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RÉSUMÉ 

Plusieurs études ont montré que combiner certains prédicteurs ensemble peut améliorer la justesse 

de la prédiction dans certains domaines comme la psychologie, les statistiques ou les sciences du 

management. Toutefois, aucune de ces études n'ont testé la combinaison de techniques 

d'apprentissage par renforcement. Notre étude vise à développer un algorithme basé sur deux 

algorithmes qui sont des formes approximatives d'apprentissage par renforcement répétés dans 

XCS. Cet algorithme, MIXCS, est une combinaison des techniques de Q-learning et de R-learning 

pour calculer la combinaison linéaire du payoff résultant des actions de l'agent, et aussi la 

correspondance entre la prédiction au niveau du système et la valeur réelle des actions de l'agent. 

MIXCS fait une prévision du payoff espéré pour chacune des actions disponibles pour l'agent. 

Nous avons testé MIXCS dans deux environnements à deux dimensions, Environment1 et 

Environment2, qui reproduisent les actions possibles dans un marché financier (acheter, vendre, ne 

rien faire) pour évaluer les performances d'un agent qui veut obtenir un profit espéré. Nous avons 

calculé le payoff optimal moyen dans nos deux environnements et avons comparé avec les résultats 

obtenus par MIXCS. 

Nous avons obtenu deux résultats. En premier, les résultats de MIXCS sont semblables au payoff 

optimal moyen pour Environments1, mais pas pour Environment2. Deuxièmement, l'agent obtient 

le payoff optimal moyen quand il prend l'action "vendre" dans les deux environnements. 
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ABSTRACT 

Many studies have shown that combining individual predictors improved the accuracy of 

predictions in different domains such as psychology, statistics and management sciences. However, 

these studies have not tested the combination of reinforcement learning techniques. This study aims 

to develop an algorithm based on two iterative approximate forms of reinforcement learning 

algorithm in XCS. This algorithm, named MIXCS, is a combination of Q-learning and R-learning 

techniques to compute the linear combination payoff and the correspondence between the system 

prediction and the action value. As such, MIXCS predicts the payoff to be expected for each 

possible action.  

We test MIXCS in two two-dimensional grids called Environment1 and Environment2, which 

represent financial markets actions of buying, selling and holding to evaluate the performance of 

an agent as a trader to gain the desired profit. We calculate the optimum average payoff to predict 

the value of the next movement in both Environment1 and Environment2 and compare the results 

with those obtained with MIXCS. 

The results show that the performance of MIXCS is close to optimum average reward in 

Environment1, but not in Environment2. Also, the agent reaches the maximum reward by taking 

selling actions in both Environments.  
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CHAPTER 1 INTRODUCTION  

1.1 Motivation   

Our world is based on the interplay of different elements and factors which therefore cannot be 

regarded individually but rather as a whole; these systems are defined as “complex system” and 

have the capacity of changing and learning from experiences. A common way to describe such 

systems are rules, and they can represent these systems; since rules are virtually defined as an 

accepted means of expressing knowledge for decision making (Holmes, Lanzi, Stolzmann, & 

Wilson, 2002). The question arises which single best-fit model most suitable in dealing with these 

complex systems. One possible and powerful solution is so-called rule-based agents, agent is a 

single component of a given system to interact with the world as an environment of the problem 

domain. An intelligent agent model that interacts with the environment and improves adaptively 

with experience is called learning classifier system. Learning is the source of improvement and 

promotes the system to provide payoff from the environment (Urbanowicz & Moore, 2009). 

Artificial markets are a rising form of agent-based social simulation in which agents represent 

individual consumers, traders, firms or industries interacting under simulated market conditions. 

Agent-based social simulation is particularly applicable for studying macroscopic structures like 

organizations and markets that are based on the distributed interactions of microscopic agents. The 

structure of the artificial markets is designed according to agent specification, and one way to do 

this is the ad hoc approach. This approach is often used to explore market behaviour at a high level 

of abstraction. Like models that are considered for artificially intelligent agent-based social 

simulation that include an agent or agents which interact with environment and learn and adapt 

over period, here the environment is a two-dimensional grid in which the agent navigates to find 

the source of payoff, and where the rules govern the interaction between agents and the 

environment (Zenobia, Weber, & Daim, 2009).  

Payoffs are considered as positive rewards, and rule-based agents aim to maximize the achieved 

environmental payoffs (Tesfatsion, 2000). While these simple, general models have been useful 

for demonstrating how complex behavioural patterns can appear from simple elemental 

mechanisms, their low accuracy has limited their applicability to real markets (Zenobia et al., 

2009).   
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The artificial market needs more advanced innovation forecasting tools to study organizational 

phenomena (Zenobia et al., 2009) or add more parameters to calculate the accuracy of prediction 

(S. W. Wilson, 1995). Single models or combinations of the models are applied to help the agent 

to learn, adapt and take action in the environment.  

 “In combining the results of these two methods, one can obtain a result whose probability 

law of error will be more rapidly decreasing.” (Laplace, 1818)  

This quote shows that combining estimates is not new. Laplace considered combining regression 

coefficient estimates, one being least squares and the other a kind of order statistic, many years 

ago. In his work, he compared the properties of two estimators and derived a combining formula. 

However, he concluded that not knowing the error distribution made this combination inaccessible. 

The topic has remained of great interest in the community, and considerable literature has 

accumulated over the years regarding the combination of forecasts (Clemen, 1989).  

Hashem and Schmeiser propose another contribution regarding multiple models regarding using 

optimal linear combinations of some trained neural networks instead of using a single best network. 

Their results suggest that model accuracy can be improved by combining the trained networks. 

The vast available literature about combining models in order to obtain a certain output in very 

different domains motivates us to also use this approach for combining models respect to the 

learning classifier systems. 

This leads to two main question; how to predict expected payoff of such a combined approach? 

Furthermore how to accurately relate the input from the environment with a corresponding action 

for the payoff prediction?  

The solution is provided by accuracy-based fitness. XCS is a classifier where each classifier 

provides an expected payoff prediction. The fitness is calculated based on an inverse function of 

the classifier’s average prediction error. The prediction error is an average of a measure of the error 

in the prediction parameters. The prediction itself is an average of the payoff received that is 

updated by a Q-learning-like quantity and the reinforcement learning technique which discounts 

the future payoff received (Wilson, 1995). What method could replace Q-learning-like quantity to 

provide a prediction value that has a direct effect on the fitness?  



3 

 

The answer is R-learning. R-learning is similar to Q-learning in form; both are based on iteratively 

approximating the action values which represent the average adjusted reward of doing an action 

for the input received (Zang, Li, Wang, & Xia, 2013).   

To the best of our knowledge, none of the classifier systems uses a combination of iterative 

approximation from the table of all action values. This study considers the simple combination of 

two reinforcement learning techniques to calculate the prediction of the systems and compare its 

result with a single reinforcement learning technique. This combination is applied in a two-

dimensional grid representing an artificial trade market to see the profitable action that agent takes 

through navigating. 

1.2 A brief overview of the proposed methodology  

To meet the stated goal, we present the simple average of two techniques Q-learning and R-learning 

based on ensemble averaging to forecast the prediction of the next movement in two two-

dimensional grids. They are assumed as environments, Environment1 and Environment2, where 

the agent should navigate to reach the considered goal. Figure 1.1 outlines this approach 

schematically.  

 

 

 

 

 

 

 

 

Although both environments contain similar objects to represent the rules to learn through 

exploring and taking action to maximize the profit, they differ regarding size and the actual type 

of rule objects. The possible action set is divided into two parts, buy and sell, based on the location 

input received from the agent. The number of buying and selling for similar inputs that maximize 

profits is calculated. The optimum average of profit is calculated and compared against the single 

s   r s   r s   r 

a 

Environment R-learning Q-learning 

Combiner 

Figure 1-1: Combination of Q-learning and R-learning 



4 

 

model approach. The average profit in the combination techniques is close to the optimum average 

in Environment1, and the results show that maximum profit will be reached by increasing the 

selling action. Also, a comparison between two single techniques is made to identify the maximum 

prediction. Since the considered rules in Environment1 are more straightforward than in 

Environment2, the agent is able to acquire enough knowledge through exploring to take the 

required actions, whereas the complexity of Environment2 is too high to have a similar effect. As 

a result, the average profit in this environment diverges greatly from the optimum value for both, 

the single and the combined approach.  

1.3 Thesis structure 

In the following chapter 2, sorrow literature is presented. chapter 3 describes the XCS algorithm 

developed in the course of this thesis. The performance of the proposed algorithm applied to 

Environment1 and Environment2 is given in chapter 4. Finally, the conclusion and outlook on the 

future works are presented in chapter 5. 

 



5 

CHAPTER 2 ARTIFICIAL MARKET, REINFORCEMENT LEARNING 

AND CLASSIFIER SYSTEMS 

In this chapter, the artificial market, Markov decision process and the concept of reinforcement 

learning, reinforcement learning in Markov decision environment, learning classifier systems and 

the genetic algorithm will be discussed. 

2.1 Artificial market 

Computer simulation has a long history in simulating organizations by the agent-based paradigm. 

Agent-based social simulation (ABSS) can fairly well study macroscopic structures like 

organizations and markets that are based on distributed interactions of microscopic agents. 

Artificial markets (AMs) are rising a form of ABSS where agents represent individual consumers, 

firms, trader or industries interacting under simulated market conditions. One of the identified 

promising applications of AMs in technological innovation is synthesizing and filtering useful 

information from massive data sets. In this application, agents represent variables and parameters 

of a data set. These agents will improve through positive feedback or vanish otherwise. The agents 

also interact and create a new generation of agents that show a higher-order interaction term. As 

will be shown in the following, an AM could be used to naturally select a population of variables 

and interaction terms that predict future market behaviour (Zenobia et al., 2009).  

The underlying concept is inspired from animal life to find the basic and simple common behaviour 

between humans and animals when interacting with their environment. Some of these mutualities 

are for example adaptive behaviour for foraging, navigation and obstacle avoidance in an unknown 

environment as has been first discussed by Wilson in 1986 (S. W. Wilson, 1986). He offered a 

bottom-up approach to construct the Animat model from its primitive elements according to four 

basic characteristics of animals. First, only current sensory signals from the environment are 

essential for the animal at each moment. Second, the animal is capable of taking action to change 

these environmental signals. Third, certain signals have a special meaning for the animal, and 

fourth, the goal of the animal is to externally or internally optimize the rate of occurrence of certain 

signals (S. W. Wilson, 1986). Needs and satisfaction identify the agent in this model according to 

these four characteristics.  
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Based on characteristics, the agent in the Animat model is inspired by real-life rules that are shared 

between all types of animals, i.e. the manner of interaction with the environment. Based on the first 

and second characteristics they sense and connect to the environment to satisfy their need. The 

environment is a simulated world which contains the fundamental objects to serve the surviving 

task. The animal’s ecosystem inspires it. In ABSS, the surviving task of the agents is defined based 

on the problem, for example, acquiring maximum resources, maintaining a minimum level of 

energy, prey hunting, obstacle avoidance, etc.  

