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RÉSUMÉ

Dans le régime linéaire, deux faisceaux lumineux se traversent sans être perturbés. Cepen-
dant, en présence de non-linéarités optiques, de nombreux effets technologiquement intéres-
sants peuvent être observés, tels que la génération de nouvelles fréquences optiques et le
contrôle d’un faisceau par un autre.

En raison des faibles non-linéarités présentes dans les cristaux optiques, des puissances op-
tiques élevées sont généralement requises pour observer de tels effets non linéaires. Dans
certaines applications, telles que la génération de lumière cohérente, le fonctionnement à
haute puissance n’est pas problématique. En fait, les techniques de mélange de fréquences
et de génération d’harmoniques sont amplement utilisées dans les sources lumineuses com-
merciales avec des longueurs d’onde d’émission allant de l’ultraviolet profond aux régions
infrarouges lointaines du spectre.

Il existe toutefois de nombreuses applications en développement dans lesquelles le fonction-
nement à faible consommation est essentiel. Dans le domaine du calcul optique, par exemple,
des transistors optiques fonctionnant avec des centaines de photons seulement sont nécessaires
pour permettre la fabrication de processeurs optiques plus rapides et plus efficaces que les
processeurs électroniques. De tels systèmes bénéficieraient également d’une conversion de
fréquence à basse puissance afin d’interfacer les signaux optiques de différentes fréquences
sur le même circuit photonique.

Pour que le fonctionnement à faible puissance devienne possible, de très grandes non-linéarités
optiques sont nécessaires. Un système dans lequel les non-linéarités optiques sont si fortes que
l’arrivée d’un seul photon peut bloquer la transmission d’un autre est celui d’un seul émetteur
quantique placé dans une cavité optique de haute qualité. Les principaux inconvénients de
tels systèmes sont leur complexité technologique, leur faible évolutivité et leur fonctionnement
à des températures cryogéniques.

Dans cette thèse, nous étudions une approche alternative pour améliorer les non-linéarités
optiques dans laquelle une collection d’émetteurs est amenée à interagir fortement avec la
lumière, créant des quasiparticules lumière-matière appelées exciton-polaritons. Par rapport
aux systèmes basés sur des émetteurs uniques, notre approche est plus simple et compatible
avec le fonctionnement à température ambiante.

Sous excitation résonnante, les polaritons interagissent fortement par leur composante ex-
citonique et ont permis de mettre en évidence un certain nombre d’effets non linéaires à
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température ambiante. Après avoir passé en revue les principales propriétés des excitons-
polaritons, nous étudions différentes manières d’utiliser les non-linéarités de polaritons pour
le mélange de fréquences et la génération d’harmoniques, ainsi que pour mettre en œuvre de
nouveaux dispositifs non linéaires basés sur des fluides de polaritons.

Dans le premier cas, nous considérons des systèmes dans lesquels le matériau excitonique
incorporé dans une microcavité plane a une importante non-linéarité optique de second ou
de troisième ordre. Nous montrons par des calculs numériques et des expériences que les
modes polaritoniques présentent de nombreux avantages pour améliorer l’efficacité de pro-
cessus non linéaires par rapport aux cristaux non linéaires conventionnels. Celles-ci incluent
l’amélioration du champ électrique de la cavité, l’absence d’exigences d’accord de phase dues
à la courte longueur des microcavités où le bon chevauchement des modes de polaritons
devient bénéfique ainsi que l’accordabilité de l’angle.

En présence d’une non-linéarité de second ordre, nos calculs numériques montrent que les
modes de polaritons peuvent être utilisés pour générer des rayonnements infrarouges et téra-
hertz accordables. Ensuite, nous fabriquons des microcavités fonctionnant dans le régime
de couplage lumière-matière ultra forte contenant un semiconducteur organique non linéaire
possédant une grande non-linéarité de troisième ordre. Nous démontrons une génération de
troisième harmonique accordable et efficace couvrant tout le spectre visible et nous mon-
trons que la non-linéarité optique du matériau a été transmise aux polaritons à travers leur
composante excitonique, constituant ainsi une nouvelle manière d’améliorer les interactions
polariton-polariton.

Dans le contexte des fluides de polaritons, nous effectuons des simulations numériques d’une
microcavité organique lorsque la densité des polaritons est supérieure à un seuil critique.
Au-delà de ce seuil, la dispersion des polaritons par des défauts de l’échantillon est interdite
et le liquide de polariton se comporte comme un superfluide. Nous avons réussi à reproduire
les résultats expérimentaux de la superfluidité à température ambiante dans un condensat
organique de polaritons obtenus par nos collaborateurs et nous avons clarifié la dynamique
temporelle complexe du système. De tels systèmes peuvent permettre d’étudier les fluides
quantiques à température ambiante et aux futurs appareils à polaritons de fonctionner dans
un régime sans dissipation.

Nous concluons notre étude des non-linéarités des polaritons en étudiant une nouvelle classe
de matériaux, celle des dichalcogénures de métaux de transition, dont on a prédit une forte
non-linéarité excitonique. Nous couplons les excitons dans une monocouche de disulfure de
tungstène à une onde de surface se propageant à faible perte et démontrons des polaritons
à onde de surface de Bloch avec de grandes distances de propagation. Quand la densité de
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polaritons est augmentée, nous observons pour la première fois dans ce matériel un décalage
vers le bleu du mode de polariton inférieur, une démonstration claire des non-linéarités de
polaritons.

Après avoir quantifié la force de la non-linéarité, nous implémentons une source de polariton
non linéaire qui, en fonctionnement à deux pompes, est identique à un transistor à polariton.
Nous soulignons que, bien que les besoins en énergie soient encore trop élevés pour des applica-
tions pratiques, notre système surpasse déjà les systèmes organiques à température ambiante
en termes de stabilité et de distances de propagation. La structure est de fabrication sim-
ple et peut être adaptée à d’autres matériaux et même à des hétérostructures multicouches,
permettant d’étudier les fluides polaritoniques dans divers systèmes excitoniques.
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ABSTRACT

In the linear regime, two light beams will go through one another unperturbed. However, in
the presence of optical nonlinearities, many technologically interesting effects can be observed,
such as the generation of new optical frequencies and the control of one beam by another.

Due to the small nonlinearities found in optical crystals, high optical powers are typically
required to observe such nonlinear effects. In some applications, such as in coherent light
generation, high power operation is not problematic. In fact, frequency mixing and har-
monic generation techniques are extensively used in commercial light sources with emission
wavelengths ranging from the deep ultraviolet to the far infrared regions of the spectrum.

There are, however, many developing applications in which low power operation is critical.
In the field of optical computation, for instance, optical transistors operating with only
hundreds of photons are required to enable the fabrication of optical processors that are
faster and more efficient than electronic ones. Such systems would also benefit from low
power frequency conversion in order to interface optical signals of different frequencies to the
same photonic circuit.

For low power operation to become feasible, very large optical nonlinearities are required.
One system in which optical nonlinearities are so strong that the arrival of a single photon
can block the transmission of another is that of a single quantum emitter placed inside a
high quality optical cavity. The main drawbacks of such a system are their technological
complexity, low scalability and operation at cryogenic temperatures.

In this thesis, we study an alternative approach to enhancing optical nonlinearities, in which
a collection of emitters is made to interact strongly with light, creating mixed light-matter
quasiparticles called exciton-polaritons. Compared to systems based on single emitters, our
approach is of simpler implementation and is compatible with room-temperature operation.

Under resonant excitation, polaritons interact strongly through their excitonic component
and have allowed for the demonstration of a number of nonlinear effects at room temperature.
After reviewing the main properties of exciton polaritons, we investigate different ways in
which polariton nonlinearities can be used for frequency mixing and harmonic generation, as
well as for implementing novel nonlinear devices based on interacting polariton fluids.

In the first case, we consider systems in which the excitonic material embedded in a pla-
nar microcavity has a large second- or third-order optical nonlinearity. We show through
numerical calculations and experiments that polaritonic modes have many advantages for
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enhancing the efficiency of nonlinear processes when compared to conventional nonlinear
crystals. These include the cavity electric-field enhancement, the absence of phase-matching
requirements due to the short length of the microcavities, where the good overlap of polariton
modes becomes beneficial, and angle tunability.

In the presence of a second-order nonlinearity, our numerical calculations show that polariton
modes can be used for the generation of tunable infrared and terahertz radiation. Then, we
fabricate microcavities operating in the ultrastrong light-matter coupling regime containing
an organic nonlinear dye possessing a large third-order nonlinearity. We demonstrate efficient
tunable third-harmonic generation spanning the entire visible spectrum and show that the
optical nonlinearity of the dye was imparted onto polaritons via their excitonic component,
thus constituting a new way of enhancing polariton-polariton interactions.

In the context of polariton fluids, we perform numerical simulations of an organic microcavity
when the density of polaritons is increased above a critical threshold. Above this threshold,
scattering of polaritons by defects in the sample becomes energetically forbidden and the
polariton liquid behaves as a superfluid. We succeed in reproducing the experimental results
of room-temperature superfluidity in an organic polariton condensate obtained by our collab-
orators and we shed light onto the complicated time dynamics of the system. Such systems
can enable the study of quantum fluids at room-temperature and future polariton devices to
operate in a regime without dissipation.

We conclude our study of polariton nonlinearities by investigating a new class of materials,
that of atomically-thin transition metal dichalcogenides, which have been predicted to show
strong excitonic nonlinearities. We couple the excitons in a monolayer of tungsten disulfide
to a low-loss propagating surface wave and demonstrate Bloch surface wave polaritons with
large propagation distances. As the density of polaritons is increased, we observe for the first
time in this material set a blueshift of the lower polariton mode, a clear demonstration of
polariton nonlinearities.

After quantifying the strength of the nonlinearity, we implement a nonlinear polariton source,
which under two-pump operation is identical to a polariton transistor. We highlight that
although the power requirements are still prohibitively high for practical applications, our
system already outperforms organic ones at room temperature in terms of stability and
propagation distances. The structure is of simple fabrication and can be tailored to other
materials and even multilayer heterostructures, allowing the study of polariton fluids in a
variety of excitonic systems.
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white lines indicate the angle dependence of the DFG energy. For the
upper panel, as the white line moves out of resonance with the black
LP line, the DFG peak is suppressed. For the lower one, a slight in-
crease is observed around 57o and corresponds to an enhancement of
the triple-resonance condition, after which the irradiance rolls off. . . 42

Figure 3.5 DFG enhancement of a λ/2 (111) GaAs cavity structure with respect
to a bare slab. GaAs parameters: εB = 12.53, f = 1.325 · 10−3, h̄ω0 =
1.515 eV and h̄Γ = 0.1 meV [99]. The same value of χ(2) = 300 pm/V
was used as for the NLO polymer. Due to the presence of the substrate,
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1

CHAPTER 1 INTRODUCTION

Modern communication networks use optical signals to transmit information because light
can propagate unperturbed over large distances and at a very high speed. Such success has
motivated the use of optical interconnects also inside integrated circuits, where increasing
the operating speed and lowering the heat dissipation are critical. However, the routing and
modulation of optical signals at increasingly high speeds poses a technical challenge.

Materials possessing strong optical nonlinearities can enable one light beam to manipulate
another almost instantaneously. However, even the best nonlinear optical crystals still require
strong optical excitation to produce significant nonlinear effects. Thus, significant attention
has been devoted to developing new materials with stronger nonlinearities and to finding new
physical systems displaying nonlinear optical behaviour.

One such system consists of a single quantum emitter, such as a quantum dot or a molecule,
placed inside a high quality optical resonator [1, 2]. When the cavity mode is resonant with
an excitonic transition of the emitter, a photon inside the cavity can be absorbed and re-
emitted multiple times before escaping the cavity. This coherent energy exchange is better
described not in terms of photons and excitons, but in terms of new half-light, half-matter
quasiparticles called exciton-polaritons [3–5]. In the particular case of a single emitter, the
effective optical nonlinearity is so large that the presence of a single photon can modify the
response of the system.

Because cavity polaritons essentially behave as strongly interacting photons, even for multiple
emitters and in the high-excitation regime, they have attracted significant interest both for
fundamental studies and for technological applications [6, 7]. These include the study of
quantum fluids in room-temperature polariton Bose-Einstein condensates, nonlinear optics
by enabling ultra-efficient parametric scattering, amplification [8–10] and bistability [11],
solid-state lighting and sensing through low threshold inversionless lasers [12–14] and all-
optical polaritonic circuits [15–18].

This thesis was motivated by the unique properties of cavity exciton-polaritons and by their
great technological potential. We begin by exploring the use of nonlinear materials to enhance
resonant polariton nonlinearities in the context of frequency mixing and harmonic generation.
Then, we study two systems in which polaritons propagate in a fluid-like fashion. In the
first one, an organic microcavity, we investigate the regime of polariton superfluidity. In
the second, we use surface waves to observe polariton nonlinearities in an atomically-thin
semiconductor monolayer.
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1.1 Outline

We begin our study in Chapter 2 with a review of the fundamental concepts of exciton-
polaritons. First, we study the energy dispersion and the main figures of merit of planar
microcavities. Then, we introduce the concept of excitons and use it to describe the dielectric
response of semiconductors. That allows us to consider the case of a cavity filled with
an excitonic material and to treat the coupling of light and matter explicitly. Finally, we
discuss the origin of polariton-polariton and polariton-exciton interactions and present a
short literature review of the main nonlinear effects observed in polaritonic systems.

In Chapter 3 we consider the case when the semiconductor layer inside the cavity is non-
centrosymmetric and possesses an intrinsic second-order susceptibility. We numerically in-
vestigate the use of polaritonic modes to allow for the generation of tunable infrared and
terahertz radiation. We show that the generation of Rabi-frequency radiation, a process
which is analogous to classical difference-frequency generation (DFG), can have efficiency
enhancement factors of up to three orders of magnitude in the polaritonic case compared to
bare films. This is shown to be not only due to the enhancement of the electric fields, but
also due to the increased modal overlap of polaritonic modes. The discussion presented in
this chapter was adapted from the publication [19]

F. Barachati, S. De Liberato, and S. Kéna-Cohen, “Generation of rabi-frequency
radiation using exciton-polaritons”, Phys. Rev. A, vol. 92, p. 033828, Sep
2015. Copyright c© 2015 by the American Physical Society. DOI: 10.1103/Phys-
RevA.92.033828.

The three following chapters discuss the effects of third-order nonlinearities. In Chapter 4,
we fabricate organic microcavities embedding a nonlinear dye possessing a large optical third-
order susceptibility, which leads to enhanced polariton-polariton interactions via their pho-
tonic component. The increased nonlinearity is used to demonstrate tunable third-harmonic
generation (THG) from polaritons spanning the entire visible spectrum. We also address the
peculiarities of the ultrastrong light-matter coupling regime. This chapter was adapted from
the publication [20]

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-
Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong
coupling regime”, ACS Photonics, vol. 5, no. 1, pp. 119–125, 2018. Copyright
c© 2018 by the American Chemical Society. DOI: 10.1021/acsphotonics.7b00305.

http://dx.doi.org/10.1103/PhysRevA.92.033828
http://dx.doi.org/10.1103/PhysRevA.92.033828
http://dx.doi.org/10.1021/acsphotonics.7b00305
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Contrary to Chapter 4, most materials have a very low third-order susceptibility. Nonetheless,
third-order nonlinear effects are still observed in organic polaritonic systems. To compen-
sate for weak nonlinearities, the density of polaritons must be increased substantially. In
Chapter 5, we present the main experimental results obtained by our collaborators in the
group of Dr. Daniele Sanvitto (CNR Nanotec institute), which show the first evidence of
room-temperature superfluid behavior in an organic polariton condensate. They observed
that at sufficiently high densities and for a certain range of group velocities, the polariton
flow transitioned from dissipative to scattering-free.

Using their experimental parameters, we perform time-dependent simulations of the polariton
fluid, modeled by a mean-field dissipative Gross-Pitaevskii equation. We reproduce the
superfluid behaviour and shed light on the complicated temporal dynamics of the system.
This chapter focuses on the numerical simulations performed in our group and the results
presented here were adapted from the publication [21]

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Do-
minici, M. De Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto,
“Room-temperature superfluidity in a polariton condensate”, Nature Physics,
vol. 13, no. 9, p. 837, 2017. Copyright c© 2017 by Springer Nature: Nature
Physics. DOI: 10.1038/nphys4147.

Finally, in Chapter 6, we demonstrate strong light-matter coupling between excitons in a
monolayer transition metal dichalcogenide and a propagating Bloch surface wave. As a re-
sult of the low losses in both the dielectric mirror and the monolayer, the polariton fluid is
capable of propagating over macroscopic distances. The increased polariton lifetime due to
the low losses and the large electric field enhancement allowed us to perform the first demon-
stration of polariton nonlinearities in this class of materials. We quantify the nonlinearity
and demonstrate a nonlinear polariton source. The discussion presented in this chapter was
adapted from the publication [22]

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L.
Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids
in a monolayer of tungsten disulfide”, Nature Nanotechnology, 2018. Copyright
c© 2017 by Springer Nature: Nature Nanotechnology. DOI: 10.1038/s41565-018-
0219-7.

http://dx.doi.org/10.1038/nphys4147
http://dx.doi.org/10.1038/s41565-018-0219-7
http://dx.doi.org/10.1038/s41565-018-0219-7
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CHAPTER 2 CAVITY EXCITON-POLARITONS

2.1 Planar optical microcavities

One of the main advantages of confining light within optical resonators is the possibility to
enhance the intra-cavity electric field. The field enhancement and spatial confinement lead to
stronger light-matter interactions and reduced power and phase-matching constraints for the
observation of nonlinear effects. In this section we will focus on planar optical microcavities,
typically referred to as Fabry-Perot resonators, and review their main properties.

Consider the simple case of a symmetric microcavity composed of a lossless central layer of
thickness L and refractive index n, sandwiched between two identical mirrors with reflection
coefficient rM and surrounded by air. A schematic of this system is shown in Fig. 2.1a.

θk||

k

n

L

rM rM

k

Energy

k//

a b

EC

Figure 2.1 (a) Planar microcavity consisting of two flat mirrors and a uniform semiconductor
layer. (b) Cavity dispersion as a function of the in-plane wavevector k‖, which is related to
the angle of incidence θ by k‖ = (ω/c) sin θ.

It can be shown by the transfer matrix method (TMM), which will be described in detail in
Chapter 3, that the optical frequencies supported by this simple resonator are given by [23]

r2
Me

2ikc⊥L = 1. (2.1)

We will begin our analysis by considering that the cavity is composed of ideal mirrors, where
light is completely reflected at the surface without suffering losses. Then, we will consider
the particularities of metallic and dielectric mirrors in terms of losses and field penetration.
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2.1.1 Ideal mirrors

For the case of ideal mirrors with rM = e−iπ, the eigenfrequencies of the q ≥ 1 supported
modes are given by

kc⊥L = qπ. (2.2)

From the boundary conditions at the air/mirror and mirror/cavity interfaces, the wavevector
components inside the cavity (with superscript c) can be related to those in air by

|kc|2 = n2|k|2 = n2(ω/c)2, (2.3)

kc‖ = k‖ = (ω/c) sin θ, (2.4)

and
kc⊥ =

√
|kc|2 − k2

c‖ =
√
n2(ω/c)2 − (ω/c)2 sin2 θ = (ω/c)

√
n2 − sin2 θ. (2.5)

For simplicity, whenever possible we will represent vector quantities in regular text (e.g.
k ≡ k,r ≡ r) throughout this manuscript. Combining Eqs. (2.2) and (2.5), we obtain the
following relationship

ω

c

√
n2 − sin2 θ = qπ

L
, (2.6)

which can be rewritten as

ω(k‖) =

√√√√(qπc
nL

)2
+
(
ck‖
n

)2

. (2.7)

If we define EC(0) = h̄qπc
nL

as the cavity energy at normal incidence, the cavity dispersion
relation can be written as

EC(k‖) =

√√√√E2
C(0) +

(
h̄ck‖
n

)2

. (2.8)

The dispersion given by Eq. (2.8) has a parabolic shape as a function of k‖ and is illustrated
in Fig. 2.1b. By performing a Taylor expansion on Eq. (2.8) we obtain

EC(k‖) = EC(0) +
h̄2c2k2

‖

2n2EC(0) = EC(0) +
h̄2k2

‖

2m‖
, (2.9)

where m‖ = n2EC(0)
c2 = h̄qπn

cL
is defined as the photon effective mass. Therefore, the dispersion

of a cavity photon in an ideal planar microcavity resembles that of a free particle with
mass m‖ in the region h̄(c/n)k‖ � EC(0), what is commonly referred to as the effective
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mass approximation. The extremely low effective mass of cavity photons, of the order of
10−10 ∼ 10−7 times the electron mass, will play an important role in the nonlinear properties
of cavity exciton-polaritons in the context of Bose-Einstein condensation.

Finally, it is interesting to rewrite the dispersion shown in Eq. (2.7) also including the effective
mass

[h̄ω]2 =
[
m‖c̃

2
]2

+
[
h̄c̃k‖

]2
. (2.10)

According to special relativity, this is exactly the dispersion of a relativistic particle of mass
m‖ moving at a speed c̃ = c/n [24].

2.1.2 Metallic mirrors

In the previous section we considered ideal mirrors with reflection coefficient rM = e−iπ. The
π phase change is responsible for the vanishing of the cavity electric field at the surface of the
mirrors while |rM |2 = 1 indicates the absence of losses. In practice though, both the losses
and the finite penetration of the electric field in the mirror must be taken into account.

