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A De Giorgi Iteration-based Approach for the Establishment
of ISS Properties for Burgers’ Equation with Boundary and
In-domain Disturbances

Jun Zheng'and Guchuan Zhu?, Senior Member, IEEE

Abstract—This note addresses input-to-state stability (ISS) properties
with respect to (w.r.t.) boundary and in-domain disturbances for Burgers’
equation. The developed approach is a combination of the method
of De Giorgi iteration and the technique of Lyapunov functionals by
adequately splitting the original problem into two subsystems. The ISS
properties in L2-norm for Burgers’ equation have been established using
this method. Moreover, as an application of De Giorgi iteration, ISS in
L°°-norm w.r.t. in-domain disturbances and actuation errors in boundary
feedback control for a 1-D linear unstable reaction-diffusion equation
have also been established. It is the first time that the method of De Giorgi
iteration is introduced in the ISS theory for infinite dimensional systems,
and the developed method can be generalized for tackling some problems
on multidimensional spatial domains and to a wider class of nonlinear
partial differential equations (PDEs).

Index Terms—ISS, De Giorgi iteration, boundary disturbance, in-
domain disturbance, Burgers’ equation, unstable reaction-diffusion equa-
tion.

I. INTRODUCTION

Extending the theory of ISS, which was originally developed for
finite-dimensional nonlinear systems [35], [36], to infinite dimen-
sional systems has received a considerable attention in the recent
literature. In particular, there are significant progresses on the estab-
lishment of ISS estimates with respect to disturbances [1], [2], [6],
[7], [12], [14], [15], [16], [18], [26], [27], [30], [33], [38], [40] for
different types of PDEs.

It is noticed that most of the earlier work on this topic dealt with
disturbances distributed over the domain. It was demonstrated that the
method of Lyapunov functionals is a well-suited tool for dealing with
a wide rang of problems of this category. Moreover, it is shown in
[2] that the method of Lyapunov functionals can be readily applied to
some systems with boundary disturbances by transforming the later
ones to a distributed disturbance. However, ISS estimates obtained by
such a method may include time derivatives of boundary disturbances,
which is not strictly in the original form of ISS formulation.

The problems with disturbances acting on the boundaries usually
lead to a formulation involving unbounded operators. It is shown in
[12], [13] that for a class of linear PDEs, the exponential stability
plus a certain admissibility implies the ISS and iISS (integral input-
to-state stability [12], [37]) w.r.t. boundary disturbances. However,
it may be difficult to assess this property for nonlinear PDEs. To
resolve this concern while not invoking unbounded operators in the
analysis, it is proposed in [15], [16], [17] to derive the ISS property
directly from the estimates of the solution to the considered PDEs
using the method of spectral decomposition and finite-difference. ISS
in L?-norm and in weighted L°°-norm for PDEs with a Sturm-
Liouville operator is established by applied this method in [15],
[16], [17]. However, spectral decomposition and finite-difference
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schemes may involve heavy computations for nonlinear PDEs or
problems on multidimensional spatial domains. It is introduced in
[29] a monotonicity-based method for studying the ISS of nonlinear
parabolic equations with boundary disturbances. It is shown that
with the monotonicity the ISS of the original nonlinear parabolic
PDE with constant boundary disturbances is equivalent to the ISS of
a closely related nonlinear parabolic PDE with constant distributed
disturbances and zero boundary conditions. As an application of this
method, the ISS properties in LP-norm (Vp > 2) for some linear
parabolic systems have been established. In a recent work [40], the
classical method of Lyapunov functionals is applied to establish ISS
properties in L?-norm w.r.t. boundary disturbances for a class of
semilinear parabolic PDEs. Some technical inequalities have been
developed, which allows dealing directly with items on the boundary
points in proceeding on ISS estimates. The result of [40] shows that
the method of Lyapunov functionals is still effective in obtaining
ISS properties for some linear and nonlinear PDEs with Neumann or
Robin boundary conditions. However, the technique used may not be
suitable for problems with Dirichlet boundary conditions.

The present work is dedicated to the establishment of ISS prop-
erties for Burgers’ equation that is one of the most popular PDEs
in mathematical physics [11]. Burgers’ equation is considered as a
simplified form of the Navier-Stokes equation and can be used to
approximate the Saint-Venant equation. Therefore, the study on the
control of the Burgers’ equation is an important and natural step for
flow control and many other fluid dynamics inspired applications.
Indeed, there exists a big amount of work on the control of the
Burgers’ equation, e.g., just to cite a few, [3], [4], [5], [19], [20],
[24], [25].

