurate is
called geometrical; what is less so is called mechanical. But the errors are not in the art, but
in the artificers. He that works with less accuracy is an imperfect mechanic; and if any could
work with perfect accuracy, he would be the most perfect mechanic of all; for the description
of right lines and circles, upon which geometry is founded, belongs to mechanics. Geometry
does not teach us to draw these lines, but requires them to be drawn; for it requires that the
learner should first be taught to describe these accurately, before he enters upon geometry;
then it shows how by these operations problems may be solved.”

Sir Isaac Newton, Philosophiæ Naturalis Principia Mathematica, 1687

1.1 Overview

Along with theory and experimentation, the scientific method has recently been comple-
mented with a third pillar, that of computer simulation. The advent of the computer has
helped the scientific community to build and test more sophisticated models than ever before,
validate hypotheses, and contribute to new knowledge in virtually all realms of science and
beyond. Advances in Computational Science and Engineering, as well as improvement of
computer performances have allowed one to simulate complex multiphysics and multiscale
problems. In turn, this has led computational scientists to contemplate simulations that are
increasingly more time- and resource-consuming. This is the case when, for instance, one is
interested in quantifying uncertainties or solving inverse and optimization problems.

The objectives of uncertainty quantification analyses usually encompass the characterization
of uncertainties in input or material parameters of a given model, and the propagation of
these uncertainties to model outputs. Parameter identification, model calibration, or inverse
problems, which refer to the activities that consist in estimating parameters from a priori
knowledge and measurement data, usually require, alike uncertainty propagation or opti-
mization problems, that output quantities of interest be estimated for a very large number
of parameter samples. These activities are sometimes collectively referred to as multi-query
studies. Applications span a myriad of domains where simulation-based decision-making is
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needed.

From these observations, it has now become clear that numerical simulations should focus
on efficiently and accurately predicting output quantities of interest or response surfaces,
that is, specific features of the solution rather than the whole solution itself. Within this
context, one may think of two avenues in order to achieve this goal. First, goal-oriented error
estimation and adaptive methods have been developed in order to estimate and control errors
with respect to quantities of interest. These dual-based methods involve an adjoint problem
whose solution provides weighted residual indicators to identify the sources of errors that
influence these quantities the most. These approaches have been successful in accelerating
the convergence of the approximation towards the exact quantities of interest when compared
to classical approaches based on global-norm error estimates.

Secondly, one could reduce the model complexity in order to enable fast simulation of com-
putational problems. Such a need has led to the development of model reduction techniques,
whose main feature is to represent the solution in terms of modal expansions on some par-
ticular basis. Model reduction techniques usually differ by the choice of said basis. The key
ingredient is that the modes are selected by order of importance, so that only a few of them
are often needed to ensure a correct representation of the underlying physical phenomenon.
As a result, an accurate reduced solution can be obtained at a fraction of the cost associated
with that of the full solution.

The main objective of the present research work is to develop a goal-oriented model re-
duction technique, i.e. a model reduction method that is specifically tailored towards the
approximation of quantities of interest. The originality of the proposed methodology is to
simultaneously combine the concepts and methods from both the fields of model reduction
and goal-oriented approaches. This is different from what is currently done when one first
constructs a reduced model and subsequently corrects the model by estimating and control-
ling, in a post-processed fashion, the sources of errors in the reduced solution. Instead, we
proposed a new paradigm in which accurate information from quantities of interest is directly
incorporated into the calculation of the reduced solution. The cornerstone of the approach
is to augment the original problem with constraints defined with respect to quantities of
interest of the solution. The methodology will be applied to one given class of model reduc-
tion methods, namely, the Proper Generalized Decomposition (PGD) method that consists
in constructing an approximate solution of an initial or boundary-value problem using the
concept of separation of variables. Nonetheless, the proposed strategy is far more general
and can be applied to other model reduction methods.

The main contributions of the thesis are
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• the formulation of a new goal-oriented approach for the Finite Element Method: deriva-
tion, theoretical analysis, code implementation, and testing of the method through
multiple numerical examples;

• the extension of numerical strategies for the imposition of constraints in the Proper
Generalized Decomposition framework: review of classical methods to solve constrained
problems (e.g. penalization, Lagrangian, and Uzawa methods), derivation, analysis,
code implementation, and testing on several Poisson problems;

• the development of a goal-oriented methodology for reduced-order modeling: formu-
lation, implementation to various problems with different separations of variables (x
and y space variables, space and parameter variables);

• the application of the proposed method to the simulation of a cracked composite ma-
terial: electrostatic study with extra parameters including the values of the electrical
conductivity in the different plies as well as an extra parameter controlling the position
of the electrode that injects the direct current into the material.

1.2 Literature review and state-of-the-art

1.2.1 Model reduction methods

Due to the so-called curse of dimensionality [21], FEM and other classical methods to approx-
imate solutions of high-dimensional initial and boundary-value problems can rapidly become
intractable when the prescribed tolerance on the solution is too small. An alternative ap-
proach to classical methods has been to develop model reduction techniques. Generally,
these methods are based on the representation of the solution in terms of modes expanded
on some specific basis. Such approaches significantly reduce the need for extensive com-
puter resources. They are justified by the fact that it is often unnecessary to calculate every
detail of the solution in order to obtain a good understanding of the underlying physical
phenomena. The objective of using such methods is to capture the principal modes of the
system. Discrete solutions of reduced models can often provide reasonable approximations in
much lower dimensional spaces than those in which the fully discretized solution lives. When
solving partial differential equations, using a fully discretized model, one quickly reaches the
limits of most current computers, while only achieving a rather crude description of complex
phenomena. On the other hand, model reduction methods lead to problems with m× d×N
unknowns, m being the number of retained modes, d the number of parameters or variables,
and N the number of degrees of freedom for each parameter. The interest is twofold: first,
the modes are captured by order of importance; second, the size of the system to be solved
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grows linearly with the number of degrees of freedom, which is a considerable improvement
compared to classical approaches using brute force and leading to systems of exponential
size Nd [35]. Note that model reduction methods are also useful when the problem only
contains a small number of parameters or variables as they circumvent the need to solve ex-
tremely large systems. In summary, model reduction enables one to deliver predictions using
a simplified model compared to the complete one, thus allowing simulation at extremely low
cost, or even in real-time, which is useful for optimization, DDDAS (Direct Dynamic Data
Driven Application System), and applications involving multi-query approaches.

In this section, we briefly recall the essential features, and provide an overview, of model re-
duction methods. We will then focus on one of such methods, namely the PGD (Proper Gen-
eralized Decomposition) method since it will be used in the next chapters of this manuscript.

Spectral representations

Most approaches in model reduction methods use the technique known as POD (Proper
Orthogonal Decomposition) [10, 53], also known as Karhunen-Loève decomposition [61, 71],
SVD (Singular Value Decomposition), PCA (Principal Component Analysis) or PCD (Prin-
cipal Component Decomposition) in other contexts [11, 86]. The method relies on the pro-
jection of the problem onto a reduced basis, predetermined during the offline stage. This
first stage, also known as the learning stage (by the method of snapshots for instance; other
methods can also be used, such as the CVT method (Central Voronoi Tessellation) [52]),
consists in solving the full problem for some values of the parameters (in space, it comes
down to solving the problem on a crude mesh, or on a sub-domain of the structure [7]; in
time, one solves on a shorter time interval than that of the full simulation). These solutions
then constitute what are usually called the snapshots. In the second stage of the method, one
performs a Singular Value Decomposition on these snapshots in order to obtain a truncated
spectral representation and to get rid of redundant information. Next is the online stage,
which consists in solving the system projected onto the reduced basis composed of the first m
modes retained in the SVD previously performed. As a result, one finally obtains a reduced
solution in the form of a truncated spectral decomposition of the fully discretized solution,
which retains the modes by order of importance. The Reduced Basis (RB) methods [27, 84]
constitute a similar approach to POD methods and mainly differs with respect to the choice
of snapshots. In essence, the POD method aims at injecting knowledge about the solution
into the model on behalf of the user in order to reduce the complexity of the underlying
problem.

By construction, POD has a significant drawback, that of being extremely dependent on the
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learning phase. Indeed, all the information about the system of interest is encapsulated within
the reduced basis. Therefore, if critical information is missing from the learning stage, i.e.
the learning phase has not been properly and carefully performed, one may obtain a solution
of rather poor quality. It should be noted, however, that there exist methods allowing one
to update the reduced basis when its poor efficiency is detected [29, 52], but these methods
often rely on greedy algorithms. Furthermore, this happens during the online phase, which
is not ideal when one is faced with time constraints.

POD methods have nevertheless demonstrated their efficiency on a wide range of complex
systems, e.g. in the case of problems in solide mechanics involving large deformations, non-
linearities (elasto-plastic, elasto-visco-plastic, geometric non-linearities, etc.), incompressibil-
ity, homogenization, etc. [72, 95], and in fluid mechanics [33]. Their efficiency has also been
reported for uncertainty quantification [29] (in this case one only needs to incorporate an
additional term corresponding to the probabilistic parameter in the spectral decomposition),
and for parametrized PDEs [29, 83]. Of course, the more complicated or sophisticated the
problem is, the more adaptive steps are required for the POD to work reasonably. For in-
stance, in the incompressible or non-linear case or when uncertainty is added to the model,
several authors have reported that the sensitivity to the learning phase was increased [29, 95].
Many developments have followed POD, such as the weighted POD [52], in which a higher
importance is given to some snapshots than others, or the hybrid CVOD [52], cheaper than
POD (it requires to solve several small eigenvalue problems instead of a large one).

In [70], the authors derive an equation-free POD, where they find the functions appearing
in the spectral decomposition by explicit means, instead of solving ODEs/PDEs, as it is
generally done. They assert that their POD method is thereby more stable, since a truncation
of the higher modes, corresponding to shorter wavelengths, irreparably causes a drift in the
solution because of the unresolved shorter scales, at which the energy is dissipated. A remedy
to this problem is presented in [70]: it consists in adding a spectral viscosity to the model,
which handles energy dissipation and thus improves stability.

Model reduction methods are also increasingly employed in the field of electronic engineering
(automatic, optimal control, etc.) [59, 86]. The objective in these communities consists in
reducing the dimension of the system while preserving input/output relations, as well as other
properties like stability and passivity. Other types of model reduction thus come into play,
which involve mathematical methods such as Arnoldi, Lànczos, Padé, Krylov (by the way,
[86] presents a relation between Padé and Krylov), as well as diverse variants of those such
as AWE (Asymptotic Waveform Equation), PVL (Padé via Lànczos) or PRIMA (Passive
Reduced-order Interconnect Macromodeling Algorithm). A last category of methods aim
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at preserving moments of quantities of interest [59, 86], but they seem to suffer from bad
conditioning issues.

The Proper Generalized Decomposition

The PGD method has been proposed as an alternative to POD approaches. Its main advan-
tage is that it does not require a learning phase [75]. For this reason, it is said to be an a
priori reduction method, while POD is said to be a posteriori. The PGD method can also be
understood as a generalized SVD [48] or low-rank approximation of the solution. Instead of
computing the modes beforehand and projecting the problem on the subspace of snapshots
at the beginning of the simulation, the modes are computed on the go as successive rank-1
updates of the current approximation. PGD is most often viewed as an iterative process,
where at each iteration the solution is improved by adding a new mode, or correction, optimal
with respect to a given metric.

PGD methods rely on a construction on the fly of separated representations without using a
priori knowledge of the solution to a given problem. In addition to space and time, one could
seek a separated representation with respect to other parameters (e.g. material coefficients,
geometry, boundary conditions, initial conditions, loading) that may even involve uncertain-
ties. The separation of variables allows for a significant reduction in computational costs,
allowing simulation at extremely low cost or even in real-time, as well as optimization, and
other many query applications [35].

Model reduction methods are currently in rapid expansion, and their performance in terms
of reduction of computational time and memory storage can be impressive. However, these
are still relatively new methods in academics and industries, and they still require further
advances. Our attention will primarily focus on PGD approaches since they do not require
a learning phase, and all the calculations can be done online.

1.2.2 Goal-oriented error estimation

Goal-oriented error estimation is the activity in computational sciences and engineering that
focuses on the development of computable estimators of the error measured with respect
to user-defined quantities of interest. The use of discretization methods (such as the fi-
nite element method) for solving initial- and boundary-value problems necessarily produces
approximations that are in error when compared to the exact solutions. Methods to esti-
mate discretization errors were proposed as early as the seventies [14] and initially focused
on developing error estimators in terms of global (energy) norms. Typical methods are the
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so-called recovery-type methods, explicit residual error estimators, subdomain residual meth-
ods, element residual methods, etc., see [4, 15, 92] and references therein. An issue in those
approaches is that they provide error estimates in abstract norms, which fail to inform the
users about specific quantities of engineering interest or local features of the solutions. It
is only in the late nineties (except maybe the early work of Gartland [50]) that researchers
started to develop error estimators with respect to user-defined quantities of interest. These
error estimators and corresponding adaptive methods are based on the solution of adjoint
problems associated with the quantity of interest. These methods are usually referred to
as the dual-weighted residual method [18, 19, 20], a posteriori bounds for linear-functional
outputs [80], or goal-oriented error estimators [78, 82]. In this case, the user is able to specify
quantities of interest, written as functionals defined on the space of admissible solutions, and
to assess the accuracy of the approximations in terms of these quantities. It is also note-
worthy that the corresponding adaptive approaches are based on greedy strategies, which
involve the following sequence of steps: 1) compute an approximate solution to the problem,
2) estimate the error in the approximation, 3) derive local refinement indicators based on the
error estimate and adapt the discretization space, 4) iterate the process until convergence
within some prescribed tolerance is reached. The objective of the research dissertation will
be to construct approximations on a given discretization space that are more accurate in the
quantity of interest than those obtained using the classical adaptive approach.

1.3 Objectives of the thesis

The overall objective of the manuscript is to formulate a goal-oriented model reduction
method, i.e. a model reduction technique that is specifically tailored towards the approx-
imation of quantities of interest. In the present dissertation, this objective is divided into
four sub-objectives.

1. The first objective is to derive a goal-oriented finite element formulation whose so-
lution shows improved convergence in the quantities of interest when compared to a
traditional finite element solution. To achieve this specific goal, we reformulated the
original minimization problem as a constrained minimization problem. The constraints
essentially carry enhanced information regarding the quantities of interest, that can be
obtained by solving the adjoint problems beforehand.

2. The second objective deals with the imposition of constraints in the model order re-
duction framework of the PGD. There exists a variety of numerical methods to enforce
constraints on a boundary-value problem, e.g. Penalization, Lagrangian, Uzawa or Aug-
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mented Lagrangian. To tackle the second objective, we extended these methods to the
case of PGD reduced solutions, and analyzed the resulting numerical strategies. The
methods were tested and compared on a two-dimensional Poisson problem with either
pure Neumann, or Robin, boundary conditions.

3. The third objective answers the overarching research problematic of formulating a goal-
oriented PGD method. To this particular end, we developed a “two-step progressive
Galerkin approach”. The first step consists in performing a rank-1 update of the ad-
joint solution. The second step incorporates this information in the computation of a
constrained rank-1 update of the primal solution.

4. The last objective consists in applying the new methodology to a problem of engineering
interest, that of the electrostatic study of a cracked composite material.

1.4 Outline of the dissertation

The manuscript is organized as follows. Chapters 2 through 4 are largely inspired by [66],
[65], and [64], respectively. Chapter 2 is devoted to the new constrained formulation that
aims at targeting specific features of the solution. It is proven that the constrained problem is
well-defined and that its solution is globally near-optimal while being much more accurate in
the quantities of interest. We also analyze the errors yielded by this approach both globally
and in the quantities of interest. The efficiency of this methodology is demonstrated on
a series of numerical examples. Next we turn to the reduced-order modeling framework.
Chapter 3 describes classical computational techniques to enforce constraints and extends
those to the case of PGD reduced-order problems. The main difficulty lies in the fact that the
constraints should be applied globally while the reduced solution is defined using the concept
of separation of variables. Numerical examples are provided to assess the performance of
each of the methods we investigated. In Chapter 4 we combine both ideas and present
the goal-oriented model reduction technique. Again, numerical examples illustrate that the
proposed methodology is able to deliver enhanced predictions of the quantities of interest
compared to a standard approach, without sacrificing too much the global accuracy of the
solution. Chapter 5 consists in an application chapter where we apply the goal-oriented
model reduction technique to the case of a parametrized electrostatic problem in a laminated
composite. Finally, in Chapter 6 we present a synthesis of the proposed methodology, as well
as guidelines for future work.
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CHAPTER 2 A NEW GOAL-ORIENTED FORMULATION OF THE
FINITE ELEMENT METHOD

In this chapter, we introduce, analyze, and numerically illustrate a method designed to take
into account quantities of interest during the finite element treatment of a boundary-value
problem. The objective is to derive a method whose computational cost is of the same order
as that of the classical approach for goal-oriented adaptivity, which involves the solution of the
primal problem and of an adjoint problem used to weigh the residual and provide indicators
for mesh refinement. In the current approach, we first solve the adjoint problem, then use
the adjoint information as a minimization constraint for the primal problem. As a result,
the constrained finite element solution is enhanced with respect to the quantities of interest,
while maintaining near-optimality in energy norm. We describe the formulation in the case
of a problem defined by a symmetric continuous coercive bilinear form and demonstrate the
efficiency of the new approach on several numerical examples. This chapter is largely inspired
by [66].

2.1 Introduction

Advances in Computational Science and Engineering have reached such a level of maturity
that increasingly complex multiphysics and multiscale problems can now be simulated for
decision-making and optimal design. The focus of such simulations has thus shifted towards
efficiently and accurately predicting specific features of the solution rather than the whole
solution itself. With that objective in mind, goal-oriented error estimation and adaptive
methods [78, 82], whose predominant instance is the dual-weighted residual method [20], have
been developed since the late nineties in order to estimate and control errors with respect
to quantities of interest. The principle of these methods essentially relies on the solution
of adjoint problems associated with quantities of interest in order to identify and refine the
sources of discretization or modeling errors that influence these quantities the most [79].
So far, these approaches have been very successful in accelerating the convergence of the
approximations towards the exact quantities of interest and thus at a lesser computational
cost than classical a posteriori error estimation methods. However, dual-weighted residual
methods are reminiscent of two-step predictor-corrector methods, in the sense that one first
computes an approximate solution of a boundary-value problem and then corrects the discrete
solution space in order to better approximate the quantities of interest.

The objective of the present chapter is to propose an alternative paradigm: we aim at
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developing a novel finite element formulation of boundary-value problems whose approximate
solutions are tailored towards the calculation of quantities of interest. The main idea is based
on the reformulation of the problem as a minimization problem subjected to the additional
constraint that the error in the quantities of interest be within some prescribed tolerance.
Chaudhry et al. [36] have proposed a similar approach in which constraints are enforced via
a penalization method. One main issue with that approach is concerned with the selection of
suitable penalization parameters. We propose here to circumvent this issue by imposing the
equality or inequality constraints through the use of Lagrange multipliers. The framework
will be presented in the case of several quantities of interest in order to describe the method in
a general setting. However, the treatment of several quantities of interest is not the primary
goal of the manuscript and the reader interested in multi-objective error estimation is referred
to the following literature [46, 47, 56, 89].

The present chapter is organized as follows: In Section 2.2, we present the model problem
considered in this study along with some classical notations. In Section 2.3, we introduce the
novel formulation of taking into account quantities of interest using a constrained minimiza-
tion. We demonstrate the well-posedness of the formulation and the near-optimality of the
corresponding solution. In Section 2.4, we investigate the case of inequality constraints using
the Karush-Kuhn-Tucker conditions. Section 2.5 addresses the topic of error estimation and
adaptivity. Numerical examples are presented in Section 2.6 and illustrate the performance of
the method. In particular, we compare our approach to the classical goal-oriented adaptivity.
Finally, we provide some concluding remarks in Section 2.7.

2.2 Preliminaries and model problem

Consider an abstract problem written in weak form as

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V, (2.1)

where (V, ‖ · ‖) is a Hilbert space, and bilinear form a and linear form f satisfy the usual
regularity assumptions: a is continuous and coercive and f is continuous over V . This
problem will be referred to as the primal problem and its well-posedness is ensured by the
Lax-Milgram theorem. For the sake of simplicity, we require in addition that a be symmetric
so that the primal problem (2.1) is equivalent to minimizing the following energy functional

J(u) =
1

2
a(u, u)− f(u), (2.2)
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i.e.
Find u ∈ V such that u = argmin

v∈V
J(v). (2.3)

If a were not symmetric, the method presented in this work could be applied by considering
a Least Squares approach [23], which in effect symmetrizes the problem.

We now turn to the finite element formulation of the primal problem (2.1). Here, and in the
remainder of the dissertation, we consider a general conforming finite element space Vh =

span {ϕi} ⊂ V , where ϕi, i = 1, . . . , N are basis functions of Vh. We also assume that
the corresponding mesh satisfies the usual regularity properties [42, 60]. We denote by h

the characteristic mesh size. The classical finite element problem associated to the primal
problem (2.1) is given by

Find uh ∈ Vh such that a(uh, vh) = f(vh), ∀vh ∈ Vh. (2.4)

The objective of this work is to improve the accuracy in the approximation of scalar quantities
of the solution u of the primal problem (2.1). Consider therefore the continuous quantities
of interest Qi(u), i = 1, . . . , k, with k ∈ N and assume these are linear, i.e. Qi ∈ V ′, the dual
space of V . We will denote by Q the linear map from V to Rk whose i-th component is Qi.
Further, we assume the linear forms to be linearly independent, i.e. the map Q is surjective.
In other words, each functional Qi provides independent information about u.

Associated to these linear forms, we have the k dual or adjoint problems

For i = 1, . . . , k, find pi ∈ V such that a(v, pi) = Qi(v), ∀v ∈ V, (2.5)

and the fundamental relations

Qi(u) = a(u, pi) = f(pi), ∀i = 1, . . . , k. (2.6)

The finite element formulation of the adjoint problems (2.5) in space Vh are given by

For i = 1, . . . , k, find pi,h ∈ Vh such that a(vh, pi,h) = Qi(vh), ∀vh ∈ Vh. (2.7)

The main idea is to derive a novel formulation of the problem based on the minimization of
the energy functional J subjected to constraints in terms of the quantities of interest Q.
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2.3 Goal-oriented formulation with equality constraints

2.3.1 Formulation and well-posedness

Suppose for a moment that we are interested in finding a solution w ∈ V that satisfies the
constraints Qi(w) = αi, where α = (α1, . . . , αk)

T ∈ Rk is given. Instead of the minimization
problem (2.3), we consider the constrained minimization problem

Find w ∈ V such that w = argmin
v∈V

Q(v)=α

J(v). (2.8)

The standard way to impose constraints is by the introduction of the Lagrangian func-
tional L : V × Rk → R defined as

L(w, λ) = J(w) +
k∑
i=1

λi(Qi(w)− αi), (2.9)

where λ = (λ1, . . . , λk)
T ∈ Rk is the vector collecting the so-called Lagrange multipliers. This

functional can be written in compact form as

L(w, λ) = J(w) + λ · (Q(w)− α), (2.10)

where · denotes the classical Euclidean inner-product on Rk.

