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RÉSUMÉ 

Le cancer de l'ovaire a le taux de mortalité le plus élevé de tous les cancers gynécologiques. Malgré 

les avancements en techniques de chirurgie et les développements en chimiothérapie au cours de 

la dernière décennie, son taux de survie après cinq ans demeure inférieur à 45%, en raison du 

diagnostic tardif de ce cancer et du phénomène de résistance aux médicaments. Les patients 

présentant un cancer épithélial de l'ovaire (CÉO), la forme la plus courante de la maladie, répondent 

généralement bien au traitement de chimiothérapie standard à base de platine et de taxane. 

Cependant, une forte proportion de patients rechute et cette récurrence se révèle souvent résistante 

au traitement standard. Une des hypothèses de cette résistance chez le CÉO est que son instabilité 

génétique élevée se traduit par une hétérogénéité clonale dans les tumeurs, où le nombre de clones 

(populations de cellules identiques) dans les tumeurs augmente avec le temps, créant de nouvelles 

mutations présentant différents niveaux de sensibilité aux traitements. Par exemple, le premier 

traitement de chimiothérapie d'une patiente peut tuer les clones sensibles et laisser une faible 

population de cellules résistantes qui finiront par croître et provoquer une rechute du cancer. Il est 

donc nécessaire d'étudier l'hétérogénéité clonale et ses effets sur la résistance aux médicaments. 

Divers modèles de cancer in vitro ont été développés pour la recherche en laboratoire. Le modèle 

le plus simple et le plus courant est la culture en monocouches bi-dimensionnelles (2D), pour 

laquelle les cellules cancéreuses adhèrent à une surface, comme les boîtes de pétri, et croissent en 

monocouche. Le modèle le plus réaliste consiste à utiliser directement les tumeurs de patients, car 

elles incluent le microenvironnement complet du cancer en trois dimensions (3D). Cependant, 

comme le tissu du patient est souvent disponible en quantités limitées, le nombre d’expériences 

qu’il est possible de faire est aussi limité. Les sphéroïdes sont des agrégats de cellules 3D formés 

in vitro et représentent un compromis idéal entre la simplicité, leur composition cellulaire étant 

connue et contrôlée, et le réalisme, car ils imitent mieux la nature 3D des tumeurs humaines que la 

culture en monocouches 2D. Les sphéroïdes peuvent facilement être utilisés pour étudier 

l'hétérogénéité clonale car plusieurs lignées cellulaires peuvent être mélangées à des ratios précis 

pour former des sphéroïdes de coculture. 

La communauté microfluidique a mis au point des puces microfluidiques qui peuvent facilement 

former et traiter des centaines de sphéroïdes. Dans ce projet, les puces microfluidiques sont utilisées 

pour réduire le travail en laboratoire en formant des dizaines de sphéroïdes en une seule étape et 
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en les piégeant en place, de sorte que les changements de milieu de culture et de médicaments 

peuvent être rapidement effectués. 

L’un des principaux avantages de l’utilisation de sphéroïdes comme modèle de cancer in vitro est 

que des centaines de sphéroïdes de coculture identiques peuvent être utilisés pour étudier 

facilement diverses conditions. Cependant, l'analyse de la réponse dynamique de chacune des 

populations de cellules composant ce grand nombre de sphéroïdes reste un défi. Les études utilisent 

souvent la morphologie cellulaire, les marqueurs immunologiques ou les marqueurs fluorescents 

pour identifier les populations cellulaires. Mais beaucoup de ces techniques reposent sur 

l'observation directe de chaque cellule composant le sphéroïde et nécessitent soit une digestion du 

sphéroïde en une suspension cellulaire, soit une coupe du sphéroïde en fines tranches. Pour analyser 

des échantillons 3D intacts, des techniques de microscopie telles que la microscopie confocale, 

multiphotonique et à feuilles de lumière (light sheet microscopy) ont été développées. Bien qu'elles 

présentent de nombreux avantages, ces techniques ne sont pas adaptées pour analyser un haut 

nombre de sphéroïdes en une seule acquisition ou ne peuvent pas analyser les sphéroïdes de 

diamètres supérieurs à 70-100 µm. 

Au cours de ce doctorat, un système d'imagerie hyperspectrale (HSI) en fluorescence à large champ 

a été conçu, construit et validé pour l’étude de sphéroïdes en coculture. Le système HSI a été 

spécifiquement conçu pour imager plusieurs sphéroïdes en une seule acquisition et pour l'imagerie 

in situ de sphéroïdes dans des puces microfluidiques. La conception du système HSI, présentée 

dans l’article 1, repose sur l’utilisation d’un filtre accordable à cristaux liquides et d’une caméra à 

dispositif à transfert de charges à multiplication d’électrons (EMCCD) pour l’imagerie des 

sphéroïdes dans un champ de vision de 7,25 mm de diamètre. Un algorithme d'analyse d'image a 

également été développé pour compenser toute réponse du système influençant l'intensité de 

fluorescence mesurée pour chaque sphéroïde présent dans l'image. Une étape finale de 

quantification pour compenser les propriétés optiques de l'échantillon a également été développée 

et validée à l'aide de fantômes optiques. 

L'article 2 présente une méthodologie pour étudier l'hétérogénéité clonale et sa relation avec la 

réponse au traitement. Deux lignées cellulaires fluorescentes ont été dérivées de la même lignée 

cellulaire du cancer de l'ovaire et ont été utilisées pour former des sphéroïdes de coculture avec 

différents ratios d'ensemencement cellulaire initiaux. Les résultats montrent que le système HSI 
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permet de suivre la croissance de chaque population cellulaire et sa réponse aux médicaments en 

fonction du temps, y compris pour les populations occupant seulement 10% des sphéroïdes. 

L’accaparement d’un clone par rapport à l’autre dans les sphéroïdes a également été observé 

lorsqu'une forte dose de chimiothérapie était utilisée pour traiter les sphéroïdes. Le système HSI a 

également pu mettre en évidence différentes dynamiques de réponse au médicament entre les deux 

populations de cellules. 

L'imagerie hyperspectrale en fluorescence à champ large est une technique idéale pour l'imagerie 

de plusieurs sphéroïdes en une seule acquisition. Sa résolution spectrale permet de quantifier un 

plus grand nombre de fluorophores que les cubes de filtres de microscopie standards. L'imagerie 

hyperspectrale pourrait également être utilisée pour étudier les sphéroïdes de coculture constitués 

de différents types de cellules, tels que les cellules épithéliales et stromales ou les cellules 

cancéreuses et immunitaires. 
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ABSTRACT 

Ovarian cancer has the highest mortality rate of all gynecological cancers. Despite advancement in 

surgery and chemotherapy over the past decade, its five-year survival rate is still less than 45%, 

due to late diagnosis and drug resistance. Patients presenting epithelial ovarian cancer (EOC), the 

most common form of the disease, usually respond well to the standard platinum- and taxane-based 

chemotherapy treatment. However, a high proportion of patient relapses, and this recurring cancer 

is often found to be resistant to the standard treatment. One hypothesis for this drug resistance in 

EOC is that its known high genetic instability translates into clonal heterogeneity in tumours, where 

the number of clones (i.e. populations of identical cells) in tumours increases over time as new 

mutations create new clones of various drug sensitivity levels. A patient’s first chemotherapy 

treatment can kill the sensitive clones and leave a small population of resistant cells that will 

eventually grow and cause a cancer relapse. There is a need to study clonal heterogeneity and its 

effect on drug resistance. 

Various in vitro cancer models were developed to research cancer treatments. The simplest and 

more common model is the 2D monolayer culture, where cancer cells adhere to a surface, such as 

petri dishes, and grow in a monolayer. The most realistic model involves using actual patient 

tumours, as they include the complete cancer microenvironment in three dimensions (3D). 

However, limited patient tissue is usually available to perform large experiment repetitions. 

Spheroids are 3D cell aggregated formed in vitro and represent an ideal compromise between 

simplicity, as the cell composition is known and controlled, and realism, as they better mimic the 

3D nature of human tumours compared to monolayer 2D culture. Spheroids can easily be used to 

study clonal heterogeneity as multiple cell lines can be mixed at specific ratios to form co-culture 

spheroids. 

The microfluidic community has developed microfluidic chips that can easily form and treat 

hundreds of spheroids. Here, microfluidic chips are used to reduce laboratory work by forming 

120 spheroids in a single step and trap the spheroids in place so that medium and drug changes can 

be quickly done. 

One of the main advantages of using spheroid as an in vitro cancer model is that hundreds of 

identical co-culture spheroids can be made to easily study various conditions. However, analyzing 

the dynamic response of individual cell populations of this large number of spheroids is still a 
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challenge. Researchers often use cell morphology, immunostains or fluorescent markers to identify 

cell populations. But many of these techniques rely on the direct observation of each cell in the 

spheroid and require either spheroid digestion into a single cell suspension or spheroid slicing into 

thin tissue slices. To analyze intact 3D samples, microscopy techniques such as confocal, 

multiphoton, and light sheet microscopy were developed. While they present many advantages, 

these techniques are either not adapted to analyze many spheroids in a single acquisition or cannot 

analyze up to the centre spheroids larger than 70-100 μm in diameter. 

In this dissertation, a wide-field fluorescence hyperspectral imaging (HSI) system was designed, 

build and validated for co-culture spheroid research. The HSI system was specifically designed to 

image multiple spheroids in a single acquisition and for in situ imaging of spheroids in microfluidic 

chips. The HSI system design, presented in Article 1, is based on the use of a liquid crystal tunable 

filter and an electron-multiplying charged-coupled device camera to image spheroids in a 7.25 mm-

in diameter field of view. An image analysis algorithm was also developed to compensate for any 

system response influencing the measured fluorescence intensity from each spheroid present in the 

image. A final quantification step to compensate for the optical properties of the sample was also 

developed and validated using optical phantoms. 

Article 2 presents a methodology to study clonal heterogeneity and its relation to treatment 

response. Two fluorescent cell lines were derived from the same ovarian cancer cell line and used 

to form co-culture spheroids with various initial cell seeding ratios. Results show that the HSI 

system was able to follow each cell population growth and response to drugs over time, including 

for populations occupying only 10% of the spheroid. The onset of a clonal takeover was also 

observed when a high dose of chemotherapy drug was used to treat the spheroids. The HSI system 

was also able to highlight different response rates to the drug between the two cell populations. 

Wide-field fluorescence hyperspectral imaging is an ideal technique to images multiple spheroids 

in a single acquisition. Its spectral resolution can quantify a larger number of fluorophores than 

standard microscopy filter sets. Hyperspectral imaging could also be used to study co-culture 

spheroids made of different cell types, such as epithelial and stromal cells, or cancer and immune 

cells. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Ovarian cancer is the deadliest gynecological cancer among women. Its five-year survival rate is 

less than 50%: an estimated 1 800 Canadian women will succumb to this cancer in 2018 [1]. While 

most patients initially respond well to the standard chemotherapy treatment, the majority will see 

their disease recur and experience drug resistance, a situation where a previously responding 

tumour will not respond to the same treatment [2], [3]. There is a need to study this treatment 

resistance phenomenon to understand its mechanisms. Several in vitro cancer models are available 

to researchers to study cancer. Two-dimensional (2D) monolayer cultures has been the gold 

standard over the past decades. However, there is now evidence that three-dimensional (3D) 

cultures are more relevant for in vitro research. Contrary to 2D cultures, they integrate cell-cell and 

cell-matrix interactions and better mimic in vivo tumours [4]–[8]. While many types of 3D culture 

exist, spheroids, 3D aggregates of known cell composition, represent an ideal compromise between 

the simplicity of monolayer cell lines and the realism of patient tumours. Many cancer cell lines 

have the ability to form spheroids in low attachment conditions, i.e. when cells are prevented from 

adhering to the surrounding surfaces. Clonal heterogeneity is a hallmark of ovarian cancer and is 

thought to be implicated in treatment resistance [9]. A tumour will typically develop from a single 

cell that underwent a genetic mutation allowing it to divide itself without limitations. Such cells 

can then acquire other genetic mutations, and so on, yielding a tumour composed of similar cells 

presenting different mutations, called subclones. One subclone could respond to a treatment, while 

a second could resist [10]. To study this phenomenon, spheroids can be made with more than one 

cell type, resistant and sensitive for example, to study the interaction between these cell 

populations. 

Spheroids have been formed and studied using standard laboratory techniques. Using the hanging 

droplet method [11], for example, spheroids can be made by placing droplets of cell suspension on 

the cover of a petri dish. The cover is then flipped and placed on the bottom of the petri dish. 

Droplets then hang from the cover and cells aggregate at the bottom of the droplet and form a 

spheroid. Formed spheroids are then harvested in a suspension. One of the main challenges 

associated with this kind of formation method is that all spheroids are in the same suspension. To 



2 

 

study multiple conditions (drug type, drug concentration, exposure time), spheroids need to be 

manually pipetted into the wells of a 96-well plate. Then, medium changes and drug addition are 

also manually done by removing old medium and adding new medium in each well. In addition to 

being a time-consuming technique, as each well is addressed individually, spheroids can stick to 

the micropipette and be removed from the well. Other techniques used to form spheroids, such as 

commercial well plates designed for this, also suffer from these drawbacks [12]. To facilitate 

spheroid formation and handling, the microfluidic community has developed microfluidic chips 

that can easily form and treat hundreds of spheroids in a few experimental steps. Formation and 

culture of spheroids on-chip offer many advantages over traditional in vitro culture techniques [13]. 

Briefly, hundreds of spheroids can easily be formed using a single cell suspension. Medium and 

drug changes can be done in a single step without the risk of spheroids sticking to a micropipette 

tip. Other advantages are listed in section 2.2. Therefore, microfluidic chips were used throughout 

this work to form and treat spheroids. 

However, analysis techniques commonly used to study cell populations in in vitro 2D cultures are 

not readily adaptable to 3D cultures in general or 3D culture in microfluidic chips [14]. When 

imaging fluorescent cell populations in spheroids with a traditional fluorescence microscope, the 

number of cells from each population cannot be counted as individual cells are not visible in the 

microscopy image, contrary to monolayer cultures imaging. Methods were developed over the 

years to take into account the 3D nature of spheroids. Some rely on the digestion of the spheroids 

into single cells to further analyze them using the traditional 2D techniques. Others use 

cryosections or paraffin embedding to slice the spheroids into thin layers that can also be analyzed 

using traditional techniques. Finally, microscopy techniques adapted for 3D culture have been 

used, such as confocal microscopy, multiphoton microscopy and light sheet microscopy. Each 

technique has its advantages and drawbacks depending on the type of study performed. Typical 

drawbacks are a lack of light penetration up to the spheroid centre [14], objectives with limited 

working distance [15], or difficulty to implement high-throughput imaging [16]. 

In this thesis work, a wide-field hyperspectral imaging (HSI) system capable of fluorescence 

quantification was designed and validated. The system was specifically designed to image 

spheroids while they are still trapped in microfluidic chips. Hyperspectral imaging is an imaging 

technique in which the measurement of the full spectrum (reflectance, transmittance, or 

fluorescence) of the sample is done for each pixel of the image, resulting in a hyperspectral 



3 

 

datacube. The system was first validated using flow cytometry, optical phantoms, and preliminary 

Monte Carlo light transport simulations. Spheroid imaging was then done on ovarian cancer co-

culture spheroids over time in response to two types of chemotherapy, carboplatin and poly(ADP-

ribose) polymerase (PARP) inhibitors to illustrate how HSI can be used to study clonal 

heterogeneity and its relation to treatment resistance in ovarian cancer. 

1.2 Research objectives 

The aim of this dissertation is to provide a versatile and high-throughput analysis instrument to 

measure the fluorescence of 3D samples cultured in microfluidic chips. The first objective was to 

determine if hyperspectral images of spheroids in a field of view of a few millimetres in diameter 

could be acquired. A tunable filter was selected to scan the fluorescence emission spectrum of the 

spheroids and to acquire one image per interrogated wavelength. Also, a low numerical aperture 

objective was used to image the large field of view wanted. Since both design choices, i.e. the 

tunable filter and the low numerical aperture objective, limit the fluorescence intensity reaching 

the camera, a highly sensitive electron multiplying charged-coupled device (EMCCD) camera was 

selected to allow the detection of the fluorescence.   

Objective 1: Design and build a wide-field hyperspectral imaging system to measure non-

destructively the fluorescence emitted by co-culture spheroids cultured in microfluidic chips. 

Hypothesis 1: High-throughput hyperspectral images of 300 µm-diameter fluorescent 

spheroids can be achieved using a highly sensitive EMCCD camera to compensate for the 

low transmission of the tunable filter and objective numerical aperture.  

The second aim of the thesis work is to validate that the HSI system can, first, quantify fluorescence 

and compensate for the imaging system response and the optical properties of the sample. 

3D cultures optical properties can change according to the compactness of the culture and the 

measured fluorescence intensity will be affected by this. As the sample optical properties can 

prevent light propagation up to the centre, the second validation is to evaluate if HSI can image up 

to the spheroid centre in order to study the whole spheroid response to external stimuli and not only 

the outer layers response. Finally, the HSI system will be compared to a gold standard to verify 
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that fluorescence intensity can be used to calculate the proportions occupied by each cell population 

in the spheroid. 

Objective 2: Validate the hyperspectral imaging system and evaluate the ability of image 

analysis algorithms to quantify fluorescence, sampling up to the spheroid centre, and measure 

spheroid composition in co-culture spheroids. 

Hypothesis 1:  The sample transmittance spectrum can be used to quantify the sample 

fluorescence from its optical properties in an empirically based equation. 

Hypothesis 2: Elastic scattering and absorption properties of spheroids are low and do not 

prevent measuring the fluorescence at the spheroid centre using hyperspectral imaging. 

Hypothesis 3: Hyperspectral fluorescence intensity directly relates to the number of cells and 

can be used to measure the composition (% of spheroid) in fluorescent cell populations of co-

culture spheroids 

The third and final objective of this work is to use HSI to study the response to external stimuli 

(medium changes, drug types, drug concentrations) of co-culture spheroids over time and non-

destructively. A treatment response study was performed to determine how drugs affect the 

spheroid composition over time as well as determine if dose-dependent responses can be observed. 

Objective 3: Study clonal heterogeneity in ovarian cancer by forming co-culture spheroids 

and follow their response to chemotherapy treatments on-chip over time. 

Hypothesis 1: By measuring spheroid composition over time, hyperspectral imaging can 

measure the drug response of each cell population and identify distinct behaviours. 

1.3 Dissertation organisation 

This project is the result of the collaboration between three laboratories, each bringing their own 

expertise: 

1. Microfluidics for Oncology Laboratory, lead by Thomas Gervais, expertise in microfluidic 

and 3D culture; 
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2. Laboratory of Radiological Optics, lead by Frédéric Leblond, expertise in imaging systems 

and fluorescence quantification; 

3. Anne-Marie Mes-Masson laboratory situated at the Centre hospitalier de l’Université de 

Montréal (CHUM) research centre, expertise in ovarian cancer and 3D culture. 

Researchers from each laboratory participated in the research and in the two articles presented in 

this dissertation. Before each article, a paragraph introduces the context of the work and details 

each co-author’s contribution. Also, work done by students Alexandre Chabot and Didier Blach-

Laflèche, by then-master’s student Catherine St-Pierre [17], and by post-doctoral fellows Mohana 

Marimuthu and Ehsan Edjlali are described in the appendices. 

Chapter 1 presents the dissertation aim and research objectives. It also presents the dissertation 

organization. The literature review is presented in Chapter 2 and details what is treatment resistance 

and its relation to ovarian cancer, how microfluidics can be used for spheroid-based research, how 

cell populations in a 3D culture can be measured individually, and how fluorescence quantification 

is done. Chapter 3 presents the general methodology used through this work. The first article 

written on work from this dissertation is reproduced in Chapter 4. It was published in Analyst and 

presents the HSI system and the first hyperspectral images of fluorescent co-culture spheroids in 

microfluidic chips. The second article is submitted to Integrative Biology and showcase 

proliferation and treatment response assays performed with the HSI system is presented in Chapter 

5. Chapter 6 presents a general discussion on hyperspectral imaging for spheroid-based research 

and Chapter 7 presents the conclusion. Appendix A showcases the preliminary work on spherical 

optical phantoms. Preliminary results of Monte Carlo light propagation simulations are shown in 

Appendix B. Appendix C presents a modification to a statistical test that I proposed to analyze 

Mohana Marimuthu’s results in her article. Appendix D details the image analysis algorithm 

developed for this work. Finally, Appendix E lists my contributions in terms of articles, oral 

presentations, and scientific posters based on this work. 
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CHAPTER 2 LITTERATURE REVIEW 

2.1 Ovarian cancer 

In Canada in 2017, they were 2 800 estimated new cases and 1 800 estimated deaths due to ovarian 

cancer [1]. Ovarian cancer has the highest mortality rate among gynecological cancers and the most 

common form is epithelial ovarian cancer (EOC) [18]. Despite advances in surgery and 

chemotherapy over the last few decades, the 5-year survival rate of patients with EOC in the United 

States from 2007 to 2013 is still less than 50 % [19]. Ovarian cancer also has the particularity of 

presenting ascites, i.e. excess peritoneal fluid containing cancer cells [20], [21]. The disease is 

usually discovered in late stages due to its asymptomatic nature and because no efficient screening 

methodology as been demonstrated yet [19]. Also, a high proportion of patients who initially 

respond to the standard chemotherapy treatment of taxanes combined with platinum agents will 

then develop resistance to this treatment [2], [3]. By the time healthcare professionals observe if a 

patient is resistant to the chemotherapy treatment, the patient has undergone a high morbidity 

associated to an unnecessary treatment. Healthcare resources are also wasted.  

The standard chemotherapy treatment for ovarian cancer consists of a combination of two 

chemotherapy drugs: taxanes and platinum agents. Both types of drugs target dividing cells, 

whether cancerous or not. Since cancer cells divide faster than normal cells in the body, they will 

be more sensitive to chemotherapy drugs. Taxanes, such as paclitaxel, cause microtubule assembly 

and stability during cell division, blocking the cell cycle in the mitosis. Platinum agents target 

cancer cells by creating crosslinking in and between DNA strands, which prevent the cell from 

synthesizing DNA to divide [22]. 

Other treatments have been developed to improve patient survival and circumvent resistance to the 

standard chemotherapeutic treatment. Normal and cancer cells rely on various mechanisms to 

repair DNA damages naturally occurring during cell division or inflicted by their environment 

(using chemotherapy drugs, for example). PARP inhibitors are a recent class of drugs that are used 

to treat ovarian cancer in addition to chemotherapy. Their mechanism of action is based on 

inhibiting PARP1 and PARP2, enzymes implicated in the base excision repair (BER) pathway, and 

trapping PARP 1 on damaged DNA, rendering its repair impossible. Cells where other DNA repair 

pathways are compromised will accumulate DNA damages leading to cell death. This idea where 
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two DNA damage repair pathways are dysfunctional is called synthetic lethality [23]–[25]. In the 

case of EOC, a second deficient DNA repair pathway is often found in tumours presenting 

mutations in the BRCA 1 and BRCA 2 genes, leading to the presence of synthetic lethality [26]. 

PARP inhibitor Olaparib is now approved by Health Canada for ovarian cancer treatment since 

August 2016 [27]. While PARP inhibitors can improve patient response to chemotherapy 

treatments, there is still a need to better understand the mechanisms behind this resistance 

phenomenon. 

2.1.1 In vitro cancer models 

To study cancer in vitro, several types of cancer models were developed, ranging from the simplest 

to the most realistic [28]. Figure 2-1 lists several types of in vitro cancer models in terms of their 

realism and their complexity of use. The following sections will detail ovarian in vitro cancer 

models, but the same models are used for other types of cancer. 

 

Figure 2-1 : In vitro ovarian cancer models as a function of realism and complexity of use. 

Images from [29]–[33]. 

2.1.1.1 Cell lines 

Cell lines cultured in monolayers represent the simplest in vitro tumour model. Immortalized 

human cell lines are a population of cells that can divide indefinitely, contrary to normal cells, due 

to a natural or induced mutation. They can be cultured for long periods of time in vitro and simplify 

studies of cells that would otherwise have limited proliferation and survival. Cell lines can be 

established from patient tumours or ascites, retaining the various genetic mutation of the 



8 

 

patient [34]. For example, two cell lines used throughout this study are OV1946 [35] and 

OV90 [36], derived from patient ascites in 2008 and 2000. While cell lines are easy to use, they 

are the furthest in terms of model realism to a patient tumour in vivo. 

2.1.1.2 Primary cells 

Primary cells are patient cells cultured in vitro for short periods of time, before any immortalization 

occurs. This type of cell can divide a few times when cultured in 2D monolayer culture. They are 

closer to the original tumour, but their usually low division rate and their short survival rate in 

culture render them more complicated to use compared to cell lines. Since patient cells are often 

available in limited supply, experiments requiring large numbers of cells are impossible to perform 

using this type of cells. 

