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RÉSUMÉ 

Au cours de la dernière décennie, la recherche et le développement de générateurs fibrés a reçu une 

attention significative en raison de la popularité grandissante des appareils électroniques que l’on 

peut porter, tels que les écrans sur vêtements, les dispositifs de réalité virtuelle, les senseurs 

médicaux/cliniques portables et les montres intelligentes. Parmi les générateurs fibrés, les fibres 

piézoélectriques qui opèrent en se basant sur l’effet piézoélectrique sont spécialement attrayantes, 

parce qu’elles peuvent convertir les vibrations mécaniques de la vie quotidienne (causées par 

exemple par la marche, les courants d’air ou les battements cardiaques) en signaux électriques. 

Pour augmenter le potentiel des technologies portables, des textiles piézoélectriques pour alimenter 

les dispositifs électroniques ont été fabriqués en intégrant les fibres piézoélectriques dans des fibres 

commerciales utilisant les techniques de fabrication conventionnelles. 

Les fibres piézoélectriques peuvent aussi avoir des applications techniques dans les 

domaines de l’information et des communications, dans l’automatisation industrielle, dans le 

diagnostic médical, dans le control du trafic et dans le secteur de la défense. Par exemple, ces fibres 

pourraient être implantées dans les avions et les véhicules pour surveiller l’intégrité de la structure 

mécanique, ainsi qu’alimenter les systèmes électroniques embarqués tels que les réseaux de 

senseurs sans-fil (WSN) à faible puissance. D’autres applications incluent les détecteurs 

acoustiques de haute-sensibilité pour la détection des ondes sonores, les actuateurs de micro-

positionnement pour les microscopes à force atomique (AFM), les microscopes à effet tunnel 

(STM), les miroirs laser d’alignement et les dispositifs médicaux implantables (IMD). 

Encouragés par le marché sans cesse grandissant des appareils électroniques portatifs, des 

efforts substantiels ont été investis dans la fabrication de fibres piézoélectriques. Aujourd’hui, la 

plupart des fibres piézoélectriques existantes sont fabriquées soit en faisant croître des 

nanostructures piézoélectriques dans un filament conducteur ou en extrudant des polymères 

piézoélectriques avec des polymères conducteurs par trempe sur roue (melt-spinning). La 

performance et les applications de ces fibres piézoélectriques sont limitées par leur géométries 

simpliste, leur grandes taille, leur faible fiabilité mécanique, leur coût élevé et leur faible réponse 

piézoélectrique. 

Cette thèse a pour objectif de démontrer des fibres piézoélectriques micro et 

nanostructurées pouvant répondre à ces limitations. Dans notre approche, des fibres 
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piézoélectriques de plusieurs kilomètres de dimensions sous-millimétriques sont thermiquement 

étirées à partir de préformes macroscopiques. Les fibres piézoélectriques sont constituées d’un 

cœur creux mou de polycarbonate entouré d’une gaine de multicouches spiralées fait de couches 

alternatives de nanocomposites piézoélectriques (polyvinylidène augmenté avec BTO, PZT ou 

CNT) et de polymères conducteurs (polyéthylène rempli de carbone). Les deux couches de 

polymères conductrices jouent le rôle d’électrodes et forment des connecteurs électriques 

spatialement séparés pour faciliter la connexion. La structure multicouche de taille 

micro/nanométrique augmente l’efficacité de polarité grâce à la courte distance entre les électrodes 

conductrices entourant les couches piézoélectriques composites. Additionnellement, la structure en 

spirale augmente grandement la région active du composite piézoélectrique, en permettant la 

génération de voltage plus grande, résultant en des efficacités de génération de puissances de 10 à 

100 fois plus importantes que les câbles piézoélectriques conventionnels.  

Par la suite, nous avons réalisé une étude comparative des fibres piézoélectriques en 

utilisant trois combinaisons de matériaux (PVDF-BTO, PVDF-PZT et PVDF-CNT). La fibre 

microstructurée BTO/PVDF (longueur de 10 cm, concentration de BTO : 20 wt%) a pu générer un 

voltage en circuit-ouvert de 1.4 V et un courant de court-circuit de 0.8 nA, quand une des 

terminaisons de la fibre à été déplacée de 10 mm dans la direction transversale. Les voltages et 

courants correspondants étaient de ~6 V and ~4 nA pour la fibre de PZT-PVDF (20 wt% PZT) et 

de ~3V et ~1.2 nA pour la fibre de CNT-PVDF (0.4 wt%). 

Comme exemples d’applications pratiques des fibres piézoélectriques proposées, nous 

présentons des textiles générateurs d’énergie utilisant des fibres BTO-PVDF, et nous caractérisons 

leurs performances dans le contexte de microgénérateurs que l’on peut porter. Nous présentons 

aussi la détection du son en utilisant des fibres CNT-PVDF avec des voltages piézoélectriques 

générés par des ondes sonores proportionnelles à la racine carrée de la puissance acoustique. 

Additionnellement, nous avons assemblé des générateurs piézoélectriques planaires en 

sandwichant un nanocomposite piézoélectrique entre deux films de polymères conducteurs (C-

LDPE). Les générateurs ainsi formés ont un voltage en circuit ouvert jusqu’à 8 V et un courant de 

court-circuit jusqu’à 40 nA avec une région active de plusieurs dizaines de cm2. La durabilité de 

ce générateur a été confirmée en répétant continuellement des mesures d’étirage pendant trois jours. 
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Le générateur a bien retenu ses caractéristiques de voltage et de courant piézoélectriques durant 

tout le test qui comprenant 26000 cycles d’étirage.  
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ABSTRACT 

In the past decade, the R&D (research and development) of fiber generators has received significant 

attention due to the growing popularity of wearable mobile electronic systems such as on-garment 

displays, virtual-reality devices, wearable medical/clinic sensors and smart watches. Among all of 

these fiber generators, piezoelectric fibers that operate based on piezoelectric effect are especially 

attractive, because they could convert mechanical vibrations accessible in our daily life (i.e. 

walking, air flow and heart beating) into electrical signals. To make further improvements to the 

wearable applications, piezoelectric textiles that power on-body electronics have been fabricated 

by integrating piezoelectric fibers into commercial fabrics using traditional textile fabrication 

techniques. 

Piezoelectric fibers can also find technical applications in the fields of information and 

communication, industrial automation, medical diagnostics, automation and traffic control, and in 

the defense industries. For instance, piezoelectric fibers could be implanted on the airplanes and 

vehicles, for the purpose of structural integrity monitoring, as well as powering the on-board 

electronic systems such as wireless sensor networks (WSNs) with low-power consumption. Other 

common examples include ultrasensitive sound detectors for stand-off sound detection, micro-

positioning actuators for atomic force microscopes (AFM), scanning tunneling microscopes 

(STM), and laser mirror alignment; as well as power sources for implanted medical devices 

(IMDs). 

Driven by the ever-growing market, extensive effort has been put into the fabrication of 

piezoelectric fibers. Currently, most of the existing piezoelectric fibers are fabricated either by 

growing piezoelectric nanostructures along a conductive filament or by extruding piezoelectric 

polymers together with a conductive polymer by melt-spinning. The performance and applications 

of these piezoelectric fibers are limited by their simple fiber geometries, large fiber size, poor 

mechanical reliability, high-cost, and low piezoelectric response.  

This thesis aims to demonstrate micro- and nanostructured piezoelectric fibers that address 

these limitations. In our approach, kilometer-long piezoelectric fibers of sub-millimeter diameters 

are thermally drawn from a macroscopic preform. The piezoelectric fibers feature a soft hollow 

polycarbonate core surrounded with a spiral multilayer cladding consisting of alternating layers of 

piezoelectric electrospun nanocomposites (polyvinylidene enhanced with BTO, PZT or CNT) and 
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conductive polymer (carbon filled polyethylene). The conductive polymer layers serve as two 

electrodes and form two spatially offset electric connectors on the fiber surface designed for the 

ease of connectorization. The micron/nano-size multilayer structure enhances in-fiber poling 

efficiency, thanks to the small distance between the conducting electrodes surrounding the 

piezoelectric composite layers. Additionally, the spiral structure greatly increases the active area 

of the piezoelectric composite, thus promoting higher voltage generation and resulting in 10-100 

higher power generation efficiency over the existing piezoelectric cables. 

Afterwards, we performed a comparative study of the piezoelectric fibers using three 

material combinations (PVDF-BTO, PVDF-PZT and PVDF-CNT). A BTO/PVDF microstructured 

fiber (10 cm long; BTO concentration: 20 wt%) could generate an open-circuit voltage of 1.4 V 

and a short-circuit current of 0.8 nA, when the moving end of the generator was displaced 

transversely by 10 mm. The corresponding voltage and current were ~6 V and ~4 nA for a PZT-

PVDF (20 wt% PZT) fiber generator, and ~3 V and ~1.2 nA for a CNT-PVDF (0.4 wt% CNT) 

fiber generator.  

As examples of practical applications of the proposed piezoelectric fibers, we present 

energy harvesting textiles using BTO-PVDF fibers, and characterized their performance in the 

context of wearable and automotive microgenerators. We also present detection of sound using 

CNT-PVDF fiber that feature piezoelectric voltage generated by sound wave to be proportional to 

the square root of the acoustic power. 

Additionally, we have assembled piezoelectric planar generators by sandwiching a 

piezoelectric nanocomposite between two conductive polymer films (C-LDPE). Such planar 

generators can generate open-circuit voltages of up to 8 V and short-circuit voltage of up to 40 nA 

with an active area of several tens of cm2. The durability of this generator was confirmed by 

continuously repeating the bend-release measurements for 3 days. The generator retained well its 

piezoelectric voltage and current throughout the whole test that comprised ~26000 bend/release 

cycles.  
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CHAPTER 1 INTRODUCTION 

In the past decades, the invention of electronic devices [1, 2], the internet, wireless communication 

[3, 4], etc., have completely changed the world and deeply affected our daily life. The rapid 

advancements in nanotechnology [5, 6] and micro-/nanofabrication techniques [7-10], enabled the 

miniaturization of electronic devices, making them portable and convenient. Moreover, 

tremendous effort was spent to integrate electronic devices into various kinds of textiles, garments, 

fabrics, thus making them wearable. The first commercialized wearable electronics, Apparel ICD+, 

were released in 2000 by Industrial Clothing Design Plus [11]. The commercialization of these 

products triggered a slew of investigations into various wearable electronics, including on-garment 

displays [11], virtual-reality (VR) devices [12, 13], wearable medical/clinic sensors and monitors 

[14-16], and smart accessories [17-19], some of which have already been successfully 

commercialized, such as VR headsets, Google glasses, and Apple watches. 

While mobile technologies have advanced rapidly over the past 20 years, the development 

of power sources has lagged considerably [20]. Now most of existing portable electronics are 

powered by commercial batteries, mostly rechargeable lithium-ion batteries (LIB) [21]. These 

batteries are generally heavy, rigid, and require outlets for recharging, which somehow impedes 

the development and miniaturization of wearable electronics. An alternative approach is to harvest 

energy from the ambient environment [22]. Solar and thermal energies may be the most common 

and accessible sources of energy that one can harvest from environmental surroundings; however, 

utilization of these types of energy is generally limited by the environment of the users. In contrast, 

harvesting electricity from mechanical movements is more reliable, since mechanical energy is a 

resource that is largely abundant in our daily life with various energy scales and types such as 

walking [23], mechanical vibrations [24-26], flowing air and water [27, 28], eye blinking [29, 30] 

and muscle stretching [31].  

In 1880, researchers discovered that piezoelectric materials that operated based on the 

‘piezoelectric effect’ [32-34] could convert a sufficient part of mechanical energy into electricity. 

Since then, extensive effort has been put into this field and a variety of piezoelectric materials have 

been investigated, including natural quartz crystals [35, 36], mechanically flexible piezoelectric 

polymers [37], exotic and efficient ceramics [38], and other complex composites. Based on these 

piezoelectric materials, a range of energy harvesting and conversion devices have been proposed, 
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such as the bulk structures that can be used to dampen vibrations [39], piezoelectric nanowire-

based generators for energy harvesting [40, 41], as well as micro-scale actuators fabricated via 

MEMS process [42-44].  

Among all types of piezoelectric generators, perhaps the most promising ones are the 

piezoelectric fiber-based generators [45-49]. Technically, the advancement of nanotechnology has 

made it feasible to integrate piezoelectric structures on the surface or the inside of the individual 

fiber [50-52], which typically has a size from several to tens of microns. These fibers have high 

energy conversion efficiency, and are capable of harvesting power from small movements [51]. 

Mechanically, they can be folded, bent, twisted, or stretched while maintaining their electrical 

properties [53]. Due to their excellent mechanical robustness and flexibility, these fibers could be 

directly integrated into large-area textiles and fabrics using conventional weaving looms or knitting 

machines. The as-fabricated ‘piezoelectric garments’ could power on-body electronic systems such 

as wireless communication networks [54], implantable medical devices (IMDs) [55], and on-

garment displays [11], to name a few.  

Apart from their wearable applications, the piezoelectric fibers are particularly suitable for the 

applications in the areas of remote sensing, military industries [56] as well as automotive and 

aerospace industries [57]. For instance, the piezoelectric fibers could be used as the ultrasensitive 

sensor for the stand-off sound detection, which opens various possibilities in sensing and defense 

applications [58]. Moreover, their unique fiber-form-factor allows piezoelectric fibers to be 

placed/hidden into areas that are not easily accessible such as deep-water, forests, and deep-snow 

[52]. In a moving vehicle or airplane, piezoelectric fibers harvesting energy from a rotating 

propeller or other mechanical vibrations could power wireless devices implanted on the surface of 

the vehicle or airplane [59, 60]. 

In principle, by engineering the fiber structure and optimizing the fabrication conditions, the 

piezoelectric functionalities mentioned above could be achieved using a single fiber. Such fibers 

could be naturally integrated into cotton yarns or textiles, using cost-effective textile production 

processes. However, there are currently only a few reports regarding to such piezoelectric fibers, 

due to technical complexity of integration of various sub-components with different functionalities 

into a textile fiber [61]. In recent reports, most of the existing piezoelectric fibers are fabricated 

either by growing piezoelectric nanostructures along a conductive filament or by extruding 
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piezoelectric polymers together with a conductive polymer by melt-spinning [62-65]. The 

performance and applications of the existing piezoelectric fibers are limited by their simple fiber 

geometries, large diameter, poor mechanical reliability and relatively low piezoelectric response.  

Multimaterial preform-to-fiber drawing methods [66], on the other hand, present unique 

opportunities for drawing flexible piezoelectric fibers of extended lengths. Most importantly, these 

methods allow for the fabrication of piezoelectric fibers with complex architectures that integrate 

a variety of sub-components with different functionalities [67, 68].  In this thesis, we report micro- 

and nanostructured piezoelectric fibers fabricated via heating and drawings of multimaterial 

preforms. The fibers feature a hollow polycarbonate (PC) core surrounded by a spiral multilayer 

cladding consisting of alternating piezoelectric PVDF-based nanocomposite layers and conductive 

layers (carbon-filled low-density polyethylene).  

To achieve a successful fiber drawing process, we need to follow several general guidelines. 

The key challenge of fiber drawing is to maintain the geometry of the fiber while reducing its cross-

sectional dimensions. Throughout our many experiments, the multimaterial preforms tended to 

break-up into filaments during the drawing process. This is because the drawing process decreases 

the feature size and viscosity, thus naturally causing flow instabilities and finally, facilitating fiber 

breakage. To achieve a stable drawing, the materials used must be carefully selected, ensuring that 

they are thermally and mechanically compatible. The materials used for this process must meet the 

following requirements [66, 67]: 

First, at least one of the fiber materials should be amorphous, so that it can withstand the 

mechanical stress in the fiber drawing process.  

In addition, all the materials should flow into a viscous state when heated above the softening 

temperature.  

Also, all the materials used should exhibit good adhesion/wetting in their viscous and solid 

states without cracking, even when subjected to the rapid heating/cooling rate.  

Finally, to obtain fibers with high piezoelectric properties, at least one of the fiber materials 

should have a high piezoelectric coefficient. 

 The rest of this thesis is organized as follows: 
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Chapter 2 begins with a literature review of wearable piezoelectric generators. The wearable 

power generators made of piezoelectric polymers, ceramics or composites are reviewed with their 

advantages and limitations discussed.  

Chapter 3 provides the methodology in the R&D of piezoelectric micro-/nanostructured fibers, 

which includes the preparation of the piezoelectric nanocomposites via electrospinning, assembly 

of the planar piezoelectric generators, fabrication of the piezoelectric fibers via preform heating 

and drawing, fabrication of piezoelectric textiles/fabrics via loom-weaving, as well as 

characterization of the corresponding piezoelectric fibers and textiles. 

Chapter 4 is based on my paper “Piezoelectric Micro- and Nanostructured Fibers Fabricated 

from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and 

Potential Applications” published in ACS Nano (2017). This paper conducts a comparative study 

of the piezoelectric micro- and nanostructured fibers using the material combinations including 

BTO-PVDF, PZT-PVDF and CNT-PVDF. 

Chapter 5 is based on my paper “Piezoelectric Microstructured Fibers via Drawing of 

Multimaterial Preforms” published in Scientific Reports (2017). This paper demonstrates the 

fabrication and characterization of the piezoelectric generators using BTO-polyvinylidene and 

carbon-loaded-polyethylene in stripe forms as well as in fiber forms.  

To conclude, I present a general discussion of results achieved so far and elaborate future 

research perspectives. 
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CHAPTER 2 LITERATURE REVIEW 

The electronic products of the future generation place a great demand for the R&D of novel energy 

harvesting devices that are wearable [40]. To date, significant effort has been put into the R&D of 

piezoelectric fiber-based generators as they are soft, flexible and comfortable to wearers. In 

principle, such piezoelectric fibers can be such designed that they feature both a very high energy 

conversion efficiency, close to that of piezoelectric ceramics, and a very high mechanical flexibility, 

close to that of piezoelectric polymers. Hence, it is of great importance to study the fiber-based 

power generators that are able to convert a significant part of the kinetic energy from ambient 

environment or human movements.  

           In this Chapter, we begin with a brief introduction of the working principles of the 

piezoelectric generators. Then, we review the wearable piezoelectric generators according to the 

different types of the piezoelectric materials. Finally, the motivation and objectives of my doctoral 

project will be presented.  

2.1 The working principles of the piezoelectric generators 

When the mechanical force is applied to the piezoelectric generators, electrical pulses of 

voltage (current) could be generated. To explain this phenomenon, we need to study the working 

principles and the effective electric model of the piezoelectric generators. As shown in Fig. 2.1, the 

piezoelectric generator could be considered as a capacitor that consists of electric diploes 

dispersing in the matrix of the dielectric material [37, 69]. After electrical poling, the electric 

dipoles in the piezoelectric material could be aligned in the same direction. Even after the electric 

field is removed, the permanent polarization remains in the piezoelectric material. The electric field 

of the dipoles will induce the surface charge −Q at the top electrode and the +Q at the bottom 

electrode. When the mechanical stress is applied to the piezoelectric generator, the polarization 

density of the piezoelectric material will change, which will induce the change of the surface charge 

(∓Q) at the top and bottom electrode. In response to that, the electrons in the external circuit will 

force to move from one electrode to the other electrode, generating a piezoelectric potential.  

The equivalent electric circuit in the measurement could be illustrated as Fig. 2.1b. In the 

case of a planar piezoelectric film of length 𝑙, width 𝑤, thickness 𝑑𝑝, and dielectric constant ϵ𝑝, the 
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generator capacitance is 𝐶 =
ϵ𝑝𝜖0𝑙𝑤

𝑑𝑝
. And  𝑅𝐿 is the resistance of the load in the electric circuit. The 

resistance of the electrode resistance that covers the piezoelectric film is 𝑅𝑒 = 𝜌
𝑙

𝑤𝑑𝑒
, where 𝑑𝑒 is 

the electrode thickness and 𝜌  is the bulk resistivity of the electrode material. Using standard 

analysis of this RC electric circuits, we can write the equations that govern time dynamics of the 

capacitor discharges: 

                                                   
𝑞

𝐶
+ 𝑞̇𝑅𝐿 = 0                                                                  (1) 

                                                   𝑞|𝑡=0 = ∆Q                                                                    (2) 

We consider the resistance of the voltmeter 𝑅𝑉 = ∞ and the resistance of the currentmeter 

𝑅𝑐 = 0. Thus, for the open-circuit voltage measurement, we consider 𝑅𝐿~𝑅𝑉; for the short circuit 

current measurement, we consider 𝑅𝐿~𝑅𝑒. Finally, we can find simple solutions that satisfy both 

(1) and initial conditions (2) in the following expressions for the open circuit voltage 𝑉𝑜𝑐(𝑡) and 

the short circuit current 𝐼𝑠𝑐(𝑡) : 

                                 Open-circuit voltage:           𝑉𝑜𝑐(𝑡) =
∆𝑄

𝐶
𝑒

−
𝑡

𝐶𝑅𝑣 

                                                                             𝑉𝑚𝑎𝑥
𝑜𝑐 = 𝑉𝑜𝑐(0) =

∆𝑄

𝐶
                               (3)                          

                                Short-circuit current:           𝐼𝑠𝑐(𝑡) =
∆𝑄

𝐶𝑅𝑒
𝑒

−
𝑡

𝐶𝑅𝑒 

                                                                                      𝐼𝑚𝑎𝑥
𝑠𝑐 = 𝐼𝑠𝑐(0) =

∆𝑄

𝐶𝑅𝑒
                                (4) 

           According to the literature [70], fixed charges ∆𝑄 induced on the surface of a piezoelectric 

film of length 𝑙 can be calculated as: 

                                                                           ∆𝑄 = 𝑑𝑌𝑝𝜀𝑤 ∙ 𝑙                                          (5)    

          where 𝑑 is the piezoelectric coefficient of a piezoelectric film, 𝑌𝑝 is the Young’s modulus of 

the piezoelectric material, 𝑤 is the width of the piezoelectric mat, and 𝜀 is the applied strain. Thus, 

we can then conclude that the peak open circuit voltage and open circuit currents is proportional to 

the applied strain and piezoelectric film thickness: 

|𝑉𝑚𝑎𝑥
𝑜𝑐 | = 𝜀

𝑑𝑌𝑝𝑤𝑙

𝐶
= 𝜀𝑑𝑝

𝑑𝑌𝑝

ϵ𝑝𝜖0
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                                                             |𝐼𝑚𝑎𝑥
𝑠𝑐 | = 𝜀

𝑤∙𝑑𝑝𝑑𝑒

𝑙

𝑑𝑌𝑝

𝜌ϵ𝑝𝜖0
                                                         (6) 

 

Figure 2.1: Design and working principles of the piezoelectric generators. (a), Schematic 

illustration of the application of the stress onto a poled piezoelectric generator (e.g. the BaTiO3 

generator). In the initial state (after electrical poling), the electric dipoles maintain the permanent 

polarization. When mechanical stress is applied onto the piezoelectric generator, the polarization 

density of the piezoelectric film is changed and the electrons are forced to flow from one electrode 

to the other, thus generating a piezoelectric potential. (b), The equivalent electric circuit in the 

measurement. The piezoelectric generator is considered as a capacitor, while  𝑅𝐿 is the resistance 

of the load in the electric circuit. 

2.2 The wearable piezoelectric generators 

One of the most important concerns for the R&D of wearable piezoelectric generators is the 

choice of the piezoelectric materials utilized and the possibility to preserve their piezoelectric 

performance [61], while maintaining their durability, safety, and stability when integrated into 

flexible systems. In this regard, the following review of wearable piezoelectric generators including 

flexible planar and fiber devices, will be given based on the different types of piezoelectric 

materials.  

2.2.1 Wearable piezoelectric generators based on piezoelectric polymers 

The piezoelectric polymers are attractive due to their ease of production, high chemical 

resistance, superior flexibility, and excellent mechanical robustness [37]. One of the most widely 

used piezoelectric polymers is poly(vinylidene fluoride) [37] [71], which is also known as PVDF. 