The saddle-point formulation of the Lagrangian functional L over V × Rk yields the mixed
problem

Find (w, λ) ∈ V × Rk such that

{
a(w, v) + λ ·Q(v) = f(v), ∀v ∈ V,

τ ·Q(w) = τ · α, ∀τ ∈ Rk.
(2.11)

Introducing the bilinear form b(τ, v) = τ ·Q(v) defined on Rk×V , the above problem can be
recast in the classical form

Find (w, λ) ∈ V × Rk such that

{
a(w, v) + b(λ, v) = f(v), ∀v ∈ V,

b(τ, w) = τ · α, ∀τ ∈ Rk.
(2.12)

Lemma 1 (LBB condition). Let ‖ · ‖1 be the 1-norm on Rk, i.e. ‖τ‖1 =
∑

i|τi|. The bilinear
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form b satisfies the LBB condition

∃ β > 0 such that ∀τ ∈ Rk, sup
v∈V

|b(τ, v)|
‖v‖

≥ β‖τ‖1. (2.13)

Proof. We first consider the trivial case k = 1 and then the general case.

Case k = 1. Let z ∈ V \Ker Q (there exists such a z since the linear form Q is assumed to be
surjective, i.e. non-zero in this case) and define β = |Q(z)|

‖z‖ . Then for any τ ∈ R, |b(τ,z)|‖z‖ = β|τ |,
so that supv∈V

|b(τ,v)|
‖v‖ ≥ β|τ |.

General case. Similarly, using the surjectivity of Q, one can find functions in V such that
all cases in terms of the signs of the components of τ ∈ Rk will be accounted for. More
specifically, let the “vector-valued sign function” defined over Rk as

signs : Rk → {−1, 0, 1}k

τ 7→ (sign(τ1), . . . , sign(τk))
(2.14)

Function signs is surjective onto the set {−1, 1}k. Indeed, for any σ ∈ {−1, 1}k, it holds
signs(σ) = σ. Since Q is also surjective onto Rk, for any σ ∈ {−1, 1}k there exists zσ ∈ V
such that signs(Q(zσ)) = σ. The set {−1, 1}k is finite, as a result this process constructs a
finite set Z ⊂ V . Then we define

β = min
zσ∈Z
i=1,...,k

|Qi(zσ)|
‖zσ‖

> 0. (2.15)

Now, for any τ ∈ Rk, let σ = signs(τ). To determine z ∈ Z associated with σ when σ contains
components of value zero, we construct σ̃ where all zero components have been replaced by
one and set zσ = zσ̃. As a result there always exists a well-defined zσ ∈ Z and it holds

|b(τ, zσ)|
‖zσ‖

=

∣∣∣∑k
i=1 τiQi(zσ)

∣∣∣
‖zσ‖

=

∑k
i=1|τi||Qi(zσ)|
‖zσ‖

≥ β‖τ‖1. (2.16)

Consequently, supv∈V
|b(τ,v)|
‖v‖ ≥ β‖τ‖1.

Theorem 1 (Well-posedness of the constrained formulation). The constrained problem (2.12)
has a unique solution.

Proof. The proof directly follows from the LBB condition established in Lemma 1 and the
Babuška-Lax-Milgram theorem [12, 28, 77].
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In the specific case where α = Q(u), u being the solution of the original problem (2.1), the
solution of the constrained problem (2.12) is given by w = u and λ = 0: the constraints are
“inactive”.

We now establish a key relation between the solutions to the constrained and unconstrained
problems.

Theorem 2 (Relation between constrained and unconstrained solutions). Let (w, λ) ∈ V×Rk

denote the solution of the constrained problem (2.12), pi ∈ V denote the solutions of the dual
problems (2.5), and u ∈ V denote the solution of the unconstrained problem (2.1). Then

u = w +
k∑
i=1

λipi. (2.17)

Proof. Using the adjoint problems (2.5) and the bilinearity of a, it holds

λ ·Q(v) =
k∑
i=1

λiQi(v) =
k∑
i=1

λia(v, pi) = a

(
v,

k∑
i=1

λipi

)
. (2.18)

Substituting the new expression (2.18) for λ · Q(v) in the first equation of the constrained
problem (2.12) yields

a(w, v) + a

(
v,

k∑
i=1

λipi

)
= f(v), ∀v ∈ V. (2.19)

Now, making use of the fact that a is bilinear and symmetric yields

a

(
w +

k∑
i=1

λipi, v

)
= f(v), ∀v ∈ V. (2.20)

Finally, the Lax-Milgram theorem applied to the unconstrained problem (2.1) ensures unicity
of the solution so that

u = w +
k∑
i=1

λipi, (2.21)

which completes the proof.

We further note that Theorem 2 holds for any choice of α ∈ Rk.

The mixed finite element problem on Vh×Rk corresponding to the Lagrangian approach (2.11)
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is given by

Find (wh, λh) ∈ Vh × Rk such that

{
a(wh, vh) + λh ·Q(vh) = f(vh), ∀vh ∈ Vh,

τh ·Q(wh) = τh · α, ∀τh ∈ Rk.
(2.22)

Note that the Lagrange multiplier is here denoted by λh, not because of the discretization
of Rk, but rather because it depends on wh ∈ Vh where Vh is a finite-dimensional subspace
of V . Furthermore, we also use this notation in order to avoid confusion with the Lagrange
multiplier λ appearing in the constrained problem (2.11).

Remark 1. If Q : Vh → Rk is still surjective, existence and unicity are inherited from the
infinite-dimensional case; in particular, surjectivity implies here that: 1) dimRk ≤ dimVh,
i.e. k ≤ N : there are fewer constraints than degrees of freedom; 2) rank Q = k, i.e. the rows
of the k ×N constraint matrix are linearly independent: in other words it has full row-rank.

Similarly to Theorem 2, we can establish the following relation between the solutions to
the constrained and unconstrained finite element problems. This result will be used when
studying convergence in Section 2.3.2 and adaptivity in Section 2.5.

Theorem 3 (Relation between constrained and unconstrained solutions – Finite-dimensional
case). Let (wh, λh) ∈ Vh × Rk denote the solution of the constrained problem (2.22), pi,h ∈
Vh denote the solutions of the dual problems (2.7) and uh ∈ Vh denote the solution of the
unconstrained problem (2.4). Then

uh = wh +
k∑
i=1

λh,ipi,h. (2.23)

Proof. The proof is similar to that of Theorem 2.

Remark 2. Note that the Galerkin orthogonality arising from the constrained problem (2.22)
is slightly modified compared to the classical unconstrained approach. Indeed, subtracting the
first equation of the constrained finite element problem (2.22) from the initial weak formula-
tion (2.1) yields

a(u− wh, vh)− b(λh, vh) = f(vh)− f(vh) = 0, ∀vh ∈ Vh, (2.24)

that is a(u−wh, vh) = b(λh, vh) = λh ·Q(vh), ∀vh ∈ Vh. In particular, u−wh is not orthogonal
to the entire space Vh but at least to Vh∩Ker Q. This modified Galerkin orthogonality relation
will be used when studying error estimation and adaptivity in Section 2.5.
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Remark 3. In contrast with the Lagrangian approach, the penalization approach [36] seeks
the minimizer of the modified energy functional

Jβ(u) = J(u) +
k∑
i=1

βi
2
(Qi(u)− αi)2 , (2.25)

with a penalization parameter β ∈ Rk chosen to ensure convergence, efficiency, and accuracy.
In that case, the relation between the penalized solution uβ and the unconstrained solution u
is

u = uβ +
k∑
i=1

βi (Qi(uβ)− αi) pi, (2.26)

and similarly for their finite-dimensional counterparts.

2.3.2 Selection of α and near-optimality

In this work, the goal is to obtain an approximation wh such that Q(wh) ≈ Q(u), meaning
that the target values αi should be as close as possible to the quantities of interest Qi(u).
In view of the fundamental relation (2.6), we propose to choose α by considering the k
adjoint problems (2.5). However, for most problems of practical interest, the adjoint problems
cannot be solved exactly and have to be discretized, say using the finite element method.
These approximate adjoint solutions p̃i are then used to derive the target values αi, i.e.
we set αi = f(p̃i), i = 1, . . . , k and then proceed to solve the constrained finite element
problem (2.22).

Remark 4. We emphasize here that one needs to use a space larger than Vh to compute the
adjoint finite element solutions p̃i. Indeed let us assume that we were to solve each discrete
adjoint problem in the same space Vh as the one used to solve the classical finite element
problem (2.4), i.e. the adjoint problems (2.7), and then set αi = f(pi,h). Choosing these
target values α as constraints for the constrained primal problem (2.22) leads to Qi(wh) = αi.

Repeating the computation (2.6), now in the finite element space Vh, for i = 1, . . . , k we find

Qi(uh) = a(uh, pi,h) = f(pi,h) = Qi(wh), (2.27)

that is, the same approximation of the quantities of interest is found whether we proceed to
a constrained minimization or not: the approach would thus be useless. Indeed, the unique
solution (wh, λh) of the constrained problem (2.22) would be given by wh = uh, the solution
of the unconstrained problem (2.4), and λh = 0.
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In the remainder of the thesis, we shall use a larger finite element space for the adjoint
problems, denoted by Ṽh, than the approximation space Vh ⊂ Ṽh for the primal problem. In
practice, Ṽh consists of higher-order hierarchical elements on the same mesh. Consequently,
in order to compute the target values α, we consider the following higher-order dual problems

Find p̃i ∈ Ṽh such that a(ṽ, p̃i) = Qi(ṽ), ∀ṽ ∈ Ṽh, ∀i = 1, . . . , k, (2.28)

and set αi = f(p̃i) for all i = 1, . . . , k. In later analysis, we will nonetheless also consider the
dual problems in the same space Vh defined by (2.7).

We now turn our attention to the numerical method that will be used to solve the finite-
dimensional mixed problem described above. The mixed formulation (2.22) yields the fol-
lowing system of equations [

A B

BT 0

][
W

λh

]
=

[
F

α

]
, (2.29)

with Aij = a(ϕj, ϕi), Bij = b(ej, ϕi) = Qj(ϕi), where {ej}kj=1 denotes the canonical basis
of Rk, Fi = f(ϕi), and the components wi of W are the coefficients of the solution wh with
respect to the finite element basis functions ϕi, i.e. wh =

∑
iwiϕi. This system could be

solved directly as given since the augmented matrix is non-singular. However, its size is
larger than that yielded by the classical unconstrained finite element method (2.4), which is
simply AU = F . If the number of constraints is large, one may consider applying either the
Uzawa or Augmented Lagrangian method [85].

Applying each of the k functionals Q1, . . . , Qk to the relation (2.23) and rearranging the
terms, we obtain a linear system of size k × k with vector λh ∈ Rk as unknown

Shλh = Q(uh − wh) = Q(uh)− α, (2.30)

with Sh,ij = Qi(pj,h) and where we highlighted the dependency of this matrix on the mesh
size h. As a result, instead of solving the augmented and possibly ill-conditioned linear
system (2.29), one only needs to compute

1. the unconstrained solution uh of (2.4),

2. the adjoint solutions pi,h of (2.7),

3. the Lagrange multipliers λh using (2.30), then

4. form the constrained solution wh using (2.23).
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In other words, one solves k+1 (1 primal and k dual) systems of the same size as the original
finite element problem as well as one k × k linear algebraic problem. In fact, Sh is precisely
the Schur complement arising from the augmented matrix featured in (2.29), usually defined
as BTA−1B. Indeed, each vector counterpart to the adjoint solution pj,h is given by A−1Bj,
where Bj denotes the j-th column of B. When concatenating these k column vectors, we
form A−1B. Applying now each of the k functionals Qi, we get BTA−1B. Since B is injective
and A−1 is symmetric positive-definite, Sh is symmetric positive-definite and thus invertible,
so that the Schur complement equation (2.30) has a unique solution.

Lemma 2 (Technical result on the Schur complements). The Schur complements Sh converge
towards a symmetric positive-definite matrix S as the mesh size h tends to zero.

Proof. The entries of Sh are given by Sh,ij = Qi(pj,h). By continuity of Q, the matrices Sh
converge to the matrix S defined by Sij = Qi(pj). We denote byMk the space of size k×k ma-
trices, and by S+

k the subset of symmetric and positive semi-definite matrices. Since the Sh’s
are all symmetric and positive semi-definite, by closedness of S+

k inMk, S is symmetric and
positive semi-definite as well. To prove definiteness, we note that Sij = Qi(pj) = a(pi, pj).
It follows that S is the Gram matrix of the family {pi ∈ V, i = 1, . . . , k} for the inner prod-
uct a(·, ·). Since the linear forms Qi ∈ V ′ are assumed to be linearly independent, the adjoint
solutions pi ∈ V are also linearly independent, which implies that S is positive-definite (The-
orem 7.2.10 in [57]).

We now establish a theorem stating that the proposed approach yields a solution that main-
tains near-optimality in energy norm.

Theorem 4 (Near-optimality of the constrained solution). Let ‖ ·‖E denote the energy norm
on V , i.e. the norm induced by the bilinear form a, and ‖ · ‖1 denote the 1-norm on Rk.
Let u ∈ V denote the solution of the primal problem (2.1), wh ∈ Vh the solution of the
constrained problem (2.22), and uh ∈ Vh the solution of the unconstrained problem (2.4).
Assume there exists C > 0, independent of the mesh size h, such that

‖Q(u)−Q(wh)‖1 ≤ C‖Q(u)−Q(uh)‖1. (2.31)

Then there exists D > 0, independent of the mesh size h, such that

‖u− wh‖E ≤ D‖u− uh‖E . (2.32)
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Proof. Using Theorem 3, it holds

‖u− wh‖E ≤ ‖u− uh‖E + ‖uh − wh‖E ,

≤ ‖u− uh‖E + ‖
k∑
i=1

λh,ipi,h‖E ,

≤ ‖u− uh‖E +
k∑
i=1

|λh,i|‖pi,h‖E ,

≤ ‖u− uh‖E + C1‖λh‖1,

(2.33)

where C1 = maxi=1,...,k ‖pi‖E ≥ maxi=1,...,k ‖pi,h‖E is independent of the mesh size h. Now
using (2.30) and the fact that the Schur complement Sh is non-singular, it follows

λh = S−1h Q(uh − wh), (2.34)

from which we obtain

‖λh‖1 = ‖S−1h Q(uh − wh)‖1 ≤ CS−1
h
‖Q(uh − wh)‖1, (2.35)

where CS−1
h

denotes the matrix norm of S−1h induced by ‖ · ‖1, which depends on the mesh
size h. To obtain a uniform bound, we use Lemma 2 and continuity of the matrix norm, so
that the sequence CS−1

h
converges to CS−1 , the matrix norm of S−1. As a convergent sequence,

it is bounded so there exists γ ≥ CS−1
h
, with γ independent of the mesh size h, so that

‖λh‖1 ≤ γ‖Q(uh − wh)‖1. (2.36)

Then, using assumption (2.31)

‖Q(uh − wh)‖1 ≤ ‖Q(u− wh)‖1 + ‖Q(u− uh)‖1,

≤ (1 + C)‖Q(u− uh)‖1.
(2.37)

Using now the boundedness of Q, it holds

‖Q(u− uh)‖1 ≤ CQ‖u− uh‖E , (2.38)

where CQ denotes the operator norm of Q induced by ‖ · ‖E and ‖ · ‖1. Finally, we obtain

‖u− wh‖E ≤ D‖u− uh‖E , (2.39)
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where D = 1 + C1(1 + C)γCQ is independent of the mesh size h.

Essentially, Theorem 4 states that if the target values α ∈ Rk are consistent with the problem,
then the constrained solution wh maintains near-optimality in the energy norm. In partic-
ular, we also demonstrated that the vector of the Lagrange multipliers λh ∈ Rk necessarily
converges to zero as h tends to zero.

2.4 Inequality constraints

In this section, we focus on a slightly less restrictive approach where the equality con-
straints Q(wh) = α are replaced by the following inequality constraints

|Qi(wh)− αi| ≤ εi, ∀i = 1, . . . , k, (2.40)

where each εi is a positive scalar, possibly quite small. The rationale for replacing equal-
ity constraints by inequality constraints is twofold. First, since we consider the computable
approximates α using the discretized adjoint problems (2.28) instead of the exact quanti-
ties Q(u), we introduce some error in the target values. As a result, there is no need to
exactly impose those perturbed values. The quantities ε ∈ Rk could be user-specified or
could represent tolerances on the errors in the quantities of interest. Second, recall that our
objective is to derive a finite element formulation that adequately represents the solution
globally as well as quantities of interest of that solution. Intuitively speaking, incorporating
equality constraints comes down to sacrificing the energy in order to satisfy the constraints
(minimization in an affine space strictly contained in the “surrounding” space). Replacing
equality constraints by inequality constraints would allow one to reduce the impact of this
sacrifice and better represent the solution globally while maintaining a controlled (through
parameters ε) representation of the quantities of interest. In order to simplify the exposition,
we introduce the notation

α− = α− ε and α+ = α + ε. (2.41)

The necessary conditions for the solution of an inequality constrained minimization problem
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are given by the KKT (Karush-Kuhn-Tucker) conditions [62, 67], leading here to

Find (wh, λ
+
h , λ

−
h ) ∈ Vh × Rk × Rk such that

a(wh, vh) + λ+h ·Q(vh) + λ−h ·Q(vh) = f(vh), ∀vh ∈ Vh,

λ+h ≥ 0, λ−h ≤ 0,

α+ ≥ Q(wh), α
− ≤ Q(wh),

λ+h,i
(
α+
i −Qi(wh)

)
= 0, λ−h,i

(
Qi(wh)− α−i

)
= 0, ∀i = 1, . . . , k,

(2.42)

where the notation τ ≥ 0 (resp. τ ≤ 0) for a vector τ ∈ Rk is employed to mean that all
components of the vector are positive (resp. negative). The last conditions of the inequality
constrained system (2.42) are usually called the “complementary conditions” and essentially
state that for each of the k constraints there are three possibilities:

1. λ+h,i = λ−h,i = 0 and α−i ≤ Qi(wh) ≤ α+
i ;

2. λ+h,i = 0, λ−h,i < 0 and Qi(wh) = α−i ;

3. λ−h,i = 0, λ+h,i > 0 and Qi(wh) = α+
i .

In the first case, the i-th constraint is usually referred to as “non-binding”, in the sense that
it is naturally satisfied by the unconstrained minimization and does not have to be enforced
(observe in this case that the i-th component of the Lagrange multipliers vanishes from the
weak formulation – first equation of problem (2.42)); in the other cases, it is said “binding”
and equality has to be enforced on the boundary of the admissible set: either Qi(wh) = α+

i

or Qi(wh) = α−i . As a result, in an inequality constrained minimization, each constraint is
either enforced with equality or discarded. The main difficulty in such problems rests on
the determination of the set of active constraints. One could use a brute force approach and
solve all 3k problems, but there exist more efficient approaches. We mention for instance the
interior point or barrier methods, see e.g. the IPOPT package [1, 94], which can be used to
solve the inequality constrained system (2.42) at the expense of an iterative scheme.

In the present study, the task of finding the set of active constraints is somewhat simplified
compared to a general problem. We describe the rationale for solving the inequality con-
strained system (2.42) in the case where there is only one constraint, i.e. k = 1. We start by
finding uh ∈ Vh, the solution to the unconstrained problem (2.4). Equivalently this could be
viewed as assuming that the set of active constraints is empty, i.e. all Lagrange multipliers
are zero. Next we form the quantity of interest Q(uh) ∈ R and determine whether we are
in case i) α− ≤ Q(uh) ≤ α+; or ii) Q(uh) < α−; or iii) α+ < Q(uh). If we are in the first
case then the constraint is non-binding, i.e. the solution (wh, λ

+
h , λ

−
h ) of the inequality con-
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strained problem (2.42) is given by (uh, 0, 0), which is the unconstrained solution; if we are
in the second case then the lower bound is binding, i.e. the solution is of the form (wh, 0, λh)

with λh < 0; and if we are in the third case then the upper bound is binding, i.e. the solu-
tion is of the form (wh, λh, 0) with λh > 0. The reason follows from the fact that the Schur
complement Sh is positive-definite, i.e. Sh > 0 since k = 1, and as a result equation (2.30)
implies that the Lagrange multiplier and the quantity on the right-hand side have same sign.
Unfortunately, the reasoning does not extend to more than one constraint (k > 1) since in
that case being positive-definite does not yield enough information on the coefficients of the
Schur complement Sh.

An alternative approach could be to exploit the Schur complement equation (2.30) and solve
each of the 3k problems of size less or equal to k × k, each associated with a different
set of active constraints. For each resulting vector of Lagrange multipliers, a first check
is whether the KKT conditions relative to their signs are respected: a Lagrange multiplier
associated to an upper (resp. lower) bound should be positive (resp. negative). For each of
the remaining potential solutions, one should solve the primal unknowns and check whether
the inequalities α− ≤ Q(wh) ≤ α+ hold. Since the minimization problem is convex, the KKT
conditions are necessary and sufficient so that in practice not all 3k problems need to be
solved.

We will not show numerical examples using inequality constraints as they do not bring new
insight when compared to the results with equality constraints.

2.5 Error estimation and adaptivity

In this section, we derive error estimates and design an adaptive strategy for the numerical
approach considered in this study. We introduce an approach that could be coined a “global
implicit method”. We note that implicit methods usually introduce auxiliary residual prob-
lems defined on patches of elements or single elements in an effort to spare computational
effort [3]. However such a paradigm is not the primary focus of this work, and we consider a
global method instead.

In the current approach, local contributions to the error are derived on elements, and the
elements with the largest contributions are marked for refinement. For the sake of clarity, we
first describe the method for error estimation in energy norm and with respect to quantities
of interest in the case of the classical solution uh of problem (2.4). We will then turn to error
estimation in energy norm and with respect to quantities of interest for the solution wh of
the constrained problem (2.22).
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Recall that the energy norm is defined on V by ‖v‖E = a(v, v)1/2. Let us introduce the
residual functional Rh, defined with respect to uh, the classical unconstrained finite element
solution of (2.4)

Rh(uh; v) = f(v)− a(uh, v) = a(u− uh, v), ∀v ∈ V. (2.43)

Thanks to the classical Galerkin orthogonality, we have that Rh(uh; vh) = 0 for any vh ∈ Vh.
As a result, Rh(uh; v) = Rh(uh; v − vh) for all v ∈ V and vh ∈ Vh. This residual is actually
used for both the error estimation in the energy norm as well as in the quantities of interest.
Indeed, the error in the energy norm is defined by

Eh = ‖u− uh‖E =
√
a(u− uh, u− uh) =

√
Rh(uh;u− uh). (2.44)

Similarly, the error in each quantity of interest Qi is defined by

Ei = |Qi(u)−Qi(uh)| = |f(pi)− a(uh, pi)| =
∣∣Rh(uh; pi)

∣∣ = ∣∣Rh(uh; pi − pi,h)
∣∣. (2.45)

For any v ∈ V , the scalar quantity Rh(uh; v) can be decomposed into local contributions. In
order to illustrate this process, consider the following example for bilinear form a and linear
form f

a(u, v) =

ˆ
Ω

a∇u · ∇v dx, and f(v) =
ˆ
Ω

fv dx+

ˆ
ΓN

gv ds, (2.46)

where ΓN ⊂ ∂Ω denotes the Neumann part of the boundary of domain Ω. Then, we have

Rh(uh; v) = f(v)− a(uh, v) =
ˆ
Ω

fv dx+

ˆ
ΓN

gv ds−
ˆ
Ω

a∇uh · ∇v dx. (2.47)

After splitting the integrals from Ω to each element K ⊂ Ω, we can use Green’s first identity
and rearrange the integrals over the boundary of each element as integrals over the set of
mesh edges Γ

Rh(uh; v) =
∑
K⊂Ω

ˆ
K

rKv dx−
∑
γ⊂Γ

ˆ
γ

jγv ds, (2.48)

where we have introduced the interior element residual term rK = (∇ · (a∇uh) + f)|K and
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the edge element residual term jγ defined on Γ by

jγ =


(a∇uh)|K · nK + (a∇uh)|K′ · nK′ if γ = ∂K ∩ ∂K ′,

(a∇uh)|K · nK − g if γ = ∂K ∩ ΓN ,

(a∇uh)|K · nK if γ = ∂K ∩ (∂Ω\ΓN) .