2.1.1.3 Spheroids 

To increase the realism of in vitro cancer models, cell lines or primary cells can be cultured in 3D, 

in aggregates of cells called spheroids. These aggregates better represent the 3D complexity of 

tumours, while still being easier to handle compared to patient tumours. Spheroids display cell-cell 

and cell-matrix interactions that are present in tumours, increasing their relevance for in vitro 

cancer research [4]–[8]. Because of their 3D structure, molecular exchange gradients will be 

established between the centre and the outer layer, such as oxygen, nutrients, and waste (lactate) 

gradients. These gradients, illustrated in Figure 2-2, will first affect how spheroids grow. Spheroids 

will undergo an exponential growth when few cells are present. Then, contrary to cells cultured in 

monolayers, spheroid volume will reach a plateau after extended periods of culture [14]. Also, if 

spheroids are larger than a critical volume, oxygen will be consumed by the outer layers before 

having the time to diffuse up to the spheroid centre, creating a hypoxic core often encountered in 

tumours without vascularization [37]. Furthermore, the genetic expression of cells grown in 3D is 

different from those grown in 2D. Because cancer is caused by genetic disruption of the cell, this 

difference strongly influences in vitro studies [4], [38]. Studies have also found that treatments 

ineffective on 2D cultures of cancer cells can be effective against the same cells cultured in 3D [37]. 

3D culture was also found to be generally more resistant to chemotherapy treatments than their 2D 

counterparts [37], [39]. 
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Figure 2-2: Spheroids gradients from the centre to the outer layers. Reproduced with 

permission from [40]. 

In summary, spheroids are 3D aggregates that are more realistic than 2D culture but are still easy 

to use because of their known cell composition and controlled size. It is also simple to form large 

quantities of identical spheroids to study the effect of a stimulus on identical samples. More 

complex 3D structures can also be formed, called organoids, with properties and function similar 

to the organ of origin [41], [42]. 

2.1.1.4 Xenografts 

Xenografts are formed by injecting human tumour cells into a host, typically a mouse with a 

defective immune system [43]. Cells can be injected under the skin or into the organ of interest and 

tumour growth can last a few weeks or months. Tumour response to treatment is typically assessed 

by injecting the drug of interest subcutaneously or systemically and measuring the affected growth 

of the tumour. Grown tumours can also be harvested once they reached a specific size and then 

studied in vitro. Xenografts can be made using cancer cell lines or using cells extracted from 

patients (patient-derived xenografts, PDX). Xenografts are more representative of a real tumour 

than spheroids because they incorporate a more complete tumour microenvironment than spheroids 
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cultured in liquid medium. However, they are more complex to study as the specific cell 

composition is not known: human non-cancer cells or host cells can infiltrate the tumour [43]. 

2.1.1.5 Tumours and biopsies 

Finally, the most realistic cancer model to study in vitro is the tumour itself, in the form of surgery-

resected tissue or a biopsy sample. However, maintaining tumour tissue alive outside the body and 

in vitro is difficult. Since oxygenating large tumour fragments requires vascularization, the tumour 

often needs to be cut down to submillimetre sizes to allow oxygen and nutrients diffusion through 

the tissue [44], [45]. Furthermore, the tumour cell composition is not known, as stromal, epithelial, 

and immune cells, as well as the extracellular matrix and proteins will be present in the tumour, 

which can complicate some types of in vitro research [46], [47]. In drug discovery, the main 

drawback of using patient tissue is the low number of available cells and the fact that repeated 

analysis over weeks cannot be done. 

In summary, each in vitro cancer model has its own advantages and disadvantages and selecting 

the most appropriate one for a specific study is crucial. In this project, spheroids were selected as 

the most appropriate model to study because of their known cellular composition and the fact that 

they can be made from cell lines. 

2.1.2 Including clonal heterogeneity in in vitro cancer models 

Similar to Darwin’s theory of evolution, tumours are believed to be cell populations evolving under 

the constraints of the microenvironment [48], [49]. Cancer usually develops from a single cell that 

underwent a genetic mutation making it proliferate uncontrollably, forming a mass of cells called 

a tumour. While the tumour grows, its cells can mutate and transfer their mutations to their daughter 

cells, as illustrated in the left part of Figure 2-3. As the number of cancer cells increases, combined 

with the constant acquisition of genetic mutations, tumours will often be composed of multiple 

clonal populations, or subclones, by the time the cancer is diagnosed [50]. 

Traditionally, treatment resistance was thought to be either intrinsic (already present at the 

beginning of the tumour growth) or acquired (developed after the initial treatment) [10]. Now, our 

understanding of clonal heterogeneity has led to the hypothesis that giving a treatment to a patient 

changes the dynamics of clone mutations and survival, as shown in the right part of Figure 2-3. 

Treatment sensitive subclones die as resistant subclones survive. These resistant subclones can then 
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repopulate the tumour over time and lead to a cancer relapse. If the same treatment is given to the 

patient, it will fail [10]. 

 

Figure 2-3: Evolution of clonal heterogeneity over time and in response to a treatment. 

Reproduced with permission from [50]. 

Moreover, there is evidence that two subclones can cooperate and increase tumour progression and 

metastasis potential [9], [51], [52]. For example, mesenchymal-like cells that were co-transplanted 

in mice with tumours initiating cells (TICs) promoted their tumour initiating capability, even if the 

mesenchymal-like population represented a minor population [53]. 

As explained in section 2.1, ovarian cancer presents a high rate of cancer relapses that were 

revealed to be resistant to the treatment that was previously effective. High grade serous EOC 

presents a high level of genetic instability over time and spatially, because of mutations in the TP53 

gene and deficiencies in the DNA repair pathway homologous recombination (HR). Clonal survival 

to treatment could explain these high levels of treatment resistance [9]. Caswell and Swanton [51] 

wrote in their research paper: 

“[…] to more effectively treat heterogeneous tumours, we must first understand the 

dynamics between different populations within a tumour, and how targeted 

treatment changes these interactions”. 

By mixing two or more carefully chosen cell types or subclones in in vitro cancer models, the effect 

of each subclone on the other or their respective response to treatment can be studied. This 
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dissertation focuses on the need to develop a versatile method to quantify cell populations 

over time in co-culture 3D cultures. 

2.2 Spheroids formation and microfluidic chips 

In this project, spheroids were chosen as a 3D in vitro cancer model because of their known cellular 

composition and the fact that hundreds of identical samples can be made in a reproducible manner. 

Standard laboratory techniques were developed and used to form large numbers of spheroids [12], 

[54]–[56]. These different methods are illustrated in Figure 2-4 and are mainly based on a simple 

idea: cells cultured on low-attachment surfaces will aggregate and form cell-cell interactions. Not 

all cell lines can adapt to low-attachment conditions, but many cancer cell lines are known to be. 

For example, ovarian cancer cell lines OV1946 [35] and OV90 [36] will spontaneously form 

spheroids when cultured in low attachment conditions. In this work, the hanging droplet method 

(Figure 2-4A) was used [11]. Briefly, droplets of cell suspension are carefully deposited on the 

inside of a petri dish cover. Between 100 and 120 droplets can be formed using a 150 mm petri 

dish. The cover is then placed back on the dish bottom. Cells sediments to the droplet bottom and 

form spheroids in 4 to 7 days, depending on the cell line used. Another method often used is 

represented in Figure 2-4B. Cells are deposited on top of low-attachment coatings, such as 

MatrigelTM, agarose, or hydrophobic coatings [57]. However, this method does not control 

spheroid diameter and spheroids of various sizes will be formed. 

An emerging method to form spheroids uses microfluidic chips. Microfluidics is the manipulation 

of liquids confined at the microscale level where fluid behaviour  can be very different from that 

at the macroscale level. It can offer many advantages over standard spheroid formation techniques, 

as standard laboratory techniques can be cumbersome to use [13], [58], [59]. Briefly, in 

microfluidics, viscous and capillary forces become the dominant forces and the flow in 

microchannels is laminar. By exploiting this laminar flow, fluids and particles in the fluid can be 

precisely controlled [60]. In this project, these microfluidics advantages are utilized to: 

1. precisely control how many cells will form a spheroid; 

2. efficiently trap spheroids in place once they are formed, in order to change the medium or 

exposed them to external stimuli easily; 
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3. reduce laboratory work by forming large number of spheroids and doing medium changes 

a single step; 

4. optimize cell culture conditions by mathematically modelling parameters affecting cell 

viability, such as nutrients and oxygen diffusion, and shear stress. 

 

Figure 2-4: Methods for multicellular spheroid generation. (A) Hanging-drop culture. 

(B) Single cell culture on non-adhesive surface. (C) Micromolding techniques. (D) Spinner 

flask culture. (E) Rotary cell culture systems. (F) Hepatocyte self assembly on Primaria 

dishes. (G) Porous 3-D scaffolds. (H) The use of PNIPAAm-based cell sheets. 

(I) Centrifugation pellet culture. (J) Electric, magnetic or acoustic force cell aggregation 

enhancement. (K) Monoclonal growth of tumour spheroids. (L) Polarized epithelial cysts. 

Reproduced with permission from [57]. 

Microfluidic chips are often made of polydimethylsiloxane (PDMS), a flexible polymer that is also 

optically transparent in the visible region, making fluorescence microscopy through the chip 

possible. PDMS is also gas-permeable to oxygen, necessary for cell viability, and biocompatible 

because of its inert nature [60]. The first step in fabricating a chip is to make a master mould. 

Moulds were traditionally done using photosensitive resin deposited on silicon wafers and 

lithography. In recent years, advances in spatial resolution made 3D printing and plastic 
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micromachining appropriate techniques to make a negative of the desired channel geometries on a 

master mould. Figure 2-5 illustrates the different steps to make a PDMS chip. First, liquid PDMS 

is poured on the master mould and cured in an oven. The PDMS is then peeled off the mould and 

inlets and outlets are punched if necessary. A plasma treatment containing oxygen is then applied 

on two layers (PDMS + PDMS, or PDMS + glass) that are then pressed together to bond and form 

the finished chip. 

 

Figure 2-5 : Microfluidic chip fabrication from a master mould [61]. 

Because of the advantages offered by microfluidic chip, many research groups have developed chip 

designs to form and culture spheroids on-chip. All designs achieve a similar goal: concentrating 

single cells in a small volume so that they aggregate together and form spheroids [13], [58], [59], 

[62]–[67]. 

A first design utilizes U-shaped traps inline with the main channel (Figure 2-6A) to aggregate cells. 

U-shaped traps can be fixed [68] or active [69]. Active traps are mainly used to extract the 

spheroids from the chip by deactivating them. 

Many research groups, including ours, uses passivated microwells to trap cells (Figure 2-6B) [70]–

[74]. The PDMS is first passivated to prevent cell adhesion to the wells and promote cell-cell 

interaction instead. A cell suspension is introduced in the chip and cells sediment in the wells and 

aggregate to form spheroids. By optimizing the geometry and flow rates used to change medium, 

spheroids can be efficiently trapped in the well to minimize unwanted ejection [45]. 
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Figure 2-6: Microfluidic-based spheroid formation methods. A) U-shaped cell trapping, 

reproduced from [69] with permission from The Royal Society of Chemistry. B) Microwell 

cell trapping, our work [75]. C) Hanging droplets on-chip, reproduced from [76] with 

permission. D) Droplet-based cell trapping, reproduced from [77] (CC BY-NC-ND 3.0). 

A third design was inspired by the standard hanging droplet method: connected droplets are formed 

using an open microfluidic chip (Figure 2-6C) [76], [78]. Cells sediment to the droplet bottom and 

form spheroids, as in the standard hanging droplet method. The microfluidic version offers the 

advantage of easily allowing and controlling fluid changes in the droplets, which is impossible with 

the standard technique. 
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Finally, as droplet formation on-chip is an established field in the microfluidic community [79], its 

techniques were applied to form spheroids on-chip [77], [80], [81]. Droplets of cell suspension are 

formed in an immiscible carrier (such as oil) and as cells cannot adhere to the water-oil interface, 

they instead aggregate together (Figure 2-6D). 

Depending on the spheroid formation design used, some microfluidic chip can also culture spheroid 

over time to expose them to external stimuli. Other designs require the use of a second chamber or 

chip to immobilize the spheroids and culture them [13]. The microfluidic community has also 

developed guidelines to form and culture on-chip [45], [82]. 

2.3 Measuring cell populations in 3D cultures 

Section 2.1.2 highlighted how including clonal heterogeneity by mixing multiple cell types or 

populations in spheroids increases the relevance of this in vitro cancer model for ovarian cancer 

studies. However, the main challenge associated with studying heterogeneous spheroids is 

developing techniques that can analyze each cell population individually [83]. For example, 

measuring the diameters after a certain treatment of spheroids made from two cell lines will not 

discriminate if one cell line responded more than the second to the treatment. It will only assess 

the response of the whole spheroid. Over the years, researchers have developed such techniques to 

discriminate subpopulations of cells. 

2.3.1 Cell population discrimination techniques 

2.3.1.1 Cell morphology 

Cellular morphology can be used to identify cell types based on their shape and size when cultured 

on adherent surfaces such as petri dishes. Jones et al. [84] employed cell segmentation to calculate 

several parameters per imaged cell, such as the area, the roundness, and the width of both the 

nucleus and the cell, and used those parameters to identify cell populations. Garvey et al. [85] and 

Caicedo et al. [86] used supervised and unsupervised classifiers to further automate the 

classification of each cell to a specific population. But to analyze spheroid composition using the 

previous methods, spheroids need to be digested into single cells that are then plated in 2D 

monolayer culture since cellular morphology cannot be distinguished in 3D culture. This spheroid 

digestion adds experimental steps to the study and is also a destructive technique that cannot 
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analyze the same spheroid over time. Finally, Härmä et al. [87] developed a software to 

automatically analyze the morphology of whole spheroids, but this technique cannot distinguish 

individual population in a spheroid. 

2.3.1.2 Immunostaining 

Others have used immunostains to identify cell populations by their expressed proteins profile. In 

a simplified explanation, an antibody that is coupled with a chromophore or a fluorophore binds to 

specific part (epitope) of a protein of interest. Using absorption (chromophore) or fluorescence 

(fluorophore), the presence and localization of this protein can be measured. In the case of 3D 

spheroid analysis, this method is performed on thin spheroid slices, either paraffin-embedded slices 

or cryosections. Immunostains can also be used to stain digested spheroids that are then analyzed 

by flow cytometry (described in section 2.3.2.1). Kilani et al. [88] used epithelial- and fibroblast-

specific immunostains to observe each cell type response to treatment. Finally, Ahonen et al. [89] 

identified mouse and human cell in spheroids formed from a digested mouse xenograft using 

fluorescent antibodies specific for mouse and human proteins. 

2.3.1.3 Fluorescent trackers 

Two types of fluorescent markers can be used to identify cell populations. The first utilizes 

fluorescent trackers on initially distinct and separate populations. Each population is first stained 

using different fluorescent molecules that are then retained inside the cells. This technique is mostly 

used for medium-term monitoring, as the number of fluorescent trackers in each cell will decrease 

as cells divide and fluorescent molecules are divided between the mother and daughter cells. 

Because of this, fluorescence quantification to count the number of cells from each population 

cannot be done using trackers [90], [91]. Still, this method can identify the presence of a specific 

cell population in a spheroid or be used to observe if spheroid populations are completely mixed 

or if populations aggregated in distinct regions of the spheroid. For example, Go et al. [92] used 

two fluorescent trackers to stain cancerous and normal cells and observe how tumour spheroids 

invade into normal rat brain aggregates. 

2.3.1.4 Fluorescent proteins 

Finally, cell lines can be genetically modified to express fluorescent proteins. This technique 

cannot be used if patient cells are studied, as modified cells will typically not express the proteins 
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at the same intensity level, rendering any quantification impossible. However, this technique is 

especially useful to study spheroids made from cell lines [90]. Cell lines can be transfected using 

a plasmid integrating the genetic code of one of the many fluorescent proteins available since the 

discovery of the Green Fluorescent Protein (GFP) [93], [94]. Once transfected, a limiting dilution 

in well plates can be done to isolate single cells from which clonal populations can be derived. For 

a specific subclone, the fluorescence intensity emitted by the cells will be at the same level, 

allowing fluorescence quantification to count cells. Hsiao et al. [95] followed the proliferation of 

DsRed-transfected prostate cancer cells inside a spheroid made from osteoblast and endothelial 

cells. 

2.3.2 Instrumentation for fluorescence-based discrimination methods 

Since fluorescence-based techniques such as genetically modifying a cell to express fluorescent 

proteins can be quantitative (where cells express about the same amount of proteins for a specific 

population, for example), the next sections focus on detailing fluorescence-based techniques used 

in the literature to measure cell populations. 

2.3.2.1 Flow cytometry 

Flow cytometry and the more specific fluorescence-activated cell sorting (FACS) are considered 

the gold standard along with immunohistochemistry on tissue sections (section 2.3.1.2) in 

evaluating cell populations. During flow cytometry measurements, single cells are passed through 

a flow cell with a width similar to the size of the cells. Around the flow cell is an optical system 

with various excitation lights and detection channels. One by one, cells are analyzed for their light 

scattering properties (forward and side scattering) and their fluorescence [96]. Cells are separated 

into different populations according to these measurement values. Flow cytometers are highly 

versatile in terms of how many fluorophores can be measured. The system used during this 

dissertation can analyze up to 18 different fluorophores using 7 lasers. In this case, the number of 

cells marked by each fluorophore studied can be counted to measure cell populations. Flow 

cytometry has also been adapted to large particle analysis, such as whole organism (C. Elegans), 

embryoid bodies, and spheroids [97], [98]. There is also a large part of the microfluidic community 

that specialize in developing flow cytometry on-chip, as flow cytometry’s simplest form is a 

microfluidic channel [99]–[101]. Finally, image cytometers are starting to be available 



19 

 

commercially [56], [102], [103]. While flow cytometry is a precise and versatile technique to 

analyze cell populations, repeated analysis over time cannot be achieved as spheroids often need 

to be digested into single cells to be analyzed using standard flow cytometers. Also, image 

cytometers often lack the depth of field necessary to image thick samples in a single acquisition 

and are not adapted for in situ imaging of microfluidic chips [103]. 

Nonetheless, researchers have used flow cytometry to analyze digested spheroids. Patra et al. [104] 

developed a microfluidic chip capable of forming and perform drug testing on 5 000 spheroids 

easily. Spheroids were then harvested from the chip, digested, and analyzed through flow 

cytometry using apoptosis stains to assess the average spheroid response to drugs. Ivanov et 

al. [105] used fluorescent live stains prior to forming co-culture spheroids. The analysis was then 

performed on fixed spheroids using multiphoton microscopy and on digested spheroids using 

standard and imaging flow cytometry. 

2.3.2.2 Tissue sections 

To preserve their morphology and the localization of each cell population, spheroids can be sliced 

in sections or a few micrometres-thin and immunostains are used to reveal the location of their 

corresponding antigens and targeted proteins. The slicing can be done on frozen spheroids to 

generate cryosections. Spheroids can also be fixed and embedded in paraffin before the slicing 

procedure to preserve them indefinitely. Several groups have studied spheroids using 

immunofluorescence. Ivanov et al. [106] developed a technique to form spheroid arrays facilitating 

their immunohistochemistry (IHC) staining. Fang et al. [107] first established stable fluorescent 

cell lines and then co-cultured them in a 3D construct based on cells surrounding a mouse tumour 

xenograft. Confocal microscopy and cryosections were then used to quantify cell populations over 

time. Dorst et al. [108] later stained each cell line using live cell fluorescent stains prior to forming 

co-culture spheroids. Analysis was performed on spheroid cryosections and compared with FACS 

measurement of digested spheroids. Apart from the fact that slicing fixed or frozen spheroids is a 

destructive technique, it also present drawbacks such as sample damage due to the sectioning 

technique and presence of ice crystals during spheroid freezing that also can distort the sample 

morphology [14]. Weiswald et al. [109] and later Smyrek et al. [110] developed a technique to 

stain whole spheroids. The researchers then used confocal and light sheet microscopy (detailed in 

sections 2.3.2.3.2 and 2.3.2.3.4) to image the spheroids. 
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2.3.2.3 Microscopy techniques 

Various microscopy techniques can be used to observe and measure the cell population 

fluorescence on two types of samples, either single cells from digested spheroids or whole 

spheroids. 

2.3.2.3.1 Fluorescence microscopy 

A single cell suspension obtained from digested spheroids can be plated in petri dishes to let cells 

adhere and the number of fluorescent cells from each population can be counted using an optical 

fluorescence microscope. Garvey et al. [85] developed a technique to analyze automatically the 

cell morphology and cell fluorescence of monolayers of cells cultured after spheroid digestion. 

While this technique leads to precise results because it analyzes each the parameters of each cell 

individually, it is again a destructive technique. Following each cell population response dynamics 

over time to external stimuli can reveal more information than using only end-point assays, as 

cancer is a dynamic process [48]. Thus, the next sections will focus on imaging techniques to 

measure whole spheroids. 

Optical fluorescence microscopy can visualize cells marked with fluorescent markers, whether in 

2D, as described before, or in 3D. When a 2D sample is imaged, fluorescent cells from each cell 

population can be directly counted. However, when a 3D sample is imaged, the same fluorescent 

cells cannot be counted as fluorescence from before and after the focal plane is superposed, 

resulting in an out of focus image where individual cells are not seen. However, the total intensity 

from all superposing layers can be used to quantify cell populations. Achilli et al. [111] measured 

the kinetics and the extend of self sorting when two populations are mixed to form spheroids using 

conventional epi-fluorescence microscopy. However, in their work, spatial fluorescent intensities 

of a spheroid were normalized to the total intensity of the imaged spheroid, since the goal of the 

research was to observe the spatial position of both subpopulations. To quantify exactly the 

spheroid composition, more precise and absolute fluorescence quantification of each subpopulation 

is needed. Still, conventional optical fluorescence microscopy can be used to semi-quantify 

fluorescence. If acquisition parameters are constant between samples, fluorescence intensity will 

be directly related to the amount of each fluorophore. Acquisition parameters are generally related 

to sample preparation, fluorescence excitation, magnification, focus, and camera acquisition time 

and gain [112]. A typical limitation of conventional optical microscope is that they are designed to 



21 

 

image cell monolayers and have thin depths of field, thinner than the spheroids imaged [113]. 

Where the focus will be made (on the top or bottom of the spheroid) will have an impact on the 

measured fluorescence, rendering absolute fluorescence quantification from sample to sample 

difficult [114], [115]. 

Ortiz de Solorzano et al. [116] developed a miniaturized fluorescence microscope to image 

spheroids. Lens free fluorescence microscopy [117] also offer advantages to image spheroids with 

large fields of view and using simpler field portable devices. While their imaging systems have a 

reduced footprint, the use of fixed excitation filters to remove the excitation light limit the number 

of fluorophores imaged. 

2.3.2.3.2 Confocal imaging 

Confocal microscopy is the solution to the fluorescence superposition from cells before and after 

the focal plane. Pinholes are placed in front of the source and the detector to image only the focal 

plane. Photons coming from other planes of the sample are blocked by the pinhole of the detector 

and a virtual slice of the sample is imaged, called an optical section. By varying the position of this 

focal plane, it is possible to sweep the sample over its height and acquire an image at each height, 

measuring the spatial distribution of fluorescent markers [118], [119]. 

However, confocal microscopy cannot image up to the centre of larger spheroids because of low 

signal intensity from the centre. Only the first 70 to 100 µm can be imaged, as illustrated in Figure 

2-7 [44], [120]–[124]. When samples larger than 100 µm are imaged, the use of the pinholes to 

create optical sections of the sample greatly limits the light intensity reaching the detector. This is 

the compromise that confocal imaging dictates: lower detected intensity for optical sections [118]. 

Despite light detection problems, many research groups used confocal imaging to study spheroids, 

by either using smaller spheroids, or measuring only the outer layers response to external 

stimuli [107], [125], [126]. Also, some have developed methods to compensate this problem. 

Barbier et al. [127] developed a method to identify spheroids large enough to present this light 

penetration problem and remove them from the subsequent analysis. Stoddart et al. [53] designed 

a technique to rotate the sample to image it from different angles. Ahonen et al. [128] achieved 

whole spheroid imaging by fixing the spheroid in a matching refractive index medium, increasing 

the amount of detected light. While these last techniques can compensate for confocal imaging’s 
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difficulty to image thick sample, it remains challenging to quickly analyze subpopulations in larger 

co-culture spheroids over time.  

 

Figure 2-7: A) Top view of spheroids stained with three fluorophores and imaged using 

confocal microscopy. B) Side view of the same spheroids, showing different imaging depth. 

Reproduced with permission from [127] (CC BY 4.0). 