The problem dealt with in this work can be seen as a comple-
mentary setting compared to that considered in [40] in the sense that
the problem is subject to Dirichlet boundary conditions. The method
developed in this note consists first in splitting the original system
into two subsystems: one system with boundary disturbances and a
zero-initial condition, and another one with no boundary disturbances,
but with homogenous boundary conditions and a non-zero initial
condition. Note that the in-domain disturbances can be placed in
either of these two subsystems. Then, ISS properties in L°°-norm
for the first system will be deduced by the technique of De Giorgi
iteration, and ISS properties in L2-norm (or L°°-norm) for the second
system will be established by the method of Lyapunov functionals.
Finally, the ISS properties in L?-norm (or L°°-norm) for the original
system are obtained by combining the ISS properties of the two
subsystems. With this method, we established the ISS in L?-norm
for Burgers’ equation with boundary and in-domain disturbances.
Moreover, using the techniques of transformation, splitting and
De Giorgi iteration, we established the ISS in L°°-norm for a 1-D
linear unstable reaction-diffusion equation with boundary feedback
control including actuation errors. Note that although the De Giorgi
iteration is a classic method in regularity analysis of elliptic and
parabolic PDEs, it is the first time, to the best of our knowledge,
that it is introduced in the investigation of ISS properties for PDEs.
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Moreover, the technique of De Giorgi iteration may be applicable for
certain nonlinear PDEs and problems on multidimensional spatial
domains.

The rest of the note is organized as follows. Section II introduces
briefly the technique of De Giorgi iteration and presents some prelim-
inary inequalities needed for the subsequent development. Section III
presents the considered problems and the main results. Detailed
development on the establishment of ISS properties for Burgers’
equation is given Section IV. The application of De Giorgi iteration
in the establishment of ISS in L°°-norm for a 1-D linear unstable
reaction-diffusion equation is illustrated in Section V. Finally, some
concluding remarks are provided in Section VI

II. PRELIMINARIES
A. De Giorgi iteration

De Giorgi iteration is an important tool for regularity analysis
of elliptic and parabolic PDEs. In his famous work on linear el-
liptic equations published in 1957 [8], De Giorgi established local
boundedness and Holder continuity for functions satisfying certain
integral inequalities, known as the De Giorgi class of functions, which
completed the solution of Hilbert’s 19 problem. The same problem
has been resolved independently by Nash in 1958 [32]. It was shown
later by Moser that the result of De Giorgi and Nash can be obtained
using a different formulation [31]. In the literature, this method is
often called the De Giorgi-Nash-Moser theory.

Let R := (—o00, +00),  C R™(n > 1) be an open bounded set,
and ~y be a constant. The De Giorgi class DG ' (£,7) consists of
functions u € W*2(Q) which satisfy, for every ball B,(y) C Q,
every 0 < 7’ < r, and every k € R, the following Caccioppoli type
inequality:

[ v-mfar s o [ (- Ry Pas,
B,/ (y) (r—r1") B, (y)

where (u — k)4 = max{u —k, 0}. The class DG~ (2, ) is defined
in a similar way. The main idea of De Giorgi iteration is to estimate
|Ak|, the measure of {x € Q;u(x) > k}, and derive |Aj| = 0 with
some k for functions u in De Giorgi class by using the iteration
formula given below.

Lemma 1 ([39, Lemma 4.1.1]): Suppose that ¢ is a non-negative
decreasing function on [ko, +00) satisfying

o(h) < (%) k), Vh> k> ko,
where M > 0, > 0,8 > 1 are constants. Then the following holds
@(ko +10) =0,

with lo = 2777 M(p(ko)) 5.

The method of De Giorgi iteration can be generalized to some
linear parabolic PDEs and PDEs with a divergence form (see,
e.g., [9], [39]). However, this method in its original formulation
cannot be applied directly in the establishment of ISS properties for
infinite dimensional systems. The main reason is that the obtained
boundedness of a solution depends always on some data that is
increasing in ¢ rather than a class KL function associated with ug
and ¢, even for linear parabolic PDEs [9], [39], which is not under
the form of ISS. To overcome this difficulty, we developed in this
work an approach that amounts first to splitting the original problem
into two subsystems and then to applying the De Giorgi iteration
together with the technique of Laypunov functionals to obtain the
ISS estimates of the solutions expressed in the standard formulation
of the ISS theory.

B. Preliminary inequalities

Let Ry := (0,+00) and R>o := [0,400). For notational
simplicity, we always denote || - |[z2¢0,1) by || - || in this note.
We present below two inequalities needed for the subsequent
development.

Lemma 2: Suppose that u € C*([a,b];R), then for any p > 1,

one has

1

([ wrer)” < 0-ab (521l + 0= alu?)

Proof: We show first that

=

ey

u2(c) < Hu||2 +(b— a)||uz|\2, Ve € [a, b]. ?2)

—a
Denote (u.(z))? by u2(z). For each ¢ € [a,b], let g(z) =
[ uZ(2)dz. Note that g'(z) = u(z). By Holder’s inequality (see
[10, Appendix B.2.e]), we have

(/ uz(z)dz)2 <

It follows
w0 = (v + [ uz<z)dz)2

< 2 (x) 42 (/ uz(z)dz) ’

< 2u®(z) + 2(z — ¢)g(x).

Integrating over [a, b] and noting that
b
/ (z — ¢)g(z)dz

z —c)? e=b b(x—c)?