To include material losses we introduce an imaginary contribution to the now complex re-
fractive index

n = ñ+ iκ. (2.11)

At normal incidence, the Fresnel reflection coefficient at the air interface of a material with
index n is given by [25]

rM(0) = 1− ñ− iκ
1 + ñ+ iκ

. (2.12)

The refractive index of metals is characterized by a large imaginary part and a small real part.
For example, the refractive index of thermally-evaporated silver at a wavelength of 1 µm is
n = 0.12 + 7.15i and the corresponding reflection coefficient is rM(0) = −0.96 − 0.27i =
0.995e−i0.9π. In the limit ñ→ 0 and κ→∞ we recover the behavior of an ideal mirror.

Aside from limiting the electric field enhancement, metal losses lead to a broadening of the
mode linewidth. This has a direct impact on the quality factor Q, one of the main figures of
merit for optical microcavities in the presence of losses. It quantifies the amount of energy
stored inside the resonator compared to that lost in each round-trip and is defined as

Q = ω0

∆ω , (2.13)

where ω0 and ∆ω are the cavity mode frequency and full-width at half-maximum (FWHM),
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respectively. The high losses stemming from metallic mirrors typically limit the quality
factors of single-mode planar microcavities to Q < 200. The quality factor is also connected
to the cavity photon lifetime

τc = Q

ω0
, (2.14)

with typical values of the order of τc ∼ 100 fs. Such short lifetimes typically make the
observation of nonlinear polariton effects in metallic cavities challenging due to the difficulty
in achieving high polariton densities. In contrast, much longer lifetimes (> 100 ps) can be
attained through the use of low loss dielectric mirrors [26].

The penetration of the electric field into metallic mirrors is limited by an exponential decay
of the form

E(x) = E0e
2πκx/λ, (2.15)

where E0 is the incident field, λ the wavelength of light and x the propagation distance from
the surface of the mirror. For a thermally-evaporated silver mirror, the field falls to E0/2 in
∼ 15 nm, a distance much smaller than the wavelength. Therefore, for metallic microcavities,
the resonance frequency is dictated by the cavity length, which for a single-mode cavity is
given by L = λ/(2n).

At high angles of incidence, the longer field penetration for the transverse magnetic (TM)
component compared to the transverse electric (TE) one leads to a TE-TM mode splitting.
Still, Eq. (2.8) can be used to accurately describe the dispersion in metallic microcavities as
long as the refractive index n is replaced by the polarization-dependent effective index [27]

neff,TE = n (2.16)

neff,TM = n(2dp + L)√
L2 − (2dp)2

, (2.17)

where dp = c/ωp is an effective plasmonic penetration depth (∼ 20 nm for silver) and ωp is
the plasma frequency. The effective index for TM polarization can be much larger than that
of the cavity material and leads to a flatter dispersion.

2.1.3 Dielectric mirrors

Although metallic mirrors are extremely simple to fabricate, metal losses impose important
limitations on the cavity electric field enhancement and quality factor. An attractive alterna-
tive of more complex fabrication is found in distributed Bragg reflectors (DBRs), which are
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mirrors composed of alternating dielectric layers of high (nH) and low (nL) refractive index.
When operated in the transparency region of the dielectrics, the mirror losses are extremely
low and stem mainly from scattering due to layer roughness and growth imperfections.

Each layer of the periodic stack has a thickness of λ/(4nH,L), where λ is the design wavelength,
such that the constructive interference of successive reflections for waves with wavelength in
the vicinity of λ will lead to a high reflectivity. At this wavelength, the reflection coeffi-
cient for a DBR surrounded by air and a cavity material of index n at normal incidence is
approximately given by [23]

rDBR = −
√

1− 4n
(
nL
nH

)2N
, (2.18)

where N is the number of periods. The reflectivity rapidly approaches unity for N large and
for dielectric materials with large refractive index contrast. For instance, at a wavelength
of λ = 1 µm, a DBR with 20 pairs of amorphous silicon (nH = 3.46) and silicon dioxide
(nL = n = 1.50) has a reflection coefficient of rDBR = −0.9999998. Consequently, DBR mi-
crocavities enable quality factors and electric field enhancements several orders of magnitude
larger than those possible with metallic mirrors.

The range of wavelengths where the mirror reflectivity remains high is known as the stop
band. At normal incidence, the center of the stop band is related to the design wavelength
by [23]

ωs = 2πc
λ

(2.19)

and the width is given by [23]

∆ωs = ωs
4
π

sin−1
(
nH − nL
nH + nL

)
. (2.20)

The stop band becomes wider for materials with a high refractive index contrast. This is
particularly useful when the cavity or polariton modes of interest span a large energy interval.

Finally, the electric field penetration in the mirrors is characterized by [23]

LDBR(θ) = λ

2(n2
H − n2

L)
(
nH cos2 θH + nL cos2 θL

)
, (2.21)
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where θH,L are the angles inside the dielectric layers

θH,L = sin−1
(

sin θ
nH,L

)
. (2.22)

For conventional materials with a refractive index contrast of nH − nL = 0.5, LDBR ∼ λ

and the cavity resonance will not be dictated only by the cavity length L, as in the case for
metallic mirrors. Instead, the cavity mode frequencies are given by [23]

ωq(θ) = Lω(θ) + LDBRωs(θ)
L+ LDBR(θ) , (2.23)

where the full polarization and angle dependence of each term must be taken into account.
Since in practice LDBR is typically larger than L, the cavity resonance frequency is more
strongly determined by the center of the stop band.

Comparison

To illustrate the concepts described in Sections 2.1.2 and 2.1.3, we show in Fig. 2.2a,b the
reflectivity spectra for planar microcavities with dielectric (a) and metallic (b) mirrors. The
corresponding quality factors are indicated for the first cavity mode, as well as the position
of the stop band in the dielectric case. Figure 2.2c,d shows the corresponding electric field
enhancements, where the vertical lines indicate the interfaces of the mirror elements. Note
the larger spatial extent and enhancement of the electric field in the dielectric case.

Surface modes

Planar microcavities are by no means the only optical resonator architecture used in the
study of strong light-matter coupling. Here we highlight that the dielectric mirrors them-
selves support confined optical modes, known as Bloch surface waves (BSWs). Dielectric
mirrors are typically grown by various techniques on transparent glass substrates. When the
angle of incidence of light inside this substrate is higher than sin−1(1/nglass), light will suffer
total internal reflection at the top mirror/air surface. The set of angles of incidence and
wavelengths where the mode wavevector is larger than the one in air (k0 = ω/c) constitutes
the so-called light line.

It can be shown that the solution of the wave equation for a periodic dielectric structure in
contact with a homogeneous medium, such as for a DBR interfaced with air, leads to a set of
allowed propagation constants that fall beyond the light line and within the stop band of the
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Figure 2.2 Reflectivity spectra for a planar microcavity with (a) dielectric and (b) metallic
mirrors. The first cavity mode M1 is indicated, as well as the position of the stop band in
the DBR case. The DBR consisted of 10 pairs of SiO2/Ta2O5 with thicknesses of 171 nm
and 117 nm, respectively, while the silver mirrors were 40 nm thick. The cavity thicknesses
were LD = 278 nm and LM = 232 nm for the same background index of n = 1.8. Electric
field enhancement for the first cavity mode for the (c) dielectric and (d) metallic cases. The
vertical lines indicate the interfaces of the mirror elements.

DBR. For these waves, as shown in Fig. 2.3b, the electric field is confined near the surface of
the mirror and has an exponential decay in air of the form (for TE polarization) [28]

Ey(x, z, t) = ESe
−βxei(ωt−kc‖z), (2.24)

where ES is the field amplitude at the surface, β is the field decay constant (perpendicular
to the surface) and kc‖ is the propagation constant (parallel to the surface). The field decay
constant is given by [28]

β =
√
k2
c‖ −

(
ω

c

)2
. (2.25)

An effective refractive index can be associated to the BSW mode from the normalized prop-
agation constant [28]

kc‖
k0

= kc‖
ω/c

= n sin(θ) = neff . (2.26)
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Since neff > 1, BSW modes must be excited through a prism, what is known as the
Kretschmann configuration, or through an immersion microscope objective with numerical
aperture (NA) larger than neff .

Figure 2.3a shows the reflectivity of a DBR mirror at increasing normalized momenta. As
the angle of incidence θ increases, the stop band of the mirror moves to shorter wavelengths
(higher energies). Inside the stop band and above the light line, a very narrow BSW mode
can be seen. Figure 2.3b shows the electric field profile and enhancement for the BSW mode
at a wavelength of λ = 700 nm and corresponding angle of incidence of θ = 51.27o. The field
decays to ES/2 in a distance of 36 nm and this is inversely proportional to the magnitude of
β. Such BSW modes will propagate on the surface of the sample with a group velocity given
by vg = 1

h̄
dEBSW (k)

dk
and will be revisited in Chapter 6.
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Figure 2.3 (a) Reflectivity of a DBR as a function of normalized in-plane momentum. A
narrow Bloch surface wave mode can be seen inside the stop band and above the light line.
(b) Irradiance enhancement showing that the field peaks close to the surface and decays
exponentially in air. The structure consisted of five pairs of Ta2O5/SiO2 (117 nm/171 nm)
followed by a narrower pair (20 nm/20 nm).

2.2 Semiconductors

In this section we will review a few basic properties of semiconductor materials. We will
review the main concepts of quasiparticles called excitons, which are bound electron-hole
pairs created within these materials, and highlight the main differences in the response of
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organic and inorganic semiconductors to light.

2.2.1 Excitons

Following the absorption of a photon in a semiconductor, an electron is promoted to a higher
energy band and leaves behind a positively charged vacancy (a hole) in the previously filled
lower energy band, as shown in Fig. 2.4. The resulting system is similar to a hydrogen atom,
with the main differences being that the Coulomb attraction is now screened by the dielectric
medium and that the masses of the proton and electron are replaced by effective hole and
electron masses accounting for the specific band structure of the material. The wavefunction
of the 1s exciton is given by [25]

Ψ(r)1s = 1√
πa3

B

e−r/aB , (2.27)

where r is the distance between the electron and the hole. The Bohr radius aB is defined as
[25]

aB = 4πεrε0h̄2

m∗e2 , (2.28)

where m∗ = memh/(me + mh) is the reduced exciton mass, −|e| is the electron charge and
εrε0 = ε is the dielectric permittivity.

One of the most important quantities we will also consider is the exciton binding energy EB,
given by [25]

EB = h̄2

2m∗a2
B

. (2.29)

This is the energy required to ionize the exciton into a free electron and hole. Excitons will
auto ionize at temperatures above T > EB/kB, where kB is Boltzmann’s constant, and this
indicates the temperature regime where excitons are stable and can be observed.

These two properties can be used as a starting point to understand excitonic effects in different
semiconductor materials. Organic semiconductors have dielectric constants of the order εr ∼
3, much lower than in their inorganic counterparts where εr ∼ 10. As a consequence, excitons
in these materials, called Frenkel excitons, are highly localized. Figure 2.4a shows a schematic
of a crystalline organic semiconductor and two types of Frenkel excitons, the first localized
on the same molecule and the second, known as a charge transfer (or CT) exciton, shared
between two adjacent molecules. In the case of inorganics, shown in Fig. 2.4b, the large Bohr
radii means the so-called Wannier-Mott excitons are delocalized over many lattice sites.
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This will have important consequences on the exciton-exciton interaction strength in these
materials.
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Figure 2.4 (a) Schematic of an organic crystal with low dielectric constant, illustrating Frenkel
excitons localized in one molecule or in neighboring molecules (charge transfer or CT exciton).
The ground state of a molecule (S0) has singlet character due to pairing of electronic spins.
Absorption of a photon leads the molecule to the first excited singlet state (S1). Absorption
of light occurs between the highest occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO). (b) Schematic of an inorganic crystal with high dielectric
constant, illustrating Wannier-Mott excitons delocalized over many lattice sites. Absorption
of light promotes an electron from a filled valence band into an empty conduction band. This
considers that the semiconductor is at a temperature of 0K.

The much lower dielectric constant in organic semiconductors also leads to an increase in the
exciton binding energy to values much larger than kBT ∼ 25 meV, even exceeding 1 eV. As a
result, the optical properties of organic semiconductors are dictated by Frenkel excitons even
at room temperature. In sharp contrast, the binding energies of Wannier-Mott excitons are
typically much lower than kBT and they are only stable at cryogenic temperatures. Organic
semiconductors are therefore very attractive for enabling practical excitonic devices operating
at room temperature.

The large spatial extent of Wannier-Mott excitons makes them very sensitive to spatial con-
finement. A typical strategy to stabilize excitons in inorganic semiconductors is to confine
them to two dimensions (2D) inside a quantum well, which is typically narrower than the
exciton radius [25]. This leads to an enhancement of the binding energy of E2D

B = 4EB and
a reduction of the Bohr radius of a2D

B = aB/2. The limiting case is found in atomically
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thin semiconductors, such as transition metal dichalcogenide (TMD) monolayers, for which
Wannier-Mott excitons with EB > 10kBT are common and therefore stable at room temper-
ature. At the same time, the modified screening in these materials is expected to contribute
to enhancing exciton-exciton interactions [29], potentially combining the best properties of
organic and inorganic semiconductors for practical nonlinear devices.

2.2.2 Linear response

To describe the interaction of an exciton with light outside a microcavity, we will consider
a classical model that, despite its simplicity, will enable us to introduce many important
concepts of light-matter interaction. We consider the case of an electron bound to a hole
under an applied electric field. The system behaves as a driven damped harmonic oscillator,
where the natural frequency ω0 is equal to the exciton transition frequency and the damping
γ stems from interactions with the environment. The position x̃ of the electron is described
by [30]

¨̃x+ 2γ ˙̃x+ ω2
0x̃ = −|e|Ẽ(t)/me. (2.30)

If the electric field has the form (we will omit the complex conjugates) [30]

Ẽ(t) = E(ω)e−iωt, (2.31)

the solution to Eq. (2.30) is the so-called linear Lorentz model, which is given by [30]

x̃(t) = x(ω)e−iωt, (2.32)

where
x(ω) = − |e|

me

E(ω)
D(ω) (2.33)

and with the complex denominator function defined as

D(ω) = ω2
0 − ω2 − 2iωγ. (2.34)

The total contribution of a number density N/V of excitons to the linear polarization is [30]

P (1)(ω) = −N |e|
V

x(ω). (2.35)
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We can now introduce the linear susceptibility χ(1) as [30]

P (1)(ω) = ε0χ
(1)(ω)E(ω), (2.36)

which relates the applied electric field to the resulting polarization. Combining these two
expressions we obtain

χ(1)(ω) = Ne2

V ε0me

1
D(ω) . (2.37)

The complex dielectric constant can be obtained from

ε(ω) = ε0(1 + χ(1)) = ε0 + Ne2

V me

1
D(ω) . (2.38)

This model considers that all excitons contribute to the oscillator. We can generalize Eq. (2.38)
by considering multiple oscillators at different frequencies ω0i and that only a fraction fi of
the excitons contributes to each oscillator. Then,

ε(ω) = ε0 + Ne2

V me

∑
i

fi
ω2

0i − ω2 − 2iωγi.
. (2.39)

The fraction fi is called the oscillator strength and will play an important role in the discus-
sion of strong light-matter coupling.

2.2.3 Nonlinear response

When considering Eq. (2.30), we implicitly imposed that the electron was trapped in a
symmetric and infinite parabolic potential of the form [30]

U(x̃) = 1
2meω

2
0x̃

2. (2.40)

A more realistic model would consider the parabolic potential to be a good approximation
only for small displacements, while additional correction terms would be required under
intense driving. We will now consider a new potential well described by

U(x̃) = 1
2meω

2
0x̃

2 + 1
3meax̃

3 − 1
4mebx̃

4. (2.41)

The second term with a > 0 describes an anharmonic correction which is only non-vanishing
in non-centrosymmetric systems where U(x̃) 6= U(−x̃). The last term with b > 0 is the lowest
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order correction to an ideal parabolic potential well. Since the first term was associated with
a linear polarization P (1)(ω) and susceptibility χ(1)(ω), the correction terms will give rise to
second- and third-order polarization contributions [30], such as for example

P (2)(2ω) = ε0χ
(2)(2ω;ω, ω)E2(ω) (2.42)

P (3)(3ω) = ε0χ
(3)(3ω;ω, ω, ω)E3(ω) (2.43)

and their corresponding susceptibilities [30]

χ(2)(2ω;ω, ω) = N |e|3a
ε0V m2

e

1
D(2ω)D2(ω) (2.44)

χ(3)(3ω;ω, ω, ω) = N |e|4b
ε0V m3

e

1
D(3ω)D3(ω) . (2.45)

When the incident electric field only contains a single frequency ω = ω1, the above nonlinear
susceptibilities are responsible for the generation of new frequency components with two and
three times the fundamental frequency, which is referred to as second- and third-harmonic
generation. When more frequency components are present (e.g. ω2 and ω3), several additional
nonlinear mixing processes can take place, such as sum- (e.g. ω1+ω2) and difference-frequency
(e.g. ω1 − ω2) generation and parametric scattering (e.g. ω1 + ω2 − ω3). The processes of
difference-frequency generation and third-harmonic generation will be explored further in
Chapters 3 and 4, respectively.

In this simplified analysis we have neglected the tensor nature of the susceptibilities (χ(1)
ij ,

χ
(2)
ijk and χ(3)

ijkl, where ijkl ∈ xyz. The tensor elements will depend on the intrinsic symmetry
of the system and will typically set important constraints on the polarization of the incident
electric fields in order to enable or maximize different nonlinear processes.

2.3 Cavity exciton-polaritons

Having introduced the basic properties of planar optical microcavities and of semiconductor
excitons separately, we are now ready to revisit the system shown in Fig. 2.1a. We will see
that the strong coupling of the light and matter components leads to the creation of hybrid
quasiparticles called exciton-polaritons, which are part photon and part exciton.

In the nonrelativistic regime, the interaction energy of an electron with an electric field,
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described by a vector field Â in the Coulomb gauge, is given by [31]

Ĥ = 1
2me

(
p̂+ |e|Â

)2
. (2.46)

In addition to the kinetic energy of the electron, this Hamiltonian contains terms proportional
to p̂ · Â, representing the interaction of light and matter, and terms proportional to Â2,
describing a renormalization of the electric field. Similarly, we will represent the exciton-
photon interaction Hamiltonian as [32]

Ĥ = Ĥres + Ĥantires + ĤA2 . (2.47)

The first two terms arise from the p̂ · Â contribution, where resonant (anti-resonant) terms
couple states with same (opposite) in-plane momenta. The last term arises from the contri-
bution of the squared vector potential and contains both resonant and anti-resonant terms.
First, we will consider the strong coupling regime, where only the first term in Eq. (2.47) is
non-negligible. Then, the full Hamiltonian will be discussed in the context of the ultrastrong
coupling regime (USC). The extreme cases of weak and deep coupling will not be considered
here but have been reviewed extensively in the literature [25, 33].

2.3.1 Strong coupling regime

The resonant term in Eq. (2.47) can be written as [34]

Ĥres =
∑
k

EC(k)â†kâk +
∑
k

EX b̂
†
kb̂k +

∑
k

h̄ΩR

2
(
â†kb̂k + âkb̂

†
k

)
, (2.48)

where EC(k) is the cavity dispersion, EX is the exciton energy,1 h̄ΩR is the so-called Rabi
splitting and âk (b̂k) is the annihilation operator for a cavity photon (semiconductor exciton)
with in-plane momentum k, which is a good quantum number due to the invariance of the
system under in-plane translations. For simplicity, we will omit the ‖ symbol. The first
two terms in Eq. (2.48) correspond to the kinetic energies of the bare (uncoupled) particles,
while the last corresponds to a coherent energy exchange process in which a photon is created
(destroyed) and an exciton with the same wavevector (hence resonant) is destroyed (created).

1We neglect the dispersion of EX because the exciton effective mass is several orders of magnitude larger
than that of the cavity photon.
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This Hamiltonian can be written in diagonal form [34]

ĤPres =
∑
k

EP (k)p̂†kp̂k, (2.49)

if we introduce a polariton annihilation operator p̂k defined as [34]

p̂k = X(k)b̂k + C(k)âk. (2.50)

To ensure the equivalence of the Hamiltonians, the complex coefficients X(k) and C(k) are
chosen such that p̂k satisfies Bose commutation relations

[p̂k, p̂†k] = |X(k)|2 + |C(k)|2 = 1 (2.51)

and that [34]
[p̂k, ĤPres] = [p̂k, Ĥres], (2.52)

for which we obtain

EP (k)
[
Xkb̂k + Ckâk

]
= X(k)EX b̂k + C(k)EC(k)âk + h̄ΩR

2
[
X(k)âk + C(k)b̂k

]
. (2.53)

By comparing the coefficients of the single-particle operators, Eq. (2.53) can be recast in
matrix form EP (k)− EX − h̄ΩR

2

− h̄ΩR
2 EP (k)− EC(k)

X(k)
C(k)

 = 0. (2.54)

Finally, by imposing that the determinant of Eq. (2.54) vanishes, we obtain the simple
quadratic equation

[EP (k)− EX ] [EP (k)− EC(k)]− h̄2Ω2
R

4 = 0. (2.55)

The two solutions are shown in Fig. 2.5a and describe the energy dispersion of the polariton
modes

EP±(k) = EC(k) + EX
2 ± 1

2

√
[EC(k)− EX ]2 + h̄2Ω2

R, (2.56)

where the positive and negative signs correspond to the upper (UP) and lower (LP) polariton
modes or branches.

