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ABSTRACT 

Photo�initiated chemical vapor deposition (PICVD) has become attractive for 

selective and specific surface functionalization, since it relies on a single energy 

source, the photons, to carry out (photo�) chemistry. In the present wavelength (λ)�

dependent study, thiol (SH)�terminated thin film deposits have been prepared from 

gas mixtures of acetylene (C2H2) and hydrogen sulfide (H2S) via PICVD using four 

different vacuum�ultraviolet (VUV) sources, namely KrL (λpeak=123.6 nm), XeL 

(λpeak =147.0 nm), XeE (λpeak =172.0 nm) and Hg (λ=184.9 nm) lamps. Different λ 

influence the deposition kinetics and film composition, reflecting that photolytic 

reactions are governed by the gases’ absorption coefficients, k(λ). Thiol 

concentrations, [SH], up to ~7.7 %, were obtained with the XeL source, the highest 

reported in the literature so far. Furthermore, all films showed island�like surface 

morphology, irrespective of λ.  

 

INTRODUCTION 

����������	�
��	�
��

Synthetic polymers are broadly used in biomaterials due to their favorable bulk 

properties, such as high mechanical stability and elasticity, non�toxicity, and low 

degradation in the human body.
1�2 Nevertheless, their surfaces are generally 

chemically inert and show poor biocompatibility, leading to inadequate interactions 

with cells, generating strong foreign body reactions such as inflammation, clotting and 

infection.
3�5

 Therefore, commercial polymers must often undergo surface 

functionalization, which will aid their surfaces to adapt to biological demands by 
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immobilizing biomolecules onto the polymers. The principal methods of 

immobilizing a biomolecule to a polymeric surface are adsorption via electrostatic 

interactions, ligand�receptor pairing, and covalent attachment. Non�covalent 

adsorption can be desirable for certain applications (e.g. in drug delivery), and there is 

broad evidence in the literature that nitrogen (N)� and oxygen (O)�containing 

functional groups, more specifically primary amines (�NH2) and carboxylic acid (�

COOH) or hydroxyl (�OH) functionalities, respectively, are often advantageous in 

promoting protein and cell adhesion via non�covalent adsorption.
6�9 However, 

covalent immobilization of biomolecules has been shown to be superior by providing 

a stable bond between the biomolecules and the functionalized surface, extending the 

shelf�life of the biomolecule, and allowing for continued bioactivity.
2, 10

 Sulfur (S)�

rich, more specifically thiol (SH)�terminated surfaces offer excellent platforms for 

covalent immobilization of biomolecules through specific and selective thiol�ene 

coupling reactions. This coupling reaction has been widely exploited for the 

construction of immobilized antibodies, enzymes and peptides.
11�16

 

So far, SH�terminated surfaces have been mainly synthesized through 

tedious, non�specific, multi�step wet�chemical approaches, often involving various 

toxic and expensive solvents.
14�16

 Over the last decade, the synthesis of SH�

terminated surfaces has been also accomplished through plasma�enhanced chemical 

vapor deposition (PECVD) techniques using single�molecule precursors (e.g. 

allylmercaptan,
17�18

 propanethiol
19�21

) and more recently, using gas mixtures 

comprising a hydrocarbon (either ethylene or butadiene) and hydrogen sulfide 

(H2S).
22

 Plasma�based techniques offer several benefits over the wet�chemical ones, 
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such as low processing temperatures, no solvent requirement, and fast reaction times. 

Despite these advantages, the reactions occurring in a plasma are difficult to control 

since the main originators of chemical reactions, “hot” electrons, possess a broad, 

Maxwell�Boltzmann�like energy distribution,
9, 23

 thereby making the reactions non�

specific and non�selective.  

More recently, photo�initiated CVD (PICVD) techniques have emerged. This 

method has been studied extensively and it has established a firm position as a CVD 

method capable of producing high quality, functional thin films, often comparable to 

traditional plasma CVD.
24�28

 In PICVD, the energy required to induce reactions 

leading to deposition is provided by photons. Therefore, only one energy component 

carries out (photo�) chemistry, potentially allowing for better control of the overall 

process compared to plasma counterparts. To obtain thin films from specific 

precursors, absorption of photons by the precursors must be significant, and photon 

energies must be sufficiently high to overcome bond dissociation energies, D0, to 

induce photo�dissociation.
29

 Therefore, photo�absorption by molecules as a function 

of wavelength, k(λ), must be considered for successful photo�induced deposition.
26

 

Almost all of the observed absorption continua correspond to dissociation processes; 

by choosing a specific photon wavelength, λ, different dissociation products can be 

generated. Wavelength dependency has been observed for deposition kinetics and film 

quality.
30�31

 Nevertheless, selectivity in excitation has not been fully exploited so far, 

partly due to a lack of available light sources and other required equipment. This is of 

high importance since it could aid in selectively designing thin film deposits by 

simply using different λ values.
9, 23, 27�28, 32
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In our previous study,
22

 we synthesized SH�terminated coatings using ethylene 

(C2H4)/H2S and butadiene (C4H6)/H2S gas mixtures with a single non�coherent VUV 

source (λKrL = 123.6 nm). We obtained adjustable sulfur concentrations, [S], ranging 

from 2 to 30 at.% and thiol concentrations, [SH], up to 1.75%. In the present work, we 

broaden the experimental window by performing a λ�dependent deposition study of 

SH�terminated coatings using variable gas mixture ratios, R, of acetylene (C2H2) and 