2.3.2.3.3 Multiphoton imaging 

Multiphoton microscopy takes advantage of longer excitation wavelengths to image deeper in thick 

samples. Briefly, in two- or three-photon microscopy, two or three photons of lower energy are 

used to excite a fluorophore in a single event. Since multiphoton excitation cross section is usually 

small, only the fluorophores located at the focal spot of the microscope will be excited, creating an 

optical sectioning similar to confocal microscopy [129]. Ivanov et al. [105] used two photon 

microscopy to image whole spheroids to identify the location of two subpopulations in spheroids, 

observing their self-sorting into distinct aggregates. While multiphoton microscopy can offer great 

results, objectives typically used have higher numerical apertures and shorter working distances to 

increase the excitation laser intensity at the focal spot [15]. This can be a problem to image 

spheroids while they are still trapped in a microfluidic chip, since the PDMS layers surrounding 

the spheroid can be thicker than the objective working distance. 
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2.3.2.3.4 Light sheet microscopy 

Also called orthogonal plane fluorescence optical sectioning microscopy and selective/single plane 

illumination microscopy (SPIM), light sheet fluorescence microscopy (LSFM) is a technique to 

image 3D samples where a single plane of the sample is illuminated at a time [130], [131]. The 

illumination axis is also at 90° of the detection axis, as illustrated in Figure 2-8, resulting in optical 

sectioning, similar to confocal microscopy [132]. LSFM has shown that, with the proper post-

imaging analysis, it can provide a higher spatial resolution than confocal imaging [133]. However, 

a special mounting for the sample is necessary [132]. Lorenzo et al. [134] first showed how live 

spheroids expressing fluorescent proteins can be imaged over time to observe live cell division 

inside spheroids. Patra et al. [135] used LSFM to observe the formation of lumen-like structures in 

spheroids made of endothelial and hepatocellular carcinoma cells. Finally, Smyrek et al. [110] used 

LSFM to verify the immunostaining of whole spheroids. A clear advantage of light sheet 

fluorescence microscopy is the fact that, contrary to confocal microscopy, the image of one optical 

section done in a single acquisition (no spatial scanning of the surface is necessary). This leads to 

faster acquisition time. However, the required special mounting of the sample and the necessary 

optical quality of the illumination plane limit the field of view size under 1 mm2, limiting the 

number of samples that can be imaged in a single acquisition [16]. 

 

Figure 2-8: Orthogonal single plane illumination and detection in light sheet microscopy. 

Reproduced with permission from [131]. 
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2.3.2.3.5 Hyperspectral imaging 

Hyperspectral imaging is a technique where spectral information is also acquired at each pixel of 

the image. It has been extensively used in the field of remote sensing [136] and food safety [137], 

but is relatively new in biological sciences [138]. Hyperspectral imaging can be distinguished from 

multispectral imaging by the number and position of the spectral bands acquired. In multispectral 

imaging, only select bands are acquired, while hyperspectral imaging has the goal of measuring 

the full sample spectrum at specific wavelength-interval. By acquiring the spectral information of 

the sample studied, a spectral unmixing can be done to separate the contribution of the spectral 

entities present in the sample, such as fluorescent markers, endogenous fluorophores, tissue 

absorbers (hemoglobin, melanin) and scatterers (cell membrane, subcellular organelles) [139]. 

Figure 2-9 illustrate a hyperspectral datacube acquired on a single layer of fluorescent beads and 

the corresponding spectral unmixing. 

 

Figure 2-9: Fluorescence hyperspectral imaging. A) Datacube acquisition of two types of 

fluorescent beads in a single layer. B) Average fluorescence spectrum from the pixels located 

in the gray square. Linear unmixing can be used to separate the green and red beads. 

Different acquisition mode can be used to perform HSI: wavelength scanning, spatial scanning 

(point or line), and snapshot acquisition (no scanning), as illustrated in Figure 2-10. Each mode has 

its advantages over the spectral resolution possible and the acquisition speed. For example, a point-

scanning HSI system can use a highly spectrally resolved spectrometer to analyze the light 

dispersed from a single pixel of the image using a diffraction grating. While scanning each point 

of the sample can be long, the measured spectrum is highly resolved. In this dissertation, the HSI 



25 

 

system built uses a wavelength scanning mode, to simplify the imaging system setup, as no sample-

scanning motors are necessary. 

 

Figure 2-10: Hyperspectral imaging approaches: A) Point scan; B) line scan; C) wavelength 

scan; D) snapshot. Reproduced with permission from [140] (CC BY-NC 4.0). 

HSI has been used for many applications. Lu et al. [139] published an excellent review in 2014 

detailing many of the contrast used to study various diseases with HSI. Briefly, HSI systems can 

be separated into two main categories: reflectance- and transmittance-based. Each category can be 

further separated by the contrast method used: intrinsic or external absorbers and scatterers or 

intrinsic or external fluorophores. Pichette et al. [141] used a snapshot camera through a surgical 

microscope to image reflectance-based changes in oxygenated hemoglobin (intrinsic absorber) at 

the surface of the brain. Renkoski et al. [142] imaged the autofluorescence (intrinsic fluorophore) 

of resected human ovaries to identify cancerous regions. Finally, Bravo et al. [143] described the 

advantages of using HSI to guide surgical resection using aminolevulinic-acid (ALA) induced 

protoporphyrin IX (PpIX) fluorescence (external fluorophore). ALA-based fluorescence guided 

surgery is explained in more details in section 2.4.1. Transmittance-based methods are currently 
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more applied to food safety and imaging of thin tissue slices. HSI can be used to identify defects 

or contaminants inside food, as Huang et al. [144] showed in their study designed to identify insect-

damaged soybeans (intrinsic absorbers and scatterers). Guan et al. [145] used transmittance 

measurements (intrinsic absorbers and scatterers) to segment pathological leucocytes from other 

cells. Many studies also used transmittance HSI to image histology slides containing tissue slices 

(circa 4 μm-thick). For example, Bautista et al. [146] used HSI to image Hematoxylin and eosin 

stained slides (external absorber) to calculate and simulate other types of staining, such as Masson’s 

trichrome staining. 

The trade-off for acquiring spectral data during image acquisition is usually longer acquisition 

times, due to the necessary scanning. Therefore, snapshot hyperspectral cameras are ideal to do 

video-rate acquisition in real-time. Also, filters used to perform wavelength-scanning can have low 

transmission rates and require longer acquisition times. This can make acquiring fluorescence 

spectra of small samples or wide fields of view difficult [138]. 

Few research groups used HSI to study whole spheroids and none of spheroids in microfluidic 

chips and in a high-throughput manner. Jena et al. [147] imaged live spheroids with near-infrared 

hyperspectral imaging to study the permeability of tumour spheroids in well plates to 

photoluminescent carbon nanotubes. HSI was also performed on single cells in microfluidic 

channels by Caprio et al. [148] and Horton et al. [149]. Jahr et al. [150] modified a light sheet 

fluorescence microscope to acquire hyperspectral images of zebrafish and fruit fly embryos. 

2.4 Fluorescence quantification 

In the previously described imaging modalities, the detected fluorescence intensity is a function of 

the fluorophore concentration in the sample. However, it is also a function of the sample optical 

properties [151]. Taking optical properties into account is one of the challenges associated with 3D 

sample imaging. During the observation of a 2D culture, for example, the excitation light arrives 

directly to the cell monolayer and the emitted fluorescence exits the cells and reaches the detector 

without passing through other cells. In the case of 3D cultures, a fluorophore placed inside the 

sample will see its excitation light absorbed and scattered by the peripheral cells as well as for the 

fluorescence that it emits. Optical properties must be taken into account to correctly measure 

amount of each fluorophores in the sample. The properties to consider are absorption, μa, and 
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scattering, μs', at the excitation and emission wavelengths of the fluorophore. As an example, 

Figure 2-11 presents the measured fluorescence intensity of 9 cylindrical samples. Each sample 

contains the same number of fluorophores but varying optical properties. From sample C to sample 

G, a four-fold intensity decrease was measured by Kim et al. [152]. For these samples and their 

optical properties, the emitted fluorescence intensity cannot be used to measure the fluorophore 

concentration unless a four-fold error is acceptable. 

 

Figure 2-11: Fluorescence from phantoms with varying optical properties, but the same 

protoporphyrin IX (PpIX) concentration. Reproduced with permission from [152]. 

Methods have been developed to compensate for the optical properties of a 3D sample and quantify 

its fluorescence correctly. Optical phantoms of known optical properties and fluorophore 

concentration are typically used to validate the quantification methods. Optical phantoms are 

sample-simulating material whose optical properties can be controlled. In this dissertation, optical 

phantoms were used to validate the quantification algorithm presented in section 4.5.3. Typical 

optical phantoms are composed of a scattering medium (μs’), an absorbing medium (μa), and the 

fluorophore of interest. For example, lipid emulsions (Intralipid®), oxides such as TiO2, Al2O3, and 

SiO2, or microspheres can be used as scattering agents. Absorbing agents are generally soluble 

dyes presenting either a flat spectral behaviour, such as India ink, nigrosine, or carbon black, or a 

specific absorption peak, such as food colouring dyes. Phantoms matrix can be liquid-based (such 

as water), hydrogel-based (such as gelatin or agar), or solid-based (such as resins like polyester, 

and polyurethane, or silicone rubber) [153].  



28 

 

2.4.1 Quantification techniques 

Several quantification techniques were developed and are reviewed by Bradley et al. [154]. Briefly, 

techniques can be theory-, measurement-, or empirically-based. Each technique will be valid for a 

specific set of μa and μs' values, due to the hypotheses needed to develop the technique. 

Theory-based techniques use the fact that light propagation can be described by the radiative 

transfer equation, which describes how a light beam can gain energy from scattering towards the 

beam and other light sources and lose energy through absorption and scattering away from the 

beam by the medium. Various approximations of this equation can then be used depending on the 

scattering and the absorption of the sample to simplify the resolution of the equation. 

The second technique is based on experimentally and explicitly measuring the optical properties 

of the sample, μa and μs', and using those values in a model. Kim et al. [152] hypothesized that the 

absorption of a tissue is higher at the excitation wavelength than at the emission wavelength and 

derived an equation describing the fluorescence intensity depending on μa at the excitation 

wavelength and the reflectance of the sample at both the excitation and the emissions wavelengths. 

Using their previously developed instrumental method of measuring μa and μs' with an optical fibre 

probe, they validated that their point probe method could quantify fluorescence correctly using 

phantoms and ex vivo measurements of mouse tissue.  

The third technique uses empirically validated equations to quantify the fluorescence emitted by a 

sample. Equations are usually based on using the reflectance or endogenous fluorescence spectrum 

of the sample. The equation is optimized and validated using optical phantoms of known optical 

properties. For example, Valdés et al. [155] divided the measured fluorescence spectrum by the 

reflectance value at the excitation and at the emission spectrum to quantify PpIX fluorescence in 

tissues. This technique was used in this work and is further described in section 3.2. 
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CHAPTER 3 GENERAL METHODOLOGY 

This chapter presents the general methodology used in both articles included in this dissertation. 

The methodology is presented in relation to each research objective. The relation between the 

articles and each research objective is also stated. 

3.1 Development of a wide-field hyperspectral imaging system for 

spheroid analysis 

Objective 1: Design and build a wide-field hyperspectral imaging system to measure non-

destructively the fluorescence emitted by co-culture spheroids cultured in microfluidic chips. 

The first objective of this work was to design and build a wide-field hyperspectral imaging system 

to measure spheroid fluorescence. The HSI system is based on the use of a liquid crystal tunable 

filter (LCTF) to acquire hyperspectral data cubes by wavelength-scanning from 500 to 720 nm to 

acquire images at every 5 nm, building the transmittance and fluorescence spectra of the spheroids. 

The system is presented in detail in Article 1, section 4.5.1. Briefly, a Köhler illumination setup 

was implemented in one illumination branch to illuminate the sample from below with a white light 

source. A second illumination branch was designed to excite the sample uniformly with a 

supercontinuum laser. This excitation laser was used for a more versatile imaging system, allowing 

the user to choose the excitation wavelength between 400 and 700 nm. The two illumination 

branches were then combined towards the sample using a beamsplitter. The system was also 

designed to be wide-field (7.25 mm-diameter field of view) to image the multiple spheroids trapped 

in the microfluidic chip in a single acquisition; increasing the statistical relevance of the results by 

acquiring multiple replicates easily. The combination of the wide field of view and the low 

transmission of the tunable filter required the use of a highly sensitive camera to acquire the 

spheroid fluorescence images at each wavelength. A thermoelectrically cooled EMCCD camera 

designed for low light imaging was selected. A custom Labview program was then used to acquire 

the hyperspectral datacube (one image per wavelength) and control the white light automatically. 

Article 1, section 4.5.2 describes the different types of acquisition necessary to measure spheroid 

fluorescence. Then, a custom algorithm, detailed in Article 1, section 4.5.3, applied a series of 

calibration steps to the hyperspectral datacubes. Each spheroid’s fluorescence was also 
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automatically extracted by determining regions of interest in the image corresponding to a spheroid. 

Two types of sample holder were designed for the HSI system, as illustrated in Figure 3-1. The 

sample holder was originally designed to hold 25 x 75 mm2 glass slides and was used here to hold 

microfluidic chips of a similar size. The second sample holder was designed and fabricated with 

help by student Tien Nguyen and technician Jean-Paul Lévesque to hold well plates. With this 

second sample holder, 3D samples cultured in 6- to 384-well plates, such as prostate tubules 

structures, can be imaged. 

  

Figure 3-1: A) Sample holder for glass slides or microfluidic chips of similar size. B) Sample 

holder for well plates. 

3.2 Validation of the fluorescence quantification capabilities of the 

HSI system 

Objective 2: Validate the hyperspectral imaging system and evaluate the ability of image 

analysis algorithms to quantify fluorescence, sampling up to the spheroid centre, and measure 

spheroid composition in co-culture spheroids. 

Objective 2 was fulfilled by first validating the capacity of the HSI system to extract and quantify 

fluorescence from the effect of the sample optical properties. One of the main advantage of using 

hyperspectral imaging to image fluorescent samples is utilizing the higher spectral resolution to 
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measure the reflectance or transmittance spectrum of the sample. This spectrum can then be used 

to quantify the sample fluorescence. The fluorescence intensity measured at the camera will depend 

on the number of fluorophore molecules and its scattering and absorbing properties. Empirical-

based algorithms can be used to compensate the optical properties effect using the transmittance of 

the sample. The technique used in this dissertation for measuring the concentration of fluorophores 

in 3D samples is based on Valdés et al. work [155]. This technique corrects the fluorophore 

emission spectrum of a semi-infinite tissue using the white light reflectance spectrum according to 

the following equation: 

Φ(λ) =
ΦFluo(λ)

Φx
Ref × (Φm

Ref)
α (3-1) 

where Φ(λ) is the quantified fluorescence spectrum, ΦFluo(λ) is the raw fluorescence spectrum, 

Φx
Ref et Φm

Ref are the integrated reflectance spectra at the excitation (x) and emission (m) range of 

wavelengths, and α is an empirical parameter specific to the sample geometry, fluorophore imaged 

and optical system used. Figure 3-2 shows how the quantification algorithm works. Before any 

fluorescence quantification (A), fluorescence levels for a specific fluorophore concentration vary 

depending on the optical properties of the sample. After quantification (B), optical properties are 

compensated for and fluorescence intensities only depend on the fluorophore concentration. This 

technique is only valid for the range of μa and μs' tested with optical phantoms and any changes to 

the sample geometry of the imaging system will require a new phantom validation. 
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Figure 3-2: Fluorescence quantification algorithm from Valdés et al. [155] demonstration. 

A) Raw fluorescence where each colour represents a fluorophore concentration. Solid and 

dotted lines represent the optical properties effect on the measured fluorescence. 

B) Quantified fluorescence where optical properties do not affect the fluorescence intensity 

for a specific fluorophore concentration. 

In this thesis work, equation (3-1) was modified to consider the transmittance of the sample, as 

described in Article 1, section 4.5.3. Optical properties of spheroids were estimated from Hargrave 

et al. [156] and Wallace et al. [157] and Intralipid® [158] was selected as the scattering medium. 

While the composition of Intralipid®, a lipid emulsion, differs from the composition of spheroids, 

cells, using a stable lipid emulsion to fabricate an artificial spheroid sample allows for precise 

control of its optical properties. By varying the scattering coefficient of the optical phantoms 

around the estimated value of spheroids, the range of values at which the quantification algorithm 

is valid can be determined. No absorbers were included as spheroids do not present strong 

absorption such as hemoglobin. The fluorophore of interest, enhanced Green Fluorescent Protein 

(eGFP), was simulated using dissolved fluorescein, since eGFP and fluorescein excitation and 

emission peaks are similar. Each phantom was then imaged using the HSI system after introducing 

them one at a time in a 1 mm-pathlength cuvette. The phantom hyperspectral datacubes were 

processed with the Matlab algorithm described previously with and without the final fluorescence 

quantification step. This algorithm to quantify fluorescence was validated with optical phantoms 

of a planar geometry (small height and large width). While it was able to quantify these phantoms 
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fluorescence, as shown in Article 1, it cannot be directly transferred to samples of spherical 

geometry, as one algorithm parameter depends on the sample geometry. Preliminary experiments 

were done to form spherical optical phantoms: a microfluidic chip was designed to form hydrogel 

beads of 300 μm in diameter and tested by forming beads containing a scatterer. These results are 

presented in Appendix A. 

A second type of validation of the HSI system was done using a Monte Carlo simulation platform. 

The goal was to validate if the HSI system could sample the drug response at the spheroid centre, 

as it is a challenge in other types of microscopy. The HSI system geometry as well as the spheroid 

geometry were implemented in a Monte Carlo light propagation simulator and the trajectory of 

fluorescence excitation and emission photons were simulated. Preliminary results of this validation 

are presented in Appendix B. 

Finally, the HSI system and the image analysis algorithm capacity to measure the composition in 

cell population of co-culture spheroids was validated with the gold standard, flow cytometry. Co-

culture spheroids made from two fluorescent cell lines were formed and cultured in microfluidic 

chips. Different ratios of the two cell lines, from only green fluorescent cells, to 50% of each, and 

to only red fluorescent cells, were used to form the spheroids. Microfluidics chips containing the 

spheroids were first imaged using the HSI system. Immediately after, the same spheroids were 

harvested from the chips, digested into single cells, and analyzed using flow cytometry. Spheroid 

compositions as a percentage of each cell population measured by each technique were then 

compared and results are detailed in Article 2, section 5.4.3. 

3.3 On-chip hyperspectral imaging of co-culture spheroids to study 

clonal heterogeneity 

Objective 3: Study clonal heterogeneity in ovarian cancer by forming co-culture spheroids 

and follow their response to chemotherapy treatments on-chip over time. 

Two microfluidics chip designs were used in this dissertation and are represented in Figure 3-3. 

The chips were designed by Mélina Astolfi [44] (chip A) and Bishnubrata Patra [72], [159] 

(chip B) with the ease of use by biologists in mind, an important factor determining the adoption 
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of the technology by research biologists [160]. They are composed of a single channel and either 

5 or 120 wells, fluids are introduced and removed using micropipettes, and no pumps are necessary. 

 

Figure 3-3: Microfluidic chips used throughout this dissertation. A) Microfluidic chip A was 

designed to trap microtissues in 5 gravitational traps. Scale bars = 2 mm. B) Microfluidic 

chip B was designed to form and trap 120 spheroids on chip in 5 groups of 24 spheroids. 

Scale bars = 6 and 1 mm. 

To study the treatment response of co-culture spheroids, several ovarian cancer cell lines derived 

from patients were used during this work. To be able to distinguish them in spheroids, cell lines 

were genetically modified to express either a green or red fluorescent protein by Adriana Mari 

Orimoto and Maxime Cahuzac. In most experiments, microfluidic chip B was used to form 

120 spheroids made from a single cell suspension or from various ratios of two cell lines (100:0, 

90:10, 75:25, 50:50, 25:75, 10:90, 0:100). Two days after formation, spheroids were either cultured 

over time or exposed to chemotherapy treatments (platinum-based or PARP inhibitor). Medium 

was changed daily to replenish the available nutrients and remove cell waste. Because HSI is a 

non-destructive technique, spheroids were imaged daily, and each population fluorescence was 

followed over time and as a response to treatment. The HSI image analysis algorithm was used to 

calculate the spheroid composition also over time and as a response to treatment. A proof-of-

concept that co-culture spheroid composition can be followed over time using HSI is presented in 

Article 1. A second set of more complete experiments are presented in Article 2, clearly showing 

that each population response to external stimuli can be measured individually. 

Lastly, a modification to a statistical test was developed to analyze monotonic trends in spheroid-

based research. The Mann-Kendall statistical test was already available to identify monotonic 

trends in a series of data points. However, if the data points consist of an average of multiple 

experiment replications and the associated error, the test cannot be applied, as it cannot take into 
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account the errors. Based on work by Soderberg and Hennet [161], I modified the implementation 

of the test as described in Appendix C. The modified Mann-Kendall test was used by Mohana 

Marimuthu to confirm that controlling the cell seeding density while forming spheroids on-chip 

led to a monotonic increase as the cell number increases [78]. 
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IMAGING FOR LIVE MONITORING OF MULTIPLE SPHEROIDS IN 

MICROFLUIDIC CHIPS 
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The article has been published in Analyst in March 2018 . 

4.1 Background information 

Published article 1 [159] is presented in this chapter and discuss the hyperspectral imaging system 

design and its image analysis algorithm. This article details the methodology in terms of image 

acquisition and processing used throughout this dissertation. The optical design and the image 

acquisition sequence used in the subsequent image analysis steps are first presented. The HSI 

system was then characterized in terms of spatial resolution and shading correction performance. 

The system performance to quantify fluorescence from the sample optical properties was then 

studied using optical phantoms of known fluorophore concentrations and optical properties. 

Finally, two imaging experiments were performed to illustrate the HSI system capabilities to do 

wide-field imaging of 3D cultures. First, spheroids made from two fluorescent cell lines were 

formed using the hanging droplet method and loaded in a first microfluidic chip. In a second 

experiment, co-culture spheroids were formed directly on-chip using a second chip design and their 

growth was followed over time to assess the proliferation of each cell population. 
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My contribution for this article is 80% of the work. I designed, build, and calibrated the HSI system 

and wrote its image analysis algorithm. I performed and analyzed the phantom experiment 

validation and most of the spheroid cell culture and hyperspectral imaging. I wrote the article, 

except the Experimental section 4.5.7 describing the confocal imaging. M.M helped during his 

internship to test the imaging system and optimize distances between lenses. M.C. generated the 

mCherry-OV1946 clone. M.S. helped design the brightfield illumination branch of the system. 

B.Patra designed microfluidic chip B. A.M.O. generated the eGFP-OV1946 and mCardinal-OV90 

clones and formed the co-culture spheroids using the hanging droplet method. J.K.D. performed 

the confocal imaging. B.Péant helped design the second co-culture experiment. A.-M.M.-M., F.L., 

and T.G. provided support and supervised the research. 

The article was submitted on March 22nd, 2018 and accepted on June 27th, 2018 in Analyst, 

volume 143, issue 16, pages 3829–3840. The article is reproduced from [159] with permission 

from The Royal Society of Chemistry. 

4.2 Abstract 

Tumor spheroids represent a realistic 3D in vitro cancer model because they provide a missing link 

between monolayer cell culture and live tissues. While microfluidic chips can easily form and assay 

thousands of spheroids simultaneously, few commercial instruments are available to analyze this 

massive amount of data. Available techniques to measure spheroid response to external stimuli, 

such as confocal imaging and flow cytometry, are either not appropriate for 3D cultures, or 

destructive. We designed a wide-field hyperspectral imaging system to analyze multiple spheroids 

trapped in a microfluidic chip in a single acquisition. The system and its fluorescence quantification 

algorithm were assessed using liquid phantoms mimicking spheroid optical properties. Spectral 

unmixing was tested on three overlapping spectral entities. Hyperspectral images of co-culture 

spheroids expressing two fluorophores were compared with confocal microscopy and spheroid 

growth was measured over time. The system can spectrally analyze multiple fluorescent markers 

simultaneously and allows multiple time-points assays, providing a fast and versatile solution for 

analyzing lab on a chip devices. 
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4.3 Introduction 

Interest in multicellular tumor spheroids (MCTS, or spheroids) as a 3D in vitro cancer model has 

been steadily growing in the past decade [40]. They represent a realistic 3D cell culture model with 

properties that bridge the gap between monolayer cell culture and live tissues, including human 

biopsies, surgical specimens, or mouse xenografts [4], [162]. MCTS are 3D constructs made of 

cells that aggregate together to form spheres of varying compactness. Contrary to monolayer (2D) 

cell culture, they display cell-cell and cell-matrix interactions [4]. Tumor cell lines are often able 

to spontaneously form these 3D constructs when cultured in hanging droplets, low-attachment 

plates or passivated microfluidic chips [57]. 

The microfluidics community has put considerable effort in the past ten years to develop chip-

based platforms capable of forming and/or testing MCTS [40], [45], [59], [65], [66], [70], [71], 

[81], [125], [163]. Some of them can be used to synthesize thousands of spheroids in one step [104], 

[164]. Others can be used to form spheroids of different sizes utilizing a single cell suspension [78]. 

They can also hold (or trap) spheroids in place during medium changes or while adding/removing 

reagents without the risk of pipetting them out, an issue often encountered when manipulating 

spheroids with micropipettes in 96-well plates [73], [74], [76]. 