— {%g(x)} ,/ %ui(w)dx
)2 b - 2 a

S%/ ul(z)dz — %/ u(z)dz
N2 b

gu/ u?(z)dz,

2

we get u?(c)(b—a) < 2||ul|® + (b — a)?|lus||?, which yields (2).
Now by (2), we have

b H b 5
(/ |u\pdx) < ( max \u\de)
a o Z€lab]
= (b—a)% max_|ul
x€a,b]

<0-af (2l + 0- o)

|
Remark 1: Note first that (1) is a variation of Sobolev embedding
inequality, which will be used in the De Giorgi iteration in the
analysis of the Burgers’ equation with in-domain and Dirichlet
boundary disturbances. Moreover, the inequality (2) is an essential
technical result for the establishment of the ISS w.r.t. boundary
disturbances for PDEs with Robin or Neumann boundary conditions
(see, e.g., [40]). Therefore, these two inequalities play an important
role in the establishment of the ISS for PDEs w.r.t. boundary and
in-domain disturbances with either Robin, or Neumann, or Dirichlet
boundary conditions.
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ZHENG et al.:

III. PROBLEM FORMULATION AND MAIN RESULTS
A. Problem formulation and well-posedness analysis

In this work, we address ISS properties for Burgers’ equation with
Dirichlet boundary conditions:

— MUz + vuue = f(x,t) in (0,1) x Ry, (3a)
U(O, t) = 07 u(la t) = d(t)7 (3b)
U(:L’, O) = UO(I‘)7 (3c)

where © > 0, v > 0 are constants, d(¢) is the disturbance on
the boundary, which can represent actuation and sensing errors, and
the function f(z,t) is the disturbance distributed over the domain.
Throughout this note, we always assume that f € 2 ([0, 1] x R>0)
and d € ’HHg(Rzg) for some 6 € (0,1).

We refer to [22, Chapter 1, pages 7-9] for the definition on Holder
type function spaces H'([0,1]), H'([0,T)), Hl’%([(), 1] x [0,T7),
C([0,1]), C*1([0,1] x [0,T]), H'(Rz0), H"2([0,1] x Rso) and
C?**([0,1] x R>p), where I > 0 is a nonintegral number and 7' > 0.
We also refer to [22, Chapter 1, page 12] for the statement of classical
solutions of Cauchy problems.

The result for well-posedness assessment of (3) is given below,
which is guaranteed by [22, Theorem 6.1, pages 452-453].

Proposition 3: Assume that uo € H*7%([0,1]) with uo(0) = 0,
wo(1) = d(0), pruo”(0) + £(0,0) = 0 and jue” (1) + f(1,0) =
d'(0). For any T > 0, there exists a unique classical solution u €
H2H01HE([0,1] x [0,T]) € C>1([0,1] x [0,T]) of (3).

Remark 2: The proof of Proposition 3 follows from Theorem 6.1 in
[22, pages 452-453], which establishes the existence of a unique solu-
tion in the Holder space of functions OIS ([0,1] x [0,T7) for a
more general quasilinear parabolic equations with Dirichlet boundary
conditions. It should be noticed that the proof of Theorem 6.1 in
[22, pages 452-453] is based on the linearization of the considered
system and the apphcatlon of the Leray-Schauder theorem on fixed
points. Since H2*+ 5 2([0,1] x [0,T]) € C**([0,1] x [0,T]), w
can obtain the existence of the unique classical solution in the time
interval [0, 7], where 7' > 0 can be arbitrarily large.

B. Main results on ISS estimates for Burgers’ equation

Let K = {7 : R>0 — Rx¢| 7(0) = 0,~ is continuous, strictly
increasing}; Koo = {0 € K| lim 6(s) = co}; L = {7y : R>0 —
R>o| v is continuous, strictly s(fag;easing, SILIEO v(s) = 0}; KL =
{ﬁ : Rzo X RZO — Rzo' ﬂ(7t) S IQVt S Rzo, and B(S,~) S
L,Vs € R+}

Definition 1: System (3) is said to be input-to-state stable (ISS)
in Lq -norm (2 < g < +4o00) w.rt. boundary disturbances d(t) €
Hte 2 (R>o) and in-domain disturbances f(xz,t) € 7-[6’5([0 1] x
R>0), if there exist functions 8 € L and 1,2, € K such that the
solution to (3) satisfies

lu(-; )llzao.1) <B (lluollzago,ny, t) +m (Srél[%x] |d(s)|)

’

Vi > 0.
2 ((z s)E[O 1]>< [0,¢] |f($ S)|> ’ -

System (3) is said to be ISS w.r.t. boundary disturbances d(t) €

“

HITE 2 (R>0), and integral mput-to-state stable (iISS) w.r.t. in-domain
disturbances f(x,t) € 2 2([0,1] x Rxp), in L7%-norm (2 < g <
+00), if there exist functions 8 € KL,0 € K, and 71,72 € K
such that the solution to (3) satisfies

(-, )l Laco,1) <B (lluollLaco,1y,t) +m (slél[%}i] |d(s)|>

t 5)
0 (/ Wz(llf(us)ll)ds) >0,
0

Moreover, System (3) is said to be exponential input-to-state sta-
ble (EISS), or exponential integral input-to-state stable (EilSS),
w.r.t. boundary disturbances d(t), or in-domain disturbances f(z,t),
if there exist / € Ko and a constat A > 0 such that
B(lluollLaco,1),t) < B'(luollLago,1y)e™*" in (4) or (5).