Depending on the different stereochemical structures, the PVDF polymer has the most common 

three forms [37], namely 𝛼 (TGTG'), 𝛽 (TTTT), 𝛾 (TTTGTTTG') phase respectivley (Fig. 2.2). 



8 

 

Commerical PVDF generally has the 𝛼 phase, which may be obtained by the melt-extrusion or the 

film-casting [37]. In the 𝛼 phase, the electric diploes are antiparallel along the chain axes, thus 

cancelling each other. Therefore, 𝛼 phase is a non-polar phase. The 𝛽 phase is most highly polar 

phase, whose unit cell of the lattice consists two chains in the TTTT conformation. And the electric 

dipoles in the 𝛽 phase are normal to the chain axes. The 𝛽 phase PVDF could be obtained by 

stretching the 𝛼 phase PVDF togther with electrical poling. In the γ phase, the polymer chains are 

in the TTTGTTTG' conformation, and thus, γ phase has lower polarity when compared with 𝛽 

phase. Consequently, the 𝛽 phase PVDF is the most desirable phase for generating piezoelectricity 

[69]. To date, the considerable amount of work has been carried out, aimed at the production of 

high 𝛽-phase PVDF and their integration into wearable structures for energy harvesting. The first 

report of wearable PVDF piezoelectric generators was proposed by Kymissis et al.[72], in which 

8 layers of 28 𝜇m thick PVDF films were stacked in a sneaker. In the fabrication process, the polar 

𝛽-phase was achieved via stretching the PVDF films, followed by an electrical poling. One of the 

major shortcomings of such generators is the low output power, due to their small active area and 

low fraction of polar 𝛽 phase. To address this issue, PVDF nanofibers were produced and then 

integrated into various wearable generators. PVDF nanofibers are generally more attractive 

towards bulk PVDF as they have higher energy conversion efficiencies, due to their large surface 

areas. Recently, a wide range of techniques have been developed to fabricate high performance 

PVDF nanofibers.  

 

Figure 2.2: Schematic description of the 𝛼 (TGTG'),  𝛽 (TTTT) and 𝛾 (TTTGTTTG') phase of 

PVDF. (a), 𝛼 phase. (b), 𝛽 phase. Reprinted from Ref [67]. 
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Electrospinning [55] is an efficient technique for the production of ultrafine, high 𝛽 phase 

PVDF nanofibers. In a typical electrospinning process, a polymer solution is first pumped into a 

syringe needle that is connected to a high voltage (typically 10-30 kV) power supply. The polymer 

solution charged by high voltage is then ejected from the needle, and formed a liquid jet. As the 

solvent evaporates, polymer micro- or nanofibers are produced and collected by a fiber collector. 

The distance between the needle and the collector is typically in the range of 5-15 cm [73, 74]. And 

the ordered 𝛽 phase is induced by the combination of mechanical stretching and electrical poling 

during electrospinning process [73]. To date, various wearable piezoelectric generators have been 

fabricated based on electrospun PVDF nanofibers. For example, Zeng et al.[75] demonstrated an 

all-fiber piezoelectric generator that was fabricated by sandwiching a fabric of electrospun PVDF-

NaNbO3 nanofibers between two fabric electrodes. This generator with an area of 2.5×2.5 cm2 was 

able to produce an open-circuit voltage up to 3.4 V during a cyclic compression test (frequency: 1 

Hz) with a maximum pressure of 0.2 MPa. Moreover, this generator retained its excellent 

performance even after 1,000,000 compression–recovery cycles. 

It is worth noting that the alignment of nanofibers considerably influences their piezoelectric 

performance [55, 76]. An electrospun mat with all the nanofibers oriented neatly along their own 

dipole direction shows significantly improved energy generation efficiency. Also note that a good 

alignment of electrospun nanofibers can be achieved by the near-field electrospinning process 

(NFES) [77]. In a NFES, the distance between the collector and the needle is set in the range of 

millimeter scale, and the applied voltage is thus reduced to ~1 kV. Using this technique, various 

piezoelectric generators based on aligned PVDF nanofibers have been proposed [78-82]. For 

instance, Fuh et al.[83] reported the fabrication of a wearable piezoelectric generator consisting of 

20, 000 rows of well-aligned PVDF nanofibers (Fig. 2.3a). This piezoelectric generator (3.5×1 

cm2) is able to create an open-circuit of 0.8 V with finger folding-releasing actions. Recently, the 

same group reported a 3-dimensional (3D) piezoelectric device by vertically stacking the 

electrospun PVDF nanoarrays [84]. Owing to the novel structure, this device could generate open-

circuit voltages and short-circuit currents up to ~1.2 V and 60 nA respectively. Note that in the 

fabrication of the piezoelectric generators mentioned above, the electrospun nanofibers are usually 

physically deposited or assembled on the top of flexible substrates. Thus, these generators typically 

suffer from poor stability due to the weak binding force between piezoelectric nanofibers and 
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substrates. Besides, some generators need to attach metal electrodes which limits their applications 

and lifetime. 

Other spinning techniques such as wet-spinning [85] or melting-spinning [86] were also 

investigated for the fabrication of piezoelectric polymer fibers. As an example, Lund et al. fabricate 

melt-spun PVDF fibers (Fig. 2.3c) that adopt carbon-black filled polyethylene (CB-PE) as the 

electrodes [63, 87-89]. Typically, the polymer fibers fabricated by spinning techniques feature a 

core-sheath structure, in which a conductive filament serves as the core, and a piezoelectric 

polymer layer constitutes the sheath [90]. Besides, the as-spun fibers generally require an additional 

conductive coating as an external electrode. Such fibers may have reliability issues due to surface 

abrasion and repeated mechanical deformations.  

Apart from traditional spinning techniques, fiber drawing [67, 91] is another efficient 

technique that can be used to produce piezoelectric polymer fibers. In this method, kilometer-long 

functional fibers are thermally drawn from a geometrically complex multimaterial fiber preform 

with a length of tens of centimeters [92]. In the fiber drawing process, firstly a fiber preform is 

assembled using a variety of materials such as polymers, metals, glass or other functional 

components and sub-components. Then, the preform is placed in a vertical furnace tower and 

heated above the transition temperature. Upon heating, extended lengths of fiber with controlled 

diameter are thermally drawn from the softened preforms. The resultant fiber generally maintains 

the perform structure but with a much smaller cross-section dimension, which is not achievable 

through the use of the traditional spinning technique. Kanik et al. [93] fabricated piezoelectric 

PVDF micro- and nanoribbons using an iterative size reduction technique based on thermal fiber 

drawing (Fig. 2.3b). In order to obtain spontaneously polar  phase PVDF, the fiber needs to 

redraw several times. At this point, the fabrication process would be tedious and time-consuming.  

In addition to PVDF, other piezoelectric polymers have been investigated for the application 

in wearable generators. For example, P(VDF-trifluoroethylene) [P(VDF-TrFE)] [94-96] is known 

for its higher piezoelectric constant than that of PVDF due to the highly ordered crystalline 

structure by aligning CF2 dipoles in preferable directions. Various piezoelectric devices based on 

P(VDF-TrFE) have been fabricated using a range of techniques including electrospinning, melt-

spinning, and fiber drawing [66, 97-99]. Egusa et al. [66]  demonstrated a polycarbonate fiber 

containing P(VDF-TrFE) as the piezoelectric element and indium filaments as the electrodes (Fig. 
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2.3d). To fabricate this fiber, a multilayered shell comprising conductive polycarbonate and 

P(VDF-TrFE) was assembled with indium filaments within a poly(carbonate) cladding to produce 

a fiber preform that was subsequently drawn by a polymer-fiber drawing tower. The as-drawn fiber 

was reported to generate an audible sound between 7 kHz and 15 kHz with a driving voltage of 5 

V. However, P(VDF-TrFE) copolymers are much more expensive than PVDF.  

Table 2.1 summarizes the different types of wearable piezoelectric generators based on 

piezoelectric polymers. Generally speaking, the piezoelectric polymer generators usually have a 

long-time lifespan due to the mechanical robustness of the piezoelectric polymer. However, such 

generators typically suffer from the following shortcomings: First of all, most of the existing 

piezoelectric generators need to attach metal electrodes which limits their applications and lifetime. 

The metal electrodes under repeated mechanical deformations generally result in fatigue and 

fracture. Second, in the most of the existing piezoelectric generators, the piezoelectric fibers/mats 

are usually physically embedded or deposited onto flexible substrates. These generators suffer from 

poor stability due to the weak binding force between piezoelectric polymers and substrates. Finally, 

the output power of some polymer generators is relatively low and is insufficient for practical 

applications. 

 

Figure 2.3: Summary of the piezoelectric polymer fibers. (a), Schematic of the direct-write, and 

electrical poling PVDF fibers via NFES. Reprinted from Ref [83]. (b), Schematic of the fabrication 
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of the piezoelectric PVDF micro- and nanoribbons using iterative size reduction technique. 

Reprinted from Ref [93]. (c), Cross-section of the PVDF fiber that uses carbon-black 

(CB)/polypropylene (PP) as the core. Reprinted from Ref [63]. (d), Schematic of the fabrication of 

the piezoelectric microstructured PVDF fiber using fiber drawing technique. Reprinted from Ref 

[66]. 

Table 2.1: The comparison between the different types of wearable piezoelectric generators based 

on piezoelectric polymers 

Type of 

piezoelectric 

materials 

Photo (diagram) of 

the generators 

Applied force type 

and area 

Generated 

electrical 

signals 

Comments Ref 

PVDF 

 

Applied cyclic 

pressure of 0.2 MPa; 

2.5×2.5×0.2 cm 

3.2 V; 

4.2 μA 

Poor 

stability 
[75] 

 

Stretching-releasing 

deformations at a 

strain of 0.5%; 3.5 cm 

× 1 cm×2 μm 

4 V; 

390 nA 

Use metallic 

electrodes 
[83] 

 

Bending-releasing 

deformations at a 

strain of 0.05%; Fiber 

length of 1 mm, fiber 

diameter of ~200 μm 

25 mV; 

7.5 nA 

Poor 

stability 
[81] 

 

Wing vibration at 0.5 

Hz; Fiber length of up 

to 20 mm  

0.2 V 

No reports 

about the 

output 

currents 

[100

] 
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Finger tapping-

releasing actions; 50 

μm thick 

~2.5 μA; 

~5V 

The 

fabrication 

process is 

complex 

[93] 

 

PVDF-TrFE 

 

Applied cyclic load of 

1 mN; Fiber length of 

~80 μm 

~0.3 mV 

No reports 

about the 

output 

currents 

[97] 

 

Applied cyclic 

pressure of 160 kPa; 

Fiber length of 10 

mm 

~2.6 V 

~15 nA 

The fiber 

has a simple 

core-sheath 

structure 

[98] 

2.2.2 Wearable piezoelectric generators based on piezoelectric ceramics 

The wearable generators based on piezoelectric ceramics have drawn a lot of interest due to 

their high energy conversion efficiency and their capacity to harvest energy from small movements 

[76]. Generally, the piezoelectric ceramics can be divided into two categories [76]: (1) perovskite 

structured piezoelectric materials, such as barium titanate (BaTiO3) [38, 101], lead zirconate 

titanate (PZT) [102, 103], potassium niobate [104, 105], and sodium niobate [104, 106]; (2) 

semiconductor piezoelectric materials, including Zinc oxide (ZnO) [107, 108], zinc sulfide (ZnS) 

[109], gallium nitride (GaN) [110, 111] and indium nitride (InN) [112]. However, bulk 

piezoelectric ceramics are rigid, brittle, and thus unsuitable for wearable applications. In order to 

circumvent this barrier, flexible devices are fabricated by directly using ceramic nanofibers 

(BaTiO3, PZT) or nanowires (ZnO) grown on flexible substrates (polymers [113], papers [114], 

fibers [115], or textiles [116]), or by impregnating piezoelectric micro-/nanoparticles into soft 

polymers [76, 114].  

Wearable piezoelectric generators based on perovskite ceramics 
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In what follows, I will give a brief review of piezoelectric generators based on perovskite 

ceramics including BaTiO3 and PZT. Among the advantages of these piezoelectric generators are 

their low cost, ease of fabrication and high piezoelectric performance.  

         (1) Barium titanate (BaTiO3) 

BaTiO3 is a perovskite crystal, whose structure is schematized in Fig. 2.4a. Each crystal is 

composed of a small, tetravalent metal ion placed inside a lattice of larger divalent metal ions and 

O-2. Above a critical temperature, which is known as the “Curie temperature”, each perovskite 

crystal in the heated ceramic element exhibits a simple cubic symmetry with no dipole moment, as 

demonstrated in Fig. 2.4a [117]. At temperatures lower than the Curie temperature, each crystal 

has a tetragonal symmetry and exhibits a dipole moment. If a BaTiO3 tetragonal crystal is placed 

in a strong DC electric field at a temperature below the Curie temperature, the dipoles will be 

aligned in the same direction of the electric field. Even after the electric field is removed, the 

oriented domains maintain the permanent polarization. When the mechanical compression or 

tension is applied on the BaTiO3, the polarization density in the crystal would change, thus 

generating a piezoelectric potential. As shown in Fig. 2.4b, compression along the direction of 

polarization, or tension perpendicular to the direction of polarization, could generate voltage of the 

same polarity as that of the poling voltage. Tension along the direction of polarization, or 

compression perpendicular to that direction, would generate a voltage with its polarity opposite to 

that of the poling voltage (Fig. 2.4b) [117]. 

Bulk BaTiO3 is brittle and thus can’t be directly used as mechanical energy harvesting 

materials. Instead, piezoelectric generators based on BaTiO3 are usually fabricated by dispersing 

BaTiO3 nanoparticles into flexible polymers [70, 114, 118, 119]. For instance, Park et al. [120] 

demonstrated a planar generator based on BaTiO3 nanoparticles (NPs) and graphitic carbons (Fig. 

2.5a). In this work, the BaTiO3 nanoparticles and carbon were dispersed in polydimethylsiloxane 

(PDMS) solution. After drying, the obtained polymer film is sandwiched between two electrode 

films into a wearable piezoelectric generator. This wearable device could generate the output 

voltage of ~1.5 V and current of ~150 nA under a pressure of ∼ 57 kPa.  Here graphitic carbons 

plays multiple roles, such as improving the dispersion of BaTiO3 NPs in the host polymer, as well 

as reinforcing the stress applied to nanoparticles.  
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Figure 2.4: (a), Change of unit cell of a BaTiO3 crystal during spontaneous polarization. (b), 

Reaction of a poled piezoelectric element to applied stimuli. Reprinted from Ref [117]. 

To further improve the piezoelectric response, wearable BaTiO3 generators have been 

fabricated by combining BaTiO3 nanostructures with piezoelectric polymers. For instance, Zhao et 

al. [70] reported a flexible generator by dispersing BaTiO3 NPs into the PVDF matrix using the 

solvent evaporation method. In this device, PVDF not only functions as a binder for BaTiO3 NPs, 

but also plays a part in generating piezoelectric potential. The highest open-circuit voltage and 

short-circuit current achieved were 150 V and 1500 nA respectively, while a stress of 10 MPa was 

applied to the piezoelectric generator. Recently, Chen et al. [121] demonstrated a flexible device 

by vertically aligning BaTiO3/PVDF micropillar arrays onto parallel multiwall-CNT (MWCNT) 

electrodes (Fig. 2.5 b,c). This device could generate an enhanced voltage of 13.2 V and a current 

density of 0.33 μA/cm2, which is more than 7-times larger than that of the pristine PVDF bulk 

films. 
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Figure 2.5: Wearable BaTiO3 generators. (a), Schematics of the fabrication process of the BaTiO3- 

graphitic carbons nanocomposite generator. Reprinted from Ref [120]. (b, c), SEM images of the 

cross-section of the piezoelectric generator based on BaTiO3/PVDF micropillar arrays. c), A 

magnified top view of the SEM image of MWCNT layer. Reprinted from Ref [121]. 

          (2) Lead zirconate titanate (PZT) 

Similar to barium titanate, lead zirconate titanate (Pb[ZrxTi1-x]O3, PZT) also features a 

perovskite crystal structure, and can be considered as one of the most promising piezoelectric 

materials due to its higher piezoelectric coefficient compared to that of other piezoelectric materials 

[122, 123]. Actually, the piezoelectric coefficient (𝑑33 ) of bulk poled PZT can be as large 

as 289 pm/V, which is ten times higher than that of PVDF [124, 125]. 

 Wearable PZT generators can be fabricated using a scalable transfer printing method. In this 

approach (Fig. 2.6), high-quality PZT thin films are first grown onto rigid crystal wafers, and then 

printed onto flexible films of plastic, graphene, or rubber [76].  In this method, a pre-fabricated 

stamp with the desired features is used to transfer the PZT structures from the rigid wafer to the 

soft substrate. A conformal contact between the stamp and the substrate enables high fidelity when 

transferring the material to the surface. The stamp can be made from PDMS, and epoxy, to name 

a few. Using this method, Kwon et al. [126] fabricated a flexible generator based on PZT 

nanoribbons. In their work, a good quality crystalline PZT was firstly deposited on a Pt/Ti/SiO2/Si 

wafer, which was subsequently etched, and then PZT nanoribbons were transferred onto a flexible 
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plastic substrate. To improve the electrical performance, a pair of graphene electrodes were used 

to collect electrical signals. The fabricated piezoelectric generators generated a high output voltage 

of up to  ~2V, a current density of ~2.2 μA/cm2, and a power density of ~88 mW/cm3 at an 

applying force of ~9 N. This method is effective for large-scale assembly of piezoelectric 

crystalline ceramics onto flexible substrates. The merits are obvious; however, this technique also 

has drawbacks. For example, the crystallization of PZT typically requires a high temperature 

(higher than 650ºC) to maximize power generation efficiency, which makes the fabrication process 

expensive and complex.  

Another approach begins with electrospinning PZT into nanofibers, following by assembling 

or packing the nanofibers with soft polymers. This method involves the steps including preparing 

precursor solutions, electrospinning and subsequently calcining at suitable temperatures to form 

highly crystalline PZT nanofibers, and finally assembling PZT nanofibers with soft polymers [127-

129]. Chen et al.  [127, 128] demonstrated the wearable generators following this route. In their 

work, PZT nanofibers with a diameter of ~100 nm and a length of ~70-100 μm were prepared by 

electrospinning the sol-gel of PZT and polyvinylpyrrolidone (PVP). Then, the nanofibers were 

annealed at 650 ℃  to obtain the perovskite phase. Subsequently, a soft polymer 

(polydimethylsiloxane, PDMS) was spin-coated on top of the PZT nanofibers. This generator could 

generate an output voltage of 1.63 V and power of 0.03 µW, under periodic finger press-release 

actions. Recently, vertically aligned PZT nanowires were prepared by electrospinning [41, 113, 

129], and the performance of the as-fabricated piezoelectric generators was greatly improved. 

Generally, the fabrication of aligned PZT nanowires was performed on multipairs of parallel 

electrodes using electrospinning (Fig. 2.6d), in which Coulomb force plays a very important role 

in obtaining parallel nanowires between parallel electrodes [113, 129]. Using this method, Gu et 

al. [113] demonstrated a wearable generator based on ultra-long PZT nanowire arrays. Such 

generators with an area of 2.25 cm2 can produce a maximum peak voltage of 198 V for an external 

load of 100 MΩ and a peak output current of 17.8 μA for an external load of 100 Ω. Moreover, this 

generator can directly lighten a commercial LED with a working voltage of 1.9 V even without the 

use of storage circuits. 
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Figure 2.6: Wearable PZT generators. (a, b, c), Transfer printing of PZT nanoribbons onto flexible 

substrates. (a), A high-quality crystalline PZT was firstly deposited on an MgO host substrate, 

which was subsequently etched, and then PZT nanoribbons were transferred onto flexible plastic 

substrate using a PDMS stamp. (b), Optical micrograph of PZT ribbons on MgO substrate before 

transfer, and PZT ribbons on PDMS after transfer printing. (c), Photograph of a flexible PZT 

generator. Reprinted from Ref [76, 130].  (d), Schematic diagram of the process for fabricating a 

PZT textile using electrospinning. Reprinted from Ref [129]. 

Wearable piezoelectric generators based on Zinc oxide (ZnO)  

Zinc oxide (ZnO) is one of the most attractive semiconductor piezoelectric materials, due to 

its promising properties including low-cost, bio-safety, and biocompatibility. The growth of ZnO 

nanostructures is quite simple, and abundant configurations of nanostructures based on ZnO are 

possible, such as nanowires, nanobelts, nanosprings, and nanobows, to name a few [131, 132].  In 

the following section, I will give a brief overview of wearable devices based on ZnO nanomaterials. 

The working principle of ZnO is shown in Fig. 2.7. Generally, piezoelectric ZnO has 

hexagonal wurtzite (WZ) structure [133]. Initially, the center of gravity of the negative charges is 

placed at the center of the crystal. When mechanical pressure or tension is applied on the crystal, 

as shown in Fig. 2.7b, the tetrahedron will experience a distortion, and thus,  its center would be 

no longer the same as that of gravity of the negative charges. In this way, the electric dipoles could 
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be induced. In response to that, the corresponding positive and negative charges would be generated 

on two opposite faces of the crystal.  

 

Figure 2.7: (a), The wurtzite structure model of ZnO. (b), Schematic diagrams showing the 

piezoelectric effect in a tetrahedrally coordinated cation–anion unit. Reprinted from Ref [133]. 

The first ZnO nanogenerator was demonstrated by deforming an individual ZnO nanowire 

(NW) with an atomic force microscopy (AFM) tip [134]. In this publication, the vertically aligned 

ZnO NWs were grown using a vapor-liquid-solid (VLS) process. After that, the fiber generators 

were demonstrated by growing ZnO on the surface of the textile fiber using a hydrothermal method. 

For instance, Yin et al. [135] presented a fiber-type generator fabricated by growing ZnO nanorods 

on a copper wire. This generator can generate a current of 50 nA∙cm-1 at low frequencies (such as 

<10 Hz) for more than 5 seconds. However, this fiber generator suffers from poor mechanical 

reliability due to its stiff metallic core. To address this issue, carbon filaments later have been 

adopted as the fiber cores because of their good mechanical flexibility. Lee et al. [51]  reported a 

fiber-type generator comprising a carbon filament core and ZnO nanowires (NWs) sheath (Fig. 

2.8). In this generator, the carbon fiber played the role of an inner electrode, while ZnO NWs served 

as the piezoelectric-potential generator. A thin layer of metal was deposited on the surface of ZnO 

NWs, functioning as the outer electrode. This generator (~2 cm) produced an open-circuit voltage 

of 0.1 V during repeated folding and releasing events of a human elbow. To make further 

improvements to the wearable applications, a 2D woven nanogenerator was demonstrated using 

two microfibers [116]. In this generator, one microfiber was covered with ZnO NWs that could 
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generate electricity from bending movements, while the other microfiber was covered with ZnO 

NWs together with Au or Pd that could be used as the electrode. However, for all the fiber 

generators mentioned above, frequent bending/releasing motions may damage the ZnO 

nanostructures, or even cause cracks of the coating, which would greatly decrease the reliability of 

these fiber generators [136]. Hence, significant improvements in the mechanical robustness of the 

fiber structure are necessary in order to achieve a practical, flexible, and reliable power generator 

for wearable applications.  

 

Figure 2.8: Wearable ZnO generator. (a), 3D Schematic diagram depicting the structure of a hybrid-

fiber nanogenerator. (b), Image of the experimental setup. (c), Open-circuit output voltage and 

short-circuit output current density of a fiber device under a strain of ∼ 0.1%. Reprinted from Ref 

[51]. 