Still, microfluidic chips are not yet fully adopted by research biologists, one of the main reasons 

being the complexity of use. Many microfluidic chips are designed to perform experiments 

efficiently but need complex pumping systems or handling [160]. Also, while microfluidic chips 

are able to easily produce large amounts of spheroids, very few commercial applications exist to 

analyze this massive amount of data. Typical techniques used by researchers consist of confocal, 

two-photon, and light sheet microscopy, and flow and imaging cytometry. Confocal microscopy is 

often used in conjunction with live/dead fluorescent markers to count the numbers of viable cells 

compared to dead cells in a spheroid [89], [125], [165], [166]. Mohapatra et al. acquired spheroid 

fluorescence emission spectra for whole optical sections during confocal imaging [126]. While this 

technique offers high resolution imaging and spatial information on spheroid viability, it is limited 

to the first few cell layers (50-100 µm) due to limited light penetration in the 3D culture. Imaging 

larger fields of view also requires multiple acquisitions and image stitching [44], [121], [122]. Loss 

of signal-to-noise with imaging depth can prevent accurate measurement of the spheroid center 

response to a treatment, where necrotic, senescent, or slowly proliferating cells are present [40]. 
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Two-photon and light sheet microscopies circumvent this limitation by using different illumination 

strategies, albeit with significant drawbacks. While two-photon imaging typically uses infrared 

excitation to image whole spheroids, its long acquisition time for large volumes and its working 

distance render the technique difficult to use on multiple spheroids trapped in thick (> 5 mm) 

microfluidic chips [15]. Light sheet microscopy, in turn, uses structured illumination to excite a 

single plane in the spheroid but is not adapted to image multiple spheroids in one acquisition [135]. 

Other researchers have developed lens free microscopy over large fields of view, but the spectral 

capabilities of their systems are limited to the static (non-tunable) filters used to image fluorescent 

samples [117]. 

Flow cytometry is also used to analyze cell populations in spheroids using fluorescent 

markers [44], [104]. Spheroids are first digested into a single cell suspension and each cell is 

analyzed one at a time using fluorescence-activated cell sorting (FACS). This technique can 

precisely measure the proportion of cells marked by each fluorescent marker since it analyzes each 

cell individually. Because of the necessary spheroid digestion, FACS is a destructive analysis 

technique. No spatial information is obtained, contrary to confocal microscopy, and the same 

sample cannot be analyzed at multiple time-points. Image cytometry instruments are starting to be 

available for spheroid analysis [103], but they lack the spectral resolution necessary to separate 

more than a few fluorophores or perform fluorescence quantification. 

Wide-field fluorescence spectroscopy, seldom used in the context of 3D cell culture or 

microfluidics, holds several advantages that could improve spheroid analysis, namely its higher 

spectral resolution and its wide-field capability to image multiple samples in one acquisition. Wide-

field quantitative fluorescence imaging is currently used in surgical guidance to identify residual 

tumors during cancer resection [167], [168]. However, since tunable filters generally have low 

transmission in the visible range [138], it is a challenge to design an imaging system with a large 

field of view while maintaining enough sensitivity to detect the fluorescence emitted by a spheroid. 

Here, we report the first use of wide-field fluorescence hyperspectral imaging to accelerate 

spheroid analysis while they are still trapped in a microfluidic chip. We have designed a wide-field 

quantitative hyperspectral imaging (HSI) system with the potential to spectrally analyze spheroids 

using multiple fluorescent markers in a single acquisition and in a non-destructive fashion (Figure 

4-1). The HSI system relies on the use of a liquid crystal tunable filter to acquire wide-field 
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spectroscopic data of a sample with a spectral resolution of 7 nm. Because of its wide-field 

capability, the system can analyze multiple samples in one acquisition, enabling the study of large 

numbers of spheroids independently without increasing analysis time exponentially as would 

confocal imaging or flow cytometry. The system and its image analysis algorithm also use 

transmittance images of the sample to correct for its optical properties and quantify its emitted 

fluorescence. The proposed technique is non-destructive; samples can be analyzed at multiple time-

points if the fluorescent markers used are not cytotoxic. Also, the higher spectral resolution of the 

HSI system enables the resolution of a larger number of fluorescent markers than a standard 

microscope limited by fluorescence filter cubes. Fluorophores with close emission peaks can also 

be resolved more easily. We also demonstrate how the HSI system can be used to analyze spheroids 

either made on-chip (using chip B) or made using other methods (such as hanging droplets) and 

loaded in a microfluidic chip (chip A). 

 

Figure 4-1: Hyperspectral imaging. (A) Concept figure of hyperspectral imaging of a single 

layer of green and red fluorescent beads and the average spectrum from the pixels inside the 

gray rectangle. Unit a.u. is for arbitrary units. Scale bar = 1 mm. (B) Hyperspectral imaging 

system diagram. Circular inset shows microfluidic chip B containing 24 wells where 

spheroids were formed and trapped. Scale bars = 1 mm. Photograph shows the imaging 

system. 
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We further introduce a method to perform fluorescence quantification that is, the number of 

molecules of a fluorescent dye present in a spatially resolved sample. In general, that information 

is lost as the scattering and absorption coefficients of the sample imaged affects the fluorescence 

detected at the camera [151]. A custom fluorescence quantification algorithm was used to decouple 

the emitted fluorescence from scatterers and absorbers in the tissue using transmittance images, in 

order to recover the intrinsic sample fluorescence signal. Its performance is demonstrated by 

imaging calibrated liquid phantoms with optical properties similar to those of spheroids. Wide-

field hyperspectral images of fluorescent co-culture spheroids were compared with maximum 

projections obtained by confocal imaging. Finally, growth curves of two cell populations forming 

co-culture spheroids were measured over nine days. 

Overall, the HSI system is simple to use and displays superior performance when compared in 

terms of spectral resolution, fluorescence quantification, and analysis time with other methods and 

suggests that it may form the backbone of future spheroid imaging platforms. 

4.4 Results and Discussion 

4.4.1 System design and characterization 

The custom-built HSI system uses a tunable filter to sweep across the emission spectrum of the 

fluorescent sample and acquires one image per wavelength. Figure 4-1A shows a concept figure 

where green and red fluorescent beads were placed in a single layer on a glass slide. By analyzing 

the emitted fluorescence intensity variations according to the measured wavelength, the beads 

emission spectrum can be reconstructed and the contribution of each fluorophore, unmixed. 

The system is composed of two illumination paths combined towards the sample using a 

beamsplitter (Figure 4-1B). A tungsten-halogen white light source is used to measure the 

transmittance spectrum of the sample while a supercontinuum laser filtered using a laser line filter 

is used to excite the sample fluorescence at the chosen wavelength. An objective and relay lens 

form the sample’s image on a highly sensitive electron-multiplying charged couple device 

(EMCCD) camera. A liquid crystal tunable filter sweeps across wavelengths to measure the sample 

transmittance and fluorescence spectra. 
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To measure the true emitted fluorescence intensity of a sample, precise steps are needed. Figure 

4-2. presents an overview of the image analysis steps performed to measure and quantify the 

fluorescence emitted by a sample, correcting for the sample optical properties and the system 

response. Each step details are presented in the Experimental section. 

 

Figure 4-2: Image analysis steps to quantify the fluorescence emitted by the imaged sample 

using its transmittance measurement. Blue blocks represent experimental input images, 

yellow blocks represent image analysis steps performed on the acquired brightfield and 

fluorescence images of the sample, and green blocks represent output results. Details of each 

step are presented in the Experimental section. 

The optical resolution and field of view of the HSI system were first characterized. A 1951 USAF 

resolution target was used to measure the field of view in both the x and y directions, yielding a 

circular field of view of 7.25 mm in diameter (see Figure 4-3A). This field of view is large enough 

to measure multiple samples in one image. The resolution target was also used to measure the 

resolution of the imaging system. The smallest element where a contrast difference of more than 

27% between a black and a white line can be detected was observed to determine the resolution 
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(see Figure 4-3B). In both horizontal and vertical axes, the measured spatial resolution is 22.6 line 

pairs per millimeter. 

 

Figure 4-3: System characterization and image analysis steps. (A) Brightfield image (sum of 

wavelengths between 500 and 720 nm) of a 1951 USAF resolution target. Scale bar = 1 mm. 

(B) Average intensity profiles horizontally and vertically of the 3 lines of element 4, group 4 

of the resolution target. Arrows show that the Rayleigh criterion of > 27% is respected. (C-

D) Brightfield (a.u.) (at 720 nm) and (E-F) fluorescence (a. u.) images (at 610 nm) of a single 
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layer of fluorescent beads before (C;E) and after (D;F) the shading correction. Scale bars = 

1 mm. (G) Spectral unmixing of the eGFP and CTO fluorescence from the excitation laser 

bleed-through in a spheroid. (H) Top figure shows the brightfield image (at 720 nm) of the 

spheroid. Bottom three figures show the unmixed eGFP fluorescence (green perimeter) and 

CTO fluorescence (orange perimeter) from the laser bleed-through (red, ∙∙∙ perimeter). Scale 

bars = 200 µm, a.u. is for arbitrary units. 

4.4.2 Fluorescence quantification 

The sample fluorescence was quantified with a custom algorithm according to the steps listed in 

Figure 4-2 and using the different input data cubes described in the Experimental section. Each 

data cube is first normalized to the acquisition time and the gain of the camera. Figure 4-3C-D 

shows an example of the shading correction used to correct for uneven illumination and detection 

responsible for a vignetting effect. The correction is shown here on the brightfield image of a single 

layer of fluorescent beads with diameters ranging from 300 to 355 µm. Figure 4-3E-F shows the 

shading correction applied to the fluorescence image of the beads. While the intensity of the beads 

in the center of the image is clearly higher than in the periphery before the shading correction, the 

image after shading correction shows that the intensity is uniform. This correction allows intensity 

comparison of samples located in the center of the image versus the periphery as it compensates 

for the lower illumination/detection of peripheral samples. 

A laser line tunable filter is used in the HSI system to select a specific wavelength for fluorescence 

excitation. This versatility comes at the cost of small out of band light contamination. An example 

of excitation laser bleed-through measured when a fluorescent spheroid emitting two fluorophores 

(enhanced Green Fluorescent Protein, eGFP, and CellTrackerTM Orange, CTO) is excited at 500 nm 

is shown in Figure 4-3G. The spheroid fluorescence intensity (peaks at 515 and 575 nm) is similar 

to the bleed-through intensity (three peaks around 625 nm). Spectral unmixing is used to remove 

this bleed-through and to separate the contribution of each fluorophore to the spheroid 

fluorescence. Because of the varying thickness of the PDMS between samples, the intensity of the 

excitation laser bleed-through varies and cannot be simply subtracted. Here, the spectral unmixing 

algorithm considers the spectral shape of the bleed-through to be removed (see Figure 4-3G). 

Hyperspectral images in Figure 4-3H illustrate the removal of the bleed-through from a region of 

interest containing an eGFP-expressing and CTO-stained spheroid loaded into a well of 



45 

 

microfluidic chip A (see Experimental section for the details on the two microfluidic chips used 

throughout this work). Because of the low intensity of CTO fluorescence compared to eGFP, it 

would be impossible to detect CTO with a conventional fluorescence microscope. Figure 4-3G-H 

shows how it was possible to use the HSI system and spectral unmixing to separate the CTO 

contribution from the eGFP fluorescence and illustrates the potential of hyperspectral imaging in 

spheroid-based research. 

The fluorescence quantification performance of this imaging system was verified using liquid 

optical phantoms mimicking the optical properties of tumor spheroids. Here, since spheroids do 

not contain strong absorbers, such as hemoglobin, their absorbance is found to be negligible 

compared to their scattering coefficient [156], [157]. The fluorophore of interest expressed by the 

eGFP modified cells used to make spheroids was simulated using fluorescein diluted in a 0.1 M 

TRIS-HCl (Tris(hydroxymethyl)aminomethane hydrochloride) buffer at pH 8. This buffer and pH 

were selected to position fluorescein’s maximum emission peak at 514 nm when dissolved. Lipid 

emulsion Intralipid® 20% was used to simulate the scattering properties of spheroids [158]. Thirty 

phantoms were fabricated, introduced in a 1 mm-pathlength optical glass cuvette and their 

fluorescence was measured using the HSI system. The fluorescence images of each phantom were 

then analyzed to find the best α (see equation (4-1)) to quantify the fluorescence, similar to what 

Valdés et al. presented in their work [155]. Figure 4-4A shows the corrected fluorescence intensity 

at 515 nm of optical phantoms with varying fluorophore concentrations, [F], and reduced scattering 

coefficients, µs’. The images shown are those obtained after performing all image analysis steps 

using α = 0 to measure the corrected fluorescence of the phantom without any quantification. As 

the fluorophore concentration increases, the detected fluorescence intensity increases linearly, as 

expected. Similarly, as the reduced scattering coefficient increases, the detected fluorescence 

intensity also increases, while the transmittance of the phantom decreases (Figure 4-4B). Figure 

4-4C shows the quantified fluorescence images of each fluorophore where, for a specific 

fluorescein concentration, the quantified fluorescence is the same. 
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Figure 4-4: Optical phantom experiment. (A) Corrected fluorescence intensity images 

for 30 phantoms. (B) Mean transmittance of the phantoms with equal µs’ values. Error 

bars (± standard deviation) are smaller than the size of the markers. (C) Quantified 

fluorescence intensity images of the same 30 phantoms. (D) Fluorescence 

quantification algorithm’s performance to compensate for varying scattering 

coefficients. Raw fluorescence (blue, ●) and quantified fluorescence (orange, x) for 

µs’ varying from 0.5 to 7.5 cm-1. 7.5 cm-1 corresponds to the most saturated blue and 

orange while 0.5 cm-1 corresponds to the least saturated blue and orange. Insert shows 
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the optimization of the geometry parameter α in relation to R2. Scale bars = 1 mm, 

a.u. is for arbitrary units. 

The phantom or imaged sample geometry will affect the fluorescence intensity measured at the 

camera by an imaging system in transmission mode. Here, as the scattering coefficient of the 

phantoms is increased, their transmittance also decreases. Meanwhile, the measured fluorescence 

increases. This seems counter-intuitive, as one could think the more scattering the sample is, the 

more light will be scattered away from the camera. Our results can be explained by a greater 

number of photons trapped inside the sample at higher concentrations of scatterers, yielding a 

higher amount of excited fluorophore molecules and a higher detected fluorescence intensity at the 

camera. This observation highlights why the geometry of the optical phantom used to mimic the 

biological specimen is important. 

Figure 4-4D shows the fluorescence intensity summed from 500 to 720 nm of a square region of 

interest of 6 by 6 pixels selected in the middle of the images. Corrected fluorescence (α = 0α = 0) 

and quantified fluorescence (α = -0.34) are presented. The insert in Figure 4-4D shows the 

optimization of the geometric quantification factor αα. The large dispersion of corrected 

fluorescence intensity values prevents accurate fluorescence quantification (R2 = 0.67 for a linear 

fit) while quantified fluorescence yields a linear fit where R2 = 0.97. 

For phantoms where µs’ = 7.5 cm-1, noise is introduced into the quantified fluorescence images 

because of the low transmittance of the sample, illustrating the limit of this method for fluorescence 

quantification at very low transmittances. This phantom experiment also shows how transmittance 

of finite phantoms can also be used to quantify fluorescence, similarly to how reflectance is used 

in the case of semi-infinite phantoms or tissues [154]. 

4.4.3 Imaging co-culture spheroids 

The system’s performance in fluorescence imaging of 3D biological samples was first tested by 

comparing hyperspectral and confocal images of the same spheroids. Spheroids were made using 

the hanging droplet method [11] and different ratios of eGFP-OV1946 cells and mCardinal-OV90 

cells and then loaded in chip A (Figure 4-5A). Spheroids were first imaged using confocal 

microscopy followed by hyperspectral imaging and regions of interest are presented in Figure 4-5B. 

Visual comparison shows that, while the spatial resolution of the hyperspectral system is lower, 
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the same features can be observed in the spheroids. Even if HSI images have a lower resolution 

than confocal imaging, we can still observe that the fluorescent cells originating from two different 

cell lines do not mix homogeneously while forming the spheroid. Instead, they tend to aggregate 

in separate volumes. 

 

Figure 4-5: Fluorescence study of spheroids loaded on-chip. (A) Microfluidic chip A. Top 

photograph shows chip A with an inlet inserted. Bottom photograph shows the tilted chip. 

Scale bars = 2 mm. (B) Visual comparison of confocal imaging (CI) and HSI of co-culture 

spheroids made with different ratios of eGFP-OV1946 and mCardinal-OV90. Top row shows 

maximum projections of confocal imaging of the same spheroids. Scale bar = 100 µm. 

Middle row shows brightfield (at 720 nm) overlaid with eGFP (at 515 nm) and mCardinal 

(at 685 nm) fluorescence. Bottom row shows only the fluorescence intensities of eGFP and 

mCardinal. Scale bars = 300 µm. 

In a second experiment, we used fluorescent clones produced from the same cell line to form 

homogeneously mixed co-culture spheroids. Since the cell line OV1946 is known for its genetic 

instability [35], the stable clone selection process done after transfection with fluorescent proteins 

should produce subclones of varying growth behaviors. To assess if hyperspectral imaging could 

measure these even in co-culture spheroids where the cells are mixed homogeneously, spheroids 

were made in chip B using mCherry- and eGFP-expressing OV1946 cells at the following initial 

ratios: 100:0, 75:25, 25:75, and 0:100. 24 spheroids were imaged in a single acquisition and their 

subpopulations’ fluorescence was measured every day for 9 days. The experiment was repeated 

3 times. Figure 4-6A shows the microfluidic chip used in this experiment. The bottom row images 

in Figure 4-6A show that, contrary to spheroids shown in Figure 4-5B, cells in co-culture spheroids 

formed using fluorescent subclones of the same cell line are homogeneously mixed. Figure 4-6B 
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shows the brightfield image of 24 spheroids made in chip B using the initial ratio 25:75 

(eGFP:mCherry). Blue squares are added to represent the maximum number of spheroids that it 

would be possible to image in a single acquisition using the hyperspectral system. For this 

particular well size, 60 spheroids could be imaged in the 7.25 mm-diameter field of view. Figure 

4-6C shows the corrected fluorescence at 515 nm (eGFP’s emission peak) and 610 nm (mCherry’s 

emission peak) while Figure 4-6D shows the transmittance image at 515 nm of the same 

24 spheroids. The spheroids’ transmittance varies between 20% and 30%, depending on their size. 

Here, α was fixed at 0 during the image analysis steps to show the spheroid corrected fluorescence. 

Acquisition times for confocal and hyperspectral imaging are similar (≈ 5 minutes per acquisition). 

But since the wide-field capabilities of the HSI system allows up to 60 spheroids in the same field 

of view, acquisition times are up to 60 times faster using our system. 

 

Figure 4-6: Fluorescence-based growth assay of spheroids formed on-chip. (A) Microfluidic 

chip B. Top photograph shows chip B with inlets and outlets inserted. Scale bar = 6 mm. 

Middle photograph shows a series of 24 wells. Scale bars = 1 mm. Bottom photographs show 

brightfield and fluorescence at 515 and 610 nm images and their overlay. (B-D) Brightfield 

(at 720 nm), fluorescence (at 515 and 610 nm) and transmittance (at 515 nm) imaging of 

24 co-culture spheroids expressing eGFP and mCherry (ratio 25:75). Scale bars = 1 mm, a.u. 

is for arbitrary units. In (A), blue square shows an extrapolation of how many spheroids of 

the same size could be imaged if the microfluidic chip was optimized. (E-H) Growth assay 

quantifying each fluorescence subpopulation forming co-culture spheroids. Co-culture 
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spheroids were formed by mixing two cell lines at specific ratios (100:0, 75:25, 25:75, and 

0:100). Evolution over time of the initial percentage of mCherry-OV1946 (E) and eGFP-

OV1946 (G) cells for each initial ratio. Day 1-normalized fluorescence intensity of mCherry-

OV1946 (F) and eGFP-OV1946 (H). Shaded areas for each curve represent the standard error 

of the mean (n = 3). 

Figure 4-6E shows the percentage of mCherry-OV1946 cells over time for each initial ratio. Figure 

4-6F shows the same curves normalized to day 1, since spheroids are formed in 24 h. This figure 

clearly shows that, from day 1 to 9, their growth rate is linear and nearly identical for each initial 

ratio. Contrary to mCherry-OV1946 cells, eGFP-OV1946 cells presented a different growth 

behaviour (Figure 4-6G). While each experiment repetition yielded very similar growth curves for 

mCherry cells, as highlighted by the small error bars, eGFP cells proliferated more erratically in 

each repetition. Their growth also reached a plateau around day 4, contrary to mCherry cells. Figure 

4-6H shows that eGFP cells that formed initially 25% of a spheroid grew more than eGFP cells 

that formed 100%, even if the total amount of cells in the spheroids was the same. In 200 to 300-

μm spheroids, eGFP cell growth is reduced in the presence of other eGFP cells. 

By showing how cell subpopulations behave differently in co-culture spheroids, Figure 4-6E-H 

illustrates how quantifying co-culture spheroid fluorescence using HSI is an ideal method to 

measure cell populations independently and non-destructively while the spheroids are still trapped 

in a microfluidic chip. Also, the hyperspectral system was found to be more versatile in terms of 

choosing which and how many fluorophores to image since the shape of the whole fluorescence 

spectrum is known for each pixel of the image, while confocal imaging is limited to the filter cubes 

or spectral capability of the confocal microscope. 

Since the samples are transilluminated, a larger volume of the spheroids can be analyzed, providing 

an advantage over confocal microscopy (usually used in epi-illumination). In confocal microscopy, 

the pinholes used to create the optical sectioning limit the detected intensity and light penetration 

in 3D cultures [44], [121], [122]. Also, the volume sampled in a 3D specimen by an imaging system 

depends on the illumination and detection configuration. Epi-illumination imaging systems mostly 

sample one side of the spheroids, since illumination and detection are performed on the same side. 

This technique will be more sensitive to the effect of a treatment on the outer layer of a spheroid. 
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Transillumination, on the other hand, will sample more of the spheroid volume since illumination 

is on the other side of the sample compared to detection. 

4.5 Experimental 

4.5.1 Hyperspectral imaging system 

The custom-built spectroscopic imaging system presented here is detailed in Figure 4-1B. It uses a 

white light lamp for transmittance measurements and a filtered supercontinuum laser that allows 

the user to vary the fluorescence excitation wavelength between 400 nm and 720 nm. A liquid 

crystal tunable filter is used to perform a wavelength-sweep and acquire spectroscopic data. More 

precisely, a tungsten-halogen white light source (HL-2000, Ocean Optics, USA) is used to 

illuminate the sample from below, using a Köhler illumination setup, where two irises 

independently control the area illuminated and the illumination irradiance. In a second illumination 

branch, a supercontinuum laser (Fianium, NKT Photonics, Denmark) coupled to a laser line tunable 

filter (LLTF, Photon etc, Canada) and a mode scrambler is used to excite the fluorescence of the 

sample. The two illumination branches are combined using a 50:50 cube beamsplitter (BS013, 

Thorlabs, USA). A fixed focal length objective (59-871, Edmund Optics, USA) and a Steinheil 

triplet lens (67-422, Edmund Optics) acting as a relay lens are used to image the sample on an 

electron-multiplying charged coupled device (EMCCD) camera (HNü 512, Nüvü Caméras, 

Canada) thermoelectrically cooled to -85°C. A liquid crystal tunable filter (LCTF) with a 

bandwidth of 7 nm (VariSpec VIS, Perkin-Elmer, USA) is placed between the relay lens and the 

EMCCD to acquire spectroscopic data at each pixel of the image. A 500 nm (or 550 nm) shortpass 

filter (FESH0500 or FESH0550, Thorlabs) filters out the excitation laser light to remove any 

unwanted harmonics due to the LLTF. A 500 nm (or 550 nm) longpass filter (FELH0500 or 

FELH0550, Thorlabs) is placed after the objective to remove the excitation laser from the acquired 

images. 

4.5.2 Data acquisition 

Two excitation wavelengths are used in this work: 480 nm and 530 nm. To acquire a spectroscopic 

image of the microfluidic chip placed in the sample plane, the LLTF is set to 480 nm (or 530 nm) 

and a custom LabVIEW 2014 (National Instruments, USA) software [168] is used to sweep the 
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LCTF from 500 to 720 nm (or 560 to 720 nm) and acquire an image every 5 nm. The resulting 

image cube is a 3D matrix of 512 by 512 pixels by 45 (or 33) wavelengths. 

To apply the image analysis steps, the acquisition of several data cubes is required for each sample. 

First, three acquisitions are made using the imaging system in fluorescence mode, all at the same 

acquisition time and gain: 1) a fluorescence image (while the sample is present in the sample plane); 

2) a dark noise image (camera shutter closed); 3) a bleed-through image of the laser (no sample 

present). A similar set of data cubes is acquired using the white light source to measure the 

transmittance of the sample. A typical acquisition of brightfield and fluorescence (480 nm 

excitation) data cubes takes 149.85 s (2.5 min). Table 4-1 summarizes the different data cubes 

needed for the subsequent image analysis and shows the typical acquisition parameters used to 

measure the fluorescence of spheroids trapped in a microfluidic chip. 

Table 4-1: Data cube definition and typical acquisition parameters. Top: Different data cubes 

acquired for a given sample. Bottom: Summary of the typical acquisition parameters. 