In order to apply the technique of splitting and the method of
De Giorgi iteration in the investigation of the ISS properties for
the considered problem, while guaranteeing the well-posedness by
Proposition 3 for every system, we assume that the compatibility
condition uo(0) = wug(0) = uo(l) = ug(l) = d(0) = d'(0) =
f(0,0) = f(1,0) = 0 always holds in Section III and IV.
Furthermore, unless stated, we always take a certain function in
C?*1([0,1] x Rx) as the unique solution of a considered system.
Then the ISS properties w.r.t. boundary and in-domain disturbances
for System (3) are stated in the following theorems.

Theorem 4: System (3) is EISS in L2?-norm w.rt. bound-
ary disturbances d(t) € ’HH%(RZO) and in-domain distur-
bances f(z,t) € HG’%([O, sup |d(s)| +

SERZO
42 |f(z,s)] < &, with the following estimate for

1] x Rxq) satisfying

sup
(x,s)E[O,l]XRZO
any t > 0:

llu(, )1* <2l|uo|*e™" + 4 max |d(s)[*
s€(0,t)

128
—_— max
W12 (z,5)€[0,1]x[0,¢]

|f(z, )|

Theorem 5: System (3) is EISS in L?-norm w.r.t. boundary
disturbances d(t) € HtTe 2 (R>o) satisfying sup |d(t)] < &, and
teER>0
EilSS w.rt. in-domain disturbances f(z,t) € 7-[9’5([0, 1] x R>g),
with the following estimate for any ¢ > 0:

)1 <2luoll*e = + 2 ma [a(s)P

+2 [ st Pas, ve e )

Remark 3: In general, the boundness of the disturbances is a
reasonable assumption for nonlinear PDEs in the establishment of ISS
properties [28]. However, as shown in Section V, the boundedness of
the disturbances may be not a necessary condition for ISS properties
of linear PDE:s.

Remark 4: As pointed out in [16], the assumptions on the continu-
ity of f and d are required for assessing the existence of a classical
solution of the considered system. However, they are only sufficient
conditions and can be weakened if solutions in a weak sense are
considered. Moreover, for the establishment of ISS estimates, the
assumptions on the continuity of f and d can eventually be relaxed.

IV. PROOFS OF ISS ESTIMATES FOR BURGERS’ EQUATION
A. Proof of Theorem 4
In this section, we establish the ISS estimates for Burgers’ equation
w.r.t. boundary and in-domain disturbances described in Theorem 4
by using the technique of splitting. Specifically, let w be the unique
solution of the following system:

- HWzx +rww, = f(:r7t) in (07 1) X R+7 (6a)
w(0,t) = 0,w(1,t) = d(t), (6b)
w(z,0) = 0. (6¢)

Then v = u — w is the unique solution of the following system:

— [Waze + V0Uz + V(W) = 01in (0,1) X Ry,
v(0,t) = v(1,t) =0,

(7a)
(7b)
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v(z,0) = uo(z). (7c)  Due to I (0) = 0 and Ij(s) > 0, we can assume that to > 0 without
loss of generality.

For System (6), we have the following estimate. For ¢ > 0 small enough, choosing t; = to — ¢ and t2 = to, it

Lemma 6: Suppose that > 0,v > 0. For every ¢ > 0, one has

follows
(ac,s)erféjal}](x[o,t]'w(x,s)' 7/ / w— k)1 )’dzds
42 toe &t
< d — . 8
= srél[%)i]l ()] + n (x,s)E%?ﬁX[O,t]‘f(m7S)‘ ® / / (W — k)4 )| *dads
t €
For System (7), we have the following estimate. v (io
Lemma 7: Suppose that g > 0,v > 0, and sup |d(¢)| + */ / wwg (w — k)4 dzds
teR>
1v2 . n 1 [to [t
sup f(z,t)| < £. For every t > 0, one has 1 .
" (x,t)E[O,l]X]R20| ( )| SE 0 ‘f|(w k)+d$d$
[o(, D11 < Jluole ™. Note that
1
Then the result of Theorem 4 is a consequence of Lemma 6 and i/ i/ (w—k)4)*dzds = i(Ik(to) — I (to — €))
Lemma 7. dt 2e
Proof of Theorem 4: Note that u = w + v, we get by Lemma 6 = 0.
and Lemma 7: We have
2 2 2 t 1
. < . . o
[l <20l + 201 B L w0
- Jo
=2 ( oy ‘W(l’,s)|> T 2||U('7t)”2 ' sto 1
(z,5)€(0,1]%[0,t] v
. + 7/ / wwg(w — k)+dzds
<2|Jugl|"e™* € eJo
9 1 [to 1
42 <7/ / |f|(w — k) dads
2 d . = + )
+ Cglgg |d(s)] + —— e S)géﬁx[o,t]\f(w78)b € Jig—<Jo
m Letting e — 0", and noting that
In the following, we use De Giorgi iteration and Lyapunov method
to prove Lemma 6 and Lemma 7, respectively. 61_1)%1+ - / / wws (w — k) dzds
Proof of Lemma 6: In order to apply the technique of De Giorgi
iteration, we shall define some quantities. For any ¢ > 0, let = / w(z, to)wg (z, to)(w(z, to) — k)+dz
ko = max{ m[%x d(s), } For any k > ko, let n(z,s) = o
se(0,t
(w(z,5) — k)4 X[t1,t2)(5), Where X[, ,¢,)(s) is the character func- :/ (w(z,to) — k)+ ((w(z, to) = k)+)e(w(w, to) — k)1dz
tion on [t1,t2] and 0 < t1 < t2 < t. Let Ap(s) = {z € o
(0,1);w(z,s) > k} and @ = :?opt) |Ak(s)|, where |B| denotes +/0 E((w(z,to) — k)+)z(w(z, to) — k)1 dz
s€(0,
the 1-dimensional Lebesgue measure of a set B C (0,1). For any 1 - k =
_ 155228 o =2 ((w(z,t0) — k)4+)*[750 + 5 (w(z, to) — k)+)*[:Z0
p> 2 letly = =221 |f(z,s)|¢r,. The main idea 3 2
H (z, s)e[o 1]>< [0,¢] -0 (10)
of De Giorgi iteration is to show that |Ag,1,(s)] = O for almost ’