The quantitiesX(k) and C(k) are called Hopfield coefficients. The polariton exciton (photon)
content is defined as the fraction of the matter (light) contribution to the polariton state and
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is simply given by |X(k)|2 (|C(k)|2 = 1− |X(k)|2), which through Eqs. (2.54) and (2.56) can
be expressed for the lower polariton mode as [34]

|X(k)|2 = 1
1 +

(
h̄ΩR

2[ELP (k)−EC(k)]

)2 . (2.57)

The momentum dependence of the light and matter content is shown in Fig. 2.5b. On
resonance, where EX = EC(kres), the polariton modes are half light, half matter

|X(kres)|2 = |C(kres)|2 = 1
2 (2.58)

and are separated in energy by the Rabi splitting

EUP (kres)− ELP (kres) = h̄ΩR. (2.59)

Energy

UP

LP

ħΩR

k// k//

1.0

0.5

0.0
|C|2

|X|2

LP Content

Photon

Exciton

a b

EC

EX

Figure 2.5 (a) Dispersion of the bare and polariton modes. In the example, the bare modes are
resonant at normal incidence (k‖ = 0), where the polariton modes are separated in energy
by the Rabi splitting h̄ΩR. (b) Corresponding exciton and photon contents for the lower
polariton mode. On resonance, the mode is half light-, half matter-like. At higher momenta,
the LP becomes more exciton-like. The opposite behaviour occurs for the upper mode.

2.3.2 Ultrastrong coupling regime

We now consider the contributions of the last two terms in Eq. (2.47), namely [32]

Ĥantires =
∑
k

h̄ΩR

2
(
âkb̂−k + â†kb̂

†
−k

)
(2.60)
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and
ĤA2 =

∑
k

D
(
â†kâk + âkâ

†
k + âkâ−k + â†kâ

†
−k

)
. (2.61)

The Hamiltonian Ĥantires contains the anti-resonant light-matter terms, which involve the
creation and annihilation of particles with opposite in-plane momenta. The terms originating
from the squared vector potential are contained in the Hamiltonian ĤA2 and are proportional
to the light-matter coupling constant D = h̄Ω2

R/4ωX (ωX = EX/h̄) [32]. This last Hamilto-
nian describes a renormalization of the electric field. Although this effect is typically observed
in strongly driven systems (high electric field strength), here the field is renormalized as a
consequence of the interaction with matter.

Neglecting the terms in Eqs. (2.60) and (2.61) is commonly known as the rotating wave
approximation, which is valid when the light and matter systems are close to resonance
(EC − EX � EC , EX) and the coupling between them is weak (h̄ΩR � EC , EX). For an
accurate description of systems in the ultrastrong coupling regime, where the normalized
coupling strength (h̄ΩR/EX) is greater than ∼ 0.1, the full Hamiltonian shown in Eq. (2.47)
must be considered and a similar approach from Section 2.3.1 can be used to find the new
eigenstates. The polariton annihilation operator is now defined as [32, 35]

p̂k = w(k)âk + x(k)b̂k + y(k)â†−k + z(k)b̂†−k (2.62)

yielding a matrix Hamiltonian of the form [32]

EC(k) + 2D − EP (k) ΩR/2 2D ΩR/2

ΩR/2 EX − EP (k) ΩR/2 0
−2D −ΩR/2 −EC(k)− 2D − EP (k) −ΩR/2
−ΩR/2 0 −ΩR/2 −EX − EP (k)

 . (2.63)

In addition to an asymmetric anti-crossing behaviour, the presence of anti-resonant terms
and of terms arising from the squared vector potential leads to a blueshift of the cavity
mode, which through Eq. (2.57) increases the LP matter content, even on resonance. The
normalization condition for the new polariton operator is given by [32]

|w(k)|2 + |x(k)|2 − |y(k)|2 − |z(k)|2 = 1, (2.64)

where y(k) and z(k) are referred to as the anomalous Hopfield coefficients. A consequence of
these terms is that the ground state of the system |G〉, which corresponds to the polariton
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vacuum,
p̂k(LP,UP ) |G〉 = 0, (2.65)

acquires a finite number of cavity photons and semiconductor excitons per mode [32]

〈G| â†kâk |G〉 = |yLP (k)|2 + |yUP (k)|2 (2.66)

〈G| b̂†kb̂k |G〉 = |zLP (k)|2 + |zUP (k)|2. (2.67)

It has been proposed that these virtual excitations may be released if the light-matter cou-
pling strength can be modulated non-adiabatically [32]. The generated photons would then
be expected to exhibit non-classical correlations and could be useful for the generation of
correlated photon pairs.

In the past, the USC regime was only achieved when coupling to intersubband transitions
in the mid-infrared part of the spectrum [36]. Today, organic microcavities with metallic
mirrors show Rabi splittings of the order of ∼ 1 eV and allow the USC regime to be easily
achieved. The narrow linewidths observed in the USC regime have been employed as a means
of obtaining narrow emission spectra and flat angular dispersions in light-emitting structures
[20, 37], while the large Rabi splittings have been used to extend the spectral response of
organic photodiodes [38]. The modification of material properties under strong and ultra-
strong light-matter coupling is currently a subject of intense scientific interest and will be
further addressed in Chapter 4 [39–41].

2.3.3 Semiclassical treatment

In this section, we address the system shown in Fig. 2.1a in a semiclassical way, where we treat
the cavity field classically and maintain the exciton picture in the dielectric response of the
medium. We begin by rewriting Eq. (2.7) to describe the dispersion of a planar microcavity
filled with a semiconductor material with background refractive index n = √εb,

εbω
2
C

c2 =
(
qπ

L

)2
+
(
k‖
)2
. (2.68)

We now introduce an excitonic absorption, such that the relative permittivity obtained from
Eq. (2.38) is given by

εr(ω) = εb + A

ω2
X − ω2 , (2.69)

where for simplicity we took γ = 0 and defined A = Ne2f
V me

. The filled cavity dispersion is
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given by [27]
ω2

c2

(
εb + A

ω2
X − ω2

)
=
(
qπ

L

)2
+
(
k‖
)2
, (2.70)

where we obtain
ω2
(
εb + A

ω2
X − ω2

)
= εbω

2
C . (2.71)

This corresponds to the dispersion equation

ω4 − ω2(ω2
C + ω2

X + A/εb) + ω2
Cω

2
X = 0, (2.72)

which is identical to the one given by the full Hopfield Hamiltonian shown in Eq. (2.63) if
we make the correspondence [27]

h̄ΩR =
√

4h̄2A/εb =

√√√√4h̄2Ne2f

V meεb
. (2.73)

We can see that the Rabi splitting scales as the square root of the oscillator strength and of
the density of absorbers inside the cavity. Note that the same result is obtained through a
complete quantum electrodynamics treatment of light-matter interaction [25].

2.4 Polariton nonlinearities

As we have seen in the previous section, exciton-polaritons are hybrid light-matter quasiparti-
cles. On one hand, due to their photonic component, polaritons can be excited, manipulated
and detected optically. On the other hand, the excitonic component of polaritons can lead to
strong interparticle interactions. The resulting strong optical nonlinearities have allowed for
the demonstration of many fascinating nonlinear effects. Here, we briefly review the mech-
anisms through which exciton-polaritons interact and discuss some of the main nonlinear
experiments in planar microcavities.

2.4.1 Theory

At low densities, exciton-polaritons behave as ideal non-interacting bosons. At moderate
densities, the bosonic treatment remains valid once fermionic effects are accounted for as
an effective interaction between excitons (and polaritons) [34]. Using the same formalism
as in Section 2.3, the effective exciton-exciton interaction Hamiltonian, corresponding to a
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hard-sphere contact interaction, can be written in momentum space as [34]

ĤXX = 1
2
∑
k,k′,q

V XX
q b̂†k+q b̂

†
k′−q b̂kb̂k′ , (2.74)

where V XX
q is the effective Coulomb interaction potential and k, k′, q are 2D vectors. At high

exciton densities, the Pauli exclusion principle leads to a saturation of the exciton-photon
coupling, corresponding to a decrease in light absorption, and also referred to as phase-space
filling (PSF). The resulting anharmonic interaction term is given by

Ĥsat
XC = −

∑
k,k′,q

h̄ΩR

2nsat
â†k+q b̂

†
k′−q b̂kb̂k′ + h.c., (2.75)

where nsat is the exciton saturation number. Considering the typical case when the LP mode
is excited resonantly (or near resonance), these interaction Hamiltonians can be rewritten in
terms of the LP operator defined in Eq. (2.62). The resulting polariton-polariton interaction
Hamiltonian for the lower branch is given by [34]

ĤPP = 1
2
∑
k,k′,q

V PP
k,k′,qp̂

†
k+qp̂

†
k′−qp̂kp̂k′ . (2.76)

The effective polariton-polariton interaction constant includes both exciton-exciton and sat-
uration contributions [34]

V PP
k,k′,q = VXX |Xk+q||Xk′ ||Xk′−q||Xk|+ 2VSAT (|Ck+q||Xk′ |+ |Ck′ ||Xk+q|)|Xk′−q||Xk|. (2.77)

Since both contributions are positive, interactions between lower polaritons are repulsive
and lead to a power-dependent blueshift ∆ELP (k) of the polariton modes. This will play
an important role in many of the nonlinear polariton effects which will be reviewed in the
following sections.

The LP blueshift induced by the interaction Hamiltonian in Eq. (2.76) is given by [34]

∆ELP (k) =
∑
k′

(V PP
k,k′,q=0 + V PP

k,k′,q=k′−k)|Ψk′ |2, (2.78)

where |Ψk′ |2 is the number of polaritons in each k state. This general equation can be used
when different polariton states are resonantly excited by the pump. When only one k mode
is excited, the blueshift can be described in terms of a single interaction constant in real
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space coordinates [34]
∆ELP (r) = gLP |Ψ(r)|2, (2.79)

where |Ψ(r)|2 is the polariton density at position r. This interaction constant can in turn be
related to the individual exciton-exciton and PSF interaction mechanisms by [34]

gXX = gLP
|X|4

(2.80)

and
gSAT = gLP

4|C||X|3 . (2.81)

A powerful approach for modeling interacting polariton systems in the case of resonant, single-
mode excitation is to describe the coherent LP field in real-space Ψ(r, t) through a nonlinear
partial differential equation called the Gross-Pitaevskii (GP) equation. In this mean-field
description, quantum mechanical operators are replaced by their expectation values and the
time dependence of the system is obtained from classical evolution equations [6]. The GP
equation is given by [6]

ih̄
∂Ψ(r, t)
δt

=
(
h̄ω0 −

h̄2∇2

2mLP

− iγLP
2 + gLP |Ψ(r, t)|2

)
Ψ(r, t) + h̄P (r, t), (2.82)

where mLP is the lower polariton effective mass, γLP is the decay rate, h̄ω0 is the LP energy
at k = 0 and P (r, t) is the driving term. The GP equation provides accurate results as long
as the occupation of modes other than the one resonantly pumped remains small. It can
be modified to account for spin effects, important in quantum well and atomic monolayer
dichalcogenide microcavities, and for the case of non-resonant pumping at higher energies,
where it can be solved together with a rate equation describing the dynamics of the exciton
reservoir [42].

2.4.2 Parametric scattering

We have seen that the dispersion of a bare cavity photon is approximately quadratic at low
in-plane momenta. The same is true for bare excitons and the effective mass approximation
is commonly applied. In contrast, polaritons have a non-parabolic dispersion that can enable
new scattering mechanisms to take place. In the pioneering works of J. S. Roberts et al.
[8, 9, 43], a quantum-well microcavity was pumped resonantly along the lower polariton
mode and the angle of incidence was varied. When only the pump beam was incident,
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polaritons were found to scatter into a wide range of final states along the LP dispersion via
the interaction with phonons. Figure 2.6a shows the experimental LP dispersion measured in
reflection in this configuration. Note that polaritons which have scattered into high momenta
states appear weaker due to their low photonic content [43].
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Figure 2.6 (a) Lower polariton dispersion illustrating the resonant pump (saturated in in-
tensity) and the scattering of polaritons to a continuum of final states. (b) When a second
weak signal beam is injected at normal incidence, it stimulates the pairwise scattering of po-
laritons to the signal mode and to a new idler mode to conserve energy and momentum. (c)
Schematic of the pairwise scattering process. (a) and (b) adapted by permission from John
Wiley and Sons: Physica Status Solidi b, “Parametric amplification and polariton liquids in
semiconductor microcavities”, J. J. Baumberg et al., Copyright c© 2005 [43].

Next, a weak probe beam was directed at the sample and adjusted to be resonant with the LP
mode at k = 0. Again, the pump angle of incidence was scanned and, at a specific angle, two
surprising effects were observed: a drastic enhancement (gain) of the probe beam reflected
by the cavity and the emergence of a new spectral component emitted at high momenta.

These results, shown in Fig. 2.6b, can be explained by a pairwise scattering process, schema-
tized in Fig. 2.6c, in which two polaritons with momentum kp undergo stimulated scattering
into the state at k = 0, seeded by the probe beam, and into a high momentum state at 2kp,
satisfying both energy and momentum conservation [43]

2E(kp) = E(0) + E(2kp). (2.83)

The two points on the LP dispersion where polaritons accumulate are commonly referred to
as signal (k = 0) and idler (2kp), in an analogy with the optical parametric oscillator (OPO)
in classical nonlinear optics. The pump angle of incidence where Eq. (2.83) is satisfied is
referred to as the “magic angle” and corresponds to a triple phase-matching condition, which
could only be achieved along the LP mode due to its peculiar shape. Note also that the strong
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population of the pump, signal and idler states can also lead to stimulated scattering towards
any combination of these states satisfying Eq. (2.83) [44]. The effective χ(3) nonlinearity
resulting from this polariton-polariton scattering process can be several orders of magnitude
larger than those found in passive nonlinear materials, surpassing also the effective χ(3) of
OPOs based on cascaded χ(2) nonlinearities [45]. As a consequence, microcavity polaritons
have attracted considerable attention for enabling low-power nonlinear optical applications
[45].

Parametric scattering has been demonstrated in inorganic microcavities up to a temperature
of 220K, essentially limited by the binding energy of CdTe excitons [46]. So far, the smaller
nonlinearities and lower power damage thresholds of organic semiconductors have prevented
the observation of parametric interactions in this material set.

2.4.3 Condensation and lasing

Stimulated scattering of polaritons is possible due to the bosonic nature of the constituent
quasiparticles. The peculiar shape of the LP mode favors the relaxation towards the bottom
of the polariton dispersion, which by itself can trigger stimulated scattering into this state.
Consider the case where a microcavity is pumped non-resonantly at a high energy. A reservoir
of hot excitons is created, which subsequently relaxes into polaritons, followed by scattering
into different final states. Below a certain intensity threshold, the light emitted from the
cavity is incoherent and follows thermal statistics, as all coherence inherited from the pump
is lost in the reservoir. Above threshold, however, stimulated scattering into the LP ground
state at k = 0 can take place [47]. This spontaneous symmetry breaking leads to the creation
of a coherent signal field with long-range order [48]. Due to the short polariton lifetimes
(typically < 1 ps), this new state behaves as a non-equilibrium Bose-Einstein condensate
(rigorously, a 2D system goes through a Berezinskii-Kosterlitz-Thouless transition [25]).

The first conclusive demonstration of polariton Bose-Einstein condensation (BEC) was per-
formed by Kasprzak et al. [48] in a CdTe quantum well microcavity at 5K. Figure 2.7a
shows the real space emission from the excitation spot when the pump intensity is swept
across the condensation threshold. The corresponding momentum space patterns illustrating
the population distribution along the LP mode are shown in Fig 2.7b. Below threshold,
polaritons occupy a range of k states and the real space pattern has a smooth profile. When
the intensity is increased above threshold, the momentum distribution shrinks towards the
ground state and a sharp peak in real space is seen, corresponding to polaritons with k‖ = 0.

This threshold is termed the polariton lasing threshold as it does not rely on population
inversion and because the sample is still in the strong coupling regime [49]. When the pump
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intensity is increased further, the conventional lasing threshold can be found, which for this
system was 50 times higher than the polariton one. Thus, polariton lasing could enable the
fabrication of coherent light sources operating at much lower powers.
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Figure 2.7 (a) Real and (b) momentum space images of a polariton fluid across the condensa-
tion threshold. In real space, bright emission can be seen coming from polaritons with zero in
plane momentum. In momentum space, polaritons collapse to the bottom of the LP disper-
sion, which is blueshifted by the polariton-polariton and polariton-exciton interactions. (c)
Ground-state occupancy which increases exponentially above unity due to stimulated scat-
tering (black), LP linewidth (brown) and LP blueshift (green). Adapted by permission from
Springer Nature: Nature, “Bose-Einstein condensation of exciton polaritons”, J. Kasprzak et
al., Copyright c© 2006 [48].

Figure 2.7c shows additional features of the polariton condensate. The black curve shows the
ground state occupancy, which displays an exponential increase above unity, a signature of
bosonic stimulated scattering. The brown curve shows that the polariton linewidth decreases
above threshold, a consequence of the increased coherence, but increases again at high ex-
citation due to decoherence caused by polariton interactions. The green curve traces the
blueshift of the polariton mode, another consequence of polariton-polariton and polariton-
exciton interactions, which for this system was found to be below 10% of the Rabi splitting.
The blueshift of the polariton modes can also be seen as an intensity-dependent vertical shift
of the dispersions in Fig 2.7b.

Polariton condensation has since been observed in different geometries, material sets and also
at room temperature and under electrical excitation [12–14, 42, 50–57]. In addition, polariton
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condensates have allowed for the demonstration of a number of interesting nonlinear effects,
such as the propagation of solitons and the formation of quantized vortices [58, 59].

2.4.4 Optical limiting and bistability

The blueshift plays an important role in the different nonlinear processes. In parametric scat-
tering under resonant excitation, the signal and idler condensates are created on states along
the blue-shifted dispersion. Under quasi-resonant excitation, drastically different regimes
will be encountered if the pump energy is on the low or high energy side of the unperturbed
dispersion.

First, consider the case when the cavity is driven by a coherent continuous wave pump with
a slight red detuning from the LP mode. As the pump intensity is increased, the blueshift
pushes the dispersion away from the pump energy and more out of resonance. The growth of
the polariton density, and consequently of the blueshift, is therefore sub-linear. This behavior
is known as optical limiting and is illustrated in Fig. 2.8a.

When the pump has a slight blue detuning with respect to the LP mode, the blueshift can
bring them into resonance. This positive feedback mechanism is shown in Fig. 2.8b. As the
pump intensity is increased along the lower portion of the curve, only a small blueshift is
observed. Upon reaching the A high intensity threshold, the feedback becomes strong enough
and the system jumps to point B along the upper curve to lock the blueshifted dispersion to
the pump energy. As the intensity is increased further above B, the optical limiting behavior
is recovered. When the intensity is decreased from B, the blueshift is maintained as long
as the polariton population is high enough. Upon reaching the C low intensity threshold,
the system jumps back to the lower portion of the curve towards point D. Because the high
and low intensity thresholds are distinct, a hysteresis loop is observed and the system is said
to be bistable. Polariton bistability is the result of a χ(3) nonlinearity. At normal incidence
or when only one mode is involved, it is associated to the polariton Kerr effect [11, 62], a
reference to the optical analogue in which changes in the pump intensity lead to a change
in refractive index. Figure 2.8c shows a different type of polariton bistability observed in
the polariton OPO regime in an InGaAs/GaAs microcavity at cryogenic temperatures [61].
In this case, the pump shifts the dispersion such that triply-resonant oscillation becomes
possible and the hysteresis loop is observed in the signal condensate.
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Figure 2.8 Theoretical LP blueshift when the pump is red (a) and (b) blue detuned from
the LP mode in the low excitation regime. In (a) the blueshift brings the mode more out of
resonance with the pump and the observed blueshift increases sublinearly with power. This
is the optical limiter regime. In (b), the blueshift can bring the LP mode into resonance with
the pump and a sudden increase in the blueshift is observed (from point A to point B). Hys-
teresis is observed when decreasing the power and a second jump in the blueshift is seen (C
to D) when the pump intensity can no longer maintain the high polariton density. This is the
bistable behavior. (c) Experimental demonstration of the polariton bistable regime. When
the pump intensity is increased, the LP mode blueshifts and allows for stimulated scattering
to occur. The bistability was observed in the intensity of the signal condensate. (a) and (b)
adapted by permission from John Wiley and Sons: Physica Status Solidi b, “Quantum fluid
effects and parametric instabilities in microcavities”, C. Ciuti et al., Copyright c© 2005 [60]
and (c) adapted by permission from American Physical Society: Physical Review B, “Op-
tical bistability in semiconductor microcavities in the nondegenerate parametric oscillation
regime: Analogy with the optical parametric oscillator”, A. Baas et al., Copyright c© 2004
[61].