Table 2.2 summarizes the wearable piezoelectric generators based on the different types of 

the piezoelectric ceramics. Generally speaking, the piezoelectric ceramic generators can have high 

output power. However, significant progress must be made to achieve a practical, robust and 

flexible generator, as well as the mass production of self-powered systems. Moreover, novel 

fabrication techniques require to be developed for integrating the piezoelectric nanostructures into 

flexible textile fibers. 
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Table 2.2: The comparison between the different types of wearable piezoelectric generators based 

on piezoelectric ceramics 

Type of 

piezoelectric 

materials 

Photo (diagram) of 

the generators 

Applied force 

type and area 

Generated 

electrical 

signals 

Comments 
Ref

. 

BaTiO3 
 

Finger bending-

releasing actions; 

~5 cm× 1 cm 

~ 1 V; 

~ 10 nA 

No reports 

about the 

durability 

tests 

[101

] 

 

Applied cyclic 

pressure of ~0.23 

MPa; ~2.2 cm2 

~75 V; 

~ 15 µA 

Use metallic 

electrodes 

[118

] 

 

PZT 

 

Applied cyclic 

pressure of 0.53 

MPa; 2.25 cm2 

198 V; 

17.8 μA 

The 

fabrication 

process is 

complex 

[113

] 

 

Applied cyclic force 

of 0.53 MPa; 1 cm2 

2 V; 

8.82 μA 

No reports 

about the 

durability 

tests 

[126

] 

ZnO 

 

Deform an 

individual ZnO 

nanowire (NW) with 

an atomic force 

microscopy (AFM) 

tip; Fiber length of 

~0.5 μm 

~9 mV 

No reports 

about the 

output 

currents 

[134

] 
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Repeated folding 

and releasing 

events of a human 

elbow; 2 cm2 

~0.1 V 

~10 μA 

The fiber is 

fragile 
[51] 

2.3 The motivation and objectives 

2.3.1 The motivation 

         As discussed in the section 2.2, the piezoelectric polymers are soft, flexible and can be 

processed at low temperatures. Nevertheless they suffer from poor stability due to the weak binding 

force between the polymer and the electrodes, as well as the low figure of merit. Alternatively, the 

piezoelectric ceramics have relatively higher piezoelectric coefficients than that of piezoelectric 

polymers. However, they are rigid, brittle and require high processing temperature, some being 

toxic and scarce. On the other hand, piezoelectric composite fibers are light, deformable in three-

dimensional manner and processible at moderate temperatures. Most of all, in principle, these 

piezoelectric fibers can be such designed that they feature both a very high energy conversion 

efficiency, close to that of piezoelectric ceramics, and a very high mechanical flexibility, close to 

that of piezoelectric polymers. However, up-to date, very few studies have been reported about 

such piezoelectric fibers due to the technical difficulties of integrating the piezoelectric micro- and 

nanostructures into a textile fiber. 

           The fiber drawing is one of the possible approaches to fabricate the micro- and 

nanostructured fibers. Using this technique, kilometer-long piezoelectric fibers could be drawn 

from a multimaterial preform with a length of several tens of centimeters. Our proposed 

piezoelectric fibers feature a soft hollow polymer core surrounded by a spiral multilayer cladding 

consisting of alternating layers of piezoelectric nanocomposites and conductive polymer. The 

multilayer structure of the piezoelectric fiber will greatly increase the active area for the energy 

generation, thus resulting into higher energy generation efficiency. Other advantages of the 

proposed fibers, such as the low cost, large-active-area, mechanical reliability, and the possibility 

of cost-effective mass production, will open an important commercialization opportunity. 

Particularly, the unique fiber-form-factor allows piezoelectric fibers to be woven into low-cost 
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textiles using conventional weaving looms or knitting machines. By bending or stretching the 

piezoelectric textiles, piezoelectricity can be generated. The potential applications of the 

piezoelectric fibers and textiles could be imaged in the field of wearable, military and automotive 

industries.  

2.3.2 The objectives 

        In my doctoral research, I will concentrate on the fabrication of piezoelectric planar generators 

using electrospinning, as well as the fabrication of multimaterial piezoelectric fibers using fiber 

drawing. The piezoelectric planar generators will be fabricated by sandwiching the piezoelectric 

electrospun mat between two conductive polymer electrodes. Using fiber drawing, tens of metres 

of the piezoelectric fibers featuring alternating piezoelectric/conductive multilayers will be 

thermally drawn from a macroscopic preform. Moreover, novel soft, deformable piezoelectric 

textiles will be demonstrated by integrating the piezoelectric fibers into the cotton textiles using a 

classical loom. Finally, I will study the potential applications of the piezoelectric fibers and textiles 

in the wearable, military, automotive and aerospace industries. 

Specific objectives: 

1. Design and fabricate piezoelectric planar generators with high piezoelectric 

performance using electrospinning 

      We will use electrospinning to fabricate the piezoelectric mats, and then assemble the 

piezoelectric mats into the planar piezoelectric generators. We will characterize the structure and 

properties of the piezoelectric electrospun mats by the analytical methods, including XRD, SEM, 

and FT-IR, etc. Also, the electrical properties of the piezoelectric planar generators will be 

evaluated using our Ivium electrochemical station. Moreover, we will study the effect of nanofiller 

concentration and electrical poling on the piezoelectric response of the planar generators. 

Additionally, the charge separation mechanism and effective electric model of the piezoelectric 

planar generators will be proposed and discussed.  

2. Design and fabricate piezoelectric fiber generators with high piezoelectric 

performance using fiber drawing technique 

       We will use fiber drawing technique to fabricate the piezoelectric fibers, and then assemble 

the piezoelectric fibers into the fiber generators. Similar to that of the piezoelectric planar 
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generators, the electrical properties of the piezoelectric fibers will be studied using the Ivium 

electrochemical station. The cross-sectional geometry of the drawn fiber will be studied using SEM 

and optical microscopy. Also, the effect of the nanofiller type and concentration, and electrical 

poling on the piezoelectric response of the piezoelectric fibers will be discussed. Moreover, the 

charge separation mechanism of the piezoelectric fibers in the bend-release measurements will be 

proposed and discussed. 

3. Demonstrate prototypes of the textile piezoelectric power generator using the drawn 

fibers 

       The piezoelectric textiles will be fabricated by integrating the piezoelectric fibers into the 

cotton textiles. The electrical properties of the piezoelectric textiles will be evaluated. We will also 

study the potential applications of the piezoelectric fibers and textiles in the field of remote sensing 

and energy generation. 
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CHAPTER 3 METHODOLOGY 

In this thesis, I demonstrated the fabrication and potential applications of planar piezoelectric 

generators, micro- and nanostructured piezoelectric fibers and piezoelectric textile generators using 

several material combinations. The planar generators were assembled by sandwiching the 

electrospun piezoelectric nanocomposite between two carbon-loaded-polyethylene (C-LDPE) 

films. The piezoelectric micro- and nanostructured fiber was fabricated via drawing of the 

multilayer fiber preform, and features a swissroll geometry that has several alternating piezoelectric 

and conductive layers. The piezoelectric textiles were fabricated by integrating the piezoelectric 

fibers into cotton textiles using a classical Dobby loom. Here the Dobby loom is a type of floor 

loom that weaves the fibers and yarns into the textiles. In the section that follows, I will introduce 

the fabrication methodology in detail. 

3.1  Fabrication 

3.1.1 Preparation of piezoelectric nanocomposites using electrospinning 

The fabrication of both piezoelectric planar generator and micro-/nano- structured 

piezoelectric fibers begins with the preparation of the piezoelectric nanocomposites. Here I used 

the electrospinning technique to fabricate the BTO-PVDF, PZT-PVDF and CNT-PVDF 

nanocomposites. The PVDF polymer used in this experiment was a semicrystalline PVDF (pellet, 

Sigma-Aldrich) which has an average molecular weight of ~275,000. Dimethylformamide (DMF) 

and acetone solvent were purchased from Sigma-Aldrich. BTO nanoparticles (average diameter of 

200 nm) were purchased from US Research Nanomaterials Inc. PZT micropowders (50-100 μm, 

APC 850) were purchased from APC Inc. Multi-walled carbon nanotubes (CNT) were purchased 

from Sigma-Aldrich. 

Step 1. Preparation of the suspensions 

The BTO-PVDF suspension. BTO of defined amount was dispersed in DMF solvent 

(Sigma-Aldrich) using a probe-type ultrasonicator (Fisher Scientific Inc.; Fig. 3.1) at 100 W in 5 s 

intervals (3 s pulse on, 2 s pulse off) for 1 h. Here the ultrasonicator is used to improve the 

dispersion of the BTO nanoparticles. PVDF was dispersed in acetone using a magnetic stirrer for 

10 min. Then, the BTO solution and the PVDF solution were mixed together while being heated at 
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100 ℃ using a magnetic stirrer for 1 h. Subsequently, the BTO-PVDF solution was sonicated at 75 

W in 5 s intervals (3 s pulse on, 2 s pulse off) for 15 min and then put in a vacuum chamber for 5 

min to remove air bubbles. In our experiments, the weight concentration of PVDF in the solution 

was 20 wt%, and weight concentration of BTO in the as-spun BTO-PVDF composite mats was 

varied from 5 to 25 wt% with a 5 wt% interval. The DMF/acetone volume ratio was 2/3. 

 

Figure 3.1: The probe-type ultrasonicator (Fisher Scientific Inc.) 

 The PZT-PVDF suspension. PZT powders have a size ranging from 10 to 50 μm. To reduce 

the PZT particle size and thus enhance their piezoelectric functionality, PZT powders were milled 

using a ball-milling machine (MSK-SFM-2, MTI Corporation) for 10 h with a milling speed of 200 

rpm. 10 ZrO2 balls with a diameter of 10 mm were used as the milling medium. The weight ratio 

of PZT powders to the milling balls was 1:20. The milled PZT powders could be then used for the 

preparation of PZT-PVDF solutions, which follows exactly the same procedures as the case of 

BTO-PVDF solutions. 

The CNT-PVDF suspension. Multi-walled carbon nanotubes of defined amount was 

dispersed in DMF solvent using an ultrasonicator for 15 min. PVDF was dispersed in acetone using 

a magnetic stirrer for 10 min. Then, the CNT solution and the PVDF solution were mixed together 

while being heated at 100 ℃ using a magnetic stirrer for 1 h.  Subsequently, the CNT-PVDF 

solution was sonicated at 75 W in 5 s intervals (3 s pulse on, 2 s pulse off) for 15 min and then put 

in a vacuum chamber for 5 min to remove air bubbles. In our experiments, the concentration of 
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PVDF in the solution was 20 wt%, and weight concentration of CNTs in the as-spun BTO-PVDF 

composite mats was 0.2, 0.4, and 0.6 wt% respectively. The DMF/acetone volume ratio was 2/3. 

Step 2. Fabrication of piezoelectric mats via electrospinning 

Electrospinning is an efficient and versatile fabrication and manufacturing method for the 

preparation of micro- and nanofibers [6, 11]. A range of materials could be utilized in the 

electrospinning process including polymers, metals, ceramic material and nanoparticles [6, 11, 79-

84]. A typical electrospinning setup includes three important components, which are a syringe with 

a needle or nozzle, a high voltage power supply and a grounded collector. In the electrospinning 

process, the polymer solution is charged by the high voltage (typically in the range of 10 to 30 kV), 

and pumped out through the syringe needle using a computer-controlled mechanical pump. When 

the electrical field between the droplet towards the needle and the grounded collector is high 

enough, the electrostatic repulsion within the charged solution would overcome the surface tension, 

and thus the droplet towards the needle would be stretched [81, 82]. At a critical point, a stream of 

polymer jet erupts from the surface of the droplet; that point of eruption is known as the Taylor 

cone [137]. As the polymer jet evaporates, polymer micro- and nanofibers are collected by the fiber 

collector. The morphology and properties of the resulting fibers are influenced by the following 

three main categories [138]: (1) the properties of the applied solutions such as molecular weight, 

solubility, viscosity, dielectric constant, conductivity, surface tension, and evaporation rate [79-

81]; (2) the set-up parameters such as the applied voltage, the feeding rate of solution, the needle 

gauge, and needle tip-to-collector distance [83, 84]; (3) the ambient parameters including 

temperature, humidity, and air velocity in the chamber [79-81]. 

In this thesis, the electrospinning was done in a commercial electrospinning workstation 

(MTI Corporation® MSK-NFES-3) as schematically demonstrated in Fig. 3.2. This electrospinning 

workstation consists of a high voltage supply, a glass syringe (20 mL) with a blunt metallic needle 

(22 gauge) and a grounded metallic drum (diameter: 5 cm). The drum for collecting piezoelectric 

fibers was set at a rotating speed of 200 rpm. In the electrospinning, the polymer suspensions were 

charged by a high voltage of 15 kV, and the distance between the needle tip and the drum collector 

was 15 cm. Electrospinning was done with an ejection rate of 1 𝑚𝑙/ℎ from the syringe. The 

temperature in the electrospinning chamber was controlled at 25 °C. After the electrospinning, the 

electrospun mats were vacuum dried at room temperature for 24 h. 
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Figure 3.2: Schematic of the electrospinning. Reprinted from Ref [139]. 

3.1.2 Fabrication of the piezoelectric planar generators 

As shown in Fig. 3.3, the piezoelectric planar generator has a laminated structure, comprising 

of a carbon black filled low-density polyethylene film (C-LDPE) as the top electrode (~85μm thick; 

2.2 Ω∙m; Bystat inc.), an electrospun nanocomposite (~100 μm thick), a C-LDPE counter electrode, 

a Kapton film (~125 μm thick; Mcmaster Inc.) and a supporting polystyrene (PS) substrate (~1 mm 

thick; Mcmaster Inc.). The PS substrate was attached to the devices for delivering identical strains 

throughout the active piezoelectric layer.  

 

Figure 3.3: The design of piezoelectric planar generators 

3.1.3 Fabrication of the micro-/nano- structured piezoelectric fibers via fiber 

drawing technique 

Micro- and nanostructured piezoelectric fibers could be fabricated using the fiber drawing 

technique [91]. In this method, a geometrically complex multimaterial fiber preform with a length 

of tens of centimeters is first assembled using stacking of tubes, rods, multilayered films, or other 

functional components [91]. Then, the preform could be drawn into fibers using a fiber drawing 

tower. Geometry of the resultant fibers depends on parameters in the drawing process such as the 

temperature distribution in a furnace, the fiber drawing speed and the preform feed velocity, 

pressurization of the preform, as well as application of the electromagnetic fields [92, 93]. In the 
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following section, I will introduce the fabrication steps of micro- and nanostructured piezoelectric 

fibers in detail.  

Step 1. Assembly of the fiber preforms 

The fabrication of the micro-/nano- structured piezoelectric fibers starts with the assembly of 

the fiber preform. As illustrated in Fig. 3.4, the preform was fabricated by co-rolling four 

alternating electrospun PVDF-based piezoelectric mats and C-LDPE conductive films around a PC 

tube with the outer diameter of 2.54 cm. In our choice of the materials for fiber fabrication we used 

two criteria. First, to obtain the fibers with high piezoelectric performance, the active material 

should have high piezoelectric coefficient. Second, to maintain the high degree of control over 

drawing of the kilometer-long piezoelectric fibers the materials in the fiber preform should be 

thermo-mechanically compatible. Thus, PVDF was chosen as the host material for the piezoelectric 

layers, as it is a low-cost, stable thermoplastic polymer that can exhibit the relatively high value of 

the piezoelectric coefficient. The PVDF-based piezoelectric nanocomposite mats used in fiber 

preform assembly were fabricated using electrospinning as this process allows fine-tuning of the 

thermo-mechanical properties of nanocomposites by changing the polymer molecular weight, the 

concertation of the nanofillers and the processing conditions. C-LDPE was selected as the 

conductive materials, as it is both thermoplastic and electrically conductive (volume resistivity: 2.2 

Ω∙m). The PC polymer was used as the fiber core, acting as the mechanical support for the active 

layers during fiber drawing. 

After assembly, the co-rolled preform was consolidated in a vacuum oven at a temperature 

of 110 °C for more than 12 hrs. The resulting piezoelectric fiber preforms typically feature ~10 

bilayers of C-LDPE films and PVDF-based piezoelectric layers that are wrapped around a PC core 

(Fig. 3.4). The two C-LDPE electrode layers were extended to the opposite sides of the exposed 

preform surface for convenience of the electrical connectorization. 
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Figure 3.4: Assembly of the fiber preform 

Step 2. Fiber drawing process 

As shown in Fig. 3.5, the as-assembled preform was placed into the vertical furnace of the 

fiber drawing tower. Upon heating, the preform tip melts, and forms a blob that later falls down 

under the force of gravity, thus creating a slender fiber that can be pulled from the molten perform 

tip. In actuality, a clamp tractor is used to continuously pull the fiber at a constant speed. The final 

diameter of a resultant fiber depends on the parameters used in the fiber drawing process including 

the fiber drawing speed, temperature distribution in the furnace, preform feeding speed, as well as 

overpressure to the fiber preform during drawing. Experimentally, we set the drawing speed as 500 

mm/min, and used an air-pressure of 3 mbar to pressurize the fiber core during drawing. A high 

voltage of up to 5 kV was applied to the preform to promote the 𝛽 phase transformation in the 

PVDF layer. 

 

Figure 3.5: The fiber drawing process. (a), image of the fiber drawing tower. (b), image of the fiber 

preform cross-section. The blue scale bar is of ~ 1 cm. (c), image of the clamp tractor. (d), 
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schematic of the fiber cross-section. The preform is fabricated by co-rolling electrospun 

polyvinylidene fluoride (PVDF) mat and C-LDPE film around a polycarbonate tube (PC tube). 

3.1.4 Fabrication of piezoelectric fiber generators 

The structure of piezoelectric fiber generators is schematically demonstrated in Fig. 3.6. It 

consisted of a 1-mm-thick polystyrene (PS) substrate (Mcmaster Inc.) and a 63.5 μm-thick Kapton 

tape covering layer (Mcmaster Inc.). The PS plastic plate served as the bottom supporter and the 

Kapton tape is used to immobilize the piezoelectric fiber on the PS supporter and ensure the fiber 

to undertake the identical strain under a certain external stress. 

To further increase the piezoelectricity, the as-fabricated piezoelectric planar and fiber 

generators were also poled after assembly. To prevent the electrical breakdown of the air, during 

the whole poling process, the poled devices were completely immersed into the silicone oil at a 

temperature of 80ºC. The poling voltage was set at 1 kV for the first 12 hrs, then 5 kV for the next 

12 hrs, and finally 9 kV for the last 24 hrs.  

 

Figure 3.6 : (a) Schematic diagram and (b) Image of the piezoelectric fiber generator. 

The scale bar is of ~ 1 cm. 
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Figure 3.7: (a), The loom and a fabricated textile integrated with piezoelectric fibers. The scale bar 

is ~  6 cm. (b), The piezoelectric textile generators. The scale bar is ~5 cm.  (c), The image of the 

piezoelectric fiber. The scale bar is ~ 1 cm. (d) Schematic of the electrodes connection (connected 

in series) at one fiber end. 

3.1.5 Fabrication of the piezoelectric textiles 

The as-fabricated piezoelectric fibers are flexible, and thus could be easily integrated into the 

cotton textiles using a traditional Dobby loom. As shown in Fig. 3.7a, purple cotton fibers were 

fixed in parallel on the loom as warp yarns, and twenty piezoelectric fibers, with the length 

of ~20 cm, were integrated into the gaps of purple cotton fibers one by one. Finally, all these 

piezoelectric fibers were connected in series or in parallel using C-LDPE strips.  

3.2 Characterization 

3.2.1 Material characterization 

In what follows I discuss the characterization of the electrospun nanocomposites using 

Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy and 

Scanning electron microscopy (SEM). 

Fourier-transform infrared spectroscopy (FTIR) 
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Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer and has at least four phases. 

Among these phases, the polar phase β is the dominant one for its piezoelectric properties. Thus, 

to theoretically analyze the piezoelectric properties of the electrospun PVDF-based composite mat, 

we should first determine the degree of the β phase presenting in the samples. 

Using a FTIR spectrometer, absorption spectra of samples in the infrared band were 

obtained, and several absorption bands can be overlapped. Among these bands, the 761 and 840 

cm-1 infrared absorption bands characterize the α and β phases, respectively. The 𝛽 phase content, 

F(𝛽), in the PVDF mats was calculated using the following  Eq.:[140]  

𝐹(𝛽)= 
𝑋𝛽

𝑋𝛼+𝑋𝛽
 = 

𝐴𝛽
𝐾𝛽

𝐾𝛼
𝐴𝛼+𝐴𝛽

 

where 𝐴𝛼 and 𝐴𝛽 are the absorbances at 761 cm-1 and 840 cm-1 respectively, and 𝑋 is the 

degree of crystallinity of each phase. 𝐾𝛼 and 𝐾𝛽 are the absorption coefficient at the respective 

wavenumber, which are 6.1×104 and 7.7×104 cm2 mol-1. 

X-ray diffraction (XRD) analysis 

X-ray diffraction (XRD) spectroscopy can be used to identify crystalline phases in the 

nanocomposites. Using an X-ray diffractometer, scattering spectra of samples can be recorded. The 

characteristic pattern recorded by a typical X-ray diffractometer provides unique “fingerprint” of 

the crystals present in the tested samples [6]. In the case of PVDF mats, peaks at 2𝜃 value of 18.5° 

and 20.4° are indexed to the 𝛼 phase [(020)] and 𝛽 phase [(200)/(110)], respectively [91]. In 

my experiments, the X-ray diffraction patterns were recorded by a Bruker D8/Discover 

diffractometer equipped with a standard sealed tube producing Cu radiation (λ  = 1.54178 Å) 

running at 40 kV and 40 mA. 

Microstructure characterization 

A scanning electron microscope (JEOL) was used to examine the surface morphology of the 

nanocomposites, and to determine the average length and diameter of the nanofibers. The samples 

were sputter coated with gold and examined at an accelerating voltage of 10 kV. 
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3.2.2 Electrical characterization 

Here I characterized the electrical properties of the piezoelectric planar and fiber generators. 

In all tests, the open-circuit voltages and short-circuit currents generated by the piezoelectric 

devices were measured using an electrochemical station (Ivium Technologies) with a sampling 

time constant of 0.1 s. 

Bend-release tests 

Firstly, the electrical properties of the piezoelectric planar and fiber generators were 

determined by the bend-release tests. In the experiment, the tested generator was mounted on a 

bend-release setup as shown in Fig. 3.8. In the experiments, one end of the tested device was fixed 

on a stationary stage, while the other end of the tested device was fixed on a micropositioning stage 

which was controlled by a LabView program. The displacements of the micropositioning stage 

were set to be 5 cm, 10 cm, 15 cm, and 20 cm, respectively based on the characterization 

requirements. During each bend-release cycle, the bend motion lasted for 0.2 s, followed by a pause 

of 5 s at the maximum displacement (bent state); the release motion also lasted for 0.2 s,  followed 

by a 5 s pause in the original position (released state). For the piezoelectricity characterization, the 

bend-release tests with different displacements were repeated at least 5 cycles. While for the 

durability test, the whole test lasted at least 3 days. 

Arm fold-release tests 

To demonstrate the wearable applications for energy harvesting, I performed the experiments 

as follows. Firstly, the piezoelectric fibers were woven into cotton textiles using a classic Dobby 

loom. Then, the as-fabricated piezoelectric textile was attached to the arm of an adult. The electrical 

properties of the piezoelectric textile were examined by multiple folding-releasing actions of 

human elbows at low frequencies.  
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Figure 3.8: The experimental setup for the electrical characterization in (a) bent state and (b) 

released state. 

Sound tests 

The piezoelectric fibers could be used as the ultrasensitive sound sensors. The sound is a type 

of mechanical vibrations that typically propagates through matter as an audible wave of pressure. 

When the sound wave strikes the piezoelectric fiber, it causes the piezoelectric fiber compressing 

and releasing, and thus, positive and negative voltages spikes could be observed. The functional 

relationship between the generated voltages and the parameters of the applied sound wave can be 

described as 𝑉2  ∝  𝑃/𝑓, where 𝑃, 𝑉, and 𝑓 are the power (which is defined as the input intensity 

of the sound wave multiplied by the surface area), the output voltage generated from the 

piezoelectric fiber, and the frequency of the applied sound wave, respectively [141].  