 

After any changes to the imaging system (such as optical alignment or optical parts for example), 

a series of calibration steps are performed to characterize the imaging system. First, the 

transmittance of a USAF 1951 resolution target (R3L3S1N, Thorlabs) is measured between 500 

and 720 nm using the white light source. This acquisition is used to measure the field of view and 

the spatial resolution of the system. A set of uniformly fluorescent Chroma slides (92001, Chroma, 

USA) is then measured in fluorescence and brightfield modes to characterize the spatial intensity 

variations due to the imaging system’s optical design. A shading correction is applied for each 

sample and its performance is assessed using uniformly fluorescent beads (UVPMS-BR-1.090 300-
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355um, Cospheric LLC, USA). Finally, the excitation laser power density for both excitation 

wavelengths is measured at the sample plane using a power meter (S121C, Thorlabs). 

4.5.3 Image analysis 

To analyze hyperspectral images and quantify a sample’s fluorescence, a custom algorithm was 

developed. Fluorescence spectra acquired for each sample are processed in MATLAB R2015a (The 

MathWorks, Inc., USA) to extract quantified data according to the steps listed in Figure 4-2. Each 

data cube is first normalized to the acquisition time and the gain of the EMCCD camera, as those 

parameters are calibrated linearly by the camera’s manufacturer. Dark noise, measured for each 

acquisition time and gain parameter set (see Table 4-1), is then subtracted from the fluorescence 

and brightfield images of the studied sample. 

A shading correction is applied to the sample images to correct for uneven illumination and 

detection due to the system’s optical design. Using fluorescence and brightfield images of the 

uniformly fluorescent orange Chroma slide acquired during the calibration steps, a compensation 

matrix is calculated by first smoothing the images and then normalizing them to their maximal 

values. For fluorescence measurements, a single fluorescence compensation matrix is calculated 

using the image at the emission peak maximum (555 nm), while a brightfield compensation matrix 

is calculated at each wavelength of the brightfield measurements. The shading correction is applied 

to the fluorescent images by dividing the images at each wavelength by the fluorescence 

compensation matrix and to the brightfield images by dividing the images at each wavelength by 

their corresponding brightfield compensation matrix. 

The transmittance of the sample is then calculated by dividing its brightfield data cube by the 

brightfield images acquired while no sample is present (“System transmission” data cube from 

Table 4-1). The region of interest (ROI) to further study the fluorescence of the sample is then 

defined. 

If precise fluorescence quantification is needed, a quantification step can be performed to correct 

for the optical properties of the sample that are impacting the fluorescence measured by the camera. 
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To do so, the fluorescence data cube is divided by the transmittance image according to a modified 

normalization quantification algorithm based on [155]: 

Φ𝑅𝑎𝑡𝑖𝑜(𝜆) =
Φ𝐹𝑙𝑢𝑜(𝜆)

(Φ𝑚
𝑇𝑟𝑎𝑛𝑠)𝛼 

(4-1) 

where Φ𝑅𝑎𝑡𝑖𝑜(𝜆) is the quantified fluorescence spectrum, Φ𝐹𝑙𝑢𝑜(𝜆) is the fluorescence spectrum 

after shading correction, Φ𝑚
𝑇𝑟𝑎𝑛𝑠 is the transmittance intensity at the fluorophore emission peak, 

and α is empirically determined using liquid optical phantoms of known optical properties. 

In each ROI, a spectral unmixing is performed to 1) remove the excitation laser bleed-through and 

2) extract the contribution of each fluorophore present in the sample. The spectral unmixing is done 

by solving a nonnegative linear least-square problem. The basis spectra are previously acquired 

experimental fluorescence spectra of each fluorophore, and an average spectrum extracted from 

the same region of interest but using the bleed-through data cube (“laser bleed-through” from Table 

4-1). Since the intensity of the bleed-through is acquired while no sample is present and the PDMS 

affects the intensity of the bleed-through contamination when the fluorescence of the sample is 

acquired, the bleed-through is removed through spectral unmixing instead of simply subtracted 

from the fluorescence data cube. 

4.5.4 Optical phantoms 

Optical phantoms mimicking spheroid optical properties were made of fluorescein (M422-05, 

Avantor, USA) to simulate eGFP and Intralipid® 20% (2B6023, Baxter, Canada) as a light scatterer. 

Fluorescein was solubilized in a 0.1 M TRIS-HCl (Tris(hydroxymethyl)aminomethane 

hydrochloride) buffer (TRIS base: 600-125-IK, Wisent Inc., Canada, and HCl: 3750.1-32, Ricca 

Chemical Company, USA) made at pH 8. Fluorescein concentrations of 0.625, 1.25, 2.5, 5, and 

10 µg/ml and reduced scattering coefficients at 515 nm of 0.5, 1, 1.5, 3, 5, and 7.5 cm-1
 were 

combined to make 30 different phantoms. These liquid phantoms were introduced in a 1 mm-

pathlength cuvette made of optical glass (G101, Azzota, USA). 

4.5.5 Microfluidic chips 

Two microfluidic chips were used to form spheroids on-chip and/or hold them in place to image 

them. Chip A, shown in Figure 4-5A, is based on Astolfi et al. [44] and is composed of a main 
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channel and five wells. A maximum of five spheroids previously made using other techniques can 

be loaded in the chip and trapped in the wells. The second microfluidic chip used, Chip B, shown 

in Figure 4-6D, is based on a design by Patra et al. [104] and is used to form 120 spheroids directly 

on-chip using a cell suspension. Spheroids made using this microfluidic chip can then be easily 

exposed to treatments without accidentally releasing them from the wells. The microfluidics chips 

used in each experiment were chosen according to how the spheroids were formed, whether on-

chip or using the hanging droplet method [11]. 

Chip A consists of 5 wells placed under a main channel. Each well is 600 x 600 µm2 and 500 µm 

in height. The top channel is 600 µm wide by 600 µm in height. Poly(methyl methacrylate) 

(PMMA) molds were micromachined by a computerized numerical control (CNC) machine 

(EMCO PC Mill 55, EMCO GmbH, Austria); one for the main channel and the wells and the other 

for the layer containing the inlets and outlets. Degassed liquid PDMS (Sylgard® 184 silicone 

elastomer kit, Dow Corning, USA) mixed at 10:1 ratio was then poured into the two molds and 

cured in an oven at 80 °C for 1 h. The two layers were then exposed to an atmospheric plasma for 

30 s and then bonded together. Hollow nylon cylinders (91145A138, McMaster-Carr, USA) were 

then inserted in the main channel inlets. In this design, spheroids made using the hanging droplet 

method were introduced in the chip inlet. Careful aspiration of the fluid at the outlet was then used 

to position the spheroids over the wells and let them sediment. 

Chip B was also made using CNC micromachined molds and PDMS. It consists of a main channel 

containing 5 series of 24 wells. Each well is 500 x 500 µm2 and 500 µm in height. The top channel 

is 2 mm wide and 500 µm in height. The circular inset of Figure 4-1B shows a brightfield image 

of a section of the chip where 24 wells contain spheroids formed on-chip.  

Both microfluidic chip designs were prepared for cell culture by first introducing 100% ethanol to 

remove any bubbles in the chips. 70% ethanol was then introduced for 10 minutes to sterilize the 

chips. A solution of sterilized triblock copolymer (10 mg/mL, Pluronic® F-108, 542342, Sigma-

Aldrich, USA) was then incubated in the chip at 37 °C for at least 1 h or overnight to prevent cell 

adhesion on the channel walls and inside the wells. Chips were then re-sterilized using 70% ethanol 

for 10 minutes and chips were finally completely rinsed and filled with sterile Hank's Balanced 

Salt Solution (HBSS, 311-516-CL, Wisent Inc.) supplemented with 600 µg/L amphotericin B 

(450-105-QL, Wisent Inc.) and 55 mg/L gentamicin (450-135-XL, Wisent Inc.) and then stored for 
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future use at room temperature in a sterile humidity chamber (plastic box containing a tissue 

moistened with sterile water) to prevent HBSS evaporation. 

4.5.6 Spheroid culture 

Two high grade serous epithelial ovarian cancer cell lines, OV1946 [35] and OV90 [36], were 

previously established from patient ascites in our laboratory at the Centre de recherche du CHUM. 

The two cell lines were transiently transfected with either an eGFP plasmid (pEGFP-N1, 6085-1, 

Clontech Laboratories Inc., USA), a mCardinal plasmid [169] (mCardinal-N1, #54590, Addgene, 

USA), or a mCherry plasmid (mCherry2-N1, #54517, Addgene). Plasmids mCardinal-N1 and 

mCherry2-N1 were gifts from Michael Davidson. To generate stable clones, successfully 

transfected cells were selected with 500 µg/ml G418 (Geneticin®, 10131-035, Thermo Fisher 

Scientific, USA) and single clones were selected by limiting dilution. Available stable clones were 

eGFP-expressing and mCherry-expressing OV1946 cells, and mCardinal-expressing OV90 cells. 

In a first experiment, co-culture spheroids were formed using the hanging droplet method described 

previously [11]. Briefly, cell suspensions of eGFP-OV1946 (passage 8) and mCardinal-OV90 

(passage 8) in complete OSE medium [OSE medium (316-030-CL, Wisent Inc.) supplemented 

with 10% FBS (080-150, Wisent Inc.), 55 mg/L gentamicin (450-135-XL, Wisent Inc.), and 

600 μg/L amphotericin B] with 500 µg/mL G418 were used to obtain a total of 2.5 x 105 cells/ml 

at different ratios: 100:0, 90:10, 75:25, 50:50, 25:75, 10:90, and 0:100. Then, 16 µL of the different 

cell suspensions were carefully pipetted onto the inner side of the cover of a 150 mm petri dish 

(CA25383-103, VWR, Canada) to form droplets. The cover was gently placed on the dish 

containing 15 ml of phosphate buffered saline (PBS, 311-012-LL, Wisent Inc.) to prevent 

dehydration of the droplets. Petris were placed in an incubator at 37 °C and 5% CO2. The spheroids 

were harvested at day 7 and carefully loaded into the wells of chip A for hyperspectral and confocal 

imaging. 

Co-culture spheroids made from different ratios of two fluorescent cell lines were formed directly 

inside chip B. Cell suspensions of 9 x 105 cells/mL containing various ratios of eGFP-OV1946 

cells (passage 90) and mCherry-OV1946 cells (passage 34) were prepared in complete OSE 

medium with G418 (500 µg/mL). Studied ratios of eGFP- versus mCherry-expressing cells were 

100:0, 75:25, 25:75, and 0:100. About 600 µL of cell suspension were introduced in the main 

channel of each microfluidic chip to form spheroids in 24 h. The culture medium, complete OSE 
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medium without phenol [using OSE medium without phenol (316-031-CL, Wisent Inc.)] 

supplemented with 500 µg/mL G418, was replaced every 24 h by introducing 70 µL of new 

medium at the inlet and removing 3 x 20 µL of medium at the outlet, three times. Medium without 

phenol was used to avoid autofluorescence due to the phenol. Between medium changes, the 

microfluidic chips were kept in a sterile humidity chamber in an incubator at 37 °C and 5% CO2. 

24 h after cell seeding, the cells aggregated and formed one spheroid per well without adhering to 

the PDMS surface. When necessary, spheroids trapped in the microfluidic chip were stained with 

fluorescent markers. A 5 μM solution of CellTrackerTM Orange CMTMR (C2927, Thermo Fisher 

Scientific) in HBSS was added to the chip and placed in an incubator at 37 °C and 5% CO2 for 

1 hour. The staining solution was then rinsed with fresh medium. 

4.5.7 Confocal imaging 

Confocal imaging was performed on co-culture spheroids trapped in Chip A. Images were acquired 

on a Leica TCS-SP5 inverted microscope (Leica Microsystems, Germany) using a HC PL 

FLUOTAR 20x/0.50 dry objective. Excitation system was performed using the 488 nm line of an 

argon laser for eGFP, and the 561 nm diode-pumped solid state (DPSS) laser for mCardinal using 

a sequential acquisition at a scan speed of 400 Hz. Spectral detector mirrors were set for each 

fluorophore to avoid excitation and emission crosstalk: 500 nm-550 nm for eGFP; 598 nm-700 nm 

for mCardinal. Z-stack images were acquired with an 8 µm step size and maximum projections 

were performed using the Las-AF software. Final images are 8 bits and 512 x 512 pixels with a 

zoom factor of 1.5. 

4.6 Conclusions 

We presented a custom designed wide-field HSI system based on a liquid crystal tunable filter to 

image tumor spheroids while they are trapped in a microfluidic chip. It circumvents the typical 

limitations of confocal microscopy: acquisition time and light penetration depth. Its wide-field 

capability allows the simultaneous measurement of up to 60 spheroids in a single acquisition. 

Furthermore, the spectral resolution of the HSI system enables a wide choice of fluorophores to 

image. The acquisition of the whole fluorescence spectrum for every pixel of the image increases 

the discriminating power for spectral unmixing and allows the study of fluorophores with more 

similar spectra than conventional filter-based methods. Also, because of the supercontinuum laser 
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and its laser line filter, the excitation wavelength can be adjusted for photoactivable 

fluorophores [170]. The HSI system permits non-destructive measurements of 3D cell cultures, 

unlike flow cytometry. This becomes an important advantage when studying the evolution of a 

spheroid response to a molecular agent at multiple time-points. Although the spheroid work 

presented here relates to ovarian cancer, any cancer whose cells spontaneously form spheroids in 

low attachment environment can be studied as well as small tissues such as organoids [41], 

embryos [171], and microdissected tissues [44]. 
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5.1 Background information 

Article 2 [172] was submitted to Integrative Biology on December 17th, 2018 and is presented in 

this chapter. It discusses an application of the hyperspectral imaging system on how to follow cell 

populations in co-culture spheroids over time and non-destructively. This article details an 

experiment design and the analysis necessary to calculate the co-culture spheroid composition 

quantitatively and measure their response to external stimuli. First, two fluorescent subclones of 

the same parental ovarian cancer cell line were created. HSI spheroid composition measurements 

were compared with values obtained by flow cytometry, the gold standard to measure cell 

populations in 3D culture. A 2D proliferation assay of the two fluorescent subclones independently 

and mixed together was performed. The trend observed in 2D, where the green subclone grew 

faster than the red, was also observed in 3D spheroids using hyperspectral imaging. A treatment 

assay to PARP inhibitor talazoparib was then performed to illustrate how HSI can follow each cell 

population’s response to the treatment in the same spheroids over time. A proof-of-concept that 

HSI can also follow cell population’s response to chemotherapy drug carboplatin was also 

performed. 
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My contribution for this article is 70% of the work. I designed, performed, and analyzed all the 

experiments, except the 2D proliferation assay (5.6.6), and the 2D clonogenic assay (5.6.7) results. 

I wrote the article, except the Materials and methods sections: 5.6.5, 5.6.6, and 5.6.7. M.C. 

generated the mCherry-OV1946 clone, performed the 2D IC50 experiment and part of the 2D 

proliferation experiment and interpretation. B.P. helped design the experiments. H.F. and A.R. did 

part of the 2D proliferation experiment and interpretation. M.A.L. performed the flow cytometry. 

A.S. generated a variant of the OV1956 cell line. A.-M.M.-M., F.L., and T.G. provided support 

and supervised the research. 

5.2 Abstract 

Multicellular tumour spheroids are an ideal in vitro tumour model to study clonal heterogeneity 

and drug resistance in cancer research because different cell types can be mixed at will. However, 

measuring the individual response of each cell population over time is challenging: current methods 

are either destructive, such as flow cytometry, or cannot image throughout a spheroid, such as 

confocal microscopy. Our group previously developed a wide-field fluorescence hyperspectral 

imaging system to study spheroids formed and cultured in microfluidic chips. In the present study, 

two subclones of a single parental ovarian cancer cell line transfected to express different 

fluorophores were produced and co-culture spheroids were formed on-chip using ratios forming 

highly asymmetric subpopulations. We performed a 3D proliferation assay on each cell population 

forming the spheroids that matched the 2D growth behaviour. Response assays to PARP inhibitors 

and platinum-based drugs were also performed to follow the clonal evolution of mixed populations. 

Our experiments show that hyperspectral imaging can detect spheroid response before observing a 

decrease in spheroid diameter. Hyperspectral imaging and microfluidic-based spheroid assays 

provide a versatile solution to study clonal heterogeneity, able to measure response in 

subpopulations presenting as little as 10% of the initial spheroid. 

5.3 Introduction 

Many types of cancer, including ovarian cancer, are characterised by the presence of clonal 

heterogeneity, where tumours are composed of multiple populations of malignant subclones with 

different genetic mutations. These subclones can then each evolve differently over time and in 

response to treatments. Treatment affecting one subclone can lead to tumour repopulation by a 
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different and possibly more resistant subclone. Cancers with high levels of clonal heterogeneity 

are thus associated with poor prognosis, treatment resistance, and an increased difficulty to develop 

biomarkers of prognosis or treatment response [10], [49], [50]. To study clonal heterogeneity, 

monolayer co-culture of cancer cells can be used as an in vitro cancer model. However, there is 

now evidence that 3D cellular models, such as spheroids, are more relevant than 2D cell culture as 

in vitro cancer models for drug discovery [42]. Spheroids are 3D cell aggregates that better 

reproduce cell-cell and cell-matrix interactions [4], [39], [40]. They also incorporate fundamental 

mass transfer limitations important in most cellular response to drugs [121]. By mixing two or 

more cell lines in a single spheroid, researchers can improve their relevance and include clonal 

heterogeneity in their studies. Informative assays include mixing epithelial and stromal cells, 

resistant and sensitive cells, or cancer and immune cells.  

The microfluidics community has provided numerous tools that can easily perform assays on 3D 

tissue models such as spheroids, organoids [41], and micro-dissected tissues [44]. Researchers 

have developed chips that can form up to thousands of spheroids in one step and expose them to 

external stimuli [13], [59], [65], [70], [78], [104], [173]. Chips are especially useful to hold or trap 

spheroids in place during medium changes or when adding drugs of interest without the risk of 

pipetting them out of plate wells [73], [74], [76]. However, there remains important challenges 

including methods that analyse sample dynamics, including tracking cell populations in co-culture 

spheroids. 

To study these co-culture spheroids in terms of proliferation, response to treatment, or invasion, 

each cell population composing the spheroids must be studied independently rather than measuring 

whole spheroid response [85] as cell populations can compete or co-operate for survival against a 

drug within a spheroid [51]. These constraints greatly restrict the number of methods that can be 

employed to analyse this response. For example, diameter or volume measurements, often reported 

in the literature as a metric of spheroid response [14], [54], [103], can no longer be applied to 

determine cell population-specific responses. 

Over the years, several methods have been developed to distinguish subclonal population growth 

within a multicellular system whether spheroids were formed in microfluidic chips or using 

conventional methods. Techniques are either based on cell morphology [174], colorimetric or 

fluorescent antigen stains [14], genetic modifications to inherently express different fluorescent 
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markers, or viability dyes [14]. When these markers are used in 2D monolayer culture, 

conventional microscopes can distinguish individual cells. Cells can then be counted visually 

according to whether they present the markers or not. However, the same technique cannot be 

applied to 3D tissue analysis unless spheroids are first digested into a single cell suspension. 

In response, a lot of effort has been applied to adapting fluorescence-based methods to correctly 

quantify cell populations in 3D cultures using either fluorescent proteins [107], fluorescent trackers 

or viability dyes [105], [108]. A conventional optical fluorescence microscope can quantify 

spheroid fluorescence intensity if parameters during the image acquisition are known and 

controlled [14], [112]. However, most optical microscopes are designed to image cell monolayers 

using a depth of field corresponding to the size of a cell. If used to image 3D cultures, a slightly 

out of focus sample can drastically affect the measured fluorescence intensity [114], [115]. This 

hinders precisely quantifying spheroid fluorescence using conventional optical microscopes and 

limits their usefulness. Confocal microscopy was developed to image virtual optical sections of 3D 

samples individually using pinholes to reject light from out of focus planes of the sample. 

Fluorescent cells can then be counted on each slice. However, this optical sectioning is done at the 

cost of lower signal intensity and, coupled with tissue absorption and scattering, limits light 

penetration in the centre of a biological sample. Samples thicker than 70-100 μm are thus more 

difficult to image [6], [14], [120], or need to be optically cleared [175], [176]. Multiphoton 

microscopy can circumvent this by taking advantage of the near-infrared optical window, a range 

of wavelengths between 650 and 1 300 nm where light penetration depth is the highest in tissues. 

However, to achieve multiphoton excitation of fluorophores, objectives with high numerical 

apertures and shorter working distances are needed, rendering imaging thick (> 5 mm) microfluidic 

chips difficult [15]. For all three types of microscopy, the typical filter cubes used reduce their 

spectral resolution and increases cross-talk between fluorescence channels, limiting which and how 

many fluorophores can be imaged, especially when large spectral overlaps exist [112]. Flow 

cytometry or fluorescence activated cell sorting (FACS) can resolve a large number of fluorescent 

markers but require spheroid digestion into individual cells before analysis [177]. Studying the 

same sample over time is impossible using this type of destructive technique. Finally, 

immunohistochemistry and immunofluorescence performed on tissue slices (paraffin embedded or 

cryosections) are also used but present the same drawback as FACS as they are destructive 

techniques [14]. 
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In this paper, we describe a method using hyperspectral imaging (HSI) to quantify cell populations 

over time in co-culture spheroids in response to external stimuli. The HSI system was optimised to 

analyse multiple spheroids on-chip in a single acquisition. Co-culture spheroids expressing two 

fluorescent proteins were formed directly on-chip and their growth was followed over time as a 

function of the initial cell seeding ratio. Based on the different proliferation rates for each 

fluorescent subclone, we hypothesised that hyperspectral imaging could also be used to study the 

dynamic effect of chemotherapy drugs affecting DNA such as PARP inhibitors [23] and platinum-

based drugs [22] in cell populations with distinct growth properties. We then studied spheroid 

response to different chemotherapy drug concentrations and measured each fluorescent 

population’s dynamic response to the drug over time. Our method has the advantage of being non-

destructive: the dynamic response of each cell population in the spheroids can be followed at 

multiple time-points over time and large numbers of spheroids can easily be measured. Three sets 

of experiments are described in this work illustrating the potential of hyperspectral imaging for 

spheroid-based research. 

5.4 Results 

5.4.1 Hyperspectral imaging workflow to quantify cell populations in co-

culture spheroids 

Figure 5-1 introduces the workflow presented in this article. We first produced fluorescent 

subclones of the ovarian cancer cell line OV1946 [35]. This cell line, established from patient 

ascites, can form spheroids in a low attachment environment. In a previous study [159] we 

observed that subclones made from two different parental cell lines did not mix homogeneously in 

spheroids and remained as distinct aggregates. As cell-cell interactions are an important factor in 

studying cancer and drug resistance [5], we chose to use a single ovarian cancer cell line to make 

two fluorescent subclones with the hypothesis that the two cell populations would mix 

homogeneously. The two fluorescent populations were produced by transfecting OV1946 cells 

with enhanced Green Fluorescent Protein (eGFP) (eGFP-OV1946) and mCherry (mCherry-

OV1946) plasmids. Two subclones from the transfected populations were selected by limited 

dilution to obtain cells expressing each fluorescent protein at similar intensity for a specific 

subclone, as illustrated in step 1 of Figure 5-1. 
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Figure 5-1: Co-culture spheroid assay using hyperspectral imaging workflow. A) Fluorescent 

subclones of the same parental cell line were first generated by transfecting OV1946 cells. 

For one subclone, all cells express the fluorescent protein (eGFP or mCherry) at similar levels 

due to a limited dilution selection. Co-culture spheroids are then formed on-chip by 

introducing a cell suspension containing both subclones in the main channel of the 

microfluidic chip. Cells sediment into the wells and form spheroids in 24 h. Scale bars in 2 

represent 6 and 1 mm and scale bar in 3 represents 250 μm. B) Spheroids are cultured in the 

microfluidic chip and medium, in which drugs can be added, is changed daily. A custom-

built HSI system[159] was then used to image and quantify the spheroids’ fluorescence at 

multiple time-points. C) HSI images were processed to remove any system response. 

Regions of interest (ROI) corresponding to each well of the microfluidic chip were 

determined and spectral unmixing was performed to separate the spectral entities. 

Fluorescence intensities from each fluorescent protein were normalised to the reference 

intensity and the spheroid composition, a percentage of each subclone, was calculated. Using 

the fluorescent protein intensity and the spheroid compositions over time, the co-culture 
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spheroid response to external stimuli could be analysed. Scale bar in 7 represents 250 μm 

and other scale bars not specified represent 1 mm. 

The two fluorescent subclones were then mixed at different ratios to form co-culture spheroids on-

chip. Various cell seeding ratios were studied: 100:0, 90:10, 75:25, 50:50, 25:75, 10:90, and 0:100 

(eGFP:mCherry). The microfluidic chip used to form these spheroids is based on Patra et al. [104] 

and is composed of a main channel with groups of 24 wells placed underneath. Cells sediment in 

the wells and form one spheroid per well in 24 h. Their compactness depends on the cell line used. 

Spheroids were then cultured on-chip up to nine days after formation. Medium was changed every 

24 h to replenish the nutrients available to the spheroids and remove their waste, in compliance 

with previously published on-chip 3D cell culture guidelines [45]. 