A finite- state machine is one formal way to characterize the environment formally. Two equations 

define the behaviour of a finite-state machine 

𝑄(𝑡 + 1) = 𝐹(𝑄(𝑡), 𝐴(𝑡))   (2-1) 

𝐸(𝑡 + 1) = 𝐺(𝑄(𝑡), 𝐴(𝑡))   (2-2) 

Where 𝐴 is the environment input, 𝐸 is the environment output, and 𝑄 represent the current state, 

time 𝑡 is assumed to be discrete. The variable 𝐴 and 𝐸 are general vectors. The first equation says 

that the environment’s next state is a transition function 𝐹 of its current state and its defined action. 

The second equation says that the simulated input at 𝑄(𝑡) for action at 𝑡. In general, the model says 

that the action in an environment results in a new simulated input.  

The class of environment is defined depending on the state transition of an agent. If the current 

state determines the desired action in a state, the agent is placed in a Markovian environment. 

Otherwise, it needs to have a history of states, and the environment is non-Markovian (S. W. 

Wilson, 1991). In the next section, a Markovian environment will be discussed in detail. 

Agents involved in such a system that consists of a network of interacting agents and exhibit an 

aggregate behaviour that rises from the individual activities of the agents. It is possible to describe 

its aggregated behaviour without any knowledge of the individual behaviour of the agent. An agent 

in such an environment is adaptive if it reaches the goal that is defined by the system. Computer-

based adaptive algorithms such as classifier systems, genetic algorithm and reinforcement learning 

are applied to explore artificial adaptive agents (Holland & Miller, 1991).  

In the artificial market, it is necessary to argue how to design the input and output of the agent 

(Nakada & Takadama, 2013). In this study, an agent is considered as a trader in a stock market 

where is depicted by two grid environments, one of this environment has a simple 5 × 5 grid cell 
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and the other environment 9 × 9 grid cell that every object is randomly placed. While the agent is 

randomly located in the environment, its interaction with the environment is analyzed. The task of 

the agent is to maximize the profit that is provided as Food (𝐹). The action of the agent as a trader 

is to sell or to buy. There are some objects that are called obstacles (𝑂), they represent the action 

of hold, the agent cannot trade in the vironment, but in the number of action is considered, and it 

should choose another action. The possible trade opportunities are demonstrated by (. ).The 

possible action set for this agent is 𝐴 = {1,2,3,4,5,6,7,8}, figure 2-1 shows that how the agent ∗ can 

move around the environment to perform its task.  

8 1 2 

7 ∗ 3 

6 5 4 

Figure 2-1: The possible actions in each state for the agent ∗ 

Each number shows one cell of the environment; it means that agent ∗ can have information of the 

eight cells at each time step; this information is agent’s knowledge that after randomly exploring 

to learn as much as possible about its environment. After learning the environment, the agent tries 

to maximize environmental reward in our case profit. In chapter 3, environments are illustrated, 

and the design of input and output will be explained in details. 

2.2 Reinforcement learning 

2.2.1 Markov decision processes (MDPs) 

A deterministic MDP is defined by its state space 𝑆, its action space 𝐴, its transition probability 

function 𝑇: 𝑆 × 𝐴 → 𝑆, which describes how the state changes as a result of the actions, and its 

reward function 𝑅: 𝑆 × 𝐴 → ℝ which evaluates the quality of state transitions. The agent behaves 

according to the policy 𝜋: 𝑆 → 𝐴. As a result of the action 𝑎𝑡 applied in the state 𝑠𝑡 at the discrete 

time step 𝑡 the state changes to 𝑠𝑡+1 according to the transition function 𝑠𝑡+1 = 𝑇(𝑠𝑡, 𝑎𝑡). At the 

same time, the agent receives the scalar reward 𝑟𝑡+1, according to the reward function 𝑟𝑡+1 =

𝑅(𝑠 𝑡 , 𝑎𝑡) where ‖𝑅‖∞ = 𝑠𝑢𝑝𝑠,𝑎|𝑅(𝑠, 𝑎)| is finite. The reward evaluates the immediate effect of 

the action 𝑎𝑡, namely the transition from 𝑠𝑡 to 𝑠𝑡+1, but in general does not say anything about its 

long-term effects (M. L. Puterman, 1994). 
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The agent chooses actions according to its policy 𝜋, using 𝑎𝑡 = 𝜋(𝑠𝑡). Given 𝑇 and 𝑅, the current 

state 𝑠𝑡 and the current action 𝑎𝑡 are sufficient to determine both the next state 𝑠𝑡+1 and the 

reward 𝑟𝑡+1. To show the Markov property, which is essential in providing theoretical guarantees 

about reinforcement learning algorithms, suppose 𝑋 is a random variable that can take its value 𝑋𝑡 

at time 𝑡 among the state space 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}. The random variable 𝑋𝑡 is a Markov chain if: 

𝑃𝑟(𝑋𝑡+1 = 𝑠𝑡+1|𝑋𝑡 = 𝑠𝑡, 𝑋𝑡−1 = 𝑠𝑡−1, … , 𝑋1 = 𝑠1, 𝑋0 = 𝑠0) = 𝑃𝑟(𝑋𝑡+1 = 𝑠𝑡+1|𝑋𝑡 = 𝑠𝑡)  (2-3) 

It shows the probability distribution of the state at time t+1 depends only on the state at time t 

(Hohendorff, 2005).  

A Markov chain can be shown based on transition probability. Suppose 𝑝(𝑖, 𝑗) is the probability of 

going from 𝑠𝑖 to 𝑠𝑗 by one step, so 

𝑝(𝑖, 𝑗) = Pr (𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖)          (2-4) 

The transition probability for all state is considered as  

𝜇(𝑡) = [𝜇1(𝑡) 𝜇2(𝑡) … ] = [Pr(𝑋𝑡 = 𝑠1) Pr(𝑋𝑡 = 𝑠2) … ]        (2-5) 

The dimension of 𝜇(𝑡) is as same as the dimension of 𝑆. All of the elements of 𝜇(0) are zero except 

that one the random variable is in the state. From Chapman-Klmogrov equation, 

𝜇𝑖(𝑡 + 1) = Pr(𝑋𝑡+1 = 𝑠𝑖) = ∑ Pr(𝑋𝑡+1 = 𝑠𝑖|𝑋𝑡 = 𝑠𝑘) Pr(𝑋𝑡 = 𝑠𝑘)

𝑘

 

= ∑ 𝑝(𝑘, 𝑖)𝜇𝑘(𝑡)𝑘      (2-6) 

𝑃 is the probability transition matrix that the sum of the rows elements of 𝑃 is one. So, 𝜇(𝑡 + 1) =

𝜇(𝑡)𝑃.  

A n-step transition probability 𝑝𝑖𝑗
(𝑛)

 is the probability of starting from state 𝑖 to state 𝑗 after n states.  

It means 

𝑝𝑖𝑗
(𝑛)

= Pr(𝑋𝑡+𝑛 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖)  (2-7) 

Where 𝑝𝑖𝑗
(𝑛)

 is the 𝑖𝑗𝑡ℎ element of 𝑃𝑛. 

A vector 𝜇 = (𝜇1, … , 𝜇𝑘)𝑇 is considered as a stationary distribution for the Markov chain 

(𝑋0, 𝑋1, …) if  
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𝜇 ≥ 0 ∀ 𝑖 ∈ {1, … , 𝑘} 𝑎𝑛𝑑 ∑ 𝜇𝑖 = 1

𝑘

𝑖=1

 

𝜇𝑇𝑃 = 𝜇𝑇   (2-8) 

The current state and next states are independent of initial condition (Hohendorff, 2005).  

The reinforcement learning literature often uses “trials” to refer to trajectories starting from some 

initial state and ending in a terminal state that once reached, can no longer be left.  

2.2.2 Definition and basic architecture of reinforcement learning 

Dynamic programming (DP) and reinforcement learning (RL) are two algorithmic methods that 

are applied to solve problems in which actions are used to a system over a period, the time variable 

is usually discrete, and actions are taken at every discrete time step, to receive the desired goal. 

DPs methods need to assume the model is known whereas RL methods only require to have access 

to a set of samples. DPs know the transition probabilities and the expected immediate reward 

function. Both of these models are useful to obtain behaviour for intelligent agents. If the model of 

the system cannot be obtained, RLs methods are helpful; since they work using only data obtained 

from the system without requiring a model of its behaviour (Busoniu, Lucian, et al., 2010). 

Reinforcement learning is the problem faced by an agent that must learn how to behave through 

trial-and-error interactions with an environment. The goal of reinforcement learning is to maximize 

the rewards and minimize the punishments the agents receive. From the psychological point, the 

idea of reinforcement learning is inspired by doing the action for a belated reward by animals and 

human (Richard S. Sutton, 2017). 

The main elements of reinforcement learning problems are states (situations), actions that each 

action influences the agent’s future state and payoffs (rewards or punishments in reinforcements). 

The agent can take action among the set of possible actions based on a given state, then the agent 

may transition to a new state and may receive payoffs.  

Figure 2-2 presents the architecture of reinforcement learning:  
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Figure 2-2: Block diagram of the reinforcement learning problem 

In this diagram, first, the agent observes the current state of the environment and then chooses an 

action among the possible action set. In the next step, it receives the immediate reward for its 

action. To receive the goal of maximization of reward, the agent should try to learn in several times. 

The agent finds the rule of choosing an action at each state of the environment; this rule is called 

policy.  

More formally, an agent moves in an environment which is characterized by a set S of state, and 

for each set of state 𝑠 ∈ 𝑆 there is a set of possible actions 𝐴(𝑠𝑡) at a discrete time step t=0, 1, 2…. 

According to the observed state, the agent chooses an action 𝑎𝑡 ∈ 𝐴(𝑠𝑡). In the next step, t+1 the 

agent will receive a reward 𝑟𝑡+1 ∈ 𝑅 in the state of st+1. The agent’s goal is to maximize long- term 

reward, which is defined as the discounted sum of future rewards: 

∑ 𝛾𝑡−𝜏𝑟𝑡                    0 ≤ 𝛾 < 1∞
𝑡=𝜏                     (2-8) 

Coefficient 𝛾 is the discount factor which determines the importance of later and sooner reward. 

The agent chooses the action according to a policy, the policies are shown by π. If the policy is 

nondeterministic, giving more actions for a same state, is presented by the probabilistic mapping 

that is shown, 𝜋𝑡(𝑠, 𝑎) that represents 𝑎𝑡 = 𝑎 if 𝑠𝑡 = 𝑠. If the policy is deterministic, there is a 

single action for each state and it is shown by π(s). For each state, an optimal policy gives the best 

action to perform in that state. When the agent found an optimal policy, it must follow that policy 

to behave optimally (Maia, 2009).   

Since an action effects on the immediate reward, the value of the next state is beneficial to know. 

In other words, determining the values of states can help in solving the problem. The state- value 

function, 𝑉𝜋(𝑠) is the expected value of the discounted sum of future reward when the agent starts 

from s and follows the policy π.  

𝑉𝜋(𝑠) = 𝐸{∑ 𝛾𝑡−𝜏∞
𝑡=𝜏 𝑟𝑡|𝑠𝜏 = 𝑠}                          (2-9) 
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The total expected reward when the agent is in the state 𝑠𝑡 = 𝑠, perform action 𝑎, and transition to 

state 𝑠′ is divided to two parts, immediate reward [𝑅(𝑠, 𝑎, 𝑠′)] and discounted reward when the 

state 𝑠′ starts 𝛾[𝛾𝑉𝜋(𝑠′)]. The average of the sum of these presented rewards give the value of the 

state. In mathematical form: 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎) ∑ 𝑇(𝑠, 𝑎, 𝑠′). [𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)]𝑠′𝑎∈𝐴(𝑠)                    (2-10) 

The equation (2-10) is known as the Bellman equation (Maia, 2009).  