        In one experiment, the sound wave was generated by a speaker of a Dell laptop (XPS 13) and 

controlled by the commercial software (Adobe Audition). The tested piezoelectric fiber was fixed 

facing the speaker. The distance between the piezoelectric fiber and speaker is ~20 cm. The 

experiment setup was put inside an anechoic chamber (Fisher Scientific). In another experiment, 

the sound wave (frequency: ~20 kHz) was generated by an ultrasonic probe. The piezoelectric fiber 

generator was fixed in a water tank (dimension: 60 cm×28 cm×15 cm). The distance between the 

probe and the fiber was ~ 20 cm. The sonication was repeated with a period of 6s (1 s on, 5 s off). 

Note that, to eliminate the environmental factors, the experiments were done in a closed room. The 

laptop was controlled using a remote-control software (Teamviewer). 

Airplane and vehicle tests 

To explore the application in the area of automotive and transport, I conduct the following 

experiments. In the airplane test, the piezoelectric fiber with a length of ~15 cm and a diameter of 

~1 mm was immobilized on the surface of an airplane model. During the tests, the airplane model 
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was fixed on a wooden table. As we turned on the airplane motor, the rotation of the airplane 

propeller resulted in the irregular vibrations of the piezoelectric fibers, thus generating the electric 

signal. In the vehicle test, the piezoelectric textile was fixed on the seat of a vehicle (Hyundai 

sedan), and a 22 kg sandbag was put on the surface of the textile. When the car is running, the 

traffic-induced vibration of the vehicle led to the distortion of the piezoelectric fibers in the textile, 

thus generating electric current. A simple full-wave bridge rectifier circuit was used to ensure that 

the current generated by the textiles with consistent polarity.  
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CHAPTER 4 ARTICLE 1: PIEZOELECTRIC MICRO- AND 

NANOSTRUCTURED FIBERS FABRICATED FROM 

THERMOPLASTIC NANOCOMPOSITES USING A FIBER DRAWING 

TECHNIQUE: COMPARATIVE STUDY AND POTENTIAL 

APPLICATIONS 

This chapter is based on my paper “Piezoelectric Micro- and Nanostructured Fibers Fabricated 

from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and 

Potential Applications” published in ACS Nano in 2017 [91]. I am the primary author of this paper, 

while this paper is co-written by Hang Qu and Maksim Skorobogatiy from Ecole Polytechnique de 

Montreal.  

In this chapter, we report an all-polymer flexible piezoelectric fiber that uses both judiciously 

chosen geometry and advanced materials in order to enhance fiber piezoelectric response. The 

microstructured/nanostructured fiber features a soft hollow polycarbonate core surrounded with a 

spiral multilayer cladding consisting of alternating layers of piezoelectric nanocomposites 

(polyvinylidene enhanced with BaTiO3, PZT or CNT) and conductive polymer (carbon filled 

polyethylene). The conductive polymer layers serve as two electrodes and they also form two 

spatially offset electric connectors on the fiber surface designed for the ease of connectorization. 

Kilometer-long piezoelectric fibers of submillimeter diameters are thermally drawn from a 

macroscopic preform. The fibers exhibit high output voltage of up to 6V under moderate bending, 

and they show excellent mechanical and electrical durability in a cyclic bend-release test. The 

micron/nano-size multilayer structure enhances in-fiber poling efficiency thanks to the small 

distance between the conducting electrodes sandwiching the piezoelectric composite layers. 

Additionally, spiral structure greatly increases the active area of the piezoelectric composite, thus 

promoting higher voltage generation and resulting in 10-100 higher power generation efficiency 

over the existing piezoelectric cables. Finally, we weave the fabricated piezoelectric fibers into 

technical textiles and demonstrate their potential applications in power generation when used as a 

sound detector, smart car seat upholstery or wearable. 
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4.1  Introduction 

Over the past decade, significant effort has been put into the R&D of energy harvesting and 

conversion devices that operate based on piezoelectric effect [142-145]. Unlike the energy 

harvesters utilizing solar or thermal energy, performance of piezoelectric generators is generally 

not limited by the environmental factors. An important driving force for developing piezoelectric 

energy generators is the growing popularity of the personal wearable electronics such as on-

garment displays, wearable sensors in sports and medicine, virtual-reality devices, and smart 

watches and bracelets [11, 146-149]. In these devices, piezoelectric generators or transducers 

utilizing mechanical energy from human body motions could be used as power sources or sensor 

components. Another emerging field where piezoelectric generators could find niche applications 

relates to the self-energized electronics for automotive or aerospace industries. Piezoelectric 

generators harvesting energy from the traffic-induced vibrations or other parasitic mechanical 

movements motions could power on-board electronic systems such as wireless sensor networks 

(WSNs) with low-power consumption [150, 151]. Note that for these applications, piezoelectric 

generators in the form of fibers or strips are highly desired [75], as thanks to their flexibility, they 

could be weaved seamlessly into multifunctional fabrics for wearable or on-board applications, or, 

alternatively, coiled into compact energy generation cells.   

Many attempts have been made to fabricate piezoelectric fibers. A simple method is directly 

depositing or wet-extruding ceramic piezoelectric materials such as ZnO nanowires (NWs), 

BaTiO3 (BTO) NWs and Pb(Zr0.52Ti0.48)O3 (PZT) NWs along a metallic wire/filament [51, 52, 

152]. For instance, Qiu et al. reported a piezoelectric fiber fabricated by extruding a mixture of 

PNN-PZT powder and organic solvent along a Pt wire [152]. Wang and coworkers proposed a 

ZnO-based piezoelectric fiber fabricated by growing ZnO-NWs on an Au-coated Kevlar fiber using 

a hydrothermal method [52]. Note that the mechanical reliability of these piezoelectric fibers could 

be problematic, since frequent bending and surface abrasion would make the ceramic materials 

cracking and even peeling off from the fiber core. To improve robustness of the fibers, Wang and 

co-workers have proposed to cover the base of ZnO NWs with a protective polydimethylsiloxane 

(PDMS) layer using a method combining surface-coating and plasma-etching [136]. Instead of 

depositing piezoelectric layers onto a fiber/wire substrate, fabrication of piezoelectric fibers 

directly from piezoelectric polymers constitutes an alternative option. Compared to ceramic 
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materials, piezoelectric polymers generally have better flexibility, thus they are more suitable for 

wearable applications. Among all of the piezoelectric polymers, poly(vinylidene fluoride) (PVDF) 

and poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) are predominantly utilized in 

piezoelectric devices due to ease of their thermal processing, high flexibility, high strain level and 

good piezoelectric properties. Lund et al. used the melt-spinning method to fabricate a 

bicomponent fiber that had a PVDF sheath and a carbon-black impregnated polyethylene (CB-PE) 

core serving as the inner electrode [63, 65]. Recently, Liu et al. adopted an electrowetting-aided 

dry spinning method to fabricate a piezoelectric fiber featuring a metallic core covered by a thin 

PVDF or PVDF-TrFE layer [64]. Piezoelectric fibers produced via the traditional spinning methods 

typically adopt a simple core-sheath structure, and the as-spun fibers may require an additional 

deposition of a metallic layer as an outer electrode that may have reliability issues due to surface 

abrasion and repeated bending or stretching actions. Also note that for PVDF piezoelectric fibers, 

high-voltage poling of the PVDF layers has to be performed during (or after) the spinning process 

in order to promote the nonpolar  to the ferroelectric  phase transition. In addition to electric 

poling of PVDF, one also uses stretching during poling process, thus further complicating the 

fabrication process. PVDF-TrFE, on the other hand, could spontaneously crystallize into  phase 

during its solidification during a spinning process; however, compared to PVDF, the price of 

PVDF-TrFE is considerably higher. 

Piezoelectric polymer fibers could be also fabricated using the fiber drawing technique. In 

this method, a geometrically complex multimaterial fiber preform with a length of tens of 

centimeters is first assembled using stacking of tubes, rods, multilayered films, or other functional 

components. Then, the preform could be drawn into fibers using a fiber drawing tower (Fig. 4.1a). 

Geometry of the resultant fibers depends on parameters in the drawing process such as the 

temperature distribution in a furnace, the fiber drawing speed and the preform feed velocity, 

pressurization of the preform, as well as application of the electromagnetic fields. Fibers drawn 

from a macroscopic preform would generally retain the preform structure; however, sizes of the 

constituent elements will be reduced to micro- or even nanoscale. Therefore, various geometrically 

complex transverse structures that considerably enhance the fiber functionality could be realized 

within a fiber on a sub-micron scale by engineering the preform structure on a macroscopic scale 

and optimizing the conditions of the fiber drawing process. This, generally, cannot be accomplished 

by traditional fiber-spinning methods such as melt-spinning [153], or wet-spinning [154, 155]. As 
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an example, Egusa et al. demonstrated a multimaterial piezoelectric fiber using the fiber drawing 

technique [66]. This piezoelectric fiber featured a PVDF-TrFE piezoelectric layer sandwiched 

between two conductive polycarbonate (CPC) electrode layers and assembled with Tin 

microfilaments for electrical connection. The fiber also had an outermost isolating PC layer serving 

as the protective cladding. An acoustic transducer was developed based on this fiber, and showed 

a good response to acoustic waves with frequencies from kilohertz to megahertz. The fiber had 

several limitations, as it used very expensive PVDF-TrFE material, and it integrated in its structure 

a Tin metallic microfilament, thus reducing the fiber reliability with respect to flexing. Finally, 

connecting to such fibers is challenging, as it requires manipulation with built-in micron-sized 

metallic electrodes. In ref [93] it was proposed that spontaneous piezoelectricity can be achieved 

in PVDF nanoribbons, when using consecutive re-drawings of the same fiber under high voltage. 

The authors claimed that under such conditions PVDF could crystallize into an exotic piezoelectric 

 phase. At this point, it is difficult to evaluate the robustness of this fabrication technique, as there 

were no further reports of using this fabrication method. Additionally, multiple re-drawing of the 

same fiber is needed for fabrication of PVDF nanoribbons, which could be labor intensive and of 

low yield. To improve the piezoelectric properties of the drawn fiber, while avoiding using 

expensive PVDF-TrFE, a PVDF impregnated with ceramic piezoelectric materials such as BTO 

and PZT could be used instead [34, 156, 157]. Although a higher concentration of the ceramic 

fillers generally results in enhanced piezoelectric performance of PVDF, it would at the same time 

affect the polymer viscosity [66], thus eventually leading to capillary break-up of the fiber during 

drawing. This is because, viscous liquids, due to their surface tension, seek to adopt a geometry 

that minimize their surface energy. This phenomenon was first discovered by Lord Rayleigh. The 

theory of Rayleigh instability indicates that the time constant of capillary instability growth is 

proportional to the feature size and viscosity, and inversely proportional to the surface tension. 

During the fiber drawing process, the preform diameter is becoming smaller and smaller, and thus, 

the capillary break-up may naturally occur. To enable a successful fiber drawing process, one 

should choose the materials with similar thermal-mechanical properties. And special attention 

should be paid to the maximal concentration of ceramic fillers. Furthermore, CNT could be also 

impregnated into PVDF in order to enhance its piezoelectric properties via spontaneous formation 

of the  phase crystals in PVDF [158-160]. Incorporation of a small amount of CNT can lead to 

remarkable improvements of the electrical and mechanical properties of the PVDF fibers as 
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reported in ref [161]. There, the authors argued that application of a shear stress to the polymer 

melt leads to the preferred orientation of the macromolecules, thus reducing the entropy of the 

polymer melt and leading to the flow-induced crystallization from the melt. Moreover, 

incorporation of CNT can promote the shear-induced crystallization behavior and enhance the 

formation of -crystals in PVDF nanocomposites. Also, the CNT could induce charge 

accumulation at the interface during electrical poling process, thus further promoting the 

conversion of the PVDF molecules’ α-phase into the -phase [158, 159, 162, 163]. Similar to the 

case of ceramic fillers, the maximum concentration of CNT is also limited by the fiber drawing 

process. 

In this paper, we report fabrication of the multimaterial piezoelectric fibers from perovskite 

ceramic nanoparticles (BTO/PZT)-PVDF, and CNT-PVDF composites via fiber drawing. 

Furthermore, we perform a comparative study of the piezoelectric performance of thus fabricated 

fibers. The proposed fibers feature a spiral geometry that significantly increases the fiber 

piezoelectric response. Due to the judicious arrangement of the conductive layers, connecting to 

our fibers is easy as the two electrodes occupy the opposite sides of the exposed fiber surface. The 

use of conductive plastic composite electrodes also increases the fiber reliability. The proposed 

piezoelectric fibers feature a soft hollow PC core surrounded by a multilayer cladding consisting 

of the alternating sub-micron-sized piezoelectric/electrode layers as shown in Fig. 4.1d.  PVDF, 

due to its low cost and availability is chosen as the principal component in the piezoelectric layers, 

while perovskite ceramic (BTO or PZT) nanoparticles or CNT are impregnated into PVDF layers 

in order to enhance their piezoelectric properties. This approach allows replacement of expensive 

PVDF-TrFE material, while resulting in the comparable or even superior piezoelectric response. 

The carbon-impregnated low-density polyethylene (C-LDPE) layers serve as electrode layers. By 

bending or stretching the fibers, piezoelectricity could be effectively generated. Experimentally, a 

piezoelectric generator using a 10 cm long BTO-PVDF (BTO concentration: 20 wt%) fiber could 

generate an open-circuit voltage of 1.4 V and a short-circuit current of 0.8 nA respectively, when 

the fiber tip is displaced transversely by 10 mm. The corresponding voltage and current were ~6 V 

and ~4 nA for a PZT-PVDF (20 wt% PZT) fiber generator, and ~3 V and ~1.2 nA for a CNT-

PVDF (0.4 wt% CNT) fiber generator. Compared to the previous piezoelectric fibers reported in 

ref. [52, 62, 63, 65, 90] , our fibers adopt a spiral structure, and thus have much larger active areas 

for piezoelectricity generation as well as smaller gaps between the electrodes. As a result, our fibers 
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could generate much higher piezoelectric currents, which are proportional to the number of turns 

in a spiral. Among other advantages of the piezoelectric fibers reported in this paper are low cost 

of the materials used in fabrication, lightweight, good durability, and possibility of mass production 

via fiber drawing. As examples of practical applications of the proposed piezoelectric fibers, we 

present energy harvesting textiles using BTO-PVDF fibers, and characterized their performance in 

the context of wearable and automotive microgenerators. Moreover, we also present detection of 

sound using CNT-PVDF fiber that feature piezoelectric voltage generated by sound wave to be 

proportional to the square root of the acoustic power. 

4.2 Results and discussion 

4.2.1 Fabrication of the piezoelectric micro-/nanostructured fibers 

Fig. 4.1 summarizes the fabrication process of a piezoelectric fiber. A fiber preform is 

assembled by co-rolling two PVDF-based piezoelectric mats (thickness: 100 m) sandwiched 

between two C-LDPE films (thickness: 85 m, volume resistivity: 2.2 Ω ∙ m, Bystat International 

Inc.) around a hollow PC tube (diameter: 25.4 mm, Mcmaster Carr) (Fig. 4.1b, c). Note, the bulk 

resistivity of conductive polymer layers can change significantly during drawing due to re-

distribution of the conductive fillers in the polymer matrix. In extreme cases, the conductive 

polymer layer can even lose its electrical conductivity after drawing. Therefore, care should be 

taken in the proper choice of drawing parameters. Our measurements suggest that volume 

resistivity of conductive layers in the drawn fibers are as ~ 2.5 Ω ∙ m.  The above-mentioned 

polymer materials are chosen for fiber fabrication because they have similar processing 

temperatures which is important for co-drawing. The conductive layers are spatially offset in order 

to produce two easily accessible electrodes on the preform surface after rolling the preform. The 

piezoelectric mats (Fig. 4.1f) used in the preform are BTO-PVDF, PZT-PVDF, or CNT-PVDF 

nanocomposites, which were fabricated in-house via electrospinning. Besides, we also varied the 

concentrations of BTO and CNT in the mats to study how they would affect the piezoelectric 

properties of the fabricated fibers. After assembly, the preforms were drawn into piezoelectric 

fibers using a plastic fiber drawing tower. During fiber drawing, we also explored applications of 

high voltage (up to 5 kV) to the preform electrodes in order to pole the drawn fibers directly during 

fabrication process. We found that while this only led to a modest improvement in the piezoelectric 
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functionality of the drawn fibers, (since the poling time is insufficient to provide a significant 

effect), using high voltage we could effectively control thickness of the layers in the piezoelectric 

fibers. This is because the conductive electrode layers in a softened preform have a tendency to 

attract to each other under voltage application, and, thus, very thin (sub 1 m) piezoelectric layers 

could be drawn.  

 

Figure 4.1: (a) Schematic of a fiber drawing process. (b) Schematic of the multilayer structure in 

the preform and in the drawn fiber. (c) Photo of a preform cross-section. (d) Photo of a cross section 

of the piezoelectric fiber with a diameter of ~900 𝜇m (drawn using 2 kV voltage on the preform 

electrodes). Inset: the magnified view of a multilayer structure. (e) A spool of a piezoelectric fiber. 

(f) SEM images of the CNT/PVDF electrospun mats at different magnifications. (g) Photo of a 

cross section of the piezoelectric fiber with a diameter of ~ 300 𝜇m (drawn using 5 kV voltage on 

the preform electrodes). Inset: the magnified view of a multilayer structure. (h) A piezoelectric 

fiber wrapped on a pencil.  
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In Fig. 4.1d, we show a typical cross-section of the piezoelectric fiber (diameter: ~900 𝜇m). 

The multilayer structure in the fiber cladding maintained well during drawing, while thicknesses 

of the individual piezoelectric or conductive layers typically ranged from 5 to 10 𝜇m . For those 

fibers drawn under 5 kV, the fiber diameters were reduced to ~ 300 𝜇m, and thickness of the 

piezoelectric layers or conductive layers could be less than 1 𝜇m (Fig. 4.1g). Finally, in order to 

further enhance the fibers’ piezoelectric property, they were poled in a silicone oil bath (80 ℃) 

using a voltage of 1 kV for 12 hours. The poling voltage was then increased to 5 kV for 12 hours 

and finally 9 kV for 12 hours. The poled fibers were then utilized for development of various 

piezoelectric generator and energy generation systems. 

 

Figure 4.2: (a) Schematic and a photo (b) of a BTO-PVDF fiber test cell. (c) Fiber in the bent and 

released states.  

4.2.2 Characterization of piezoelectric micro-/nanostructured fibers 

Structure of a Test Cell 

In order to characterize fiber piezoelectric properties, we use the following testing method. 

The two ends of a piezoelectric fiber (length: 10 cm, diameter: ~ 1 mm) were glued to two C-

LDPE strips as shown in Fig. 4.2a,b. Note that, by design the fiber features two exposed electrodes 

positioned on the opposite sides of the fiber surface (see Fig. 4.1c). Thus, before the connection, 

the piezoelectric fiber should be placed in a specific position: one fiber electrode is on the top while 
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the other fiber electrode is on the bottom (this can be achieved by rotating the fiber). Then, one C-

LDPE strip was attached to the top side of the fiber, while the other one was attached to the bottom 

side of the fiber on the opposite end. In this way, the two strips would connect to the two different 

electrodes of the fiber. The piezoelectric fiber together with the C-LDPE strips were immobilized 

onto a 10 cm long, 1 mm thick PS substrate using Kapton tape. Due to asymmetry in the test cell 

structure, bending of the PS substrate would lead to a non-zero average strain in the piezoelectric 

fiber. Experimentally, one end of the PS substrate was fixed, while the other end was horizontally 

displaced by a micropositioning stage, thus bending the fibers (Fig. 4.2c). The generated voltage 

and current of the piezoelectric fiber were measured using an Ivium Electrochemical Workstation 

(Ivium Technologies). 

Charge Separation Mechanism in the Drawn Fibers 

As the strain is applied along the microstructured fiber, corresponding positive peaks can be 

observed in both the output voltage and current measurements. This phenomenon can be explained 

by examining the charge separation mechanism and equivalent circuit model in Fig. 4.3. During 

poling, the dipoles of the piezoelectric layers are aligned in the direction of the local electrical 

fields. After the removal of the poling voltage, the oriented domains maintain a permanent 

polarization. The electric field of the dipole induces surface charge +Q at the top fiber electrode 

and -Q at the bottom fiber electrode. When the fiber is bent, mechanical strain leads to the change 

of polarization density, which induces change of induced surface charge  (±∆Q) in the fiber 

conductive layers [164, 165]. In response, the free charges in the fiber electrodes are forced to re-

balance this change of charge at a speed set by both the external electric circuit and the built-in 

potential [82]. In the bent state, the initial increase in the voltage (current) gradually diminishes. 

Similar to that of piezoelectric film-type generators [120], this process can be modeled as the RC 

discharging process with two time constants (𝜏): a discharging time 𝜏𝑣 =𝑅𝑣𝐶𝑓  for open-circuit 

voltage spike and a discharging time 𝜏𝑐 =𝑅𝑓𝐶𝑓  for short-circuit current spike, where 𝐶𝑓  is the 

effective capacitance and 𝑅𝑓 is the effective resistance of the piezoelectric fiber, while  𝑅𝑣 is the 

circuit resistance when fiber is connected to a voltmeter. From Fig. 4.3c, we observe that 

discharging time for the short-circuit current spike is considerably shorter than discharging time 

for the open-circuit voltage spike (𝜏𝑐~0.1s ≪ 𝜏𝑣~1s), thus also signifying that 𝑅𝑓 ≪ 𝑅𝑣. When 
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the strain is removed, the free charges move in the opposite direction, generating a negative voltage 

(current) spike.  

 

Figure 4.3: Schematics of the charge separation mechanism in the drawn fibers. (a) All dipoles are 

oriented in the direction of the local electric fields during electric poling (no bending). When 

mechanical strain is applied along the device by bending, the polarization density is changed and 

the electrons are forced to flow from one electrode to the other, thus generating voltage differential. 

(b) A schematic of a piezoelectric fiber in the bent state. The piezoelectric fiber was attached to a 

plane PS substrate and covered with Kapton tape in order to induce a uniform strain during bending. 

(c) The open-circuit voltage and short-circuit current of the piezoelectric fiber during the bend and 

release actions. The insert image shows the equivalent circuit of the piezoelectric fiber connected 

to a voltmeter or a current meter. The piezoelectric fiber is modeled as a capacitor 𝐶𝑓, the voltmeter 

is modeled as a resistor 𝑅𝑣 and the fiber resistance is 𝑅𝑓. The black line represents the measured 

output signals during the bend and release state. The red squares represent the modeled results 

during the bent and released state.  