H2S and four different λ values, namely λKrL = 123.6 nm, λXeL = 147.0 nm, λXeE = 

172.0 nm, and λHg = 184.9 nm. �In this context, we aimed to understand the growth 

mechanisms of the synthesized SH�terminated films using PICVD, since only one 

kind of excitation (VUV photons) at a specific wavelength is active and available for 

initiating reactions. Besides determining the chemical composition of the coatings, the 

deposition kinetics, film growth and �morphology were also studied. The dependence 

of these as a function of λ was investigated in detail. By exploring a broader range of 

photon energies, we intended to find an “ideal” combination of R and photon energy 

which gives the highest [SH] values, thereby maximizing the possibilities for further 

covalent immobilization of biomolecules through thiol�ene coupling reactions. 
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��������	����������	���
	
������
���������������

 

��������� VUV�absorption, k (atm
�1

cm
�1

, base e) of gaseous H2S
33

 and C2H2
34

; the 

wavelengths, λ, of the VUV lamps used are also shown (λKrL = 123.6 nm, λXeL = 

147.0 nm, λXeE = 172.0 nm, λHg = 184.9 nm). 

 

Activation and photo�dissociation of C2H2 and H2S are expected from all four sources 

on account of their relatively strong absorption, k(λ) (������� �), throughout the 

studied spectral range (123.6 <λ< 184.9 nm). Nevertheless, the radiation from some 

lamps is more strongly absorbed by the two precursor gases than others, especially in 

the case of C2H2 (�������), and these differences should be reflected in the deposition 

behaviour of the films at different λ. 

 

Page 6 of 48

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

7 

 

 

�������� Absorption coefficients, k(λ), of H2S
33 and C2H2

34
 at the wavelengths, λ  of 

interest. 

 

 

Photo�dissociation of acetylene can occur upon absorption of photons with energies 

greater than 5.8 eV, or λ < 214 nm (������� �). Two primary processes have been 

identified to occur when C2H2 absorbs photons in the studied λ range:  

(i) Direct dissociation: 

���� + ℎ�	(> 5.8	�) → ��� ∙ +� ∙ !�"�

 

(ii) The formation of an excited metastable molecule, which has a relatively long 

lifetime (≤ 1 ms) with respect to dissociation:
35�37

 

Lamp Peak Wavelength, 

λpeak (nm) 
Absorption of C2H2, 

kC2H2 (atm�1cm�1) 

Absorption of H2S, 

kH2S (atm�1cm�1) 

KrL 123.6 112 48 

XeL 147.0 303 15 

XeE 172.0 35 16 

Hg 184.9 9 92 
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���� + ℎ�	(> 5.8	�) → ����∗ !�"�

 

Formation of organic coatings can either occur through recombination of the created 

radicals in reaction !�", or through collisions of the metastable molecule with ground�

state C2H2 (excited molecule mode polymerization):
35, 38

 

����∗ + ���� 	→ ����∗ 

 

!#"�

 

����∗ +	���� → ����∗	, ��. !$" 

Collisions of an excited molecule with either the walls or ground�state C2H2 can lead 

to chain�terminating reactions, but can also result in the formation of stable 

molecules. 

Although the same primary processes have been reported for all wavelengths 

of interest, the quantum yields of reactions !�" and !�" depend not only on λ, but also 

on pressure, p. The quantum yield is of interest, since it influences the route of coating 

formation.
38�39 At λ=123.6 and 147.0 nm and low p (<106 Pa=0.8 Torr), the quantum 

yield of reaction !�" is high, and direct dissociation is immediate.
34, 40�41 At low p, 

continuous absorption of photons by the restricted number of C2H2 molecules leads to 

direct dissociation. As p increases and more C2H2 molecules are available, the 

creation of an excited state (reaction !�") becomes more important since not all 

molecules can continuously absorb the available photons. As  reaction !�" becomes 

more important, deactivation and/or collisions of the excited molecule with ground�

state C2H2 can lead to formation of major photochemical (stable) products, namely 
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diacetylene, ethylene, hydrogen, and small amounts of vinylacetylene and benzene.
40�

42 
At λ=172.0 and 184.9 nm and low p (<106 Pa=0.8 Torr), the quantum yield of 

reaction !�" was reported to be 1/5 as large as at the above�mentioned shorter λ 

values, indicating that direct dissociation is less important.
43

 Therefore, deactivation 

of ����∗ at the reactor walls is more probable than further reactions that could lead to 

coating formation. With increasing p, more collisions occur, reaction !�" becomes 

more significant, and deactivation less relevant through higher probability of radical 

creation; thus, increased polymer formation can be observed.
43 

Due to this particular 

photolytic behavior of C2H2, not only λ but also p needs to be considered in order to 

account for quantity of organic coating formation. Based on these theoretical 

considerations and experimental trials, a rather high p value (p=400 Pa=3 Torr) was 

chosen in this work as a compromise, so as to obtain appreciable coatings formation at 

all of the λ values investigated.  