every s € [0,¢], which yields ess sup w(z,s) < ko +lo. we get
(z,5)€[0,1] x[0,¢]

The lower boundedness of w(x, s) can be obtained in a similar way. ! " k 2
Then the desired result is guaranteed by the continuity of w and its 'LL/ | 2,t0) —k)+)o| da
lower and upper boundedness.
Although the computation of De Giorgi iteration can follow a / |f (@, to)[(w(®, o) — k)+da. an

standard process (see, e.g., the case of linear parabolic equations
presented in [39, Theorem 4.2.1, §4.2.2]), we provide the details for
completeness. Multiplying (6) by 7, and noting that (w(0, s)—k)+ =

We deduce by Lemma 2, Poincaré’s inequality [21, Chap. 2, Re-
mark 2.2], and (11) that for any p > 2,

(w(l,s) —k)+ =0 for k > ko and s € [0, ], we get 1 :
(/| x,to) — k) |de)
t ol o
/ / (w —k)e(w — k)4 X[t1,t0) (8)dads 1 )
ol <2 [ (e t0) = 0)2). s
0
[ 10w = B0el X (5)dds S
o Jo gﬁ/ |f(z,to)|(w(x,to) — k)4dz.
0
- V/o /0 s (W = £)+ X 1) () Then we have
t ol 2
:/ / f(w - k)+x[t1,t2](s)dxds' (9) (/ |(U)(£L',t()) — k)+‘pd$) .
A (to)
Let Ix(s fo — k)4 )?dx, which is a?)solutely continuous Sz / \f (2, t0) | (w(z, to) — k) da.
n [0, t] Suppose that Ik( 0) = max It (s) with some to € [0,]. B 4y ko)
s€|0,t
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By Holder’s inequality (see [10, Appendix B.2.e]), it follows

2

(/Ak(to) |(w(z, to) = k)+\pdx) B
SE</“‘k<to) (wle, to) = \”daz) (/ | f(x, to) qdw> ;

1,01
where > + 7= 1. Thus
1

(/QMKM%M—MH%QE

1

S%(/;W)U@JQVMJE

2 1

<—|Ak(to)|4 max T, s

_u| k(to)| ooy [O,t]'f( )l

<2 sl (12)
W (z,s)e[ ><[0t

Now for Ij(to), we get by Holder’s inequality and (12)

Li(to) < (/AWO) (w(a, to) —k)+|pdx>§|Ak(t0)|pp2

2 2, 4
<{- max T, v
N (:U/ (z,8)€[0,1]x[0,t] |f( )‘) (2%

Recalling the definition of Iy (to), for any s € [0, t] we conclude that

2 4
3—=
Ik (s) < In(t . 13
©<n< (2w resl) e toay
Note that for any h > k and s € [0, ¢] the following holds
Ii(s) 2/ (w(z,s) —k)+)*dz > (h = k)*|An(s)|.  (14)
Ap(s)
Then we infer from (13) and (14) that
2 4 4
h—k ma; T, S P
(o< (2 max If@o)]) o
which is
2
<2 (e Bixi0, 1 (%) 34
L h—k Pk
As p > 2, we have 3 — % > 1. By Lemma 1, we obtain
Pko+lo = SUP |Ak0+lo‘ =0,
s€[0,t]
here I 2312 @ s)en P <
= rP—
where 0 H(x, S)E[Oal)]( X [0,t] @ko -
125 @)l
H (z, S)E[O 1
By the deﬁmtlon of Ay, for almost every (z,s) € [0,1] x [0,1],
one has
<k 22 =
w(®,8) ko + 2 2%71 S)E[Oaﬁx[o @)l
:max{ maxd 0}+ Zo%a max |f(z, )|
s€lo, (z,5)€[0,1]x[0,t]
By continuity of w(x,s), for every (z,s) € [0,1] x [0,¢], the
following holds
1 5p—8
w(z,s) < max{ max d(s),0}7229*4 max |f(zx,s)].
s€[0,t] W (z,5)€[0,1] X [0,¢]
Letting p — 400, we get for every (z,s) € [0, 1] x [0, ¢]
w(z,s) <max{ max d(s),O}
s€[0,t]

+% max |f(z,s)].