2.2.3 Reinforcement learning in Markov environment 

The problem of reinforcement learning is formalized by using the ideas from dynamical systems 

theory as the optimal control of Markov decision processes. In dynamic programming (DP) as same 

as the reinforcement learning, an agent interacts with the environment by the received state, which 

describes the state of the environment, an action among possible action set, and a scalar reward 

which provides the feedback on immediate performance. DP and RL problems can be formalized 

with the help of MDPs (Busoniu, Lucian, et al., 2010). 

MDPs straightly indicates the frame of the problem of learning from interaction to achieve a goal. 

MDPs are a mathematical form of reinforcement learning problem for which precise theoretical 

statement can be made.  

The agent and environment interact at each time steps, 𝑡 = 0,1,2,3, …. The agent receives input 

from the environment’s state 𝑠𝑡 ∈ 𝑆, based on selects an action 𝑎𝑡 ∈ 𝐴. One time step later, the 

agent receive a numerical reward 𝑟𝑡+1 ∈ 𝑅, as the consequence of its action, then the agent will be 

in a new state 𝑠𝑡+1. This is the trajectory of MDP. To show the mathematical expression of a 

reinforcement problem in Markov transition probability and the expected value of the next reward: 

𝑃(𝑠′|𝑠, 𝑎) = 𝑃𝑟(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)             (2-11) 

𝑅(𝑠, 𝑎, 𝑠′) = 𝐸(𝑟𝑡+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠′)       (2-12) 

Transition probability 𝑃(𝑠′|𝑠, 𝑎) is the probability of state changes from 𝑠 to 𝑠′ given action 𝑎. The 

expected value of the next reward 𝑅(𝑠, 𝑎, 𝑠′) is the average of receiving a reward in changing from 

𝑠 to 𝑠′ given action 𝑎. The definition of 𝑃(𝑠′|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠′) specify the dynamic of a MDP 

with a finite number of states and actions that is called finite MDP. 
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The other main element of a reinforcement learning problem except agent and environment is a 

policy. A policy defines the learning behaviour of an agent at a given time. A policy 𝜋: 𝑆 → 𝐴 is a 

mapping from perceived states of the environment to action set at a given time, it is shown 

by 𝜋𝑡(𝑠, 𝑎). To compute the optimal policies for a MDP, dynamic programming is used. The goal 

of both DP and RL is to find an optimal policy that maximize the return from any initial state 𝑠0. 

The return is a cumulative aggregation of rewards along a trajectory starting at 𝑠0. The finite-

horizon discounted return is given by ∑ 𝛾𝑡𝑟𝑡+1 = ∑ 𝛾𝑡𝑅(𝑠𝑡, 𝜋(𝑠𝑡))𝑇
𝑡=0

𝑇
𝑡=0  .It represents the reward 

obtained by the agent in the long run. Based on the way of accumulating the rewards, there are 

several types of return. 

A convenient way to characterize policies is to define their value functions. There are two types of 

value function: state-action value functions and state value functions. 

1. State-action value function 

The state-action value function 𝑉𝜋: 𝑆 × 𝐴 → ℝ of a policy 𝜋 gives the return obtained when starting 

from a given state, applying a given action, and following 𝜋 thereafter:  

𝑉𝜋(𝑠, 𝑎) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠) = 𝐸𝜋[(∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠)] (2-13) 

Where (𝑠0, 𝑎0) = (𝑠, 𝑎), 𝑠𝑡+1 = 𝑇(𝑠𝑡, 𝑎𝑡) 𝑎𝑛𝑑 𝑎𝑡 = 𝜋(𝑠𝑡). Then, the first term is separated and the 

rest of the equation is written in a recursive from 

𝑉𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾𝑅𝜋(𝑠, 𝑎, 𝑠′)  (2-14) 

The optimal value function is defined as the best value function that can be obtained by any policy: 

𝑉∗(𝑠, 𝑎) = max
𝜋

𝑉𝜋(𝑠, 𝑎)  (2-15) 

Any policy 𝜋∗ that selects at each state an action with largest optimal value, i.e., that satisfies: 

𝜋(𝑠) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∗(𝑠, 𝑎)  (2-16) 

In general, for a given value function that satisfies (2-16) condition is said to be greedy.  

𝑉𝜋 and 𝑉∗ are recursively characterized by Bellman equations, which are of central importance for 

value iteration and policy iteration algorithms. The Bellman equation for 𝑉𝜋 states that the value 

of taking action 𝑎 in state 𝑠 under the policy 𝜋 equals the sum of the immediate reward and the 

discounted value achieved by 𝜋 in the next state: 
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𝑉𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾𝑅𝜋(𝑇(𝑠, 𝑎), 𝜋(𝑇(𝑠, 𝑎)) (2-17) 

The Bellman optimality equation characterizes 𝑉∗, and states that the optimal value of action 𝑎 

taken in state 𝑠 equals the sum of the immediate reward and the discounted optimal value obtained 

by the best action in the next state: 

𝑉∗(𝑠, 𝑎) = R(s, a) + 𝛾 max
𝑎′

𝑉∗(𝑇(𝑠, 𝑎), 𝑎′)  (2-18) 

2. State value function : 

The state value function 𝑉𝜋: 𝑆 → ℝ of a policy 𝜋 is the return obtained by starting a particular state 

and following 𝜋. State value function can be computed from 𝑉𝜋(𝑠) = 𝑉𝜋(𝑠, 𝜋(𝑠)). The optimal 

state value function is the best state value function that can be obtained by any policy, and can be 

computed from the optimal 𝑉∗(𝑠): 

𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠)     (2-19) 

An optimal policy 𝜋∗ can be computed from 𝑉∗ by suing the fact that it satisfies: 

𝜋∗(𝑠) ∈ argmax
𝑎

[𝑅(𝑠, 𝑎) + 𝛾𝑣∗(𝑇(𝑠, 𝑎))]  (2-20) 

The 𝑉𝜋 and 𝑉∗ satisfy the Bellman equations (Busoniu, Lucian, et al, 2010), 

𝑉𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑎)) + 𝛾𝑉𝜋(𝑇(𝑠, 𝜋(𝑠)))  (2-21) 

𝑉∗(𝑠) = max
𝑎

[R(s, a) + 𝛾𝑉∗(𝑇(𝑠, 𝑎))]  (2-22) 

 

2.2.4  Temporal differences 

Since the agent does not know the MDP, temporal difference learning estimates 𝑉𝜋(𝑠) by taking 

the observed value of 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′) as a sample. In a statistical point of view, the agent 

likely selects action 𝑎 after many times to visit state 𝑠 with probability 𝜋(𝑠, 𝑎). In the same way, 

the agent chooses a state 𝑠′ with the transition of 𝑇(𝑠, 𝑎, 𝑠′). So, there is an estimate of 𝑉𝜋(𝑠) that 

is shown by 𝑉̂𝜋(𝑠), therefor 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉̂𝜋(𝑠′).  

It is essential to consider the potential changes in recent samples to estimate 𝑉𝜋(𝑠). The simple 

solution is to weight the recent samples by exponential recency- weighted average iteratively. Let 
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𝑥1, 𝑥2, … , 𝑥𝑛 be a sequence of number and 𝑥̅𝑛 is an exponential recency- weighted average of these 

numbers, 𝑥̅𝑛+1 = 𝑥̅𝑛 + 𝛼[𝑥𝑛+1 − 𝑥̅𝑛] is an exponential recency-weighted average of 

𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1 (Maia, 2009). So, it is possible to update 𝑉̂𝜋(𝑠),  

𝑉̂𝜋(𝑠) ← 𝑉̂𝜋(𝑠) + 𝛼[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉̂𝜋(𝑠′) − 𝑉̂𝜋(𝑠)]                        (2-23)  

The prediction error is defined by the difference between the sample of the discounted sum of 

future reward and one that is predicted. It is presented as following 

𝛿 = 𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉̂𝜋(𝑠′) − 𝑉̂𝜋(𝑠)                                                 (2-24) 

A form of (2-23) based on prediction error is: 

𝑉̂𝜋(𝑠) ← 𝑉̂𝜋(𝑠) + 𝛼𝛿                                                                        (2-25) 

𝑉̂𝜋(𝑠) ← (1 − 𝛼)𝑉̂𝜋(𝑠) + 𝛼[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉̂𝜋(𝑠′)]                       (2-26) 

Also, this form indicates the new estimate of 𝑉̂𝜋(𝑠) is a weighted average of the old estimate and 

the provided estimate by the current sample. 

2.2.5  Q-Learning 

The Bellman optimality equation is applied by value iteration techniques to iteratively compute an 

optimal value function, form which an optimal policy is derived. Q-learning, the most wildly used 

algorithm from model-free value iteration algorithm. Q-learning begins from an arbitrary initial 

value and updates it without requiring a model. Instead of a model, Q-learning uses state transitions 

and rewards, a data tuples 𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡+1. This is the simple way to find a policy and value 

function is to store action value 𝑄(𝑠, 𝑎) for each state 𝑠 and action 𝑎 (Watkins & Dayan, 1992). 

After each transition, the Q-function is updated by using a data tuple, as follows: 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 max
𝑎′

𝑄𝑡(𝑠𝑡+1, 𝑎′) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] (2-27) 

where 𝛼 is a learning factor, a small positive number. The term between square brackets is the 

temporal difference, the difference between the updated estimate 𝑟𝑡+1 + 𝛾 max
𝑎′

𝑄𝑡(𝑠𝑡+1, 𝑎′) of the 

optimal Q-value of (𝑠𝑡, 𝑎𝑡) and the current estimate 𝑄𝑡(𝑠𝑡, 𝑎𝑡). The other form of this updating is:  

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼)𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎)]               (2-28) 
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The value of Q is unchanged for all other combination of 𝑠 and 𝑎. This method is a form of value 

iteration, one of the normal dynamic programming algorithms. According to Watkin and Dayan, 

this method will converge rapidly to the optimal action- value function for finite Markov decision 

process. He proofs Q-learning converges with probability one under an artificial controlled Markov 

process called the action replay process (ARP) which is constructed from the trajectory sequence 

and the learning rate sequence (Watkins & Dayan, 1992).  

2.2.6 R-Learning 

Before presenting R-learning, it is crucial to introduce the average reward optimality criteria. As it 

is mentioned in Q-learning section, receiving rewards in the future are geometrically discounted 

by the discount factor. The average reward model is an undiscounted reinforcement learning that 

is supposed to take actions to maximize long-run average reward per time step.  

𝜌 = 𝜌(𝑠) = lim
𝑁→∞

𝐸(∑ 𝑟𝑡(𝑠)𝑁−1
𝑡=0 )

𝑁
                           (2-29) 

Since it is supposed to calculate 𝜌 for the 𝑁 period, the upper bound of the summation is considered 

based on 𝑁 − 1 previous steps. We expect that the long-run average reward 𝜌 is gained by  

lim
𝑁→∞

𝐸(∑ (𝑟𝑡(𝑠))𝑁−1
𝑡=0 )                                    (2-30) 

To show the long-run time for future reward 𝑁 → ∞ is considered.  