(2.49)

For the adaptive procedure, we wish to obtain local contributions that can be computed and
compared elementwise. We choose

Rh(uh; v) =
∑
K⊂Ω

Rh
K(uh; v), (2.50)

where Rh
K(uh; v) is the elementary contribution to the error, defined by

Rh
K(uh; v) =

ˆ
K

rKv dx−
1

2

∑
γ⊂(∂K\∂Ω)

ˆ
γ

jγv ds−
∑

γ⊂(∂K∩∂Ω)

ˆ
γ

jγv ds. (2.51)

This process can be used to compute the error either in energy norm (2.44) by setting v =

u − uh or in the quantities of interest (2.45) by setting v = pi − pi,h. Of course the exact
solution u (resp. pi) is unavailable in practice, so that it is replaced by an approximation,
denoted ũ (resp. p̃i) computed in the same space Ṽh as the one used to get the enhanced
quantities of interest values.

We note that the decomposition suggested in (2.50) and (2.51) is not unique and somewhat
arbitrary. However, this is not the subject of the thesis and we will only consider the proposed
approach as it is often used in the literature [81].

As refinement criterion, we choose the so-called “maximum strategy” [78, 82], i.e. we mark
for refinement all elements that satisfy∣∣Rh

K(uh; v)
∣∣

maxK
∣∣Rh

K(uh; v)
∣∣ > δ, (2.52)

where δ ∈ (0, 1) is a chosen threshold. In the numerical experiments, we chose δ = 0.5.

We now turn our attention to error estimates for the solution wh of the constrained prob-
lem (2.22). Again, the approach is based on the use of the residual, which is evaluated this
time with respect to the computed solution wh

Rh(wh; v) = f(v)− a(wh, v) = a(u− wh, v). (2.53)
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Note that the modified Galerkin orthogonality (2.24) yields

Rh(wh; v) = a(u− wh, v − vh) + λh ·Q(vh),

= Rh(wh; v − vh) +
k∑
j=1

λh,ja(vh, pj,h).
(2.54)

The error in energy norm satisfies

Eh = ‖u− wh‖E =
√
a(u− wh, u− wh) =

√
Rh(wh;u− wh), (2.55)

and the error in each quantity of interest is given by

Ei = |Qi(u)−Qi(wh)| = |f(pi)− a(wh, pi)|,

=
∣∣Rh(wh; pi)

∣∣,
=

∣∣∣∣∣Rh(wh; pi − pi,h) +
k∑
j=1

λh,ja(pi,h, pj,h)

∣∣∣∣∣,
(2.56)

where the modified Galerkin orthogonality (2.24) was used to derive (2.56). In (2.55) (resp.
(2.56)), we proceeded to a straightforward extension of the classical approach (2.44) (resp.
(2.45)). Though this approach yields satisfying results, we investigated a different error
representation approach aimed at separating the two sources of errors in the numerical so-
lution wh, namely the classical error due to the discretization of space V into the finite-
dimensional space Vh and the additional error term due to the constrained minimization.
Using the classical Galerkin orthogonality between u− uh ∈ V and uh − wh ∈ Vh, it holds

E2h = ‖u− wh‖2E = ‖u− uh‖2E + ‖uh − wh‖2E , (2.57)

where the first term is the discretization error in the classical solution uh. Now using (2.44)
and Theorem 3, it follows that

E2h = Rh(uh;u− uh) + ‖
k∑
j=1

λh,jpj,h‖2E . (2.58)

The second term can be interpreted as the error due to the introduction of the constraint.
We further note that it can be computed exactly since the Lagrange multipliers λh ∈ Rk

and the finite element adjoint solutions pi,h ∈ Vh are known at this stage. Moreover, local
contributions can be derived by decomposing the integral defined on Ω into integrals on each
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element K ⊂ Ω.

As far as the error in the quantity of interest Qi is concerned, it holds

Ei = |Qi(u)−Qi(wh)| = |Qi(u− uh) +Qi(uh − wh)|,

=

∣∣∣∣∣Rh(uh; pi − pi,h) +
k∑
j=1

λh,jQi(pj,h)

∣∣∣∣∣,
=

∣∣∣∣∣Rh(uh; pi − pi,h) +
k∑
j=1

λh,ja(pj,h, pi,h)

∣∣∣∣∣,
(2.59)

where we have used (2.45) and Theorem 3. The first term is the contribution due to the
discretization error in the classical solution uh. The second term can be interpreted as the
error due to the introduction of the constraint. Again, the second term can be computed
exactly and local contributions on each element can be derived.

The different contributions to the errors will be illustrated in the next section. However, by
replacing the adjoint solution pi by the computable approximation p̃i ∈ Ṽh either in (2.56) or
in (2.59), one obtains an estimate of the error in the quantity of interest that is zero. Indeed,
Qi(wh) = αi = f(p̃i) = Qi(ũ). Of course, one could use an even higher-order approximation
for the purpose of error estimation, but the cost of the method would then be prohibitive
compared to a traditional approach. Nevertheless, the local contributions can be used to
mark the elements that contribute largely to the error.

In the case of adaptation for the error in the energy norm (2.58), the element contributions
are defined as

E2h = Rh(uh;u− uh) + ‖
k∑
j=1

λh,jpj,h‖2E ,

=
∑
K⊂Ω

Rh
K(uh;u− uh) +

k∑
i,j=1

λh,iλh,ja(pi,h, pj,h),

=
∑
K⊂Ω

(
Rh
K(uh;u− uh) +

k∑
i,j=1

λh,iλh,jaK(pi,h, pj,h)

)
,

(2.60)

where the first term Rh
K(uh;u − uh) was defined in (2.51) and the bilinear form aK relative

to each element K is given by

aK(u, v) =

ˆ
K

a∇u · ∇v dx, (2.61)
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following the example for the bilinear form a chosen in (2.46). To avoid eventual cancellation
between the two sources during the marking process, we will consider the following refinement
indicator ∣∣Rh

K(uh;u− uh)
∣∣+ ∣∣∣∣∣

k∑
i,j=1

λh,iλh,jaK(pi,h, pj,h)

∣∣∣∣∣. (2.62)

The choice of introducing absolute values when computing the local indicators may lead
to pessimistic results. However, it is motivated by observing that the two contributions
may cancel each other while still producing large sources of errors that may need to be
controlled. Again, in practice the exact solution u ∈ V is replaced by the computable
approximation ũ ∈ Ṽh.

In the case of adaptation for the error in the i-th quantity of interest (2.59), the element
contributions are defined as

Ei =

∣∣∣∣∣Rh(uh; pi − pi,h) +
k∑
j=1

λh,ja(pj,h, pi,h)

∣∣∣∣∣,
=

∣∣∣∣∣∑
K⊂Ω

(
Rh
K(uh; pi − pi,h) +

k∑
j=1

λh,jaK(pj,h, pi,h)

)∣∣∣∣∣.
(2.63)

As previously, to avoid eventual cancellation between the two sources during the marking
process, we will consider the following refinement indicator

∣∣Rh
K(uh; pi − pi,h)

∣∣+ ∣∣∣∣∣
k∑
j=1

λh,jaK(pj,h, pi,h)

∣∣∣∣∣. (2.64)

Again, in practice the adjoint solution pi ∈ V is replaced by the computable approxima-
tion p̃i ∈ Ṽh.

2.6 Numerical Examples

In this section, we numerically illustrate the proposed approach on some academic boundary-
value problems. For the finite element simulations, we use square elements and Vh is defined
as the space spanned by the bilinear Lagrange functions. For the enhanced quantities of
interest and error estimation, we use Ṽh the space spanned by the hierarchical integrated
Legendre polynomials up to quadratic order.

We will consider three examples: the first two consist of a Poisson equation. They are used
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to illustrate the efficiency of the method introduced in this work under uniform refinements.
In the first example we consider a single quantity of interest that is conforming to the finite
element mesh, while in the second example, we consider two quantities of interest that no
longer conform to the mesh. The last example involves a diffusion equation with a piecewise
constant coefficient, mimicking the so-called “L-shaped problem” in which the exact solu-
tion exhibits weak-singularities. It is used to illustrate the efficiency of the adaptive mesh
refinement procedure introduced in this chapter.

Example 1 The first model problem we consider consists of the Poisson equation with
homogeneous Dirichlet conditions {

−∆u = 1, in Ω,

u = 0, on ∂Ω,
(2.65)

where Ω = (0, 1)2. The exact solution of (2.65) can be found using Fourier series and is
shown in Figure 2.1. We mention that u ∈ H3(Ω) for this problem.

ω

Ω

0

1

0.02

1

0.04

u

0.06

y

0.5

x

0.5

0.08

0 0

Figure 2.1 Geometry (left) and solution (right) for Example 1.

We also suppose that one is interested in the scalar quantity

Q(u) =
1

|ω|

ˆ
ω

u dx, (2.66)
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where ω is a subdomain of Ω, illustrated in Figure 2.1, and defined as

ω = {(x, y) ∈ Ω; 23/32 ≤ x ≤ 29/32, 3/32 ≤ y ≤ 11/32} . (2.67)

In this first example, the region of interest ω coincides with the mesh (after a few uniform
refinements).

The exact value of the quantity of interest (2.66) can be computed using the Fourier expansion
of u. We mention that Q is continuous on H1(Ω). The adjoint solution p ∈ H3(Ω) is shown
in Figure 2.2.

0

1

0.05

0.1

1

p
0.15

y

0.2

0.5

x

0.5

0.25

0 0

Figure 2.2 Adjoint solution for Example 1.

In order to assess the efficiency of the constrained approach introduced in this chapter as
well as of the error estimation procedure, we generate a sequence of uniform refinements
with inverse mesh sizes h−1 = 4, 8, 16, . . . , 256, estimate the resulting errors, and measure
the effectivity of the estimators. In Figure 2.3 (left), we show the normalized exact errors in
energy norm and in the quantity of interest for both the classical unconstrained approach uh
and the constrained approach wh proposed in this chapter. In Figure 2.3 (right), we also
show the effectivity indices ieff, which are classically defined as the ratio of the estimated
errors over the exact errors.

As it can be seen from Figure 2.3 (left), the errors in energy norm for the classical un-
constrained approach uh and for the constrained approach wh have the same convergence
rate O(h), as predicted by the results of a priori error estimation and Theorem 4. The effec-
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Figure 2.3 Exact errors (left) and effectivity indices (right) as functions of the inverse mesh
size h−1.

tivity indices for the errors in the energy norm are also very similar for both approaches and
are in the [0.996, 1] interval.

Concerning the error in the quantity of interest, the results are striking on this simple exam-
ple: the rate of convergence for the constrained approach is twice as large as that obtained by
the classical approach: O(h4) vs O(h2), again in agreement with the results of a priori error
estimation [13], based on the fact that Q(wh) = Q(ũ) and that both u and p are sufficiently
smooth. The error estimator for the quantities of interest is only available for the uncon-
strained approach (recall the discussion about the error estimator for Qi(wh) in Section 2.5)
with an effectivity index ranging in the [0.9998, 1.037] interval.

In Figure 2.4, we compare the contributions to the error as defined in (2.58) and in (2.59).
In Figure 2.4 (left), we observe that the two sources of error in the energy norm do not
have the same convergence rate. The error term due to the constraint decreases much more
rapidly than the classical discretization error. As a result, the total error is similar to the dis-
cretization error: indeed wh is near-optimal in the energy norm. The situation is completely
different for the two terms of the error in the quantity of interest: in Figure 2.4 (right), we
observe that the two terms are almost equal. In fact, they have opposite signs so that they
mostly cancel when added. As a result the convergence rate of the error in the quantity of
interest for wh is increased.

Example 2 The second model problem consists of the same boundary-value problem (2.65)
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Figure 2.4 Detail of the contributions as functions of the inverse mesh size h−1: error in the
energy norm (left); error in the quantity of interest (right).

introduced in Example 1. However, this time we suppose that we are interested in the two
quantities

Q1(u) =
1

|ω1|

ˆ
ω1

u dx, and Q2(u) =
1

|ω2|

ˆ
ω2

i · ∇u dx, (2.68)

where i denotes the horizontal unit vector, and ω1, ω2 are two subdomains of Ω, illustrated
in Figure 2.5 (left), and defined as

ω1 =
{
(x, y) ∈ Ω; 1/

√
2 ≤ x ≤ 1/

√
2 + 1/

√
30, 1/

√
18 ≤ y ≤ 1/

√
18 + 1/

√
17
}
,

ω2 =
{
(x, y) ∈ Ω; 1/

√
40 ≤ x ≤ 1/

√
40 + 1/

√
20, 1/

√
3 ≤ y ≤ 1/

√
3 + 1/

√
13
}
,

(2.69)

where the irrational coordinates were chosen so that the regions of interest ω1, ω2 never
coincide with the meshes. In Figure 2.5 (right), we present the adjoint solution p2. The
adjoint solution p1 is similar to that shown in Figure 2.2 and is not shown here.

Again, the exact values of the quantities of interest (2.68) can be computed using the Fourier
expansion of u. We mention that Q1 and Q2 are continuous on H1(Ω). Furthermore, we
have the following regularity for the adjoint solutions: p1 ∈ H3(Ω) while p2 ∈ H2(Ω), only.

Once more, we perform a sequence of uniform refinements, estimate the resulting errors,
and measure the effectivity indices of the estimators. In Figure 2.6 (left), we show the
normalized exact errors in energy norm and in the two quantities of interest for both the
classical unconstrained solution uh and the constrained solution wh. The effectivity indices ieff
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Figure 2.5 Geometry (left) and adjoint solution p2 (right) for Example 2.

are shown for this case in Figure 2.6 (right).

We observe from Figure 2.6 (left) that the errors in energy norm in uh and wh are again almost
equal: the error for the constrained solution is 2% larger than for the unconstrained solution
on the coarsest mesh considered, and only 0.0002% larger for the finest mesh considered.
This behavior is very similar to that observed in the first example. The effectivity indices
for the errors in the energy norm are also very similar for both approaches and remain in
the [0.996, 1] interval.

Concerning the error in the quantity of interest Q1, the rate of convergence for the constrained
approach is again twice as large as that obtained by the classical approach: O(h4) vs O(h2).
For the quantity of interest Q2, the rate of convergence only increases by one order: O(h3) vs
O(h2). This difference is due to the limited regularity of the adjoint solution for the second
quantity of interest: recall p1 ∈ H3(Ω) while p2 ∈ H2(Ω) only. Indeed, with such regularity
but no more, we have ‖p2 − p̃2‖E = O(h) as h → 0 while ‖u − ũ‖E = O(h2). Hence the
quantity Q2(u) is approximated with order O(h3). The error estimator for the quantities of
interest shows an effectivity index ranging in the [0.969, 1.110] interval.

Example 3 Again we consider Ω = (0, 1)2, and choose a point (xc, yc) ∈ Ω so that Ω is split
into two regions: Ω1 = {(x, y) ∈ Ω;x > xc and y > yc}, and the complementary region Ω0 =

Ω\Ω1. We choose xc = yc = 1/2. We introduce on Ω the piecewise constant coefficient a
such that a|Ωi = ai, i = 0, 1, with a0 = 1 and a1 = 100. The third problem consists of
a diffusion equation with diffusivity coefficient a so that it features a weak-singularity (i.e.
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Figure 2.6 Exact errors (left) and effectivity indices (right) as functions of the inverse mesh
size h−1.

the gradient of the solution is singular), whose solution u is subjected to Robin boundary
conditions on ∂Ω {

−∇ · a∇u = f, in Ω,

n · a∇u+ u = g, on ∂Ω.
(2.70)

The exact solution u is constructed using the so-called manufactured solution method and is
chosen to be harmonic of the form

u = u(r, θ) =

{
A0r

µ cos(µθ) +B0r
µ sin(µθ), in Ω0,

A1r
µ cos(µθ) +B1r

µ sin(µθ), in Ω1,
(2.71)

where (r, θ) are the polar coordinates centered at (xc, yc). The constants µ,A0, B0, A1 and B1

are chosen such that u is continuous in Ω and n · a∇u is continuous across the interface
between Ω0 and Ω1. The source term f and boundary datum g are derived by injecting (2.71)
into (2.70). We mention that f = 0 because u is taken to be harmonic in Ω. We report
the values of the constant parameters µ,A0, and B0 in Table 2.1, while A1 = A0 and B1 =

(a0/a1)B0.

Note that by construction, we have u ∈ H1+µ−ε(Ω), where ε > 0 is arbitrarily small. The
manufactured problem resembles the so-called “L-shaped problem” constructed here with a fi-
nite contrast a1/a0. As a result, the solution exhibits a weak-singularity at the corner (xc, yc)
and its gradient is discontinuous along the interface ∂Ω1\∂Ω. In order to simplify the pre-
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Table 2.1 Values of the parameters µ,A0, and B0 used for Example 3.

µ A0 B0

0.6739 0.0171 0.9998

sentation, the initial mesh is chosen to be conforming to the interface by taking h = 1/2.

We show in Figure 2.7 the geometry and the manufactured solution for this example. The
quantities of interest are the same as in the second example, see (2.68)–(2.69). The adjoint
solutions associated with these quantities of interest are illustrated in Figure 2.8.
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Figure 2.7 Geometry (left) and solution (right) for Example 3.

We now turn to the adaptive procedure for the above problem. When an element is marked for
refinement, it is divided into four squares of equal areas, which introduces hanging nodes [31].
We will compare four types of refinement based on the following criteria:

(a) adaptation in norm for the unconstrained solution uh,

(b) adaptation in the quantities of interest for the unconstrained solution uh,

(c) adaptation in norm for the constrained solution wh,

(d) adaptation in the quantities of interest for the constrained solution wh.

We mention that for the adaptation based on the two quantities of interest, elements are
marked for refinement if any of the two error indicators associated with Q1 and Q2 exceeds
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Figure 2.8 Adjoint solutions for Example 3.

the prescribed threshold.

We show in Figure 2.9 the resulting sequences of adapted meshes. All four methods manage
to capture the singularity at the corner of the interface. In addition, we note that the
approaches based on the quantities of interest, (b) and (d), accentuate the refinement in
the two regions of interest ω1, ω2. Furthermore, the refinements in energy norm (a) and (c)
are very similar, which is due to the relatively small contribution of the term related to the
constraint, recall Figure 2.4 and Eq. (2.58). Conversely, the adapted meshes obtained for the
refinement based on the quantities of interest (b) and (d) are less similar, recall Figure 2.4
and Eq. (2.59).

The convergence plots for the four methods are shown in Figure 2.10. We mention that 25
levels (15, 412 dofs) were considered for approaches (a) and (c), 26 levels (16, 020 dofs) for
approach (d), and 30 levels (16, 041 dofs) for approach (b). The two approaches based on
the constrained solution yield the best results in terms of convergence of the quantities of
interest. In particular, all results asymptotically converge at optimal rates, that is, denoting
the number of degrees of freedom as Ndof,

‖u− uh‖E ≤ C (Ndof)
−p/d and ‖u− wh‖E ≤ C (Ndof)

−p/d , (2.72)

with p = 1 for both uh and wh, and

|Qi(u)−Qi(uh)| ≤ C (Ndof)
−2p/d and |Qi(u)−Qi(wh)| ≤ C (Ndof)

−2p/d , (2.73)
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Figure 2.9 Sequences of adapted meshes for Example 3. (a): refinement in energy norm
for uh; (b): refinement in the quantities of interest for uh; (c): refinement in energy norm
for wh; (d): refinement in the quantities of interest for wh.
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with p = 1 for uh and p = 2 for wh, for both i = 1, 2.
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Figure 2.10 Convergence results for the four considered methods. top: convergence in energy
norm; bottom-left and bottom-right: convergence in the two quantities of interest.

2.7 Conclusion

We have introduced a novel formulation designed to take into account quantities of interest
in finite element approximations. The approach is very different from classical procedures
involving goal-oriented adaptivity. In the latter the adjoint problems are solved after com-
puting the primal solution in order to assess and control the errors in the quantity of interest.
In the proposed approach, the adjoint problems are solved beforehand in order to obtain en-
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hanced values for the quantities of interest, which are then introduced in the formulation of
the primal problem using constraints. In this chapter, we have proved that the corresponding
mixed formulation was well-posed, and that the constrained finite element solution retained
near-optimality in the energy norm while being much more accurate in the quantities of inter-
est. Error estimators were derived for the proposed approach, with an emphasis on explicitly
identifying the two contributions to the error, namely the classical discretization error and
the error due to the introduction of a constraint. The efficiency of the novel formulation and
of the corresponding mesh refinement procedure was demonstrated on a several numerical
examples.

Future work will focus on the extension of the present work to non-linear problems and non-
linear quantities of interest. We also note that the methodology can be straightforwardly
extended to a worst-case multi-objective formulation [89] by considering one dual problem
using an approximate supporting functional of the objective set rather than solving a dual
problem for each quantity of interest.

In the following chapters, we will extend the proposed method to reduced-order modeling,
exemplified using the Proper Generalized Decomposition [39, 75] method, for which we first
need to develop the framework needed to enforce constraints. We anticipate that the con-
struction of reduced models using such an approach could help provide accurate estimates
of quantities of interest at very low computational cost. This would be particularly useful
for the treatment of uncertainty quantification problems, in which case one has to estimate
output quantities of interest for a very large number of parameter samples.
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CHAPTER 3 APPROXIMATION OF CONSTRAINED PROBLEMS
USING THE PGD METHOD WITH APPLICATION TO PURE NEUMANN

PROBLEMS

In this chapter we introduce, analyze, and compare several approaches designed to incorporate
a linear (or affine) constraint within the Proper Generalized Decomposition framework. We
apply the considered methods and numerical strategies to two classes of problems: the pure
Neumann case where the role of the constraint is to recover unicity of the solution; and the
Robin case, where the constraint forces the solution to move away from the already existing
unique global minimizer of the energy functional. This chapter is largely inspired by [65].

3.1 Introduction

The need for fast evaluation of surface responses in parametric analyses has spurred the
development of novel model reduction methods to construct, in an effective manner, solutions
to boundary-value problems. One such method is the Proper Generalized Decomposition
(PGD) framework [39, 40], in which the solution is sought numerically using the concept of
separation of variables. The PGD approximation scheme allows one to simplify a complex
problem into a set of coupled problems, defined with respect to each spatial and/or parametric
variable, which can be further decoupled using the so-called Alternating Directions scheme [8,
40, 45]. There exist to date a variety of PGD methods [75], which have been adapted to the
nature of the problem at hand and which have been successfully tested on a wide range of
applications and model problems, see e.g. [9, 25, 26, 34, 38, 41, 58, 76, 93, 97]. Yet, and to
the best of the authors’ knowledge, none of these applications include problems subjected
to constraints defined on the solution space, except, maybe, the case of the incompressible
Navier-Stokes equations, for which the divergence-free constraint is treated using a fractional-
step or projection method [43, 44]. We also mention the works presented in [2, 51] and
the references therein where a penalization formulation is used to circumvent the mixed
formulation arising from the constrained problem.