15)
B (29)€[0,1]x[0,4] (

To conclude on the inequality (8), we need also to prove the lower

boundedness of w(z, t). Indeed, setting w = —w, we get
— PWyy — VWOW, = — f(x,1),
E(O,t) = O,E(l,t) = _d(t)7
w(z,0) = 0.

Proceeding as above and noting (10), the following equality holds in
the process of De Giorgi iteration:

lim f/ / —Wwg (W — k)4+dzds = 0.
e—0t €

Then for every (z,s) € [0,1] x [0,¢] we have

—w(z,s) =w(z, s)
42
< — —_— .
R 3] (), } * [ (@s)el0d)x (0,1 (@)
(16)
Finally, (8) follows from (15) and (16). |

Proof of Lemma 7: Multiplying (7) by v and integrating over
(0,1), we get

1 1 1 1
/ vevdz + u/ vidx + 1// v2vpdz + V/ (wv)gvdz = 0.
0 0 0 0

Note that fol v?v.de = $0°3Z5 = 0 and

1 1 1
2 w=1
/ (wv)zvdz = woT|3 ¢ —/ wWYv,dr = —/ wyvgde.
0 0 0

By Young’s inequality (see [10, Appendix B.2.d]), Holder’s inequality
(see [10, Appendix B.2.e]), Lemma 6, and the assumption on d, we
deduce that

1d
o 71 T < T
o DI + a0 < v [ wverlar
v
<Z . NG
= EouxmﬂhddeﬂW(7W e 0)1)
4 2
SK( max_|d(s) f max |f($,s)|>
2 \ seo,t] no (z,s)€[0,1]x[0,t]
x (loC I + o= (- OI)
<2 B o, ) + e - 1))
I
=5 (GO + o (1) a7
By Poincaré’s inequality, we have
1 1
plloe(OIF = Sl (0N + Slloa (D)1
> Elloa (01 + o, D] (18)

Then by (17) and (18), it follows

d
&\Iv(-ﬂf)ll2 < —plloC, 0%,

which together with Gronwall’s inequality ([10, Appendix B.2.j])
yields

GO < llo(, 0)[Pe™ = luol*e™"".
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B. Proof of Theorem 5

In order to prove Theorem 5, we consider the following two
systems:

— PWge +vww, =0 in (0,1) X Ry, (19a)
w(0,) = 0, w(1,1) = d(t), (19)
w(z,0) =0, (19¢)
and

— [Wae + vVUg + v(wv + vw), = f(z,t) in (0,1) x Ry,
(20a)
v(0,t) = v(1,t) =0, (20b)
”U(CE, 0) U()(l?), (ZOC)

where v = u — w.

For System (19), we have the following estimate, which is a special
case (i.e. f(z,t) = 0) of Lemma 6.

Lemma 8: Suppose that > 0,v > 0. For every ¢ > 0, one has

ma w(x,s)| < max |d 21
(m,s)E[O,f](X[O,t] [w(z, 3)l e[oﬁ]' (5)]- @h

For System (20), we have the following estimate.
Lemma 9: Suppose that ;4 > 0, > 0, and sup |d(t)| < £. For

tER>(
every t > 0, one has

loC, )] < [luof|*e™ =)

1 [ 1rColas, ve e 0.,

Note that u = w + v. Then the result of Theorem 5 is a consequence
of Lemma 8 and Lemma 9, which can be proven as in Theorem 4.

Proof of Lemma 9: Multiplying (20) by v and integrating over
(0,1), we get

1 1 1

/ vtvderu/ ’Uidx+lj/ v2vzdx+1// (wv)zvdx
0 0

/ f(z, t)vdz.

Arguing as in (17), we get

I+ plloe (-, )]

SV/ |wvv,;|dac—&—/1 Sz, t)vdz
0 0

max () loC O + llva (-, 1))

GOl +

<5 0l?

e+ mllv(, 1)l

3 2
I, 1)l 1
DI + 517G I
2 M 2

+ a0

where we choose 0 < € < p.
By (18) and (22), we get

LGOI < ~(u= el O + £GP

By Growall’s inequality (see [10, Appendix B.2.j]), we have

w2 [
1 [t

3
Rl G + 5l G017

L :
+olfGOIR @

0)[[%e™ 7" 4

(-, 8)|* < [lo(-,0 s)|*ds

= Jluol*e™ 79" +

V. APPLICATION TO A 1-D LINEAR UNSTABLE
REACTION-DIFFUSION EQUATION WITH BOUNDARY FEEDBACK
CONTROL

In this section, we illustrate the application of the developed
method in the study of the ISS property for the following 1-D linear
reaction-diffusion equation with an unstable term:

flx,t)

where 4 > 0 is a constant, a € C*([0,1]) and f € HG’%([O, 1] x
R>0). The system is subject to the boundary and initial conditions

U(t),

— UUgz + a(x)u = in (0, ].) X R+, (23)

u(0,t) = 0,u(1,t) =
u(z,0) = up(x),

where U(t) € R is the control input. Note that the control input can
be placed on either ends of the boundary. Nevertheless, it can be
switched to the other end by a spatial variable transformation x —
1 —x. The ISS properties of this system w.r.t. boundary disturbances,
i.e., f(z,t) =0, have been addressed in [15], [16], [29].