Hyperspectral imaging was used to image one group of 24 spheroids trapped on-chip in a single 

hyperspectral acquisition. HSI images were acquired with the system illustrated in Figure 5-1 and 

calibrated using the image analysis steps described in detail previously [159] to extract the true 

fluorescence intensity emitted by the sample from the system response. These steps are also 

detailed in the Materials and Methods section. As both fluorescent subclones emit the same 

fluorescence intensity for all their cells, and that intensity is not the same for both subclones, both 

proteins’ intensities were normalised before calculating the proportion of each cell population in 

the spheroids. An average intensity of the fluorescence in regions of interest corresponding to each 

spheroid at day 0 was used as a reference. 

5.4.2 2D proliferation assay on cell populations 

While creating the eGFP and mCherry subclones by transfection, we selected clones with different 

proliferation rates to see if HSI is able to measure this difference while forming co-culture 

spheroids. Figure 5-2 shows the standard 2D proliferation assay performed to measure the 

proliferation rate of each subclone. Figure 5-2A-C shows the proliferation of each subclone 

cultured independently, where eGFP-OV1946 cells doubling time is 1.5 times faster than mCherry-

OV1946. When eGFP cells were mixed at different ratio with mCherry cells, they again 

proliferated faster than mCherry cells (Figure 5-2D-F). 
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Figure 5-2: 2D cell population proliferation in monolayer culture. A) Representative example 

of the cell growth over time. B) Fluorescence images at 96 h, and C) average doubling time 

(n = 3) of each subclone cultured separately. D-F) Representative example (n = 1) of the 

proliferation over time of each subclone cultured together at various ratios: 75:25 (D), 50:50 

(E, inset shows a fluorescence image at 96 h), and 25:75 (F). Grey curves show the fold 

change (normalised to 1) of the ratio between eGFP and mCherry fluorescence. Scale bars = 

300 μm. 

5.4.3 FACS validation 

Before using hyperspectral imaging to quantify spheroid composition, we first validated that 

spheroid composition measurements obtained by HSI were similar to those obtained by FACS. 

Spheroids were made on-chip according to the same initial seeding ratios described previously. 

They were then cultured on-chip for 3 to 6 days, depending on the experiment (n = 3). Medium 

was changed daily. For this validation, 3 groups of 24 wells per chip were first imaged individually 

using HSI and the same spheroids were then pooled and analysed by FACS (Figure 5-3A). Figure 

5-3B shows that HSI has an absolute error in spheroid composition percentage of at most 5% when 

compared to FACS. 
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Figure 5-3: FACS validation of HSI measurements. A) Comparison of spheroid composition 

measurements obtained by HSI and by FACS (representative example of n = 1). B) Absolute 

error of HSI measurements compared to FACS. Shaded regions indicate the standard 

deviation of the calculated error (n = 3). 

5.4.4 3D proliferation assay on cell populations 

Using our HSI system and its image analysis algorithm, we validated that similar trends in the 

proliferation of both subclones in 2D could be observed in a 3D spheroid. The 3D proliferation 

assay timeline on cell populations is detailed in Figure 5-4A. Spheroids were formed on-chip at 

various initial seeding ratios (100:0, 90:10, 75:25, 50:50, 25:75, 10:90, and 0:100) and 24 spheroids 

per ratio were imaged daily until day 9. The experiment was repeated three times. Step 7 of Figure 

5-1 presents representative fluorescence and brightfield images of a co-culture spheroid made with 

subclone of the same parental cell line, confirming our hypothesis that the two subclones would 

mix homogeneously. Figure 5-4B shows the brightfield images of one representative spheroid per 

ratio over time. We observed that compact spheroids were formed on day 2 and individual spheroid 

diameter then increases over time as cells proliferate. However, brightfield images alone cannot 

distinguish the individual growth rate of eGFP or mCherry cells. We tested the ability of 

fluorescence measurements by HSI to track cell population growth over time. Figure 5-4C i and iii 

show the spheroid composition in eGFP and mCherry cells for each initial seeding ratio. The same 

curves normalised to day 1 are shown in Figure 5-4C ii, iv, and v. We noted that eGFP cells first 

experience a rapid proliferation from day 0 up to day 5, doubling their fluorescence intensity. Their 
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proliferation then decreased until day 9. Shaded areas represent error bars (standard error of the 

mean, n = 3) and illustrate how eGFP cells’ behaviour varies between the experimental repetitions. 

Noteworthy, even if the total number of cells in each spheroid at day 0 was the same, eGFP cells 

in spheroids composed mainly of mCherry cells grew more than in those made only of eGFP cells 

(Figure 5-4C ii). In contrast, as highlighted by the smaller error bars, mCherry cells proliferation 

remains constant from experiment to experiment. Their proliferation is slower than eGFP cells, but 

continues until day 9, where their fluorescence intensity was doubled compared to day 0. Also, we 

did not observe a dependence on the initial number of mCherry cells as mCherry cells in all 

spheroids grew at the same rate (Figure 5-4C iv). Importantly, when comparing subclones 

proliferation up to day 5 (Figure 5-4C v), we can see that eGFP cells grew faster than mCherry 

cells in earlier days, replicating the biological characteristics observed in 2D cultures. 

In addition to following each cell population’s fluorescence intensity over time, we also calculated 

the proportion occupied by each population in the spheroids. eGFP and mCherry fluorescence 

intensities were first normalised to a reference intensity so that both intensities could be compared, 

and the spheroid composition was calculated with equation (5-1) (see Materials and Methods). 

Figure 5-4D utilises a stacked area chart to represent the spheroid composition over time as a 

function of the initial seeding ratio. The proportion occupied by eGFP cells is represented by the 

bottom (green) area while the top (red) area represents the proportion occupied by mCherry cells. 

In the first 5 days, we can see a slight increase of the percentage of eGFP cells, correlating to their 

higher proliferation rate of the first days. At day 9, the spheroid composition then returns around 

the initial composition of day 0. This contrasts with results from 2D culture, where eGFP cells 

continued to proportionally occupy more space than mCherry cells (Figure 5-2D-F). This could be 

explained by effects unique to spheroids, such as competition for space within the 3D volume. 
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Figure 5-4: Cell population proliferation in co-culture spheroids. A) Experiment timeline. 

B) Brightfield images of spheroids over time. For a specific seeding ratio, the same spheroid 

is shown over time. C i-ii) eGFP-OV1946 and C iii-iv) mCherry-OV1946 proliferation 

according to the initial cell seeding ratio. In C ii and iv, curves from i and iii are normalised 

to day 1. C v) Comparison of the proliferation rates normalised to day 1 of both fluorescent 

clones (same data as in C ii and iv). D i-v) Evolution over time of spheroid composition 

according to initial seeding ratio (bottom/green: eGFP; top/red: mCherry). Shaded regions or 

error bars represent the standard error of the mean (n = 3). 

5.4.5 Treatment response assay on cell populations 

Clonogenic assays were performed to assess each subclone’s response to the PARP inhibitor 

talazoparib. Figure 5-8 shows that the eGFP subclone is slightly more resistant than the mCherry 

subclone, although this difference is not statistically significant: eGFP cells have a 2D 

concentration at which 50% of colony formation is inhibited (IC50) of 27.7 ± 2.0 nM and mCherry 

cells, of 21.2 ± 6.0 nM. Knowing that 2D and 3D culture can have different responses to 
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treatment [121], [178], we hypothesised that HSI could follow each cell population response 

independently and observe differences in response. A treatment response assay was performed by 

exposing the same co-culture spheroids, made at the same seeding ratio as previously, to three 

concentrations of drug from day 2 to day 9 (Figure 5-5A). The experiment was repeated three times. 

Figure 5-5B shows brightfield images of representative spheroids at day 8, depending on the 

treatment concentration, while Figure 5-5C shows brightfield images of spheroids over time as 

they are exposed to the highest talazoparib concentration (50 μM). For a specific seeding ratio, the 

evolution of the same spheroid over time is shown. The fluorescence intensity of each cell 

population measured by HSI is shown in Figure 5-5D-E. Each graph presents the response of 

24 spheroids made at a specific seeding ratio to the three talazoparib concentrations and the 

talazoparib vehicle (medium and DSMO). In each graph, we observed a dose-response effect, 

where fluorescence intensity (both eGFP and mCherry) decreases after exposure to the drug 

starting at day 2. For both cell lines, 5 nM is too low to elicit a response, as the curves are similar 

to those of the control with no drug. However, for the highest concentration, we can clearly see 

fluorescence decreases sharply for both cell populations, indicating that cells are affected by the 

treatment between day 3 and 4 (after 24-48 h of treatment), which is consistent with the subclones 

doubling time. Using the HSI, the treatment effect was detected earlier, as spheroid diameters at 

day 8 (Figure 5-5B) are just starting to diminish at the highest concentration. While curves for 

spheroid with low starting number of cells are noisier due to a lower signal intensity (Figure 5-5D i 

and E vi, for example), they still demonstrate that our method can measure treatment response of 

cell populations occupying as little as 10% of the spheroid. 
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Figure 5-5: Treatment response assay using talazoparib. A) Experiment timeline. 

B) Brightfield images of spheroids at day 8, relevant to the drug concentration. C) Brightfield 

images of spheroids over time, for a talazoparib concentration of 50 μM. For a specific 

seeding ratio, the same spheroid is shown over time to observe its response to the drug. 

D i-vi) Day 1-normalised mCherry-OV1946 response to different concentrations of 

talazoparib, according to the initial seeding ratio. E i-vi) Day 1-normalised eGFP-OV1946 

response to different concentrations of talazoparib, according to the initial seeding ratio. 

Shaded regions represent the standard error of the mean (n = 3). 

Figure 5-6 presents the spheroid composition as a response to the three talazoparib concentrations. 

At 5 nM (Figure 5-6A), both cell populations react similarly to the control (Figure 5-4D). At the 

intermediate concentration of 500 nM (Figure 5-6B), the eGFP percentage seems to increase very 

slightly over time. At the highest concentration of 50 μM, we can observe that the spheroids 

experience a clonal takeover by mCherry cells. Both cell populations die from talazoparib, as 
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illustrated by Figure 5-5D-E, but mCherry-OV1946 cells seem more resistant and die less, 

proportionally. Independent of the initial cell seeding ratio, this takeover starts consistently at 

day 4, after 48h of treatment. While Figure 5-5D-E present how each subclone responds to 

treatment, Figure 5-6 reveals the behaviour differences between the two subclones.   

 

Figure 5-6: Spheroid composition as a response to talazoparib applied from day 2 to day 9. 

Spheroid composition over time, according to the initial seeding ratio for a talazoparib 

concentration of A) 5 nM, B) 500 nM, and C) 50 μM. Control data (for a talazoparib 

concentration of 0 nM) is shown in Figure 5-4D. For all graphs, bottom/green represent eGFP 

and top/red, mCherry. Arrows indicate clonal takeover onset. Error bars represent the 

standard error of the mean (n = 3). 

As a proof of concept that HSI can also measure treatment response of spheroids exposed to 

platinum-based drugs, we formed co-culture spheroids using the following seeding ratios: 100:0, 

50:50, and 0:100, and exposed them to carboplatin from day 1 to day 3 (Figure 5-7A). The 

experiment was performed once (n = 1) on 24 spheroids per condition (ratio and drug 

concentration). Figure 5-7B shows that, similar to the treatment response assay to talazoparib, 

spheroid diameters as a metric to measure treatment response is not always appropriate. 
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Fluorescence intensities over time (Figure 5-7C) show a dose-dependent decrease in day 1 

fluorescence intensities for both subclones. At the two highest carboplatin concentrations (300 μM 

and 3 mM), both subclones start to die between day 1 and day 3. At the low concentration of 30 μM, 

the fluorescence intensities do not immediately decrease from day 1 to day 3, but instead, the 

decrease starts after the chemotherapy is removed: mCherry intensity starts to decrease 24 h after 

eGFP intensity. This difference can also be observed on the corresponding spheroid composition 

graph and is highlighted by arrows. From day 0 to day 3, the spheroid composition in eGFP-

OV1946 cells increases consistently. Between day 3 and day 4, eGFP-OV1946 cells are more 

affected by the treatment than mCherry-OV1946 cells, resulting in a steep decrease in eGFP 

spheroid composition. From day 4 to the end of the experiment, mCherry-OV1946 cell death 

reaches similar rates as eGFP-OV1946 cells and the spheroid composition stabilises. 

 

Figure 5-7: Treatment response assay using carboplatin. A) Experiment timeline. 

B) Brightfield images of spheroids over time, for a carboplatin concentration of 3 mM. For 
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a specific seeding ratio, the same spheroid is shown over time to observe its response to the 

drug. Brightfield images could not be acquired for 100:0-day 6 and 50:50-day 3. C i-ii) Day 

1-normalised eGFP-OV1946 response to different concentrations of carboplatin, according 

to the initial seeding ratio. C iii-iv) Day 1-normalised mCherry-OV1946 response to different 

concentrations of carboplatin, according to the initial seeding ratio. D) Spheroid composition 

over time (bottom/green: eGFP; top/red: mCherry). Each curve represents the average of 

24 spheroids (n = 1). Arrows indicate differences in behaviour of the two subclones. 

5.5 Discussion and Conclusion 

Many research groups have developed methods using various combinations techniques to study 

co-culture spheroids and follow their cell populations over time. Several of these methods are either 

based on destructive techniques such as digesting spheroids prior to analysis [85], [105], [108], 

cryosections [107], [108], or flow cytometry [105], [108], or on confocal microscopy [107]. These 

methods cannot achieve long term repeated analyses of the same spheroids over time while also 

sampling the centre of larger spheroids (> 70-100 μm). Our method, based on forming and treating 

spheroids on-chip, and following their fluorescence over time using wide-field hyperspectral 

imaging, has the advantages of being rapid, precise, and versatile. Multiple samples can be imaged 

in the wide field of view. We were able to measure 24 spheroids for 28 conditions each (7 ratios x 

4 drug concentrations) in a single experimental run, taking approximately 4 hours to perform. If 

confocal or multiphoton imaging were to be done in 30 seconds for each spheroid, as it is 

customary, 5.6 hours would have been required just to perform the imaging step. The hyperspectral 

capabilities of the system can distinguish fluorophores with close emission peaks or fluorophores 

of low intensity overshadowed by a fluorophore of higher intensity, as demonstrated in our 

previous work [159]. Finally, since the excitation wavelength of the HSI system can be chosen 

between 400 and 700 nm and the emitted fluorescence can be measured from 450 to 720 nm, the 

system is highly versatile in terms of which fluorophores can be imaged. Overall, our microfluidic 

chip and our hyperspectral imaging system can generate and treat spheroids rapidly with an 

absolute error of less than 5% in spheroid composition compared to FACS analysis.  

The 2D proliferation assay showed that one subclone, eGFP-OV1946, has a doubling time 

1.5-times faster than the mCherry subclone when cultured separately. Cultured together at different 

seeding ratios, eGFP-OV1946 also proliferated faster than mCherry-OV1946 cells. This trend was 
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also observed in spheroids using the HSI system, although eGFP-OV1946 cell proliferation 

decreased starting at day 5 of spheroid culture. Our method to assess treatment response on ovarian 

cancer spheroids also illustrates how, depending on the cell line and drug studied, using 

fluorescence can detect treatment response earlier than the spheroid diameter. 

We observed that a concentration as high as 50 μM was necessary to illicit a clear decrease in 

fluorescence, especially for eGFP cells, even if the 2D IC50 of both subclones is between 20 and 

30 nM. At the 500 nM drug concentration (around 20X of the 2D IC50 for both cell lines), a slight 

decrease in fluorescence compared to the control and the 5 nM concentration was observed (Figure 

5-5D-E). This result is typical of treatment response in 3D cultures, as the drug concentrations 

necessary to elicit a drug response are normally higher in 3D than in 2D[7]. Other experimental 

work in our laboratory also indicate that drug concentrations around 100X the 2D IC50 are 

necessary to elicit a response in ovarian cancer spheroids [121], [178]. 

One advantage of using HSI to follow cell populations over time is that we were able to measure 

treatment response of a cell population representing only 10% of the spheroid composition Figure 

5-5D i and E iv). Typical studies on clonal population either can detect subclones of 10% but are 

destructive, or cannot follow over time such a low population [85], [105]. Our HSI system offers 

advantages in terms of imaging highly asymmetrical populations compared to conventional 

fluorescence microscopy where crosstalk can cause inaccuracy when measuring each population 

fluorescence intensity [112]. Finally, using the carboplatin treatment response results, we showed 

how breaks in the spheroid composition curve over time (Figure 5-7D ii-iii) can highlight changes 

in the cell populations response to treatment and indicate periods of interest to study treatment 

response. 

In conclusion, this work introduces a novel method to rapidly and dynamically analyse the response 

to external stimuli of highly asymmetrical co-culture spheroids formed in microfluidic chips. As 

HSI has demonstrated it can image and quantify three or more fluorophores without increasing 

experimental time [159], mixing more than two types of cells, such as epithelial and stromal cells, 

resistant and sensitive cells, or cancer and immune cells could be done. Our work could be applied 

to other types of assays, such as drug penetration in tissue studies, invasion assay, or angiogenesis 

studies and could find applications in high throughput/high content drug screens on spheroids to 
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test new or known drugs on co-culture spheroids. HSI is also compatible with recently emerging 

ex vivo tumour on a chip models [179]. 

5.6 Materials and methods 

5.6.1 Microfluidic chip 

Spheroids were formed directly inside a microfluidic chip using a design and technique described 

previously [159]. The chip consists of a main channel of 2.5 mm in width and 500 μm in height 

with wells of 500 x 500 x 500 μm3 placed underneath. 120 wells are placed in 5 groups of 24 to 

form spheroids using a single cell suspension. Spheroids stay trapped in the wells when the medium 

(containing drugs or not) in the main channel is changed using a low flow rate [45]. Photographs 

of the chip are presented in Figure 5-1. 

Two poly(methyl methacrylate) (PMMA) moulds were micromachined using a computerised 

numerical control (CNC) machine (EMCO PC Mill 55, EMCO GmbH, Austria); one for the layer 

containing the main channel and inlets/outlets, and one for the layer containing the wells. Degassed 

poly(dimethylsiloxane) (PDMS, Sylgard® 184 silicone elastomer kit, Dow Corning, USA) mixed 

at a 10:1 ratio was then poured onto each PMMA mould and cured in an oven at 80 °C for 1 h. 

Both PDMS layers were exposed 30 s to an atmospheric plasma (Dyn-A-Mite, Enercon, USA) and 

bonded together to form the microfluidic chip. Hollow nylon cylinders (91145A138, McMaster-

Carr, USA) were then introduced in the inlets and outlets. 

Microfluidic chips were prepared for cell culture by first removing any bubbles in the channels 

using 100% ethanol followed by a 70% ethanol incubation for 10 minutes to sterilise the chip. 

Channel walls were then passivated to prevent cell adhesion to the PDMS by introducing a solution 

of triblock copolymer block (10 mg/mL, Pluronic® F-108, 542342, Sigma-Aldrich, USA) in the 

channels. Chips were put in a sterile humidity chamber (plastic box with a tissue moistened with 

sterile water) to prevent evaporation and incubated with the passivating solution for at least 1 h or 

overnight at 37 °C and 5% CO2. A final sterilisation step of ethanol 70% for 10 minutes was 

followed by a rinsing of the channel with sterile Hank's Balanced Salt Solution (HBSS, 311-516-

CL, Wisent Inc., Canada) supplemented with 600 µg/L amphotericin B (450-105-QL, Wisent Inc.) 
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and 55 mg/L gentamicin (450-135-XL, Wisent Inc.). Chips could then be stored at 4 °C or used 

immediately to form spheroids on-chip. 

5.6.2 Co-culture spheroids 

The ovarian cancer cell line OV1946 was previously established from patient ascites [35]. OV1946 

cells possess the ability to form spheroids in low attachment conditions. Two fluorescent subclones 

were produced by transiently transfecting OV1946 cells with an eGFP plasmid (pEGFP-N1, 

6085-1, Clontech Laboratories Inc., USA) and a mCherry plasmid (mCherry2-N1, #54517, 

Addgene, USA). Plasmid mCherry2-N1 was a gift from Michael Davidson. Successfully 

transfected cells were selected using G418 (500 µg/mL, Geneticin®, 10131-035, Thermo Fisher 

Scientific, USA). Single clones from each transfection were finally produced by limited dilution to 

obtain two OV1946 subclones expressing each fluorophore at the same level for all cells within a 

subclone. 

Co-culture spheroids were formed on-chip by first mixing eGFP-OV1946 and mCherry-OV1946 

cells at the following initial seeding ratios: 100:0, 90:10, 75:25, 50:50, 25:75, 10:90, and 0:100 

(eGFP:mCherry). The total number of cells for all cell suspensions was 9 x 105 cells per millilitre 

of OSE medium without phenol red (316-031-CL, Wisent Inc.) supplemented with 10% foetal 

bovine serum (FBS, 080-150, Wisent Inc.), 55 mg/L gentamicin, 600 μg/L amphotericin B, and 

500 µg/mL G418. Complete OSE medium supplemented with G418 is referenced throughout this 

work as “medium”, except where specified. 

Spheroids were formed on-chip on day 0 by introducing 100 μL of cell suspension in the plastic 

cylinder of the inlet and quickly removing 100 μL of liquid from the outlet. This step was repeated 

6 times to ensure a uniform distribution of cells in the chip. 24 h later, one spheroid per well was 

visibly formed. Experiments were started on day 2. To remove cell wastes and replenish nutrients, 

medium was changed every 24 h by adding 70 μL of new medium in the inlet and removing 3 x 

20 μL from the outlet to prevent ejecting spheroids from their well. Throughout the experiment, 

chips were incubated at 37 °C and 5% CO2 while placed in a humidity chamber to prevent medium 

evaporation. 

To perform a drug response assay using PARP inhibitors, talazoparib (HY-16106, 

MedChemExpress, USA) was first solubilised in dimethyl sulfoxide (DMSO) (D8418, Sigma-
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Aldrich) at 20 mM. This solution was then diluted to 5 nM, 500 nM, and 50 μM in medium. DMSO 

was added to each solution, including the control, to match the final DMSO concentration of 0.25% 

(v/v) in the 50 μM solution. To perform a drug response assay using a chemotherapy drug, 

carboplatin (10 mg/mL, Omega Laboratories Limited, Canada) was diluted to 30, 300, and 

3 000 μM in medium. 

5.6.3 Hyperspectral imaging system 

A custom-built hyperspectral imaging system was previously developed [159] to acquire 

fluorescence hyperspectral data cubes (pixel x pixel x nm) of multiple spheroids trapped in a 

microfluidic chip with a 22.6 line-pairs per millimetre spatial resolution and a 7 nm spectral 

resolution. The HSI system has a field of view of 7.25 mm in diameter and can image 

24 wells/spheroids of the microfluidic chip described earlier. Briefly, the HSI system is composed 

of two illumination branches: a halogen white light (HL-2000, Ocean Optics, USA) is used for 

brightfield illumination and a supercontinuum laser (Fianium, NKT Photonics, Denmark) coupled 

to a laser line tuneable filter (LLTF, Photon etc, Canada) is used for fluorescence excitation at 

various wavelengths. The illuminations are combined using a 50:50 beamsplitter (BS013, 

Thorlabs, USA) towards the sample. A fixed focal length objective (59-871, Edmund Optics, 

USA), a longpass filter (FELH0500 or FELH0550, Thorlabs), a relay lens (67-422, Edmund 

Optics) and a liquid crystal tuneable filter (LCTF, VariSpec VIS, Perkin-Elmer, USA) form the 

sample image on an electron multiplying charged-coupled device (EMCCD) camera (HNü 512, 

Nüvü Caméras, Canada). A custom LabVIEW 2014 (National Instruments, USA) software sweeps 

the tuneable liquid crystal filter to acquire images at every 5 nm and measure the sample’s 

fluorescence emission spectrum or transmittance. 

In this work, excitation wavelengths used were 480 nm for eGFP and 530 nm for mCherry. The 

fluorescence emission spectra were acquired from 400 to 720 nm or 550 to 720 nm, depending on 

the excitation wavelength used. Typical acquisition time for an image at one wavelength was 500 

to 1000 ms and gain was set at 500. For each microfluidic chip, the middle group of wells was 

imaged, resulting in 24 spheroids imaged per condition. For the comparison with flow cytometry, 

3 groups of 24 spheroids were imaged per chip (72 spheroids in total).  
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Brightfield and fluorescence hyperspectral data cubes of each chip imaged were analysed with a 

series of steps described in detail in our previous study [159]. Briefly, each data cube was first 

divided by its acquisition time and gain. Dark noise acquired when closing the camera shutter was 

then subtracted. A shading correction was then applied to compensate for uneven illumination and 

detection. 