 Hydrogen sulfide, H2S, the second gaseous reagent in this study, strongly 

absorbs in the 120�250 nm VUV spectral range (��������). Upon absorption at λ<309 

nm, direct photolysis occurs, leading to cleavage of the H�SH bond:
44�45

  

��� + ℎ�	(> 4.0	�) → �� ∙ +� ∙ !%"�

 

Reaction !%" has been identified as the primary process for all λ of interest. Secondary 

reactions include the formation of H and S through the reaction of the created radicals 

with each other or with H2S.  
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Formation of polymer�like sulfur�rich thin films can occur through propagation of the 

excited state acetylenes (reactions !�" to !$") or through thiol�yne chain reactions, 

initiated by the addition of SH∙ radicals, formed in reaction !%", to acetylene: 

�� ∙ +���� → �� − �� = �� ∙ !&"�

 

�� − �� = �� ∙ +��� → �� − �� = ��� + �� ∙ !'"�

 

The product of reaction !'" can further react with SH∙ radicals forming even larger 

chains that can be incorporated into the organic coatings. 

 

EXPERIMENTAL SECTION 

()(���
	
��
��*���+�	�
��

The experimental set�up used for VUV photo�chemical experiments (��������)�was 

based on the design developed by Truica�Marasescu et al.
23, 27�28, 32

,  and was 

similar to the one used in our earlier work.
22
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������� �� Cross section of the vacuum ultra�violet (VUV) photo�chemical reactor 

chamber used for depositing thiol�terminated organic thin films. 

Briefly, it consisted of a stainless steel six�way cross chamber, evacuated to low p 

(base pressure p < 10
�6

 Pa=7.5⋅10
�9

 Torr) using a turbo�molecular pump in tandem 

with a two�stage rotary vane pump. The operating pressure was maintained at p=400 

Pa=3 Torr. The flow rate of the hydrocarbon, C2H2 (99.6%, MEGS Inc., Montreal, 

QC, Canada), F(C2H2), was kept constant at 10 sccm using a mass flow controller 

(Brooks Instruments, Hatfield, PA, USA), while that of H2S (99.5%, MEGS Inc., 

Montreal, QC, Canada), F(H2S), was varied between 0 and 10 sccm; this yielded 

values of the gas mixture ratio R (=
�(�� )
�(!���)) ranging from 0 to 1. The purity of C2H2, 

which is commonly supplied dissolved in acetone in bottles filled with a porous 

medium,
46

 was assured by connecting the reservoir to a C2H2 filter (Balston 95A�1/4 

Acetylene Filter, Parker, Haverhill, MA, USA). The removal of acetone from C2H2 

was important since acetone is photochemically active at the wavelengths used in this 
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study and could contribute to the formation of the organic coatings.
47 A removal 

efficiency of 70 % was achieved with the above�mentioned filter. Polymer�like
48

 

coatings resulting from the photo�chemical reactions, hereafter designated “UV�

PA:S” (for “ultraviolet�polymerized sulfurized acetylene”), were deposited on 500 

µm�thick (100) p�type silicon wafers (University Wafer, Boston, MA,USA).� 

 Four different VUV sources were used in the present λ�dependent study to 

deposit UV�PA:S films, namely a low�pressure mercury (Hg) lamp (STER�L�RAY®, 

Hauppauge, NY, USA) and three non�coherent commercial resonant or excimer noble 

gas VUV lamps (Resonance Ltd., Barrie, ON, Canada), based on an electrodeless 

radio�frequency (r.f., 100 MHz)�powered discharge. Depending on the particular 

lamp, noble gas such as Krypton (Kr) or Xenon (Xe) is sealed into a high�grade Pyrex 

ampoule with a MgF2 window (cut�off wavelength, λ=112 nm), as described in detail 

elsewhere.
23, 27�28

 The spectral characteristics of the different VUV sources are 

summarized in �������# and��������. Compared to the “Resonance” sources, the Hg 

lamp shows several emission lines, the most pronounced being at λ=253.7 nm. 

However, only the emission at λ=184.9 nm was of importance in this work based on 

k(λ) of the two precursor gases, and it represents about 7% of the lamps’ total output, 

I184.9 nm, 5.08 cm, air =177 �W/cm
2
. In order to integrate this lamp to the VUV reactor 

chamber, it was placed in front of a flanged fused silica window, which assured good 

vacuum in the reactor chamber. 
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�������#� Intensities and spectral distributions of the VUV radiation emitted by the a) 

resonant Kr; b) resonant Xe; c) Xe excimer (as measured by Truica et al.
27�28, 32

 at d 

= 6.0 cm under high vacuum); and d) Hg lamps (spectrum obtained from the 

manufacturer, corresponding to d=5.08 cm
49

 in air). 

 

�������� Characteristics of the VUV sources used, measured under high vacuum at 

the respective frontal distances, d (see text). 