2.4.5 Superfluidity

The Gross-Pitaevskii equation can be used to describe the steady state behavior of a polari-
ton condensate. A linear stability analysis can then be performed when the condensate is
subjected to weak perturbations. The resulting dispersions are called Bogoliubov modes and
describe the spectrum of the collective excitations supported by the condensate [60, 63]. As
we will see in Chapter 5, this analysis shows that there exists a regime where the Bogoliubov
modes become so distorted that ωLP (k) > ωpump for every k 6= kpump. In this regime, there
are no final states available for resonant or elastic scattering to take place. The condensate
can flow unperturbed and behaves as a superfluid. For the Landau superfluidity criterion to
be satisfied, it is necessary for elastic scattering to take place in the low excitation regime
(no or small blueshift) and therefore ωpump > ωLP (0).

Figure 2.9a shows real space images of a polariton condensate flowing against a defect as the
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polariton density is increased above the superfluidity threshold. Below threshold, interference
fringes are formed in front of the obstacle as a result of counter-propagating waves and the
region behind the obstacle is dark. At threshold, superfluidity is achieved in the center of
the Gaussian excitation spot only where the intensity is highest. A reduction in the number
of fringes can be seen, as well as an increase in polariton density behind the defect. At
high intensity, superfluidity is achieved over the entire illumination area and the interference
fringes disappear. The condensate can be seen to flow around the obstacle without scattering.
The transition to the superfluid behavior can also be seen in the momentum space images
shown in Fig. 2.9b. In the low excitation regime, resonant Rayleigh scattering leads to the
appearance of a ring in momentum space. Above threshold, the ring shrinks and eventually
collapses towards the pump position in momentum space.

a

b

Figure 2.9 (a) Real and (b) momentum space images of a polariton fluid moving against an
obstacle across the superfluidity threshold. In real space, the linear regime is marked by
interference fringes in front of the obstacle and a dark region behind it. In the superfluid
regime, the density becomes uniform around the obstacle and the fluid flows unperturbed. In
momentum space, the linear regime is marked by a resonant Rayleigh scattering ring. In the
superfluid case, the ring collapses towards the pump excitation spot as scattering becomes
suppressed. Adapted by permission from Springer Nature: Nature Physics, “Superfluidity of
polaritons in semiconductor microcavities”, A. Amo et al., Copyright c© 2009 [64].
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The interaction-induced sound velocity in the polariton fluid is given by [60]

cs =
√
h̄gLP |Ψ|2/mLP (2.84)

and for the superfluid regime to be achieved it must be larger than the condensate flow
velocity imparted by the pump [60]

vp = h̄kp/mLP . (2.85)

Therefore, this regime is more easily achieved for low group velocities and in systems where
the polariton-polariton nonlinearity is high, such as in inorganic quantum well microcavities,
or in systems where the polariton density can be very high without a transition into weak-
coupling, such as in organic microcavities. In Chapter 5 we will discuss a recent demonstration
of superfluid behavior in an organic microcavity at room temperature [21].

2.4.6 Harmonic generation

As a final example of polariton nonlinearities, which are typically of a χ(3) type, we will
consider the case of second harmonic generation in a microcavity embedding an organic dye
possessing a large χ(2) nonlinearity [65]. Second-order nonlinear processes involving polariton
modes have remained largely unexplored and will be considered in more detail in Chapter 3.

Consider a metallic microcavity designed such that the second cavity mode is strongly coupled
to an exciton absorption, as shown in Fig. 2.10a. The cavity is pumped at low energies in
the near infrared and the pump energy is scanned across the first polariton mode, which
is a doublet due to birefringence. These modes are mostly photonic due to the significant
detuning to the exciton transition. The intensity of the SHG generated from the cavity is
shown in Fig. 2.10b and is found to peak when the energy of the second harmonic matches
that of the upper and lower polariton modes. The observed behavior is different for a bare
material, as shown in in Fig. 2.10c, where the SHG intensity peaks when the energy of
the harmonic matches the exciton transition (resonant SHG). When the transmission of the
mirrors and the field enhancement experienced by the pump and SHG fields were taken into
account, it was concluded that the presence of polariton states enhanced the χ(2) response
of the material. Finally, the LP SHG was found to be stronger than the UP one, what was
consistent with the higher photonic content of the lower polaritons at the experimental cavity
detuning.
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Figure 2.10 (a) Transmission of the polariton modes (blue) and absorbance of the organic
dye (red). The pump is scanned in the near infrared over the first mode (a doublet due to
birefringence). (b) Intensity of the SHG as a function of pump excitation wavelength for
the case of a microcavity and (c) for a bare organic layer. In (b) the black lines indicate
the transmission of the polariton modes. Adapted with permission from American Chemical
Society: Nano Letters, “High-efficiency second-harmonic generation from hybrid light-matter
states”, T. Chervy et al., vol. 16, no. 12, pp. 7352–7356. Copyright c© 2016 [66].
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CHAPTER 3 GENERATION OF RABI-FREQUENCY RADIATION
USING EXCITON-POLARITONS

Copyright notice: the discussion presented in this chapter was adapted with permission
from

F. Barachati, S. De Liberato, and S. Kéna-Cohen, “Generation of rabi-frequency
radiation using exciton-polaritons”, Phys. Rev. A, vol. 92, p. 033828, Sep
2015. Copyright c© 2015 by the American Physical Society. DOI: 10.1103/Phys-
RevA.92.033828.

3.1 Introduction

As introduced in Chapter 2, cavity exciton-polaritons are hybrid light-matter quasiparticles
that result from the mixing between an exciton transition and a Fabry-Perot cavity photon.
The minimum energetic difference between the lower and upper polariton modes, called the
Rabi splitting, can range from a few meV in inorganic semiconductors to ∼ 1 eV in organic
ones [27, 48, 54, 67, 68]. Therefore, radiative transitions from the upper to the lower polariton
branch, as shown in Fig. 3.1, can provide a simple route towards tunable infrared (IR) and
terahertz (THz) generation.

Such transitions can be understood as resulting from a strongly coupled χ(2) nonlinear in-
teraction in which two photons, dressed by the resonant interaction with excitons, interact
emitting a third photon. As a consequence of the usual χ(2) symmetry requirement, such
polariton-polariton transitions are forbidden in centrosymmetric systems. To overcome this
issue several solutions have been proposed, including the use of asymmetric quantum wells
[69, 70], the mixing of polariton and exciton states with different parity [71, 72] and the use
of transitions other than UP to LP [73, 74].

In this chapter, we study the use of non-centrosymmetric semiconductors, possessing an
intrinsic second-order susceptibility χ(2), to allow for the generation of Rabi-frequency radia-
tion. For the case where the UP and LP branches are driven by two incident pump waves, the
irradiance of the resulting radiation is identical to classical difference-frequency generation.
Using a semiclassical model, we show that the DFG irradiance is enhanced by nearly four
orders of magnitude compared to bare χ(2) nonlinearity. Although here we consider DFG,
a similar enhancement is expected for the case of parametric fluorescence, which does not
require a LP pump wave. Finally, we highlight the use of a triply-resonant scheme to obtain

http://dx.doi.org/10.1103/PhysRevA.92.033828
http://dx.doi.org/10.1103/PhysRevA.92.033828
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Figure 3.1 Dispersion relation of exciton-polaritons as a function of in-plane wavevector. The
interaction between an exciton transition (EX) and a Fabry-Perot cavity mode (EC), both
represented by dashed lines, leads to the appearance of lower and upper polariton branches
(solid blue). A radiative transition at the Rabi energy (h̄ΩR) occurs between two incident
pumps at frequencies ω1 and ω2 through difference-frequency generation in a second-order
nonlinear semiconductor (χ(2) 6= 0). Inset: microcavity showing the two pump beams ( ~E1,2),
incident at angle θi, and the Rabi radiation ( ~E3), reflected at angle θ3. The solid blue lines
in the χ(2) layer illustrate the high modal overlap of polariton fields. Layers are numbered
from 1 (air) to N (substrate) for the transfer matrix formalism.

polariton optical parametric oscillation.

Semiconductor microcavities are advantageous for nonlinear optical mixing due to their abil-
ity to spatially and temporally confine the interacting fields. In contrast to conventional
nonlinear optical crystals, which require birefringence or quasi-phase-matching, the efficiency
of the nonlinear process does not depend on phase-matching for small interaction lengths,
but instead on maximizing the field overlap [75]. To overcome mode orthogonality, while si-
multaneously satisfying the symmetry requirements of the χ(2) tensor, a number of strategies
have been proposed, such as mode coupling between crossed-beam photonic crystal cavities
with independently tunable resonances [76–78] and the use of single cavities supporting both
TE and TM modes [79, 80]. Exciton-polaritons provide a simple solution to this problem
because they arise from coupling to a single cavity mode and thus naturally display good
modal overlap. Many of the fascinating effects observed in strongly-coupled semiconductor
microcavities exploit this property, but these have been principally limited to the resonant
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χ(3) nonlinearity inherited from the exciton. Examples include stimulated polariton scat-
tering [8, 9], parametric oscillation [10, 81, 82], optical bistability [11], condensation and
superfluidity [21, 48, 64].

3.2 Nonlinear transfer matrix method

To calculate the propagation of the incident pump fields and the difference-frequency contri-
bution due to nonlinear layers, we use the nonlinear transfer matrix method introduced by
Bethune [83]. This method is applicable to structures with an arbitrary number of parallel
nonlinear layers [84–86], but is restricted to the undepleted pump approximation, where the
three fields are essentially independent. First, we propagate the incident pump fields using
the standard transfer matrix method. Within each nonlinear layer, these behave as source
terms in the inhomogeneous wave equation. Then, we solve for the particular solution and
determine the corresponding source field vectors. Finally, we use the boundary conditions
and propagate the free fields using the transfer matrix method to obtain the total field in
each layer.

3.2.1 Propagation of the pump fields

We begin by calculating the field distribution of the two incident pumps as shown in Fig. 3.1
by using the standard transfer matrix method [87–89]. To simplify the discussion, we consider
the pumps to be TE (ŷ) polarized. In our notation, the electric field in each layer i is given
by sum of two counter-propagating plane waves

Ei(z, x, t) = Re
{
E+
i exp[i(kizz + kxx− ωt)] + E−i exp[i(−kizz + kxx− ωt)]

}
, (3.1)

where the kiz and kx components of the ~ki wavevector satisfy the relationship k2
iz + k2

x =
n2
i (ω)ω2/c2, with ni the refractive index of layer i. The forward and backward complex

amplitudes of the electric field are represented in vector form as Ei =
[
E+
i E−i

]T
.

For a given incident field E1, the field in layer i is calculated by Ei = TiE1, where Ti is the
partial transfer matrix

Ti = Mi(i−1)φi−1 · · ·M21. (3.2)

The interface matrix Mij, that relates fields in adjacent layers i and j at the interface, and
the propagation matrix φi, that relates fields on opposite sides of layer i with thickness di,
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are given by

Mij = 1
2kiz

kiz + kjz kiz − kjz
kiz − kjz kiz + kjz

 (3.3)

and

φi =
exp(ikizdi) 0

0 exp(−ikizdi)

 . (3.4)

3.2.2 Inclusion of nonlinear polarizations

To obtain the difference-frequency contribution within a nonlinear layer, we must solve the
inhomogeneous wave equation for the electric field

∇2E − µε∂
2E
∂t2

= µ
∂2PNL

∂t2
, (3.5)

where the source term
PNL(z, x, t) = ε0χ

(2)E2(z, x, t) (3.6)

is the second-order nonlinear polarization, µ is the magnetic permeability and ε the permit-
tivity. By using a polarization term of the same form as Eq. (3.1), Eq. (3.5) can be written
in the frequency domain as

[
−(kNL)2 + ω2

NLn
2(ωNL)µ0ε0

]
E = −ω2

NLµ0PNL, (3.7)

with wavevector kNL, µ(ωNL) = µ0 and ε(ωNL) = n2(ωNL)ε0. The nonlinear polarization
thus generates a bound source field at the same frequency given by

Es = PNL

(kNL)2

ω2
NLµ0

− n2(ωNL)ε0
. (3.8)

If we consider the presence of two pump fields E1(ω1) and E2(ω2), with ω1 > ω2, the E2(z, x, t)
term in Eq. (3.6) can be written as

E2(z, x, t) = Re
{
E+

1 exp
[
i
(
k1
zz + k1

xx− ω1t
)]

+ E−1 exp
[
i
(
−k1

zz + k1
xx− ω1t

)]
+E+

2 exp
[
i
(
k2
zz + k2

xx− ω2t
)]

+ E−2 exp
[
i
(
−k2

zz + k2
xx− ω2t

)]}2
.

(3.9)

Expanding E2(z, x, t) leads to terms related to frequency doubling (ωNL = 2ω1 or 2ω2) and
rectification (ωNL = 0), sum-frequency (ωNL = ω1 + ω2) and difference-frequency generation
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(ωNL = ω1 − ω2). The terms contributing to the latter (≡ ω3) are given by

P3(z, x, t) = ε0χ
(2) Re

{(
E+

1 E
+∗
2 exp

[
i
(
k1
z − k2

z

)
z
]

+E+
1 E

−∗
2 exp

[
i
(
k1
z + k2

z

)
z
]

+E−1 E+∗
2 exp

[
−i
(
k1
z + k2

z

)
z
]

+E−1 E−∗2 exp
[
−i
(
k1
z − k2

z

)
z
])

× exp
(
i
[(
k1
x − k2

x

)
x− ω3t

])}
.

(3.10)

Co-propagating waves (±,±) generate terms with perpendicular wavevector k3−
z = k1

z −
k2
z , whereas counter-propagating waves (±,∓) generate terms with k3+

z = k1
z + k2

z . Their
contributions can be handled separately when pump depletion is ignored, so we divide the
polarization term into two components

P3− = ε0χ
(2)

E+
1 E

+∗
2

E−1 E
−∗
2

 (3.11a)

P3+ = ε0χ
(2)

E+
1 E

−∗
2

E−1 E
+∗
2

 , (3.11b)

with their source fields given by Eq. (3.8) and the perpendicular component of kNL taking
the values of k3−

z or k3+
z , respectively.

In addition to the bound fields, there are also free fields with frequency ω3 that are solutions
to the homogeneous wave equation. The free field in a nonlinear layer j is obtained from
the bound field amplitudes Ejs and the boundary conditions at the interfaces. By imposing
continuity of the total tangential electric and magnetic fields across interfaces i–j and j–k, an
effective free field source vector can be defined as

Sj =
(
φ−1
j Mjsφjs −Mjs

)
Ejs. (3.12)

The source matrices with the subscript s, Mjs and φjs, are identical to the ones given
by Eqs. (3.3) and (3.4), with kiz and kjz taking the values of k3

jz and k3±
jz , respectively.

These matrices use only source layer indices and involve optical constants at all three optical
frequencies (pumps and DFG). They relate the free fields that propagate with wavevector
k3
jz = nj(ω3)ω3/c to the bound fields with wavevectors k3±

jz = [nj(ω1)ω1 ± nj(ω2)ω2]/c.
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The total nonlinear field is then given by the sum of independent source field vectors Sj
propagated using the transfer matrix method reviewed in Sec 3.2.1. In particular, for the
case where only layer j is nonlinear, we obtainE3T

0

 = MN(N−1) · · ·M21

 0
E3R

+MN(N−1) · · ·M(j+1)jSj

= TN

 0
E3R

+
R+

j

R−j

 ,
(3.13)

with
Rj = TNTj

−1Sj. (3.14)

Therefore, the reflected and transmitted components of the E3 field can be calculated by

E3R = −
R−j
T22

(3.15a)

E3T = R+
j −

T12

T22
R−j . (3.15b)

The angle dependence of the reflected difference-frequency field can be expressed as

|k3| sin θ±3 = |k1| sin θ1 ± |k2| sin θ2, (3.16)

where the ± sign must match the wavevector component k3±
z when both pumps are incident

on the same side of the normal [90]. Because the first layer is taken to be air with n(ω) = 1,
if we consider both pumps to be incident with the same angle θ1 = θ2 = θi, we obtain for the
cases of k3−

z and k3+
z

sin θ−3 = ω1 sin θi − ω2 sin θi
ω1 − ω2

= sin θi (3.17a)

sin θ+
3 =

(
ω1 + ω2

ω1 − ω2

)
sin θi. (3.17b)

Equation (3.17a) shows that the DFG component due to co-propagating waves exits the struc-
ture at the same angle as the incident pumps, resembling the law of reflection. Conversely,
according to Eq. (3.17b), the component due to counter-propagating waves is sensitive to
deviations of the pump waves from normal incidence. In particular, for low DFG frequencies,
the (ω1 + ω2)/(ω1 − ω2) term is much larger than unity and this component easily becomes
evanescent.
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3.3 DFG in an organic polymer cavity

In this section, we investigate the use of organic microcavities for Rabi frequency generation.
Due to the large binding energy of Frenkel excitons, organic microcavities can readily reach
the strong coupling regime at room temperature and have shown Rabi splittings of up to 1
eV [27, 67]. Demonstrations of optical nonlinearities have been more limited than in their
inorganic counterparts, but a variety of resonant [21, 91, 92] and non-resonant nonlinearities
[12, 50, 51] have nevertheless been observed in these systems.

Although most organic materials possess a negligible second-order susceptibility, a number of
poled nonlinear optical (NLO) chromophores have been shown to exhibit high electro-optic
coefficients that exceed those of conventional nonlinear crystals such as LiNbO3 by over an
order of magnitude [30, 93]. In addition, the metallic electrodes needed for polling can also
be used as mirrors, providing high mode confinement and a means for electrical injection.

We will consider a thin NLO polymer film enclosed by a pair of metallic silver mirrors of
thicknesses 10 nm (front) and 100 nm (back). The model polymer is taken to possess a
dielectric constant described by a single Lorentz oscillator

ε(ω) = εb + fω0
2

ω02 − ω2 − iγω
. (3.18)

Similar to Eq. (2.39), here εb is the background dielectric constant, f is the oscillator strength,
ω0 is the frequency of the optical transition and γ its full width at half maximum. The param-
eters are chosen to be εb = 4.62, f = 0.91, h̄ω0 = 1.55 eV and h̄γ = 0.12 eV. Experimental
values are used for the refractive index of silver [94]. For simplicity, we ignore the dispersive
nature of the second-order nonlinear susceptibility and take χ(2) = 300 pm/V. In principle,
the Lorentz model could readily be extended to account for the dispersive resonant behavior
as in Eq. (2.44) [30].

Figure 3.2 shows the linear reflectance, calculated at normal incidence, as a function of
polymer film thickness. The reflectance for film thicknesses below 200 nm shows only the
fundamental cavity mode (M1), which is split into UP and LP branches. For these branches,
the Rabi energy falls below the LP branch, where there are no further modes available for
difference-frequency generation.

By increasing the thickness of the film, low-order modes shift to lower energies and provide
a pathway for the DFG radiation to escape. For example, at 300 nm, a triple-resonance
condition occurs where the Rabi splitting of the M2 cavity mode matches the M1 energy
(EUP − ELP = h̄ΩR = EM1 = 0.68 eV). A second resonance occurs between M3 and LP
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Figure 3.2 Reflectance as a function of pump energy and thickness of the polymer film.
Front and back Ag mirrors have thicknesses of 10 nm and 100 nm, respectively. Dielectric
parameters: εb = 4.62, f = 0.91, h̄ω0 = 1.55 eV, h̄γ = 0.12 eV and χ(2) = 300 pm/V. Dashed
horizontal line indicates the exciton energy. At the thickness of 300 nm, indicated by a
vertical dashed line, the M1 cavity mode is resonant with the difference-frequency generation
of pumps 1 and 2 such that EUP − ELP = h̄ΩR = EM1.

because EM3 − ELP = ELP = 1.25 eV, but with reduced modal overlap.

The enhancement in DFG irradiance from the microcavity, as compared to a bare nonlinear
slab, is shown in Fig. 3.3 as a function of the pump energies. The two peaks correspond
to the triple-resonance conditions mentioned above, where the left peak corresponds to an
enhancement of 2.8 · 102 at the Rabi energy (λ3 = 1.82 µm) and the right peak to an
enhancement of 3.3 · 102 at the LP energy (λLP = 996 nm). The apparent contradiction of a
higher DFG enhancement in the case of reduced modal overlap arises from normalizing each
point by the corresponding DFG irradiances of the bare polymer slab.

The inset shows the normalized electric field profiles of the relevant modes, which highlight
the good modal overlap of the two pump fields in the strong-coupling regime. The small
thickness of the front metallic mirror lowers the mutual orthogonality of different modes and
accounts for the lack of symmetry of the fields with respect to the center of the film. This
loss of orthogonality allows the overlap integral between M3 and LP to be non-zero and the
enhanced DFG extraction due to the triple-resonance condition leads to the appearance of
the second peak at h̄ω3 = 1.25 eV in Fig. 3.3.