R-learning is a similar technique to Q-learning in form. R-learning is based on iteratively 

approximating all action values, the more common points of these methods will be mentioned. R-

learning represents the average adjusted reward of doing an action 𝑎 in state s and related policy to 

reach the maximize reward. Following rule shows the update R value: 

𝑅𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛽𝑅)𝑅𝑡(𝑠𝑡, 𝑎𝑡) + 𝛽𝑅[𝑟𝑡+1 + max
𝑎

𝑅𝑡(𝑠𝑡+1, 𝑎) − 𝜌]             (2-31) 

Here, it should update the average reward 𝜌 according to the following rule: 

𝜌 = (1 − 𝛽𝜌)𝜌 + 𝛽𝜌(𝑟𝑡+1 + max
𝑎∈𝐴

𝑅𝑡+1(𝑠𝑡+1, 𝑎) − max
𝑎∈𝐴

𝑅𝑡(𝑠𝑡, 𝑎))                              (2-32) 

here, 0 ≤ 𝛽𝑅 ≤ 1 is the learning rate for updating action values R (.,.), and 0 ≤ 𝛽𝜌 ≤ 1 is the 

learning rate for updating reward 𝜌 (Zang et al., 2013). 
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2.3  Learning classifier systems 

2.3.1 Introduction  

Our world and many systems consist of interconnected parts so that some properties are not defined 

by the properties of individaul parts. These “complex systems” show a large number of interacting 

components, whose collective activity is nonlinear. One of the features of these systems is their 

ability to become adaptive; meaning that they can change and learn from experiences. Therefore, 

these systems are called complex adaptive systems (CASs). Rule-based agents represent them; the 

term agent is used to refer to a single component of a given system generally. In general, CASs 

might be seen as a group of interacting agents where a collection of simple rules can represent each 

agent's behaviour. These rules typically are demonstrated by “If condition Then action.” Rules 

generally use information from the system’s environment to make decisions.  

2.3.2 What is a learning classifier system and how does it work?   

Knowledge of the problem domain describes the learning classifier systems (LCSs) algorithm; this 

algorithm is seeking a single best-fit model when dealing with the complex systems. The LCSs 

outputs are classifiers to model an intelligent decision maker collectively. In general, a LCS is an 

intelligent agent model that interacts with an environment and improves adaptively with 

experience. The algorithm improves by reinforcement due to payoff by the environment. A LCS 

aims to maximize the achieved environmental payoffs.  

Adaptivity and generalization are two characters that support learning classifier systems. Because 

of changing situations, LCS has always been viewed as adaptive systems. In recent years, there is 

some evidence in a different domain such as computational economics to prove this characteristic 

(Tesfatsion, 2000). In LCSs, generalization is achieved through the evolution of general rules; it 

means that a classifier can match more than one input vector of the environment. Different 

situations are maybe recognized with similar consequences. Scalability is the other characteristic 

of learning time and system size in a different environment that there is no clear answer (Holmes 

et al., 2002).  

The four components of LCSs consist of  

1) a finite population of condition-action- rules that called classifiers that represent the current 

knowledge of the system,  
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2) a performance component, which regulates the interaction between environment and classifier 

population,  

3) a reinforcement component or credit assignment component which distributes the reward 

received from the environment to the classifiers and 4) a discovery component which uses different 

operators to discover better rules and improve existing one. These component represent an 

algorithmic framework.  

 

 

Figure 2-3: The learning classifier systems and environment  

2.3.3 The discovery mechanisms and learning mechanisms 

The four components of LCSs represent an algorithmic framework, and these mechanisms are 

responsible for driving the system. For driving the system, discovery and learning are two 

responsible mechanisms. Discovery mechanism refers to the rule that does not exist in the 

population, and each rule offers a better rule to get the payoff. Learning is a process to build a 

general model through experiences by interacting with the environment. 

2.3.3.1 Discovery  

As it mentioned, the discovery mechanism refers to rule discovery that does not exist in the 

population, and each rule offers a better rule to get the payoff. Making a good decision have been 

achieved by a genetic algorithm (GA). The GA is a computational search technique, which 

manipulates a population of rules to represent a potential solution to a given problem. GA is applied 

to classifier systems to evolve rules and create new rules that are called evolution. LCSs can be 
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used to solve reinforcement learning problems, classification problems, and function 

approximation problems (Urbanowicz & Moore, 2009). 

Two measures, the prediction and fitness, are associated with classifiers. Prediction estimates the 

classifier utility if the classifier is used and fitness estimates the quality of the information about 

the problem that classifier gives, and it is exploited by the discovery component to lead evolution. 

Unlike the low fitness, the high fitness gives useful information about the problem, and therefore 

it should reproduce more through the genetic algorithm.  

On each discrete time step, the system receives as input the current state of the environment 𝑠 and 

the match set is formed out of classifiers in the population whose condition matches 𝑠. Then, the 

system evaluates the prediction of the actions in the match set, an action 𝑎 is selected from those 

in the match set according to certain criterion and set to the environment to be performed. The 

system receives a reward 𝑟 according to 𝑠 and 𝑎. The reinforcement component is implanted with 

the discovery component, the genetic algorithm, randomly selects two classifiers from the 

population based on their fitness; the genetic algorithm applies crossover and mutation generating 

two new classifiers (Holmes et al., 2002).  

There are three basic genetic operators, selection, crossover, and mutation that recombine the 

selected condition part of a classifier to make a new classifier for the next steps. The general 

algorithmic description of the genetic algorithm is as follow (K. Deb, 1999): 

- Initialize parameters  

- Make the initial population and fitness 

- Repeat: 

Selection of parents to produce offspring (Reproduction) 

Crossover  

Mutation  

Updates population and fitness of individuals 

- End after meeting the condition  
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There are some methods such as tournament selection, ranking selection, and proportionate 

selection to identify good (usually above average) solutions in the population and eliminate the 

under average resolutions and replace them by copies of good answers.  

Crossover operator takes a part of picking two solutions that called parent solutions from the new 

population that created after selection and exchange between these picking selections. For example, 

A and B are two parent strings (condition) that are chosen by length five from the population, 

𝐴 = 𝑎1𝑎2𝑎3𝑎4𝑎5 

𝐵 = 𝑏1𝑏2𝑏3𝑏4𝑏𝑎5 

If the single-point crossover operator, where this is performed randomly choosing a crossing site 

along the string and by exchanging all bits on the right side of the crossing site, is 3, the resulting 

strings are two offspring 𝐴′ and 𝐵′: 

𝐴′ = 𝑏1𝑏2𝑏3𝑎4𝑎5 

𝐵′ = 𝑎1𝑎2𝑎3𝑏4𝑏𝑎5 

Mutation operator is applied to make random changes with low probability. This operator can 

change one bit of string (condition) 0 𝑡𝑜 1 or vice versa. The mutation is to keep diversity in the 

population.  

In the learning classifier systems, GA performs on the population of classifiers. Two classifiers are 

selected and copied from the population with a probability proportional to their fitness. The 

crossover operator performs on the selected classifiers from the single-point. Then the mutation 

performs on the resulting classifiers. The GA produces classifiers with new conditions and new 

fitness values to be applied as input and make general rules in the learning classifier systems. 

The GA in XCS starts by checking the action set to see if the GA should be applied at all. To 

implement a GA the average period since the last GA application in the set must be greater than 

the considered threshold. Next, two-parent classifiers are selected by different selection methods 

such as roulette wheel selection based on fitness and the offspring are created out of them. Then, 

the offspring are likely crossed and mutated. If the offspring are crossed, their prediction, error and 

fitness (will be in details explained in the next chapter) values are set to the average of the parent’s 

value. Finally, the offspring are inserted in the population, followed by corresponding deletions 

(Butz & Wilson, 2002). The RunGA function that written in MATLAB is presented in Appendix. 
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2.3.3.2 Learning  

Learning is a process to build a general model through experiences by interacting with the 

environment. This concept of learning via reinforcement is a crucial mechanism of the LCS 

architecture. The terms learning, reinforcement, and credit assignment are often used 

interchangeably within the literature. Each classifier in the LCS population contains condition, 

action and one or more parameter values such as fitness associated with it. These parameters can 

identify useful classifiers in obtaining future rewards and encourage the discovery rules (R. J. 

Urbanowicz and J. H. Moore, 2009). A learning agent must be able to sense the input from the 

environment to take actions by considering the goal or goals relating to the state of the environment. 

Based on the literature, some essential learning techniques for a learning agent are as follows: 

Supervised learning is learning from a labelled training set that provided by a knowledgeable 

external supervisor. Each example consists of an input object and desired output value. In another 

word, each case is a description of a situation with a specification of the correct action that the 

system should take to that situation. The objective of this kind of learning is to generalize a rule 

for acting correctly in situations not present in the training set.  

Unsupervised learning is learning from unlabeled data; this kind of learning is typically about 

finding a hidden structure in the collection of unlabeled data.  

Reinforcement learning is different from supervised and unsupervised learning; in interactive 

problems, supervised learning is often impractical to obtain proper behaviour which agent has to 

act. Also, reinforcement learning is trying to maximize a reward signal instead of trying to find a 

hidden structure. So, reinforcement learning is considered as a third machine learning paradigm, 

beside the other paradigm as well (Richard S. Sutton, 2017). 

2.3.4 Learning classifier systems and eXtended classifier systems 

Learning classifier systems is an algorithm to seek a single best-fit model to maximize the achieved 

environment payoffs. The replacement of the strength parameter by new attributes to classifier 

systems causes LCSs identifies the paradigm that proposed by Holland. One the most studied and 

the most applied LCSs is eXtended classifier systems (XCS) (Holmes et al., 2002). The XCS 

classifier systems were first presented by Stewart Wilson (Wilson, 1987) which is the top of the 
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research for developing a new LCS. XCS keeps all the main ideas of the previous model while it 

introduces some fundamental changes. In the next chapter, XCS will be discussed in details.  
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CHAPTER 3 XCS CLASSIFIER SYSTEM AND ENSEMBLE 

AVERAGING  

This chapter is divided into three parts. In the first part, XCS, the second part, ensemble averaging, 

methodology and the third part environments are respectively discussed in details. 

3.1 XCS classifier system 

3.1.1 Introduction 

In classical classifier systems, the classifier strength parameter is applied as a predictor of future 

reward and as the classifier’s fitness for the genetic algorithm (GA). Since predicted reward cannot 

accurately represent fitness, XCS is a developed learning classifier systems (LCS) to overcome the 

dissatisfaction with the behaviour of classical learning classifier systems. While prediction of 

expected payoff maintains in each classifier in XCS, the fitness is a separate number base on an 

inverse function of the classifier’s average prediction error, a measure of the accuracy of the 

prediction (S. W. Wilson, 1995).  

Changing the definition of fitness upon the accuracy of a classifier’s reward prediction is one of 

two changes to XCS. The other difference is to execute the genetic algorithm in a niche, means a 

set of environment states each of which is matched by the same set of classifiers, instead of 

panmictic (S. W. Wilson, Wilson, Xcs, & System, 1998). If there is a panmictic GA, each classifier 

has an equal probability of crossing with any other classifier in classifier population [P], classifiers 

have the same strength (S. W. Wilson, 1994). These changes in XCS shift it to accuracy-based 

fitness and make it superiority to traditional classifier systems. The result of a combination of 

accuracy-based fitness and niche GA is maximally general, complete and accurate mapping from 

input space and actions to payoff predictions, 𝑆 × 𝐴 ⟹ 𝑃 (S. W. Wilson, 1995).  