Note that characterization of the electrical properties of the piezoelectric generators is by 

far not an easy task and deserves a separate paper by itself. The fibers presented in this work have 
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internal structure similar to that of the capacitor fibers detailed in our prior work [166, 167]. There, 

we demonstrated that frequency-dependent electrical properties of the piezoelectric fibers can be 

modeled using an RC ladder network model. In this model, a fiber is considered as a collection of 

frequency-dependent transverse and longitudinal resistivities and capacitances, thus resulting in 

highly non-linear frequency dependence of the fiber effective complex impedance that cannot be 

interpreted in terms of simple electrical circuits. Therefore, for the sake of simplicity, in this paper 

we resort to qualitative arguments rather than exact derivations. In order to characterize fiber 

complex impedance, one has to perform an Impedance Spectroscopy analysis. However, we can 

approximate the value of the fiber impedance 𝑍𝑓 at low frequencies as a ratio of the open-circuit 

voltage to the short-circuit current thus resulting in the values of ~1 − 2.5 GΩ. Note, however, that 

this value does not correspond to the resistivity of the in-fiber electrodes, but rather represents a 

value of the complex impedance at a characteristic frequency corresponding to the fiber 

charge/discharge rate (1−10 Hz, see Fig. 4.3c). At the same time, longitudinal resistance of the in-

fiber electrodes 𝑅𝑓 , as well as fiber capacitance 𝐶𝑓 can be estimated using simple expressions 

𝑅𝑓~𝜌
𝐿

𝑆𝑑
~2.8 MΩ, 𝐶𝑓~

𝜀0𝜀𝐿𝑆

𝑑
~ 46 nF, where 𝜌 is the bulk resistivity of the in-fiber conductive 

layers (~2.5 Ω ∙ m), 𝐿 is the fiber length (~10 cm), 𝑆 and 𝑑 are the conductive layer width and 

thickness respectively ( 𝑆~ 1.76 cm ; 𝑑~5 𝜇m ), while 𝜀 is the dielectric constant of the 

piezoelectric films (𝜀~15). Note that the value of 𝑅𝑓 can be measured directly as a DC resistivity 

of a single fiber electrode. From this, we can also estimate a characteristic value for the 

charge/discharge time constant 𝜏𝑐 = 𝑅𝑓C𝑓 ~0.1 s, which is in good correspondence to 

experimental measured value (see Fig. 4.3c). At the same time, when the fiber is connected to the 

voltmeter the charge/discharge time constant 𝜏𝑣 = 𝑅𝑣C𝑓 ~ 1 s ≫ 𝜏𝑐~ 0.1 s, which is consistent 

with the technical information from the voltmeter stating that 𝑅𝑣 is in GΩ range. To get a better 

qualitative comparison with the charge/discharge time constant when fiber is connected to the 

voltmeter, one has to consider more carefully the internal structure of the voltmeter and its effective 

complex impedance. Finally, for more details on the relation between the complex fiber impedance 

𝑍𝑓 and the electrode resistivities, fiber capacitance, and frequency we refer the reader to the ref. 

[166, 167].  

Characterization of the piezoelectric properties of the BTO-PVDF and PZT-PVDF 

fibers  



48 

 

We first study the open-circuit voltage generated by the BTO-PVDF fiber generator as a 

function of the BTO concentration. As the concentration of BTO in the BTO-PVDF layer increased 

from 5 wt% to 25 wt%, the piezoelectric voltage of a fiber generator with its moving end displaced 

by 10 mm increased from ~0.15 V to ~2.5 V (Fig. 4.4a). We find that drawing fibers with BTO 

concentrations higher than 25 wt% is challenging, because at such high BTO concentrations the 

viscosity of a BTO-PVDF composite is affected significantly, thus resulting in capillary break-up 

during fiber drawing. Therefore, to maintain a stable fiber drawing while maximizing piezoelectric 

functionality, an optimal BTO concentration of 20 wt% was adopted in all our drawings. In Fig. 

4.4d and 4.4e, we find that when the moving end of the fiber was displaced by 5 to 20 mm, the 

corresponding open-circuit voltage increased from ~ 1 to ~1.7 V, and the short-circuit current 

increased from ~ 0.7 to ~1.3 nA. Besides, we note that the electrical poling process plays major 

role in the functioning of the piezoelectric fibers. The fibers without poling exhibit an open-circuit 

voltage of ~1.5 mV, which is three orders of magnitude smaller than that of their poled counterparts 

(Figure 4. 4b, c). A durability test was also conducted for fiber-based generators by continuously 

repeating the bend-release movements for 3 days. We find that the piezoelectric voltage and current 

generated by a fiber does not show degradation signs after the entire test that comprise ~26000 

bend/release cycles (Fig. 4.4f, g).  

Next, piezoelectric generators based on PZT-PVDF piezoelectric fibers were studied. The 

advantage of PZT over BTO is its higher piezoelectric constant. We find that when the moving end 

of a PZT-PVDF (PZT concentration: 20 wt%) fiber generator is displaced by 10 mm, it generates 

an open-circuit voltage of ~6 V and short-circuit current of ~ 4 nA, which are ~4 times higher than 

those generated by BTO-PVDF fibers (Fig. 4.5a, b). However, due to the high toxicity of PZT, 

PZT-PVDF fibers are probably not suitable for wearable applications. 
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Figure 4.4: (a) Open-circuit voltage generated by a 10 cm long BTO-PVDF fiber with the BTO 

concentration of 5, 10, 15, 20, and 25 wt% subjected to a 1-cm displacement. (b-c) Comparison of 

the piezoelectric voltages generated by the poled BTO-PVDF fiber generator and the unpoled one.  

(d) and (e) show the open-circuit output voltage and short-circuit current generated by a 10 cm-

long BTO-PVDF fiber generator (20 wt% BTO in the BTO-PVDF composite) when its moving 

end is displaced by 5, 10, 15, and 20 mm. (f-g) A durability test for the 10 cm long BTO-PVDF 

fiber (20 wt% BTO in BTO-PVDF composite) by continuously repeating 1 cm amplitude bend-

release movements for 3 days. The open-circuit voltage and short-circuit current generated in a 

1000 s period at the beginning of the first day (f) and at the end of the third day (g) are shown. 
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Figure 4.5: (a) and (b) show the open-circuit voltage and the short-circuit current generated by a 

10 cm-long PZT-PVDF fiber generator (20 wt% PZT in the PZT-PVDF composite), when its 

moving end is displaced by 10 mm. 

Characterization of the piezoelectric properties of the CNT-PVDF composite fibers 

Piezoelectric generators based on CNT-PVDF fibers were assembled following the same 

procedures described before. We first studied the dependence of the voltages generated by the 

CNT-PVDF fibers on CNT concentrations. As shown in Fig. 4. 6b, when the moving end of the 

fiber generators was displaced by 10 mm, the 10-cm long CNT-PVDF fiber generator containing 

0.1 wt% CNT generated an open-circuit voltage of ~0.8 V, while the generator containing 0.6 wt% 

CNT generated an open-circuit voltage of as high as ~6.8 V. We, furthermore, find that the fibers 

with CNT concentrations higher than 0.6 wt% are challenging to fabricate, as they tend to break 

up during the drawing process. Thus, we adopted an optimal CNT concentration of 0.4 wt% for all 

our CNT-PVDF fibers that guaranteed the ease of drawing while maintaining high generated 

voltage. The Fig. 4.6c, d show that when the moving end of the CNT-PVDF (0.4 wt% CNT) fiber 

generator was displaced by 5 to 20 mm, the open-circuit voltage increased from ~ 1.7 to ~3.7 V, 

and the short-circuit current increased from ~0.2 to ~0.7 nA. From this we conclude the 

performance of the CNT-PVDF (0.4 wt% CNT) fiber generator is comparable to that of the BTO-

PVDF (20 wt% BTO) fiber generator.  
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Figure 4.6 : (a) Photo of a CNT/PVDF fiber generator. (b) Open-circuit voltage of a 10-cm long 

CNT-PVDF fiber generators with CNT concentrations of 0.1, 0.2, 0.4 and 0.6 wt% under 10 mm 

displacement. (c) and (d) show the open-circuit voltage and short-circuit current of a 10-cm long 

CNT-PVDF fiber (CNT concentration: 0.4 wt%), when the moving end of the fiber was displaced 

by 5, 10, 15, 20 mm. 

4.3 Examples of practical applications of piezoelectric fibers 

4.3.1 Stand-off distributed sound detection 

Our piezoelectric fibers can be used for stand-off sound detection, which opens various 

possibilities in security and defense applications. In our experiment, the sound wave was generated 

by a speaker (Dell computer speaker) and a software (Adobe Audition CC 2015). The distance 

between the fiber and speaker is ~20 cm. Fig. 4.7 shows the structure of the sound wave and the 

output voltage obtained from the CNT/PVDF fiber (10 cm length). The sound pressure level (SPL) 

of the actuating sound was ~20 dB (0.2 mPa) at 1 Hz where dB = 20log10(𝑃 𝑃0⁄ ), 𝑃0 = 20 𝜇Pa, 

and the amplitude of the fiber output voltage was in the range of 50 to 70 mV. The SPL of the 

actuating sound was measured using a sound level meter (Larson Davis model 831). 
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Figure 4.7 : (a) Schematics of the experimental setup. (b) The sound wave (Red) and the output 

voltage from the CNT/PVDF fiber actuated by the sound wave.  

 

Figure 4.8 : (a) The output voltage generated by the CNT/PVDF fiber at the frequencies of the 

actuating sound wave of 1 Hz, 2 Hz and 4 Hz for SPL of ~ 20 dB. (b) The square of the output 

voltage of the piezoelectric fiber vs. frequency of the sound wave. In the experiment, we measured 
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20 pulses, and the value of the mean voltage was calculated by averaging the peak value of the 

measured pulses. The error bar is calculated by the standard deviation (SD) of the peak value of 

measured pulses.  

When a piezoelectric generator is actuated by the sound waves, the generated voltage V could 

be generally related to the acoustic power P incident onto the fiber as: V2~P/f, where f is the 

frequency of the applied sound wave, while the time average power incident on the fiber is given 

by 𝑃 = 𝐴𝑃0
2 (2𝑍0)⁄ , where 𝑃0 is the local value of the sound wave pressure, A is the fiber surface 

and 𝑍0 is air impedance [141]. Fig. 4.8a shows the output voltage from the CNT/PVDF fiber under 

the frequencies of 1 Hz, 2 Hz, 4 Hz, 6 Hz, 8 Hz and 10 Hz respectively, when the input power level 

of the sound was held constant with the correspondent SPL at ~20 dB. As shown in Fig. 4.8b, the 

𝑉2 was linearly dependent on the frequency of the applied sound wave in accordance with ref 

[141]. 

Furthermore, we investigate performance of the sound-driven fiber generator under water. 

Experimentally, the two ends of a 10 cm long CNT-PVDF fiber were fixed in a water tank with a 

dimension of 60 cm×28 cm×15 cm. An ultrasonic probe was also immersed under water to emit 

ultrasound waves with a frequency of ~20 kHz. The distance between the probe and the fiber was 

~ 20 cm. While the sonication was repeated with a period of 6 s (1 s on, 5 s off), the piezoelectric 

voltage generated by the fiber was continuously measured. As the power of the ultrasound wave 

increased, the amplitude of voltage generated by the CNT-PVDF fiber also increased (Fig. 4.9c, d) 

according to V2~P/f. We note that in Fig. 4.9c the generated voltage does not return to zero as the 

off time (5 s) is too short for all the water oscillations in the tank to subside. Normally, the off time 

should be longer than a minute to see the generation voltage to approach zero value.   
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Figure 4.9: (a) Schematic and a photo (b) of experimental setup of the underwater ultrasound 

detection using a CNT-PVDF fiber. (c) Piezoelectric voltages generated by the fiber, when the 

source acoustic powers were 2 W, 4 W and 6 W. (d) The square of the piezoelectric voltage 

generated by the generator has a linear relationship with the acoustic power. In the experiment, we 

measured 20 pulses, and the value of the mean voltage was calculated by averaging the peak value 

of the measured pulses. The error bar is calculated by the standard deviation (SD) of the peak value 

of measured pulses. 

4.3.2 Textile-based piezoelectric generators woven using BTO-PVDF fibers 

Here, we present two prototypes of the flexible, textile-based piezoelectric generators. They 

were fabricated using individual piezoelectric BTO-PVDF fibers and a classic Dobby-loom 

weaving process (Fig. 4.10 a, b). We demonstrate that such textile generators could be potentially 

used as tactile or motion sensors for sport outfits or medical apparels; or for micro-power-

generation in automotive and aeronautic industries for powering various electronic devices. In the 

first prototype, four 20 cm-long BTO-PVDF fibers (20 wt% BTO in BTO-PVDF composites) were 

weaved into a textile and then connected in series. The textile was then tightly wrapped around a 



55 

 

human elbow (Fig. 4.10c). In a 90 degree bend-release action of the elbow, the piezoelectric textile 

could generate open-circuit voltages of up to ~10 V and short-circuit currents of 5-15 nA (Figure 

4.10d, e).  

 

Figure 4.10: (a) Dobby loom was used to weave piezoelectric fibers into a cotton textile. During 

weaving, cotton yarns are used as a warp (longitudinal threads forming the textile base). 

Piezoelectric fibers are introduced during weaving as a weft by passing them through the warp 

cotton yarns. (b) A cotton-based textile containing 4 piezoelectric fibers woven using a Dobby 

loom. (c) Electrical properties of the piezoelectric textile in a 90° folding-release action of the 

elbow.  (d) Open-circuit voltages and short-circuit currents generated by the piezoelectric textile 

during repeated fold-release motion of the elbow. (e) Open-circuit voltage of the piezoelectric 

textile in a fold-release elbow action.  
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In the second prototype, fifteen 20 cm-long fibers are weaved into a textile and connected in 

parallel. We then used this textile as a seat pad of a vehicle (Hyundai sedan) and put a 22 kg 

sandbag on it (Fig. 4.11a). As we drove the vehicle on urban roads, traffic-induced vibration of the 

vehicle led to distortion of the piezoelectric fibers in the textile, thus generating electric current. A 

simple full-wave bridge rectifier circuit was used to ensure that the current generated by the textiles 

would charge a 10 F capacitor with consistent polarity (Fig. 4. 11c). During a 6000 s period of 

urban-road driving under regular traffic condition, the piezoelectric textile was able to charge the 

capacitor from 0 to ~0.3 V (Fig. 4. 11d). The charging rate could be further improved by adding 

more fibers to the power-generation pad.  

 

Figure 4.11: (a) Photo of the experimental setup for the in-car test. The piezoelectric fiber textile 

(b) (consisting of fifteen 20 cm-long piezoelectric fibers connected in parallel) was utilized as an 

automotive microgenerator pad to charge a 10 F capacitor via a bridge rectifier circuit shown in 

(c). (d) Voltage of the capacitor charged by a piezoelectric textile during driving and stationary 

state of the vehicle.  
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4.4 Conclusion 

In summary, we have studied several material combinations, piezoelectric fiber designs and 

manufacturing techniques that allow fabrication of piezoelectric fibers with greatly enhanced 

piezoelectric properties compared to the existing counterparts. The micro-/nanostructured 

piezoelectric fibers presented here feature a soft hollow PC core surrounded by a multilayer 

cladding consisting of alternating PVDF-based nanocomposite layers and conductive C-LDPE 

layers. We have also performed comparative study of three material combinations. A BTO/PVDF 

microstructured fiber (10 cm long; BTO concentration: 20 wt%) could generate an open-circuit 

voltage of 1.4 V and a short-circuit current of 0.8 nA, when the moving end of the generator was 

displaced transversely by 10 mm. The corresponding voltage and current were ~6 V and ~4 nA for 

a PZT-PVDF (20 wt% PZT) fiber generator, and ~3 V and ~1.2 nA for a CNT-PVDF (0.4 wt% 

CNT) fiber generator. Perovskite ceramics (such as BTO and PZT) could improve the fiber 

performance owing to their high piezoelectric coefficient. On the other hand, CNT could induce 

the crystallization of polar phase in PVDF layers, thus leading to remarkable improvements in 

piezoelectric performance. Also we note in passing that the CNT/PVDF microstructured fibers are 

easier to draw to smaller diameters and they appear to have better mechanical flexibility. The 

resultant fibers exhibit excellent durability with high piezoelectric voltages (of up to 6 V) in a 

cyclic bend-release test (greater than 26000 cycles). Finally, we have present several examples of 

the practical applications of the proposed piezoelectric fibers: for distributed stand-off sound 

detector using CNT-PVDF fibers, and for energy harvesting using textile-based piezoelectric 

generators that incorporate BTO-PVDF fibers.  

The microstructured fibers developed in this work have the following advantages compared 

to other existing piezoelectric fibers. Firstly, the proposed piezoelectric fibers adopt a spiral 

multilayer structure, which considerably increases the active areas of the piezoelectric materials, 

and, thus results in higher energy generation efficiency. The piezoelectric performance of the 

proposed fibers could be further improved simply by increasing the number of piezoelectric layers 

in the fiber structure. Secondly, the outermost C-LDPE layers serve as two spatially-offset 

electrodes on the fiber surface, thus greatly simplifying connectorization to our fibers. Thirdly, 

owing to thermal fiber drawing process, the dimensions of piezoelectric fibers can be as small as 

hundreds of microns, which enables their applications inside small tubes, such as blood vessels 
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[66, 168, 169]. Moreover, the soft piezoelectric fibers with well-controlled geometries can be 

woven into low-cost fabrics that allows wearable, portable and large-area applications. Other 

advantages include use of low cost materials during fabrication, high flexibility, good durability, 

and possibility of mass production using fiber drawing technique. 

4.5 Experimental section 

4.5.1 Solution preparation 

BTO-PVDF Solution Preparation. BTO (nanoparticles with average diameter of 200 nm; US 

Research Nanomaterials Inc.) of defined amount was dispersed in dimethylformamide (DMF) 

solvent (Sigma-Aldrich) using a probe-type sonicator (Fisher Scientific Inc.) at 100 W in 5 s 

intervals (3 s pulse on, 2 s pulse off) for 1 h. PVDF (pellet, Mw ~275000, Sigma-Aldrich) was 

dispersed in acetone using a magnetic stirrer for 10 min. Then, the BTO solution and the PVDF 

solution were mixed together while being heated at 100 ℃ using a magnetic stirrer for 1 h.  

Subsequently, the BTO-PVDF solution was sonicated at 75 W in 5 s intervals (3 s pulse on, 2 s 

pulse off) for 15 min and then put in a vacuum chamber for 5 min to remove air bubbles. In our 

experiments, the concentration of PVDF in the solution was 20 wt%, and weight concentration of 

BTO in the as-spun BTO-PVDF composite mats was varied from 5 to 25 wt% with a 5 wt% 

interval. The DMF/acetone volume ratio was 2/3. 

PZT-PVDF Solution Preparation. PZT powders (APC 850) purchased from APC Inc. 

generally have a size ranging from 10 to 50 μm. To reduce the PZT particle size and thus enhance 

their piezoelectric functionality, PZT powders were milled using a ball-milling machine (MSK-

SFM-2, MTI Corporation) for 10 h with a milling speed of 200 rpm. 10 ZrO2 balls with a diameter 

of 10 mm were used as the milling medium. The weight ratio of PZT powders to the milling balls 

was 1:20. The milled PZT powders could be then used for the preparation of PZT-PVDF solutions, 

which follows exactly the same procedures as the case of BTO-PVDF solutions. 

CNT-PVDF Solution Preparation. Multi-walled carbon nanotubes (Sigma-Aldrich) of 

defined amount was dispersed in DMF solvent using an ultrasonicator for 15 min. PVDF (pellet, 

Mw ~275000, Sigma-Aldrich) was dispersed in acetone using a magnetic stirrer for 10 min. Then, 

the CNT solution and the PVDF solution were mixed together while being heated at 100 ℃ using 



59 

 

a magnetic stirrer for 1 h.  Subsequently, the CNT-PVDF solution was sonicated at 75 W in 5 s 

intervals (3 s pulse on, 2 s pulse off) for 15 min and then put in a vacuum chamber for 5 min to 

remove air bubbles. In our experiments, the concentration of PVDF in the solution was 20 wt%, 

and weight concentration of CNT in the as-spun BTO-PVDF composite mats was varied from 0.2, 

0.4, and 0.6 wt%. The DMF/acetone volume ratio was 2/3.  

4.5.2 Electrospinning of BTO-PVDF, PZT-PVDF and CNT-PVDF solutions 

The as-prepared PVDF-based composite (BTO-PVDF, PZT-PVDF or CNT-PVDF) 

solutions were electrospun using an Electrospinning Workstation (MSK-NFES-3, MTI 

Corporation) to fabricate the corresponding mats. In electrospinning, the solution was first loaded 

into a glass syringe (Hamilton, 20 mL) equipped with a blunt metallic needle (Hamilton, 22 gauge). 

A high voltage of 15 kV was then applied to the syringe needle, while a drum collector (diameter: 

5 cm) used as the substrate of the as-electrospun mat was grounded. The distance between the 

needle tip and the drum collector was ~15 cm. The spinning solution was delivered to the needle 

tip at a flow rate of 1 mL∙h−1. To ensure uniformity of the thickness of the electrospun mat, the 

syringe was mounted onto a motor-driven platform that scans tangentially to the drum collector 

with a speed of 2 mm/s. A SEM image of the as-electrospun BTO-PVDF mats was shown in Fig. 

4.1f.  

4.5.3 Preparation of the piezoelectric fiber preforms and fiber drawing 

To fabricate the fiber preform, four alternating PVDF-based composite mats (100 μm-thick) 

and C-LDPE films (85 μm-thick) are co-rolled around a hollow PC tube as shown in Fig. 4.1b. 

Before drawing, the preform was consolidated in a vacuum furnace at 110 °C for ∼24 h. The 

preform was then drawn at 190 °C into piezoelectric fibers using the fiber drawing technique. In 

particular, the preform was placed into the vertical furnace of the fiber drawing tower, where the 

temperature is increased above the polymer softening temperature. As a consequence, the preform 

tip melts, and forms a blob that later falls down under the force of gravity, thus creating a slender 

fiber that can be continuously pulled from the molten perform tip. In actuality, a clamp tractor is 

used to continuously pull the fiber at a constant speed. The final size of a resultant fiber depends 

on the parameters used in the drawing process such as fiber drawing speed, temperature distribution 

in the furnace, preform feeding speed, as well as overpressure used during fiber fabrication. 
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Experimentally, we set the drawing speed as 500 mm/min, and used an air-pressure of 3 mbar to 

pressurize the fiber core during drawing.  

4.5.4 Electrical measurements 

The open-circuit voltage and short-circuit current of the devices were measured by an 

electrochemical station (Ivium Technologies). The sampling time constant was 0.1 s. The 

bend/release actions of the devices were controlled by a micropositioning stage. The displacement 

velocity during bend/release cycles was 5 cm/s. The bend/release cycle was repeated every 10.4 s. 

During each cycle, the bend motion lasted 0.2 s, followed by a pause of 5 s in the bent state, 

followed by 0.2 s of the release motion, and finally followed by a 5 s pause in the released state. 

4.6 Supporting information 

Here we discuss in more details the effects of the fiber length on the output voltage and 

current of the piezoelectric devices reported in the main paper.  

As shown in Fig. 4. 12, when the moving end of a CNT-PVDF (CNT concentration: 0.6 

wt.%) fiber generator (10 cm long) is displaced by 10 mm, it generates an open-circuit voltage of 

~6 V and short-circuit current of ~ 0.4 nA. Then, we cut the fiber generator into two 5 cm-long 

pieces and test the output characteristics of the individual fiber piece under 5 mm displacement. 

This displacement was chosen to provide the same bending strain as the case of the longer 10 cm 

fiber under 1 cm displacement. As a result, the short fiber generator generates an open-circuit 

voltage of ~3 V and a short-circuit current of ~ 0.4 nA. 

From this we can conclude that the output voltage of the piezoelectric fiber increases with 

the fiber length, while the output current of the piezoelectric fiber remains constant.  

This result can be easily rationalized by noticing that increasing the fiber length two folds is 

equivalent to join two shorter fibers in series, which results in a higher net open-circuit voltage and 

higher resistivity thus the same short-circuit current. 
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Figure 4.12 : The output characteristics generated by the 0.6 wt% CNT/PVDF fibers (Left: 10 cm-

long fiber under 10 mm bending displacement; right: 5 cm-long fiber under 5 mm bending 

displacement). 

Then we investigate how the electrical characteristics of the circuits made of several 

piezoelectric fibers depend on the type of the connection. In fact, we find that the piezoelectric 

fibers behave like classic voltage sources with internal resistances. In our experiments, we used 

two identical 10 cm long CNT-PVDF fibers. In Fig. 4.13, we present photos of experimental setup 

used in our studies. The two fibers were first placed on the Kapton tape parallel each other separated 

by 1 cm. The polystyrene substrate was placed under the Kapton tape similarly to the arrangement 

shown in Fig. 4.3. During the experiment, 1 cm displacement was used. As a result, we find that 

the output voltage generated by the two piezoelectric fibers connected in series is two times higher 

than that of the two fibers connected in parallel, while the output current generated by the two 

piezoelectric fibers connected in series is half of that generated by the two fibers connected in 
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parallel. 