The objective of the chapter is therefore to study how a general boundary-value problem
involving a linear or affine constraint can be treated within the PGD setting. For the sake
of simplicity in the exposition, but without loss of generality, the model problem that we
have chosen to focus on consists of a two-dimensional Poisson equation with pure Neumann
boundary conditions prescribed on the whole boundary of the domain. It is well-known
that the solution to such a problem is given only within a constant and that one needs to
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prescribe an additional constraint on the solution in order to fix the constant [24]. The
main challenge in applying a constraint functional within the PGD framework arises from
the fact that the original problem is decoupled into subproblems with respect to each spatial
and/or parametric variable while the constraint should be applied to the solution globally.
Classical methods used to enforce constraints are the Penalization, Lagrange Multiplier, and
Augmented Lagrangian methods [85]. Our goal here is to see if and how these methods and
their numerical implementations (direct, Uzawa, iterative Uzawa) can be extended to the
case of PGD formulations.

The chapter is organized as follows: In Section 3.2, we first describe the model problem,
namely a pure Neumann boundary-value problem in terms of the Poisson equation. We
then review different approaches, namely Penalization, Lagrange Multiplier, and Augmented
Lagrangian methods, to impose a constraint in order to recover the unicity of the solution. We
also introduce a Robin boundary-value problem as a perturbation of the Neumann problem.
The main difference with the latter is that it already admits a unique solution without
resorting to any constraint on the solution. We will nevertheless consider a constrained Robin
problem in order to compare the influence of the methods on the behavior of the solution with
the case of the pure Neumann problem. In Section 3.3, we briefly describe the finite element
discretization of the constrained problems and review some classical numerical strategies
for solving these problems. In Section 3.4, we present a classical PGD formulation and
extend above methods and strategies to the PGD formulation of the constrained problems.
Numerical examples are presented in Section 3.5 to analyze the performance of each of the
methods to the Neumann and Robin problems. We finally provide some concluding remarks
in Section 3.6.

3.2 Model problem

Let d ∈ N be such that d ≥ 2 and let Ωi be open intervals (ai, bi) ⊂ R, i = 1, . . . , d such
that the domain Ω = Πd

i=1Ωi forms an open, hyper-rectangular, bounded subset of Rd with
boundary ∂Ω. We shall denote by n the outward normal unit vector to Ω and by |Ω| a
measure of Ω.

We consider in this chapter the so-called pure Neumann boundary-value problem

Find u such that

{
−∇ · (a∇u) = f, in Ω,

n · a∇u = g, on ∂Ω,
(3.1)

where a = a(x) ∈ L∞(Ω) is strictly positive and the data f ∈ L2(Ω) and g ∈ H1/2(∂Ω) are
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given such that the so-called compatibility condition
ˆ
Ω

f dx+

ˆ
∂Ω

g ds = 0, (3.2)

is satisfied. In that case, the Fredholm alternative implies that above problem admits solu-
tions up to an additive constant [24].

A weak formulation associated with Problem (3.1) reads

Find u ∈ H1(Ω) such that a(u, v) = f(v), ∀v ∈ H1(Ω), (3.3)

where the bilinear form a and linear form f defined on H1(Ω) are given by

a(u, v) =

ˆ
Ω

a∇u · ∇v dx,

f(v) =

ˆ
Ω

fv dx+

ˆ
∂Ω

gv ds.

(3.4)

Alternatively, Problem (3.3) can be recast as a minimization problem by introducing the
energy functional

J(u) =
1

2
a(u, u)− f(u), (3.5)

and by minimizing J over H1(Ω).

Solutions to Problems (3.3) or (3.5) are not unique in H1(Ω) since the bilinear form a fails to
be coercive in that space. In practice, unicity of the solution is often recovered by imposing
the value of the solution at a given point in Ω or on ∂Ω. Unfortunately, this approach yields
an ill-posed problem as the point-value functional is not well defined for functions of H1(Ω)

when d ≥ 2. A proper way to proceed is to search solutions in the subspace V of H1(Ω) of
zero-mean functions [24]

V =

{
v ∈ H1(Ω);

1

|Ω|

ˆ
Ω

v dx = 0

}
, (3.6)

often referred to as the quotient space and denoted by V = H1(Ω)/R. Since the bilinear
form a is coercive over V , the problem

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V, (3.7)

is now well-posed. However, when considering discretization methods such as the Finite
Element Method, Problem (3.7) is never solved as is, as it is difficult to construct trial
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and test functions with zero-mean. Instead, one reformulates the problem as a constrained
problem by minimizing J over V , that is, by minimizing J over H1(Ω) subjected to the
constraint that the solution has zero-mean. Let Q denote the functional in H−1(Ω) such
that

Q(v) =
1

|Ω|

ˆ
Ω

v dx. (3.8)

The zero-mean constraint on function u ∈ H1(Ω) now reads Q(u) = 0.

In this chapter we shall consider a class of problems that is slightly larger in two respects.
First, the linear constraint Q(u) = 0 will be replaced by the affine constraint Q(u) = γ,
where γ ∈ R is a prescribed mean. Secondly, the constraint will be further extended to the
case where the solution has a prescribed mean on a subset ω ⊂ Ω, which will be denoted
as Qω(u) = γ, where

Qω(v) =
1

|ω|

ˆ
ω

v dx. (3.9)

For simplicity, we will drop the Qω notation and simply refer to this linear functional as Q.

In this setting, the strong form of the constrained pure Neumann problem reads

Find u such that


−∇ · (a∇u) = f, in Ω,

n · a∇u = g, on ∂Ω,

Q(u) = γ.

(3.10)

The standard way to impose constraints is by the introduction of the Lagrangian functional.
For (u, λ) ∈ H1(Ω)× R consider the functional

L(u, λ) = J(u) + λ(Q(u)− γ), (3.11)

where λ ∈ R is the so-called Lagrange multiplier.

The saddle-point formulation of L over H1(Ω)× R yields the mixed problem

Find (u, λ) ∈ H1(Ω)× R such that

{
a(u, v) + λQ(v) = f(v), ∀v ∈ H1(Ω),

τQ(u) = τγ, ∀τ ∈ R.
(3.12)

Remark 5. An alternative approach to take the constraint Q(u) = γ into account, although
not exactly, is to consider a penalized formulation where the goal is to minimize J(u) +
β
2
(Q(u) − γ)2 over H1(Ω), with β > 0 a fixed penalization parameter. In that case, the
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penalization problem reads

Find uβ ∈ H1(Ω) such that a(uβ, v) + βQ(uβ)Q(v) = f(v) + βγQ(v), ∀v ∈ H1(Ω),

(3.13)
where the bilinear form on the left-hand side is coercive over H1(Ω) due to the addition of the
“mass-term” governed by parameter β. The penalization problem (3.13) is thus well-posed.

The corresponding strong form of the problem reads in that case

Find uβ such that


−∇ · (a∇uβ) +

β

|ω|
Q(uβ) = f +

β

|ω|
γ, in Ω,

n · a∇uβ = g, on ∂Ω.
(3.14)

Remark 6. The so-called Augmented Lagrangian method is yet another way of taking the
constraint Q(u) = γ into account and can be seen as a combination of the Lagrangian and
penalization methods. In this method, the mixed problem to be solved is

Find (u, λ) ∈ H1(Ω)× R such that{
a(u, v) + λQ(v) + βQ(u)Q(v) = f(v) + βγQ(v), ∀v ∈ H1(Ω),

τQ(u) = τγ, ∀τ ∈ R.

(3.15)

In order to highlight the performances of the different methods and numerical strategies for
solving (3.12), e.g. the Lagrangian or Uzawa methods, we also introduce a class of perturbed
problems where the pure Neumann boundary condition in (3.10) is replaced by a Robin
boundary condition with an impedance coefficient controlled by a parameter ε > 0, i.e. the
weak form of the Robin problem reads

Find (u, λ) ∈ H1(Ω)× R such that

{
aε(u, v) + λQ(v) = f(v), ∀v ∈ H1(Ω),

τQ(u) = τγ, ∀τ ∈ R,
(3.16)

where aε(u, v) = a(u, v)+ε
´
∂Ω
uv ds. For simplicity, we will drop the aε notation and simply

refer to this bilinear form by a when the context is clear.

In this Robin problem, the role of the constraint is not to enforce unicity. Indeed, the
mass term on the boundary controlled by ε provides a coercive bilinear form on H1(Ω) so
the solution of the unconstrained Robin problem is unique for any fixed ε. The role of
the constraint is rather to force the unconstrained solution to move away from the global
minimum of the energy functional J . For any fixed ε, the solution of the constrained Robin
problem (3.16) is unique.
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The perturbed problem (3.16) provides a solution uε that converges to the solution u of (3.10)
as ε goes to zero. The fact that we introduce this problem here will become clear when we
consider the Uzawa method, which is introduced in Section 3.3.3.

3.3 Finite element formulations of constrained problems

In this section, we derive the finite element formulations of the above constrained problems.
Whenever relevant, we also highlight the differences between the Neumann and Robin prob-
lems. Here, and in the remainder of the chapter, we consider a general conforming finite
element space Vh = span {ϕi} ⊂ H1(Ω), where ϕi, i = 1, . . . , N are basis functions of Vh. We
also assume that the corresponding mesh satisfies the usual regularity properties, see [42, 60].

3.3.1 Penalization method

The finite element problem corresponding to the penalization approach (3.13) is given by

Find uh ∈ Vh such that a(uh, vh) + βQ(uh)Q(vh) = f(vh) + βγQ(vh), ∀vh ∈ Vh. (3.17)

The linear system associated with this finite-dimensional problem is of the form

(A+ βBBT )U = F + βγB, (3.18)

where Aij = a(ϕj, ϕi), Bi = Q(ϕi), Fi = f(ϕi) and the solution vector U collects the degrees
of freedom of uh, i.e. uh =

∑n
i=1 Uiϕi. The rank-one matrix βBBT can be viewed as a

correction to the original (unconstrained) stiffness matrix A. In the pure Neumann case, the
original stiffness matrix A is positive semi-definite, with a rank deficiency of one, while the
matrix A+ βBBT is positive definite.

Drawbacks of the penalization approach are now briefly recalled. First, the choice of β
has a strong influence on the quality of the numerical solution. Second, depending on the
value of β, the condition number of the matrix can become very high and adversely affect
the accuracy of the approach. Asymptotically, we observed in the considered numerical
experiments that κ = O(β), where κ denotes the scaled condition number of the stiffness
matrix based on the ‖ · ‖2 vector norm. Third, due to the addition of the term BBT in
the stiffness matrix, the sparsity of the matrix is lost and the cost of the method increases.
Finally, we mention that one can recover an approximation of the Lagrange multiplier λ by
computing β(BTU − γ).
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3.3.2 Lagrangian method

The mixed finite element problem on Vh×R corresponding to the Lagrangian approach (3.12)
or (3.16) is given by

Find (uh, λ) ∈ Vh × R such that

{
a(uh, vh) + λQ(vh) = f(vh), ∀vh ∈ Vh,

τQ(uh) = τγ, ∀τ ∈ R.
(3.19)

The linear system associated with this finite-dimensional problem is in this case of the form[
A B

BT 0

][
U

λ

]
=

[
F

γ

]
. (3.20)

The system could be directly solved as given since the augmented matrix is indeed non-
singular. However, its size is also larger, which results in higher computational cost, as the
constraint is globally applied to the solution. Our goal is nevertheless to decouple the system
in order to preserve the efficiency of the PGD approximation solution process. This issue
will be addressed in Section 3.4.3.

The presence of the entry zero on the diagonal of the augmented matrix prevents one from
uncoupling the solution U from the Lagrange multiplier λ. The next method aims at circum-
venting this issue.

3.3.3 Uzawa method

The Uzawa method [85, 88] is a numerical strategy aiming at decoupling the constraint from
the original problem in (3.20). Two versions of the method are available: the first one,
referred to as direct Uzawa, relies on the evaluation of the Schur complement to compute
the Lagrange multiplier; the second one, the so-called iterative Uzawa, computes a sequence
approximating the Lagrange multiplier within an iterative scheme. However, both methods
need for A to be invertible, which is the case for the Robin problem, but not for the Neumann
problem. In the rest of this section, we will thus consider only the Robin problem.

Direct Uzawa Let us develop the linear system of equations for (3.20) as{
AU +Bλ = F,

BTU = γ.
(3.21)

Since A is invertible, one can manipulate the first equation to get U = A−1(F −Bλ). Then,
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using this result in the second equation yields

γ = BT
(
A−1(F −Bλ)

)
= BTA−1F −BTA−1Bλ. (3.22)

Denoting the Schur complement by S = BTA−1B, one gets

Sλ = BTA−1F − γ. (3.23)

In other words, the Lagrangian formulation (3.20) has been recast as[
A B

0 S

][
U

λ

]
=

[
F

BTA−1F − γ

]
, (3.24)

where the matrix is now upper triangular: direct Uzawa performs a triangularization by
blocks, as a result, the constraint is indeed decoupled from the rest of the problem and the
system can be solved by a backward substitution by blocks. However, it still requires one to
explicitly invert the stiffness matrix A. Iterative Uzawa provides a means to avoid explicitly
calculating the inverse A−1.

Iterative Uzawa In the iterative Uzawa method, the system (3.24), and most particularly
the constraint equation, is solved in an iterative manner. The corresponding algorithm, given
here in its most simple form using for example the linear descent, is described in Algorithm 1.
In this algorithm, the residual circumvents the use of A−1 and S, indeed

r(k) = γ −BTA−1(F −Bλ(k)) = γ −BTU (k), (3.25)

which corresponds to the constraint residual of the original Lagrangian system (3.21).

Algorithm 1: Iterative Uzawa method.
1 Initialize λ(0), k = 0
2 while convergence not reached do
3 Solve for U (k): AU (k) = F −Bλ(k)
4 Compute the residual r(k) = γ −BTU (k)

5 Compute the step length α(k)

6 Update λ(k+1) = λ(k) − α(k)r(k)

7 k ← k + 1

8 end

The step length α(k) ∈ R can be taken as a constant or be evaluated using a gradient approach
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to improve the performance of the method. In [85], bounds for the step length are provided
in order for the method to converge and optimal step lengths are given, for the case where A
is symmetric positive-definite and B is full rank. These bounds and the optimal step length
are

0 < α(k) <
2

λmax(S)
and αopt =

2

λmin(S) + λmax(S)
, (3.26)

where λmax(S) (resp. λmin(S)) denotes the largest (resp. smallest) eigenvalue of the Schur
complement S. In the present case, since the constraint is scalar, we have that B is a (non-
zero) column-vector, and so it has full-rank (equal to one). Moreover, A is positive definite,
so that S is a strictly positive scalar and λmax(S) = λmin(S) = S > 0. The conditions (3.26)
thus reduce to

0 < α(k) <
2

S
and αopt =

1

S
. (3.27)

Note that the optimal step length is not used in practice since it requires the Schur comple-
ment S. A classical refinement concerning the step length α(k) is to use a gradient descent
on the constraint equation (3.23), in which case the step length would be given by

α(k) =
r(k) · r(k)

r(k) · Sr(k)
. (3.28)

To avoid the use of S, one can write

Sr(k) = BTA−1Br(k) = BTw(k), (3.29)

where w(k) is the solution of the auxiliary problem Aw(k) = Br(k). Finally, one can use
this auxiliary solution w(k) and the step length α(k) to update all variables in the Uzawa
algorithm. Indeed, updating λ(k+1) = λ(k) − α(k)r(k) results in an update of the constraint
residual as

r(k+1) = γ −BTA−1(F −Bλ(k+1)) = r(k) − α(k)Sr(k) = r(k) − α(k)BTw(k), (3.30)

and similarly for the solution vector

U (k+1) = A−1(F −Bλ(k+1)) = U (k) + α(k)A−1Br(k) = U (k) + α(k)w(k). (3.31)

In the end, the iterative Uzawa algorithm with gradient descent is described by Algorithm 2.
This algorithm has thus eliminated all uses of A−1 and S.

Uzawa Adjoint The constraint considered in this chapter is scalar and so is r(k), as a
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Algorithm 2: Uzawa method with gradient descent.
1 Initialize λ(0), k = 0

2 Solve for U (0): AU (0) = F −Bλ(0)
3 Compute the constraint residual r(0) = γ −BTU (0)

4 while convergence not reached do
5 Solve for w(k): Aw(k) = Br(k)

6 Compute the step length α(k) = r(k)·r(k)
r(k)·BTw(k)

7 Update λ(k+1) = λ(k) − α(k)r(k)

8 Update r(k+1) = r(k) − α(k)BTw(k)

9 Update U (k+1) = U (k) + α(k)w(k)

10 k ← k + 1

11 end

result Algorithm 2 can be further simplified introducing the adjoint problem associated to
the constraint functional

Find p ∈ H1(Ω) such that a(v, p) = Q(v), ∀v ∈ H1(Ω). (3.32)

This problem is well-posed since bilinear form a is coercive (recall we are only considering
the Robin problem in this section) and Q is continuous, so that there is a unique solution p ∈
H1(Ω). Note that this approach cannot be applied to the pure Neumann problem since the
loading of the adjoint problem Q does not satisfy the compatibility condition (3.2). Now,
going back to the mixed-weak formulation arising from the Lagrangian method (3.12) and
denoting its solution by (uλ, λ), we have{

a(uλ, v) + λQ(v) = f(v), ∀v ∈ H1(Ω),

τQ(uλ) = τγ, ∀τ ∈ R.
(3.33)

Then, using the adjoint problem a(v, p) = Q(v) we obtain

a(uλ, v) + λa(v, p) = f(v), ∀v ∈ H1(Ω). (3.34)

Now, making use of the fact that a is bilinear and symmetric yields

a(uλ + λp, v) = f(v), ∀v ∈ H1(Ω). (3.35)

Finally, the Lax-Milgram theorem applied to the unconstrained Robin problem ensures unic-
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ity of the solution so that
uλ + λp = u0, (3.36)

where u0 ∈ H1(Ω) denotes the unconstrained solution. We see that the scalar constraint
allows one to simplify the problem, since the Lagrange multiplier λ can readily be obtained
by applying the functional Q to (3.36) and rearranging the terms, that is

λ =
Q(u0)−Q(uλ)

Q(p)
=
Q(u0)− γ
Q(p)

, (3.37)

where Q(p) 6= 0 since Q(p) = a(p, p). As a result, one only needs to compute the un-
constrained solution u0, the adjoint solution p and the Lagrange multiplier λ to solve the
constrained problem. We will subsequently refer to this approach as “Uzawa Adjoint”.

3.3.4 Augmented Lagrangian method

The mixed finite element problem on Vh × R corresponding to the Augmented Lagrangian
approach (3.15) is given by

Find (uh, λ) ∈ Vh × R such that{
a(uh, vh) + λQ(vh) + βQ(uh)Q(vh) = f(vh) + βγq(vh), ∀vh ∈ Vh,

τQ(uh) = τγ, ∀τ ∈ R.

(3.38)

The linear system associated with this finite-dimensional problem is[
A+ βBBT B

BT 0

][
U

λ

]
=

[
F + βγB

γ

]
. (3.39)

Since the matrix A+βBBT is positive-definite, and thus invertible, one can apply the Uzawa
method here to both the Neumann and Robin problems. The direct Uzawa method yields
the block triangular system[

A+ βBBT B

0 Sβ

][
U

λ

]
=

[
F + βγB

BT (A+ βBBT )−1(F + βγB)− γ

]
, (3.40)

where Sβ denotes the Schur complement of the perturbed matrix, i.e. Sβ = BT (A+βBBT )−1B.

The iterative Uzawa scheme is derived mutatis mutandis as the earlier one. However, some
simplifications can be made to compute the step length α(k) (see steps 5 and 6 in Algo-
rithm 2) assuming, for instance, that A+ βBBT ≈ βBBT . The auxiliary problem in step 5
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then reduces to finding w(k) such that βBBTw(k) = Br(k). Viewing now B ∈ RN as a linear
application from R to RN , by the rank-nullity theorem, dim (Ker B) = dim (R)− rk (B) =

1 − rk (BT ) = 1 − 1 = 0. As a result, B is injective and βBBTw(k) = Br(k) implies
that βBTw(k) = r(k). Then, in step 6 of Algorithm 2, the step length α(k) is approximately β;
in other words, the auxiliary problem has been avoided. As a result, the Augmented La-
grangian method reduces to an Uzawa method on the penalized bilinear form with a constant
step length β, see Algorithm 1.

Remark 7. For the Robin case, in which the matrix A is invertible, one can rely on the
Sherman-Morrison-Woodbury matrix identity [55] instead of the approximation A+βBBT ≈
βBBT . In the present context, the identity states

(
A+ βBBT

)−1
= A−1 − βA−1BBTA−1

1 + βBTA−1B
, (3.41)

which allows one to write the Schur complement of the perturbed matrix Sβ in terms of S as

Sβ = BT

(
A−1 − βA−1BBTA−1

1 + βBTA−1B

)
B = S − βS2

1 + βS
=

S

1 + βS
. (3.42)

According to Saad [85], the optimal step length αopt is then given by the inverse of the Schur
complement: 1

Sβ
= β + 1

S
. Taking β large enough, we obtain αopt ≈ β.

Similarly to the penalization approach discussed in Section 3.3.1, the choice of the penaliza-
tion parameter β has some influence on the performance of the algorithm. First, the stiffness
matrix looses its sparsity pattern resulting in higher computational costs. Secondly, the con-
dition number of the matrix may increase significantly. Finally, choosing β too large may
introduce round-off errors, which could affect the accuracy of the method, while choosing β
too small may result in an incorrect step length α, leading to an increased number of itera-
tions needed to reach convergence. Note however that the Augmented Lagrangian approach
is consistent with the Lagrangian method so that the solution of the former coincides with
that of the latter.

3.4 PGD formulations of constrained problems

The objective of this section is to apply the above formulations to the Proper Generalized
Decomposition (PGD) framework. In order to grasp the essential ingredients of the PGD
method, we first introduce the concepts of tensor product of Hilbert spaces, and rank of a
tensor, before presenting the formulation arising from the PGD framework. The reader is
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referred to [39, 48, 75] for more in-depth analyses of the method and its variants.

3.4.1 Introduction and main concepts

Tensor product of Hilbert spaces. An alternative approach to approximate the so-
lution u ∈ V of (2.1) is to construct a reduced order solution um ∈ V using a separated
representation involving m terms, or modes. To this end, we make specific assumptions on
the Hilbert space V . We will assume that the Hilbert space V is a tensor product of Hilbert
spaces

V = V (1) ⊗ V (2) ⊗ · · · ⊗ V (d) =
d⊗
i=1

V (i), (3.43)

where V (i) are separable Hilbert spaces and d is the dimension of the problem. Associated
to each V (i) we have an inner product (·, ·)i and an associated norm ‖ · ‖i. Using these, we
can build a new inner product (·, ·)V and a new norm ‖ · ‖V on V by tensorization

(·, ·)V =
d∏
i=1

(·, ·)i ,

‖ · ‖V =
d∏
i=1

‖ · ‖i.