Additionally, oblique incidence of the pump beams can be used to tune the DFG energy. As
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Figure 3.3 DFG irradiance enhancement of the poled NLO polymer model structure with
respect to a bare film of equal thickness. Due to the thickness of the second mirror, only
reflected fields are considered. The tilted dashed lines correspond to pairs of pump energies
that generate the same DFG energy and that match the M1 (left, h̄ω3 = h̄ωM1 = 0.68 eV)
and LP (right, h̄ω3 = h̄ωLP = 1.25 eV) energies in the triple-resonance condition. Inset:
normalized electric field profiles of the relevant modes, illustrating the excellent modal overlap
of the LP and UP branches.

indicated by Eq. (3.17b), the k3+
z component of the DFG signal rapidly becomes evanescent

and therefore we shall consider only the k3−
z component. Figure 3.4 shows the dependence of

DFG energy and irradiance on the angle of incidence when θ1 = θ2 = θi. In the lower panel,
as the interacting modes move to higher energies, the triple-resonance condition at the Rabi
(EUP − ELP ) energy is maintained for incidence angles up to 79o. The maximum irradiance
is obtained at 57o for h̄ωNL = 0.72 eV (λNL = 1.72 µm). This enhancement is reduced by
3 dB at h̄ω3 = 0.74 eV (λ3 = 1.68 µm) for 79o. The upper panel shows that the peak at
h̄ω3 = 1.25 eV falls out of the triple resonance condition faster with a 3 dB roll-off at 40o.

3.4 DFG in a (111) GaAs cavity

The vast majority of resonant nonlinearities observed in inorganic semiconductor microcavi-
ties are due to a χ(3) nonlinearity inherited from the exciton [95]. In the typical χ(3) four-wave
mixing process, two pump (p) polaritons interact to produce signal (s) and idler (i) compo-
nents such that their wavevectors satisfy 2kp = ks + ki. Second-order susceptibilities tend to
be much larger than their χ(3) counterparts, but conventionally used (001)-microcavities only
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Figure 3.4 Angle dependence of DFG energy and irradiance (kW/m2) for TE polarized pumps
incident on the structure with NLO polymer and Ag mirrors when θ1 = θ2 = θi. Only waves
with k3−

z = k1
z − k2

z are considered. Lower and upper panels show the DFG at the the Rabi
and LP energies, respectively. Solid black lines illustrate the energies of the M1 (bottom) and
LP (top) modes where DFG radiation can be extracted in triple-resonance. Dashed black
lines illustrate a typical linewidth of 100 meV for the LP branch and 50 meV for the M1
mode. Solid white lines indicate the angle dependence of the DFG energy. For the upper
panel, as the white line moves out of resonance with the black LP line, the DFG peak is
suppressed. For the lower one, a slight increase is observed around 57o and corresponds to
an enhancement of the triple-resonance condition, after which the irradiance rolls off.

allow for nonlinear optical mixing between three orthogonally polarized field components.

A number of commonly used inorganic semiconductors are known to be non-centrosymmetric
and to possess high second-order susceptibility tensor elements. Examples include III-V
semiconductors, such as gallium arsenide (GaAs) and gallium phosphide (GaP), and II-VI
semiconductors, such as cadmium sulfide (CdS) and cadmium selenide (CdSe) [30, 96]. To
allow for the nonlinear optical mixing of co-polarized waves to occur, we will consider (111)
GaAs as the microcavity material [97, 98], in contrast to the typical (001)-oriented material.

We consider a λ/2 (111) bulk GaAs microcavity sandwiched between 20 (25) pairs of AlAs/
Al0.2Ga0.8As distributed Bragg reflectors on top (bottom). The structure is followed by a
bulk GaAs substrate with the same dielectric constant as the cavity material, modeled by
Eq. (3.18) with experimental values εb = 12.53, f = 1.325 · 10−3, h̄ω0 = 1.515 eV and h̄Γ =
0.1 meV [99]. Experimental values are also used for the refractive index of AlxGa1−xAs [100].
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The nonlinear susceptibility was kept the same as for the NLO polymer (χ(2) = 300 pm/V)
to allow for a direct comparison of the irradiances. The absolute value chosen has no effect
on the enhancement factor. In practice, the largest contribution to the background χ(2) in
GaAs is due to interband transitions and for simplicity we ignore the resonant contribution
to χ(2).

The enhancement in DFG irradiance as compared to a bare GaAs slab of equal thickness is
shown in Fig. 3.5. Due to the much smaller oscillator strength in GaAs, as compared to the
NLO polymer, the Rabi splitting of h̄ω3 = 5.52 meV falls in the THz range (ν3 = 1.33 THz)
with an enhancement of 8.8 · 103.
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Figure 3.5 DFG enhancement of a λ/2 (111) GaAs cavity structure with respect to a bare
slab. GaAs parameters: εB = 12.53, f = 1.325 ·10−3, h̄ω0 = 1.515 eV and h̄Γ = 0.1 meV [99].
The same value of χ(2) = 300 pm/V was used as for the NLO polymer. Due to the presence of
the substrate, only reflected fields are considered. The tilted dashed line corresponds to pairs
of pump energies that generate the same DFG energy. Inset: normalized electric field profiles
inside the GaAs layer illustrating the excellent modal overlap of the LP and UP branches.

Figure 3.6 shows the angle dependence of the DFG energy and irradiance when θ1 = θ2 = θi.
The dashed black line in the upper panel traces the DFG energy, where a logarithmic scale
for the irradiance was used due to its rapid decrease with angle of incidence. The lower panel
shows a segment of the same data on a linear scale. Tunability down to 3 dB can be obtained
up to h̄ω3 = 7.21 meV (ν3 = 1.74 THz) at 17o.
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Figure 3.6 Angle dependence of DFG energy and irradiance (W/m2) for TE polarized pumps
incident on the λ/2 (111) GaAs structure with DBR mirrors when θ1 = θ2 = θi. Only waves
with k3−

z = k1
z − k2

z are considered. The upper panel shows the angle dependence of DFG
irradiance in logarithmic scale, with the dashed black line tracing the DFG energy. The lower
panel shows a smaller angular range of the same data in linear scale where a fast decrease of
DFG irradiance can be observed as the angle of incidence increases.

3.5 Discussion

In Sections 3.3 and 3.4 we showed that the use of polaritonic modes for Rabi frequency
generation can lead to irradiance enhancements of almost four orders or magnitude with
respect to bare nonlinear slabs. Quantitative estimates can be obtained by considering equal
pump irradiances I1 = I2 = 10 GW/m2. Figure 3.7 shows the maximum DFG irradiances for
the two structures and the reference slabs. For the NLO film with Ag mirrors, the calculated
peak DFG irradiances are IDFG = 7.69 kW/m2 at h̄ω3 = 0.68 eV and IDFG = 4.05 kW/m2

at h̄ω3 = 1.25 eV. As expected, due to the higher modal overlap, the DFG irradiance at the
Rabi energy exceeds the one at the LP energy. For the λ/2 (111) GaAs microcavity with
DBRs, we find IDFG = 45 W/m2 at h̄ω3 = 5.52 meV.

These results can be compared to the ones obtainable with conventional nonlinear crystals.
Assuming perfect phase-matching and neglecting pump depletion or losses, the conversion
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efficiency CE can be expressed as

CE = I3

I1I2
=

2
[
ω3χ

(2)L
]2

n(ω1)n(ω2)n(ω3)ε0c3 , (3.19)

where I1,2,3 are the irradiances and L is the crystal length [30]. Comparing the organic
microcavity to a beta barium borate crystal (BBO, χ(2) = 4.4 pm/V) [30] for near-infrared
generation, the required crystal length to achieve the same DFG irradiance is L = 45 µm, a
factor of 150 larger than the microcavity thickness or 1502 = 2.25 · 104 lower in conversion
efficiency. Similarly, the GaAs microcavity can be compared to a zinc telluride crystal (ZnTe,
χ(2) = 137 pm/V) for terahertz generation [101]. In this case, the required crystal length
is L = 36 µm, a factor of 310 larger than the microcavity thickness or 9.6 · 104 lower in
conversion efficiency. In this context, the main advantages of the thinner microcavity layers
are the absence of phase matching requirements and the potential for electrical injection.
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Figure 3.7 Comparison of the calculated DFG irradiances for the two structures studied.
Solid blue (dash-dot red) line represents the NLO polymer (GaAs) cavity with Ag (DBR)
mirrors and dotted lines directly below represent the corresponding bare slabs. Top blue
(bottom red) energy scale relates to the NLO polymer (GaAs) cavity. The curves have been
extracted from the maps shown in Fig. 3.3 and Fig. 3.5 by picking out the maximum values
among all pairs of pump energies that generate the same DFG energy. Pump irradiances are
I1 = I2 = 10 GW/m2.

The CE enhancements are a result of the larger χ(2) used in the calculations (68 times that of
BBO and 2.2 that of ZnTe) and, most importantly, of the cavity electric field enhancements,
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where a substantial difference was found for both material sets. Metal losses in the polymer
cavity prevent a significant enhancement of the UP and LP electric fields with |Epeak/Ein| =
1.2, where Epeak and Ein are the peak and incident fields, respectively. In contrast, for
the GaAs microcavity an enhancement of 15 is obtained. Despite this field enhancement,
the irradiance shown in Fig. 3.7 is 170 times lower at the Rabi energy for the inorganic
microcavity than for the organic one. This is a consequence of the ω2

NL factor in the source
field given by Eq. (3.8), making DFG at smaller energies increasingly difficult.

Finally, we can use Fig. 3.7 to evaluate the tunability of the structures at normal incidence.
For the first structure, the FWHM of the h̄ω3 = 0.68 eV DFG peak is 0.045 eV, indicating that
the same structure can be used for DFG generation from 1.76 µm to 1.88 µm by adjustment
of the pumps only. For the GaAs structure, the FWHM of the h̄ω3 = 5.52 meV DFG peak is
0.12 meV, indicating a tunability from ν3 = 1.32 THz to ν3 = 1.35 THz.

We should note that although in our calculation two pumps were used, similar enhancements
are anticipated for (spontaneous) parametric fluorescence (I2 = 0). In addition, the triply-
resonant scheme introduced for the organic microcavity where the signal is resonant has
further consequences. First, coupled-mode theory analysis of triply-resonant systems has
shown the existence of critical input powers to maximize nonlinear conversion efficiency
[76, 102]. These are found to be inversely proportional to the product of the Q-factors. Lower
Q-factors are thus advantageous for high power applications, although thermal damage and
saturation will limit the operating powers in organic and inorganic microcavities, respectively.
Second, the scheme is also well-suited for realizing a more conventional χ(2) polariton OPO.
In this case, the oscillation threshold can be shown to depend inversely on the product of
Q-factors.

Since in general, any χ(2) medium will also have a non-zero χ(3), these structures will display
a change in refractive index proportional to the square of the applied electric field, an effect
known as self/cross-phase modulation. The power dependance of the refractive index can
lead to rich dynamics such as multistability and limit-cycle solutions [103, 104].

3.6 Conclusion

We studied the potential of microcavities possessing a non-vanishing second-order susceptibil-
ity for generating Rabi-frequency radiation. Using a semiclassical model based on nonlinear
transfer matrices in the undepleted pump regime, we calculated the Rabi splitting and the
DFG irradiance enhancement for an organic microcavity, composed of a poled nonlinear op-
tical polymer, and for an inorganic one, composed of GaAs. In the first case, we obtained a
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Rabi splitting of h̄ω3 = 0.68 eV (λ3 = 1.82 µm) and an enhancement of two orders of magni-
tude, as compared to a bare polymer film. In the second case, we found a Rabi splitting of
h̄ω3 = 5.52 meV (ν3 = 1.33 THz) and an enhancement of almost four orders of magnitude,
as compared to a bare GaAs slab. These results show the potential of the use of polaritonic
modes for IR and THz generation. Both model structures display a high degree of frequency
tunability by changing the wavelength and angle of incidence of the incoming pump beams.
Similar enhancements are anticipated for parametric fluorescence and the triply-resonant
scheme introduced for the optical microcavity can be exploited to realize monolithic χ(2)

OPOs.
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CHAPTER 4 TUNABLE THIRD-HARMONIC GENERATION FROM
POLARITONS IN THE ULTRASTRONG COUPLING REGIME

Copyright notice: the discussion presented in this chapter was adapted with permission
from

F. Barachati, J. Simon, Y. A. Getmanenko, S. Barlow, S. R. Marder, and S. Kéna-
Cohen, “Tunable third-harmonic generation from polaritons in the ultrastrong
coupling regime”, ACS Photonics, vol. 5, no. 1, pp. 119–125, 2018. Copyright
c© 2018 by the American Chemical Society. DOI: 10.1021/acsphotonics.7b00305.

4.1 Introduction

As discussed in Section 2.4, most of the nonlinear phenomena observed using polaritons have
been restricted to inorganic microcavities at low-temperatures [6, 7, 43]. There, the intrinsic
nonlinearity responsible for pairwise scattering, similar to an optical χ(3), is strong due to the
delocalized nature of Wannier-Mott excitons. The large binding energy of organic Frenkel
excitons can in principle allow for such phenomena to be observed at room-temperature,
but the exciton-exciton nonlinearities inherent to Frenkel excitons tend to be much weaker
than in inorganics. To date, only a handful of nonlinear processes have been observed using
organic polaritons [12, 21, 50, 51, 91, 92].

In the limit where the exciton-photon coupling is increased to a significant fraction of the
uncoupled exciton energy (h̄ΩR ∼ EX), the system enters the so-called ultrastrong coupling
regime. As seen in Section 2.3.2, the presence of non-negligible anti-resonant light-matter
coupling terms leads to modifications of both excited and ground state properties, a subject
which is currently under intense investigation [32, 33, 105]. Demonstrations of USC in or-
ganic microcavities [27, 37, 68] have triggered many interesting studies about its effects on
observable material properties [40, 41, 106], with many open questions remaining.

In this chapter, we demonstrate organic microcavities operating in the USC regime with a
Rabi splitting corresponding to a record 62% of the uncoupled exciton energy. We impart a
strong third-order nonlinearity to the resulting polaritons by using a nonlinear polymethine
dye as the cavity material and show that the large magnitude of the third-order susceptibility
χ(3) contributes to enhancing polariton interactions.

The enhanced polariton-polariton nonlinearity is used to demonstrate tunable third-harmonic
generation spanning the entire visible spectrum upon resonant excitation of the LP mode.

http://dx.doi.org/10.1021/acsphotonics.7b00305
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When compared to bare films, the fabricated microcavities show conversion efficiency en-
hancements of over two orders of magnitude and even larger internal enhancements. Two
advantages of polariton states in the USC regime are that they are characterized by narrow,
homogeneously broadened lineshapes and a nearly angle-independent dispersion relation [27].
This allows us to obtain high quality factors over a broad spectral range and achieve efficient
frequency conversion using focused excitation from a high numerical aperture microscope
objective. This structure may also form a versatile platform for the study of other nonlinear
phenomena in the USC regime.

4.2 Fabrication and characterization

The microcavities are composed of a film of a bis(selenopyrylium)-terminated heptamethine
dye (see Fig. 4.1). Dyes of this type exhibit extremely large magnitudes of the molecular third-
order polarizability in solution [107]. The dye used in this study is one of many developed in
which bulky substituents on both the chalcogenopyrylium end groups and on the polymethine
chain, along with a large counterion, are used to disrupt intermolecular interactions such that
the solution linear and nonlinear properties are largely preserved in high chromophore-density
films [108]. To characterize the linear optical properties of the polymethine dye, neat films
were prepared by spin-coating from 5-20 mg/ml dichloromethane solutions. The refractive
index obtained using ellipsometry is shown in Fig. 4.1. The imaginary component shows a
strong exciton absorption maximum at 1067 nm (EX = 1.162 eV) and a vibronic shoulder.
Note in particular the low losses in the near-infrared part of the spectrum.

Planar microcavities were fabricated by embedding a neat (pure) polymethine layer be-
tween silver mirrors. To improve the wetting and optical properties of the back mirror,
cleaned quartz substrates were first functionalized with a monolayer of (3-mercaptopropyl)-
trimethoxysilane [109]. Then, a 75 nm-thick silver mirror was grown by thermal evaporation
at a base pressure of ∼10−7 mBar. After spin-coating the polymethine film, the structure
was capped with a 35 nm top mirror. All of the measurements were performed under ambient
conditions.

4.3 Angle-resolved reflectivity

Figure 4.2 (a) shows the measured angle-resolved TM-polarized reflectivity from a 350 nm
thick microcavity, which corresponds to nearly zero detuning between the exciton and photon
energies at normal incidence. The dashed lines correspond to a least-squares fit to the full
Hopfield Hamiltonian shown in Eq. (2.63), yielding a Rabi splitting of h̄ΩR = 0.707 eV. A
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Figure 4.1 Real (blue) and imaginary (red) refractive index of neat polymethine. The imag-
inary part has a peak value of 1.06 at 1067 nm. Round (triangular) markers indicate the
pump (THG) wavelengths where power dependence measurements were performed. The in-
set shows (top) the chemical structure of the polymethine dye and counterion and (bottom)
a schematic of the THG experiment, where a microscope objective is used to focus the pump
beam onto the microcavity and to collect the third-harmonic signal from the excitation side.

slightly larger value of h̄ΩR = 0.719 eV is obtained for the TE-polarized reflectivity spectrum
(not shown).

The remaining fit parameters are summarized in Table 4.1. Note that the different effective
refractive indices obtained for TE and TM polarizations are not a consequence of anisotropy
in the organic film, but of the polarization-dependent penetration depth of the electric field
into the metallic mirrors [27].

Table 4.1 Full Hopfield Hamiltonian fit parameters obtained for the reflectivity data of a
350 nm cavity.

Polarization h̄ΩR (eV) n EC (eV)
TE 0.719± 0.004 1.57± 0.04 1.09± 0.01
TM 0.707± 0.002 1.83± 0.04 1.10± 0.01

The values obtained for the Rabi splitting correspond to 60-62% of the uncoupled exciton
energy, slightly exceeding the largest normalized coupling ratio (h̄ΩR/EX) reported to date
of 60% in organic microcavities [37]. The large ratio observed is a consequence of the high
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Figure 4.2 (a) Angle-dependent TM-polarized reflectivity spectrum of a 350 nm-thick micro-
cavity. The dashed lines show the least-squares fit to the full Hopfield Hamiltonian, yielding a
Rabi splitting of h̄ΩR = 0.707 eV and a cavity energy at normal incidence of EC = 1.098 eV.
The detuning is ∆ = EC − EX = −64 meV. (b) Measured (red) and calculated (black)
TM-polarized 20o reflectivity spectra for regions of different thickness present on the same
sample, as well as the experimental LP quality factors. The dip below 600 nm is the UP that
originates from coupling to the second-order cavity mode.

oscillator strength (f) of the dye and the large number density of molecules (N) resulting
from the use of a neat film, both evidenced by the strong absorption band shown in Fig. 4.1.
From a simple Lorentz oscillator fit to the real part of the refractive index in the transparency
region, we obtain Nf = 5.59 × 1020 cm−3 for this material. In addition, the use of metallic
mirrors instead of dielectric ones leads to a reduced photonic mode volume. These two factors
contribute to the increased h̄ΩR. Meanwhile, the near-infrared transition energy leads to a
smaller EX than in previous reports. Note that for larger cavity thicknesses, the coupling
ratio can exceed 90% in this structure.

We find that the experimental LP quality factors can exceed 100, which is considerably higher
than typical values (below 30) obtained for all-metal microcavities [68, 110, 111]. This is
a consequence of the material’s low linear losses and the high reflectivity of silver in the
near-infrared part of the spectrum. This is helpful for increasing the efficiency of nonlinear
processes or, in some cases, lowering their thresholds [75, 95]. Despite the inhomogeneously
broadened absorption of the dye, the LP reflectivity spectra showed Lorentzian lineshapes
characteristic of homogeneous broadening, a consequence of the large Rabi splitting compared
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to the inhomogeneous linewidth [112].

The LP resonance position can be readily tuned via changes in angle of incidence or sam-
ple thickness. Our use of high concentration solutions and of a high vapor pressure solvent
naturally leads to smooth thickness gradients over the sample surface. This allows for mul-
tiple cavity thicknesses to be probed using a single sample. These can be easily identified
experimentally due to changes in the surface color caused by the changing position of the UP
branch. Figure 4.2b shows a collection of measured (red) and calculated (black) TM-polarized
20o reflectivity spectra taken at different locations. The corresponding sample thicknesses
are indicated below the traces.

4.4 Third-harmonic generation

Figure 4.3a shows a calculated reflectivity map, where the spectral positions of the polariton
modes are obtained for increasing values of cavity thickness.
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Figure 4.3 (a) Calculated microcavity reflectivity spectra at normal incidence for increasing
values of polymethine thickness. The four polaritonic modes indicated by LP1/UP1 and
LP2/UP2 arise due to the strong coupling of the exciton transition to the first- and second-
order cavity modes, respectively. The top box indicates the range of LP spectral positions
covered by the broad infrared pump (1250-1950 nm). The corresponding third-harmonic
wavelengths are indicated by a dashed line. (b) Experimental normalized THG spectra
obtained on areas of different cavity thickness found on the same microcavity sample.

The first four polaritonic modes indicated by LP1/UP1 and LP2/UP2 correspond to strong
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coupling to the first- and second-order cavity modes, respectively. The broad pump is spec-
trally filtered by the thickness-dependent LP resonance position, as shown in the top box in
Fig. 4.3a. The resonant component is coupled into the microcavity and interacts with the high
χ(3) material to generate the third-harmonic signal. The THG wavelengths corresponding to
the first LP branch are shown as a dashed line in the bottom of Fig. 4.3a.