 

 

Figure 4.13 : (a) Two 0.4 wt% CNT/PVDF fibers (10 cm long) connected in parallel; (b) Two 0.4 

wt% CNT/PVDF fibers (10 cm long) connected in series.  



63 

 

 

Figure 4.14 : The output characteristics generated by two 10 cm-long 0.4 wt% CNT/PVDF fibers, 

when the moving tip of the fiber generators is displaced by 10 mm (Left: two fibers are connected 

in series; Right: two fibers are connected in parallel). 
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CHAPTER 5 ARTICLE 2: PIEZOELECTRIC MICROSTRUCTURED 

FIBERS VIA DRAWING OF MULTIMATERIAL PREFORMS 

This chapter is based on the paper “Piezoelectric Microstructured Fibers via Drawing of 

Multimaterial Preforms,” published in Scientific Reports in 2017 [170]. I am the primary author of 

this paper, while this paper is co-written by Hang Qu and Maksim Skorobogatiy from Ecole 

Polytechnique de Montreal.  

In this Chapter, we demonstrate planar laminated piezoelectric generators and piezoelectric 

microstructured fibers based on BaTiO3-polyvinylidene and carbon-loaded-polyethylene materials 

combinations. The laminated piezoelectric generators were assembled by sandwiching the 

electrospun BaTiO3-polyvinylidene mat between two carbon-loaded-polyethylene films. The 

piezoelectric microstructured fiber was fabricated via drawing of the multilayer fiber preform, and 

features a swissroll geometry that have ~10 alternating piezoelectric and conductive layers. Both 

piezoelectric generators have excellent mechanical durability, and could retain their piezoelectric 

performance after 3 days’ cyclic bend-release tests. Compared to the laminated generators, the 

piezoelectric fibers are advantageous as they could be directly woven into large-area commercial 

fabrics. Potential applications of the proposed piezoelectric fibers include micro-power-generation 

and remote sensing in wearable, automotive and aerospace industries. 

5.1 Introduction 

Driven by the ever-growing market of the personal wearable products such as on-garment 

displays, health-monitoring sensors [171], virtual-reality devices, smartwatches and bracelets, and 

intelligent glasses, extensive effort has been devoted to the R&D of soft and wearable electronics 

[61]. The development of wearable and portable electronics has inspired much work [172] in the 

design and fabrication of flexible fibers which could be used as power sources or sensor 

components. Among all of these fiber generators or sensors, piezoelectric fibers that operate based 

on piezoelectric effect [37] are especially attractive, because they could convert mechanical 

vibrations accessible in our daily life (i.e. walking [173], airflow [174, 175] and heart beating [176, 

177]) into electrical signals. Another application of piezoelectric generators is related to automotive 

or aerospace industries [178]. Piezoelectric generators or sensors are implanted on the airplanes 

and vehicles, for the purpose of structural integrity monitoring [179, 180], as well as powering the 
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on-board electronic systems such as wireless sensor networks (WSNs) with low-power 

consumption [150]. 

To date, a number of piezoelectric fibers have been demonstrated. A straightforward route 

for fabrication of the piezoelectric fibers is to directly grow or wet-extrude piezoelectric ceramic 

materials such as ZnO nanorods or nanowires (NWs), BaTiO3 (BTO) nanostructures and 

Pb(Zr0.52Ti0.48)O3 (PZT) NWs along a metallic wire/microfiber [51, 52, 116, 136, 176]. For 

instance, Yin et al. report a piezoelectric fiber by depositing ZnO nanorods on a copper wire [135]. 

However, for these fibers, frequent and intensive mechanical movements may potentially damage 

the fiber structure (e.g. the continuous bending can make the piezoelectric layers cracking, and 

even peeling off from the fiber core). Thus, the as-fabricated fiber generators typically suffer from 

poor mechanical reliability, which makes them unsuitable for truly wearable applications. To 

improve robustness of the fibers, Zhang et al. have coated a thin layer of polydimethylsiloxane 

(PDMS) on the roots of ZnO NWs using surface-coating combined with plasma-etching [136]. An 

alternative route for fabrication of the piezoelectric fibers involves the utilization of piezoelectric 

polymers. In principle, piezoelectric fibers based on piezoelectric polymers usually feature better 

mechanical robustness and flexibility. Among all of these piezoelectric polymers, poly(vinylidene 

fluoride) (PVDF) and poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) are particularly 

attractive due to their ease of production, high chemical resistance, superior flexibility, and good 

piezoelectric performance. Most of the existing piezoelectric polymer fibers are fabricated by melt-

spinning or extrusion. For example, Lund et al. reported the melt-spinning of a PVDF-yarn with a 

conductive carbon black/polypropylene (CB/PP) core [63, 65, 88, 89]. Using a similar method, 

Bian et al. demonstrated a metal-core piezoelectric fiber that had a PVDF sheath and a 

molybdenum filament core [181]. Recently, Martins et al. used the melt-coextrusion method to 

fabricate a piezoelectric fiber that has a piezoelectric PVDF layer sandwiched by two 

polypropylene-based conductive polymers [62]. Note that the piezoelectric fibers fabricated by 

traditional spinning methods typically adopt a simple core-sheath structure, in which a conductive 

filament constitutes the core, and a piezoelectric polymer layer constitutes the sheath. Besides, an 

additional conductive layer should be coated on the fiber as an external electrode that may limit 

the lifetime and applications of the as-spun fibers, since the metallic layer under repeated 

mechanical deformations generally results in fracture. In the case of fiber spinning/stretching, the 

stress applied on the fiber can induce the conversion of the nonpolar  into the ferroelectric   phase. 
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Additionally, an electrical poling of the piezoelectric fibers during (or after) the spinning process 

can considerably promote the phase transformation.  

Fabrication of the piezoelectric polymer fibers could be also achieved by fiber drawing 

technique (Fig. 5.1a). In this method, kilometer-long piezoelectric fibers of sub-millimeter 

diameters are thermally drawn from a geometrically complex multimaterial fiber preform. The 

fiber perform could be assembled using a variety of materials such as thermoplastic polymers, glass 

and even metals. The preform is then heated in a vertical furnace and drawn into the extended 

lengths of fiber. The resultant fiber generally preserve the perform structure but with a much 

smaller cross-section dimension. By engineering the fiber inner microstructure and optimizing the 

drawing conditions, the fibers produced from fiber drawing technique would provide various 

electrical functionalities as well as great mechanical flexibility. Egusa et al. [66] reported the 

fabrication of piezoelectric fibers based on PVDF-TrFE using the fiber drawing technique. In that 

fiber, the PVDF-TrFE layer was sandwiched between two carbon-loaded polycarbonate layers and 

assembled with Tin microfilaments as the electrodes. The fiber also covered with polycarbonate 

shell for the protective cladding. The limitations of these piezoelectric fibers are evident, as they 

use very expensive PVDF-TrFE material, and the integration of Tin microfilaments reduces the 

fiber reliability. Kanik et al. fabricated piezoelectric PVDF micro- and nanoribbons using iterative 

size reduction technique based on thermal fiber drawing [93]. In order to obtain spontaneously 

polar  phase PVDF, one should redraw the same fiber multiply. At this point, the robustness and 

reproducibility of this fabrication technique would be major concerns; however, there were no 

further evaluations and reports of this fabrication method. Also, consecutive re-drawings of the 

same fiber would be time and labor consuming. Instead, a PVDF can be impregnated with 

piezoelectric ceramics such as BTO and PZT, in order to enhance the piezoelectric performance of 

the drawn fibers [34, 156, 157]. Although a higher concentration of the piezoelectric fillers 

typically leads to improved piezoelectric properties, it would also cause flow instabilities that 

eventually result in fiber breakage. Thus, to enable the stable drawings, one should properly choose 

the concentration of the piezoelectric fillers. 

This paper describes the material combinations and processing employed in the preparation 

of piezoelectric laminated generators and piezoelectric fibers. We also present a detailed study of 

the piezoelectric properties of the as-fabricated laminated generators and fibers. The laminated 

piezoelectric generators were assembled by sandwiching an electrospun piezoelectric mat between 
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two conductive polymer films. The piezoelectric fibers were fabricated via drawing of the 

multilayer fiber preforms. In our choice of the materials for fiber fabrication we used two criteria. 

First, to obtain the fibers with high piezoelectric performance, the active material should have high 

piezoelectric coefficient. Second, to maintain the high degree of control over drawing of the 

kilometer-long piezoelectric fibers the materials in the fiber preform should be thermo-

mechanically compatible. Thus, PVDF was chosen as the host material for the piezoelectric layers, 

as it is a low-cost, stable thermoplastic polymer that can exhibit relatively high value of the 

piezoelectric coefficient. BTO nanoparticles were impregnated into PVDF polymer to improve its 

piezoelectric properties. BTO-PVDF nanocomposite mats used in planar generators and fiber 

preform assembly were fabricated using electrospinning as this process allows fine-tuning of the 

thermo-mechanical properties of nanocomposites by changing the polymer molecular weight, the 

concertation of the BTO nanoparticles and the processing conditions. Carbon-impregnated low 

density polyethylene (C-LDPE) was selected as the conductive materials, as it is both thermoplastic 

and electrically conductive (volume resistivity: 2.2 𝛺 ∙ 𝑚). The polycarbonate (PC) polymer was 

used as the fiber core, acting as the mechanical support for the active layers during fiber drawing. 

The resulting piezoelectric fibers typically feature ~10 bilayers of C-LDPE films and BTO-PVDF 

piezoelectric layers that are wrapped around a polycarbonate core (Fig. 5.1b, d). The two fiber 

electrode layers were extended to the opposite sides of the exposed fiber surface for convenience 

of the electrical connectorization (Fig. 5.1b, c). The piezoelectric fibers could effectively convert 

mechanical energy into electricity. Experimentally, a piezoelectric fiber (20 wt% BTO-PVDF; 10 

cm length) could generate an open-circuit voltage of ~1 V and a short-circuit current of ~0.7 nA, 

when subjected to a 10 mm-bending displacement in a cyclic bend-release test (0.1 Hz). More 

importantly, the piezoelectric fiber retained its performance even after three days’ cyclic bend-

release tests. Compared to other piezoelectric fibers [51, 63, 113, 182], the fibers presented in this 

work feature a swiss roll structure of the piezoelectric layer, which considerably increases the 

active surface area and reduces the layer thickness, this resulting in considerably higher voltages 

and currents (and consequently electric powers) that can be generated by such fibers. Large-area 

piezoelectric textiles could be fabricated by incorporating the drawn fibers into woven fabrics, 

thanks to their excellent mechanical properties (as they are made only of plastics), and the use of 

low-cost, high volume fabrication techniques (fiber drawing). Finally, we conclude the paper by 

detailing several technology demonstrators with potential applications for powering personal 
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electronics and wearable sensing in the smart garments, automotive and aerospace industries.  

 

Figure 5.1: Fabrication of the piezoelectric microstructured fibers via drawing of the multimaterial 

preforms. (a) Schematic of the fabrication process of a piezoelectric fiber. (b) Schematic of the 

multilayer structure in the fiber preform and in the microstructured fiber. (c) Photo of a preform 

cross section. (d) Photo of a cross section of the piezoelectric microstructured fiber. Insert: the 

magnified view of a multilayer structure. (e) Photo of a piezoelectric microstructured fiber.  

5.2 Results 

5.2.1 Fabrication and characterization of the laminated piezoelectric 

generators 

Before we present fiber-based piezoelectric generators, we first detail piezoelectric 

properties of the BTO-PVDF nanocomposites used in fiber fabrication. BTO-PVDF mats (Fig. 

5.2b) were fabricated via electrospinning with the BTO concentrations of 5, 10, 15 and 20 wt%. 

The FTIR [140, 183-185] and XRD [140, 184, 186] studies of the BTO-PVDF mats are presented 

in Supplementary Note 1.  
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Figure 5.2: Design and performance of the laminated piezoelectric generators. (a) Schematic of a 

laminated BTO-PVDF generator that uses an electrospun piezoelectric mat. (b) SEM images of a 

BTO-PVDF mat at different magnifications. Insert: a magnified image of the BTO-PVDF 

nanocomposite. (c-d) Testing the laminated piezoelectric generator in its bent and released state.  

A laminated piezoelectric generator was assembled by gluing an entire BTO-PVDF mat 

(thickness: 100 m) between the two C-LDPE electrode films (thickness: 75 m) using adhesive 

silver paste (Fig. 5.2a). And then the generators were poled in a silicone oil bath (80 ℃) under the 

voltage of 5 kV for 24 hours. We then immobilized the laminated generator on a 1 mm thick 

polystyrene (PS) substrate using Kapton tape. Due to asymmetry in the generator structure, bending 

of the PS substrate would lead to the non-zero average strain in the BTO-PVDF mat. 

Experimentally, one end of the PS substrate was fixed, while the other end was horizontally 

displaced by a micropositioning stage, thus bending the generator. The laminated generators were 

cut into a rectangular shape with dimensions of 10 cm (in x direction) by 5 cm (in y direction), and 

the moving end of a generator is displaced along the x direction as shown in Fig. 5.2c, d. A typical 

voltage and current generated by a 20 wt% BTO-PVDF laminated generator under a 10 mm-

bending displacement is shown in Fig. 5.3a, b. When the moving end of the generator was displaced 

by 5 to 20 mm, the corresponding open-circuit voltage increased from ~4 to ~8 V, and the short-

circuit current increased from ~18 to ~50 nA (Fig. 5.3c, d). 
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Figure 5.3: Performance of the laminated piezoelectric generators. (a) and (b) show the generated 

output voltage of the laminated planar generator under bending cycle at different bending 

displacements (5, 10, 15, and 20 mm). (c) and (d) show the output voltages and currents generated 

by a BTO-PVDF generator (20 wt.% BTO in the BTO-PVDF composite) when subjected to a 10 

mm bending displacement. 

The concentration of the BTO nanoparticles have a substantial effect on the piezoelectric 

properties of the mats. As the BTO concentration increased from 5 wt% to 25 wt%, the open-circuit 

voltage of the generator with its moving end displaced by 10 mm increased from ~0.5 V to ~8 V 

(Supplementary Fig. 5.8). We also note that the electrical poling process that would align the 

dipoles is critical to actuate the piezoelectric function. Compared to the case of the poled generators, 

the unpoled ones generally have a piezoelectric voltage one order smaller (Supplementary Fig. 5.9). 

Finally, we tested the durability of the generator by continuously repeating the bend-release 

measurements for 3 days. The generator retained well its piezoelectric voltage and current 

throughout the whole test that comprised ~26000 bend/release cycles (Supplementary Fig. 5.10). 
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5.2.2 Electro-mechanical model of the planar piezoelectric generator 

In what follows we describe the fundamentals of operation of the laminated piezoelectric 

generators and study the relationships between the generated voltages and currents with the applied 

stage displacements, piezoelectric mat width and thickness. As an example, we focus on the 

electrical signals generated during the release part of the bending cycle. Thus, in the bent state, the 

generator can be divided into three regions with the lengths of 𝑙/4, 𝑙/2 and 𝑙/4, according to the 

sign of the curvature of the generator. In the first and the third regions the generator is under stress, 

while in the second region the generator is under strain (see Fig. 5.4a), therefore generating 

(∆𝑄, −2∆𝑄, ∆𝑄 ) fixed surface charges in the piezoelectric mat. In the equilibrium state of a 

generator, these charges are compensated by the opposite free charges in the electrodes. Therefore, 

at the beginning of the generator release (when the stress on the piezoelectric layer is suddenly 

released and the generator is flattened), mobile surface charges (−∆𝑄, 2∆𝑄, −∆𝑄) will be present 

on the conductive electrodes. Consequent charge equilibration in the generator can then be 

approximated in terms of the effective electrical circuit shown in Fig. 5.4b, where 𝐶 is the generator 

capacitance, 𝑅𝑒 is a single electrode resistance, while 𝑅𝐿 is the resistance of the load.  

In the case of a planar piezoelectric mat of length 𝑙, width 𝑤, thickness 𝑑𝑝, and dielectric 

constant ϵ𝑝, the generator capacitance is 𝐶 =
ϵ𝑝𝜖0𝑙𝑤

𝑑𝑝
. At the same time resistance of the electrode 

resistance that covers the mat is 𝑅𝑒 = 𝜌
𝑙

𝑤𝑑𝑒
, where 𝑑𝑒  is the electrode thickness and 𝜌  is the 

electrode material bulk resistivity. Using standard analysis of the basic electric circuits 

(Supplementary Note 2), we can derive the following expressions for the open circuit voltage 

𝑉𝑜𝑐(𝑡)~𝑉𝑚𝑎𝑥
𝑜𝑐 𝑒−2

𝑡

∆𝑡𝑜𝑐 and the short circuit currents 𝐼𝑠𝑐(𝑡)~𝐼𝑚𝑎𝑥
𝑠𝑐 𝑒−2

𝑡

∆𝑡𝑠𝑐 with the following maximal 

values of the open circuit voltage and short circuit currents, as well as equilibration times ∆𝑡𝑜𝑐, and 

∆𝑡𝑠𝑐:   

Open-circuit voltage:              𝑉𝑚𝑎𝑥
𝑜𝑐 = 𝑉𝑜𝑐(0) = −

4∆𝑄

𝐶
                

  ∆𝑡𝑜𝑐~2𝜏0           

Short-circuit current:               𝐼𝑚𝑎𝑥
𝑠𝑐 = 𝐼𝑠𝑐(0) =

∆𝑄

𝜏0
                                                                                                                       

                                                ∆𝑡𝑠𝑐~1.5279𝜏0                                                              (1) 
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where the time constant is defined as: 

                                                𝜏0 =
𝑅𝑒𝐶

8
=

𝜌ϵ𝑝𝜖0

8

𝑙2

𝑑𝑝𝑑𝑒
                                                    (2) 

According to ref. [34], fixed charges ∆𝑄 induced on the surface of a piezoelectric mat of 

length 𝑙/4 (see Fig. 5.4a) can be calculated as: 

∆𝑄 = 𝑑31𝑌𝑝𝜀𝑤 ∙
𝑙

4
                                                        (3) 

where 𝑑31 is the piezoelectric coefficient of a piezoelectric mat, 𝑌𝑝 is the Young’s modulus 

of the piezoelectric material, 𝑤 is the width of the piezoelectric mat, and 𝜀 is the applied strain. 

From Eq. (1), we can then conclude that the peak open-circuit voltages have a liner relationship 

with the applied strain 𝜀: 

|𝑉𝑚𝑎𝑥
𝑜𝑐 | = 𝜀

𝑑31𝑌𝑝𝑤𝑙

𝐶
= 𝜀𝑑𝑝

𝑑31𝑌𝑝

ϵ𝑝𝜖0
 

                                                 |𝐼𝑚𝑎𝑥
𝑠𝑐 | =

∆𝑄

𝜏0
= 2𝜀

𝑤∙𝑑𝑝𝑑𝑒

𝑙

𝑑31𝑌𝑝

𝜌ϵ𝑝𝜖0
                                       (4)        

The evaluation of the applied strain 𝜀 is presented in the (Supplementary Note 3). By using 

a model for the buckling of thin beams, according to ref. [51, 187], the strain in the PVDF mat can 

be determined as: 

𝜀 ≈ 2𝜋
𝑑𝑃𝑆√𝛥𝑙

𝑙3 2⁄                                                                (5) 

where 𝑑𝑃𝑆 is the polymer substrate thickness, 𝛥𝑙 is the stage displacement, and 𝑙 is the length 

of the laminated piezoelectric generator. Finally, remembering a relationship between the maximal 

open circuit voltage and the strain given by Eq. (4), we conclude that generated voltages and 

currents depend in a non-linear manner with the generator displacement, namely: 

|𝑉𝑚𝑎𝑥
𝑜𝑐 | = 𝜀𝑑𝑝

𝑑31𝑌𝑝

ϵ𝑝𝜖0
= 2𝜋

√𝛥𝑙𝑑𝑃𝑆𝑑𝑝

𝑙3 2⁄

𝑑31𝑌𝑝

ϵ𝑝𝜖0
  

|𝐼𝑚𝑎𝑥
𝑠𝑐 | =

∆𝑄

𝜏0
= 4𝜋

𝑤√𝛥𝑙𝑑𝑃𝑆𝑑𝑝𝑑𝑒

𝑙5 2⁄

𝑑31𝑌𝑝

𝜌ϵ𝑝𝜖0
                                    (6) 

To test our theoretical model against experimental measurements, we first characterized the 

laminated generators (𝑤:~5 cm; 𝑙:~10 cm) under different stage displacements. In Fig. 5.4c, d we 
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plot the peak voltages (|𝑉𝑚𝑎𝑥
𝑜𝑐 |) and currents (|𝐼𝑚𝑎𝑥

𝑠𝑐 |) as a function of the displacements (√𝛥𝑙) as 

calculated using Eq. (6) and observe an almost linear dependence in good agreement with theory. 

Note that, for each displacement, we repeated the bend-release cycles for 20 times; and the value 

of  |𝑉𝑚𝑎𝑥
𝑜𝑐 | and |𝐼𝑚𝑎𝑥

𝑠𝑐 | are the average of these measured peaks. Then, we studied the relationship 

between the measured voltages (currents) and the piezoelectric mat width. We cut a generator along 

its longitudinal direction, and thus obtained smaller pieces with 1 2⁄ , 1 4⁄  and 1 8⁄  of the original 

widths and the same mat length. In Fig. 5.4e we find that the output voltage (|𝑉𝑚𝑎𝑥
𝑜𝑐 |) is independent 

of the piezoelectric mat width (𝑤), while generated current increases with the mat width although 

the dependence is not linear and depends strongly on a sample. Finally, we investigated the 

relationship between the measured voltages and piezoelectric mat thickness. The thickness of the 

piezoelectric mat could be increased by using a longer electrospinning time, while keeping other 

processing conditions the same. Here, the electrospinning time and materials utilized in the 

fabrication of ~100 μm-thick piezoelectric mat was twice of that of ~50 μm-thick piezoelectric mat. 

In Fig. 5.4f we observe that the output voltage (|𝑉𝑚𝑎𝑥
𝑜𝑐 |) is indeed proportional to the thickness of 

piezoelectric mats (𝑑𝑝), which is again in accordance with our theory. Finally, from Eq. (6) and 

almost linear behavior of the output voltage to the displacements (√𝛥𝑙) value (see Figure 5.4c) we 

can estimate the value of the 𝑑31 piezoelectric coefficient to be 𝑑31~ 13 pC/N which is lower than 

the 𝑑31 of BaTiO3 nanoparticles (~ 80 pC/N), but higher than that of the commercial piezoelectric 

PVDF films (~6 pC/N). Here, the dielectric constant (ϵ𝑝) of BTO/PVDF mat was estimated using 

the Bruggeman (BG) formulation:  

𝑐 ∙
ϵ𝐵𝑇𝑂−ϵ𝑝

ϵ𝐵𝑇𝑂+2ϵ𝑝
+ (1 − 𝑐) ∙

ϵ𝑃𝑉𝐷𝐹−ϵ𝑝

ϵ𝑃𝑉𝐷𝐹+2ϵ𝑝
 = 0 

where ϵ𝑝 is the complex effective dielectric constant of BTO suspension in the PVDF matrix, 

ϵ𝐵𝑇𝑂 and ϵ𝑃𝑉𝐷𝐹 are the complex constants of the pure bulk BTO and PVDF, respectively. We note 

that thus found value of the 𝑑31 coefficient should only be considered as rough estimate as its value 

was found using the predictions of several approximate models designed to explain general trends 

in the electro-mechanical operation of the planar piezoelectric generators.  
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Figure 5.4: Electrical properties of the laminated piezoelectric generators under bending. (a), 

Schematic of charge separation in the piezoelectric mat under bending. (b), Equivalent electric 

circuit of the generator with a resistance load 𝑅𝐿. (c, d), The measured output voltages (c) and 

currents (d) generated by a laminated generator (BTO concentration: 20 wt%) under different 

displacements ( √𝛥𝑙)  compared to the calculated ones (red lines) using Eq. (6). (e, f), The 

relationship between the output voltage (current) and piezoelectric mat width 𝑤  (e), and 

piezoelectric mat thickness 𝑑𝑝 (f). 