(3.44)

The tensor product Hilbert space (V, ‖ · ‖V ) is in fact constructed by completion under this
inner product; indeed let

d

a

⊗
i=1

V (i) = span
{
⊗di=1vi, vi ∈ V (i), 1 ≤ i ≤ d

}
. (3.45)

This is the so-called algebraic tensor product space. It contains all linear combinations of
the vi’s involving a finite number of terms. Then, the tensor product Hilbert space

⊗d

i=1
V (i)

is obtained by completion of the algebraic tensor product space
a

⊗d

i=1
V (i) with respect to

the inner-product (·, ·)V .

For instance, the function f : (x, y) 7→ cos (xy) does not belong to the algebraic tensor
product space as it does not admit a tensor representation in a finite number of terms.
However, it does belong to the tensor product Hilbert space as the limit of a sequence of the
algebraic tensor product space, consider e.g. the Fourier series or Taylor expansion of f .

Low-rank tensor subsets. Let us now introduce a subset of the tensor product Hilbert
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space V , noted S1, composed of all rank-1 tensors of V

S1 =
{
⊗di=1zi ∈ V ; zi ∈ V (i), i = 1, . . . , d

}
. (3.46)

This subset is of paramount importance to build low-rank tensor approximations of u ∈ V .
We can then define inductively the sets of rank-m tensors Sm by

Sm = Sm−1 + S1, ∀m ≥ 2. (3.47)

Note that Sm−1 ⊂ Sm. However, sets of low-rank tensors do not verify what we may call
“nice” properties in linear algebra. For instance, Sm is not a linear space (the sum of two
rank-m tensors may be rank-2m). It is not even convex. However, if zm ∈ Sm and c ∈ R,
then czm ∈ Sm, which we may write cSm ⊂ Sm, meaning Sm is a cone. Also, it can be proved
that S1 is weakly closed in (V, ‖ · ‖V ) [48].

Tensor rank-1 projection. The fact that S1 is weakly closed in (V, ‖ · ‖V ) allows us to
define rank-1 projection of any tensor u ∈ V (which may not be unique) by

Π(u) = argmin
v∈S1

‖u− v‖V . (3.48)

We can thus consider a rank-1 projection of u, noted u1 ∈ Π(u) ⊂ S1. Then, we con-
sider again a rank-1 projection of the residual u − u1 given by e2 ∈ Π(u − u1) ⊂ S1, and
form u2 = u1 + e2 ∈ S2. By repeating this progressive process we can construct iteratively a
sequence um ∈ Sm that can be shown to converge strongly towards u [48].

A possible way for constructing those rank-1 projections is now detailed. For a given rank-
1 tensor ⊗di=1zi ∈ S1 and a given direction j ∈ {1, . . . , d}, we denote the vector space of
“admissible variations” around ⊗di=1zi in the j-th direction by

T (j)(⊗di=1zi) =
{
⊗di=1vi ∈ S1; vi = zi, i = 1, . . . , d, i 6= j

}
,

= z1 ⊗ z2 ⊗ · · · ⊗ V (j) ⊗ · · · ⊗ zd.
(3.49)

Considering now all directions, the tangent space T (⊗di=1zi) ⊂ V to the elementary ten-
sor ⊗di=1zi ∈ S1 is given by

T (⊗di=1zi) = T (1)(⊗di=1zi) + T (2)(⊗di=1zi) + · · ·+ T (d)(⊗di=1zi). (3.50)
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The functions v ∈ T (⊗di=1zi) are thus of the form

v = v1 ⊗ z2 ⊗ · · · ⊗ zd︸ ︷︷ ︸
ψ1∈T (1)(⊗di=1zi)

+ z1 ⊗ v2 ⊗ · · · ⊗ zd︸ ︷︷ ︸
ψ2∈T (2)(⊗di=1zi)

+ · · ·+ z1 ⊗ z2 ⊗ · · · ⊗ vd︸ ︷︷ ︸
ψd∈T (d)(⊗di=1zi)

,
(3.51)

where the vi’s are arbitrary functions in V (i).

Starting from a given approximation um−1 ∈ Sm−1, the goal of the progressive PGD method
is to compute a rank-one update, or correction, δu = ⊗di=1zi ∈ S1, such that the updated
solution

um = um−1 + δu ∈ Sm, (3.52)

minimizes the updated energy functional J(um−1 + v) over the set of rank-1 tensors. This
minimization problem is formulated as

Find δu ∈ S1 such that J(um−1 + δu) = min
v∈S1

J(um−1 + v). (3.53)

The weak formulation associated to this non-linear problem reads

Find δu ∈ S1 such that a(um−1 + δu, v) = f(v), ∀v ∈ T (δu). (3.54)

We note that (3.54) is a necessary condition for (3.53), but it is not sufficient. Indeed, the
weak formulation (3.54) arises from the stationarity of the energy functional J , but since the
set S1 is not convex, stationarity does not constitute a sufficient condition. In fact, one can
even design problems to highlight this non-equivalence, e.g. by considering a problem with
cleverly arranged symmetries. In particular, solutions of (3.54) are not unique and include
local minima of the energy functional J . Nevertheless, since the construction of um is by
design an iterative process, this possible non-optimality does not constitute a clear-cut flaw
of the method.

Elementary convergence results. We provide below some straightforward theoretical
results about the solution δu to (3.53). For a complete proof of the strong convergence
of {um} towards u in terms of the energy norm ‖ ·‖E , the reader is referred to [48]. By (3.53),
we immediately obtain

J(um) = J(um−1 + δu) = min
v∈S1

J(um−1 + v) ≤ J(um−1). (3.55)

As a result, the sequence {J(um)} is decreasing. Being bounded from below by J(u) (the



54

global minimizer of J over V , see (2.3)), the sequence {J(um)} is convergent. We also have

J(um) =
1

2
a(um, um)− f(um),

=
1

2
a(um−1 + δu, um−1 + δu)− f(um−1 + δu),

=
1

2
a(um−1, um−1)− f(um−1) +

1

2
a(δu, δu) + a(um−1, δu)− f(δu),

= J(um−1) +
1

2
a(δu, δu)− a(δu, δu), since δu ∈ T (δu),

= J(um−1)−
1

2
a(δu, δu).

(3.56)

Consequently
J(um−1)− J(um) =

1

2
‖δu‖2E . (3.57)

Concerning Galerkin orthogonality, we have the following result

a(u− um, v) = a(u− (um−1 + δu), v) = 0, ∀v ∈ T (δu). (3.58)

Concerning Céa’s lemma, we have

‖u− (um−1 + δu)‖E ≤ inf
v∈T (δu)

‖u− (um−1 + v)‖E . (3.59)

In particular, we have
‖u− um‖E ≤ ‖u− um−1‖E , (3.60)

i.e. the sequence {‖u− um‖E} is decreasing. Being bounded from below by zero, the se-
quence {‖u− um‖E} is convergent.

Alternating directions. Denoting δu = ⊗di=1zi, Problem (3.54) is non-linear in the un-
knowns zi. At the expense of an iterative scheme, we can lift the non-linearity.

Problem (3.54) naturally leads to the set of coupled one-dimensional problems

Find ⊗di=1 zi ∈ S1 such that



a(⊗di=1zi, ψ1) = Rm−1(ψ1), ∀ψ1 ∈ T (1)(⊗di=1zi),

a(⊗di=1zi, ψ2) = Rm−1(ψ2), ∀ψ2 ∈ T (2)(⊗di=1zi),

...

a(⊗di=1zi, ψd) = Rm−1(ψd), ∀ψd ∈ T (d)(⊗di=1zi),

(3.61)

where Rm−1 denotes the residual Rm−1(v) = f(v) − a(um−1, v). Problem (3.61) is still non-
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linear.

An approach for solving (3.61) is the so-called Alternating Directions scheme, a fixed-point
algorithm in which one successively solves each of the previous equations. To be more pre-
cise, each iteration of the Alternating Directions scheme is as follows: from the current
iterate z(k)1 , . . . , z

(k)
d , compute the new z

(k+1)
1 using z(k)2 , . . . , z

(k)
d by solving the first equation

of (3.61). Then, compute the new z
(k+1)
2 using the just computed z

(k+1)
1 and z

(k)
3 , . . . , z

(k)
d

by solving the second equation of (3.61). All the d problems are thus solved until the last
one, where we compute z(k+1)

d using the already computed z
(k+1)
1 , . . . , z

(k+1)
d−1 by solving the

last equation of (3.61). This process repeats k? times until the fixed point ⊗di=1z
(k?)
i is (ap-

proximately) reached, then we set um = um−1 +⊗di=1z
(k?)
i and repeat the search for the next

rank-1 update until convergence.

The name alternating directions scheme stems from the fact that the V (i) are explored succes-
sively. Also, it can be viewed as a block Gauss-Seidel method. In practice, for each 1 ≤ i ≤ d,
we obtain an Ordinary Differential Equation if derivatives with respect to the i-th variable
are involved in bilinear form a (such as space and time). If no derivatives with respect to
the i-th variable are involved in bilinear form a (e.g. material parameter, boundary condi-
tion), we obtain an algebraic equation. The alternating directions scheme can also be viewed
as a pseudo-eigenvalue problem, for which a classical solution is to use a power iteration to
capture the dominant singular value.

There exist many different ways to date for constructing a rank-1 correction [39]. The one
presented above could be viewed as the Galerkin approach. Others include minimizing the
residual [75], where the optimal rank-1 correction is defined as that achieving the minimum of
the residual. In practice, it leads to symmetric least-squares problems, but they seem to suffer
from bad convergence properties with respect to usual norms. Another way to construct
a rank-1 correction is through Minimax PGD, which can be viewed as a Petrov-Galerkin
PGD [75]. In this approach, two rank-1 corrections are sought in each iteration: one for the
test space, one for the trial space. Finally, instead of computing the modes successively, it is
also possible to compute several modes simultaneously at the expense of higher computational
costs, leading to the so-called simultaneous version of the PGD method [75]. In this case, the
decomposition is usually of greater quality, since the minimization involved when computing
one mode after the other is a greedy process. The analogy with the power iteration is in that
case replaced by a subspace iteration process.

Before investigating the constrained approaches, we propose to examine some properties of
the linear systems arising from discretization and alternating directions when applied to the
unconstrained pure Neumann problem, as detailed below. For simplicity, we consider d = 2,
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that is Ω = Ω1 × Ω2 ⊂ R2, with a diffusivity constant a equal to unity throughout Ω,
and m = 1, i.e. we want to compute a rank-one solution u1 = z1 ⊗ z2. In this case, the
problem of finding a rank-1 approximation of the solution to problem (3.3) simplifies to

Find (z1, z2) ∈ V (1)
h × V (2)

h such that

{
a(z1 ⊗ z2, v1 ⊗ z2) = f(v1 ⊗ z2), ∀v1 ∈ V (1)

h ,

a(z1 ⊗ z2, z1 ⊗ v2) = f(z1 ⊗ v2), ∀v2 ∈ V (2)
h .

(3.62)

Recalling the definition of the bilinear form a, at a given iteration of the Alternating Direc-
tions scheme, the first equation of (3.62) is found to be

Given z2 ∈ V (2)
h , find z1 ∈ V (1)

h such that

‖z2‖2L2(Ω2)

(ˆ
Ω1

z′1v
′
1 dx

)
+ |z2|2H1(Ω2)

(ˆ
Ω1

z1v1 dx

)
= f(v1 ⊗ z2), ∀v1 ∈ V (1)

h ,
(3.63)

where ‖z2‖2L2(Ω2)
and |z2|2H1(Ω2)

in the left-hand side appear as known constant coefficients in
front of what yield essentially a stiffness matrix and a mass matrix, respectively.

From (3.63), we can already make some simple observations about system (3.62). First, in
the case where |z2|H1(Ω2)

6= 0, i.e. z2 is not constant over Ω2, then the matrix arising from the
FE formulation of problem (3.63) over Ω1 will be positive-definite, even though the solution
of the original Neumann problem was only defined up to a constant. As a result, the PGD
sets for itself an additive constant during the process. However, this value depends, among
other things, on the initialization of the fixed-point algorithm and it is not clear how or even
if it can be controlled.

Second, if |z2|H1(Ω2)
≈ 0, i.e. z2 is almost constant over Ω2 or the variations of z2 are small

compared to its magnitude, then the matrix arising from the FE formulation of the problem
over Ω1 will be ill-conditioned, or sometimes non-invertible with a rank deficiency of one
(just like the matrix A from Section 3.3 was). This is a degenerate case of PGD we came
across, hence the motivation for the methodology developed in this chapter. Nevertheless, it
is worth mentioning that even in that case, the compatibility condition is inherited from the
original problem so that solutions do exist.

We now assume that the input data admit affine representations [27], meaning that the
diffusivity coefficient a, as well as the loadings f and g, admit exact separated representations.
As a consequence, the bilinear form a and linear form f can be separated accordingly. In
addition, we also require the subset ω (and, consequently, the linear functional Q as well)
to admit a separated representation. For ω, this means that the domain can be written as
a (possibly non-disjoint) union of d-dimensional hyper-rectangles, while for Q this means it
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can be written in tensor form. The reader is referred to [96] for the case where the input
data is not separable.

3.4.2 Penalization method

Since the penalization approach is nothing but an ad hoc stabilization of the bilinear form
together with a consistent correction of the right-hand side, the PGD formulation of this prob-
lem can readily be established: given a previously computed numerical approximation um−1,

Find δu ∈ S1 such that

a(um−1 + δu, v) + βQ(um−1 + δu)Q(v) = f(v) + βγQ(v), ∀v ∈ T (δu).
(3.64)

Rearranging the terms in the equation, the problem can be recast as

Find δu ∈ S1 such that

a(δu, v) + βQ(δu)Q(v) = Rm−1(v) + β
(
γ −Q(um−1)

)
Q(v), ∀v ∈ T (δu).

(3.65)

With the assumed separation of the input data and Q, this leads to a problem that possesses
the same structure as problem (3.61), namely

Find δu ∈ S1 such that

a(δu, ψ1) + βQ(δu)Q(ψ1) = Rm−1(ψ1) + β
(
γ −Q(um−1)

)
Q(ψ1), ∀ψ1 ∈ T (1)(δu),

a(δu, ψ2) + βQ(δu)Q(ψ2) = Rm−1(ψ2) + β
(
γ −Q(um−1)

)
Q(ψ2), ∀ψ2 ∈ T (2)(δu),

...

a(δu, ψd) + βQ(δu)Q(ψd) = Rm−1(ψd) + β
(
γ −Q(um−1)

)
Q(ψd), ∀ψd ∈ T (d)(δu).

(3.66)

This system is solved in an Alternating Directions manner until convergence of the new
mode δu = ⊗di=1zi, after which one can set um = um−1 +⊗di=1zi.

Following [48], and under the assumption of weak closedness therein, the penalized PGD
converges towards the penalized FEM, at least in the norm induced by the penalized bilinear
form.



58

3.4.3 Lagrangian method

Once again, using a progressive approach, we assume that um−1 is given and we seek for a
next mode δu and Lagrange multiplier λ satisfying

Find (δu, λ) ∈ S1 × R such that

{
a(um−1 + δu, v) + λQ(v) = f(v), ∀v ∈ T (δu),

τQ(um−1 + δu) = τγ, ∀τ ∈ R.
(3.67)

Note that in this work we have not studied the existence nor the unicity of the solution (δu, λ)

and are only concerned with finding critical points of the Lagrangian functional.

Rearranging the terms, we have

Find (δu, λ) ∈ S1 × R such that

a(δu, v) + λQ(v) = Rm−1(v), ∀v ∈ T (δu),

τQ(δu) = τ
(
γ −Q(um−1)

)
, ∀τ ∈ R,

(3.68)
leading to the following problem

Find (δu, λ) ∈ S1 × R such that

a(δu, ψ1) + λQ(ψ1) = Rm−1(ψ1), ∀ψ1 ∈ T (1)(δu),

a(δu, ψ2) + λQ(ψ2) = Rm−1(ψ2), ∀ψ2 ∈ T (2)(δu),

...

a(δu, ψd) + λQ(ψd) = Rm−1(ψd), ∀ψd ∈ T (d)(δu),

τQ(δu) = τ
(
γ −Q(um−1)

)
, ∀τ ∈ R.

(3.69)

It is interesting to observe that problem (3.69) has a structure that is clearly different from
that of (3.61) or (3.66) due to the constraint equation and the Lagrange multiplier λ. In the
spirit of the Alternating Directions scheme, one would be tempted to associate the constraint
with one (or more) of the d other equations and perform the Alternating Directions as
usual until convergence. However, this approach raises several questions: does the method
converge? Does the choice of the coupling have an influence on convergence?

From our preliminary experiments, it turns out that none of these approaches yield satis-
factory results. To be more specific, the constraint Q(um−1 + δu) = γ is satisfied, but as
we increase the number of modes m, the PGD solution does not converge towards the FE
solution of the original Lagrangian problem (3.19). Furthermore, depending on the choice
adopted when coupling the constraint with one of the d problems, we obtain different results.
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Finally, the Lagrange multiplier λ does not converge either.

In order to solve (3.69) efficiently, it appears there are two options: either associate the
constraint with all d problems, or fully decouple the constraint from the other equations,
as the Uzawa and Augmented Lagrangian methods do. In the rest of this section, we will
investigate the first option: the goal is to solve (3.69) in such a way that the constraint
equation is evenly associated to the other problems.

The approach considered in this section differs from the classical Alternating Directions
scheme in that we update simultaneously all the z(k+1)

i , i = 1, . . . , d using the previous iter-
ates z(k)j , j = 1, . . . , d, j 6= i. If one were to make an analogy between the classical Alternating
Directions scheme and the block Gauss-Seidel method, then the present approach could be
viewed as a block Jacobi method. Since we update each function z(k+1)

i using only information
that is already available from the previous iterate k, one could do this process in parallel, but
this is not the approach we take. Instead, we assemble a global block-diagonal system whose
unknown is the concatenation of all the z(k+1)

i , i = 1, . . . , d. This way, we have a system
where all the d functions are updated simultaneously. Finally, we incorporate the constraint
into this global system, after having linearized it around the current iterate δu(k) = ⊗di=1z

(k)
i ,

e.g. by the Newton method. Therefore, instead of

Q
(
⊗di=1 z

(k+1)
i

)
= γ −Q(um−1), (3.70)

we consider

Q
(
z
(k+1)
1 ⊗ z(k)2 ⊗ · · · ⊗ z

(k)
d + z

(k)
1 ⊗ z

(k+1)
2 ⊗ · · · ⊗ z(k)d + · · ·+ z

(k)
1 ⊗ z

(k)
2 ⊗ · · · ⊗ z

(k+1)
d

)
= γ −Q

(
um−1 + (1− d)⊗di=1 z

(k)
i

)
.

(3.71)

In the end, each fixed-point iteration consists in solving a linear system where all d func-
tions are updated simultaneously and in which the constraint couples the one-dimensional
problems.

The finite element counterpart yields the following system of equations, where z(k+1)
i defines
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the vectors of unknown in each direction i

A(1,k) 0 . . . 0 B(1,k)

0 A(2,k) . . . 0 B(2,k)

...
... . . . ...

...
0 0 . . . A(d,k) B(d,k)

B(1,k)T B(2,k)T . . . B(d,k)T 0





z
(k+1)
1

z
(k+1)
2
...

z
(k+1)
d

λ


=



F (1,k)

F (2,k)

...
F (d,k)

γ̃


, (3.72)

with, for each i = 1, . . . , d
A

(i,k)
ln = a(z

(k)
1 ⊗ z

(k)
2 ⊗ · · · ⊗ ϕ(i)

n ⊗ · · · ⊗ z
(k)
d , z

(k)
1 ⊗ z

(k)
2 ⊗ · · · ⊗ ϕ

(i)
l ⊗ · · · ⊗ z

(k)
d ),

B
(i,k)
l = Q(z

(k)
1 ⊗ z

(k)
2 ⊗ · · · ⊗ ϕ

(i)
l ⊗ · · · ⊗ z

(k)
d ),

F
(i,k)
l = Rm−1(z

(k)
1 ⊗ z

(k)
2 ⊗ · · · ⊗ ϕ

(i)
l ⊗ · · · ⊗ z

(k)
d ),

(3.73)

where V (i)
h = span

{
ϕ
(i)
j

}dimV
(i)
h

j=1
, and γ̃ = γ −Q

(
um−1 + (1− d)⊗di=1 z

(k)
i

)
.

It is worth mentioning here that the method needs help with convergence. We noticed in
our numerical experiments that starting each fixed-point problem with a few iterations using
the penalized version PGD (or the forthcoming Uzawa or Augmented Lagrangian methods)
provides a remedy to this issue. It is likely because these few iterations bring the iterates
closer to the attraction basin of the solution.

3.4.4 Uzawa method

In this section and the next, we show how system (3.69) can be solved by decoupling the
constraint from the other equations. In Section 3.3.3, we described three versions for the
Uzawa method: Algorithm 1, where the step length α was not elaborated upon (one can
take α constant for a first grab at the method, note however that it cannot be too large,
otherwise the method will not converge, according to [85]); Algorithm 2, where the step
length α was computed using a gradient algorithm, which required the solution of an auxiliary
problem (step 5); and the so-called Uzawa Adjoint method. We will now adapt those to the
PGD setting.

We start by mentioning that the linearization of the constraint equation in (3.71) is consistent
with (3.25).

As far as Algorithm 1 is concerned, step 3 has to be adapted to the PGD framework. For
simplicity, this step can be written in weak form, leading to, for an already computed ap-



61

proximate value of λ

Find δu ∈ S1 such that a(δu, v) = Rm−1(v)− λQ(v), ∀v ∈ T (δu). (3.74)

Since λ is (approximately) known at this stage, this problem is of the same form as the
problem arising from classical PGD, and is solved using the Alternating Directions scheme.

Then, several choices are available in order to update the Lagrange multiplier λ (step 6): it
could be updated after reaching the fixed point satisfying (3.74), i.e. for the current approx-
imation of λ, or more frequently, for example after one full Alternating Directions iteration,
or even more frequently. that is after each problem in the Alternating Directions scheme. In
the present work, we did not study in detail the influence of this feature and simply chose to
update after one full Alternating Directions iteration.

Concerning Algorithm 2, some more in-depth modifications need to be made since we cannot
afford to solve the auxiliary problem Aw(k) = Br(k), which lives in the fully discretized space
(in fact, this approach would be the so-called Uzawa Adjoint and will be investigated at the
end of this subsection). Instead, we proceed as follows: for the current approximate value
of the Lagrange multiplier λ we perform one full Alternating Directions iteration on (3.74)
and we compute the constraint residual r(k). For the step length α, the analysis of [85] is
again required because we are no longer working with system (3.19), but with (3.72) instead,
having uncoupled the d problems by the Alternating Directions scheme and linearized the
constraint equation by Newton’s method. As a consequence, the Schur complement is now
the sum of d “unidimensional Schur complements”

S =
d∑
i=1

Si, where Si = B(i,k)T
(
A(i,k)

)−1
B(i,k), (3.75)

where these vectors and matrices were defined in (3.73). Note that each matrix A(i,k) is
associated with a one-dimensional problem in V (i)

h , i = 1, . . . , d.