3.1.2 Description of XCS 

Figure 3-1 gives a view of the interaction of XCS which consist of an environment by using 

detectors for sensory input and effectors for motor actions. Also, the environment at the time offers 

a scalar reinforcement as a reward (S. W. Wilson, 1995). This figure shows the similarities of 

classical LCS and XCS in matching sensory information and the condition of classifiers in the 

population. Selecting an action based on the strategy that is applied by matched classifiers, and 
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turning back the effect of action to the environment by a payoff to update the population of 

classifiers and increase the knowledge of the system about the problem.  

 

Figure 3-1: A detailed block diagram of XCS 

XCS interacts with the environment by detectors to receive information and perform an action by 

effectors in the environment, and at each time step, it receives a delayed scalar payoff from the 

environment. In figure 3-1, [𝑃] is the population set that contains the all population of classifiers. 

Each classifier has two parts condition and action that take place left and right side respectably and 

are separated by “:”. Three values of prediction 𝑝, prediction error 𝜖 and fitness parameter 𝐹 are 

associated to each classifier. 𝑁 shows the maximum size of [𝑃] are randomly generated.  

3.1.3 Performance component and a reinforcement component  

At each time step, match set [𝑀] is created out of the current population then a prediction system 

for each action in [𝑀] is formed to propose the executed action (Butz & Wilson, 2002). The task 

of covering is to generate a classifier with a matching condition and a random action when none of 

the classifiers in the population match the input (Stewart W, 2007). In the next step, the prediction 

array [𝑃𝐴] is modified out of a match set to predict the resulting reward for each possible action. 

Based on [𝑃𝐴], one action is chosen for execution and action set [𝐴] is formed. Then the action 

with high accuracy is executed and previous action set [𝐴]−1  is modified by using the Q-learning-

like reward which is a combination of the previous reward and the largest action prediction in [𝑃𝐴]. 

Each classifier keeps its knowledge about the problem that received from the environment as input 

by detectors. Generally, each classifier is a condition-action-prediction rule that respectively are 
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i) 𝐶 ∈ {0, 1, #}𝐿 determines the input states, “#” a “don’t care” symbol to permit the 

formation of generalization. This symbol shows no tendency or theoretical reason for accurate 

generalizations to evolve. L is a number of bit in each situation. 

ii) 𝐴 ∈ {𝑎1, … , 𝑎𝑛} presents the action that the classifiers propose.  

iii) p estimates the payoff expected if the classifier matches and its action is taken by the 

system (Butz & Wilson, 2002).  

New classifier parameters consist of prediction 𝑝𝑗, error 𝜀𝑗, and fitness 𝐹𝑗. The prediction 𝑝𝑗 is a 

statistic estimating the Q- learning-like P when that classifier matches, and its action is chosen by 

the system. 𝑃 is updated by adding the discounted maximum of 𝑃(𝑎𝑖) of the prediction array by 

multiplying discount factor 𝛾 where 0 < 𝛾 < 1 and previous action time step reward. In the next 

section, all parameters will be completely explained. Also, the updated parameters will be studied 

to see the parameter’s influence on the algorithm’s behavior while holding the rest of the 

parameters constant. 𝑃 is used to adjust the 𝑝𝑗, 𝜀𝑗, and 𝐹𝑗.of the classifiers in [𝐴]−1 with learning 

parameter 𝛽. The updating process is as follows: 

1.  𝑝𝑗 = 𝑝𝑗 + 𝛽(𝑃(𝑝𝑎𝑦𝑜𝑓𝑓) − 𝑝𝑗) where β is learning rate constant.  

2. Additional considered parameters in a classifier are each classifier’s error (𝜀) is an estimate 

error of 𝑝𝑗, it is updated by 𝜀𝑗 = 𝜀𝑗 + 𝛽(|𝑃(𝑝𝑎𝑦𝑜𝑓𝑓) − 𝑝𝑗| − 𝜀𝑗),  

3. The fitness (F) that its calculation is a little complicated, a fitness is updated when it is in 

[𝐴]−1. The update of this value depends on the accuracy of the classifier. There are three 

steps: 

3.1. Calculate classifier’s accuracy 𝑘𝑗 which based on the current value of 𝜀𝑗 

𝑘𝑗 = {𝛼(
𝜀𝑗

𝜀0
⁄ )−𝜗                          𝜀𝑗 > 𝜀0

1                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

The threshold determines accurate and lowers accurate classifiers 𝜀0 and 𝛼 that are 

constant to control the shape of accuracy, 𝜗 is applied in an internal function which 

scales error nonlinearly (Bull, 2015) (Butz & Wilson, 2002). 

3.2. Calculating relative accuracy 𝑘𝑗
′ where 𝑘𝑗

′ is obtained by dividing its accuracy by the 

total accuracies in the set for each classifer. 
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3.3. Adjusting the fitness of the classifier 𝐹𝑗 = 𝐹𝑗 + 𝛽(𝑘𝑗
′ − 𝐹𝑗).  

The rest of the components in the population are numerosity (𝑛); when a new classifier is 

generated, the population of classifiers is check out to search the same classifier of a new one. If 

any classifier with the same condition and action of the new generated classifier is available or not. 

If there is not the same classifier, new generated one is added to the population and one is added 

to numerosity, otherwise, the new one is not added to the population and one is added to the 

numerosity of classifier. These classifiers are called macro classifiers (S. W. Wilson et al., 1998).  

3.1.4 Learning parameters in XCS 

Some following parameters are used to control the process of learning:  

(𝑁) is the maximum size of the population, start from an empty population, covering occurs at the 

beginning of a run. 

(𝛽) is learning rate for 𝑝, 𝜀, 𝑓 𝑎𝑛𝑑 𝑎𝑠. 

(𝛼, 𝜀0, 𝑎𝑛𝑑 𝜗) are used in calculating the fitness of a classifier. The value of them will be discussed 

later. 

(𝛾) is the discount factor used in multi-step problems in updating classifier predictions. 

(𝜃𝐺𝐴) is the GA threshold. When the average time since the last GA in the set is greater than 𝜃𝐺𝐴, 

the GA is applied.  

(𝜒) is the probability of applying crossover in the GA. 

(𝜇) is the probability of mutating an allele in the offspring. 

(𝜃𝑑𝑒𝑙) is the deletion threshold. The fitness of a classifier may be considered in its probability of 

deletion if the experience of a classifier is greater than 𝜃𝑑𝑒𝑙. 

(𝛿) specifies the fraction of the mean fitness in [𝑃] below which the fitness of a classifier may be 

considered in its probability of deletion. 

(𝜃𝑠𝑢𝑏) is the subsumption threshold. The experience of a classifier must be greater than 𝜃𝑠𝑢𝑏 to be 

able to assume another classifier. 

(𝑃#) is the probability of using a # in one attribute in condition when covering happens. 
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(𝑝𝐼), (𝜀𝐼) and (𝑓𝐼) are used as initial values in new classifiers. They are close to zero. 

(𝑝𝑒𝑥𝑝𝑙𝑟) specifies the probability during action selection of choosing the action uniform randomly.  

(𝜃𝑚𝑛𝑎) specifies the minimal number of actions that must be present in [𝑀] or covering. 

(𝑑𝑜𝐺𝐴𝑆𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) is a Boolean parameter to test offspring for possible logical subsumption 

by parents. 

(𝑑𝑜𝐴𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑠𝑢𝑏𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) is a Boolean parameter to be tested for subsuming classifiers(Butz 

& Wilson, 2002).  

Checking the parameter values in the similar experiments is used to parameter setting. The optimal 

value of population size (𝑁) is highly depend on the complexity of the environment and the number 

of possible action. The learning rate, (𝛽), could be in the range of 0.1-0.2. The parameters 

(𝛼, 𝜀0, 𝑎𝑛𝑑 𝜗), are normally 0.1, 1% and an integer greater than 1. The discount factor (𝛾) is 

between 0 and 1, in many problems in the literature is 0.71. The threshold (𝜃𝐺𝐴) is often in the 

range 25-50. The GA parameters (𝜒) and (𝜇) are in the range 0.5-1 and 0.01-0.05. The deletion 

threshold (𝜃𝑑𝑒𝑙) and (𝛿) is respectively often taken 20 and 0.1. (𝑃#) could be around 0.33. 

3.1.5 Generalization  

According to Wilson, generalization means that different situation with equal consequences in the 

environment would be recognized by lower complexity than the raw environmental data. As it is 

mentioned in the previous chapter, generalization in LCS means that a classifier can be matched 

with more than one input vector that received from the environment (Wilson et al., 1998).  

A mapping from state and action to the payoff prediction 𝑆 × 𝐴 ⟹ 𝑃 will be formed in XCS. In 

the family of learning classifier systems, XCS contains the classifier’s fitness that is given by a 

measure of the prediction’s accuracy and also executes the genetic algorithm in niches defined by 

match sets. This combination accuracy-based fitness and niche GA leads to accurate and maximally 

general classifiers. The question is that is it possible to stop over general classifiers by basing 

fitness on accuracy? That is, how possible classifiers would evolve to be general while satisfying 

the accuracy criteria? An accurate classifier is a classifier with an error less than 𝜀0 and a maximally 

general classifier is a classifier that changing any 1 and 0 in its condition to # cause it is inaccurate. 

The niche environments have the same payoff to within the accuracy criterion, but represent 
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different inputs to the system; the goal is to put same payoff niches in one class in order to minimize 

the population’s size.  

This mechanism is as follows. Consider two classifiers 𝐶1 and 𝐶2 with the same action, where 

𝐶1’s condition is more general than 𝐶2, it means that 𝐶1’s condition can be generated from 𝐶2’s 

only by changing one or more of 0 or 1s condition to #. Also, they have the same 𝜀. Whenever 𝐶1 

and 𝐶2 are in the same action set, their fitness values will be updated with the same values. Since 

𝐶1 is more general than 𝐶2, the probability that 𝐶1 happens in more match sets is higher and is 

more productive in GA. Consequently, when 𝐶1 and 𝐶2 appear in the next step in the same action 

set, 𝐶1 will receive more fitness adjusted value resulting through the GA and 𝐶1 would eventualy 

displace 𝐶2 from the population (Wilson, 1995).   

The generalization process should continue as long as more general classifiers can be formed 

without losing accuracy and should stop. The stopping point is controlled by 𝜀0. So the classifier 

should evolve as long as they are general and still less than 𝜀0. There is no theoretical reason for 

XCS’s tendency to evolve accurate, maximally general classifiers. The reason that XCS cannot 

evolve to accurate generalization is to fail to eliminate over general classifiers, even though their 

accuracy is low. Elimination depends on the existence of a more accurate competitor classifier in 

every action set where the over general occurs. When the niches of the environment are distant, the 

agent cannot change niches as frequently as it needs to evolve an optimal policy. Also, the 

mechanism of XCS deletion of over general classifiers is very slow (Wilson, 1999). 