Third-harmonic generation was first studied by exciting the sample with a broad IR pump
spanning 1250-1950 nm. The experimental setup is detailed in Appendix A.2. Figure 4.3b
shows a series of normalized THG spectra obtained on areas of different cavity thickness
found on the same microcavity sample and illustrates the tunability of the THG process at
normal incidence. Note that the third-harmonic is not resonant with higher order modes
and only light that can leak out due to the finite transmission of the mirrors is observed.
Nevertheless, the generated harmonic signals were easily visible with the naked eye through
the microscope optics.

To investigate the THG power dependence as a function of wavelength, the broad IR pump
was spectrally filtered using 12 nm bandpass filters, which is slightly narrower than the mean
LP linewidth of 14 nm obtained from Fig. 4.2b. The measurement calibration is detailed
in Appendix B. The pump and corresponding THG wavelengths are indicated in Fig. 4.1
by round and triangular markers, respectively. Figure 4.4 shows the results obtained for
the fabricated microcavities (curves 1-3). We observe a doubling of the conversion efficiency
when changing from 1320 nm to 1650 nm excitation. This corresponds to an increased THG
efficiency for polaritonic modes that are more photonic in nature, as highlighted in Fig. 4.5.
When pumping at 1320 nm, which corresponds to modes with a strong exciton component,
we observed a fast irreversible decay of the THG signal due to sample damage — a clear
signature of the mode matter content. Note, in contrast, that the linear absorption of the
bare film is negligible at this wavelength. For longer wavelengths, no decrease in THG powers
was observed for up to an hour of measurement.

The values at the end of each curve correspond to the peak power conversion efficiencies,
defined as P3ω/Pω. In all cases, the THG wavelength was not resonant with the higher order
upper polariton modes and was not efficiently extracted from the microcavity. Nonetheless,
the experimental conversion efficiencies for the microcavities were comparable to those of
other systems that required patterning or considerably thicker films [113–115].

For comparison, THG from bare polymethine films of different thicknesses are shown in
Fig. 4.4 (curves 4-5). The 368 nm-thick film (curve 5) is of comparable thickness to the
microcavities and allows for an accurate estimate of the conversion enhancements. Table 4.2
shows the fit coefficients C obtained by fitting each data set with a cubic power dependence of
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range of calculated THG powers on the excitation side for the microcavity (bare films) shown
in Fig. 4.5.

the form P3ω = C × Pω3. The last column shows the conversion enhancements with respect
to the 368 nm-thick film. At the wavelength of highest conversion efficiency (1650 nm),
the fabricated microcavities show raw (external) THG enhancement factors of 108 ± 1.7
compared to the bare film. As shown in Fig. 4.5, the internal efficiency at this wavelength
is approximately 50 times higher than this value due to the low fraction of THG that is
out-coupled from the cavity.

4.5 Simulations

To correlate our results with the LP exciton and photon fractions at normal incidence, Fig. 4.5
shows the polariton modal content calculated using the full Hopfield Hamiltonian from ex-
perimental (circles) and simulated (squares) angle-resolved reflectivity spectra. Note that in
the USC regime, the contribution from the squared electromagnetic vector potential leads to
a blueshift of the bare cavity photon energy and that the modal content of both components
is no longer equal at zero detuning, which corresponds to 1432 nm in Fig. 4.5 [32]. We find
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Table 4.2 Experimental cubic fit coefficients for data sets 1-5 shown in Fig. 4.4 and the THG
conversion enhancement with respect to the 368 nm-thick bare film.

Data Set C THG Enhancement
1 (254.2± 2.1)× 10−4 108.0± 1.7
2 (142.9± 2.7)× 10−4 60.7± 1.4
3 (119.7± 2.7)× 10−4 50.6± 1.3
4 (195.8± 7.4)× 10−7 –
5 (235.4± 3.2)× 10−6 –

that the LP branch varies from 73% to 52% exciton content over the range of thicknesses
used in Fig. 4.4 (indicated by colored arrows).
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Figure 4.5 Calculated exciton (red) and photon (blue) fractions for the first LP branch from
experimental (circles) and simulated (squares) reflectivity data. The solid black curves show
the calculated THG irradiances inside the cavity (top) and outside on the excitation side
(bottom). The colored arrows in indicate the experimental conditions for the measurements
in Fig. 4.4.

To determine the origin of the enhancement, THG was investigated using the same nonlinear
transfer matrix approach introduced in Chapter 3. In this way, the combined effects of
multiple reflections and absorption at both the fundamental and third-harmonic wavelengths
are automatically taken into account, as well as the resonant pump enhancement and non-
resonant THG extraction factors. Maintaining the same notation, we consider only one pump
with frequency ω1 such that the third-harmonic frequency is given by ω4 ≡ 3ω1. Then, the
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nonlinear polarization vectors given in Eq. (3.11) are replaced by

P4− = 3
4ε0χ

(3)

E+
1 E

+
1 E

−
1

E+
1 E

−
1 E

−
1

 (4.1a)

P4+ = 1
4ε0χ

(3)

E+
1 E

+
1 E

+
1

E−1 E
−
1 E

−
1

 , (4.1b)

and the perpendicular component of kNL takes the values of k4−
z = k1

z or k4+
z = 3k1

z . The
average power radiated towards the excitation side of the microcavity is given by

P4R = 1
2ε0c |ER4|2

1
8

(
π

log 2

) 3
2

· f · τt · τ 2
r , (4.2)

assuming that the THG has both a temporal and spatial Gaussian profile. Here ER4 is the
calculated electric field in reflection, f = 40 MHz is the laser repetition rate, τt = 48 ps is the
pump pulse length and τr = 1.5 µm is the THG spot waist. Figure 4.6a shows a map of the
calculated THG powers for the fabricated microcavities as a function of cavity thickness and
pump wavelength for an average input power of 1 mW. As expected, the THG map resembles
the reflectivity map shown in the boxed region of Fig. 4.3a because THG is only generated
when the pump is resonant with the LP branch. The colored arrows indicate the experimental
conditions of cavity/film thickness and pump wavelength for the measurements in Fig. 4.4.
The top gray box in Fig. 4.4 shows the range of calculated THG powers emitted towards
the excitation side for the microcavities. The quantitative agreement with the experimental
values is remarkable, considering that the only parameter not known with certainty is the
third-order susceptibility χ(3)(3ω;ω, ω, ω), which was kept dispersionless and equal to the
value χ(3)(ω;−ω, ω, ω) = −5.1× 10−11 esu (−7.12× 10−19 m2/V2) measured using the z-scan
technique [108].

A similar calculation for the bare films pumped at 1650 nm is shown in Fig. 4.6b and was
found to be less accurate for the 368 nm-thick film, with the experimental value closer to the
transmitted THG power (not shown) instead of the one measured on the excitation side. The
bottom gray box in Fig. 4.4 shows the range of calculated THG powers for the bare films.
We believe that the discrepancy stems from the large angular spread of wavevectors in the
focused pump beam, which is not taken into account in our calculations. For microcavities,
wavevectors away from the resonance condition are naturally filtered out by the LP dispersion.

The agreement for the thinner film and microcavities confirms that the value of χ(3) used in
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Figure 4.6 (a) Calculated THG power radiated towards the excitation side for a microcavity
pumped at 1650 nm for an average input power of 1 mW. THG is obtained when the pump
is resonant with the LP mode, maintaining the same shape as in the boxed region in Fig. 4.3.
(b) Same calculation for a thin film on quartz. The colored arrows in a,b indicate the
experimental conditions for the measurements in Fig. 4.4.

the calculations is a reasonable estimate for the real one. Therefore, even when neglecting
possible resonant enhancements of χ(3) due to the weak absorption bands in the visible part
of the spectrum, the observed enhancements in THG from polaritons are consistent with
the cavity enhancement of the pump electric field and the bulk third-order nonlinearity, as
opposed to a drastic modification of the material’s nonlinear properties [66]. At the same
time, in the equivalent polaritonic picture, the THG enhancement stems from the three
resonantly pumped polaritons with increased nonlinear interactions. Still, compared to bare
films, microcavities offer the advantage that they require smaller thicknesses to generate the
same harmonic power. This is a consequence of the pump electric field enhancement, the
reduced absorption of the generated signal and the absence of a phase-matching requirement,
with the conversion efficiency depending instead on mode overlap, which can be tuned by
microcavity design or by the use of polaritonic modes [19, 76].

Fig. 4.5 also shows the calculated peak THG irradiances inside the cavity as compared to
the THG emitted on the excitation side. Both curves significantly decrease towards shorter
wavelengths because of the absorption band peaked at 1067 nm. The internal THG first
increases towards longer wavelengths as losses in the mirrors are reduced for thicker cavities.
The decreasing transmission of the front silver mirror towards longer wavelengths eventually
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leads to a decrease in both the internal and external components, the latter already visible
in Fig. 4.5. For this range of wavelengths, the internal THG enhancements are up to 56
times higher than the ones observed from the excitation side. Further calculations show
that small modifications of the structure to improve out-coupling, such as reducing the top
mirror thickness or achieving a doubly-resonant condition of the THG wavelength with an
UP branch can further increase the THG efficiency by more than an order of magnitude.

4.6 Conclusion

In this chapter, we have reported organic microcavities containing a nonlinear dye operating
in the USC regime and possessing a normalized coupling ratio of 62%, slightly exceeding the
highest value ever reported [37]. The combination of the material’s low losses and the use
of high reflectivity silver mirrors led to LP quality factors much higher than conventional
all-metal microcavities. The polariton nonlinearity was exploited to demonstrate efficient
and tunable third-harmonic generation when the cavity was excited resonantly with the LP
branch. Although the THG was not resonantly extracted from the microcavities, conversion
enhancement factors of up to two orders of magnitude were obtained in comparison to bare
films. Transfer matrix calculations indicate that the observed enhancement can be explained
by the pump field enhancement alone, suggesting that the material’s third-order suscepti-
bility is not strongly modified even in the case of ultrastrong light-matter coupling. This
demonstration of nonlinear polariton microcavities operating in the USC regime can allow
for the observation of room-temperature nonlinear effects so far restricted to low-temperature
inorganic systems, in addition to to new phenomena unique to the USC regime.
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CHAPTER 5 NUMERICAL STUDY OF SUPERFLUIDITY IN A
POLARITON CONDENSATE

Copyright notice: parts of the discussion presented in this chapter were adapted with
permission from

G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Do-
minici, M. De Giorgi, S. A. Maier, G. Gigli, S. Kéna-Cohen, and D. Sanvitto,
“Room-temperature superfluidity in a polariton condensate”, Nature Physics,
vol. 13, no. 9, p. 837, 2017. Copyright c© 2017 by Springer Nature: Nature
Physics. DOI: 10.1038/nphys4147.

5.1 Introduction

In atomic systems, the transition from a classical gas into a macroscopic quantum state is
typically achieved by keeping the number of particles fixed and lowering the temperature
below a critical value TC . Condensation into the ground state then occurs in the regime
where the interparticle distance is comparable to the thermal de Broglie wavelength [116]
given by

λT =

√√√√ 2πh̄2

MkBT
. (5.1)

We see that the temperature T and the particle mass M play a similar role in determining
the condensation threshold. Exciton-polaritons are excellent candidates to enable Bose-
Einstein condensation above cryogenic temperatures because their effective masses can be
up to 10 orders of magnitude lower than those of atoms. For instance, this would bring the
condensation threshold temperature for a gas of 87Ru atoms, which is of the order of 200 nK
[117], easily to room temperature.

Polariton condensation is usually observed at a constant and less stringent temperature
condition as the density of particles is increased beyond a critical value. Despite the lighter
effective masses, polariton condensation was initially only observed at cryogenic temperatures
due to the low exciton binding energies of inorganic quantum well excitons [48]. Today,
however, as shown in Section 2.4.3, polariton BEC and lasing have been already demonstrated
at room temperature in a variety of systems, not only in organic microcavities [12, 42, 50, 51,
118] but also in inorganic perovskite and nitride ones [13, 53–55, 119, 120] where EB > kBT .

http://dx.doi.org/10.1038/nphys4147
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Recently, our collaborators in the group of Dr. Daniele Sanvitto at the CNR Nanotec Institute
reported the first conclusive demonstration of superfluid behavior in a polariton condensate
at room temperature [21]. The regime where superfluid behavior was observed is very differ-
ent from the one common for atomic condensates. Due to the short polariton lifetime of the
cavity, the system is not in thermal equilibrium, but rather in a dynamic one where polari-
tons are constantly being injected by the pump beam and escaping the cavity. In addition,
since the pump pulse duration is comparable to the polariton lifetime, complicated temporal
dynamics take place and are not accessible in time-averaged measurements.

In this chapter, we will introduce the main experimental results from our collaborators and
present our time-resolved simulations of the Gross-Pitaevskii equation, introduced in Sec-
tion 2.4.1. Using their experimental parameters, our simulations were able to reproduce the
observed superfluid behavior and shed light on the dynamics of the system.

5.2 Sample and experimental setup

The cavity consists of a 130 nm thick film of the organic molecule 2,7-Bis[9,9-di(4-methyl-
phenyl)-fluoren-2-yl]-9,9-di(4-methyl-phenyl)fluorene, which was sandwiched between a pair
of reflectance DBR mirrors. The sample is mounted on a rotation stage and positioned
between two microscope objectives. The LP branch is resonantly excited with TE-polarized
ultrashort 33 fs laser pulses. Since such short pulses are broadband, resonance excitation can
be maintained for different angles of incidence and in the presence of a LP blueshift. This
allows polaritons with specific group velocities vg to be resonantly excited via tuning of the
pump energy Ep and angle of incidence θ according to

vg = h̄kp
mLP

= h̄ωp
mLP c

sin(θ) = Ep
mLP c

sin(θ). (5.2)

Both the light reflected and transmitted by the cavity are collected by the objectives and
used for momentum- and real-space imaging, respectively. All measurements were performed
under ambient conditions.

5.3 Experimental results

A polariton wavepacket traveling with a group velocity of 19 µm/ps is created by the resonant
pump and propagates along the plane of the sample. This is shown in Fig. 5.1a in the low
excitation regime. When the upward flow of polaritons encounters an obstacle, such as an
imperfection in the organic film, a shadow region of low polariton density is seen behind
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the object. In addition, as a consequence of interference between incident and reflected
waves, density modulations can be seen in front of the obstacle. The spacing between these
fringes is inversely proportional to the speed at which polaritons propagate. Figure 5.1b
shows the corresponding momentum space image in the linear regime. In addition to the
saturated pump, injected at kp = 3.59 ŷ µm−1, a resonant Rayleigh scattering ring is seen,
corresponding to elastic scattering of polaritons by the obstacle.
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Figure 5.1 (a) Experimental real-space polariton distributions in the linear and (c) nonlinear
regimes illustrating the transition from dissipative to superfluid flow. The Gaussian pump,
with FWHM=13 µm is centered 2 µm below the defect position. The peak polariton densities
are 0.5 · 106 pol/µm2 in (a) and 107 pol/µm2 in (c). (b) Experimental saturated momentum-
space maps corresponding to the linear and (d) nonlinear regimes.

When the peak pump intensity was increased above a certain threshold, our collaborators ob-
served that the interference fringes ahead of the obstacle disappeared and the fluid uniformly
filled the space around the defect. This is shown in Fig. 5.1c. Experimentally, the fringes
don’t disappear completely because of time integration during image acquisition, which also
records intervals where the polariton density is below the critical value. In momentum space,
superfluid behavior manifests itself as a collapse of the Rayleigh ring towards the pump
excitation spot, in agreement with the experimental results shown in Fig. 5.1d.
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5.4 Simulations

By solving the time-dependent GP equation, we can calculate the polariton evolution using
parameters corresponding to the experimental conditions. We begin by modifying Eq. (2.82)
to include a potential barrier V (r) to represent the position of the obstacle and obtain

ih̄
∂Ψ(r, t)
δt

=
(
h̄ω0 −

h̄2∇2

2mLP

+ V (r)− iγLP
2 + gLP |Ψ(r, t)|2

)
Ψ(r, t) + h̄P (r, t). (5.3)

For simplicity, the defect is taken to be an infinite barrier with vanishing boundary conditions.
The pump term P (r, t) is taken to be a plane wave modulated by a temporal Gaussian
envelope

P (r, t) = Fpe
i(kr−ωpt)e

− (t−t0)2

2σ2
t , (5.4)

where σt can be related to the intensity FWHM using σt = FWHM/(2
√
ln2). The ampli-

tude of the driving term can be related to the incident pump intensity using input-output
theory [45] as

Fp = |Ckp |
√
γLP I0

2h̄ωp
, (5.5)

where |Ckp | = 0.88 is the Hopfield coefficient for the photon fraction of the LP mode at the
pump wavevector kp. The remaining simulation parameters are h̄ω0 = 2.896 eV,mLP = 1.976·
10−35 kg, γLP = 1013 s−1, gLP = 5 · 10−3 µeV · µm2, kp = 3.59 ŷ µm−1 and h̄ωp = 2.9242 eV.

First, we will examine the case when the pump pulse is not broadened by the optical elements,
then the effect of a positive chirp will be considered. To compare our simulations with the
experimental time-integrated images, the calculated polariton density maps (|Ψ(r, t)|2) were
integrated over a time interval of 800 fs. Instantaneous momentum-space maps were obtained
via a Fourier transform and then time-averaged.

5.4.1 Ultrashort pump

Time-averaged

Our simulation results in real-space for the linear and superfluid regimes are shown in Fig. 5.2a
and c, respectively. We could extract peak polariton density values of 1.6 · 105 pol/µm2 and
2.4 · 107 pol/µm2 for the linear and the superfluid regimes, which are in agreement with
the estimated experimental values of 0.5 · 106 pol/µm2 and 107 pol/µm2, respectively. The
momentum-space profiles below and above the superfluidity threshold are shown in Fig. 5.2b
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and d, respectively. The overall agreement with the experimental results shown in Fig. 5.1
is excellent.
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Figure 5.2 (a) Calculated real-space polariton distributions in the linear and (b) nonlinear
regimes. The peak polariton densities are 1.6 · 105 pol/µm2 in (a) and 2.4 · 107 pol/µm2 in
(b). (c) Calculated saturated momentum-space maps corresponding to the linear and (d)
nonlinear regimes. The simulation parameters are listed in the text.

To make a connection to the pump fluence, we can use Ein = I0σt
√
π, which gives 26.6 mJ/cm2

for the incident fluence in the superfluid regime. This is comparable with the experimental
value of 4 mJ/cm2, given the approximations made in connection with input-output theory
and the approximate value of the polariton interaction constant. Indeed, the latter is the
only experimental parameter not known with certainty. The value chosen for the simulations
is close to a previous estimate of gLP = 10−3 µeV · µm2 in this structure [121] and also
to that obtained using the resonant blueshift at high powers. At higher powers, however,
the measured blueshift of the polariton may be strongly affected by the thermal load of the
pump, causing a competing redshift of the polariton energy due to an expansion of the cavity
length.

Finally, Fig. 5.3 shows the measured and calculated reduction in elastic scattering obtained
from the Rayleigh scattering patterns as a function of the pump fluence. Our simulations
were able to reproduce the decreasing trend and the relative suppression observed in the
experimental results.
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Figure 5.3 Calculated and experimental ratio of the scattered light to transmitted light ob-
tained from the Rayleigh scattering patterns. Note that the precise shape of these curves is
sensitive to the choice of k-space mask used to block the transmitted light. In our simulations,
a mask of radius 4.8 µm−1 centered on kp was used.

Time-evolution

An advantage of the numerical simulations is that we can observe in detail the dynamics of
the polariton wavepacket as it transitions in and out of the superfluid regime. Figure 5.4
shows the time-evolution of the polariton densities measured directly behind the defect and
in the background region. For reference, the normalized pump pulse is shown in black.

In the linear regime (Fig. 5.4a), we can observe the reduced polariton density behind the
defect and a slow decay of the polariton densities on a timescale given by the polariton
lifetime. As the pump density is increased (Fig. 5.4b), we first cross into a regime where the
driving rate exceeds dissipation and the field coherently follows that of the pump. Beyond
this threshold, we cross into the superfluid regime due to the renormalized dispersion. Here,
the density behind the defect follows the background density closely.

Figure 5.5 shows instantaneous snapshots of the calculated polariton densities in the linear
and superfluid regimes. When crossing back into dissipative flow at longer times, vortex pairs
are created behind the defect and carried away by the viscous flow (Fig. 5.5b at t = 500 fs).
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Figure 5.4 Time-domain polariton density traces taken directly behind the defect (red) and
in the background (blue) in the (a) linear and (b) superfluid regimes. The pump pulse is
traced in black and normalized to the peak background density.