Lamp Peak Wavelength, 

λpeak (nm) 

Photon Energy, 

Ep (eV) 

Photon Flux, 

Φ (ph/cm
2
/s) 

KrL 123.6 10.0 1.4·10
15

 

XeL 147.0 8.4 2.5·10
15
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XeE 172.0 7.2 6.3·10
14

 

Hg 184.9 6.7 7.1·10
15

 

 

The c�Si substrates were mounted on a stainless�steel sample holder, which could be 

moved axially within the VUV reactor chamber, to frontal distances of dKrL=0.9 cm, 

dXeL=0.9 cm, and dXeE=0.7 cm. Varying d between the substrate and the VUV source 

allowed us to vary the photon flux, Φ, impinging on the gas mixture in the gap. In the 

case of the Hg source, the lamp was moved to dHg=8.0 cm away from the fused silica 

window, behind which the c�Si substrate was placed. This allowed us to achieve 

comparable experimental Φ values (see Table 2) while guaranteeing deposit creation 

on the c�Si substrates.  Earlier work by Truica et al.
27�28, 32

 had shown that a Φ~d
�2 

relationship quite closely applied to the “Resonance” lamps at the sample 

holder/substrate, even though these were far from being “point�sources”. To 

determine Φ, the photocurrent, i, of each source was measured at different d from the 

respective source under high vacuum inside the chamber, using two NIST�calibrated 

photodiodes (Resonance Ltd., Barrie, ON, Canada). This allowed us to obtain Φ as a 

function of d and thus to determine the above�mentioned distances for each source at 

which comparable photon fluxes would act at the position of the c�Si substrates. 

Coatings of comparable thicknesses (~ 50 nm) were obtained by varying the treatment 

duration between 1 and 5 h (depending on the VUV source and gas mixture ratio). 
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 For reasons of safety in handling the toxic H2S, the experimental chamber was 

housed inside a N2�filled glovebox; this had the additional benefit of inhibiting 

oxygen�exposure and “aging” of the freshly�deposited UV�PA:S films when the 

chamber was opened. 

 

�����	���+�	�
���	������

X�ray photoelectron spectroscopy 

All deposits were characterized by X�ray photoelectron spectroscopy (XPS), 

performed in a Thermo Scientific K�AlphaTM instrument (Waltham, MA, USA) using 

monochromatic Al Kα radiation (hv=1486.6 eV).  The samples were mounted onto a 

vacuum transfer module (VTM, Thermo Scientific K�AlphaTM) inside the glovebox 

and directly transferred to the instrument without exposure to air; this allowed us to 

determine the UV�PA:S films’ native chemical composition without exposure to 

atmospheric O2. The elemental compositions (in atomic %, at. %) and chemical 

environments of the constituent elements were obtained by survey� and high�

resolution (HR) spectra, respectively. The former were acquired at a pass energy of 

160 eV, a dwell time of 200 ms and energy steps of 1 eV, the latter at pass energy of 

20 eV, dwell time of 200 ms and energy steps of 0.1 eV. No evidence of X�ray 

induced damage was observed, based on measurements of the C1s peaks before and 

after analyses. Spectra were acquired at 0° emission angles, and possible charging was 

corrected by referencing all peaks to the HR C1s peak at binding energy (BE) = 285.0 

eV. The constituent elements were quantified from the broad�scan spectra using 

CasaXPS v2.3.16 (CasaSoftware Ltd., Teignmouth, England), by integrating the areas 
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under relevant peaks after a Shirley�type background subtraction, and by using 

sensitivity factors from the Wagner table.
50 

Throughout this study, we refer to the 

atomic sulfur concentration, [S], of UV�PA:S coatings; however, since hydrogen 

atoms cannot be detected by XPS, [S] is approximated by: 

"�# = �
� + $ + � × 100 

!,"�

 

 

Chemical derivatization with N�ethylmaleimide 

Chemical derivatization with N�ethylmaleimide (98%, BioShop Canada Inc., 

Burlington, ON, Canada) was used to quantify thiol concentrations, [SH], as recently 

described by Thiry et al.
51 

The reaction mechanism is shown in� ���*�� �, where 

N�ethylmaleimide reacts selectively with SH via nucleophilic addition between the 

S atom and the double bond in the maleimide structure (thiol�ene click reaction), 

forming a stable thio�ether bond. The thiol�maleimide reaction offers several 

advantages, including high selectivity in the presence of multiple functional groups, 

rapid and quantitative conversion at low thiol concentrations, and high stability in 

aqueous environments.
52
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���*���� Derivatization reaction between a thiol group and N�ethylmaleimide. 

 

The derivatization reaction was carried out in phosphate buffer solution (PBS) at 

pH=7, the N�ethylmaleimide concentration being fixed at 0.1 M. Since free thiol 

functionalities are sensitive towards oxidation upon exposure to oxygen,14, 53 the 

samples were mounted into closed vials, equipped with a septum, before removal 

from the glovebox, thereby eliminating possible exposure to air. The derivatization 

solution was then injected through the septum and the samples were kept immersed in 

this solution for 78 h, following which they were rinsed in clean solution for 5 min to 

eliminate any unreacted molecules, then finally dried under a flow of dry nitrogen. 

XPS survey spectra were obtained before and after derivatization, allowing nitrogen, 

[N], and carbon, [C], concentrations to be quantified; [SH], was then calculated as 

follows: 

"��# = "'#
"�# − 6"'# × 100	(%) !-"�
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Profilometry 

The coating thickness, T, was measured by scratching down to the c�Si substrate using 

a sharp needle. The resulting step height was measured with a Dektak XTTM Stylus 

Profilometer (Bruker, Tucson, AZ, USA), using a diamond tip and an applied force of 

3 mg. The measured T was used to determine deposition rates, r (nm/min), which in 

turn were used to determine the normalized deposition rates shown in �������%, using 

the respective photon flux of each VUV source listed in �������. 