Then, the optimal step length is given by αopt =
1
S
= 1∑d

i=1 Si
, and to approximate it, one can

use a gradient descent on the constraint equation, in which the step length would be given
by

α =
r(k) · r(k)

r(k) · Sr(k)
. (3.76)
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To avoid the use of S, one can write

Sr(k) =
d∑
i=1

B(i,k)T
(
A(i,k)

)−1
B(i,k)r(k) =

d∑
i=1

B(i,k)Twi, (3.77)

where each wi is the solution of an auxiliary one-dimensional problem A(i,k)wi = B(i,k)r(k).

Finally, the extension of the Uzawa Adjoint method to the PGD setting is relatively straight-
forward, since one only needs to compute the unconstrained and adjoint solutions as well as
the Lagrange multiplier using (3.37). One iteration of the PGD version of this algorithm is
as follows: compute one mode δu for the unconstrained solution, one mode δp for the adjoint
solution, and update the approximate Lagrange multiplier

λ =
Q(um−1 + δu)− γ
Q(pm−1 + δp)

. (3.78)

3.4.5 Augmented Lagrangian method

The Augmented Lagrangian method is essentially the same as the Uzawa method but with the
bilinear form replaced by its penalized version. We only state in this subsection the simplifica-
tions associated with the step length α. Similarly to what was derived in Section 3.3.4, when β
is large enough, the auxiliary problems can be circumvented assuming βB(i,k)Twi = r(k). The
step length is then computed as

α =
r(k) · r(k)

r(k) ·
∑d

i=1
r(k)

β

=
β

d
, (3.79)

instead of (3.76)–(3.77). Here again, the auxiliary problems have been avoided. Note that
the Sherman-Morrison-Woodbury matrix identity applied to each (penalized) term in the
sum (3.75) yields the same result.

3.5 Numerical Examples

In this section, we apply above methods to the two model problems considered in this chap-
ter, namely the constrained pure Neumann problem (3.12) and the constrained Robin prob-
lem (3.16).

For the numerical simulations, we consider d = 2 and Ω = ω = (0, 1)2 and choose a
point (xc, yc) ∈ Ω so that Ω is split into two regions: Ω1 = {(x, y) ∈ Ω;x > xc and y > yc},
and the complementary regionΩ0 = Ω\Ω1. Then a is chosen piecewise constant in eachΩi, i =
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0, 1. We choose xc = 7/32, yc = 19/32, a0 = 1 and a1 = 10. Finally, we take γ = 0. The
exact solution u of the constrained pure Neumann problem (3.10) is constructed using the
so-called manufactured solution method, and is chosen to be harmonic of the form

u(r, θ) =

{
A0r

µ cos(µθ) +B0r
µ sin(µθ) + C, in Ω0,

A1r
µ cos(µθ) +B1r

µ sin(µθ) + C, in Ω1,
(3.80)

where (r, θ) is the polar coordinate centered at (xc, yc). The constants µ,A0, B0, A1, and B1

are chosen such that u is continuous in Ω and n · (a∇u) is continuous across the inter-
face between Ω0 and Ω1. Finally, C is chosen so that u satisfies the constraint Q(u) = 0.
We mention that µ is taken greater than the degree of the shape functions considered in
the numerical experiments so that the manufactured solution has sufficient regularity. The
loadings f and g are derived using (3.1). In fact f = 0 since u is taken to be harmonic
in Ω. Table 3.1 collects the values of the constant parameters µ,A0, B0, and C while we
have A1 = A0 and B1 = (a0/a1)B0.

Table 3.1 Values of the parameters µ,A0, B0, and C used in the numerical experiments.

µ A0 B0 C
2.7317 0.1526 0.9883 0.0534

In order to compare the numerical solutions, we will use the semi-norm induced by a, denoted
by |·|E , and the mean-functional Q. Concerning the Robin problem (3.16), we consider the
same loadings f and g as for the pure Neumann problem (3.12), independently of ε. As a
result, the exact solution uε of the Robin problem (3.16) is unknown, but this is not the focus
of the present study (it was verified though that for every value of ε, the unconstrained finite
element solution of the Robin problem did not already satisfy the constraint). Furthermore,
we will also use the semi-norm induced by a and the mean-functionalQ for the Robin problem.
Finally, a regular mesh of square elements with associated mesh size h = 1/32 is used, and
the bilinear Lagrange polynomials are chosen as basis functions.

First, we start by illustrating some properties of the Robin problem when the impedance
coefficient ε goes to zero within the FE framework described in Section 3.3. Afterwards, we
present some results for the penalized FEM and compare the Neumann and Robin problems.
Finally, we present results for the constrained PGD approaches introduced in Section 3.4.
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3.5.1 Constrained FEM solutions

As stated in Section 3.2, for any ε > 0, the Schur complement S for the Robin problem exists
and is finite. However, as Figure 3.1 shows, when ε goes to zero, S−1 goes to zero as well,
with a slope of one. On the same figure, we also show:

• the algebraic error |uε,h − uh|E between the FE solutions of the Robin problem and the
Neumann problem, both obtained by the Lagrangian method (3.20); as ε goes to zero,
Figure 3.1 shows that the constrained Robin solution converges towards the constrained
Neumann solution, at least in terms of the semi-norm |·|E ;

• the absolute value of the mean-value of the Robin solution |Q(uε,h)|; Figure 3.1 shows
that the constraint is numerically enforced for all values of ε, so that, together with the
previous point, uε,h does converge towards uh;

• the absolute value of the Lagrange multiplier |λ|; Figure 3.1 shows that it has the
same behavior as ε. From our numerical experiments, there could be two reasons (or a
combination of both): as ε goes to zero, either the unconstrained solution progressively
satisfies the zero-mean condition, or the matrix A becomes more and more numerically
singular;

• the inverse of the scaled condition number of matrix A, denoted by κ−1; Figure 3.1
shows that, as ε goes to zero, the matrix becomes numerically singular, reflecting that
the underlying bilinear form progressively looses coercivity;

• the absolute value of the mean-value of the unconstrained Robin solution |Q(ũε,h)|;
Figure 3.1 shows that it is bounded away from zero for any ε, and so we can conclude
that |λ| goes to zero because of the lost coercivity.

Following (3.27), in order for the Uzawa method to converge, the upper bound for the step
length α is given by 2

S
, which is of the order of ε. Therefore, when ε goes to zero, the

convergence of the Uzawa method deteriorates. At the limit ε = 0, which is the pure
Neumann case, S does not exist and one cannot use the Uzawa method.

We now consider the penalized FE methods and compare the Robin problem (with fixed
impedance parameter ε = 1) and the Neumann problem when the penalization coefficient β
varies. The results are collected in Figure 3.2, where we show:

• the algebraic error |uβ,h − uh|E between the penalized and Lagrangian solutions;

• the absolute value of the mean-value |Q(uβ,h)|;

• the error in the post-processed Lagrange multiplier |βQ(uβ,h)− λ|;
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Figure 3.1 Evolution of some outputs of the Robin problem solved by the Lagrangian method
with respect to the impedance coefficient ε.

• the inverse of the scaled condition number of the penalized matrix κ−1;

• for the Robin problem only, the algebraic error between the penalized solution and the
unconstrained solution |uβ,h − ũh|E .

We observe strikingly different results between the two problems. For the Robin case, the
choice of β has evidently a strong influence on the solution: it has to be sufficiently large to
enforce the constraint. This is because the unconstrained Robin problem already possesses
a unique solution, and the penalization method is nothing but a trade-off between this un-
constrained solution and the solution of the Lagrangian method. This is in contrast with the
Neumann problem, for which the unconstrained solution is not unique. As a result, there is
no trade-off where the energy would have to be sacrificed in favor of the constraint. To some
extent, as A is singular and thus not coercive, any β > 0 is large enough to impose the con-
straint so that the penalized solution coincides with the Lagrangian solution. However, for
small values of the parameter β, the constraint fails to be enforced, due to the fact that the
penalized matrix A becomes more and more singular as β goes to zero, so that the numerical
solutions get polluted by round-off errors.

Based on the results collected in Figure 3.2, we will now set β = 102 for the penalization
and Augmented Lagrangian approaches. We purposely take β not too large in order to
observe the limitations of the penalization approach. We emphasize here that the penalization
parameter β in the Augmented Lagrangian approach has to be chosen large enough to ensure
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Figure 3.2 Evolution of some outputs of the penalization approach with respect to the pe-
nalization parameter β. Left: Robin problem. Right: Neumann problem.

the precision of the step length α and, thus, the fast convergence of the solution, but not too
large to avoid that round-off errors pollute the numerical solution.

3.5.2 Constrained PGD solutions

We now turn our attention to the constrained PGD solutions. In Section 3.4, we introduced
five different methods, namely the penalization method; the Lagrangian method with si-
multaneous update of the functions by a block Jacobi method; the iterative Uzawa and the
Uzawa Adjoint methods (recall that they can only be applied to the Robin case where the
Schur complement exists); and the Augmented Lagrangian method. For completeness, we
also consider the classical (unconstrained) PGD method, which can equivalently be seen as
a penalization method with β = 0. We mention that in these experiments, the step length α
for the iterative Uzawa method was set to unity. We will subsequently analyze the influence
of this parameter on the convergence of the method. We recall that for the iterative Uzawa
and Augmented Lagrangian methods, the Lagrange multiplier λ is updated after each Alter-
nating Direction iteration. Finally, the PGD algorithms were initialized with λ = 1 and with
random modes.

For each method and each problem, we measure the truncation error in the semi-norm induced
by a between the FE solution of the Lagrangian problem and the PGD solutions, as displayed
in Figure 3.3, as well as the absolute value of the mean-value, as displayed in Figure 3.4, and
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the error in the Lagrange multiplier, as displayed in Figure 3.5.
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Figure 3.3 Truncation error between the FE Lagrangian solution and the constrained PGD
methods. Left: Robin problem. Right: Neumann problem.

In terms of the semi-norm induced by a, all PGD solutions converge towards the FE solution
of the Lagrangian problem, except for the unconstrained and the penalized approaches for the
Robin case, as expected. Concerning the mean-value, all constrained PGD solutions tend to
satisfy the constraint as the number of modes increases, except for the penalized Robin case,
because of the aforementioned trade-off between energy and constraint satisfaction. We note
that for the Uzawa Adjoint method, the constraint is satisfied up to machine precision, but
this is only a consequence of the way the Lagrange multiplier is computed for this approach,
i.e. following (3.78). Finally, the Lagrange multiplier also converges with the number of
modes except for the penalized Robin case.

To summarize, the PGD methods based on the Lagrangian formulation (including the Uzawa
and Augmented Lagrangian approaches) converge towards the FE Lagrangian solution. The
PGD method based on the penalization formulation converges towards its penalized FE
solution counterpart (not directly shown in these figures).

We now investigate the influence of the step length α and of the impedance coefficient ε
on the performance of the constrained PGD solved by the Uzawa method, again applied to
the Robin problem. The results are collected in Table 3.2, where we measure the number
of modes required to achieve a truncation error in the energy norm between the constrained
PGD solution and the FE solution of the full Lagrangian problem (3.19) smaller than 10−2.
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For several values of the impedance coefficient ε (and thus several values of the Schur com-
plement S) we used different constant values of α as well as the step length αopt computed
solving the auxiliary problems resulting from (3.76)–(3.77).

Table 3.2 Number of modes needed to achieve a truncation error in the energy norm smaller
than 10−2 as a function of the step length α and impedance coefficient ε. The “×” notation
is employed to mean the numerical solutions failed to converge (unbounded energy norm).
The “◦” notation is employed to mean the numerical solution had bounded energy norm but
did not converge to the FE solution of the full Lagrangian problem (3.19).

α
ε

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 1

1 × × × × × × × × 7
10−1 × × × × × × × 8 9
10−2 × × × × × × 8 9 42
10−3 × × × × × 7 7 43 335
αopt ◦ ◦ 10 10 7 8 11 9 7

We observe that choosing a constant step length α is effective as long as the impedance
coefficient ε is neither too small, which may lead to numerical solutions with unbounded
energy norm, nor too large, which may require more iterations to observe convergence. This
is in agreement with Saad’s analysis [85]. Conversely, opting for the step length αopt is a
much more robust choice. However we note that when the impedance coefficient ε gets very
close to zero, even this choice yields unsatisfactory results. The reason is that for such values
of the impedance coefficient ε, the Robin problem becomes closer and closer to the pure
Neumann problem, for which the Uzawa approach is not applicable. We mention that the
Uzawa Adjoint approach was stable for values of the impedance coefficient ε as small as 10−13.

Finally, computing times for the constrained PGD approaches were recorded and compared to
the unconstrained (classical) PGD. We found that the extra cost associated to the constraint
was in the 20% range of the total time, except for the Lagrangian approach, in which case
the extra time was about 75%. This difference is likely due to the “Jacobi” nature of the
fixed-point algorithm for the Lagrangian approach, which is known to require more iterations
to converge than its “Gauss-Seidel” counterpart.

3.6 Conclusion

In this chapter, we have introduced and analyzed several methods to incorporate a constraint
within the PGD framework. We have considered the Lagrangian formulation and some
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classical numerical strategies such as the Uzawa and Augmented Lagrangian approaches,
and the penalization approach. Using two problems, namely a pure Neumann problem and a
Robin problem, we were able to show from the numerical examples that the constrained PGD
based on the Lagrangian formulation converges towards the FE solution of the Lagrangian
problem (except for the Uzawa approach when the Schur complement was too large), while
the penalized PGD solution converges towards the penalized FE solution.

As a conclusion of the chapter, we recommend the use of the Uzawa method, if the Schur
complement is moderately small, and the Lagrangian or Augmented Lagrangian methods
otherwise, which offer satisfactory results. As far as the penalization parameter β in the
Augmented Lagrangian approach is concerned, it should be chosen in such a manner that the
step length remains accurate while avoiding introducing round-off errors in the solution. The
optimal value of β for a given problem actually depends on many parameters, including the
spectrum of the Schur complement. The penalization approach is much simpler to implement
but provides only an approximation of the constraint, except in the particular case of the
pure Neumann problem (unicity recovered through the constraint).

Future developments will focus on when to update the Lagrange multiplier in the Uzawa
and Augmented Lagrangian approaches, on a possible proof of convergence for the PGD
solutions when using the Lagrangian formulation, on higher dimensional constraints, e.g.
for the Stokes problem or quasi-incompressible solid mechanics (the methods proposed in
this paper could be extended as alternative approaches to the method presented in [58]),
and on the incorporation of inequality constraints using the KKT (Karush-Kuhn-Tucker)
conditions [62, 67].

In the following chapters, we extend the proposed method to the goal-oriented formulation
for the PGD framework, which involves a minimization problem under several constraints in
terms of quantities of interest of the solution.
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CHAPTER 4 A GOAL-ORIENTED VERSION OF THE PROPER
GENERALIZED DECOMPOSITION METHOD

In this chapter, we introduce, analyze, and numerically illustrate a goal-oriented version of
the Proper Generalized Decomposition method. The objective is to derive a reduced-order
formulation such that the accuracy in given quantities of interest is increased when compared
to a standard Proper Generalized Decomposition method. Traditional goal-oriented meth-
ods usually compute the solution of an adjoint problem following the calculation of the primal
solution for error estimation and adaptation. In the present work, we propose to solve the ad-
joint problem first, based on a reduced approach, in order to extract estimates of the quantities
of interest and use this information to constrain the reduced primal problem. The resulting
reduced-order constrained solution is thus capable of delivering more accurate estimates of
the quantities of interest. The performance of the proposed approach is illustrated on several
numerical examples. This chapter is largely inspired by [64].

4.1 Introduction

Uncertainty quantification for computational science and engineering applications requires
fast methods to efficiently estimate response surfaces in sampling methods or multi-query
optimization. Such a need has led to the development of model reduction approaches, for
instance the Proper Orthogonal Decomposition (POD) [10, 53] and the Proper Generalized
Decomposition (PGD) [39, 75] methods, the Reduced-Basis methods (RB) [27, 84], etc.
These methods propose to approximate the solutions of initial and boundary-value problems
as modal expansions involving a finite number of modes. Moreover, one can resort to adaptive
methods based on a posteriori error estimation for the construction of the reduced models
in hope of reducing the computational cost for a given accuracy. Adaptive methods are
usually implemented in a greedy fashion where the discrete solution space is iteratively and
a posteriori corrected based on refinement indicators provided by error estimates on the
computed solution. Adjoint-based methods, often referred to as goal-oriented methods [78,
82], allow one to estimate the numerical error with respect to quantities of interest (QoI)
and, thus, to adapt the solution towards the specific goals of the computer simulation.

The objective of the present work is to propose a different paradigm in which information from
quantities of interest is directly incorporated into the calculation of the modes in model reduc-
tion methods. The proposed approach will be exemplified here using the Proper Generalized
Decomposition method, the main objective being to approximate given outputs of interest
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at a lesser cost than the classical PGD approach. It is different from the goal-oriented error
estimation greedy approach for PGD solutions [5, 6, 8, 35, 68, 69] or the natural approach
that consists in computing a global PGD, then localizing at the QoI level, and compacting
to get fewer modes.

The proposed approach presents some similarity with the work described in [22], where the
authors define specific norms with additional weighting terms taking into account the error in
the quantity of interest. The main idea in [22] is to minimize a norm weighted by a functional
involving the adjoint solution, via a penalization approach, in order to obtain a goal-oriented
PGD using the so-called ideal minimal residual approach. The choice of this specific norm
allows one to enhance accuracy with respect to some quantity of interest. The method can
also be seen as a perturbation of a minimal residual method with a measure of the residual
corresponding to the error in specified solution norm. A variant of the RB method, referred
to as the weighted RB method, was introduced in [37] and the approach was extended to
the POD framework in [90]. A comparison of the weighted RB method with the weighted
POD method is presented in [91]. The weighted RB method applies specific weights, defined
according to the underlying probability distribution, to the snapshots in order to properly
account for the stochastic nature of the problem. In contrast, the weighted POD method
introduces weights in the correlation matrix. In yet another work [32], a goal-oriented POD
method was derived by considering additional snapshots based on the derivatives with respect
to the parameter variables and referred to as sensibility factors. The authors showed that
the resulting reduced-order solution provided more accurate results than those obtained from
the classical POD due to the fact that the reduced-order model was able to better account
for parameter changes. The motivation and rationale for using weights or sensibility factors
have in fact some similarities with the proposed adjoint-based method of this work. Earlier
works also include [30] where a goal-oriented reduced-order model is derived using concepts
borrowed from the POD and the optimal control communities. There, the authors define an
optimized reduced-order basis as the one minimizing the errors in the quantities of interest
between the full-space solution and the reduced-order solution, subject to the constraint that
the underlying governing equations are enforced.

The current approach actually builds on the a priori goal-oriented methods for least squares
finite element formulations [36] and for finite element approximations of symmetric boundary-
value problems [66], and is essentially an extension of these methods to reduced-order mod-
eling. The method in [36] incorporates the error in QoI into the least squares functional via
a penalization approach and inherits the global approximation properties of the standard
formulation as well as increased accuracy in the quantity of interest. In practice, the value of
the QoI is not known a priori; this issue can be addressed by finding a Riesz representation of
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the QoI using the original least squares functional. However, the value of the QoI is replaced
by an approximation of the QoI computed on a finer mesh than that used for the solution.
This method represents a departure from classical goal-oriented a posteriori error estimation
methods, which solve an adjoint problem to determine the sensitivity of the QoI to pertur-
bations in the PDE solution [20]. Using the approximate Riesz representer can actually be
seen as an approximation of the adjoint problem with refined discretization parameters.

A critical issue in the methods presented in [22] for PGD and in [36] for FEM is the choice of
the penalization parameter, which strongly influences the quality of the numerical solution.
Indeed, the penalization parameter needs to be properly chosen to ensure convergence, effi-
ciency, and accuracy. A large value puts more weight on the QoI in the functional and, as a
result, the approximation yields a more accurate QoI. However, there is a limit to the ben-
efit of overweighting the QoI as the problem becomes ill-conditioned when the penalization
parameter becomes too large. Conversely, when the penalization parameter is too small, the
method fails to improve the accuracy in the QoI since the additional term in the functional is
too small to account for the QoI. Moreover, the penalization parameter ought to depend on
the discretization parameter in order to maintain balance between the least squares residual
term and the QoI error term, which makes the selection of an optimal value of the parameter
non trivial.

In [66], the issue of selecting the penalization parameter was circumvented by enforcing the
constraint exactly through the use of Lagrange multipliers. In that work, it was shown
that the constrained problem was well-posed and that the corresponding constrained finite
element solution retained near-optimality in energy norm while being much more accurate
in the desired quantities of interest. The objective of the present chapter is thus to extend
this framework to the case of PGD approximations. This actually gives rise to a new issue,
that of enforcing constraints in the PGD setting. Several methods were investigated and
compared in [65], namely the penalization approach, the Lagrangian approach using Uzawa-
type techniques, and the Augmented Lagrangian method. The conclusions of [65] were that
the Lagrangian-based approaches resulted in better solutions than the penalization approach.

The chapter is organized as follows: In Section 4.2, we describe the model problem. In
Section 4.3, we present the novel goal-oriented PGD method. The main idea is to use
the reduced-order adjoint problems in order to obtain more accurate information about the
quantities of interest, and to define a constrained PGD primal problem whose solution is
tailored towards the approximation of the quantities of interest. Numerical experiments are
presented in Section 4.4 to illustrate the performance of the proposed approach. We finally
provide some concluding remarks in Section 4.5.
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4.2 Model problem

Let d ∈ N and Ω ⊂ Rd denote a hyper-rectangular domain of interest. The d variables could
represent space, time, and/or parameters. In general, the space variables are not separated
from each other, meaning that the spatial domain need not be tensorizable. However, for
simplicity in the exposition, we consider here the case where the spatial variables can also
be separated. We consider a d-dimensional problem, defined over the tensor space V =⊗d

i=1 V
(i), where V (i) denotes the functional space associated to the i-th variable, written in

global weak form as

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V, (4.1)

for a a continuous coercive bilinear form on V × V and f a continuous linear form on V .
For simplicity, we shall assume that above weak form can be derived from the minimization
of a potential energy. If it were not the case, the method presented in this chapter could
be applied by resorting to a least squares formulation [23] and the corresponding Minimal
Residual PGD [75].

A classical approach for approximating the solution of (4.1) consists in discretizing space V
using for instance the finite element method. The mesh associated with the finite-dimensional
space Vh ⊂ V is obtained by the tensor product of one-dimensional meshes along each of the d
directions of domain Ω ⊂ Rd. In other words, Vh is the tensor product of d one-dimensional
FE spaces: Vh =

⊗d
i=1 V

(i)
h . If V (i)

h introduces N degrees of freedom, the dimension of the
discretized space Vh is thus Nd. This exponential growth is the so-called “curse of dimen-
sionality” and quickly results in prohibitive costs as N grows or when d becomes large. A
possible remedy consists in adopting a reduced-order modeling framework, whose objective is
to represent the solution in terms of modes expanded on some specific basis. As a result, the
number of variables used to characterize the reduced-order solution scales with m × d ×N ,
where m is the number of retained modes. Reduced-order methods differ from one another
by the choice of said basis. In the present work, we will focus our attention on the PGD
method.

4.3 Goal-oriented PGD reduced model

We assume in the present chapter that the input data admit affine representations [27]. As a
consequence, the bilinear form a and linear form f can be separated accordingly. In addition,
we also require that the linear map Q representing the quantities of interest be separable with
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respect to the decomposition of V . The reader is referred to [96] for guidelines on how to
handle non-separable input data.