There are some generalization method such subsumption deletion that reduces population size. In 

simple word, subsumption is applied to remove the classifiers that cannot add anything to the 

capability of learning and making a decision of systems. It is helpful to have a smaller final 

classifier population (Butz & Wilson, 2002). For example, assume the classifier C2=###1:4 is 

accurate and maximally general in some environment. If an error is less than 𝜀0, it is called 

“accurate” and if accuracy won’t be changed by exchanging 1 or 0 to # is called “maximally 

general”. The classifier C1=##11:4 is also accurate, but it is not maximally general, because it is 

subsumed by C2. It is unnecessary evolved classifier that will be eventually deleted by GA (S. W. 

Wilson et al., 1998).  

Two independent subsumptions, doGASubsumption and doActionSetSubsumption, are mentioned 

here. First one is applied during the genetic algorithm to compare the condition of an offspring 
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classifier with parents. If an accurate and sufficient experienced parent logically subsumes 

offspring, the offspring is not added to the population, but the parent’s numerosity is incremented. 

Although subsumption and doActionSetSubsumption have a similar purpose to GA subsumption, 

they are different and independent. DoActionSetSubsumption takes place in an action set to search 

the most general, accurate and sufficient experienced to test among the population and to remove 

the subsumed classifier from the population (Butz & Wilson, 2002). 

3.1.6 XCS and RL 

In chapter 2, reinforcement learning (RL) is presented in details. In summary, RL deals with the 

problem of an agent that has to learn to perform a task by interacting with an unknown environment. 

It means that the agent only knows the current environmental situation 𝑠. The agent choose an 

action among possible action set 𝑎 based on 𝑠 and as a consequence of taking action, it receives a 

reward 𝑟, this reward presents how well the agent behaves regarding to problem solution. So, the 

goal of the agent is to try maximizing the amount of reward received. To reach this goal, the agent 

computes a value function 𝑄(𝑠, 𝑎) which maps state-action pairs into an estimate of expected 

cumulative future reward. There are two assumption in RL algorithms, 𝑄(𝑠, 𝑎) is presented as a 

lookup table and each state-action pair is visited an infinite times. But it is not possible to visit 

every stat-action pair infinite time in infinite time because of the memory requirement. This 

introduces the problem of generalization. How possible to reuse previous experiences in areas of 

the problem space that are hardly visited to compute an approximation of 𝑄(𝑠, 𝑎). Solution is the 

value function 𝑄(𝑠, 𝑎) is approximated by a parameterized function. 

It is presented that learning classifier systems (LCSs) are a method of RL to provide an approach 

to generalization. In LCS, the value function 𝑄(𝑠, 𝑎) is presented by a set of condition-action-

prediction rules that called classifiers. If condition matches 𝑠, classifiers apply the same 𝑠 and take 

the same action 𝑎 and then combine their predictions to provide an estimate of 𝑄(𝑠, 𝑎). If the 

population of maximally general classifiers are applied in as many situations as possible while 

estimating 𝑄(𝑠, 𝑎), generalization can be obtained (Lanzi & Loiacono, 2006).  

Since XCS has a stronger relation to RL than other models in using a modification of Q-learning, 

the relation between RL and LCS has been mainly focused on Wilson’s XCS (Lanzi & Loiacono, 

2006).  
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Q-learning directly adapts XCS's learning algorithm. It says that the prediction of each classifier in 

the action set is updated by the current reward plus the discounted value of the maximum system 

prediction on the next time-step. The system prediction for a particular action is based on the 

fitness-weighted average of predictions of each classifier in the match set that advocate action. For 

each action, the maximum system prediction over the match set is the maximum of the system 

prediction. The fundamental difference between XCS and Q-learning is that classifier (rule) 

predictions are updated from the prediction of other rules. While in Q-learning, the action-value 

prediction is updated by other action-values. XCS’s memory is contained rule sets, whereas Q-

learning’s memory keeps a table with one entry for each state-action pair (Wilson, 1999).  

By applying #s and introducing a mutation in XCS, it will typically reach the same level as a tabular 

Q-learning and take longer due to errors as accurate general classifiers are discovered and 

emphasized. XCS can be presented the problem with categorical regularities, so generalization will 

result in a population that is smaller than the corresponding Q-table. It means that XCS empirically 

coverages like Q-learning but with generalization (Wilson, 1999).  

3.1.7 A literature review on XCS 

This section reviews some approaches to solve the over the general problem and developments in 

the XCS classifier system. In these studies, some component is added or changed, or some different 

kinds of techniques are applied in XCS. 

First, Lanzi identifies that because of the inequality in the exploration of all states in the grid-like 

environments, XCS has difficulty in getting optimum generalization within some environments. 

He uses some particular exploration policies and operators to improve the performance of XCS by 

visiting all the areas of the environment efficiently and frequently and controlling over general 

classifiers (Lanzi, n.d.).  

To solve this problem, Barry gives a modification to the error computation within XCS, which is 

this calculation tries to make the error measure independent of the position of the classifier in action 

set to reward. Although the primary results show that this modification can enable XCS to map 

more extended delayed-reward environments, no further investigation is reported (Barry, 2003).  

Later, Butz et al. analyze the similarities between tabular Q-learning, Q-learning with gradient 

descent, and XCS. They argue that XCS should be more similar to Q-learning with gradient descent 
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than plain tabular Q-learning because of generalization capabilities of XCS. So, they add gradient 

descent to the update of the classifier prediction in XCS, which called XCSG, to improve the 

learning abilities of XCS. Their experiments show that this extension can make XCS more robust 

and efficient in solving difficult problems (Butz, Goldberg, & Lanzi, 2005).  

Zhaoxianng et al. apply R-learning and average reward as the reinforcement learning by XCS that 

named XCSAR, to replace Q-learning. Their modifications result in some improvement to solve 

some grid environment and effectively prevent the occurrence of overgeneralization (Zang et al., 

2013). A summary of noted LCS and XCS classifier are discussed by (R. J. Urbanowicz and J. H. 

Moore, 2009) 

3.2 Ensemble averaging in machine learning  

In supervised learning, the input space is divided into a set of subspaces to distribute the learning 

tasks between numbers of experts to simplify the computations. A committee machine is a 

combination of these experts that do the computational simplicities. One of the significant 

categories of committee machine is the static structure that includes the ensemble averaging 

method where the outputs of different predictors are linearly combined to have a general output. 

 

Figure 3-2: Block diagram of a committee machine based on ensemble averaging  

The figure 3-2 shows the block diagram of a committee machine based on ensemble averaging 

method where all individual outputs of different predictors for a typical input are combined to 

produce an overall output. In any event, by using a committee machine like figure 3-2, the 

expectation is that overall performance is improved by combining the outputs. The bias-variance 

dilemma is presented to show this improvement in a combination of experts. The outputs of the 

experts are assumed to be scalar-valued to simplify the presentation. 

Let 𝑥 denote an unseen input vector and 𝑑 show the corresponding desired response, 𝑥 and 𝑑 

represent the realization of the random vector 𝑋 and random variable 𝐷, respectively and 𝐹(𝑥) 
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denotes the input-output function realized by the network. The mean-square error between 𝐹(𝑥) 

and the conditional expectation 𝐸(𝐷|𝑋 = 𝑥) is decomposed into its bias and variance component 

over the space 𝒟, which defined as the space encompassing the distribution of all inputs, desired 

outputs and the distribution of all initial conditions, as follows: 

𝐸𝒟[𝐹(𝑥) − 𝐸(𝐷|𝑋 = 𝑥)2] = 𝐵𝒟(𝐹(𝑥)) + 𝑉𝒟(𝐹(𝑥))  (3-1) 

where 𝐵𝒟(𝐹(𝑥)) is the bias squared: 

𝐵𝒟(𝐹(𝑥)) = (𝐸𝒟[𝐹(𝑥)] − 𝐸(𝐷|𝑋 = 𝑥))2   (3-2) 

and 𝑉𝒟(𝐹(𝑥)) is the variance: 

𝑉𝒟(𝐹(𝑥)) = 𝐸𝒟[(𝐹(𝑥) − 𝐸𝒟[𝐹(𝑥)])2]  (3-3) 

Here a simple ensemble average for the combiner at the output of the committee machine in figure 

3-2 is applied. Assume the space of all initial conditions is denoted by 𝒥 and 𝐹𝐼(𝑥) is the average 

of the input-output function of the expert networks in figure 3-2 over a representative number of 

initial conditions. Based on equation 3-1: 

𝐸𝒥[𝐹𝐼(𝑥) − 𝐸(𝐷|𝑋 = 𝑥)2] = 𝐵ℐ(𝐹(𝑥)) + 𝑉𝒥(𝐹(𝑥))  (3-4) 

where 𝐵ℐ(𝐹(𝑥)) is the squared bias defined over the space 𝒥: 

𝐵𝒥(𝐹(𝑥)) = (𝐸𝒥[𝐹𝐼(𝑥)] − 𝐸(𝐷|𝑋 = 𝑥))2   (3-5) 

and 𝑉𝒥(𝐹(𝑥)) is the corresponding variance: 

𝑉𝒥(𝐹(𝑥)) = 𝐸𝒥[(𝐹𝐼(𝑥) − 𝐸𝒥[𝐹(𝑥)])2]  (3-6) 

The expectation of 𝐸𝒥 is adapted the space 𝒥. 

Based on the definition of space 𝒟, it is aggregate of the space of initial conditions 𝒥 and the 

remnant space that denoted by 𝒟′. The equation (3-1) for 𝒟′ is as follow: 

𝐸𝒟′[𝐹𝐼(𝑥) − 𝐸(𝐷|𝑋 = 𝑥)2] = 𝐵𝒟′(𝐹𝐼(𝑥)) + 𝑉𝒟′(𝐹𝐼(𝑥))  (3-7) 

where 𝐵𝒟′(𝐹𝐼(𝑥)) is the squared bias defined over the remnant space 𝒟′: 

𝐵𝒟′(𝐹𝐼(𝑥)) = (𝐸𝒟′[𝐹𝐼(𝑥)] − 𝐸(𝐷|𝑋 = 𝑥))2   (3-8) 

and 𝑉𝒟′(𝐹𝐼(𝑥)) is the corresponding variance:  



32 

 

𝑉𝒟′(𝐹𝐼(𝑥)) = 𝐸𝒟′[(𝐹𝐼(𝑥) − 𝐸𝒟′[𝐹𝐼(𝑥)])2]  (3-9) 

From the definition of spaces 𝒟, 𝒥, and 𝒟′: 

𝐸𝒟′[𝐹𝐼(𝑥)] = 𝐸𝒟[𝐹(𝑥)]  (3-10) 

So the equation (3-8) is written in a similar form:  

𝐵𝒟′(𝐹𝐼(𝑥)) = (𝐸𝐷[𝐹𝐼(𝑥)] − 𝐸(𝐷|𝑋 = 𝑥))
2
   (3-11) 

= 𝐵𝐷(𝐹𝐼(𝑥)) 

Since the variance of a random variable is equal to the mean-square value of that random variable 

minus its bias squared, so  

𝑉𝒟′(𝐹𝐼(𝑥)) = 𝐸𝒟′[(𝐹𝐼(𝑥))2] − (𝐸𝒟′[𝐹𝐼(𝑥)])2 (3-12) 

           = 𝐸𝒟′[(𝐹𝐼(𝑥))
2

] − (𝐸𝐷[𝐹𝐼(𝑥)])2              

Similarly for equation  

𝑉𝒟(𝐹(𝑥)) = 𝐸𝒟[(𝐹(𝑥))2] − 𝐸𝒟[𝐹(𝑥)])2  (3-13) 

The mean-square value of the function 𝐹(𝑥) over the entire space, 𝒟 is intended to be equal to or 

greater than the mean-square value of the ensemble-averaged function 𝐹𝐼(𝑥) over the remnant 

space 𝒟′. It means  

𝐸𝒟[𝐹(𝑥)2] ≥  𝐸𝒟′[(𝐹𝐼(𝑥))2]  (3-14) 

Comparison of equation (3-12) and (3-14) shows that  

𝑉𝒟′(𝐹𝐼(𝑥)) ≤  𝑉𝒟(𝐹(𝑥))  (3-15) 

So, two conclusions are drawn from (3-11) and (3-15), the bias of the ensemble-averaged function 

𝐹𝐼(𝑥) related to the committee machine like figure (3-2) is exactly the same as that of the function 

𝐹(𝑥) related to a single expert. And the variance of the ensemble-averaged function 𝐹𝐼(𝑥) is less 

than that of the function 𝐹(𝑥).  