 

Atomic Force Microscopy 

The surface morphology of the films was investigated by atomic force microscopy 

(AFM) using a MFP�3D instrument (Asylum Research, Santa Barbara, CA, USA). All 

samples were measured in tapping mode using silicon cantilevers (ACTA model, 

AppNano) with a nominal spring constant of 37 N/m, nominal resonant frequency of 

300 kHz, and nominal tip radius of 6 nm. Gwyddion 2.48 software was used to 

process the AFM images. 

�

RESULTS AND DISCUSSION 

.��
��	�
��/���	���

As explained in the section entitled Wavelength�dependent photolysis of C2H2  and 

H2S, the photo�dissociation and therefore depositon was dependent on k(λ) of the 

individual precursor gases. However, when considering mixtures as in this present 

study, k(λ) must first be used to calculate absorption coefficients of the gas mixtures, 
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α, considering the mixture ratios ,	* = +(,-.)
+(/-,-) , the intensity of the sources, I, and the 

pressure, p. Truica et al.
9, 23

 reported the following equation to calculate α: 

0 = 12 1
3 + 14(5)6�7� +

3
3 + 14(5)7�89

:(5)
; :(5)<5 =<5 

�

!�0"�

 

where 
>(?)

; >(?)@? is the relative contribution (in %) of each λ value in the overall 

emission spectrum of the respective source, and p the gas pressure (here kept constant 

at 400 Pa=3 Torr).  

 The calculated absorption coefficients of the H2S/C2H2 mixtures, α, as a 

function of R are presented in �������$. 

 

Page 19 of 48

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

20 

 

 

������� $� Calculated absorption coefficients, α (in cm�1), calculated using equation 

(7) for H2S/C2H2 gas mixtures; the corresponding wavelengths are those of the XeL 

(squares), KrL (triangles), XeE (upside down triangles), Hg (circles) VUV sources.  

 

Calculated α values of the H2S/C2H2 mixtures are seen to vary significantly for the 

different λ, being highest at λ=147.0 nm, followed by λ=123.6 nm, λ=172.0 nm, and 

λ=184.9 nm, respectively. Based on this, one would expect substantial differences in 

the photo�induced deposition kinetics at different λ. This was indeed the case, �������

%, where deposition rates normalized with respect to photon flux, r/Φ, are seen to have 

followed the same trend as α. The ratio r/Φ is being considered, so as to remove 

possible dependence of r on the number of photons, in other words, focusing only on 

the λ–dependence.  
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�������%� Normalized deposition rates, r/Φ, as a function of gas mixture ratio, R, for 

UV�PA:S films deposited using the XeL (squares), KrL (triangles), XeE (upside down 

triangles), Hg (circles) sources. Error bars indicate 95% confidence interval. The lines 

are to guide the reader’s eye. 

 

Overall, r/Φ values are seen to have decreased with rising R, for XeL from 2.1 (R=0) 

to 1.1x10
�18 

nm/ph/cm2 (R=1); from 0.8 to 0.3 x10
�18 nm/ph/cm2 for KrL; from 0.7 to 

0.2 x10
�18 nm/ph/cm2 for XeE; and from 0.03 to 0.01 x10

�18 nm/ph/cm2 for Hg. This 

comes as no surprise, since, except for Hg, all α values decreased with rising R. For 

Hg, an increase in α was due to higher k of H2S at λ=184.9 nm. The overall rate at 

which precursor radicals were produced decreased with increasing R, which also 

reduced the relative concentration of CxHy⋅ radicals, and thereby also the formation of 

UV�PA:S.
9, 23, 27

 Furthermore, increasing R also gave rise to a greater concentration 
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of reactive H atoms, leading to competing etching reactions, hence to the decrease in 

r/Φ for all four VUV sources.
9, 22

  

It is noteworthy that pure acetylene�based, amorphous carbon films (R=0) had 

been obtained in the past through PICVD by Danno et al.
54

 using a low�pressure Hg 

lamp. The carbon films were deposited at elevated temperatures (150 and 300°C), 

under conditions resulting in r/Φ values of 1.8x10
�17 nm/ph/cm2 and 7.2x10

�18 

nm/ph/cm2, respectively, compared to 3x10
�20 nm/ph/cm2 in the present work (at 

room temperature). Differences between setup geometries and process parameters 

(even though Danno also used p=400 Pa=3 Torr) could help explain the higher 

deposition rates obtained by the Japanese authors. 

�

���*����
*�
��	�
��
�����
��	���)(�123�����*���

Chemical compositions, more particularly [S] as a function of R, are seen to have 

displayed different trends among the four different UV�PA:S film families (�������&). 

An example of an XPS survey spectrum, which was used to obtain [S], is 

demonstrated in ��������� in the Supporting Information. 
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������� &� Sulfur concentrations, [S] (in at.� %) of UV�PA:S films deposited using 

XeL (squares), KrL (triangles), XeE (upside down triangles), Hg (circles) VUV 

sources, as a function of gas mixture ratio, R. The lines are to guide the reader’s eye. 