Let us consider k ∈ N quantities of interest Q(u) = (Q1(u), Q2(u), . . . , Qk(u)) ∈ Rk where Q
is a linear map from V to Rk. As in [66], it is assumed that the map Q is surjective onto Rk (if
it were not it would mean that the quantities of interest Qi are redundant). The constrained
optimization problem we consider is

min
v∈V

Q(v)=γ

J(v), (4.2)

where γ ∈ Rk is chosen such that the accuracy in the quantities of interest is increased when
compared to the classical approach. The values of γi, i = 1, . . . , k, can be obtained through
the solution pi of each adjoint problem

Find pi ∈ V such that a(v, pi) = Qi(v), ∀v ∈ V, (4.3)

since
γi = Qi(u) = f(pi), i = 1, . . . , k. (4.4)

In [36, 66], the target values γ were estimated by approximating the adjoint problems on
refined or enriched spaces. We propose here to use the PGD method for each of the adjoint
problems, yielding approximations p̃m,i, where m is the same as in um. In that case, the
values of γi are approximated by

γm,i = f(p̃m,i), i = 1, . . . , k. (4.5)

We note that the tilde symbol will be employed throughout the present chapter to refer to an
approximation in a refined or enriched space/set. Hence, Ṽh denotes a larger space than Vh
(piecewise quadratic and piecewise linear basis functions, respectively, in our numerical ex-
amples). Similarly for S̃1,h and T̃h(δu), the set of rank-1 tensors and the tangent space to the
rank-1 tensor δu.

Remark 8. As detailed in [66], one needs to use a larger space for the computation of the
target values. If one were to use the same space for the primal and the adjoint problems,
then the accuracy in the quantities of interest of the constrained solution would be the same
as that of the unconstrained solution: the whole approach would be useless.

Two strategies, introduced in [65] for constrained PGD formulations, will be used in the fol-
lowing to take into account the constraint in the minimization problem (4.2): the penalization
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method, and the Uzawa method.

4.3.1 Penalization approach

The penalization method amounts to minimizing the functional

Jβ(v) = J(v) +
k∑
i=1

βi
2
(Qi(v)− γi)2, (4.6)

where the βi are penalization parameters that need to be provided. The weak formulation
associated to this minimization problem reads

Find u ∈ V such that a(u, v) +
k∑
i=1

βiQi(u)Qi(v) = f(v) +
k∑
i=1

βiγiQi(v), ∀v ∈ V. (4.7)

Using a “two-step progressive Galerkin PGD approach” (a step for the adjoint problem fol-
lowed by a step for the primal problem) leads to the following sequence of discrete problems:

Adjoint problems: For each i = 1, . . . , k,

1) Find δp̃i ∈ S̃1,h such that a(ṽ, p̃m−1,i + δp̃i) = Qi(ṽ), ∀ṽ ∈ T̃h(δp̃i).

2) Compute γm,i = f(p̃m,i).

Penalized primal problem:

3) Find δu ∈ S1,h such that

a(um−1 + δu, v) +
k∑
i=1

βiQi(um−1 + δu)Qi(v) = f(v) +
k∑
i=1

βiγm,iQi(v), ∀v ∈ Th(δu).

(4.8)

In the sequence of problems (4.8), each adjoint problem is solved using the classical Alter-



77

nating Directions approach. The penalized primal problem can be recast as

Find δu ∈ S1,h such that

a(δu, ψ1) +
k∑
i=1

βiQi(δu)Qi(ψ1) = Rm−1(ψ1) +
k∑
i=1

βirm−1,iQi(ψ1), ∀ψ1 ∈ T (1)
h (δu),

a(δu, ψ2) +
k∑
i=1

βiQi(δu)Qi(ψ2) = Rm−1(ψ2) +
k∑
i=1

βirm−1,iQi(ψ2), ∀ψ2 ∈ T (2)
h (δu),

...

a(δu, ψd) +
k∑
i=1

βiQi(δu)Qi(ψd) = Rm−1(ψd) +
k∑
i=1

βirm−1,iQi(ψd), ∀ψd ∈ T (d)
h (δu),

(4.9)
where we have introduced the constraint residual

rm−1 = γm −Q(um−1). (4.10)

The penalized primal PGD (4.9) presents the advantage of being very simple to analyze and
implement, since it has the same structure as that of the classical PGD problem (3.61). As a
result, it can also be solved using the Alternating Directions approach. However, we mention
two disadvantages of the method, as already indicated in Chapter 3: first, the choice of the
penalization parameters βi has a strong influence on the quality of the numerical solution um;
second, the constraints Q(um) = γm are not satisfied exactly. In order to circumvent those
two issues, we consider below a Lagrangian approach.

4.3.2 Lagrangian approach

Denoting by · the Euclidean inner product on Rk, the Lagrangian approach consists in finding
the saddle-point of the following Lagrangian functional

L(v, λ) = J(v) + λ · (Q(v)− γ), (4.11)

so that one obtains the mixed problem

Find (u, λ) ∈ V × Rk such that

{
a(u, v) + λ ·Q(v) = f(v), ∀v ∈ V,

τ ·Q(u) = τ · γ, ∀τ ∈ Rk.
(4.12)

In [66] and in Chapter 2 it was shown that above problem, under the assumption of surjec-
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tivity of Q, was well-posed.

Using a “two-step progressive Galerkin PGD approach” leads to the following sequence of
problems:

Adjoint problems: For each i = 1, . . . , k,

1) Find δp̃i ∈ S̃1,h such that a(ṽ, p̃m−1,i + δp̃i) = Qi(ṽ), ∀ṽ ∈ T̃h(δp̃i).

2) Compute γm,i = f(p̃m,i).

Constrained primal problem:

3) Find (δu, λ) ∈ S1,h × Rk such that{
a(um−1 + δu, v) + λ ·Q(v) = f(v), ∀v ∈ Th(δu),

τ ·Q(um−1 + δu) = τ · γm, ∀τ ∈ Rk.

(4.13)

The adjoint problems are obviously identical to those considered in the penalization approach.
Only the constrained (mixed non-linear) primal problem differs from the previous approach,
which can be recast as

Find (δu, λ) ∈ S1,h × Rk such that

a(δu, ψ1) + λ ·Q(ψ1) = Rm−1(ψ1), ∀ψ1 ∈ T (1)
h (δu),

a(δu, ψ2) + λ ·Q(ψ2) = Rm−1(ψ2), ∀ψ2 ∈ T (2)
h (δu),

...

a(δu, ψd) + λ ·Q(ψd) = Rm−1(ψd), ∀ψd ∈ T (d)
h (δu),

τ ·Q(δu) = τ · rm−1, ∀τ ∈ Rk,

(4.14)

where rm−1 again denotes the constraint residual (4.10).

Problem (4.14) has a different structure from the classical PGD (3.61) due to the constraint
equation. Following [65], one could solve it by considering a direct Lagrangian method,
the iterative Uzawa scheme, or the Augmented Lagrangian approach. Due to its relative
simplicity and its performance, as demonstrated in [65], we choose in the present work the
Uzawa method. Its main feature is to decouple the constraint from the rest of the system
and to approximate the Lagrange multipliers using an iterative method. The extension
of the Uzawa method for finding a constrained PGD mode and the Lagrange multipliers
satisfying (4.14) is described in Algorithm 3. We note that the problem in step 2 of the
algorithm can be solved using the classical Alternating Directions strategy.

The step length α, which appears in step 4 of Algorithm 3, can be taken as a constant or can
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Algorithm 3: Algorithm for finding a constrained PGD mode (Uzawa).
1 while convergence not reached do
2 Solve a(δu, v) = Rm−1(v)− λ ·Q(v), ∀v ∈ Th(δu)
3 Compute constraint residual r = γm −Q(um−1 + δu)
4 Compute step length α
5 Update Lagrange multiplier λ← λ− αr
6 end
7 Update solution um = um−1 + δu

be computed using a gradient method [65, 85]. In order to do so, we introduce d (uncoupled)
one-dimensional auxiliary problems. Let δu = ⊗di=1zi be the current primal solution and r the
current constraint residual (see step 3 of Algorithm 3 and (4.10)), the d auxiliary problems
are given by

For each j = 1, . . . , d, find wj ∈ V (j)
h such that

a(z1 ⊗ · · · ⊗ wj ⊗ · · · ⊗ zd, ψj) = Q(ψj) · r, ∀ψj ∈ T (j)
h (⊗di=1zi).

(4.15)

Then the gradient method leads to computing the step length α as

α =
r · r

r ·Q(w)
, (4.16)

where w ∈ Th(⊗di=1zi) is constructed from the solutions wj of the auxiliary problems (4.15)
as

w =
d∑
j=1

z1 ⊗ · · · ⊗ wj ⊗ · · · ⊗ zd. (4.17)

Instead of the gradient method, one could consider the conjugate gradient method. In that
case, one would only need to carry out the modifications associated to the constraint resid-
ual r.

Remark 9. As an alternative to the Uzawa approach, one could consider an augmented
Lagrangian method. This consists in finding the saddle-point of L(v, λ)+

∑k
i=1

βi
2
(Qi(v)−γi)2,

rather than simply L(v, λ) in order to enhance the convergence properties of the method, see
e.g. [65].

Remark 10. To get more flexibility, it may be useful to consider the relaxed constraints
(Qi(v)− γi)2 ≤ ε, where ε represents a user-defined tolerance on the errors in the quantities
of interest. This requires, when enforcing the constraint, to use KKT (Karush-Kuhn-Tucker)
conditions [62, 67].
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4.4 Numerical examples

In this section we illustrate the goal-oriented PGD method on two numerical examples.

The first problem consists of an elastic beam in traction and composed of two different
materials. The PGD method is used to separate the space variable from each of the two
parameter variables (Young’s modulus of each material). In this first example, we did not
consider any approximation of the adjoint problems (4.3) and simply used the exact value
of γ as target value. This first problem is used to illustrate the method in the case where
there are only two sources of numerical error with respect to the exact solution: namely (i)
the truncation error arising from the finite number of modes used in the PGD expansion, and
(ii) the error arising from the treatment of the constraint. I would like to thank Prof. Ludovic
Chamoin for having provided the initial code, results, and report of this first example.

The second problem consists of a diffusion equation in 2D and the PGD is used to separate
the two space variables. In that second example, we compute the target values γm using an
enriched PGD approximation of the adjoint solution.

Example 1: A parametrized beam problem We consider an elastic beam of length L
and constant cross section area A = 1, made of two different materials. The Young modu-
lus E = E(x) is chosen piecewise constant

E(x) =

{
E1, x ∈ (0, L/2),

E2, x ∈ (L/2, L),
(4.18)

where E1 ∈ Ω1 = [Emin
1 , Emax

1 ] and E2 ∈ Ω2 = [Emin
2 , Emax

2 ], see Figure 4.1. The beam is
fixed at x = 0 and subjected to a unit traction force at x = L. Forms a and f are given by

N1(x)

E1 E2

N2(x)

x = 0 x = L/2 x = L

F = 1

Figure 4.1 Schematic of the elastic beam in traction.

a(u, v) =

ˆ
Ω1

ˆ
Ω2

ˆ L

0

E
∂u

∂x

∂v

∂x
; f(v) =

ˆ
Ω1

ˆ
Ω2

v(L). (4.19)



81

For this problem, the analytical solution reads

u(x,E1, E2) =


1

E1

x, x ∈ [0, L/2],

1

E1

L

2
+

1

E2

(
x− L

2

)
, x ∈ [L/2, L],

(4.20)

which can be expressed in compact form as

u(x,E1, E2) =
L

2E1

(N1(x) +N2(x)) +
L

2E2

N2(x), (4.21)

where N1 and N2 are the piecewise linear Lagrange basis functions associated with nodes x =

L/2 and x = L, respectively. In this example, the solution space is thus given by V =

span {N1, N2} ⊗ L2(Ω1)⊗ L2(Ω2), and u = u(x,E1, E2) ∈ V .

The considered quantities of interest are the mean value, over the parameter domain Ω1×Ω2,
of the displacement at mid-point x = L/2 and end-point x = L, respectively

Q1(u) =
1

|Ω1| × |Ω2|

ˆ
Ω1

ˆ
Ω2

u(L/2),

Q2(u) =
1

|Ω1| × |Ω2|

ˆ
Ω1

ˆ
Ω2

u(L),

(4.22)

so that Q = (Q1, Q2) : V → R2 denotes the functional of interest.

The exact value of the quantities of interest are

Q1(u) =
L

2

[
1

|Ω2|
ln

(
Emax

1

Emin
1

)]
,

Q2(u) =
L

2

[
1

|Ω2|
ln

(
Emax

1

Emin
1

)
+

1

|Ω1|
ln

(
Emax

2

Emin
2

)]
.

(4.23)

These exact values are those used to determine γ, i.e. we do not consider an approximation
of the adjoint solution for this first example. We search a PGD solution under the form

um(x,E1, E2) =
m∑
i=1

ϕi(x)φ1i(E1)φ2i(E2) (4.24)

We choose L = 1, Emin
1 = Emin

2 = 1, and Emax
1 = Emax

2 = 10. Furthermore, we mention
that the spaces L2(Ω1) and L2(Ω2) are each discretized using 500 uniformly distributed
points. It was verified that the resulting discretization error was negligible with respect to
the truncation errors observed in this first numerical example.
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Penalization method. We consider the minimization of (4.6) leading to the non-linear prob-
lem (4.9). For simplicity we take the same penalization parameter β for both constraints.
We consider a progressive approach, i.e. for um−1 given, we compute the next iterate um =

um−1 + ϕ⊗ φ1 ⊗ φ2, where ϕ, φ1, and φ2 are solutions to

a(ϕφ1φ2, v) + βQ(ϕφ1φ2) ·Q(v) = Rm−1(v) + βrm−1 ·Q(v), ∀v ∈ T (ϕφ1φ2), (4.25)

which is solved using an Alternating Directions strategy.

We consider several values of the penalization parameter, i.e. β ∈ {0, 102, 105}, in order to
illustrate its influence on the results. Of course, the value β = 0 corresponds to the classical
PGD decomposition (3.61), i.e. without the additional weighting term.

Uzawa method. We consider the saddle-point problem (4.11) leading to the constrained non-
linear problem (4.14), which is solved by a progressive approach. Assuming um−1 is known,
we compute the next iterate um = um−1 + ϕ ⊗ φ1 ⊗ φ2, where ϕ, φ1, φ2, and λ are solutions
to {

a(ϕφ1φ2, v) + λ ·Q(v) = Rm−1(v), ∀v ∈ T (ϕφ1φ2),

τ ·Q(ϕφ1φ2) = τ · rm−1, ∀τ ∈ Rk.
(4.26)

This mixed non-linear problem is solved with the Uzawa method described in Algorithm 3.

We collect in Figure 4.2 the first four PGD modes obtained using

• Classical PGD (i.e. penalization with β = 0);

• Penalized PGD with β = 102;

• Penalized PGD with β = 105;

• Constrained PGD using Uzawa method.

We also provide the numerical values of the global potential energy J(um) = 1
2
a(um, um) −

f(um) in Table 4.1 and of the normalized quantities of interest Qi(um)/Qi(u), i = 1, 2 in
Table 4.2. For each method, the potential energy converges to the value −10.3618.

The classical PGD, the penalized PGD with β = 102, and the Uzawa-based PGD all reach the
exact value of the potential energy J(u) to four digits within 7–8 modes while the penalized
PGD with β = 105 needs 12 modes (not shown here) to reach the same accuracy. Meanwhile,
concerning the accuracy in the quantities of interest, the best results are obtained using the
penalized PGD with β = 105 and the Uzawa-based PGD.
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Figure 4.2 First four PGD modes (top row m = 1; bottom row m = 4) for the different
methods: functions ϕ (left), φ1 (center), and φ2 (right).
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Table 4.1 Evolution of the potential energy J(um) with respect to m.

m
J(um)

β = 0 β = 102 β = 105 Uzawa
1 -8.4810 -8.3982 -8.0812 -8.0646
2 -9.3514 -9.6009 -9.3856 -9.1776
3 -10.2313 -10.2219 -9.4526 -10.1169
4 -10.2894 -10.2905 -10.1508 -10.1971
5 -10.3278 -10.3301 -10.1888 -10.2747
6 -10.3525 -10.3523 -10.2796 -10.3267
7 -10.3557 -10.3574 -10.2967 -10.3528
8 -10.3578 -10.3594 -10.3257 -10.3581
9 -10.3606 -10.3606 -10.3293 -10.3590
10 -10.3612 -10.3610 -10.3338 -10.3603

Table 4.2 Evolution of the normalized quantities of interest Qi(um)/Qi(u) with respect to m.

m
Q1(um)/Q1(u) Q2(um)/Q2(u)

β = 0 β = 102 β = 105 Uzawa β = 0 β = 102 β = 105 Uzawa
1 0.8185 0.9666 1.1226 1.0000 0.8185 0.8527 0.9637 0.9998
2 0.7447 0.8846 1.0125 1.0005 0.8991 0.9789 1.0085 0.9999
3 1.0000 1.0157 0.9998 1.0001 0.9872 1.0111 0.9998 1.0000
4 1.0228 0.9784 1.0003 1.0002 1.0165 0.9841 0.9996 1.0001
5 0.9898 0.9925 0.9999 1.0001 0.9929 0.9953 0.9997 1.0000
6 0.9897 0.9923 1.0000 1.0000 0.9912 0.9947 0.9998 1.0000
7 0.9961 1.0010 0.9997 1.0000 0.9948 0.9979 1.0000 1.0000
8 1.0005 1.0003 1.0000 1.0000 0.9964 1.0022 1.0002 1.0000
9 0.9980 1.0021 1.0002 1.0000 0.9993 1.0026 1.0000 1.0000
10 0.9979 1.0000 1.0002 1.0000 0.9987 1.0014 1.0000 1.0000
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The numerical results show that a large penalization parameter β improves the accuracy in
the quantities of interest but worsens the convergence in the potential energy. This is be-
cause the penalization approach is a trade-off between minimizing the energy and minimizing
the additional term related to the quantity of interest. Conversely, the Lagrangian/Uzawa
approach circumvents the issue of selecting “a good β” by imposing the constraints through
Lagrange multipliers. It is worth mentioning that the Uzawa method provides the correct
values of the quantities of interest using only a couple of modes without sacrificing much the
value of the potential energy.

Example 2: A 2D diffusion problem The second model problem consists of the Poisson
equation with homogeneous Dirichlet conditions{

−∆u = 1, in Ω,

u = 0, on ∂Ω,
(4.27)

where Ω = (0, 1)2. The exact solution of (4.27) can be found in terms of Fourier series and
is shown in Figure 4.3 left-hand side. We mention that u ∈ H3(Ω) for this problem.
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Figure 4.3 Primal u (left) and adjoint p (right) solutions for the diffusion example.

We also suppose that one is interested in the scalar quantity

Q(u) =
1

|ω|

ˆ
ω

u, (4.28)

where ω = (xmin, xmax) × (ymin, ymax) is a rectangular subdomain of Ω defined with xmin =
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1/
√
2, xmax = xmin + 1/

√
30, ymin = 1/

√
18, ymax = ymin + 1/

√
17. The irrational bounds

were intentionally chosen so that the region of interest ω does not coincide with the mesh.

The exact value of the quantity of interest (4.28) can be computed using the Fourier expansion
of u. The adjoint solution p ∈ H3(Ω) is shown in Figure 4.3 right-hand side.

Forms a and f are given by

a(u, v) =

ˆ
Ω

∇u · ∇v; f(v) =

ˆ
Ω

v. (4.29)

The domain Ω is discretized into a uniform mesh made of 128× 128 quadrilateral elements.
The finite element space Vh ⊂ V = H1

0 (Ω) for the approximation of the primal problem is
the span of piecewise continuous bilinear Lagrange basis functions. For the adjoint problem,
we consider here the enriched space Ṽh ⊂ V constructed from biquadratic hierarchical basis
functions on the same mesh.

In this second example, we use the PGD to separate the x and y variables. We apply the
“two-step progressive Galerkin PGD” method described in Section 4.3.2 combined with the
Uzawa scheme to compute the constrained PGD modes.

In order to analyze the convergence results for this example, we introduce (wh, λ) ∈ Vh × R,
the fully discretized solution of the constrained problem

Find (wh, λ) ∈ Vh × R such that

{
a(wh, vh) + λ ·Q(vh) = f(vh), ∀vh ∈ Vh,

τ ·Q(wh) = τ · f(p̃), ∀τ ∈ R,
(4.30)

where p̃ ∈ Ṽh is the fully discretized solution of the enriched adjoint problem

Find p̃ ∈ Ṽh such that a(ṽ, p̃) = Q(ṽ), ∀ṽ ∈ Ṽh. (4.31)

The numerical results are collected in Figure 4.4 where we show

• in Figure 4.4 (left) the errors in energy norm, in the Lagrange multiplier, and in the
quantity of interest, with respect to the fully discretized solution (wh, λ) ∈ Vh × R of
the constrained problem (4.30);

• in Figure 4.4 (right), the errors in the quantity of interest with respect to the exact
solution u ∈ V of problem (4.27) for both the Classical PGD and the Goal-Oriented
PGD. The dash (resp. dash-dot) line is used to show the error in the quantity of interest
for the fully discretized solution in Vh (resp. in Ṽh).
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Figure 4.4 Errors with respect to the constrained solution (wh, λ) ∈ Vh × R of the fully
discretized problem (4.30) (left). Errors in the quantity of interest with respect to the exact
solution u ∈ V of problem (4.27) (right).

The numerical results show that the constrained PGD solution converges to the solution (wh, λ) ∈
Vh ×R of the constrained problem (4.30). Moreover, they also indicate that the error in the
quantity of interest is roughly squared when considering the constrained approach. This
is in agreement with the results of a priori error estimation [13] since both u ∈ H3(Ω)

and p ∈ H3(Ω) are sufficiently regular for this problem.

4.5 Conclusion

In this chapter, we have extended the goal-oriented method proposed in [66] for the finite
element method to the Proper Generalized Decomposition framework. The enriched adjoint
approximation is computed using a PGD scheme to provide an enhanced estimate of the
quantity of interest. The knowledge on the adjoint solution is then included in the primal
problem as a constraint on the error in the quantity of interest and the constrained PGD
problem is solved following the methodology developed in [65]. The proposed goal-oriented
PGD method allows one to construct separated representations of the solution that deliver
approximations of the quantity of interest with much better accuracy than the classical PGD.
It is worth noting that the methodology does also handle the case where several quantities
of interest are simultaneously considered. The performance of the proposed approach is
illustrated on several numerical examples, namely a simple parametrized beam problem, and
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a 2D Poisson problem. We observe for these linear problems a significant improvement in the
accuracy of the quantities of interest obtained from the constructed PGD solutions. These
preliminary results are very promising and future works will focus on: 1) the application
of the method to more complex initial and boundary-value problems; 2) its extension to
the case of non-linear problems and non-linear quantities of interest; 3) its extension to
other reduced-order methods such as the Proper Orthogonal Decomposition approach; 4)
the development of an error estimator and an adaptive strategy to enhance its performance;
5) the assessment of its efficiency for the treatment of uncertainty quantification, inverse or
optimization problems, in which one has to extensively evaluate surface responses.