5.4.2 Temporal broadening of the pump pulse

The positive chirp acquired during propagation through optical elements leads to a temporal
broadening of the pump pulse and a lowering of its peak amplitude. To investigate the effects
of chirp in the simulation results, the equations of the driving term are modified as [122]

P (r, k, t) = Fpe
i(kr−ωpt)e

− (t−t0)2

2(σ2
t

+iGVDd) (5.6)

and

Fp = Ckp

√√√√γLP I0

2h̄ωp
· σ2

t

σ2
t + iGVDd, (5.7)

where GVD = 90.4 fs2/mm is the group velocity dispersion coefficient of fused silica at the
pump wavelength of 424 nm and d = 30 mm is the total thickness of optical elements in
the path of the pulse. The results for the superfluid case are shown in Fig. 5.6 for the
same simulation parameters as in Fig. 5.2. The same superfluid behaviour is seen in the
time-integrated real and momentum space images (Fig. 5.6a,b), but the time domain traces
show a number of relaxation oscillations due to the longer pulse duration (Fig. 5.6c,d). The
modulation from these initial oscillations is also larger than in the unchirped case. Finally,
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the pump intensity threshold for the observation of superfluid behavior remained unchanged.
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Figure 5.5 (a) Individual time snapshots of the polariton density during polariton flow in the
linear and (b) superfluid regimes. Note the ejection of vortex pairs around 500 fs when the
density has been reduced. The color scales are in pol/µm2 and their maximum values are
adjusted to maintain the background color throughout the images.
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Figure 5.6 (a) Real space polariton density profile in the superfluid regime when the pump is
chirped by going through 3 cm of fused silica. Peak background density is 1.8 · 107 pol/µm2.
(b) Saturated intensity momentum space emission profile showing the absence of the Rayleigh
scattering ring pattern. (c) Time-domain polariton density traces behind the defect (red)
and in the background (blue). The pump pulse is traced in black and normalized to the
peak density. (d) Individual time snapshots of the polariton density during polariton flow.
The color scales are in pol/µm2 and their maximum values are adjusted to maintain the
background color throughout the images.
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5.4.3 Steady state

Steady-state Bogoliubov excitation spectra

The excitation spectra of the stationary solutions can be calculated by linearizing the GP
equation around a stationary homogeneous state ψSS following Ref. [63]. We consider the
case of resonant excitation at the renormalized dispersion and that the LP wavefunction has
a plane-wave form similar to the pump field given by

ψ(r, t) = ψSSe
i(kpr−ωpt). (5.8)

Then, the spectrum of the excitations is given by the solutions of the eigenvalue problem

LkUk = h̄ωkUk, (5.9)

with the small fluctuations vector given by

Uk = [δψ(r, t), δψ∗(r, t)]T (5.10)

and the operator Lk being defined as

Lk =
h̄ωLP (k) + 2gLPnp − ih̄γLP/2 gLPnp

−gLPnp 2h̄ωp − h̄ωLP (2kp − k)− 2gLPnp − ih̄γLP/2

 .
(5.11)

Figure 5.7 shows the Bogoliubov excitation energies obtained for polariton density values
below (black), at (red) and above (green, blue) the superfluidity threshold. The energies
are traced with respect to the center pump energy. Note that for each value of k, the
dispersion contains two branches ω±LP (k). Since they are related by symmetry as ω−LP (k) =
2ωp − ω+

LP (2kp − k), only the positive branch is shown.

At low densities, as in Fig. 5.7 (black), the dispersion remains parabolic and the presence
of isoenergetic states available for scattering generates the resonant Rayleigh scattering ring
pattern observed in momentum space in Fig. 5.2b. For increasing densities, the polariton-
polariton interactions tilt the dispersion and introduce a discontinuity in the slope around
kp. For the threshold density shown in Fig. 5.7 (red), the dispersion becomes horizontal at
low momentum values in the vicinity of kp and point to the collapse of the scattering ring
to a single point, as shown in Fig. 5.2d. Above the superfluidity threshold, as in Fig. 5.7
(green, blue), the dispersions show a minimum at kp and the linear slope defines the sound
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Figure 5.7 Positive Bogoliubov branch as a function of polariton density. At high polariton
densities, the linearized dispersion becomes apparent. Note the absence of elastic scattering
beyond 9.1 · 106 pol µm−2.

velocity. Although the Bogoliubov analysis is performed for the steady-state, the threshold
density for the superfluid transition is in agreement with the experimental densities and the
time-dependent calculations.

Simulations

We can verify that the superfluid behavior would also be observed in steady-state under
the same experimental conditions. The pump pulse was set to be a long rectangular pulse
with duration of 2 ps, having the same peak amplitude as in the short pulse case shown in
Fig. 5.2c. As shown in Fig. 5.8, superfluidity persists through the damped oscillations and
the linear regime is recovered shortly after the end of the pump pulse. Note that the density
modulations disappear from the time-integrated real-space map.

5.5 Conclusion

Using parameters corresponding to the experimental conditions, our GP calculations were
able to reproduce the superfluid behaviour observed by our collaborators. We found that
despite the small polariton-polariton interaction constant of organic polaritons, the superfluid
regime is indeed achieved at a group velocity of 19 µm ps−1 when the polariton density
reaches approximately 107 pol µm−2, in agreement with the experimental estimates. Finally,
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(b) Time-domain polariton density traces behind the defect (red) and in the background
(blue). The pump pulse is traced in black and normalized to the steady-state density.

we were able to resolve the presence of relaxation oscillations and the launching of vortex
pairs, shedding light on the range of hydrodynamic effects that occur in the quantum fluid.
Entering a steady-state regime free of transients would allow for the study of additional
effects, such as the formation of free vortices. This, however, has been prevented by the
limited photostability of organic semiconductors.
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CHAPTER 6 INTERACTING POLARITON FLUIDS IN A MONOLAYER
OF TUNGSTEN DISULFIDE

Copyright notice: the discussion presented in this chapter was adapted with permission
from

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L.
Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids
in a monolayer of tungsten disulfide”, Nature Nanotechnology, 2018. Copyright
c© 2017 by Springer Nature: Nature Nanotechnology. DOI: 10.1038/s41565-018-
0219-7.

6.1 Introduction

As reviewed in Section 2.4, the light effective masses and strong interparticle interactions
of exciton-polaritons have enabled demonstrations of nonlinear effects of tremendous tech-
nological interest. Until now, however, the cryogenic temperatures required for commonly
used inorganic quantum well microcavities and the weak nonlinearities observed in room-
temperature excitonic systems have hampered the use of polaritons for practical applications
[7].

A promising new class of materials to overcome these limitations is that of atomically thin
transition metal dichalcogenides. The increased carrier confinement and reduced dielectric
screening in TMDs lead to the creation of excitons with a large binding energy, which dic-
tate the optoelectronic properties of the material even at room temperature and have been
predicted to lead to strong nonlinearities due to enhanced Coulomb interactions [29, 123]. In
addition to room temperature excitonic behaviour, TMDs enable an unprecedented electro-
static tunability of their optical properties, the harnessing of higher-lying Rydberg exciton
states and access to the valley degree of freedom [124–126].

The direct bandgap and high oscillator strength of monolayer TMDs have allowed strong
light-matter coupling to be demonstrated in a variety of systems, including planar microcav-
ities [126–130], plasmonic cavities [130–132], fibre cavities [124] and photonic crystals [133].
At room-temperature, however, these structures have been limited to the linear regime due
to short polariton lifetimes resulting from the high losses of the underlying cavity and the
broad exciton linewidths.

http://dx.doi.org/10.1038/s41565-018-0219-7
http://dx.doi.org/10.1038/s41565-018-0219-7
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In this chapter, we overcome these limitations by strongly coupling the A exciton of mono-
layer WS2 to a low-loss propagating Bloch surface wave at the air-dielectric interface of a
Bragg mirror. The strong coupling shifts the lower polariton mode away from the exciton
absorption and into the transparency region of the spectrum. The resulting low losses enable
polaritons to propagate over the entire extent of the monolayer. Together, the longer polari-
ton lifetime, stronger electric field enhancement and narrow polariton linewidths allow for
the first observation of polariton-polariton nonlinearities in TMD monolayers. To highlight
the role of such nonlinearities, we demonstrate a nonlinear polariton source in a configuration
analogous to that previously used to show bistability under continuous wave excitation [7].
All measurements reported here were performed under ambient conditions.

6.2 Fabrication and characterization

A schematic of the sample is shown in Fig. 6.1a. A glass coverslip was coated with a di-
electric mirror, designed to support a Bloch surface mode near the A exciton band of WS2

(2.014 eV/615.6 nm) [134]. The Bragg mirror consisted of five pairs of tantalum pentoxide
(Ta2O5)/silicon dioxide (SiO2) layers (98.5 nm/134.6 nm thick), deposited by radiofrequency
magnetron sputtering at a pressure of 10−7 mbar. An additional thinner pair (17.1 nm/22.3
nm) was used to shift the position of the Bloch mode at the WS2 A exciton wavelength to-
wards the center of the photonic bandgap. A large monolayer of WS2 was first tape-exfoliated
onto a polydimethylsiloxane stamp and subsequently transferred onto the top dielectric sur-
face. Tungsten disulfide was chosen as the active material over other TMDs due to its strong
and sharp excitonic absorption, which better matches the narrow linewidths of Bloch surface
modes. The solid line in Fig. 6.1a shows the calculated electric field profile corresponding
to the bare Bloch mode at the A exciton wavelength. The field peaks inside the last dielec-
tric pair and decays exponentially away from the surface. The mode is TE polarized and
propagates along the surface with wavevector ~kBSW .

Fig. 6.1b shows a micrograph of the large exfoliated WS2 flake in reflectance (top) and in
photoluminescence (PL, bottom) under 514 nm excitation by a large Gaussian spot. Only the
monolayer regions exhibit bright PL due to their direct bandgap [135]. A typical monolayer
PL spectrum is shown in Fig. 6.1c and contains a single strong peak centered at 1.988 eV/623.6
nm with a FWHM of 42 meV. These values vary slightly along the sample, presumably due
to fluctuations in strain, substrate adhesion, defects and surface charge density [136, 137].

To demonstrate strong coupling between the monolayer A exciton and the BSW, white-
light reflectivity was measured with an immersion objective in a back focal plane imaging
configuration. The experimental setup is detailed in Appendix A.3. In Fig. 6.2a we show the
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Figure 6.1 (a) Schematic of the dielectric stack supporting Bloch surface wave polaritons in
monolayer WS2. The solid black lines trace the electric field profile of the bare mode at
the wavelength of the A exciton band. The mode is TE polarized and propagates along the
surface with wavevector ~kBSW . The inset illustrates the coupling of the enhanced electric
field at the surface of the stack to the in-plane excitons in the monolayer. (b) Micrographs
of the monolayer in reflectance and PL. The dashed lines indicate the flake boundaries.
Only monolayer regions show bright PL under illumination by a large Gaussian spot. (c)
The typical monolayer PL spectrum under 514 nm excitation contained a single strong peak
centered at 1.988 eV/623.6 nm.

experimental dispersion of the upper and lower polariton modes measured in the center of
the monolayer. The position and visibility of the modes are in good agreement with transfer
matrix calculations shown in Fig. 6.2b, where the thickness and refractive index of monolayer
WS2 were obtained from the literature [134].

Both polariton branches are also visible in PL, as shown in Fig. 6.2c on a logarithmic color
scale. Their anti-crossing, a signature of the strong-coupling regime, is evident in both
reflectance and PL around the same wavelength of 623 nm, coinciding with the peak PL
wavelength shown in Fig 6.1c. Interestingly, a progression of modes surrounding the LP
branch is visible in Fig. 6.2a,c. Bloch surface waves are extremely sensitive to changes in the
thickness and refractive index of the topmost layer. In the case of our monolayer, these can
be caused by surface inhomogeneities in the large area probed by the propagating mode. A
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Figure 6.2 (a) Experimental dispersion of Bloch surface wave polaritons (BSWPs) in mono-
layer WS2 in reflectance and (b) the corresponding transfer matrix calculation. (c) Exper-
imental dispersion in PL under 514 nm excitation on a logarithmic color scale. Coupled
harmonic oscillator fits and fitting parameters are shown in all three panels. The UP and LP
modes are traced in dashed lines and the fitted exciton energies are indicated by solid lines.

similar but weaker effect could also be seen for the bare mode (not shown). For each panel
in Fig. 6.2, the simple 2×2 coupled harmonic oscillator model shown in Eq. (2.54) was used
to fit the data. The energy dispersion of the bare Bloch surface mode in the center of the
photonic bandgap was approximated by

EC(k) = h̄vg|k|+ E0, (6.1)

where vg is the group velocity and E0 is a fitting parameter. The dispersion fits and exciton
energies are traced in dashed and solid lines, respectively. The extracted Rabi splittings of
43.4±0.8 meV and 41.8±0.6 meV are in close agreement with the transfer matrix value of
41.7± 0.3 meV.

6.3 Polariton propagation

Next, we investigated how far BSWPs are able to propagate within the WS2 monolayer.
The pump wavevector and wavelength were selected to be in resonance with the LP mode.
The corresponding real space spot size dimensions were typically 3 µm × 5 µm (FWHM).
The first panel in Fig. 6.3a shows the real space propagation trace for an exciton fraction
of 10% and wavelength of 645 nm. Propagation can be observed for over 60 µm and ends
upon reaching the flake boundary, indicated by a dashed white line. As a comparison, the
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propagation of the uncoupled (bare) Bloch surface wave is shown in panel 2. The propagation
constants extracted from single exponential decay fits were 20.6±0.1 µm and 21.1±0.1 µm
for the LP and bare modes, respectively. These values are considerably larger than the ones
found in high-quality planar microcavities embedding TMD monolayers, which are typically
of the order of 1 µm [128]. The propagation length can be further increased by limiting the
angular content of the excitation beam. By reducing divergence in this way, the propagation
length of the bare mode could be increased to 42.2±0.2 µm (not shown). The third panel in
Fig. 6.3a shows an enlarged micrograph of the monolayer in reflectance where the monolayer
boundaries can be seen.
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Figure 6.3 (a) Resonant propagation at a wavelength of 645 nm for the LP (exciton fraction
of 10%) and bare modes, shown in panels 1 and 2, respectively. Corresponding propagation
constants are 20.6±0.1 µm and 21.1±0.1 µm. The flake boundary is shown by a white
dashed line. A small crack, indicated by a solid red line in panel 1, has very little impact
on the propagation, possibly due to the high photonic content of the mode. Panel 3 shows
a micrograph of the monolayer in reflectance where the crack and boundaries can be seen.
(b) Non resonant (PL) propagation under 514 nm excitation on a logarithmic intensity scale.
The presence of the small crack, which leads to a small change in slope, is indicated by
the solid red line. Propagation constants for the LP branch ranged from 14.7±0.1 µm to
33.4±0.4 µm for exciton fractions between 16% to 2%. Polaritons from the upper branch are
also visible but propagate significantly less. In both measurements the propagation direction
is downwards, as indicated by the white arrows.

Propagation was also investigated using non-resonant above-gap excitation. In this case,
the pump first creates excitons, which subsequently relax into propagating polariton states.
Fig. 6.3b shows the PL spectrum under 514 nm excitation as it propagates within the flake. As
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previously observed in planar microcavities, relaxation kinetics lead to a LP emission intensity
that diminishes for states with lower exciton content [126]. The propagation constants for
polaritons with exciton fractions ranging from 2% to 16% were found to be between 33.4±0.4
µm and 14.7±0.1 µm, consistent with the resonant case. Weak emission from the UP mode is
also visible using the logarithmic intensity scale of Fig. 6.3b . The much shorter propagation
distances for the UP are consistent with the increased linear losses above the exciton energy.
The experimental LP propagation constant for an exciton fraction of 16% agrees well with
the value of 15.3 µm, estimated from the group velocity and a 6.4 meV linewidth (103 fs
lifetime).

6.4 Nonlinear interactions

Next, we study the effect of polariton-polariton interactions. At high densities, polaritons
interact through their matter component due to phase space filling, which leads to a lowering
of the oscillator strength, and due to inter-particle Coulombic interactions, which under most
conditions are repulsive and lead to a blueshift of the polariton modes. Fig. 6.4a shows the
resonant blueshift of the LP mode at the highest incident pump fluence (60 mJ cm−2) as a
function of the resonance position in the linear regime and the exciton fraction extracted from
the coupled harmonic oscillator model shown in Fig. 6.2a. In Fig. 6.4b we show the complete
power sweep where the highest time-averaged blueshift of 12.9±0.5 meV was observed. The
top two curves for low and high fluences show that the blueshift is reversible and is larger
than the LP linewidth of 7∼8 meV.

The blueshift saturates with power, as evidenced by a flattening out of the dashed line in
Fig. 6.4b at higher fluences. The saturation behaviour is also shown in Fig. 6.5 for different
starting energy positions of the LP mode and is more pronounced at higher exciton fractions.
This is consistent with the exciton-exciton annihilation mechanism which has been shown to
play an important role in TMD monolayers at high exciton densities [138, 139].

6.5 Simulations

Quantifying the strength of the polariton nonlinearity due to exciton-exciton interactions
and PSF from the observed LP blueshift requires an accurate knowledge of the polariton
density. In addition, when several modes in momentum space are excited, their individual
contributions must be accounted for [34]. Using input-output theory and parameters corre-
sponding to our experimental conditions, we calculated the LP field in momentum space such
that |ψ(k, t)|2 is the instantaneous number of polaritons in the mode k. Its time-evolution
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Figure 6.4 (a) High fluence (60 mJ cm−2) time-averaged resonant blueshift of the LP mode
as a function of the initial BSWP energy and corresponding exciton fraction, extracted from
the coupled harmonic oscillator model shown in Fig. 6.2a. (b) Power sweep in steps of
7.6 mJ cm−2 for the highest blueshift/exciton fraction in Fig. 6.4a, showing that the shift is
reversible and larger than the LP linewidth of 7∼8 meV.

is governed by a dissipative Gross-Pitaevskii equation of the form shown in Eq. (2.82) but
in momentum space, where the BSW dispersion is described by Eq. (6.1). To reproduce
our experimental conditions, the pump field is taken to be a Gaussian in momentum space
modulated by a positively chirped temporal Gaussian envelope

Fp(k, t) =

√√√√ |Ck|2γLP I0

h̄ωp
·G(k) ·

√√√√ σ2
t

σ2
t + iGVDd · e

− (t−t0)2

2(σ2
t

+iGVDd) , (6.2)

with

G(k) = 1√
A
·
√

2π
σk
· e
−[k2

x+(ky−ky0)2]
4σ2
k . (6.3)

The corresponding real space LP field is then given by the inverse Fourier transform of ψ(k, t),
defined as

ψ(r, t) = 1√
A

∑
k

ψ(k, t)eirk. (6.4)

The simulation parameters are as follows. GVD = 61.86 fs2/mm is the group velocity
dispersion coefficient of BK7 glass at the pump wavelength of 645 nm (h̄ωp = 1.922 eV),
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d = 40 mm is the total thickness of optical elements in the path of the laser pulse, σt = 30 fs,
|Ck| is the Hopfield coefficient for the LP photon fraction at the pump wavevector, γLP =
1.03 · 1013 s−1, σk = 0.3 µm−1 and ky0 = 11.1 µm−1 is the center pump wavevector. The LP
field is calculated in momenta intervals of dkx = 2π/Lx and dky = 2π/Ly assuming periodic
boundary conditions over the monolayer dimensions of Lx = 20 µm and Ly = 90 µm, with
A = LxLy being the quantization area. For the LP dispersion, vg = 1.49 · 108 m s−1 and
E0 = 0.84 eV. From the incident energy Ein = Pin

f
= 9.25 µW

10 kHz = 0.93 nJ, where Pin is the
average power incident on the sample and f the repetition rate of the laser, the peak incident
power is found to be I0 = Ein

σt
√
π

= 17.4 kW.

Figure 6.6a shows the calculated time evolution of the number of polaritons in momentum
space |ψ(k, t)|2 for modes with kx = 0. The pump pulse is centered at t = 300 fs and the total
number of polaritons peaks at t = 364 fs. The momentum space grid showing the polariton
population in all modes considered in the calculation at the instant of peak total number of
polaritons is shown in Fig. 6.6b, with the pump centered at ky0.

Given that our measurements were performed using pulsed excitation, we illustrate in Fig-
ure 6.7 the underlying temporal dynamics of the spatial density of BSWPs under our exper-
imental conditions. The temporal profile of the pump is traced in a solid white line. During
the pump pulse, the density of polaritons is highest close to the excitation spot, centered at
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Figure 6.6 (a) Time evolution of the number of polaritons in momentum space for modes
with kx = 0. (b) Momentum space map showing the polariton population at the instant of
peak total number of polaritons.

r = 0. As the pump vanishes, the polariton wavepacket can be clearly seen as it propagates
downwards with a group velocity of 1.49·108 m s−1.

6.6 Estimation of the interaction energies

We consider an effective polariton-polariton interaction Hamiltonian of the form shown in
Eq. (2.76). Although this Hamiltonian describes a local interaction in space, it critically
accounts for the varying exciton fractions as a function of momenta, which cannot be ac-
counted for in the GP equation. In this framework, the experimental values of the k depen-
dent LP blueshift ∆ELP (k) are directly related to the polariton population in momentum
space through Eq. (2.78). The quantity V PP

k,k′,q is the effective polariton-polariton interaction
energy, which is independent of the choice of quantization area A = LxLy, and contains
contributions arising from exciton-exciton Coulomb repulsion (VXX) and saturation due to
phase space filling (VSAT ). Considering each mechanism individually, we can obtain the
exciton-exciton interaction energy as

VXX(k) = ∆ELP (k)
2|Xk|2

∑
k′ |Xk′ |2|ψ(k′)|2 (6.5)
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Figure 6.7 Calculated time snapshots of the spatial density of BSWPs following the arrival
of the pump pulse, traced in a solid white line. The chirped pump pulse has an estimated
FWHM of 145 fs. The polariton wavepacket is initially concentrated close to the excitation
spot. As the pump vanishes, it can be seen propagating downwards at a group velocity of
1.49·108 m s−1. The propagation traces were displaced laterally so that the center of the
excitation spot coincides with the time at which the snapshot was taken. The top scale bar
is related to the spatial dimensions of the propagation traces in the horizontal direction.

and the saturation interaction energy as

VSAT (k) = ∆ELP (k)
2|Ck||Xk|

∑
k′ |Xk′|2|ψ(k′)|2

+ 6|Xk|2
∑
k′ |Ck′ ||Xk′ ||ψ(k′)|2

. (6.6)

The experimental values obtained using Eqs. (6.5) and (6.6) and the calculated polariton
population in momentum space shown in Fig. 6.6b are shown in Fig. 6.8. The interaction
constants were calculated at an incident pump power below the saturation of the blueshift
(7.6 mJ cm−2) and at the instant when the total number of polaritons averaged by their
exciton fractions was highest (t = 346 fs). The average interaction energies are VXX = (2.8±
1.0) · 10−4 µeV and VSAT = (2.6± 1.1) · 10−5 µeV. In both cases, instead of constant values,
different interaction energies were found for different wavevectors (and corresponding exciton
and photon fractions). Therefore the model does not allow us to determine which interaction
mechanism plays a dominant role in the observed blueshift. Although the variation in VXX
is smaller, the observed blueshift is likely due to a combination of both Coulomb interactions
and saturation.
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Figure 6.8 (a) Experimental interaction energies due to exciton-exciton Coulomb repulsion
and (b) to saturation due to phase space filling.