The stabilization of (23) in a disturbance-free setting with p = 1
and f(x,t) = 0 is presented in [21], [23], [34]. The exponential
stability is achieved by means of a backstepping boundary feedback
control of the form

1
1) :/ k(L y)u(y, t)dy, Yt > 0,
0

where k € C2([0, 1] x [0, 1]) can be obtained as the Volterra kernel
of a Volterra integral transformation

w(z, t) = ulz, 1) — / " k(. y)uly, t)dy,

which transforms (23), (24), and (25) to the problem

(24a)
(24b)

(25)

(26)

— pwze +vw =0 in (0,1) X Ry,

with v > 0, subject to the boundary and initial conditions

/kwyuo

When p > 0, f € H0’2([0 1] x R>g), and in the Jpresence of
actuation errors represented by the disturbance d € HITE 2 (Rx0), the
applied control action is of the form [15], [16], [29]

w(0,t) = w(l,t) =0,
w(z,0) = wo(x)

7u0

U(t) =d(t) + /1 E(1,y)u(y, t)dy, vt > 0.

We can use the Volterra integral transformation (26) to transform
(23), (24), and (27) to the following system

27

— pWez +vw = f(z,t) in (0,1) x Ry, (28)

with v > 0, subject to the boundary and initial conditions
w(0,t) = 0,w(1,t) = d(t), (29a)
w(z,0) = wo(x) = uo(x) — /Om k(z,y)uo(y)dy. (29b)

Then the solution to (23), (24), and (27) can be found by the inverse
Volterra integral transformation

u(z,t) = w(z,t) + /0z l(z,y)w(y, t)dy,

where | € C?([0,1] x [0,1]) is an appropriate kernel. Indeed, the
existence of the kernels k& € C?([0,1] x [0,1]) and I € C?([0,1] x
[0,1]) can be obtained in the same way as in [23], [34].

(30)
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For the system (23) with (24) and (27), we have the following ISS
estimate.

Proposition 10: Suppose that u > 0, a € C'([0,1]), d €
H'E(Rso), £ € H2([0,1] x Rso), and uo € H2T([0,1]) for
some 6 € (0, 1), with the compatibility conditions:

uo(0) = d(0) = d'(0) = f(0,0) = f(1,0) =0,
wo() = [ KLy,
0(1)%“; 2)  Hup(Dk(1L1) =0,

System (23) with (24) and (27) is EISS in L°°-norm w.r.t. boundary
disturbances d € H't% 2 (R>0) and in-domain disturbances f €
8 ([0,1] x R>p), having the following estimate:

max_|u(z,t)] <Cop m[ax luole™
€lo

+01( max |d(s)]

z€[0,1] €[0,t]
42
+ 7(1,5)6[0 1]x[0,t] (=, )|>
where v > 0 is the same as in (28), C, =
max |l(ac,y)|) and Co = C1(1 +
(z,y)€[0,1]x[0,1]

max k(x ) are positive constants.
E[O,l]x[0,1]| (z,y)] p

Proof: Note that by the compatibility conditions, it follows
wo(0) = wo(1) = w(0) = wf(1) = £(0,0) = f(1,0) = d(0) =
d'(0) = 0. Therefore, we can use the technique of splitting and
De Giorgi iteration to establish the ISS estimate for System (28)
with (29). Let g be the unique solution of the following system:

(z,y)

gt — pgze +vg = f(z,t), (0,1) X Ry, (31a)
g(0,t) = 0,g(1,t) = d(t), (31b)
g(x,0) =0, (31¢)

and let h = w — g be the unique solution of the following system:

he — phge +vh =0,  (0,1) X Ry, (32a)
h(0,t) = h(1,t) =0, (32b)
h(z,0) = ho(x) = wo(z). (32¢)

For (31) and (32), we claim that for any ¢ € R>o:

(z, s)Gn[r(l) 1]x[0,t] |g( )|
4v2
< d — 33
< Jnax ld(s)| + PR |f(z,s),  (33)
and

max |h(z,t)] < nax |ho(z)]e™"". (34)

z€[0,1] €[0,1]

We prove (33) by De Giorgi iteration. Indeed, for any fixed ¢t > 0,
letting ko, k, n(x, s), and to be defined as in the proof of Theorem 4
(replace w by h) and taking 7n(z, s) as a test function, we get

[ [ 6= 0uts = R (acs
0 0

t 1
o / / Xt (3)] (g
0 0
t 1
-%u/‘/1g@-—m+xﬁhmu$dmw
0 0
t 1
:/ / f(g - k)JrX[tLtQ](s)dxds'
0 0

Noting that I/fot fol 9(9 — k) +X[t1,t5](s)dzds > 0, it can be seen
that (11) still holds (replace w by h), which leads to (33).

k)4 )z |Pdzds

For the proof of (34), we choose the following Lyapunov functional

0= [ e

Applying Poincaré’s
2
% th_lh’z('7

[*Pdz, ¥p > 1,Vt € Rso.