 

On the basis of �������� and��������, the highest k(λ) values of H2S at λ=184.9 nm 

might lead one to expect the highest [S] for the case of the Hg VUV lamp, but the 

most efficient S�incorporation in fact was observed for XeL. In order to incorporate S�

containing groups into UV�PA:S, the polymer�like backbone needs to be created first 

and foremost. For the case of XeL the probability of CxHy⋅ radical creation by photo�

dissociation of C2H2 was obviously high, thereby possibly also allowing higher 

incorporation of S. However, for the case of the Hg source, the rate of creating CxHy⋅ 

radicals was much smaller, even though the possibility of S incorporation was higher 

Tentatively, this would explain why [S] ~ 50 and ~ 40 at.% for the XeL and Hg 
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lamps, respectively, as observed in ������� &. In terms of possible reaction 

mechanisms, if only “pure” thiol�yne chain reactions (!&" and !'") would take place, a 

film composition of (SCH2CH2)n, resulting in [S]=33 at.% could be expected. 

However, since [S]>33 at. % (in the case of the Hg and XeL sources), we can assume 

that this is not the only formation mechanism. Many subsequent reactions are 

possible, resulting in a broad product distribution. Contrary to trends of increasing 

heteroatom concentration (here: S) with rising R values reported in the literature and 

in our previous work,9, 22, 55 �������& did not bear witness to such an increase in [S]. 

Here, [S] of the UV�PA:S films tended to rise between R=0.1 and 0.25, but it then 

remained nearly constant when R further increased. We attribute this to the higher 

pressure (p=400 Pa=3 Torr) used in the present experiments, compared to p « 133 

Pa=1 Torr in previous studies. In an attempt to better understand this rather unusual 

behavior noted in �������&, UV�PA:S films were deposited at p=13 Pa=0.1 and 133 

Pa=1 Torr using only the KrL and XeL VUV sources (������� '). Only these two 

yielded sufficiently high r values at the lower p, due to the dependence of quantum 

yield on p discussed in the earlier section entitled Wavelength�dependent photolysis of 

C2H2 and H2S. 
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�������'� Sulfur concentrations, [S] (in at.� %), for UV�PA:S films deposited using 

the a) KrL and b) XeL VUV sources at three different pressures (p=13, 133, and 400 

Pa=0.1, 1 and 3 Torr) and two gas mixture ratios (R=0.1 and 1). 

At low p (p=13 Pa=0.1 Torr), a dramatic increase in [S] with rising R was observed, 

as also reported in the literature and in our own previous work. As p increased, 

numbers of molecular collisions of course also increased, leading to more S�bearing 

reactive species and more sulfur incorporation into the films.  In �������', [S] values 

at R=1 and lower p were seen to significantly exceed those at higher p, especially for 

XeL radiation, while at p=400 Pa=3 Torr [S] values were almost independent of R, as 

observed in �������&.  

 Changing p could also lead to transitions among different flow regimes, of 

which one can distinguish three, depending on p and on geometry: these are 

molecular, continuum and transition flows. They can be quantitatively distinguished 

by their respective dimensionless Knudsen numbers, Kn: 

AB = C
< 

!��"�
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where l is the molecular mean free path and d a characteristic length of the 

experimental apparatus; in this case we chose d to be the distance between lamp and 

substrate where deposition occurred. Mean free path, l,  the average distance between 

collisions among gas molecules, is given by
56�57 

C = 4DE
√2H= =

4DE
√2I J12<K +

1
2<�L

� =K=�
			 

!��"�

 

for the case of gas mixtures with dissimilar particles. In equation� !��", kB is 

Boltzmann’s constant, T the temperature, H the collisional cross�section, and p the 

pressure. To consider collisions between the dissimilar particles here, the molecular 

diameters of H2S (d1=3.6⋅10
�10 m) and of C2H2 (d2=3.3⋅10

�10
 m), and their partial 

pressures (p1 and p2) need to be considered. Knudsen numbers, Kn < 0.01 describe 

continuum flow, whereas Kn>1 represent molecular or discrete particle flow. Between 

those values both gas�gas and gas�wall collisions are important, and the flow regime 

is termed transition or slip flow.
56�58 Here, the two mixture ratios (R=0.1 and 1) and 

three different pressures (p=13, 133 and 400 Pa=0.1, 1 and 3 Torr) yielded Kn ~0.1 at 

p=13 Pa=0.1 Torr; ~0.001 at p=133 Pa=1 Torr; and ~5⋅10
�5

 at p=400 Pa=3 Torr (see 

Supporting Information for detailed calculations). Therefore, we have observed a 

shift between transition and continuum flow regimes. As p increased and transition 

towards continuum flow occurred, collisions gained in importance, transition towards 

continuum flow being observed between p=13 and 133 Pa (=0.1 and 1 Torr) 

(Kn<<0.01). We propose that this transition may explain the different [S] versus R 

behaviours observed in ������� & and ������� '. Such a dependence of chemical 

Page 26 of 48

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

27 

 

 

composition on p is an important observation, one which to the authors’ knowledge 

has so far not yet been reported in connection with transitions among flow regimes. 

This aspect of very different heteroatom incorporation rates may well need to be taken 

into consideration when in future designing new CVD processes. 

 Because [S] does not reveal in what functional form this element was 

incorporated in the UV�PA:S films, the selective and quantitative derivatization 

reaction based on N�ethylmaleimide was used to determin [SH], as shown in �������

,. A typical XPS survey spectrum obtained after the derivatization reaction is shown 

in Figure S1 in the Supporting Information. 