6.7 Estimation of the interaction constants

In typical experiments where the lower polariton mode is excited resonantly by a narrow
pump (in energy and momentum), the local experimental blueshift is related to the local
polariton density by the polariton-polariton interaction constant as

∆ELP (r) = gLP |ψ(r)|2. (6.7)

For single-mode excitation and low propagation distances, the polariton distribution in real-
space is constant and the interaction constant is simply given by

gLP = ∆ELP
|ψ|2

. (6.8)

Here, the polariton distribution in real-space will be modified by the energy and momentum
width of the pump and the long propagation constants. The center wavelength and momen-
tum of the pump will then be considered for estimating gLP . The real space distribution
is accounted for by a normalized integral of the polariton density at the instant of highest
polariton population. Because the blueshift is detected from the spectrum of the emitted
light, the density is weighed by the emitted intensity (|ψ|2). The interaction constant is then



82

obtained from
gLP = ∆ELP ·

∫ ∫
|ψ(r, tmax)|2dr∫ ∫

|ψ(r, tmax)|4dr
. (6.9)

Although our experiments cannot determine the relative contribution of each interaction
mechanism over the range of momenta probed, we can separately estimate the interaction
constants required to explain the observed blueshift if either mechanism was uniquely present.
From the calculated real space polariton density shown in Fig. 6.7 we can estimate a polariton-
polariton interaction constant of gLP = 6 · 10−4 µeV µm2. For this estimate, we considered
the case of a blueshift of ∆ELP = 1.25 meV, exciton fraction of 10%, at an incident pump
power below the saturation of the blueshift (7.6 mJ cm−2) and at the instant tmax = 364 fs
of highest total polariton density. The peak density was 4.1 · 106 polaritons/µm2. Through
Eqs. (2.80) and (2.81), this corresponds to exciton-exciton or PSF interaction constants of
gXX = 6 · 10−2 µeV µm2 and gSAT = 5 · 10−3 µeV µm2, respectively. These estimates also
suggest that both Coulomb interactions and PSF may contribute to the blueshift within the
range of momenta probed in our system.

We can compare these interaction constants to their respective theoretical values. The
exciton-exciton interaction constant in TMDs can be estimated using gXX ' 2.07E1sλ

2
X =

1.9 µeV µm2, where E1s = 0.32 eV is the 1s exciton binding energy and λX = 1.7 nm
is the 1s exciton radius [29]. The numerical prefactor in the expression for PSF depends
on the form of the exciton wavefunctions. For 1s excitons, it is often estimated [34] as
gSAT ' 7.18h̄ΩRλ

2
X = 0.87 µeV µm2. Both theoretical values far exceed those obtained from

the blueshift. Part of the discrepancy may be due to the fact that we overestimate the po-
lariton density by ignoring exciton-exciton annihilation and relaxation into dark dipole and
spin-forbidden exciton states. Note also that we use the maximum instantaneous polariton
density in our estimate although we measure a time-averaged blueshift. We have examined
these various possible sources of error and they are not expected to modify the value by more
than an order of magnitude. In addition, our measured exciton-exciton interaction constant
is similar to a recent measurement in encapsulated MoSe2 at 4K [140]. This instead suggests
a need for further work on exciton-exciton interactions in TMDs to explain the discrepancy
between experiments and the current theory.

6.8 Nonlinear polariton source

Finally, we demonstrate how the optical control of the LP mode can be used as a nonlinear
source of polaritons, by pumping in a configuration similar to that which leads to bistability
under continuous wave pumping [7]. For this, we excite the LP mode with an exciton fraction
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of 36% at 633 nm with a spectrally-filtered 3 nm-wide pump. At low incident powers, very
little light is coupled into the propagating polariton mode, as shown on inset 1 in Fig. 6.9. As
the pump power is increased, the LP mode blueshifts and the propagating part of the BSWP
dispersion moves closer to resonance with the pump (insets 2 and 3). At high power, the
pump laser is fully resonant with the polariton mode and launches a propagating surface wave,
which through coupling to the underlying bare mode is able to propagate far beyond the flake
dimensions. The normalized intensities of the propagating and scattered components, which
depend on the selected integration areas, are shown in the blue and red curves, respectively.
The nonlinearity leads to a superlinear fluence dependence for the propagating component
at pump fluences above 1 mJ cm−2. For a single pump beam, the nonlinear polariton source
behaves as an all-optical discriminator (or diode) in forward operation. For two or more
beams, it behaves as an all-optical transistor or switch.
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Figure 6.9 A nonlinear polariton source at an exciton fraction of 36%, where the incident
power can block or launch a beam of propagating BSWPs. The blue and red curves show the
normalized intensity of the propagating and scattered beams, respectively, where the first is
found to have a superlinear dependence on pump fluence, indicating its nonlinear origin.

6.9 Conclusion

Our demonstration of strong light-matter coupling between excitons in two-dimensional ma-
terials and BSWs forms a new platform for enabling practical nonlinear polariton devices
operating at room temperature. All-optical polariton transistors, switches and logic circuits
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could be used for ultrafast optical information processing at speeds well beyond the capa-
bilities of existing electronic devices [15, 141–143]. Because of their propagating nature,
BSWPs can play the dual role of active elements and low-loss optical interconnects. The
structure is simple to fabricate, not requiring the deposition of a top dielectric mirror, and
it can be tailored for other two-dimensional materials or for van der Waals heterostructures
with engineered optical properties. In particular, TMDs encapsulated by hexagonal boron
nitride show improved surface flatness, screening from charged impurities and ambient stabil-
ity. This leads to a suppression of loss mechanisms such as exciton-exciton annihilation and
would allow higher polariton densities to be achieved in the nonlinear regime [139]. Finally,
polariton propagation losses in our experiment stem mainly from leakage into the immersion
optics, which for low-power operation could be reduced by an increase in the number of di-
electric pairs or even completely avoided by the use of surface gratings for external in- and
out-coupling [144].
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CHAPTER 7 CONCLUSION

7.1 Advancement of knowledge

The main goal of this thesis was to investigate the enhancement of polariton nonlinearities
to enable their use in practical nonlinear applications. We began by numerically exploring
a new way in which polariton nonlinearities can be used for optical frequency mixing. We
proposed the use of a non-centrosymmetric active layer, possessing a large second-order
susceptibility χ(2), to enable efficient radiative transitions between polariton modes. This
process, which we called Rabi frequency generation, is forbidden in typical polariton systems
in which only third-order nonlinearities are present. Because polaritons arise from strong
coupling to the same cavity mode, we showed that they display excellent mode overlap and
effectively eliminate the usual phase-matching constraint.

Next, we fabricated high quality microcavities containing a nonlinear organic dye with a
large optical third-order susceptibility χ(3). The main question we wanted to address was
if polaritons would inherit the strong nonlinearity of the dye. Surprisingly, our fabricated
microcavities showed a record value of the normalized coupling strength, indicating that they
were operating in the ultrastrong coupling regime. This also allowed us to address the impact
of the USC regime on observable material properties.

Upon resonant excitation of the lower polariton mode, we demonstrated efficient and tunable
third-harmonic generation spanning the entire visible spectrum. Indeed, by correlating the
THG conversion efficiencies and the polariton photon fraction, we confirmed that the strong
nonlinearity of the dye was carried over to the polaritons via their photon component. Using
a nonlinear transfer matrix method, we were able to explain the experimental results using
a known value for the optical χ(3), indicating that the nonlinear properties of the dye were
not noticeably affected in the USC regime.

In Chapter 5, we performed numerical simulations to reproduce the recent observation by
our collaborators of room temperature polariton superfluidity in an organic microcavity. In
this system, the cavity material is not strongly nonlinear and the weak polariton interactions
stem mainly from saturation effects. Using experimental parameters describing the cavity,
we simulated the flow of a polariton fluid against an obstacle at different polariton densities.
We observed a transition from dissipative to superfluid (scattering free) behaviour at pump
intensities consistent with the experimental value. We were able to reproduce the experimen-
tal observations and shed light on the complicated temporal dynamics of the system, which
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included transient damped oscillations and the ejection of vortex pairs.

Finally, we turned our attention to transition metal dichalcogenides. Such materials are ex-
pected to enable strong exciton-exciton interactions because of the reduced dielectric screen-
ing at the monolayer level. Previous attempts to observe polariton nonlinearities in micro-
cavities embedding TMD monolayers were unsuccessful due to the high losses of either the
mirrors or the active material itself. We proposed to combine a surface wave propagating on
a low-loss dielectric mirror and a monolayer of tungsten disulfide, which possesses a strong
and narrow exciton absorption.

As a consequence of the low losses, we were able to generate Bloch surface wave polaritons
with very long propagation distances. This is especially interesting in the context of cas-
cadable optical elements in polaritonic circuits. More importantly, together with the narrow
linewidths, the enhancement of the electric field and its confinement to the monolayer en-
abled us to observe clear and reversible blueshifts of the lower polariton mode with increasing
pump fluences. This constituted the first demonstration of polariton nonlinearities in this
class of materials and enabled us to measure the strength of their interactions. As a proof-
of-principle, we used the nonlinearity to implement a nonlinear polariton source, similar to
an all-optical diode or discriminator.

7.2 Limits and constraints

In order to enable practical nonlinear applications, a number of material properties are re-
quired: room-temperature excitonic behaviour, high photostability, strong exciton nonlin-
earities and low losses. We have yet to find a material set in which all these requirements
are simultaneously fulfilled. Cavities embedding inorganic quantum wells only operate at
cryogenic temperatures, but satisfy all the remaining criteria. Organic semiconductors sup-
port stable excitons at room-temperature, but their weak nonlinearities require high pump
fluences. As a result, they must be operated in the pulsed regime in order to reduce thermal
damage. This effect was present in our third-harmonic measurements and in the superfluidity
experiments done by our collaborators. Although we did not observe thermal damage in our
demonstration of polariton nonlinearities in monolayer TMDs, it also required prohibitively
high pump fluences for practical technological applications.

7.3 Future research

Future polariton experiments will like make use of a combination of different materials and ap-
proaches in order to enable practical nonlinear devices that can operate at room-temperature
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and at excitation powers comparable to inorganic quantum well microcavities. Here we high-
light some of the most promising ones.

Cavity design: In our experiments, light was confined either inside a planar microcavity or
to the surface of a dielectric mirror. The second approach is more interesting for enhancing
nonlinear effects because of the stronger electric field confinement. Compared to planar
microcavities, Bloch surface modes have the advantages of reduced losses, due to the absence
of metallic layers, and of easier fabrication, since there is no need to deposit a top mirror. A
clear disadvantage is that the dispersion of Bloch surface wave polaritons has a monotonic
slope, while nonlinear polariton effects such as condensation and lasing rely on the buildup
of a significant population at the bottom of a parabolic dispersion. An interesting strategy
to obtain a minimum in the dispersion of BSWPs is to pattern one-dimensional gratings to
either the top dielectric layer or to the semiconductor material itself. In addition, gratings
can also be used for in- and out-coupling of light into BSWP modes directly for the air side
[144].

Organic materials: New nonlinear dyes with stronger nonlinearities, higher photostability
and lower losses are constantly being developed. When embedded in high quality DBR
microcavities, such materials might enable the elusive demonstration of room-temperature
parametric scattering and amplification in organic microcavities. In the context of electrical
excitation, purified carbon nanotubes have a strong and narrow exciton absorption which
might enable polariton lasing in the NIR or telecom wavelengths [145, 146].

Layered semiconductors: There are a number of promising materials with sufficiently
large exciton binding energies for room-temperature operation and which are considerably
more photostable than organic semiconductors. We explored the group of transition metal
dichalcogenides, which despite showing weaker nonlinearities than expected were surprisingly
stable and must be explored further. Monolayer TMDs are especially interesting for the study
of room-temperature BE condensates because they are both more photostable and much less
disordered than organic semiconductors. In addition, a number of layered semiconductors has
been shown to exhibit large second- and third-order nonlinearities, which could be imparted
onto BSWPs via their photonic component [147–149]. Such materials should be investigated
for their viability for polaritonics and might enable complex nonlinear effects to be observed.

Other materials: Interesting candidates for nonlinear polaritonics include inorganic per-
ovskites [119, 120], which have strong nonlinearities but high losses, and wide-bandgap inor-
ganic semiconductors, such as zinc oxide (ZnO) and gallium nitride (GaN), in which polariton
lasing has already been demonstrated [55, 57, 150].

Excitons: Ground-state excitons do not possess a dipole moment and their interactions are



88

predominantly due to Coulomb exchange, which depends strongly on the dielectric environ-
ment and the size of the exciton radius. Two promising alternatives to enhance polariton
nonlinearities are to use either ground-state excitons which have been given a dipolar char-
acter or higher order excitonic Rydberg states, which have both a large radius and dipole
moment.

In the first case, the typical experimental configuration consists of a pair of asymmetric
double quantum wells which are placed inside a microcavity [151]. One of the quantum
wells supports a direct exciton, through which strong light-matter coupling is achieved. In
addition, the proximity of the two quantum wells allows the creation of indirect excitons,
where the electron and hole are in separate wells. This indirect exciton has a static dipole
moment along the growth direction, enabling dipole-dipole interactions to take place. Under
an applied bias, the two types of excitons mix and the resulting polaritons, called dipolaritons,
acquire a dipolar character and have been shown to enhance polariton nonlinearities by an
order of magnitude [152]. Dipolaritons can in principle also be obtained with monolayer
TMDs separated by a small spacer via the mixing of direct and interlayer excitons [153].
This interesting approach, however, has not been explored yet in the context of polaritonics.

The second approach consists of using excitons with a higher principal quantum number.
Such excitons interact strongly via dipole-dipole repulsion and have been predicted to lead to
the enhancement of exciton nonlinearities by several orders of magnitude [154]. However, the
small oscillator strength typical of Rydberg excitons has limited their use in polaritonics. Re-
cent exceptions are inorganic perovskites, where condensation of Rydberg exciton-polaritons
has been claimed [155] and TMD monolayers where strong coupling has been demonstrated
with the 2s exciton [156]. However, both demonstrations were performed at temperatures
below 150K.
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APPENDIX A EXPERIMENTAL SETUP

A simplified schematic of the experimental setup is shown in Figure A.1. Steering mirrors
and positioning stages have been omitted for clarity.

Supercontinuum
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Figure A.1 Experimental setup. Steering mirrors and positioning stages not shown.

As indicated by rounded boxes in Fig. A.1, the experimental setup can be split into three
sections based on their individual purposes: (1) light source, (2) inverted microscope and (3)
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imaging optics. First, we will describe the configurations common to all experiments. Then,
we will focus on specific details for the measurements described in Chapter 4 (third-harmonic
generation) and in Chapter 6 (Bloch surface wave polaritons). Unless indicated otherwise,
all optical components were purchased from Thorlabs.

A.1 General experimental setup

A.1.1 Light source

Large-beam collimator: Where indicated, a large area Gaussian collimator (SLT, LB20)
was used following spatial filtering. The collimator has low wavefront aberration (< λ/10)
and a large beam diameter of 13 mm (1/e2 in intensity).

A.1.2 Inverted microscope

Unless indicated otherwise, an Olympus IX-81 inverted microscope was used. Tube lens
focal length is fTL = 18 cm. The sample is mounted on a computer controlled precision
XY piezo stage (P-545.2C7, PInano) with a lateral scanning range of 200 µm × 200 µm and
sub-nanometer resolution. This stage is itself mounted on an open-frame microscope stage
with a manual linear travel range of 25 mm × 25 mm. A custom made LabVIEW software
is responsible for controlling the movement of the stage when needed.

A.1.3 Imaging optics

A two-inch achromatic doublet lens (f1 = 20) was used as a collimating lens. It was placed
one focal length away from the first image plane (I) and generated the first Fourier plane (F)
one focal length afterward. A two-inch achromatic doublet lens (f3 = 30 cm) was then used to
recreate the image plane (I’) onto the slit of an imaging spectrometer (IsoPlane 160, Princeton
Instruments). The spectrometer is equipped with a CCD camera (PIXIS400, Princeton
Instruments) with 1340×400 pixels (20 µm × 20 µm) and offers a high spectral resolution of
0.15 nm. Grating: 300 gr/mm and blaze wavelength of 500 nm. Where indicated, adjustable
slits for real- and momentum-space imaging were placed on their respective first focal planes.



106

A.2 Third-harmonic measurements

A.2.1 Light source

A supercontinuum laser (Fianium FemtoPower 1060, 40 MHz) was used as the broad infrared
light source. The pulse duration was measured with a streak camera (Hamamatsu C10910)
and found to be 48 ps.

A.2.2 Inverted microscope

Objective: Olympus LUCPlanFl 40× 0.6 NA with the correction collar set to zero.

Filters: A different set of excitation, beam splitter and detection filters was used for each
fundamental wavelength. 1320 nm: Excitation: LP1250, BP1320-12, SP1500 (Edmund Op-
tics), 1 cm quartz cuvette with toluene; Beam splitter: BSW29R; Detection: SP950, BP430-
20 (Chroma), 1 cm quartz cuvette with water. 1550 nm: Excitation: LP1250, LP1500,
BP1550-12, 1 cm quartz cuvette with toluene; Beam splitter: BSW29R; Detection: SP1500.
1650 nm: Excitation: LP1250, LP1500, BP1650-12; Beam splitter: FF538-FDi01 (Semrock);
Detection: 1 cm cuvette with toluene. The transmission of all detection filters was measured
and used to calibrate the measured powers.

A.3 Bloch surface wave measurements

A.3.1 Light source

BSW Reflectivity: White light source: EQ-99X (Energetiq); Single-mode fiber: P1-630A-
FC.

BSW PL: CW Laser: 514 nm diode (L520P50/LTC56B); Single-mode fiber: P1-405B-FC.

BSW NL: A tunable femtosecond laser (estimated pulse width of 145 fs, repetition rate 10
kHz) was focused onto the BFP of the microscope objective with a long focal length lens
(f4 = 75 cm).

A.3.2 Inverted microscope

Microscope For resonant and nonlinear measurements, a home built microscope was used
with the same lenses as before, except for a 20 cm tube lens.

Objective: For reflectivity and non-resonant measurements: Olympus PlanAPO N 60×
1.42 NA. For resonant and nonlinear measurements: Olympus APO N 60× 1.49 NA.
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Filters: For reflectivity measurements: Excitation: LP550; Beam splitter: BSW29R; De-
tection: SP700. For PL measurements: Excitation: RPE520SP (Omega); Dichroic: FF538-
FDi01 (Semrock); Detection: FELH0550.

A.3.3 Imaging optics

Momentum-space imaging: A two-inch achromatic doublet lens (f2 = 7.5 cm) was in-
serted one focal length in front of the first Fourier plane.

Slits: For propagation measurements, adjustable slit (2) were placed in the BFP to select
only the lower polariton mode and adjustable slit (1) in the image plane to block the excitation
spot (in the resonant case only).
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APPENDIX B THIRD-HARMONIC POWER CALIBRATION

Third-harmonic measurements were performed from the excitation side (in reflection) with
the CCD camera. The calibration procedure was performed with a 532 nm laser (supercon-
tinuum followed by BP532-3, SP700, SP1500, 1 cm cuvette with toluene). The laser was
focused on a 75 nm thick silver mirror and the reflected light was measured at the side-port
of the microscope with a power meter (S120VC/PM100D). Neutral-density filters with mea-
sured transmission values at 532 nm were inserted in the excitation path so that the powers
at the side-port of the microscope could be adjusted in the range of 10−13 − 10−10 W.

For each power value, a series of images was acquired with the CCD camera and the cor-
responding integrated counts on two adjacent 30×30 pixel regions were obtained, the first
one including the laser spot and the second one only background light. The procedure was
repeated for different integration times and the detector response was obtained by fitting the
background-corrected counts over the known input power to a fourth-degree polynomial in
integration time.

The CCD quantum efficiency is taken to remain constant in the range of THG wavelengths
from 440 nm to 550 nm. The collection efficiency of the objective from the excitation side
based on the detection solid angle was estimated to be η = 1− cos [sin−1(NA)] = 0.2. This
value only affects absolute powers, but not the enhancement factors.
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