In the next chapter, we will apply the proposed Goal-oriented PGD strategy to a problem
of engineering interest. We will model the electrostatic potential equation in a composite
material, possibly featuring a delamination between two plies.
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CHAPTER 5 AN APPLICATION EXAMPLE: A PARAMETRIZED
ELECTROSTATIC STUDY OF A CRACKED COMPOSITE PROBLEM

This last chapter consists of an application example involving the electrostatic potential equa-
tion in a simplified 2D model of a composite material, featuring a possible delamination.

5.1 Introduction

Composite laminates have become materials of choice in many engineering applications due to
their high strength to weight ratio. However, they are prone to delamination, a mode of failure
that causes layers to separate, among other types of failures. Delamination is not visually
observable and its detection usually requires nondestructive testing techniques. One possible
approach is electrical impedance tomography (EIT) whose main objective is to reconstruct
the conductivity field of a medium by injecting current through electrodes and measuring
resulting voltages. One could hypothetically use EIT data and solve inverse problems in order
to identify the position and size of delamination regions in composite materials. However, the
cost of solving inverse problems under the presence of uncertainties may become prohibitive
for three-dimensional composite materials as the computer model should accurately predict
differences of potential between electrodes. The goal of this chapter is to show that a goal-
oriented PGD model tailored to the calculation of these output quantities of interest could
provide a very effective surrogate computer model of the EIT experiments. In this chapter,
we propose to build an accurate and cheap PGD solution to a simplified 2D electrostatic
potential model of a composite material featuring a possible delamination.

5.2 Modelisation and problem formulation

Let Ω be the rectangle Ω = (0, Lx) × (0, Ly) ⊂ R2 modeling the spatial domain occupied
by the composite material. As shown in Figure 5.1, we consider a 5-ply composite whose
plies have thickness Ly/5. In this work, and for simplicity, we have chosen to model the “ma-
trix/fiber” arrangement in the composite by a piecewise homogeneous orthotropic material.
The electrical conductivity σ corresponds to a 2×2 diagonal matrix whose values are strictly
positive and piecewise constant in domain Ω, modeling the directional conductivities in the
horizontal and vertical directions of the different plies. Explicitely, the conductivity tensor
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at each point of the domain is given by

σ =

[
σx 0

0 σy

]
, (5.1)

with σy = 1 and

σx = σx(y) =


σa if Ly

5
< y < 2Ly

5
,

σb if 3Ly
5
< y < 4Ly

5
,

10 otherwise.
(5.2)

For the parametrized study, we have introduced two additional variables, σa and σb, where σa ∈
Ωa =

[
σmin
a , σmax

a

]
and σb ∈ Ωb =

[
σmin
b , σmax

b

]
, with σmin

a > 1 and σmin
b > 1. These additional

variables could be thought of as control parameters of the stacking sequence in the composite.
A high value of σa in the second ply describes for example a ply where the fibers conduct
extremely well the electrical current, in other words a ply where the fibers are almost per-
fectly aligned with the x-direction. A smaller conductivity indicates that the fibers become
orthogonal to that direction. Finally, the lowest value of the electrical conductivity is σy = 1,
the same in all plies, and describes the poor contact between fibers, as well as the fact that
the matrix material has poor conductivity properties.

Figure 5.1 Schematic of the composite material and layout of the different electrodes.

We also equip the composite with six electrodes of same size `, Γi, i = 1, . . . , 6, on its top
and bottom boundaries, as shown in Figure 5.1. Here, we introduce the additional parame-
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ter θ that describes an offset in the position of the first electrode Γ1, that is Γ1 = Γ1(θ) =

(θ, θ + `) × {Ly}. Similarly to the other parameters, we consider that θ takes values in the
bounded interval Ωθ =

[
θmin, θmax

]
. The other electrodes Γ2 to Γ6 are fixed (i.e. no additional

parameter). The electrodes Γ1 and Γ4 are used to inject a current into the domain (non-
homogeneous Neumann boundary condition). The remainder of the boundary ∂Ω\ (Γ1 ∪ Γ4)

is electrically insulated (homogeneous Neumann boundary condition). The other electrodes,
Γ2, Γ3, Γ5 and Γ6, are used to measure differences of potential, which actually define the
quantities of interest in this problem.

In the absence of an internal electrical loading force, the electrostatic equations consist of
the diffusion equation and Neumann boundary conditions{

−∇ · (σ∇u) = 0, in Ω,

n · σ∇u = g, on ∂Ω,
(5.3)

where g = χΓ1 − χΓ4 (with χΓ denoting the characteristic function with respect to Γ ).
There exist models that better describe the behavior of the current passing through the
electrodes than the Neumann boundary conditions (see e.g. [87]) but those would not change
the conclusions of the present study.

Let us note that model problem (5.3) is a pure Neumann problem (with Neumann loading g
satisfying the compatibility condition). Consequently, the solution u is defined up to an
additive constant. In order to recover unicity of the solution, we look for the zero-mean weak
solution to problem (5.3). As a result, the weak form reads

Find u ∈ H1(Ω)/R such that
ˆ
Ω

σ∇u · ∇v =

ˆ
∂Ω

gv, ∀v ∈ H1(Ω)/R, (5.4)

where H1(Ω)/R denotes the quotient space

H1(Ω)/R =

{
v ∈ H1(Ω);

1

|Ω|

ˆ
Ω

v = 0

}
. (5.5)

Finally, we consider a possible delamination between two plies in the domain. The motivation
for introducing the shift θ is to consider the case where the position of the delamination is
not known exactly. In this study, rather than moving the delamination, we choose to simply
move the electrodes. Since the delamination is fixed in the spatial domain Ω, and when the
context is clear, we choose not to emphasize the presence or not of a delamination in the
exposition below in order to simplify the presentation. We show in Figure 5.2 some examples
of the solution u to (5.4) in the (x, y) domain for various values of the position θ of the
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electrode Γ1 on the top boundary.
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Figure 5.2 Evolution of u(x, y) for fixed values of (σa, σb) and θ = 1
90

(left), θ = 10
90

(center),
and θ = 19

90
(right). Top row: case without delamination; bottom row: case with delamination.

We now consider the parametrized boundary-value problem of finding the weak solution to
Problem (5.4) with (σa, σb, θ) ∈ Ωa × Ωb × Ωθ. To this end, we introduce the global weak
form of the problem

Find u ∈ V such that
ˆ
Ωa

ˆ
Ωb

ˆ
Ωθ

ˆ
Ω

σ∇u · ∇v =

ˆ
Ωa

ˆ
Ωb

ˆ
Ωθ

ˆ
∂Ω

gv, ∀v ∈ V, (5.6)

which, in compact form, reads

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V, (5.7)

where u = u(x, y, σa, σb, θ) and the solution space V is defined as

V =
(
H1(Ω)/R

)
⊗ L2(Ωa)⊗ L2(Ωb)⊗ L2(Ωθ). (5.8)

The three scalar quantities of interest for this problem, Q(u) ∈ R3, are defined as the differ-
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ences of potential averaged over the parameter space

Q1(u) =
1

`× |Ωa| × |Ωb| × |Ωθ|

ˆ
Ωa

ˆ
Ωb

ˆ
Ωθ

(ˆ
Γ2

u−
ˆ
Γ3

u

)
,

Q2(u) =
1

`× |Ωa| × |Ωb| × |Ωθ|

ˆ
Ωa

ˆ
Ωb

ˆ
Ωθ

(ˆ
Γ2

u−
ˆ
Γ5

u

)
,

Q3(u) =
1

`× |Ωa| × |Ωb| × |Ωθ|

ˆ
Ωa

ˆ
Ωb

ˆ
Ωθ

(ˆ
Γ2

u−
ˆ
Γ6

u

)
.

(5.9)

These quantities of interest define three adjoint problems, which are also defined on the
solution space V = (H1(Ω)/R)⊗ L2(Ωa)⊗ L2(Ωb)⊗ L2(Ωθ)

For i = 1, 2, 3, find pi ∈ V such that a(v, pi) = Qi(v), ∀v ∈ V. (5.10)

We show in Figure 5.3 several examples of the adjoint solutions p1, p2, and p3 to (5.10). It
is interesting to note that p2 and p3 clearly show the presence of the delamination while p1
does not. In other words, the quantity Q1 is relatively insensitive to the delamination, as
expected.
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Figure 5.3 Typical instances of the adjoint solutions p1 (left), p2 (center), and p3 (right). Top
row: case without delamination; bottom row: case with delamination.
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We use the Proper Generalized Decomposition method to approximate the solutions to the
primal problem (5.7) and dual problems (5.10), where we separate the parameter variables
from the space variables. Hence we look for a low-rank solution of the form

um(x, y, σa, σb, θ) =
m∑
i=1

fi(x, y)gi(σa)hi(σb)ki(θ). (5.11)

We note that the spatial zero-mean condition is imposed globally in the 2D spatial domain.
As a result, this constraint does not require a special treatment within the PGD framework
since the spatial variables are not separated from each other. This constraint is merely applied
using the classical Lagrangian approach when solving each 2D spatial problem during the
fixed-point strategy.

Inspection of (5.6) reveals that there is a separability issue in the loading term due to the
integrals over Ωθ and ∂Ω and the integrand term g = g(x, θ). In order to circumvent
this issue in the PGD process, we construct a separated representation of the Neumann
boundary term g(x, θ) ≈

∑M
i=1wi(x)zi(θ), using its Singular Value Decomposition (SVD) on

a sufficiently fine grid to avoid oscillation errors [96].

5.3 Numerical results and analysis

The spatial domain Ω is discretized into a uniform mesh made of 40 × 40 quadrilateral
elements. We mention that the mesh is conforming to the discontinuities in the electri-
cal conductivity σ. The numerical treatment of the delamination is handled using double
nodes. Obviously, more sophisticated approaches could have been chosen, typically by en-
riching the patches crossed by the delamination and those around its extremities, e.g. using
PUM (Partition of Unity Methods) [73], eXtended/Generalized FEM [49] or the Stabilized
GFEM [16, 17, 54, 63].

The parameter domains Ωa and Ωb are each discretized using a grid of 51 logarithmically-
spaced points, while the parameter domain Ωθ is discretized using a grid of 51 linearly spaced
points. The finite element space Vh ⊂ V used for the approximation of the primal problem is
the span of continuous piecewise bilinear Lagrange basis functions. For the adjoint problems,
we consider the enriched space Ṽh ⊂ V constructed from hierarchical basis functions of
degree two on the same mesh. Finally, for the reference solutions, we enrich one more time
and consider the space ˜̃Vh ⊂ V constructed from hierarchical basis functions of degree three
on the same mesh.

For the numerical simulations, we choose Lx = Ly = 1, σmin
a = 2, σmax

a = 4, σmin
b = 20,
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σmax
b = 40, θmin = 1/90, θmax = 19/90, and ` = 1/9. When domainΩ features a delamination,

it is located at (0.25, 0.65)× {0.8}, i.e. between the fourth and fifth plies.

We show in Figure 5.4 (resp. Figure 5.5) the first few modes function for the PGD solutions
of the primal problem (resp. of the adjoint problem corresponding to the third quantity
of interest). Notice that some of the functions displayed in those figures are, or appear,
constant. The specific value of the constant is due to normalization. Indeed, in each mode
the parameter functions gi, hi and ki are normalized and the amplitude of mode i is carried
in the space function fi. For instance, the functions ki are constant up to machine precision
for the adjoint solution as can be seen in the last column of Figure 5.5. This is due to the fact
that the adjoint problem (5.10) does not depend on parameter θ. One could have anticipated
that the adjoint solutions were 4D and not 5D, but this was not our focus. Concerning
Figure 5.4, we observe that in seven occurences, function gi or hi appears constant. In those
cases, there are in fact small variations that reflect the limited influence of the parameters σa
or σb on the respective modes. This is especially striking for σa, which has little influence
on the first four modes, as expected. Indeed, recall that σa controls the conductivity in the
second ply from the bottom, whereas in the primal problem, the active electrodes, Γ1 and
Γ4, are on the top side.

We now turn our attention to the convergence results. First, for the case without delamina-
tion, we examine the discretization error in the solutions computed in spaces Vh and Ṽh with
respect to the reference solution obtained in ˜̃Vh and using m = 41 modes. Table 5.1 reports
the relative error in energy norm and in the quantities of interest.

Table 5.1 Relative error in energy for each problem and each QoI for the case without de-
lamination.

Relative discretization error in space Vh in space Ṽh
Primal problem 16.71% 4.77%

First adjoint problem 22.92% 6.07%
Second adjoint problem 12.17% 3.43%
Third adjoint problem 12.17% 3.43%

First QoI 0.92% 0.0097%
Second QoI 1.09% 0.0024%
Third QoI 1.09% 0.0023%

We now look at to the total PGD error, i.e. both discretization and truncation errors are
considered, for the case without delamination. In Figure 5.6, we compare the classical PGD
in Vh and the goal-oriented PGD in Vh with quantities of interest computed in Ṽh. The errors
in energy norm, and in each quantity of interest, are collected as the number of modes m is
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Figure 5.4 First five modes for the classical PGD solution of the primal problem.
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Figure 5.5 First five modes for the classical PGD solution of the third adjoint problem.
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increased. As in the previous Chapter, dash (resp. dash-dot) lines are used to show the error
in the quantity of interest for the fully discretized solution in Vh (resp. in Ṽh).
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Figure 5.6 Case without delamination. Error in the energy norm (top-left). Error in each
quantity of interest: error in Q1 (top-right); error in Q2 (bottom-left); error in Q3 (bottom-
right).

In Table 5.2 and Figure 5.7, we show the same results in the case where we consider a
delamination between the fourth and fifth plies.

In all cases, the numerical results indicate once more that the constrained PGD is able to
deliver enhanced predictions of the quantities of interest, compared to the unconstrained
classical PGD. Similarly to the other examples, this is achieved without sacrificing too much
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Table 5.2 Relative error in energy for each problem and each QoI for the case with delami-
nation.

Relative discretization error in space Vh in space Ṽh
Primal problem 16.76% 4.80%

First adjoint problem 22.94% 6.07%
Second adjoint problem 13.25% 4.21%
Third adjoint problem 13.25% 4.21%

First QoI 0.88% 0.017%
Second QoI 0.61% 0.088%
Third QoI 0.61% 0.088%

the global convergence in energy norm.

Table 5.3 gathers the number of degrees of freedom associated to the full space solutions, for
linear up to cubic polynomials. Recall that those spaces suffer the curse of dimensionality,
as can be seen from the large number of degrees of freedom arising from the rather crude
discretization chosen here. Table 5.3 also shows the dimension of the reduced spaces associ-
ated with the PGD solutions with m = 31 modes, along with an extra column containing the
dimension reduction factors computed as the dimension of full space to dimension of reduced
space ratio.

Table 5.3 Number of degrees of freedom of the full and reduced spaces, and dimension re-
duction factor.

Space Dimension Reduced dimension Reduction factor
Vh 0.22× 109 56 854 4× 103

Ṽh 6.8× 109 212 784 32× 103

˜̃Vh 50× 109 467 914 108× 103

The reduction factors are quite impressive, but they have to be mitigated because they do not
reflect the number of iterations during the Alternating Direction scheme. For fair comparison,
we gather in Table 5.4 the wall clock time for both the classical PGD in Vh and in Ṽh, and
for the goal-oriented PGD in space Vh with dual problems solved in Ṽh. For reference, this
is compared to the time required to assemble and solve the 2D (x, y)-problem for one point
of the parameter grid for (σa, σb, θ), with linear (resp. quadratic) polynomials. This was
recorded on a computer with 64 bits architecture, a 2.2 GHz processor and 8 GB of RAM.
On this computer and using a simple incremental loop, we measured that Matlab was able
to “count” up to 220× 106 in 1 s. We mention that for simplicity, we consider the case with
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delamination and only the first quantity of interest, i.e. Q = Q1 in this case. Table 5.4 also
includes the relative errors in the quantity of interest Q1(u).

Table 5.4 Wall clock time for each method.

Method Wall clock time Error in Q(u)
Classical PGD in Vh 21 s 0.88%

Classical PGD in Ṽh 65 s 0.017%
Goal-oriented PGD 53 s 0.017%
1 simulation linear 0.71s

1 simulation quadratic 1.05 s

Table 5.4 reveals that the computational times are similar between the Classical PGD in Ṽh
and the Goal-oriented PGD. We even note that the Goal-oriented PGD is slighthly ahead.
One reason could be that the dual problem is cheaper to solve than the primal problem.

Finally, we record the reference values (i.e. using space ˜̃Vh) of the quantities of interest Q1(u),
Q2(u), and Q3(u), and compare the cases with and without delamination in Table 5.5. The
table also includes the relative difference between the two cases. The results in Table 5.5
indicate that the smallest difference is accounted for the first quantity of interest Q1(u): this
corresponds to the difference of potentials between two electrodes on the same side of the
composite. Conversely, the relative differences for the two other quantities of interest Q2(u),
Q3(u) are larger: those are the quantities of interest for which electrodes were placed on each
side of the composite.

Table 5.5 Comparison of the cases with and without delamination.

Q1(u) Q2(u) Q3(u)
Without delamination 19.241× 10−3 9.9951× 10−3 9.9986× 10−3

With delamination 19.276× 10−3 10.346× 10−3 10.350× 10−3

Relative difference 0.18% 3.5% 3.5%

This can be interepreted as follows: if the two electrodes are on the same side of the composite,
then the delamination, being inside the domain, has a very small influence on the measured
difference of potentials. Indeed, the path of least resistance from one electrode to the other
is located between the delamination and said side. Conversely, if the two electrodes are on
each side of the composite, then the streamlines of the electrical current have to adjust and
go around the delamination to reach the other side of the domain. Essentially since the
delamination is placed on its pathway, it has a stronger influence on the measured difference
of potentials.
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Finally we note from Tables 5.4 and 5.5 that the relative difference between the cases
with/without delamination for the first quantity of interest is smaller than the relative er-
ror due to discretization in Vh. The space Vh is not rich enough to allow detecting the
delamination using the two electrodes that are on the same side. Conversely, the space Ṽh
produces a lower error in Q1(u), which is smaller than the relative difference between the cases
with/without delamination. This means the enriched space Ṽh is rich enough to detect the
delamination. If one uses electrodes on opposite sides, which is the case for Q2(u) and Q3(u),
then both space Vh and space Ṽh are rich enough to allow detecting the delamination.

5.4 Conclusion

In this chapter we have shown that a goal-oriented PGD model tailored to the calculation
of targeted output quantities of interest can provide a very effective, accurate, and cheap,
surrogate computer model of the simplified 2D electrostatic model of a composite material
featuring a possible delamination. The parametrized solution map could also be used in an
experimental design campaign, in order to help decide where best to place the electrodes to
detect a possible delamination.
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

We have presented a goal-oriented finite element methodology and its extension to the Proper
Generalized Decomposition framework. Goal-oriented approaches are used when one is in-
terested in efficiently and accurately predicting specific outputs of the solution, rather than
the whole solution itself. This research topic has grown a lot since its inception, yet many
challenges remain. In a multi-query study, e.g. when evaluating high-dimensional surface
responses, one has to deal with problems involving a large number of parameters. Classical
approaches based on discretization of the whole space then meet the so-called curse of di-
mensionality, which prohibits direct numerical simulation. Model-order reduction methods,
of which PGD is an instance, provide a class of methods that aim at circumventing the said
curse, by exploiting lower dimensional structures in the problem. A series of numerical exam-
ples, from 2D to 5D (including the parameters), demonstrated the efficiency, and the limits,
of the proposed approach.

In the following two paragraphs, we provide some concluding remarks regarding the goal-
oriented FEM developed in this research work. Traditional strategies in goal-oriented com-
munities consider the primal solution uh ∈ Vh, and then use the adjoint solution in an
enriched space p̃ ∈ Ṽh, for error estimation and adaptivity. The approach proposed here
requires the knowledge of the adjoint solution p̃ ∈ Ṽh before computing the goal-oriented
solution (wh, λh) ∈ Vh × R by a constrained minimization of the energy. We have shown in
Chapter 2: (i) the well-posedness of the problem, (ii) the near-optimality of the correspond-
ing solution in energy norm, and (iii) the enhanced accuracy of the solution in the quantity of
interest, namely, the accuracy that one would achieve by computing the approximate solution
in the space Ṽh.

If one were only interested in the values of the quantities of interest, one would obtain the same
accuracy by considering the primal solution ũ in the enriched space Ṽh. However, suppose now
one wants to adapt the mesh: one has to solve the dual problems in an even richer space, ˜̃Vh.
Conversely, in our approach we can adapt the mesh without additional problems to be solved.
The downside is that if we want an a posteriori error estimator for the quantities of interest, we
also need to consider ˜̃Vh. In short, for a similar CPU spending (corresponding to one primal
solve in Vh and one dual solve in Ṽh), the traditional approach yields: (i) an approximation
of the quantity of interest, (ii) an error estimate, and (iii) adaptivity. The approach proposed
here yields: (i) a more accurate quantity of interest, and (ii) adaptivity. The methodology
developed here could easily be included in a black-box fashion into commercial codes that
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can already handle adjoint problems and constraints. Finally, the constrained goal-oriented
approach developed in this thesis could also be applied to the problem of data-assimilation,
viewed from a frequentist perspective. Indeed, the methodology developed here can be readily
applied in situations where experimental measurements of a set of quantities of interest are
available and it is sought to incorporate these measurements as constraints while solving
the primal problem. Essentially, the experimental measurements would serve as the target
values α.

Concerning the model order reduction framework, the proposed goal-oriented PGD method
also allows one to obtain a more accurate estimate of the quantity of interest than the classical
PGD, as demonstrated by the numerical examples from Chapters 3 through 5. The goal-
oriented reduced-order approach developed here can be used to provide accurate estimates of
quantities of interest at very low computational cost. This can be particularly useful for the
treatment of uncertainty quantification, inverse, and optimization problems in which cases
one has to evaluate surface responses a very large number of times.

Although presented for linear symmetric coercive problems, the approach is much more gen-
eral. Future work will focus on the extension of the goal-oriented FEM to non-linear problems
and non-linear quantities of interest. These problems are commonly solved by linearizing the
non-linear equations and by using iterative schemes. In order to extend the goal-oriented
methodology to these problems, one would need to find an approximation of the primal
solution first in order to be able to solve for the adjoint problem. Then, one would have
to iteratively consider an enriched dual problem followed by a constrained primal problem.
Dual problems are linear by construction, even when the primal problem is non-linear. As
a result, the full potential of the proposed goal-oriented method would appear even more
clearly in that situation. Indeed the linear dual problem will be solved in the enriched space,
providing enhanced approximation of the quantities of interest, while the non-linear primal
problem will only be solved in the coarser space.

Some future developments for the goal-oriented PGD method include:

• the development of an adaptive goal-oriented PGD (an example of adaptive strategy is
presented in [35]). The objective would be to design a goal-oriented adaptive reduced-
order methodology;

• a proof of convergence for the constrained PGD solutions (Lagrangian formulation).
The idea would be to adapt the proof in the case of PGD without constraints from [48];

• the extension of the goal-oriented method to problems with higher dimensional con-
straints, such as for the Stokes problem or quasi-incompressible solid mechanics. Due
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to the increase in the number of constraints, the Augmented Lagrangian method would
be the most appropriate;

• the extension of the proposed methodology to stochastic problems or problems with
uncertain data. The Proper Generalized Decomposition already has a stochastic equiv-
alent in the Stochastic Galerkin framework, the so-called Generalized Spectral Decom-
position [74]. The extension of our goal-oriented approach to GSD should be straight-
forward.
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