 

������� ,� Proportion of C bearing �SH groups, [SH] (in %), determined using 

chemical derivatization XPS for UV�PA:S films based on XeL (squares), KrL 

(triangles), XeE (upside down triangles), Hg (circles) VUV sources, versus  gas 
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mixture ratio, R. Error bars show standard deviations of three measurements. The 

lines are to guide the reader’s eye. 

 

This plot of [SH] versus R displays similar trends as that of [S] versus R in �������&, 

the highest incorporation of thiol groups having occurred for the case of XeL�based 

deposits, followed by Hg, KrL and XeE ones. Following an initial increase in [SH] 

between R=0.1 and 0.25, [SH] values are seen to have remained nearly constant. 

These UV�PA:S films, especially in the case of XeL, were much richer in SH groups 

than their L�PPA:S (“low�pressure plasma�polymerized, sulfurized acetylene”) 

counterparts, reported in our previous study;
22

 here, [SH] values up to ~7.7 % were 

achieved by photo�polymerization, in sharp contrast with the maximum of only ~3.4 

% for L�PPA:S. This was not only the case for the present gas mixtures, but also for a 

single molecule precursor, propanethiol, where a maximum [SH] of ~5 % was 

obtained.
51

 It is noteworthy that comparable [SH] (~5 %) was achieved using the Hg 

lamp, far more affordable and readily available than the other three VUV sources used 

here. 

 The observed higher photochemical [SH] values for UV�PA:S films compared 

with their plasma�chemical L�PPA:S counterparts is not entirely surprising, because 

this has already been observed and reported for N� and O�rich films.
9, 23 Indeed, 

Truica reported UV�PE:N deposits with up to more than 70 % [�NH2] concentration 

(versus roughly 30 % for L�PPE:N) when using C2H4�NH3 reagent gas mixtures. In 

low�pressure plasma, the gaseous precursors are subjected to many collisions with 

“hot” electrons that possess Boltzmann�like energy distribution. However, as stated 
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earlier, photolysis of H2S creates only SH⋅ radicals, which react with hydrocarbon 

radicals under much lesser disruption than in a discharge plasma. For this reason [SH] 

values for the XeL�based UV�PA:S were the highest ones reported in the literature so 

far for any preparation method or type of precursor. They greatly exceeded ones 

previously reported (up to ~1.75 %),
22

 where photo�polymerized S�containing films 

were prepareded using mixtures of C2H4 or butadiene (C4H6) with H2S using the KrL 

source. Beside the selective and specific VUV�photochemical reactions via the 

present gas mixtures, a further reason for the high [SH] can be attributed to the 

exclusion of oxygen during derivatization, i.e. no oxidation of free thiol groups. To 

the authors’ best knowledge such air�excluding derivatization had not been reporteded 

before, but it can evidently have contributed significantly to increased retention of 

SH�groups. 

 While stability studies were beyond the scope of the present work, previous 

studies suggest that these photo�derived films should be stable in aqueous media, 

suitable for further applications.
9, 22, 59

 

 

�������*
���
�
���

Growth mechanisms and resulting surface�topological features are also known to 

affect the performance of thin coatings for biomaterial uses.
60�61

 In designing new 

biomaterials, it is critically important to consider how cells respond to specific 

surface�chemical and �topographical features. Therefore, we have examined the 
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surface morphologies of UV�PA:S films deposited using the four different VUV 

sources at R=0.1 and R=1, see �������-.  

 

�������-� Atomic force microscopy topography images of UV�PA:S films deposited 

using the KrL VUV source at a) R=0.1 (5x5 ]m2); b) R=0.1 (1x1 ]m2); and (c) R=1 

(1x1 ]m2). The bottom images represent 3D portrayals of the respective surfaces. 

 

At lower magnification (5x5 �m2, �������-��"), the R=0.1 film  appeared smooth , but 

at higher magnification (i.e. smaller area, 1x1 �m2)  the AFM images reveal a rougher 

surface with island�like features up to ~4 nm in height (������� -� �"). These were 

more pronounced at R=1 and were seen to grow in height up to ~14 nm (�������-�"):  

The films’ RMS roughness increased with rising R, from ~1.5 nm to ca. 5.4 nm. 

Similar island�like features with increasing R were also observed for the other VUV 

sources. For example,  ������� �0 represents UV�PA:S films obtained with the Hg 

source, from which we conclude that surface morphology of UV�PA:S was essentially 

independent of λ, but that it was strongly influenced by R. 
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��������0� Atomic force microscopy topography images of UV�PA:S films deposited 

using the Hg VUV source at a) R=0.1 (5x5 ]m2); and b) R=1 (5x5 ]m2). The bottom 

images represent 3D portrayals of the respective surfaces. 