The theoretical findings point that the variance of the ensemble-averaged function is reduced by 

ensemble averaging the experts over the initial conditions while the bias of the ensemble average 

function is leaving unchanged (S. Haykin, 1999). 
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3.2.1 Linear combination of experts 

As it is mentioned in the first chapter, combining estimates and methods are not new. Laplace 

considered combining regression coefficient estimates many years ago. The increasing accuracy 

by combining multiple methods in a different domain such as statistics, econometrics or 

extrapolation has been resulted (Clemen, 1989). 

Clemen provides considerable literature regarding the combination of forecasts over the years. The 

conclusion of this accumulated literature is that forecast accuracy can be significantly improved 

through the combination of multiple individual forecasts. Also, simple combination methods often 

work reasonably well for more relative complex combinations (Clemen, 1989). 

A linear combination of the outputs from all experts returns a scalar output. Suppose 𝑥 is the 

common input for all the experts and 𝑦𝑗(𝑥) is output for 𝑝 experts. The overall output can be 

defined as: 

𝑦̃(𝑥, 𝛼) = ∑ 𝛼𝑗𝑦𝑗(𝑥)𝑝
𝑗=1   (3-1) 

where 𝛼 is a set of weights. The problem is to find good values for the combination-

weights 𝛼1, 𝛼2,…, 𝛼𝑝. One approach which is widely used is to apply equal combination-weights, 

it means a simple average. The simple average is straightforward but assumes that all the estimators 

are equally good (S. Haykin, 1999). 

3.2.2 Linear combination of R- learning and Q- learning 

R-learning and Q-learning as famous reinforcement learning algorithm have been introduced in 

chapter 2, both, R-learning and Q-learning, have a similar form but they have a different meaning 

(Zang et al., 2013). In this part, the quality of mixing the linear combination of R-learning and Q-

learning precisely explain. It is necessary to focus on the methods to compute the estimation 

of 𝑅̂(𝑠𝑡, 𝑎𝑡) 𝑎𝑛𝑑 𝑄̂(𝑠𝑡, 𝑎𝑡) to mix the linear combination of these methods to XCS 

𝑅̂(𝑠𝑡, 𝑎𝑡) = 𝑟𝑖𝑚𝑚(𝑠𝑡, 𝑎𝑡) − 𝜌 + max
𝑎∈𝐴

𝑅(𝑠𝑡, 𝑎)                                                                  (3-2) 

𝑄̂(𝑠𝑡, 𝑎𝑡) = 𝑟𝑖𝑚𝑚(𝑠𝑡, 𝑎𝑡) + γmax
𝑎∈𝐴

𝑅(𝑠𝑡, 𝑎)                                                                       (3-3) 
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The linear combination payoff as the correspondence between the system prediction and the action 

value, payoff P is defined as: 

𝑃𝑡 =
𝛿∗(𝑟𝑖𝑚𝑚(𝑠𝑡,𝑎𝑡)−𝜌+max𝑅(𝑠𝑡,𝑎))

𝑎∈𝐴

2
+

𝜃∗(𝑟𝑖𝑚𝑚(𝑠𝑡,𝑎𝑡)+γmax
𝑎∈𝐴

𝑅(𝑠𝑡,𝑎))

2
    𝑤ℎ𝑒𝑟𝑒 𝛿 = 𝜃 = 1          (3-4) 

Also, the maximum reward of these methods is considered. In a mathematical word: 

𝑃𝑡 = max ((𝑟𝑖𝑚𝑚(𝑠𝑡, 𝑎𝑡) − 𝜌 + max
𝑎∈𝐴

𝑅(𝑠𝑡, 𝑎)), (𝑟𝑖𝑚𝑚(𝑠𝑡, 𝑎𝑡) + γmax
𝑎∈𝐴

𝑅(𝑠𝑡, 𝑎)))          (3-5) 

To update the average reward 𝜌 is calculated by 

𝜌 = 𝜌 + 𝛽𝜌 (𝑟𝑡 + max
𝑎𝜖𝐴

𝑃𝐴(𝑠𝑡, 𝑎) − max
𝑎𝜖𝐴

𝑃𝐴(𝑠𝑡−1, 𝑎) − 𝜌)                                              (3-6) 

The computation of 𝜌 is just located before the computation of the combination of R-learning and 

Q-learning. The learning rate follows the simple rule as follow: 

𝛽𝜌 = 𝛽𝜌 −
𝛽𝜌

𝑚𝑎𝑥−𝛽𝜌
𝑚𝑖𝑛

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑟𝑖𝑎𝑙
                                                                                                     (3-7) 

Where 𝛽𝜌
𝑚𝑎𝑥 = 0.005 and 𝛽𝜌

𝑚𝑖𝑛 = 0.0005. The initial value of 𝛽𝜌 is 𝛽𝜌
𝑚𝑎𝑥. 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑟𝑖𝑎𝑙 is the 

number of the problems in an experiment. 𝛽𝜌 is updated at the beginning of each exploration (Zang 

et al., 2013).  

In the following table, the summary of all named methods is depicted: 
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Table 3-1: The review of learning methods 

Name Description 

XCSG 

The extension of XCS to gradient-based update methods, Q-learning with 

gradient descent  

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼)𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎)] 

0 ≤ 𝛼 ≤ 1 

AXCS 

The modification to XCS to maximize the average rewards  

𝑅𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛽𝑅)𝑅𝑡(𝑠𝑡, 𝑎𝑡) + 𝛽𝑅[𝑟𝑡+1 + max
𝑎

𝑅𝑡(𝑠𝑡+1, 𝑎) − 𝜌] 

𝜌 = (1 − 𝛽𝜌)𝜌 + 𝛽𝜌𝑟𝑡+1 

0 ≤ 𝛽𝑅 , 𝛽𝜌 ≤ 1 

XCSAR 

Use of average reward in XCS by an undiscounted reinforcement learning 

technique called R-learning  

𝑅𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛽𝑅)𝑅𝑡(𝑠𝑡, 𝑎𝑡) + 𝛽𝑅[𝑟𝑡+1 + max
𝑎

𝑅𝑡(𝑠𝑡+1, 𝑎) − 𝜌] 

𝜌 = (1 − 𝛽𝜌)𝜌 + 𝛽𝜌(𝑟𝑡+1 + max
𝑎∈𝐴

𝑅𝑡+1(𝑠𝑡+1, 𝑎) − max
𝑎∈𝐴

𝑅𝑡(𝑠𝑡, 𝑎)) 

0 ≤ 𝛽𝑅 , 𝛽𝜌 ≤ 1 

MIXCS 

Linear combination of XCSAR and XCSG, a linear mix of discounted reward 

based on Q-learning and undiscounted reward based on R-learning 

𝑃𝑡 =

𝛿 ∗ (𝑟𝑖𝑚𝑚(𝑠𝑡, 𝑎𝑡) − 𝜌 + max𝑅(𝑠𝑡, 𝑎))
𝑎∈𝐴

2

+

𝜃 ∗ (𝑟𝑖𝑚𝑚(𝑠𝑡, 𝑎𝑡) + γmax
𝑎∈𝐴

𝑅(𝑠𝑡, 𝑎))

2
     

𝑤ℎ𝑒𝑟𝑒 𝛿 = 𝜃 = 1 
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3.3 Environments 

Two two-dimensional grids are defined as the environment to examine the presented methods. One 

of these environments is a 5 × 5 cell grid where every cell contains different objects. This 

environment is inspired by a Woods1 environment that is presented by Wilson to apply the basic 

classifier systems that are called Environment1. As figure 3-3 shows 5 × 5 cell grid presents 16 

opportunity situations (. ) to trade and 𝑒𝑖𝑔ℎ𝑡 situations to hold (𝑂), and the maximum profit will 

be made in (𝐹) cell that are provided in 25 cells.  

. . . . . 
. OOF . 

.OOO. 

.OOO. 

. . . . .  
 

Figure 3-3: Environment1 

Another environment is a 9 × 9 cell grid where contains 36 cell opportunity situations (. ) for 

trading, 44 cases to hold (𝑂), and the maximum profit will be made in (𝐹) cell that are only 

provided in 1 cell. This environment is inspired of Maze6 and it is called Environment2.  

OOOOOOOOO 

O . . . . . O F O 

O . . O.O O∗O 

O  . O . . . . . O 

O . . . O O. . O 

O . O.O . . O O 

O  . O . . . . .  O 

O  . . . . .O .  O 
OOOOOOOOO 

Figure 3-4: Environment2 

As it is mentioned in chapter 2, the agent can sense 𝑒𝑖𝑔ℎ𝑡 cells around it and store this situation in 

a vector to help to choose the next action at each time step. Every component (𝐹), (. ) and (𝑂) are 

defined 2 bits as 11, 01 and 00 respectively. So, a state is defined by 16 bits in a vector that is 

called detector vector at each time step. As an example, the detector vector of the agent in figure 

3-4 according to its situation is ‘1101010100000101’. In the previous part, it is mentioned that the 

whole knowledge of the agent is stored in the population set. It contains all classifiers. Each 

classifier contains a condition that is made of state and an action part. In the case of trading first 

and second 8 characters of the condition are considered buy and sell respectively. So, first 4 

possible actions are reserved for buying and second 4 ones are consider for selling. The goal is to 
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predict the price movement of tomorrow stock price by using its available input information set; 

reward function is to assign 0 for incorrect prediction and a positive value 1000 for the correct 

prediction that suited in (𝐹) cell. In the next chapter, the presented techniques will be applied in 

these environments to see the results.  

3.3.1 AlphaGo 

This chapter will be finished by introducing the first computer Go program that beat a human 

professional Go player. Game of Go is a game can be played on a square board conventionally 

marked 9×9, 13×13, and 19×19 of crossing lines. It is an abstract strategy means that does not 

rely on a theme (Thompson, J. Mark, 2000). This game is the challenging of classic games for 

artificial intelligence because of its huge search space and the difficulties of evaluating board 

positions and moves. A computer program that is called AlphaGo is introduced to play the board 

game of Go in different versions.  