5.6.4 Fluorescence image analysis 

Hyperspectral data cubes were processed using MATLAB R2015a (The MathWorks, Inc., USA) 

to extract the fluorescence intensity emitted by each spheroid. Since the exact positioning of the 

chip in the field of view of the HSI system is different for each day and chip, regions of interest 

(ROI) corresponding to each well of the chip were determined by registering each image with a 

reference image, where well positions are known. Spectral unmixing is then performed on each 

selected ROI to separate each spectral entity contribution using a library of previously acquired 

fluorescence spectrum of the fluorophores of interest. The coefficients obtained for eGFP and 

mCherry were used as the fluorescence intensity emitted by each fluorescent protein. This is more 

precise than using the fluorescence intensity at the emission peak, especially in the case of 

overlapping fluorophores spectra. 

Because of the limited dilution performed to select one clone after transfection, all the eGFP-

OV1946 (or mCherry-OV1946) cells express the eGFP (or mCherry) protein at a very similar level. 

However, that intensity level is not the same for both fluorescent subclones. To be able to compare 

eGFP and mCherry intensities, both intensities need to be normalised. Fluorescence intensities at 

day 0 were averaged for all spheroids that had the same initial seeding ratio (all spheroids made at 

25:75 were averaged at day 0 and fluorescence values were reported for eGFP 25% and mCherry 

75%, regardless of the drug concentration tested after). A linear fit was performed, and the fit was 

then used to obtain an intensity for a spheroid made at 100% of each subclone. An example of this 

linear fit is presented in Figure 5-9. These reference intensities were used to normalise all acquired 

data. Spheroid composition was then calculated as follows: 

%𝐴 =
𝐼𝐴

𝐼𝐴 + 𝐼𝐵
× 100 (5-1) 

where %A is the percentage of the spheroid composed of subclone A, IA/B is subclone A/B 

normalised intensity for this spheroid. 
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5.6.5 FACS validation 

Co-culture spheroids at various seeding ratios were formed on-chip according to the method 

described above. Spheroids were cultured on-chip and medium, supplemented with 0.25% (v/v) 

DMSO, was changed every day. The experiment was repeated three times and depending on the 

experiment repetition, spheroids were cultured 3, 4, or 6 days on-chip. Three groups of 

24 spheroids were imaged by HSI per chip and their composition in eGFP and mCherry cells was 

calculated and averaged. On the same day, the chips were cut to separate the same three groups of 

24 spheroids which were imaged. These spheroids were harvested from the chip by peeling apart 

the two layers of PDMS and collecting them in a 1.5 ml tube with 100 µl of phosphate buffered 

saline (PBS, 311-012-LL, Wisent Inc.). The spheroids were digested by adding 100 µl of trypsin 

0.05% (325-041, Wisent Inc.) for 30 seconds. Trypsin was then neutralised by the addition of 

200 µl of FBS. The single cell suspension obtained was centrifuged at 1 200 rpm for 10 minutes at 

4 ºC, washed with PBS, and the pellet was reconstituted in FACS buffer [PBS supplemented with 

2% FBS, 1 mM EDTA (EDT001, Bioshop, Canada), and 0.1% sodium azide (V015-05, JT Baker, 

USA)]. The samples were read in a BD LSRFortessa (BD Biosciences, Canada) cell analyser. 

Results were analysed with FlowJo v10 (FlowJo, LLC, USA). 

5.6.6 2D proliferation assay 

A 2D proliferation assay was performed to determine fluorescent subclone proliferation rates. A 

total of 750 cells from both subclones were seeded in 96-well plates in OSE medium. Cells were 

imaged using phase contrast and fluorescence imaging by the IncuCyte® S3 live-cell analysis 

system (Essen BioScience, USA). Frames were captured at 4-hour intervals in two separate regions 

per well using a 10X objective. Acquisition times were 350 ms for eGFP and 500 ms for mCherry. 

Proliferation data were calculated from phase contrast images and fluorescence confluence 

measurements using the IncuCyte® S3 software. Curves were constructed using Prism 6 (GraphPad 

Software, USA). Each experiment was performed in triplicate and repeated three times. 

5.6.7 2D clonogenic assay 

eGFP-OV1946 and mCherry-OV1946 cells were plated at 2 000 cells per well in distinct 6-well 

plates. The next day, talazoparib diluted in medium was added to the cells at several concentrations 

from 0 to 4 000 nM and cells were incubated for 7 days. Colonies were stained with methylene 
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blue 0.5% dissolved in methanol (41424, ThermoFisher Scientific) and counted under a stereo 

microscope. IC50 values were calculated using Prism 6 (GraphPad Software). Each experiment was 

performed at least three times in duplicate. 
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5.8 Supplementary material 

 

Figure 5-8: Determination of the 2D IC50 by clonogenic assay for both subclones. A) Average 

dose-response curves for both subclones. B) Talazoparib IC50 for eGFP-OV1946 and 

mCherry-OV1946, p = 0.655. Error bars represent the standard deviation (n = 3). 
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Figure 5-9: Reference intensity linear fitting for eGFP and mCherry fluorescence 

comparison. 
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CHAPTER 6 GENERAL DISCUSSION 

The main goal of this thesis work was to provide a versatile and high-throughput analysis 

instrument to measure the fluorescence of 3D samples cultured in microfluidic chips. This was 

achieved by the development and validation of a wide-field hyperspectral imaging system 

compatible with in situ imaging of spheroids on-chip. The first article published on this work 

describes the HSI system design and its image processing algorithm. A proof-of-concept that wide-

field hyperspectral imaging of spheroid fluorescence is possible is also presented. The second 

submitted article expands on spheroid imaging and illustrates how HSI can be used to study the 

effect of clonal heterogeneity in cancer. This chapter presents a general discussion of both articles, 

by first reviewing them in terms of each research objective. The limitations of this thesis work as 

well as the limitations of hyperspectral imaging are then discussed.  

6.1 Development of a wide-field hyperspectral imaging system for 

spheroid analysis 

The first research objective of this dissertation was to design and build a wide-field hyperspectral 

imaging system capable of measuring spheroid fluorescence. This was done by using a liquid 

crystal tunable filter to sweep across the emission spectra of the fluorophores imaged and acquiring 

one image per interrogated wavelength. Spectral unmixing was then used to quantify the 

fluorescence intensity of each fluorophore in the spheroids. A simple visual comparison of 

hyperspectral and confocal images of the same spheroids shows that HSI can acquire hyperspectral 

images of spheroid fluorescence and observe a degree of spatial distribution of two cell lines that 

do not mix homogeneously during co-culture (Figure 4-5). 

A low numerical aperture objective was selected to image a large field of view and obtain a depth 

of field larger than typical spheroid diameters. Because of the use of this objective combined with 

the low transmission of the tunable filter (between 25% and 57% from 500 nm to 700 nm), a highly 

sensitive EMCCD camera was chosen. Being able to measure 24 spheroids in a single acquisition 

reduces experimental work and increases the statistical power of the results, as more replicates are 

analyzed, making it worthy to use this type of camera. When imaging spheroids one by one and 

assuming a 30 s acquisition time, a situation often necessary using confocal, multiphoton, and light 

sheet microscopy, imaging 28 conditions and 24 spheroids per conditions requires 5.6 hours. 
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Acquiring 24 spheroids in a single acquisition using the HSI system reduces this time to less than 

3 hours of experimental work including acquiring the other datacubes necessary for the subsequent 

image analysis step (Table 4-1). By optimizing the microfluidic chip used to form spheroids, up to 

60 spheroids could be imaged without increasing acquisition time (Figure 4-6). Microfluidic 

channels could also be designed to image multiple conditions in the same image. 

The HSI system has a spatial resolution of 22.6 line pairs per millimetre, or 44.2 μm resolution 

over a circular field of view of 7.25 mm in diameter, or 41 mm2. This spatial resolution is sufficient 

to image spheroids of a few hundreds of micrometres in diameter. The spectral resolution of the 

HSI system is 7 nm and is also sufficient to unmix fluorophores with overlapping spectra (Figure 

4-3). To analyze the acquired hyperspectral datacube automatically and quantitatively, a custom 

Matlab algorithm was developed and implemented. As the measured spatial intensity of a 

homogeneous sample was not uniform, due to the illumination and detection optics, a shading 

correction step was added to the image analysis algorithm. While this step allows for comparing 

fluorescence intensities across the wide field of view, it decreases the total range of fluorescence 

intensities that the system can measure, as samples with low fluorescence levels that are at the 

periphery of the image could be below the higher instrument noise floor of the image periphery. 

Also, the noise at the image periphery is amplified by the necessary multiplication with the 

compensation matrix (section 4.5.3) used to apply the shading correction. 

The hyperspectral imaging system can also be compared with other imaging techniques in terms 

of resolution or capabilities, as detailed in Table 6-1. Hyperspectral imaging as the advantage of a 

higher spectral resolution compared to other imaging techniques that rely on filter cubes. While the 

HSI system described here does not provide any imaging advantage compared to a confocal 

microscope, since the HSI system spatial resolution is much lower than the confocal microscope 

used in Figure 4-5, its main advantage resides in the number of fluorophores that hyperspectral 

imaging systems can resolve. At least one detection channel per imaged fluorophore is necessary 

to spectrally unmix them. Contrary to multiphoton imaging and light sheet microscopy, the HSI 

system is able to image spheroids trapped in thicker microfluidic chips in a high-throughput 

manner. The versatility of hyperspectral imaging can also be used to investigate which spectral 

bands are ideal to analyze specific samples. The imaging system can then be optimized to utilize 

those selected bands to accelerate the analysis using either the same imaging system or a second 

instrument. 
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Table 6-1: Comparison of hyperspectral imaging to other imaging techniques 

Comparison point 
Hyperspectral 

imaging 

Epifluorescence 

imaging 

Confocal 

imaging 

Multiphoton 

imaging 

Light sheet 

microscopy 

Spectral resolution < 10 nm > 30 nm > 30 nm > 30 nm > 30 nm 

Imaging up to the 

spheroid centre 
Yes Yes No 

Yes, up to a 

certain diameter 
Yes 

Acquisition time 

for 1 spheroid 

1 s per 

wavelength (45 s) 
10 s 30 s 30 s 30 s 

Acquisition time 

for 24 spheroids 

1 s per 

wavelength (45 s) 

10 s (using lower 

magnifications) 
24 x 30 s 24 x 30 s 24 x 30 s 

High-throughput 

imaging of 

microfluidic chips 

Yes Yes Yes No No 

The image analysis algorithm was also designed to extract regions of interest in each image 

corresponding to each of the 24 wells containing spheroids. Using the current version of the 

algorithm, the active user time required to analyze 28 conditions applied to 24 spheroids over 

10 days (the equivalent of 6 720 spheroids or data-points) is about 8 hours. An additional 

computing time of around 30 hours is also necessary but can be scheduled during the night and 

requires no input from the user. This computing time is mainly due to the spectral unmixing 

performed on each of the 262 144 pixels (512 x 512 pixels) of the hyperspectral datacubes. 

In addition to ovarian cancer spheroids, other types of 3D cultures were imaged throughout this 

thesis work. Figure 6-1 present three types of 3D cultures that the HSI system successfully imaged. 

Using microfluidic chip B, Maeva Bavoux, a master’s student in our laboratory, formed sarcoma 

spheroids using cell line STS117. She then stained them with a live cell fluorescent marker, 

CellTrackerTM Green (CTG), and a dead cell marker, propidium iodide (PI). Figure 6-1A shows 

the resulting brightfield and fluorescence images at both fluorophores’ emission peaks, 515 nm for 

CTG and 610 nm for PI. Our laboratory has also developed a method to microdissect tissue 

obtained from mice xenograft or human biopsies into submillimetre spheres [44]. The microtissues 

are then loaded in microfluidic chip A, a chip designed to trap and maintain in culture 

5 microtissues. Here, mice xenografts were made from eGFP-expressing OV1946 cells by Adriana 

Mari Orimoto and Kim Leclerc Desaulniers. The grown tumour was harvested and cut into spheres 

of 380 μm in diameter. The fluorescent microtissues were then loaded in the wells of microfluidic 

chip A and imaged using the HSI system. Figure 6-1B shows the brightfield, fluorescence emission 
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(at 515 nm) and transmittance (at 515 nm) images of three microtissues. As a third example, 

prostate cells RWPE-1 were cultured on a MatrigelTM layer in a 6-well plate by Andrée-Anne 

Grosset and Mame Kany Diop and formed tubular structures in 12 days. These 3D structures were 

then stained with calcein AM (live cell stain) and Ethidium-homodimer 1 (EthD-1, dead cell stain), 

and imaged using the HSI system. Figure 6-1C shows the brightfield and fluorescence images for 

calcein AM and EthD-1. The HSI system was able to measure the emitted fluorescence of these 

100 μm-in height structures. 

 

Figure 6-1: 3D cultures imaged using the HSI system. A) STS117 spheroids, formed, stained 

by CellTrackerTM Green and propidium iodide [i) Brightfield (720 nm), ii) CTG fluorescence 

(515 nm), and iii) PI fluorescence (610 nm) images]. B) EGFP-expressing microdissected 

mouse xenografts loaded on chip [i) Brightfield (720 nm), ii) fluorescence (515 nm), and 

iii) transmittance (515 nm) images]. C) Prostate cells forming tubules on MatrigelTM, formed 
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and stained with calcein AM and EthD-1 [i) Brightfield (720 nm), ii) calcein AM 

fluorescence (515 nm) and, iii) EthD-1 fluorescence (615 nm) images]. Scale bars = 1 mm. 

6.2 Validation of the fluorescence quantification capabilities of the 

HSI system 

After confirming that the HSI system could detect spheroid and other types of 3D culture 

fluorescence, the quantification capabilities of the system were validated using optical phantoms 

of known fluorophores and elastic scattering properties (Figure 4-4). In doing so, the geometric 

factor 𝛼 of equation was optimized for slab-like sample geometries. This 𝛼 value depends on the 

sample geometry and on any changes to the optical components of the HSI system. Once 𝛼 was 

determined, transmittance-based equation (4-1) was able to compensate for a wide range of 

scattering properties encompassing those of the spheroids. The HSI system is thus able to quantify 

fluorescence for slab-shaped phantoms having scattering properties, 𝜇𝑠
′ , ranging from 0.5 to 

7.5 cm-1. A major limitation of this transmittance-based quantification is that, for highly attenuating 

samples, the measured transmittance is null and equation (4-1) cannot be applied. This could lead 

to larger spheroids being impossible to analyze using this equation. A solution would be to increase 

the acquisition time or gain of the camera or the white light illumination intensity. However, since 

the microfluidic chip is made of transparent PDMS, pixels around the sample will then saturate. In 

the case of the EMCCD camera used here, pixel saturation can damage the camera and must be 

prevented. Still, the image analysis algorithm and equation (4-1) were proven able to quantify 

fluorescence for a specific scattering properties range. 

A second type of validation was performed to assess if HSI can measure the spheroid composition 

in terms of percentage of each cell population. For this validation, flow cytometry was used as the 

gold standard technique. It was found that HSI measurements varied in spheroid composition 

percentage from flow cytometry results from at most 5%, a small absolute error considering the 

many processing steps prone to cell loss necessary for flow cytometry measurements versus in situ 

HSI. As HSI measurements are done without perturbing the spheroids, loosely aggregated cells 

located in the wells can be included in the measurements. For flow cytometry analysis, the layers 

forming the microfluidic chip are separated and spheroids are manually pipetted into tubes to be 
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digested into single cells. Each of these steps can add errors to the final measurement. Still, both 

techniques yielded results with an absolute difference of at most 5% in spheroid composition. 

Finally, preliminary Monte Carlo light propagation simulation results, presented in Appendix B, 

shows that, when simulating the trajectory of excitation photons and generated fluorescence 

photons detected by the camera, fluorescent molecules with fluorescence properties similar to 

eGFP that are located at the spheroid centre are as much excited and detected than molecules in the 

outer layers. This is an advantage of HSI compared to confocal imaging of larger spheroids. 

However, estimating the exact value of the scattering coefficient of ovarian cancer spheroids is a 

challenge. For this simulation, as for the optical phantoms experiment, only two references 

explicitly stating the optical properties of tumour spheroids made from other cell lines were 

found [156], [157]. As spheroid compactness depends on the cell type used to form spheroids, 

ovarian cancer spheroid optical properties will differ from value found in the literature. Still, unless 

the optical properties of ovarian cancer spheroid (of each cell line available) are measured, those 

two references represent the best estimation available. 

6.3 On-chip hyperspectral imaging of co-culture spheroids to study 

clonal heterogeneity 

This final research objective was completed by first establishing a general workflow that 

incorporated HSI into a spheroid-based assay, as presented in Figure 5-1. One advantage of this 

workflow is that the same spheroids are imaged daily to see their dynamic response to external 

stimuli, such as drug treatments. In a typical end-point assay, where read-out techniques are 

destructive, the optimal time during the experiment to perform the end-point assay to observe 

treatment response is not known a priori and needs to be assessed in preliminary experiments. 

Cells can respond to drug in a few hours or a few days. Timing the end-point measurement is thus 

critical. Being able to dynamically follow the response eliminates this problem. Furthermore, 

dynamic measurements are able to detect if the cell populations in the spheroid do not respond at 

the same rate, independently of the intensity of their response. Arrows on Figure 5-7 illustrate this 

concept. If, for any reason, hyperspectral imaging is not sufficient for the study purposes, it could 

be used instead to optimize the ideal time when end-point assays should be performed. 
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Finally, the HSI system and its image algorithm were used to perform two complete experiments 

on cell population growth and treatment response in co-culture spheroids. A comment can be made 

about what happens to fluorescent proteins when cells die. If cells remain fluorescent after death, 

it could impact the validity of the results. A research group [180], [181] used genetically modified 

fluorescent cells and investigated if a decrease in eGFP fluorescence as an indicator of cell death 

compared to gold standard flow cytometry measurements using the apoptosis stain Annexin V. 

Their results showed that both methods detected similar amount and kinetics of cell death in 

monolayer cultures. They also proved that, for the cell lines they used, the decrease in fluorescence 

at cell death is not due to a leakage of the fluorescent proteins outside the cells [181]. In the case 

of spheroids, leaked proteins could accumulate and be trapped between the cells and reduce HSI 

measurement precision. The authors suggest other factors such as pH and redox changes leading 

to fluorescence quenching or protein denaturation could be responsible instead. While the exact 

mechanism is not known, they showed that a decrease in eGFP fluorescence can measure cell death. 

In this dissertation, cell death due to drug exposure (talazoparib and carboplatin) was observed 48 h 

after the first exposure, which corresponds to 1 or 2 cell divisions, as the average 2D doubling time 

of each subclone was 25 h and 37 h (Figure 5-2). This is consistent with the mechanism of action 

of those two chemotherapy drugs, as they affect cells during their division. 

6.4 Limitations of this thesis work 

The goal of this thesis work was to develop and validate a versatile hyperspectral imaging system 

to study co-culture spheroids trapped in microfluidic chips. This goal was achieved, as described 

previously. However, improvements on microfluidic chip design, on the HSI system, on 

fluorescence quantification validation and on the type of spheroid-based experiments can be 

identified. 

First, as illustrated in Figure 4-6, a simple chip redesign could be done to multiply the number of 

spheroids in the field of view by 2.5 and image 60 spheroids. Or, instead of imaging 60 spheroids 

exposed to one condition, a microfluidic design could be used to study 3 conditions on 20 spheroids 

each. The 7.25 mm in diameter field of view of the HSI system opens up many possibilities that 

were not investigated up to this point. 
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One current limitation of the HSI system in its actual form is a high excitation laser bleed-through 

intensity. This intensity is sometimes of similar intensity to the fluorophores of interest. This render 

detecting fluorophores of low intensity challenging. Shortpass filters corresponding to the 

excitation wavelengths were added to the system and used throughout this dissertation to try to 

minimize this effect but were unable to remove all the excitation bleed-through contamination of 

the spectra. More work needs to be done to improve this problem. 

Two fluorescent subclones were created using eGFP and mCherry plasmids. Because of the time 

constraints during this thesis, those two fluorescent proteins do not take advantage of the full 

capabilities of hyperspectral imaging as the two fluorophores require different excitation 

wavelengths. At the beginning of this project, the goal was to use a fluorescent protein with a larger 

Stokes shift as the second fluorophore in order to use the same excitation wavelength for both. 

However, difficulties during the transfection process led to using the only two fluorophores that 

were successfully transfected in OV1946 cells. A similar transfection problem led to OV1946 

subclones of similar resistance to talazoparib and carboplatin. Ideally, a sensitive population would 

have been tested alongside a resistant one. This type of problem represents one of the challenges 

of using genetically modified cell lines: some cell lines are able to reject plasmid transfection. In 

return, once cell lines are modified, experiments are simplified as no external stains or additional 

experimental step are necessary before fluorescence imaging. Furthermore, since the HSI system 

demonstrated that it can discriminate three spectral entities (CTG, CTO and bleed-through, Figure 

4-3G-H), co-culture spheroids composed of three cell populations could also be done, once the 

bleed-through and transfection problems are corrected. 

Another major limitation of the current work is that the fluorescence quantification algorithm, 

equation (4-1), designed to compensate optical properties, was only tested on slab-like optical 

phantoms. Since the geometric parameter 𝛼 depends on the sample geometry, no fluorescence 

quantification was done on hyperspectral images of spheroids. Since microfluidic chips have been 

used extensively to form droplets and hydrogel beads [79], preliminary experiments were 

performed by a student (Alexandre Chabot, Appendix A). 300 μm-diameter droplets were easily 

made using two typical microfluidic modules: T-junctions and hydrodynamic flow-focusing 

modules. The student then worked on forming droplets of alginate mix with a scattering agent in a 

calcium-infused oil phase. The calcium is used to cross-link the alginate into a hydrogel. Hydrogel 

beads containing Intralipid were produced but presented stability problems that need further 
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investigation. Once this limitation is overcome, analyzing spheroids of various compactness will 

be more precise, as their varying optical properties will be considered. 

Finally, a modification to the Mann-Kendall statistical test designed to detect monotonic trends 

was developed during this dissertation to analyze Mohana Marimuthu’s results (Appendix C). In 

the work presented in article 2, both cell populations prove to be of similar drug resistance levels. 

If different resistance levels had been observed, the modified Mann-Kendall test would have been 

interesting to test if cell populations respond monotonically as a function of their initial amount. It 

also would have been interesting to perform further experiments to assess how cell populations can 

interact. 

6.5 Limitations of hyperspectral imaging for 3D culture 

In this dissertation, hyperspectral imaging was used to quantify cell populations in spheroids, with 

some advantages and limitations compared to other techniques. The main advantage of 

hyperspectral imaging over flow cytometry and tissue slicing analysis technique is the non-

destructive nature of imaging. Spheroids can be followed over time to measure the individual 

response of each spheroid, instead of the average response of many spheroids at the end-point. The 

drawback is that, contrary to analyzing individual cells or tissue slices, imaging-based fluorescence 

intensity measurements of 3D cultures will be affected by the optical properties of the sample. By 

imaging spherical phantoms of known optical properties or performing Monte Carlo light 

propagation simulations, this effect could be quantified and taken into account during 

measurements. 

HSI is a non-destructive method relying on fluorescence intensity to characterize spheroids, instead 

of optical sectioning where cells can be visualized and counted even if the fluorescence level varies 

from cell to cell. Because of this, its application to study samples where each cell from one 

population does not emit similar levels of fluorescence is limited. Microscopy techniques using 

optical sectioning, such as confocal, multiphoton, and light sheet microscopy, have the advantage 

of counting individual cell. To use HSI, some cell lines can be easily modified to express 

fluorescent proteins, while others reject the transfection, limiting the range of cells that can be 

studied. Another possibility is to stain cells uniformly so that they emit the same fluorescence level. 

Uniform staining can be done on a cell suspension and spheroid can be made using those 
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fluorescent cell suspensions. One problem associated with this technique to follow spheroids over 

time is that fluorescent molecules from the stain will be passed to daughter cells during division, 

decreasing the fluorescence intensity of each cell as the population divides. Difficulties also arise 

when staining microdissected xenograft or biopsy tissue. To preserve the structure of the tissue, 

transfection with fluorescent proteins to create fluorescent clones cannot be done. These samples 

can instead be stained with viability markers but each cell type present in the sample will typically 

stain at different levels. Furthermore, all cells will be stained, and cell populations will not be 

discriminated. 

The second objective of this work was to validate the fluorescence quantification capabilities 

(equation (4-1)) of the HSI system, among other things. Article 1 showed that the HSI system can 

be used to compensate optical properties and quantify the fluorescence emitted by samples of a 

slab-like geometry. While preliminary work on spherical optical phantoms mimicking spheroids 

has been started, evaluating the optical properties of ovarian cancer spheroids is still a challenge. 

Since only two references were found on spheroid optical properties, achieving fluorescence 

quantification with equation (4-1) on real spheroid sample is challenging. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

The aim of this project was to provide a versatile and high-throughput analysis instrument to 

measure the fluorescence of 3D culture cultured in microfluidic chips. Hyperspectral imaging was 

used to quantify cell population fluorescence as a response to external stimuli. While the HSI 

system is functional and used by other researchers, improvements can still be made. This chapter 

details recommendations on how to improve the HSI system. 

7.1 Recommendations to improve the hyperspectral imaging system 

to study 3D in vitro cancer models 

Despite the intensive work of two research interns as well as that of the author, the hardware and 

software of the HSI system could still be improved to optimize the ease of use of the system. 