5.2.3 Fabrication of the piezoelectric fibers via drawing of the multimaterial 

preforms 

        Fig. 5.1 summarizes the fabrication process of the piezoelectric fibers. The first step is to 

assemble a fiber preform using the commercial and home-made materials. Two BTO-PVDF mats 

(thickness: 100 m) and C-LDPE films (thickness: 85 m) were co-rolled onto a hollow 
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polycarbonate rod with an outer diameter of 2.54 cm, in order to create a multilayer cladding having 

~10 alternating piezoelectric-conductive layers (Fig. 5.1b, c). After assembly, the structure was 

then vacuum consolidated into a solid preform at 110℃. Subsequently, the resulting fiber preform 

was thermal-mechanically drawn into meters of piezoelectric microstructured fibers using a fiber 

drawing tower. Here the BTO-PVDF mats were fabricated in-house via electrospinning. We 

differed the BTO concentrations in the BTO-PVDF mats from 5% to 20% with a 5 wt% interval, 

in order to investigate the effects of BTO nanoparticles on the properties of the final fibers. The C-

LDPE films were purchased from Bystat International Inc. and had a volume resistivity of 2.2 𝛺 ∙

𝑚 . Note that, the carbon fillers in the polyethylene matrix will be re-arranged, and thus the 

conductive network will be altered during fiber drawing. After drawing, the bulk resistivity of the 

polymer composite in the drawn fiber will be increased dramatically. Thus, it is important to 

optimize the drawing parameters. In the drawings of piezoelectric fibers, the drawing temperature 

is set at 190 °C and the drawing speed is 500 mm/min, at which conditions the formation of 

conductive network during fiber drawing could be facilitated. Our measurements suggest that the 

volume resistivity of the conductive layers in the piezoelectric fiber is ~ 2.5 𝛺 ∙ 𝑚. The application 

of the electrical field during drawing would also affect the piezoelectric properties of the drawn 

fibers, because the electrical poling together with mechanical stretching could promote the 𝛽 phase 

transformation in the PVDF layer. In our experiments, a voltage of up to 5 kV was applied to the 

preform. However, the results suggested that the polarization during fiber drawing is not effective 

as the drawing time is too short. On the other hand, we find the application of the high voltage 

could effectively control the layer thickness in the drawn fibers, since the two conductive layers in 

the molten polymer were forced to pull together due to the strong electrical force. In this way, the 

piezoelectric fibers with several tens of nm layer thicknesses could be obtained. Optical images of 

fiber cross section (Fig. 5.1d) show that the multilayer structure retained well after drawing, while 

the layer thicknesses typically ranged from 5 to 20 m. The obtained fibers were then immersed in 

silicone oil bath (80 ℃) for further polarization. After applying a voltage of 9 kV for 12 h, the 

fibers were slowly cooled down to room temperature. 

5.2.4 Characterization of the piezoelectric microstructured fibers 

We then characterized the performance of the piezoelectric microstructured fibers. A 

piezoelectric microstructured fiber (length: ~10 cm, diameter: ~1 mm) was used to assemble the 
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fiber-based generator. As shown in Fig. 5.5a, b, two C-LDPE strips were used to connect the fiber 

electrodes. Particularly, one C-LDPE strip was glued to the top side of the fiber, while the other 

one was glued to the opposite side. Similar to the laminated piezoelectric generators, the fiber-

based devices also consisted of a PS substrate (10 cm long, 1 mm thick) and Kapton tapes. 

Experimentally, the fiber-based generators were periodically bent and released in the 

horizontal direction using a linear motor. During the bend/release motions, the PS substrate worked 

as the bottom supporter and the Kapton tape covered the piezoelectric fibers. The mechanical strain 

was applied along the piezoelectric fiber by displacing one fiber end.  The working principle of the 

fiber-based generators is discussed as follows. When the piezoelectric fiber is bent and released, 

positive and negative voltage spikes are observed (Fig. 5.5c). To explain this phenomenon, one 

needs to examine the charge separation mechanism and equivalent circuit model of the 

piezoelectric fiber. In the electrical poling, the dipoles of the piezoelectric domains in the BTO-

PVDF layers are aligned in one direction. Due to the presence of the electric field of the dipoles, 

surface charges +Q and -Q are induced on the top and bottom electrode respectively. When a tensile 

stress is applied along the piezoelectric fiber, the polarization density of piezoelectric layers will 

change, thus inducing ±∆Q changes in the surface charges of the fiber electrodes. In response to 

that, the electrons are forced to flow from one electrode to the other, thus generating voltage 

differential. (Fig. 5.5d). In the bent state, the output voltage (current) gradually return to zero. 

Similarly, to the planar piezoelectric generators in the absence of the external load resistance, the 

charge relaxation processes in the generator can be considered as the RC charging/discharging with 

the two different time constants, one for the open-circuit voltage equilibration  𝜏𝑐𝑜 and the other 

for the short-circuit current equilibration 𝜏𝑠𝑐.  
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Figure 5.5: Design and working principles of the fiber-based piezoelectric generators. (a), 

Schematic of a BTO-PVDF fiber-based generator. (b), Setup for testing of microstructured fiber 

generator. (c), Measured voltage response of the piezoelectric fiber under cycling bending at 

0.1 Hz. The top and bottom insets show photographs of the fiber during bending and release, 

respectively. (d), When mechanical strain is applied along the fiber by bending, the polarization 

density of the BTO-PVDF layer is changed and the electrons are forced to flow from one electrode 

to the other, thus generating voltage differential. (e, f), The open-circuit voltage (e) and the short-

circuit current (f) of the piezoelectric fiber during the bend and release actions. Relaxation of the 

short circuit current and open circuit voltage on time can be described as single exponential decays 

with two distinct time constants (red curve fits). 

The electrical outputs of the fiber-based generators are also affected by the BTO 

concentrations. Experimental results (Supplementary Fig. 5.11) suggest that the open-circuit 

voltage of the piezoelectric fiber-based generators increased from ~0.15 V to ~2.5 V when 

subjected to a 10 mm-bending displacement, while the BTO concentration in the piezoelectric fiber 

increased from 5 wt% to 25 wt%. However, we find that drawing fibers with BTO concentrations 
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higher than 25 wt% is challenging. Within the fiber drawing process, the preform is softened above 

the glass transition temperature, and then pulled into a fiber at a specified speed. When the BTO 

concentration is too high, during drawing the nanoparticles will aggregate in the melt and form 

multiple macroscopic domains. While the preform diameter is being reduced, these domains serve 

as defect centers that cause flow instabilities that eventually result in fiber breakage. Thus, there is 

a trade-off between BTO concentration and the availability of fiber drawing process. All the 

drawings in this paper used the 20 wt% BTO concentration, since at this condition the drawing is 

stable while the piezoelectric functionality of the as-drawn fibers is maximized. Similar to the 

laminated generators, the performance of the fiber-based generators is also affected by the bending 

displacements. The piezoelectric voltage and current generated from the microstructured fibers 

increased from ~ 1 to ~1.7 V and  ~ 0.7 to ~1.3 nA respectively, when the bending displacements 

increased from 5 mm to 20 mm (Fig. 5.6a,b). Besides, the electrical poling process is also required 

for the improvement of the piezoelectric fiber performance, since the electrical poling can align the 

piezoelectric domains in the same direction. As stated in Supplementary Fig. 5.12, the output 

voltage of non-poled fibers was ~1.5 mV, which was much smaller than that of poled ones (~1 

V). The mechanical stability of the piezoelectric fibers was estimated by conducting continually 

bend-release tests for 3 days. The amplitudes of output voltages and currents exhibit high stability 

for 25920 bend/release cycles (Supplementary Fig. 5.13). This phenomenon is probably attributed 

to the flexibility and robustness of the polymer materials utilized in the fiber fabrication. The 

properties of the piezoelectric fibers could be improved by using piezoelectric materials with higher 

piezoelectric coefficients. According to the literature, PZT has a higher piezoelectric coefficient 

than BTO. The PZT-PVDF (20 wt% of PZT in the PZT-PVDF composite layer) fibers were thus 

fabricated and then characterized using the same procedures as used for BTO-PVDF fibers. 

Experimentally, when subjected to the same bending displacements, the output signals generated 

from PZT composite fibers is ~4 times higher than that from BTO composite fibers (Fig. 5.6c, d). 

However, the toxicity of PZT may limit the potential applications.  
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Figure 5.6: Performance of the piezoelectric microstructured fibers. (a) and (b) show the generated 

output voltage of the fiber-based generator under bending cycle at different bending displacements 

(5, 10, 15, and 20 mm). (c) and (d) show the output voltages and currents generated by a 10 cm-

long PZT-PVDF fiber generator (20 wt.% PZT in the PZT-PVDF composite) when subjected to a 

10 mm bending displacement. 

5.3 Examples of the potential applications of the piezoelectric fiber 

generators 

Piezoelectric microstructured fibers could be easily integrated into large-area cotton textiles 

using traditional textile fabrication techniques, thanks to the excellent mechanical properties of the 

drawn fibers. In this paper, the piezoelectric textiles were fabricated using a classic Dobby-loom 

(see Video 1). Here we discuss two prototypes of the fiber-based generators and demonstrated their 

possible applications as micro-generators or sensors for the wearables and automotive/airspace 

applications. In the first prototype, four piezoelectric fibers (length: ~15 cm; diameter: ~1 mm) 

were woven into a cotton fabric and then connected in series (Fig. 5.7b). The piezoelectric textile 
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could generate open-circuit voltages up to ~5 V and short-circuit currents of 2-10 nA, during the 

repeated irregular deformations caused by the human hand tap-release actions (Fig. 5.7d, e). In the 

second prototype, the piezoelectric fiber (length: ~15 cm; diameter: ~1 mm) was glued on the 

exterior of the airplane model. Note that, the tiny and flexible piezoelectric fibers could be 

implanted on the any parts of the airplane (Fig. 5.7f, g). During the tests, the airplane model was 

fixed on the wooden table. As we turned on the airplane motor, the rotation of the airplane propeller 

resulted in the irregular vibrations of the piezoelectric fibers, thus generating electric signal (see 

Video 2). The output voltages of the piezoelectric fibers are highly dependent on the rotation speed 

of the airplane motor. As the propeller rotation speed increased to the maximum, the open-circuit 

voltage of the piezoelectric fiber increased from 0 to 2V (Fig. 5.7h, i). 

5.4 Conclusion 

In this work, we have demonstrated both planar piezoelectric generators and piezoelectric 

fibers. The piezoelectric laminated generators were assembled first in order to study energy 

harvesting properties of the piezoelectric electrospun nanocomposites. Such planar generators can 

generate open-circuit voltages of up to 8 V and short-circuit voltage of up to 40 nA with an active 

area of several tens of cm2. Then, using electrospun nanocomposites as building materials, all-

polymer piezoelectric microstructured fibers were fabricated using fiber drawing technique. The 

fabricated fibers feature a hollow PC core surrounded by a multilayer cladding consisting of the 

alternating BTO-PVDF and conductive C-LDPE layers. A swiss roll structure of the piezoelectric 

layer used in our fibers, considerably increases the active surface area and reduces the piezoelectric 

layer thickness, thus resulting in high voltages of up to 6V and currents of up to 4 nA that can be 

generated by our fibers with only several cm2 of the active area. Finally, we have demonstrated 

that the large-area piezoelectric textiles could be fabricated by incorporating piezoelectric fibers 

into the woven fabrics, thanks to the fiber excellent mechanical properties. The fabricated textiles 

and fibers were then used to highlight several of their potential applications as micro power 

generators or sensors in smart textile apparel and avionics.  
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Figure 5.7: Potential applications of the piezoelectric fiber generators. (a, b), A cotton-based textile 

containing piezoelectric fibers woven using a Dobby loom. (c), Electrical properties of the 

piezoelectric textile actuated by the human hand tapping. (d), Open-circuit voltages of the 

piezoelectric textile in a hand tapping-releasing actions. (e), Open-circuit voltages and short-circuit 

currents generated by the piezoelectric textile during repeated hand tap-release motions. (f, g), 

Piezoelectric fibers implanted on the airplane wing (f) and the airplane body (g). (h), Open-circuit 

voltages generated by the piezoelectric fibers during rotation of the airplane propeller. (i), Open-

circuit voltages generated by the vibrations induced by the airplane motor operation with the motor 

speeds set at zero, 1 4⁄ , 1 2⁄ , 3 4⁄  of its maximum speed.  
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5.5 Methods 

5.5.1 Materials 

The PVDF polymer used in this experiment was a semicrystalline PVDF (pellet, Sigma-

Aldrich) which has a number average molecular weight of ~275,000. Dimethylformamide (DMF) 

and acetone solvent were purchased from Sigma-Aldrich. BTO nanoparticles (average diameter of 

200 nm) were purchased from US Research Nanomaterials Inc. PZT micropowders (50-100 𝜇m, 

APC 850) were purchased from APC Inc. 

5.5.2 Preparation of polymer solutions 

Preparation of BTO-PVDF suspensions 

A good dispersion of inorganic particles in polymer matrix is necessary to achieve the best 

possible performance of the polymer nanocomposite. We use the ultrasound to improve the 

dispersion of the BTO nanoparticles. A suspension of BTO-DMF was ultrasonically irradiated 

using a probe-type sonicator (Fisher Scientific Inc.) at 100 W for 1 h. To prevent the DMF solvent 

from heating, the suspension was irradiated in 5 s intervals (3 s pulse on, 2 s pulse off). PVDF was 

swelled in acetone using a magnetic stirrer for 10 min. Then, the two suspensions were mixed 

together using a magnetic stirrer while being heated at 100 ℃ for 1 h. Finally, the mixed suspension 

was ultrasonically irradiated at 75 W in 5 s intervals (3 s pulse on, 2 s pulse off) for 15 min, and 

then transferred to a vacuum chamber to remove the air bubbles. Here, the PVDF concentration 

was 20%, the BTO concentrations in the BTO-PVDF nanocomposites were ranges from 5 to 25 

wt% with a 5 wt% variation. The DMF/acetone volume ratio was 2/3. 

Preparation of PZT-PVDF Suspensions  

The PZT micropowders were milled using a ball-milling machine (MSK-SFM-2, MTI 

Corporation). The milling time is 10 h, while the milling speed is 200 rpm. The weight ratio of 

ball-to-PZT was 20:1. The as-milled PZT micropowders were then utilized in the preparation of 

PZT-PVDF suspensions, following the same procedures proposed for the preparation of BTO-

PVDF suspensions. 
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5.5.3 Electrospinning 

The Electrospinning Workstation (MSK-NFES-3, MTI Corporation) consists of a high 

voltage supply, a glass syringe (20 mL) with a blunt metallic needle (22 gauge) and a grounded 

metallic drum (diameter: 5 cm). The drum rotating at a speed of 200 rpm was used to collect the 

piezoelectric nanofibers. In the electrospinning, the polymer suspensions were charged by a high 

voltage of 15 kV, and the distance between the needle tip and the drum collector is 15 cm. 

Electrospinning was done with an ejection rate of 1 𝑚𝑙/ℎ from the syringe. The temperature in the 

electrospinning chamber was controlled at 25 °C. After the electrospining, the electrospun mats 

were vacuum dried at room temperature for 24 h. 

5.5.4 Preforms and fibers fabrication 

The preform and fiber structure is illustrated in Fig. 5.1b, c. The fabrication of the preform 

started with co-rolling of four alternating BTO-PVDF electrospun mats and C-LDPE conductive 

films. The preform was then vacuum consolidated at a temperature of 110 °C. The as-assembled 

preform was subsequently thermally drawn in a two temperature-zone verticle furnace. The bottom 

temperature is 190 °C, while the top temperature is 150 °C. The drawing speed was set at 500 

mm/min. And an air-pressure of 3 mbar is used to maintain the fiber core during the drawing. 

5.6 Supplementary Figures and Notes 

 

Figure 5.8 : Open-circuit voltage generated by the laminated BTO-PVDF generators with the BTO 

concentration of 5, 10, 15, 20, and 25 wt%. 10 mm-displacement was used in all tests.    
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Figure 5.9: Comparison of the open-circuit voltage generated by the poled laminated BTO-PVDF 

(20 wt% BTO) generator to that of the unpoled one.  

 

Figure 5.10 : A durability test was carried out for the laminated BTO-PVDF generator (20 wt% 

BTO) by continuously repeating the bend-release test for 3 days. In each bend-release motion, the 

moving end of the generator was displaced by 10 mm. The open-circuit voltage and short-circuit 
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current generated in a 1000 s period at the beginning of in the first day and at the end of the third 

day are shown. Overall, 25920 bend/release cycles were performed during 3 days. 

 

Figure 5.11 : Open-circuit voltage generated by BTO-PVDF microstructured fiber with the BTO 

concentration of 5, 10, 15, 20, and 25 wt%.    
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Figure 5.12 : Comparison of the open-circuit voltages generated by the poled BTO-PVDF 

microstructured fiber and the unpoled one. 
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Figure 5.13 : A durability test was carried out for the BTO-PVDF microstructured fiber (20 wt% 

BTO in BTO-PVDF composite) by continuously repeating the bend-release test for 3 days. The 

open-circuit voltage and short-circuit current generated in a 1000 s period at the beginning of the 

first day and at the end of the third day are shown.  
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Supplementary Note 1. Piezoelectric properties of the BTO-PVDF mats 

In the following we detail dependence of the piezoelectric properties of the BTO-PVDF 

mats on the concentration of the piezoelectric nanofillers using FTIR and XRD techniques. 

FTIR of BTO-PVDF mats 

Fourier transform infrared (FTIR) spectra were recorded on a FTIR spectrometer 

(FTLA2000-104, ABB Inc.). The vibration bands at 761 (CF2 bending and skeletal bending), 796 

(CH2 rocking), 870, 974, 1146 and 1383 cm-1 correspond to 𝛼 phase; whereas vibration bands at 

840 and 1274 cm-1 (CH2 rocking) are assigned to 𝛽 phase [140, 183-185].  

 

Figure 5.14 : FTIR spectra of BTO-PVDF electrospun mats at different BTO concentrations 

As shown in Supplementary Fig. 5.14, when the BTO concentration is higher than 15%, α 

phase could be hardly observed. When the BTO concentration is lower than 10%, α phase and β 

phase coexist in the nanocomposite. The 𝛽 phase content, F(𝛽), in the PVDF mats was calculated 

using the following  Eq.:[140]  

𝐹(𝛽)= 
𝑋𝛽

𝑋𝛼+𝑋𝛽
 = 

𝐴𝛽
𝐾𝛽

𝐾𝛼
𝐴𝛼+𝐴𝛽
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where 𝐴𝛼  and 𝐴𝛽  are the absorbance at 761 cm-1 and 840 cm-1 respectively, and 𝑋 is the 

degree of crystallinity of each phase. 𝐾𝛼 and 𝐾𝛽 are the absorption coefficient at the respective 

wavenumber, which are 6.1×104 and 7.7×104 cm2 mol-1. From calculation, we find that the β 

crystal phase content increased from 56% to 70%, when the BTO concentration increases from 0 

to 10 wt%.  

XRD of BTO-PVDF mats 

The X-ray diffraction patterns were recorded by a Bruker D8/Discover diffractometer 

equipped with a standard sealed tube producing Cu radiation (λ = 1.54178 Å) running at 40 kV and 

40 mA. The peaks at 2θ values of 18.5°, 20.4° are indexed to the 𝛼(020), 𝛽(200/110) reflections of 

PVDF respectively [97, 140], while the other characteristic peaks can be assigned to the tetragonal 

phase of BaTiO3 [186].  

 

 

Figure 5.15: The XRD patterns of the PVDF mats featuring different BTO concentrations 

For the nanocomposites, when the BTO concentration is lower than 15%, we can observe a 

weak peak at 20.4° (characteristic of the 𝛽 phase in PVDF). However, when the BTO concentration 

is higher than 15%, the two peaks that are characteristic to scattering in amorphous PVDF (see the 

left hand side of the bottom panel in Supplementary Fig. 5.15) cannot be clearly observed, which 

is ascribed to the shielding effect due to high intensity diffraction peaks in BTO nanocrystals. 
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Supplementary Note 2. Effective electric circuit of the planar piezoelectric generator 

Analysis of the effective electric circuit presented in Fig. 5.4b, lead to the following 

differential equations that govern time dynamics of the individual capacitor discharges: 

𝑞3

𝐶 4⁄
+

𝑅𝑒

2
∙ q3̇ +

𝑅𝑒

2
∙ (𝑞2̇ + 𝑞3̇) + 𝑅𝐿(𝑞1̇ + 𝑞2̇ + 𝑞3̇) = 0 

𝑅𝑒

2
(𝑞1̇ + 𝑞2̇) +

𝑅𝑒

2
𝑞1̇ +

𝑞1

𝐶 4⁄
+ 𝑅𝐿(𝑞1̇ + 𝑞2̇ + 𝑞3̇) = 0 

𝑅𝑒

2
(𝑞1̇ + 𝑞2̇) +

𝑞2

𝐶 2⁄
+

𝑅𝑒

2
∙ (𝑞2̇ + 𝑞3̇) + 𝑅𝐿(𝑞1̇ + 𝑞2̇ + 𝑞3̇) = 0            (1) 

Solution of which has to also satisfy the initial conditions: 

                         (𝑞1, 𝑞2, 𝑞3)𝑡=0 = (−∆𝑄, 2∆𝑄, −∆𝑄)                         (2) 

Assuming solution of the system of linear differential equations (1) in the form 𝑞̅ =

𝑞̅𝜆𝑒−𝜆𝑡 (𝜆 is a constant), one can find particularly simple solutions that satisfy both (1) and initial 

conditions (2) in the case of an open circuit 𝑅𝐿 = ∞, and short circuit 𝑅𝐿 = 0, which results in the 

following expressions for the open circuit voltage 𝑉𝑜𝑐(𝑡) and the short circuit currents 𝐼𝑠𝑐(𝑡): 

Open-circuit voltage:              𝑉𝑜𝑐(𝑡) = −
4∆𝑄

𝐶
𝑒

−
𝑡

𝜏0 

       𝑉𝑚𝑎𝑥
𝑜𝑐 = 𝑉𝑜𝑐(0) = −

4∆𝑄

𝐶
                

  ∆𝑡𝑜𝑐~2𝜏0           

Short-circuit current:               𝐼𝑠𝑐(𝑡) =
∆𝑄

𝜏0
(1.1707𝑒

−
1.3090

𝜏0
𝑡

− 0.1707𝑒
−

0.1910

𝜏0
𝑡
) 

  𝐼𝑚𝑎𝑥
𝑠𝑐 = 𝐼𝑠𝑐(0) =

∆𝑄

𝜏0
                                                                                                        

∆𝑡𝑠𝑐~1.5279𝜏0                                                           (3) 

where the time constant is defined as: 

                                                𝜏0 =
𝑅𝑒𝐶

8
=

𝜌ϵ𝑝𝜖0

8

𝑙2

𝑑𝑝𝑑𝑒
                                                    (4) 

From Eq. (3) one can then calculate the effective generator resistance 𝑉𝑚𝑎𝑥
𝑜𝑐 𝐼𝑚𝑎𝑥

𝑠𝑐⁄ =
𝑅𝑒

2
. 
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Supplementary Note 3. Mechanical analysis of the laminated generators under bending 

Here we discuss in more details evaluation of strain 𝜀  in the bent laminated generators. 