Plasma polymers with diverse surface topographies are well known in the 

literature.
61�64

 UV�PA:S appears to present Volmer�Weber growth morphology, 

where incoming film�forming precursors have more affinity for one another than for 

the (c�Si) substrate surface. As a result, they tend to form clusters which grow into 3D 

islands that can  eventually coalesce and merge into a continuous film.
60, 63, 65

 In 

terms of surface energy, γ, the deposit tends to form islands minimizing its surface, if 

its γ is significantly different from that of the underlying substrate, since no 

intermolecular interactions with the substrate occur. From this, we could infer that the 

surface energy of the UV�PA:S films deviates from γ of the substrate with rising R 

and thus with [S].   
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SUMMARY AND CONCLUSIONS 

PICVD techniques have been gaining interest over the past years, for example for 

selective, specific organic surface functionalization. Simply by selecting different 

photon energies (i.e. values of λ), thin films with different properties could be 

obtained in this present work. Although different VUV photon energies could be 

useful in surface engineering, very few wavelength (λ)�dependent deposition studies 

had been carried out so far. The present study aimed to understand λ�dependent 

deposition of thiol�terminated films using four different VUV sources covering 

roughly 123 nm ≤ λ ≤ 185 nm. We have shown that UV�PA:S coatings could be 

successfully deposited by VUV irradiation of acetylene (C2H2) / hydrogen sulfide 

(H2S) mixtures, growth rates and properties of the resulting films being highly 

λ�dependent. The results clearly showed that photolytic reactions of C2H2 and H2S are 

governed by the gases’ absorption coefficients, k(λ), obviously also that of the 

H2S/C2H2 gas mixtures, α. The latter was found to be highest for the XeL VUV 

source, and was found to yield the highest sulfur, [S], and thiol, [SH], concentrations. 

[SH] values reported here are the highest in the literature so far, a good choice if high 

[SH] are desired for further (biomedical) applications. Slightly lower [SH] (~5%) 

were obtained with the more economic and readily accessible Hg lamp. The 

importance of pressure, p, another key CVD process parameter was also amply 

demonstrated in the section entitled Wavelength�dependent photolysis of C2H2 and 

H2S. This was especially evident from the [S] versus R dependence: surprisingly, at 

the relatively high p=400 Pa=3 Torr, used here, [S] remained nearly constant with R  
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contrary to all previous studies by others and by ourselves.
9, 22, 55, 66 Independent of 

λ, UV�PA:S deposits showed island�like growth morphology, more pronounced with 

increasing [S].  

 In summary, this λ�dependent VUV photo�deposition study demonstrated the 

importance of single, well�characterized VUV sources for selective and specific 

deposition of organic coatings. This UV�PA:S deposition technique can be useful for 

creating optimized films with desired biomedical properties simply by adjusting the 

source’s wavelength.  
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Figure 1. VUV�absorption, k (atm�1cm�1, base e) of gaseous H2S33 and C2H234; the wavelengths, λ, of the 
VUV lamps used are also shown (λKrL = 123.6 nm, λXeL = 147.0 nm, λXeE = 172.0 nm, λHg = 184.9 nm). 
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Figure 2. Cross section of the vacuum ultra-violet (VUV) photo-chemical reactor chamber used for depositing 
thiol-terminated organic thin films.  
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Figure 3. Intensities and spectral distributions of the VUV radiation emitted by the a) resonant Kr; b) 
resonant Xe; c) Xe excimer (as measured by Truica et al.27-28, 32 at d = 6.0 cm under high vacuum); and 

d) Hg lamps (spectrum obtained from the manufacturer, corresponding to d=5.08 cm48 in air).  
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Figure 4. Calculated absorption coefficients, α (in cm�1), calculated using equation (7) for H2S/C2H2 gas 
mixtures; the corresponding wavelengths are those of the XeL (squares), KrL (triangles), XeE (upside down 

triangles), Hg (circles) VUV sources.  
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Figure 5. Normalized deposition rates, r/Φ, as a function of gas mixture ratio, R, for UV-PA:S films deposited 
using the XeL (squares), KrL (triangles), XeE (upside down triangles), Hg (circles) sources. Error bars 

indicate 95% confidence interval. The lines are to guide the reader’s eye.  
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Figure 6. Sulfur concentrations, [S] (in at.- %) of UV-PA:S films deposited using XeL (squares), KrL 
(triangles), XeE (upside down triangles), Hg (circles) VUV sources, as a function of gas mixture ratio, R. The 

lines are to guide the reader’s eye.  
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Figure 7. Sulfur concentrations, [S] (in at.- %), for UV-PA:S films deposited using the a) KrL and b) XeL VUV 
sources at three different pressures (p=0.1, 1 and 3 Torr) and two gas mixture ratios (R=0.1 and 1).  
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Figure 8. Proportion of C bearing -SH groups, [SH] (in %), determined using chemical derivatization XPS for 
UV-PA:S films based on XeL (squares), KrL (triangles), XeE (upside down triangles), Hg (circles) VUV 

sources, versus  gas mixture ratio, R. Error bars show standard deviations of three measurements. The lines 
are to guide the reader’s eye.  
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Figure 9. Atomic force microscopy topography images of UV-PA:S films deposited using the KrL VUV source 
at a) R=0.1 (5x5 µm2); b) R=0.1 (1x1 µm2); and (c) R=1 (1x1 µm2). The bottom images represent 3D 

portrayals of the respective surfaces.  
�

�

Page 47 of 48

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



��

�

�

Figure 10. Atomic force microscopy topography images of UV-PA:S films deposited using the Hg VUV source 
at a) R=0.1 (5x5 µm2); and b) R=1 (5x5 µm2). The bottom images represent 3D portrayals of the 

respective surfaces.  
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