Currently, while everything is functional during the acquisition of a hyperspectral datacube, many 

steps are still manual. Two computer-controlled motorized filter wheels could replace the manual 

versions currently in place to prevent any acquisition errors where a user forgets to change the 

required filters. Also, only the white light source is automatically controlled by the custom designed 

Labview program presented in section 4.5.2. The excitation laser for fluorescence measurements 

could be automatically controlled to select the desired excitation wavelength and to turn it on and 

off at the right moment. Manually changing the filters and the excitation wavelength was one of 

the main sources of error during acquisition. 

The acquisition time and gain of the camera were kept constant at every wavelength for a specific 

sample. They are currently adjusted by manually acquiring images at the fluorescence peak at 

various acquisition times and gain and the parameters leading to the highest detected fluorescence 

intensity without saturating the camera are selected. To improve the signal to noise ratio at other 

wavelengths, this optimization could be done at every wavelength, instead of only at the 

fluorescence peak. 

While the Labview program automatizes the acquisition of hyperspectral datacubes by acquiring 

images at every chosen wavelength automatically, it does not guide the user throughout the 

multiple acquisitions necessary for the subsequent image analysis steps, such as dark noise, bleed-

through, and system transmission acquisitions (top part of Table 4-1). Thus, a major overhaul of 
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the program will need to be done before non-technical users can perform the acquisition 

themselves. 

Finally, a similar overhaul will be necessary for the Matlab-based image analysis algorithm, 

presented in Figure 4-2, to shorten the analysis time of the large number of images associated with 

each experiment. For example, a typical 10-day experiment on 28 conditions (one microfluidic 

chip per condition) will generate more than 560 hyperspectral datacubes or 25 000 wavelength-

images (45 interrogated wavelengths per datacube). In its current form, many steps of the current 

image analysis algorithm are manual. A first version of this overhaul was done by Didier Blach-

Laflèche and is presented at the end of Appendix A. Yet, we anticipate that, should the HSI system 

be turned into a commercial product, less than one month of work by a team of skilled engineers 

would be required to make the acquisition software and the image analysis algorithm robust and 

easy to use. 

Completing both the Monte Carlo light propagation study and the spherical optical phantom 

experiments will improve our understanding of HSI and its ability to quantify spheroid 

fluorescence. Completion of the Monte Carlo light transport simulation will first confirm that 

hyperspectral imaging is able to detect fluorescence from all cells composing the spheroid. 

Simulations can also be done to evaluate at which spheroid diameter does the sampling volume 

diminishes, or what is the effect of the PDMS layers on fluorescence quantification. The 

simulations can also be used to simulate the transmittance and fluorescence of samples of different 

geometries and evaluate the 𝛼 parameter in equation (4-1) and its capabilities to quantify 

fluorescence. Secondly, by completing the experimental validation of equation (4-1) on spherical 

optical phantom, the HSI system will be able to quantify fluorescence in spheroids, improving the 

precision when quantifying fluorophores. Finally, similar quantification could be done on larger 

3D cultures, such as slice cultures [182] or precision-cut liver slices [183]. 

In addition to fluorescence-based measurements of 3D in vitro cancer models, the HSI system 

could be used to measure changes in transmittance of the samples. One example could be to identify 

regions in a biopsy with a high content of blood, as the hemoglobin absorbance spectrum is known. 

It would also be interesting to investigate if transmittance measurements could quantify non-

fluorescent immunostaining of whole spheroids. 
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7.2 Outlook 

As 3D in vitro cancer models gain more and more attention as models that better represent cell-cell 

and cell-matrix interactions inside human tumours, there is a need to develop versatile analysis 

techniques and instruments to study these 3D models. During this thesis work, I designed and built 

a functional version of the HSI system and validated its performances to follow specific cell 

population response in 3D spheroids to external stimuli. My work involved designing and building 

a few versions of the HSI system, writing the Matlab analysis algorithm to extract the fluorescence 

emitted by each spheroid of the image, and validation the fluorescence quantification algorithm to 

compensate optical properties. The results on the dynamic response to chemotherapy of two cell 

populations in spheroids made on-chip generated great interest in our collaborators laboratories at 

the Centre de recherche du CHUM (CRCHUM). Researchers are eager to try the HSI system and, 

currently, experiments on sarcoma and prostate 3D cultures are ongoing. 

Once a few modifications to the HSI system are made to increase its ease-of-use, research biologists 

will be able to use the system themselves. A myriad of experiments can be thought of, such as 

forming spheroids on-chip with more than two fluorescent cell types and observing their response 

to drugs and their effect on each other. Combinatorial studies can also be done, such as a current 

collaborative project with Dr. Philip Wong (CRCHUM) on studying spheroid response to 

radiotherapy and drug combinations to treat soft tissue sarcoma. In conclusion, the hyperspectral 

imaging system and its image analysis algorithm developed here have proven themselves as a 

versatile instrument that can easily follow the response of dozens of spheroids on-chip, measuring 

the dynamic response pattern of each cell population individually. Because of its versatility in 

acquiring both the fluorescence and transmittance spectra of the studied samples, I firmly believe 

that hyperspectral imaging can benefit and accelerate spheroid-based research.
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APPENDIX A - ALGINATE BEADS MADE ON-CHIP AS OPTICAL 

PHANTOMS 

This appendix presents the preliminary work on making spherical optical phantoms of spheroid-

size. As described in section 2.4, the measured fluorescence intensity will depend on the geometry 

and optical properties of the imaged sample. Using a quantification algorithm considering the 

sample transmittance at specific wavelengths, these effects can be removed. The algorithm 

described by equation (4-1) was first validated for thin planar phantoms of optical properties 

similar to those of spheroids (see section 4.4.2). However, the optical phantoms used in this 

previous experiment do not replicate the geometry of a spheroid. All preliminary results shown in 

this appendix were obtained by Alexandre Chabot, a summer intern. 

The microfluidic community has developed a range of techniques to form thousands of droplets of 

controlled size easily. Droplets are made using two immiscible phases, usually water-in-oil and 

gas-in-liquid. Droplets can be made using various techniques, including using a T-junction, flow-

focusing, and co-flowing, as illustrated in Figure A-1. By varying the flow rate ratio between the 

oil and water, the droplet size can be controlled [79]. 

 

Figure A-1: Droplet generation methods. Reproduced from [184] with permission from The 

Royal Society of Chemistry. 

By using a hydrophilic polymer and a cross-linker in the two immiscible phases, researchers have 

formed hydrogel beads on-chip using the different droplet formation methods. Sodium alginate and 

calcium chloride are commonly used to form alginate beads because of their biocompatibility with 

cell culture [185]. A few examples are summarized in Table A-1. In some examples, an alginate 

droplet is first made in an oil carrier using any of the three methods mentioned above, and the 

cross-linker is then added to the droplet using a second T-junction. 
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Table A-1: Alginate beads formation parameters 

Droplet formation 

method 
Polymer base Oil carrier Cross-linker 

Bead 

diameter 
Reference 

Flow-focusing Sodium alginate Silicone oil BaCl2 
0.15 to 

1.5 mm 

Trivedi et al. 

[186] 

Co-flowing Sodium alginate Vegetable oil CaCl2 50 μm 
Chen et al. 

[187] 

T-junction Sodium alginate Oleic acid infused with CaCl2 100 μm 
Lee et al. 

[188] 

Flow-focusing Sodium alginate Oleic acid infused with CaCl2 100 μm 
Lan et al. 

[189] 

Flow focusing Sodium alginate Oleic acid infused with CaCl2 130 μm 
Kim et al. 

[190] 

 

Preliminary results are shown in Figure A-2 and shows that water-in-oil droplets of approximately 

300 μm in diameter can be made on-chip using the T-junction (Figure A-2A) and flow-focusing 

(Figure A-2B). Varying the water and oil flow rates lead to variations in droplet length, as the 

droplet width was limited by the channel width (Figure A-2E). 

To form alginate beads on-chip, Alexandre used oleic acid as the lipid carrier and sodium alginate 

as the polymer. To form hydrogel beads in a single step, the oleic acid was infused with calcium 

using Kim et al. [190] explanations. Briefly, calcium chloride was dissolved in isobutanol using an 

ultrasonic bath. The oleic acid and the isobutanol mixture were then mixed at 50% and the 

isobutanol was evaporated overnight on a hotplate à 120 °C, resulting in calcium infused oleic acid. 

Figure A-2C shows alginate beads formed on-chip using the flow-focusing design (Figure A-2B) 

and harvested in a calcium infused oleic acid bath, to further complete the gelation process. Figure 

A-2D shows alginate and Intralipid®, also in a calcium infused oleic acid bath. In both cases, the 

bath was necessary to complete the gelation process, otherwise the beads fused together. More 

research will be necessary to optimize the bead size, as using alginate and Intralipid® yielded beads 

of very different sizes. Still, it is possible to form an alginate and Intralipid® hydrogel. 
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Figure A-2: Alginate and Intralipid® bead formation on-chip. A) Water-in-oil droplet 

formation using a T-junction. Scale bar = 1 mm. B) Water-in-oil droplet formation using 

flow-focusing. Scale bar = 1 mm. In A) and B), the water was coloured with food colouring 

to increase its visibility. C) Alginate beads in a calcium infused oleic acid bath. Inset shows 

an enlarged image of the beads. D) Intralipid® and alginate beads in a calcium infused oleic 

acid bath. E) Water-in-oil droplet length as a function of the oil and water flow rate. Results 

obtained using the flow-focusing design (B). 
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APPENDIX B - MONTE CARLO LIGHT PROPAGATION 

SIMULATIONS TO EVALUATE SPHEROID VOLUME SAMPLING 

Ehsan Edjlali, post-doctoral researcher at the Laboratory for Radiological Optics, used a Monte 

Carlo light propagation simulation package first developed by Catherine St-Pierre [17] to simulate 

the trajectory of excitation and emission photons through a 300 μm-diameter spheroid. The goal 

was to estimate whether fluorescence photons are generated in the spheroid centre vicinity and if 

those photons are then detected by the HSI system camera, thereby evaluating the ability of the 

imaging system to sample the whole spheroid. A thin and long slab (2 × 2 × 0.5 cm3) with the 

optical properties of air was first implemented. At the centre of the slab, a 300 μm-diameter sphere 

representing a spheroid was modelled and assumed to be homogeneous. Spheroid optical properties 

for eGFP fluorescence excitation (480 nm) and emission (515 nm) were estimated from Hargrave 

et al. [156] and Wallace et al. [157]. First, the wavelength dependency of the elastic scattering 

coefficient was modelled with a power-law approximation similar to that of Intralipid® [158] with 

an anisotropy factor (g) equal to 0.8. Since spheroids contain no strong absorber, the absorption in 

the sphere was hypothesized to only be due to eGFP fluorescence and the absorption coefficient 

set to 2.86 mm-1 (480 nm) and 0.348 mm-1 (515 nm) according to its absorption spectrum [191]. 

The quantum yield for eGFP was set at 0.6. For the simulations, a parallel light source was 

modelled with 2 x 106 excitation photons. Emitted fluorescence photons that crossed the detection 

plane were considered to be detected by the camera, resulting in 5 815 detected fluorescence 

photons. 

Preliminary results are shown in Figure B-1. Positions in the spheroid where eGFP-fluorescence 

photons detected by the HSI system were generated are shown in Figure B-1A, indicating the HSI 

sampling volume. Figure B-1B shows that the density of fluorescence photons detected with the 

HSI system is similar at the spheroid centre compared to the outer layers. Finally, Figure B-1C-D 

shows the accumulative distribution of the generated fluorescence photons mapped on both z and 

x axes. The results show that the fluorescence emitted by cells located at the centre of a 300 μm-

spheroid can be measured using the HSI system. 
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Figure B-1: Sampling volume in a spheroid in transillumination mode. A) Position in a 

300 μm-diameter spheroid where eGFP photons detected by the HSI system’s camera are 

generated. B) Detected photon density as a function of the distance from the spheroid centre. 

Top (C) and side (D) view of the accumulative distribution of the detected fluorescence 

photons in the spheroid. 
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APPENDIX C - STATISTICAL TEST MODIFICATION FOR 

MONOTONIC TREND DETECTION 

During the course of my studies, I collaborated with Mohana Marimuthu, who did her post-doctoral 

fellowship in our laboratory, and developed an improved version of a statistical test, included in 

her work published in Lab on a Chip [78]. Her work focused on designing and validated a funnel-

based microfluidic platform that could produce spheroids of different sizes using the same initial 

cell suspension. She designed the single inlet multi-size spheroid (SIMSS) chip where conical 

structures of varying apex angles funnel cells into a pinhole (Figure C-1). Due to the varying funnel 

sizes, different numbers of cells sediment into each pinhole. This is called the enrichment factor, 

or how many times the funnel will multiply the number of cells in the pinhole compared to a pinhole 

with no funnel on top. 

 

Figure C-1: Single inlet multi-size spheroid chip designed and fabricated by Mohana 

Marimuthu. A) Photograph of a 24 well-SIMSS chip. Scale bar = 2 cm. B) Side view of the 

four centre funnel structures with varying apex angles. Scale bar = 5 mm. 

Photographs of OV90 (Figure C-2A) and TOV112D (Figure C-2B) spheroids show that the SIMSS 

chip can form spheroids of different sizes. The spheroid diameters were measured over three 

repetitions of the experiment and results are shown in Figure C-3. My role in this project was to 

identify a statistical test that can detect if the diameter increase as a function of enrichment factor 

is monotonic. The Mann-Kendall test [192], [193] is a non-parametric statistical test designed to 

detect a monotonic trend over time where the null hypothesis, H0, is that no monotonic trend while 

the alternate hypothesis, HA, is that the data contains a positive, a negative, or a non-null monotonic 

trend. However, only one data point per time period can be considered. The Mann-Kendall test 
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does not include the standard deviation of repeated measurements when determining the statistical 

significance of the trend detection.  

 

Figure C-2: Spheroid formation in a 24 well-SIMSS chip using OV90 (A) and TOV112D 

(B) ovarian cancer cell lines. Well 1 has an enrichment number of 7 and well 8, of 37. 

Reproduced from [78] with permission from The Royal Society of Chemistry. 
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Figure C-3: Spheroid growth as a function of the initial enrichment factor. Box plot showing 

the spheroid diameter on day 5 for OV90 (A) and TOV112D (B). Grey bars represent the 

number of expected cells forming each spheroid due to the funnels. Spheroid diameter on 

day 5, 8 and 10 for OV90 (C) and TOV112D (D). Error bars represent the standard error of 

the mean. Paired two-tailed Student's t-tests between well 1 and 8: for (C) *p = 0.0002, 

†p = 0.0008, ‡p = 0.0002, and for (D) *p = 0.002, †p = 0.0008, ‡p = 0.0008. Reproduced 

from [78] with permission from The Royal Society of Chemistry. 

I modified how the Mann-Kendall test is performed according to Soderberg and Hennet [161]. 

Their main approach was to create data scenarios based on the data points and their error bars. For 

each data points, a value was randomly selected in the range defined by the standard deviation 

around the average value according to a normal distribution. The standard Mann-Kendall test was 

then applied to this data point scenario and a p-value was calculated using the Matlab ktaub 

function [194]. This was then repeated multiple time to yield a distribution of p-values that can 

then be analyzed by observing what percentage of p-values are below 0.05 (% of significant p-

values). 

Table C-1 shows the optimization of the minimum number of scenarios to perform. The modified 

Mann-Kendall test was performed three times for each scenario number and the relative standard 
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deviation was calculated. From 10 to 5 000 scenarios, an improvement in the relative standard 

deviation can be seen, while minimal improvement is seen from 5 000 to 10 000, leading to the 

selection of 5 000 scenarios. 

Table C-1: Number of scenarios optimization. Example using OV90 day 5 diameters 

Number of 

randomized scenarios 

% of significant p-values (p < 0.05) Relative standard 

deviation (%) Run 1 Run 2 Run 3 

10 80.00 90.00 100.00 9.07 

1 000 85.60 85.60 87.60 1.09 

5 000 85.90 86.54 85.78 0.39 

10 000 87.07 86.45 86.78 0.29 

 

The modified Mann-Kendall test using 5 000 scenarios was applied to determine if both cell lines 

spheroid diameters presented a monotonic increase corresponding to the enrichment number and if 

that monotonic increase was present throughout their growth (day 5, 8, and 10 curves in Figure 

C-3C-D). The test yielded a p-value distribution for each day and cell line and the results are shown 

in Table C-2, where bold numbers indicate statistical significance. When the standard Mann-

Kendall test is applied on average diameter, highly statistically significant p-values are found. 

However, when the standard deviation of each data point is considered, nuances can be made. For 

example, TOV112D spheroid diameters at day 5 are statistically significant (p = 0.002) when only 

the average diameter is tested. When 5 000 scenarios are tested, the median p-value is 0.035 and 

the average p-value of the resulting distribution is 0.060, which is not statistically significant. 

63.8% of the scenarios’ p-values are below 0.05. In this case, the modified Mann-Kendall test does 

not detect a monotonic trend. In summary, using the modified Mann-Kendall test, a monotonic 

trend is probable at days 5 and 8 (percentage of significant p-values is between 50% and 95%), and 

certain at day 10 (percentage of significant p-values above 95%). For both cell lines, spheroid 

growth in the first days seems to be more unpredictable and yield less monotonic trends according 

to the enrichment number while, as the spheroids grow, this trend stabilizes and becomes 

monotonic. 
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 Table C-2: Modified Mann–Kendall test applied to OV90 and TOV112D spheroid diameters 

 OV90  TOV112D 

 Day 5 Day 8 Day 10  Day 5 Day 8 Day 10 

p-value using average diameter 0.0002 0.0002 0.0002  0.002 0.0008 0.0008 

5 000 

scenarios 

Median p-value 0.009 0.004 0.004  0.035 0.009 0.004 

Average p-value 0.026 0.014 0.006  0.060 0.028 0.006 

% of significant 

p-values (p < 0.05) 
86.5 94.2 99.6  63.8 83.4 99.3 
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APPENDIX D - DESCRIPTION OF THE MATLAB ALGORITHMS 

This appendix describes the image analysis algorithm developed to analyze hyperspectral images 

of co-culture spheroids. The algorithms are designed to first performed the image analysis steps 

described in Figure 4-2 on the fluorescence and brightfield hyperspectral datacubes, namely, 

acquisition time and gain normalization, dark noise subtraction, shading correction, and ROI 

selections. A further step is performed on each fluorescence ROI quantify fluorescence, if wanted, 

and to spectrally unmix the various spectral entities. At the end of these steps, a formatted data .mat 

file is created for each sample, containing the evolution of the fluorescence of each individual 

spheroid over time. Other metrics such as the number of fluorescent pixels (or the spheroid area) 

are also saved in these files. A final Matlab script reads the individual .mat files corresponding to 

each analyzed sample, removes any empty well, calculates their fluorescence intensity averages 

and standard deviations, and interpret these results in graphs according to the studied conditions.  

D.1 Matlab scripts and functions 

The following section will detail the various Matlab scripts and functions that were developed and 

used throughout this dissertation.  

D.1.1 Script SystemX.m 

This Matlab script is designed to extract the fluorescence intensity of each of the 24 spheroids 

imaged in a single acquisition. “SystemX” refers to the name of the microfluidic chip studied. The 

script calls analysisFunction7.m, described in the next section, for each day of the experiment. One 

script must be run for each analyzed microfluidic chip. 

D.1.2 Function analysisFunction7.m 

The Matlab function analysisFunction7.m performs all the steps necessary to correct and quantify 

each spheroid fluorescence, as listed in Figure 4-2. After all steps are performed, the function saves 

a matrix in a .mat file with the fluorescence intensities over time of all 24 spheroids of one 

microfluidic chip. 

D.1.3 Function CreateStackFromImages.m 

The Labview program used to acquire the hyperspectral images produces one .tiff file per 

wavelength acquired. The images corresponding to one hyperspectral acquisition are placed in the 
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same folder. The function createStackFromImages.m automatically reads all images in each folder 

and sub-folder and create a 3D matrix corresponding to each acquired hyperspectral datacube. The 

matrix dimensions are x x y x wavelengths. 

D.1.4 Function StackDarkNoiseRemoval.m 

This function removes the dark noise from the brightfield and the fluorescence datacubes using the 

“Dark noise (fluorescence)” and the “Dark noise (brightfield)” acquisition describes in Table 4-1. 

The function also produces the graphs presented in Figure D-1. These graphs are used as check-

points to verify that the acquired fluorescence and brightfield spectra are visually correct. 

 

Figure D-1: Dark noise removal for fluorescence (A) and brightfield (B) images. Here, the 

average spectra of the pixels corresponding to one spheroid are represented. 

D.1.5 Function UniformizeStack.m 

The shading correction for fluorescence and brightfield datacubes is applied by the 

uniformizeStack.m function using the “Laser bleed-through” and the “System transmission” 

acquisitions of Table 4-1. Check-point figures of the shading correction are presented in Figure 

D-2. 



126 

 

 

Figure D-2: Fluorescence images (at 515 nm) before (A) and after (B) shading correction. 

Brightfield images (at 720 nm) before (C) and after (D) shading correction. Scale bars = 1 

mm. 

D.1.6 Function automaticSaveWellImagesExtraction.m 

To extract the fluorescence of each individual spheroid, regions of interest (ROI) corresponding to 

each spheroid needs to be determined. To do so, a semi-automatic image registration algorithm 

was implemented in function automaticSaveWellImagesExtraction.m. Briefly, brightfield images 

of each microfluidic chip, at each imaged day, are presented to the user side-by-side with a 

reference image of a microfluidic where well positions are known. The user then points four 

corresponding locations on each image and the algorithm calculates the geometric conversion to 

be applied to the sample image so that it superimposes the reference image. 



127 

 

 

Figure D-3: Before (A) and after (B) the image registration. 

D.1.7 Function spectralUnmixingParfor.m 

For every ROI determined previously, the spectrum at each pixel is analyzed using a spectral 

unmixing algorithm implemented in the spectralUnmixingParfor.m function. The goal of the 

unmixing is to evaluate what and how many reference spectra are present in the measured 

fluorescence spectrum. The implemented unmixing is based on solving a non-negative linear least-

square problem where the basis vectors are reference spectra of each spectral entity in the spheroid. 

The algorithm is designed to find the coefficients to multiply each basis vectors that best minimize 

the residuals between the experimental spectra and the calculated spectra. As the coefficients 

represent the number of times the basis vectors are included in the experiment spectra, they cannot 

be a negative value and are forced to be positive. The function output images corresponding to the 

calculated coefficient of each reference spectrum. Figure D-4 illustrate the spectral unmixing of 

eGFP (A) and mCherry (B) from the bleed-through. The normalized root mean square error is also 

calculated to evaluate the goodness of the fit. To optimize the computation time of this function, 

parallelization on multiple computer cores was implemented in the Matlab function, as each 

analyzed spectrum are independent. 
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Figure D-4: Spectral unmixing of eGFP (A) and mCherry (B). 

D.1.9 Function createMask.m 

Once the regions of interest corresponding to each spheroid in the acquisition are calculated, the 

function createMask.m is used to perform an automatic thresholding based on Otsu’s method [195] 

and calculate a mask where background pixels are forced to 0. This thresholding was performed 

on the x-y image of the summed fluorescence from 500 to 720 nm to improve accuracy. This mask 

is then applied to the resulting coefficient image obtained from function spectralUnmixingParfor.m 

to set the background pixels to zero. Finally, the total fluorescence intensity for that spheroid is 

calculated by summing this masked coefficient image. 

 

Figure D-5: Region of interest for one spheroid before (A) thresholding, and after (B). 

D.1.10 Function graphFluorescence.m/graphSummedFluorescence.m 

Two functions called graphFluorescence.m and graphSummedFluorescence.m are also used 

throughout the algorithm to create a figure containing the wanted fluorescence image, a scale bar 

and a colour scale. Figure D-6 shows an example figure representing the spheroid transmittance at 

720 nm. 
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Figure D-6: Spheroid transmittance at 720 nm. Scale bar = 1 mm. 

D.1.11 Function Interpretation.m 

A final script is used to interpret the fluorescence intensity measurements of each sample according 

to their conditions, such as drug concentration and ratio of cell populations. The script can also 

calculate the standard error of the mean and represent it as a shaded area around the curves. Figure 

D-7 shows selected examples of the figures produced by this script. 
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Figure D-7: Treatment response to talazoparib. A) eGFP fluorescence intensity over time as 

a function of talazoparib concentration. The different graphs show different initial cell 

seeding ratio. B) Similar graphs as in A) but following mCherry fluorescence over time. 

C) One example of the spheroid composition graphs produced by the script. Here, the 

evolution of the spheroid composition as a response to 50 nM of talazoparib is shown. 

D.2 User interface overhaul 

As a summer intern, Didier Black-Laflèche worked on a user interface to the Matlab algorithms, 

in order to facilitate their use by non-technical users. While the interface is not yet fully functional, 

some steps can be done, such as identifying the wells where spheroids were ejected and that should 

be removed from further analysis.  
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Figure D-8: Prototype of the new user interface to facilitate the analysis of complex 

hyperspectral imaging-based experiments.  
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