B2 (- 6)]1*

t)||?. Then by direct computations, we get

50 < —2(v+ 2= ) iy,

inequality, it follows

IN

which together with Gronwall’s inequality yields

p(,/Jr Q;L(Zp—l) )t

e < |lho , ¥p > 1. (35)

)HL2P(0 1) HL2p(0 1)

Taking the 2p-th root of (35) and letting p — +o0, it follows

Ih(, )| zoe(0,1) < |lhollnoe 0,1y "", ¥t € Rxq. (36)

Finally, we obtain (34) by (36) and the continuity of A and hog.
As a consequence of (33) and (34), the following estimate holds
for any ¢t € R>q:

max |w(z,t)| <

h(z,t
S 0o B (0, 19 ) + max [h(@, 1)

z€[0,1]
42
< d == :
s O = B o (@)
—vt
. 37
+zlél[%)§] |wo(x)le (37
Note that
< — k d
e (o) < s oo [ ke o)y
< max |ug| + max / k(z,y)uo(y dy'
z€[0,1] z€[0,1]
< (1 k(z, . (38
< (18 0 285 ) ol 59
Finally, the desired result follows from (30), (37), and (38). |

Remark 5: If we put f(x,t) in (32) instead of in (31), and proceed
as in the proof of Theorem 5, we can prove that the system (23) with
(24) and (27) is EISS w.r.t. boundary disturbances and EilSS w.r.t.
in-domain disturbances.

Remark 6: In the case where a(z) = a is a constant, the ISS in
L?-norm and LP-norm (Vp > 2) for the system (23) with (24) w.r.t.
actuation errors for boundary feedback control (27) is established in
[16] by the technique of eigenfunction expansion, and in [29] by the
monotonicity method, respectively.

Remark 7: The ISS in a weighted L°°-norm w.r.t. boundary and in-
domain disturbances for solutions to PDEs associated with a Sturm-
Liouville operator is established in [17] by the method of eigenfunc-
tion expansion and a finite-difference scheme. We established in this
note the ISS in L°°-norm for a similar setting with considerably
simpler computations by De Giorgi iteration and Lyapunov method.
Moreover, the ISS in L2-norm for solutions to certain semilinear
parabolic PDEs with Neumann or Robin boundary disturbances is
established in [40] by Lyapunov method. These achievements show
that the techniques and tools developed in this note and [40] are
effective for the application of Lyapunov method to the analysis of
the ISS for certain linear and nonlinear PDEs with different type of
boundary disturbances.

Remark 8: The method developed in this work can be also applied
to linear problems with multidimensional spatial variables, e.g.,

in QX]RJF,
d(t) on Ty,

— phu+ e, By = f(z,1),
u(z,t) =0 on Ty, u(z,t) =
u(z,0) = uo(z), in Q,
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where Q C R™(n > 1) is an open bounded domain with smooth
boundary 9Q =To UT'1, [o NIy =@, ¢(z,t) is a smooth function
in Q x R>o with 0 < m < ¢(x,t) < M, A is the Laplace operator,
and p > 0 is a constant. Under appropriate assumptions on p, m, M
and by the technique of splitting and De Giorgi iteration, it can be
shown that the following estimates hold:

()l <Colluollz2(@ye™ +Cs max [d(s)

+Co max [f(z,s)],

(z,5)€Q4

and

2 2 —A 2
)20 <Colluolfaoye™ +Cr max |d(s)

+Cy / 1£(.9)]Pds,

where Q, = Qx [0, 1], Co, C1, Ca, and X are some positive constants
independent of ¢.

VI. CONCLUDING REMARKS

This work applied the technique of De Giogi iteration to the estab-
lishment of ISS properties for nonlinear PDEs. The ISS estimates in
L?-norm w.r.t. boundary and in-domain disturbances for Burgers’
equation with Dirichlet boundary conditions have been obtained.
The considered setting is a complement of the problems dealt with
in [40], where the ISS in L2-norm has been established for some
semilinear PDEs with Robin (or Neumann) boundary conditions. It
is worth pointing out that the method developed in this note can be
generalized for some problems on multidimensional spacial domain
and for dealing with ISS properties of PDEs while considering weak
solutions (see, e.g., [39, Ch. 4]). Finally, as the method of De Giogi
iteration is a well-established tool for regularity analysis of PDEs,
we can expect that the approach developed in this work is applicable
in the study of a wider class of nonlinear PDEs, such as Chaftee-
Infante equation, Fisher-Kolmogorov equation, generalized Burgers’
equation, Kuramoto-Sivashinsky equation, and linear or nonlinear
Schrodinger equations.
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