This new approach applies “value networks” to evaluate board position and “policy network” to 

choose moves. A novel combination of supervised learning from human expert game and 

reinforcement learning from the game of self-played is applied to train these deep neural networks. 

AlphaGo uses a Monte Carlo tree search algorithm that simulates thousands of random games of 

self-play, to find its moves based on previous knowledge learned. The neural networks play the 

game of Go at the level of state-of-the-art Mont Carlo tree search program (Silver et al., 2016).  
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CHAPTER 4 EXPERIMENTS AND RESULTS 

As it is mentioned in the previous chapter whole knowledge of the agent is stored within the 

population set. In a first step, the agent is randomly located and then starts to explore the 

environment in our case the stock market in order to investigate the stock market to learn the rules 

for the price prediction in the next step. The prediction of a future stock price is crucial to the 

decision making, i.e. to buy or to sell a certain stock. The prediction quality is evaluated based on 

the rewards received.  

4.1 Environment1 

First, the optimal average path to the cell (F) in this environment is calculated with all trade 

opportunities located in the left, right, top and bottom edge of the environment. The optimal path 

of each side is: 

𝑟𝑖𝑔ℎ𝑡: 1 + 1 + 1 + 2 + 3 +  

𝑏𝑜𝑡𝑡𝑜𝑚: 3 + 4 + 5 + 6 + 

𝑙𝑒𝑓𝑡: 3 + 4 + 5 + 

𝑡𝑜𝑝: 1 + 1 + 2 + 3 

For the given optimal path, the average number of moves to reach maximum profit (i.e. Food cell) 

is approximately 2.5. 

The following table summarizes the information obtained by the agent during the experiment. All 

these actions reached to goal to correctly predict the price movement of tomorrow’s stock price.  

  



39 

 

Table 4-1 : Macro classifiers from the experiments  

Condition  Action  

Prediction  

𝑃 

Error 

𝜀 

Fitness 

𝐹 

Numerosity 

𝑛 

#00000#0######## 7 1000 0 0.2 1 

000#0#0011#00### 5 1000 0 0.8 1 

00000#0011#00### 
 

5 1000 0 0.46 1 

#00#000011#00### 5 1000 0 0.1 1 

000#000011#00### 
 

5 1000 0 0.1 1 

0#0000#0######## 8 1000 0 0.1 1 

00#00#1####0#### 4 1000 0 0.7 1 

 

As it is mentioned in chapter 2, the possible action set is divided into buying or selling based on 

the first and last eight characters of detector description. In the following table, the numerosity for 

each possible action is shown where an agent would always take the same action for a similar set 

of conditions. Table 4-1 shows the conditions of the set for action 5 which is part of the selling 

actions. Table 4-2 depicts the number that each action is chosen for similar condition set. Since # 

helps to generalize the conditions, it can also be used to generalize a rule.  

Table 4-2: Numerosity for each possible action 

 

 

Act. 1 Act. 2 Act. 3 Act. 4 Act. 5 Act. 6 Act. 7 Act. 8 

30 18 32 1101 1139 1636 186 856 

 

In this market, the maximum profit will be reached by selling the stock. In the following, the 

performance of applying MIXCS in Environment1 is discussed.  

Buy  Sell 
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Figure 4.1 shows the performance of the linear combination of two methods, Q-learning and R-

learning MIXCS for 2000 iteration. The minimum and a maximum number of steps to Food cell 

are 0 and 14, with zero meaning that the agent is randomly located in the food location.  

 

Figure 4-1: Performance of applying MIXCS to Environment1 

The estimate of average rewards in XCSAR, XCSG and MIXCS is shown in figure 4.2. The 

optimum average profit is 400, the average reward of MIXCS is 585.7, while the average reward 

of XCSAR is higher than 585.7 (the blue curve) and the average reward of XCSG is less than 585.7 

(the red curve). Assuming a linear combination of XCSAR and XCSG in Environment1, it can be 

seen from figure 4.2 that the performance is closer to the optimum average profit.  
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Figure 4-2: Average reward of applying MIXCS to Environment1. 

From figure 4.3 it can be seen that no generalization is obtained when XCSAR and XCSG are 

associated while the combination of XCSAR and XCSG will converge after some iterations. The 

trend of population size is incremental.  

 

Figure 4-3: Population size in macro classifier for applying MIXCS to Environment1. 

In the other test, the performance of comparison prediction of the tomorrow stock price (prediction 

of next movement) between the two methods is shown.  



42 

 

Minimum and maximum number of step to Food cell are 0 and 93 respectively. Since the agent is 

randomly put in location, the minimum steps to Food cell can be 0 which means that the agent is 

directly set in Food cell location. As can be seen from the figure, the minimum number of steps to 

Food cell is already reached during the first iterations. Having minimum steps in first iterations 

show that the code is not stable within for this number of iterations and that more iterative cycles 

might be required.  

 

Figure 4-4: Performance of applying MIXCS to Environment1 

As figure 4.2 shows the predicted average profit for XCSAR is greater for XCSG, so in the present 

comparison, the computed average reward obtained by the R-learning method is selected.  
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Figure 4-5: Average reward approach, discounted reward approach and maximum of these 

approaches applied to Environment1. 

 

Figure 4.6 shows the number of classifiers as it increases over time so that after 643 iterations no 

generalization is obtained. In this case, the agent needs to continue to explore finding a general rule 

for the decision making and hence the reliable actions.  
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Figure 4-6: Population size in macro classifier for applying the max of XCSAR and XCSG to 

Environment1 

4.2 Environment2 

In this part, the results of using the association of XCSAR and XCSG in Environment2 are 

discussed. The located rules as obstacles, reward and the size of Environment2 are utterly different 

to Environment1.  

The optimal average path to Food cell in Environment2 is 

𝑙𝑖𝑛𝑒2: 7 + 6 + 5 + 5 + 5 +  

𝑙𝑖𝑛𝑒3: 7 + 6 + 4 + 1 +  

𝑙𝑖𝑛𝑒4: 7 + 5 + 4 + 3 + 2 + 2 +  

𝑙𝑖𝑛𝑒5: 7 + 6 + 5 + 3 + 3 +  

𝑙𝑖𝑛𝑒6: 7 + 6 + 4 + 4 +  

𝑙𝑖𝑛𝑒7: 8 + 6 + 5 + 5 + 5 + 5 +  

𝑙𝑖𝑛𝑒8: 8 + 7 + 6 + 6 + 6 + 6 +  

There are 36 blank points in this environment. It reveals that the optimal average movement to 

Food cell, the goal of the agent, in this environment is 5.4 steps. 
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The numerosity for each possible action for Environment2 is listed in table 4.3, 

Table 4-3: Numerosity for each possible action 

 

 

Act. 1 Act. 2 Act. 3 Act. 4 Act. 5 Act. 6 Act. 7 Act. 8 

188 17 32 1089 1120 1555 202 849 

 

In this market condition, the maximum profit will be reached by selling the stock. In the following, 

the performance of applying MIXCS in Environment2 is discussed.  

Although the number of classifiers increases in each time step, the movement of the agent is limited 

to 98 iterations in this environment. It shows that it needs more information to predict the price for 

the next steps. This information could be reached by interacting with other agents.  

The population size in MIXCS is illustrated in 98 iterations. Since the agent is randomly located in 

the environment, the minimum number of steps is 0, and the maximum number of the steps is 219 

for 36 blank points.  

The performance of the investigated maximum reward approach and population size of each 

iteration are shown in figure 4-7,  

Buy  Sell 
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Figure 4-7: Performance of applying MIXCS to Environment2 

 

 

Figure 4-8: Population size in macro classifier for applying MIXCS to Environment2. 

In the same way, the estimate of the computed average rewards in XCSAR, XCSG and MIXCS, 

are presented in figure 4.9. The reward of reaching the Food cell state is considered 1000, and the 

average number of movement to Food cell in this environment is 5.4 which leads to an optimum 
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average profit is 
1000

5.4
= 185,19. It can be readily seen from the figure, that all techniques 

overestimate the average profit.   

 

Figure 4-9: Average reward of applying MIXCS to Environment2. 

The comparison of the tomorrow stock price (prediction of next movement) for two methods and 

the above population size is based on18 iterations. The minimum and maximum steps to reach food 

in this environment are 1 and 249 respectively. It was shown that the population size increases 

incrementally over the iterations with a minimum of 1576 classifiers during the first step. A 

generalized rule was not obtained in this environment.  
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Figure 4-7: Performance of applying MIXCS to Environment2 

 

 

Figure 4-8: Population size in macro classifier for applying the competition of XCSAR and 

XCSG to Environment2. 

Figure 4.12 demonstrates average prediction for XCSAR, XCSG and their comparison of them. As 

it is depicted in the following graph, XCSAR approaches the optimal value closer than XCSG. 

Moreover, should be chosen in this case.  
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Figure 4-9: Average reward approach, discounted reward approach and maximum of these 

approaches applied to Environment2. 

Environment2 is not only bigger than Environment1 but also the assumed rules, i.e. the obstacles 

and reward, have a more complex definition. As a consequence, an increase in reliability for the 

predictions requires not only forecasting through multiple models, but also the interacting with 

other agents can improve the applicability of the market information simulated. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

We have proposed a combination of simple techniques that are applied to learn a policy to 

maximize the discounted and undiscounted sum of future profits that the environment received. 

The proposed technique is applied to calculate payoff, in the market case profit, that is based on 

the predictions contained in the prediction array. This value is used to adjust prediction, fitness and 

prediction error. The combination of two learning techniques is applied in two two-dimensional 

grid that is called Environment1 and Environment2 that are inspired by Woods1 and Maze6 

respectively. Environment2 is more complicated and bigger than Environment1 concerning the 

obstacles and food cells. In the case of a trade market, the possible action set is divided into buying 

and selling actions. On a more abstract level, these environments represent markets with specific 

rules from which an agent learns rules through exploring to find a policy based on the knowledge 

of the system. To maximize the profit, the agent should predict the profit of each movement and 

update its knowledge at each time step.  

The performances of this combination that is called MIXCS have been investigated in two 

Environment1, and Environment2 and the estimated average profits of the three methods are 

compared with each other. The results show that the calculated average reward of a combination 

of single techniques, MIXCS, is close to the optimum average profit compared to the use of two 

single techniques combined for Environment1. The same approach applied to Environment2 did 

not yield the same the result due to the differences between environments. Based on the possible 

action set and division on this set into buying and selling, and the numerosity, similar actions in 

the same set of condition received, for each action, the agent has made a profit by selling in both 

considered environments as a market.  

5.1 Future work  

This work can be further expanded in the multiplexer problem environment for the stock markets 

where the classifiers are rewarded by any changes instead of a fixed number in a determined 

location.  

Besides the interaction with the environment, considering a multi-agent approach can help to show 

the interaction of agents with each other to take the action that has the highest fitness in prediction 

array. 



51 

 

Furthermore, applying other learning technique such as H-learning and combining with R-learning 

as two undiscounted reward systems to examine the performance could be suggested.    
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APPENDIX A 

The following code snippet shows the main loop that specifies many sub-procedures for learning in XCS. The definition of parameters 

and code initialization is done beforehand. For an in-depth-description, please confer to (Butz & Wilson, 2002). 
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The main function of the XCS genetic algorithm (Butz & Wilson, 2002). 

 

 



57 

 

 