Consider, for example, the second region in Fig. 5.4a of length 
𝑙

2
 and suppose that it has a fixed 

curvature 1/𝑟 . Then, the strain can be calculated using a theoretical model [51]. In that model 

(see Supplementary Fig. 5.16), the strain neutral plain can be calculated by the Eq. (5): 

𝑌1𝑑1𝑦1 + 𝑌2𝑑2𝑦2 + 𝑌3𝑑3𝑦3 + 𝑌4𝑑4𝑦4 = 0         (5) 

Where 𝑌’s and 𝑑’s are the Young’s modulus and the thicknesses of various films in the 

generator structure, while the distances between the centers of the four layers (Kapton, PVDF mat, 

Kapton and PS substrate) and the neutral plane are 𝑦1, 𝑦2, 𝑦3 and 𝑦4 (counted from top down). 

Assuming that the substrate (PS) thickness dominates 𝑑4 ≫ 𝑑1,2,3, while Young’s modulus of the 

materials are comparable to each other then 𝑦2~ 𝑑𝑃𝑆 2⁄ . 

 

Figure 5.16: Strain calculation in the laminated piezoelectric generators under bending. 

Using a model for the buckling of thin beams (see Supplementary Fig. 5.17), according to 

ref. [187] the beam generator shape and the corresponding curvature (at the point of maximum 

deflection) for relatively large beam displacements (𝑙 ≫ 𝛥𝑙 ≫ 𝑑𝑃𝑆
2 𝑙⁄ ) are given by: 

ℎ(𝑥) =
𝐴

2
(1 + 𝑐𝑜𝑠 (

2𝜋𝑥

𝑙−𝛥𝑙
)) ;  𝐴 ≈

2

𝜋
√𝛥𝑙 ∙ 𝑙         
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1

𝑟
=

ℎ′′

(1+(ℎ′)2)3 2⁄ |
𝑥=

𝑙−𝛥𝑙

2

≈ 2𝜋2 𝐴

𝑙2 ≈ 4𝜋
√𝛥𝑙

𝑙3 2⁄            (6) 

While the strain in the PVDF mat can be determined from ref. [51] as: 

                                                                𝜀 =
𝑦2

𝑟
≈ 2𝜋

𝑑𝑃𝑆√𝛥𝑙

𝑙3 2⁄                         (7) 

 

Figure 5.17: Schematic diagram of mechanics model for the planar piezoelectric generators under 

bending 
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CHAPTER 6 GENERAL DISCUSSION 

In this thesis, the micro- and nanostructured piezoelectric fibers were thermally drawn from a solid 

structured preform that was heated and deformed in its viscous state. The performance of the as-

drawn piezoelectric fibers could be improved by widening the range of materials that are 

compatible with the thermal drawing process. Thus, in this chapter we first discuss the materials 

could be used in the drawings of piezoelectric fibers (not limited to the C-LDPE and PVDF-based 

nanocomposites mentioned before), then we study the effect of electrical poling, and finally we 

talk about the potential applications of the piezoelectric fiber inside blood vessels. 

6.1 The material selection in the piezoelectric fibers 

6.1.1 The piezoelectric material selection 

As discussed in Chapter 2, piezoelectric ceramics such as barium titanate (BaTiO3) and lead 

zirconate titanate (PZT) have high piezoelectric coefficients. However, these piezoceramics all 

have melting temperatures above 1000 ℃, thus making them unsuitable for co-drawing with 

thermoplastics. On the other hand, piezoelectric polymers such as poly(vinylidene fluoride) 

(PVDF) have relatively low melting temperatures (150℃ -250℃ ), making them thermally 

compatible with a variety of thermoplastics. However, compared to the case of the piezoceramics, 

the piezoelectric coefficients of piezoelectric polymers are relatively low.  

To overcome the limitations and obtain fibers with high piezoelectricity, in this thesis we 

use the PVDF-based nanocomposites by impregnating nanofillers including BTO, PZT and CNT 

into the PVDF polymer. In the thesis, the nanocomposites were fabricated using electrospinning as 

this process allows fine-tuning of the thermo-mechanical properties of nanocomposites by 

changing the polymer molecular weight, the fractions of the nanofillers and the processing 

conditions. Generally, a higher concentration of the nanofillers would lead to improved 

piezoelectric properties. However, when the concentration is too high (Fig. 6.1), the nanofillers in 

the melt will aggregate and form multiple macroscopic domains. While the preform diameter is 

being reduced, these low-viscosity domains will also experience a significant reduction in the 

transverse dimension, leading to a capillary break-up and mixing resulting from flow instabilities 
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as claimed in Ref [66, 67]. Thus, it is necessary to properly choose the concentration of the 

nanofillers.  

 

Figure 6.1: Photos of the drawn fiber (when the BTO concertation is higher than 30%). 

        The PVDF-based copolymers can also be used in the fiber drawing process. Particularly, 

P(VDF-trifluoroethylene) [P(VDF-TrFE)] with VDF content of ~70% has attracted tremendous 

attention due to its higher piezoelectric constant and degree of crystallinity when compared with 

those of the PVDF [97]. Because of the steric hindrance by the bulky F atoms, P(VDF-TrFE) 

spontaneously crystallizes into the ferroelectric 𝛽 phase from the polymer melt without the must 

of mechanical stretching [188]. Also, the crystallinity of P(VDF-TrFE) can be nearly 100%, while 

that of PVDF is typically limited to 50%, thus resulting into higher piezoelectric response. 

However, the price of P(VDF-TrFE) is extremely higher than that of PVDF. According to the 

company of PolyK Technologies, the price of P(VDF-TrFE) copolymer resin can be as high as 

5000 USD/kg (larger order) and 10 USD/g (smaller order). The price of P(VDF-TrFE) film is even 

higher, which can be ~100 times higher than that of PVDF film. Thus, due to its low-cost, in this 

thesis we choose the PVDF as the piezoelectric material. 

Apart from electrospinning, piezoelectric nanocomposites could also be fabricated using 

film-casting [189-193] or melt-extrusion [194-196]. When the functional repeating units of host 

polymers are highly compatible with the nanofillers, nanofiller-polymer composites can be 

obtained by film-casting. In film-casting process, polymers and the desired amount of nanofillers 

are firstly dissolved into organic solvents, and then the solution is poured into a substrate. Finally, 

the film is obtained after solvent evaporation. When the host polymer is totally non-polar and non-

interacting with the nanofillers, phase-separation may be induced during film-casting process. In 

this case, nanofiller-polymer blends can be realized by means of melt-extrusion where the 

nanofiller dispersion is achieved by mechanical mixing. During the process, the phase morphology 
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is a result of the shearing forces overcoming the interfacial tension. When the process is stopped, 

the high viscosity of polymer matrix may prevent the nanofillers from aggregation.  

To conclude, a variety of piezoelectric materials including piezoelectric ceramics and 

polymers can be adopted in the fiber drawing process. And a range of techniques including 

electrospinning, melt-extrusion and film-casting could be used to fabricate the piezoelectric 

nanocomposites. To enable a successful drawing, particular attention should be paid to the 

concentration of the nanofillers. 

6.1.2 The conductive material selection 

There are two types of conductive polymers: intrinsically conductive polymers (ICPs) and 

conductive filled thermoplastics. ICPs are not thermoformable, and thus, unsuitable for use in fiber 

drawings. Conductive filled polymers can be re-melted or re-drawn while preserving their electrical 

conductivities. This key characteristic makes conductive filled thermoplastics promising 

candidates for thermal drawings. 

One of the simplest methods used to fabricate conductive filled thermoplastics is to blend 

conductive fillers such as metal powders [197], carbon black [198], carbon nanofibers [199], or 

carbon nanotubes (CNT) [200] into melts of traditional thermoplastic polymers like nylon, 

polyethylene, polyamide, and polyester. In this thesis, we used carbon-loaded polyethylene (C-

LDPE) as the electrode material. The C-LDPE films were purchased from Bystat International Inc. 

and had a volume resistivity of 2.2 Ω∙m. Other composites could also be explored for the viscous 

electrode material, for example, CNT or metallic particles loaded-polymer composites, which have 

higher conductivities than carbon-loaded polymers. In particular, the electrical percolation 

threshold of CNT-polymer composites can be as low as 0.0025 wt% [201]. Moreover, CNT would 

enhance the mechanical properties of polymer composites which is important for fiber fabrication. 

The fiber drawing process can significantly change the bulk resistivity of the conductive 

composites (e.g. C-LDPE) due to re-distribution of the conductive fillers in the polymer matrix. In 

extreme cases, the conductive composite can even lose its electrical conductivity after drawing. 

Therefore, the drawing parameters should be carefully chosen. In our experiments, we observed 

that drawing at very low speeds (e.g. ~500 mm/min) results in conductive films of almost the same 
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conductivity as the original ones used in the preform. In this case, the conductive fillers have 

enough time to rearrange themselves in the polymer matrix to result in conductive films. 

6.2 The relationship between fiber performance and structural 

parameters 

In Chapter 5, we proposed an electro-mechanical model for the planar generator, confirmed 

our predictions with experiments, and gave an estimated value of the piezoelectric coefficient. In 

that model, we also showed the relationships between the generated voltages and currents with the 

applied stage displacements, piezoelectric mat width, and thickness. Initially, one would think the 

behavior of the piezoelectric fibers would be similar to that of the planar generator described in 

Chapter 5, with the generated current being the most affected by the number of turns (more turns 

= more current). However, unlike the planar generator where we can simply cut the generator to 

smaller widths while keeping its length fixed, experimental verification of the effect that the 

number of turns (of a piezoelectric layer) has on fiber performance is problematic, and this is due 

to several technological complications. 

Firstly, fibers with different number of turns have to be fabricated separately from different 

preforms. As a result, due to somewhat different final geometries, variable processing conditions 

and the lack of high degree of the process control during drawing and poling, the resultant fibers 

will exhibit not only different number of turns but also somewhat different geometrical and 

electrical parameters such as layer thickness and conductive layer resistivity, that will all have a 

significant impact on the fiber piezoelectric response. In fact, we have tried several drawings of 

fibers with smaller number of turns and clearly saw their inferior piezoelectric performance 

compared to the fibers with higher number of turns. This finding, however, is difficult to quantify 

in terms of a simple power law dependence as too many parameters are varied when changing turns 

between the fibers. 

Moreover, we find that extending a simple electro-mechanical model developed in the case 

of planar generators to the case of a fiber is not trivial. In particular, finding stress distribution in 

the fiber is a far more complex problem than it is for the planar structures. Just to give you an idea, 

the hollow-core piezoelectric fiber has a diameter of ~1 mm, which is similar to the thickness of 

the PS substrate (1 mm) to which the fiber is fixed. As piezoelectric layers in the fiber are circular, 
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they will be subjected to a strong position dependent strain which will be the largest at the fiber 

surface located the furthest for the PS substrate, while being practically zero at the point of contact 

with a PS layer.  

Therefore, we have concluded that while the general trends in the piezoelectric fiber 

performance could be indeed inferred from the electro-mechanical model developed for the planar 

generators, at this point fitting the fiber electrical response to its structural parameters is still 

challenging due to variation in the material properties and geometries during drawing of the distinct 

fibers, as well as due to lack of a good electro-mechanical model for the fiber generators. 

6.3 Electrical poling for the fiber performance 

The electrical poling process (during and after drawings) is necessary if we want to improve 

the performance of the piezoelectric fiber. In this section, I will explain the effects of electrical 

poling in detail. 

PVDF is the host piezoelectric material in the drawn fibers. Generally, PVDF in the polymer 

melts is in the form of non-polar α phase, where the dipole moments have a random orientation 

and result in canceling each other out. Fig. 6.2 shows a typical process used to obtain piezoelectric 

PVDF films. First, an application of mechanical stress induces a transformation from the non-polar 

α  phase to the piezoelectric β phase. Second, the stretched PVDF film is poled to obtain 

macroscopic polarization. 

 

Figure 6.2: Processes commonly employed to obtain piezoelectric PVDF films. 

Reprint from Ref [37]. 

The mechanical extension can be achieved by the fiber draw itself, as the polymer melts 

experience high stresses during the drawing process. Recent reports [189] have shown that, 

electrical poling during drawings may further promote phase transformation, as well as align the 

electric dipoles. Thus, we experimented with the application of high voltages to the preform 

electrodes during the fiber drawing process. As shown in Fig. 6.3b, the copper wires were glued to 
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the preform electrodes. After that, the preform was placed into the vertical furnace of the draw 

tower, and then connected to the high voltage supply using copper wires. During drawing, a voltage 

of up to 5 kV was applied to the electrodes of the preform. 

 

Figure 6.3 : (a), The fiber preform was placed into the furnace of the draw tower. (b), The preform 

electrode was connected to the copper wire. 

However, the electrical measurements demonstrated that the output voltage values of the as-

drawn fibers were in the range of the mV scale. This is because the electrical poling time (1-2 h) is 

insufficient to provide a significant effect. On the other hand, we found that the application of high 

voltage could effectively control the layer thickness in the drawn fibers, since the two conductive 

layers in the molten polymer were forced to pull together due to the strong electrical force. Using 

this technique, piezoelectric fibers with several tens of nm layer thicknesses could be obtained.  

In order to further enhance their piezoelectric property, the fibers were poled in a silicone oil 

bath (80 ℃) using a voltage of 1 kV for 12 hours. The poling voltage was then increased to 5 kV 

for 12 hours and finally 9 kV for 12 hours. We noted that the electrical poling process plays a major 

role in determining the piezoelectric response of the piezoelectric fibers. The fibers with poling 

exhibit an open-circuit voltage of ~1.5 V, which is three orders of magnitude higher than that of 

their non-poled counterparts (Chapter 4, Fig. 4.4b, c). 

Therefore, we have concluded that electrical poling during fiber drawings could effectively 

control the layer thicknesses, while poling after drawings could greatly improve the piezoelectric 

properties of the fiber. 
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6.4 Switching-polarity tests of the piezoelectric generators 

To confirm that the output signal was generated by bending the piezoelectric generators, a 

widely used switching-polarity test [47, 51-53] was also conducted. As shown in Fig. 6.4a, when 

a measuring instrument was front connected to the planar generator, a positive voltage and current 

pulse was generated during the periodic bending of the planar generators. In the case of the reverse 

connection (corresponding to Fig. 6.4b), negative output signals were recorded. 

 

Figure 6.4 : (a), The measured output voltage and current signals of the planar device with 20 wt% 

BTO/PVDF in the forward connection during the periodic bending and unbending motions. (b), 

The output voltage and current signals generated in the reverse connection. 

Similarly, we also conducted the switching-polarity test on the piezoelectric fiber generator. 

The results in Fig. 6.5 indicate that the measured outputs are the true signals generated from the 

bending motions of our piezoelectric fibers. 
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Figure 6.5 : (a), The measured output voltage and current signals of the piezoelectric fiber of 20 

wt% BTO/PVDF in the forward connection during the periodic bending and unbending motions. 

(b), The output voltage and current signals generated in the reverse connection. 

6.5 The piezoelectric stability of the fibers with respect to 

temperature 

          Our piezoelectric fibers are made of the carbon-filled low density polyethene (C-LDPE) and 

piezoelectric polymer nanocomposites (e.g. BTO-PVDF, PZT-PVDF and CNT-PVDF). The 

carbon-filled low density polyethene has a soften temperature of ~110 ℃. Therefore, the work 

temperature of piezoelectric fibers should be lower than ~110 ℃.  

          During the operation of the piezoelectric fibers, we also need to consider the Curie 

temperature of the piezoelectric materials. When the applied temperature is higher than the Curie 

temperature, the permanent polarization in the piezoelectric materials will disappear, and thus the 

piezoelectric fibers will lose the piezoelectric properties. Table 6.1 summarizes the Curie 

temperature of the piezoelectric materials.  
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         In conclusion, the piezoelectric properties of our fibers will be stable when the temperature 

is lower than 110℃, which is appropriate for most of the applications in our daily life 

Table 6.1. The Curie temperature of the piezoelectric materials 

Piezoelectric materials Curie temperature Ref 

BTO ~130℃ [202] 

PZT ~500℃ [203] 

PVDF ~195℃ [204] 

6.6 The potential applications of the piezoelectric fiber inside the 

blood vessels 

          The diameter of our piezoelectric fibers are in the range of microscale, which enables their 

potential applications inside the blood vessels. Firstly, the piezoelectric fibers can be used as the 

microactuator for the biological cell manipulation. When the electrical field is applied to the 

electrodes, it will induce a bending displacement of the piezoelectric fiber. And the displacements 

can be adjusted by changing the applied voltages. This is called as “the converse piezoelectric 

effect” [205]. Using this effect, Tajitsu et al. [206] reported the electrically controlled tweezers 

made of a pair of piezoelectric fibers. In their publication, they inserted the tweezer into a blood 

vessel, and then, grasped and removed the thrombosis. Also, the piezoelectric fibers can be used 

as the ultrasound transducers, for the purpose of in vivo intravascular ultrasound imaging. Wang et 

al. [207] demonstrated a piezoelectric transducer, and also performed its imaging for the blood 

vessels of chicken embryo chorioallantoic membrane. They also claimed that the piezoelectric 

transducer had the potential to monitor the neovascularization in tumor angiogenesis. In their 

experiment, the blood vessels with diameters ranged from 0.1 mm to 0. 6 mm was imaged, while 

microvessels were not visible. The resolution and sensitivity of the piezoelectric transducers could 

be improved by using piezoelectric fiber arrays [66]. Additionally, the piezoelectric fibers can 

measure the flow rate and accurate pressure inside the blood vessels [66].  

 

 

 

 

file:///C:/Users/luxin/AppData/Local/Youdao/Dict/Application/7.5.2.0/resultui/dict/result.html


102 

 

CHAPTER 7 CONCLUSION AND PERSPECTIVES 

7.1 Summary of accomplishments 

In this thesis we have proposed and experimentally demonstrated piezoelectric planar generators, 

piezoelectric fibers and textiles for sensing and energy generation applications including the real-

time monitoring of human movements, micro-power-generation in automotive industries and 

stand-off sound detecting. We have also present several examples of the practical applications of 

the proposed piezoelectric fibers and textiles: for distributed stand-off sound detector using CNT-

PVDF fibers, and for energy harvesting using textile-based piezoelectric generators that 

incorporate BTO-PVDF fibers and PZT-PVDF fibers. 

Firstly, we have demonstrated the fabrication and applications of the piezoelectric planar 

generators, which were assembled first in order to study energy harvesting properties of the 

piezoelectric electrospun nanocomposites. We have studied the charge separation mechanism and 

effective electric model of the piezoelectric planar generators in the bent state. From both 

theoretical analysis and experimental verification, we concluded that the voltages and currents 

generated from the piezoelectric planar generators are indeed proportional to the thickness of the 

piezoelectric electrospun mat, and also depend in a non-linear manner with the generator bending 

displacements. From the cyclic bend-release measurements, we have found that such planar 

generators can generate open-circuit voltages of up to 8 V and short-circuit voltage of up to 40 nA 

with an active area of several tens of cm2. Finally, we have demonstrated that the piezoelectric 

planar generators have excellent durability as their output voltages and currents did not change 

after three days’ continuous bend-release measurements. 

Then, we have fabricated all-polymer piezoelectric micro- and nanostructured fibers using 

fiber drawing technique. The as-fabricated fibers feature a hollow PC core surrounded by a 

multilayer cladding consisting of the alternating piezoelectric and conductive polymer layers. We 

have also performed comparative study of three material combinations. A BTO/PVDF 

microstructured fiber (10 cm long; BTO concentration: 20 wt%) could generate an open-circuit 

voltage of 1.4 V and a short-circuit current of 0.8 nA, when the moving end of the generator was 

displaced transversely by 10 mm. The corresponding voltage and current were ~6 V and ~4 nA for 

a PZT-PVDF (20 wt% PZT) fiber generator, and ~3 V and ~1.2 nA for a CNT-PVDF (0.4 wt% 
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CNT) fiber generator. Perovskite ceramics (such as BTO and PZT) could improve the fiber 

performance owing to their high piezoelectric coefficient. On the other hand, CNT could induce 

the crystallization of polar phase in PVDF layers, thus leading to remarkable improvements in 

piezoelectric performance. Also we note in passing that the CNT/PVDF microstructured fibers are 

easier to draw to smaller diameters and they appear to have better mechanical flexibility. The 

resultant fibers exhibit excellent durability with high piezoelectric voltages (of up to 6 V) in a cyclic 

bend-release test (greater than 26000 cycles).  

Finally, we have fabricated the piezoelectric textiles by integrating the piezoelectric fibers 

into the cotton textiles using a traditional loom. Then, we demonstrated the potential applications 

of the piezoelectric fibers and textiles for powering personal electronics and wearable sensing in 

the smart garments, automotive and aerospace industries. 

7.2 Future work 

Here I will discuss the areas of research that should be further explored, based on the results 

presented in this thesis. One interesting direction could take is to further investigate the use of 

composite materials. The properties of the piezoelectric fibers described in the thesis could be 

improved by widening the range of materials that are compatible with the thermal drawing process.  

Here, the piezoelectric fibers used carbon-loaded polyethylene (C-LDPE) as the electrodes. 

However, because of the high resistivities of the fiber electrodes, the output currents of the as-

fabricated piezoelectric fibers were in the range of nA. To increase the output currents, it would be 

necessary to explore other conductive composites with higher conductivities, for example 

composites combining a polymer matrix with metallic particles, or CNT. Moreover, other 

piezoelectric nanocomposites should be explored to increase the generated voltages of the fibers. 

For instance, piezoceramics with higher piezoelectric coefficients could be embedded into the 

polymer matrices using a range of fabrication techniques such as electrospinning, melt-extrusion, 

and film-casting.  

Another interesting direction is to study the “converse piezoelectric effect” [37] in the 

piezoelectric fibers. When an electric field is applied to the fiber electrodes, the fibers experience 

a deformation. Such fibers may pave the way for the realization of fiber electromechanical systems 

(FEMS) [206-208]. Potential applications include micro-positioning actuator for single-cell 
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manipulation [209, 210], scanning tunneling microscopes (STM), atomic force microscopes 

(AFM), and laser mirror alignment; electrically controllable microfluidic pumps [28], and many 

more. 

The use of piezoelectric nanocomposites in fibers also presents us with new opportunities to 

answer questions grounded in fundamental science. In particular, it would be beneficial to study 

the crystalline phase and the molecular structure of the nanocomposites during and after drawing. 

Also, a much deeper understanding of the polarization uniformity and depolarization in 

piezoelectric fibers needs to be established. X-ray diffraction (XRD) can be used for the phase 

identification of the materials and can provide information on unit cell dimensions; Piezoresponse 

force microscopy (PFM) [211] allows imaging and switching of ferroelectric domains on a sub-

micrometer scale. However, at this moment, it is still challenging to accomplish these goals as the 

typical fiber is a small diameter object where multiple materials are fused together and it is difficult 

to separate the conductive layers from the piezoelectric layers and a passive core.  

Finally, interesting applications can also be imagined by taking advantage of the unique 

characteristics of the piezoelectric fibers. Owing to the thermal fiber drawing process, the 

dimensions of piezoelectric fibers can be as small as hundreds of microns, which could enable 

accurate pressure and flow measurements in very small tubes (e.g. blood vessels); the length of 

piezoelectric fibers can be as long as hundreds of meters, which makes them ideal for harvesting 

electricity from ocean waves or ocean tides, as well as studying the large-area distribution of 

pressure and velocity in the oceanic current. 

7.3 Conclusion 

In this thesis, we demonstrated the fabrication of piezoelectric planar generators using 

electrospun piezoelectric nanocomposites as the active materials. Then, we studied the fabrication 

and applications of piezoelectric fibers and textiles. Our multimaterial preform-to-fiber process 

enables the rapid fabrication of kilometer-long piezoelectric fiber with precise dimensional 

tolerances and cost-effectiveness. The piezoelectric fiber generators were characterized using 

electrical, optical, and acoustic techniques. The potential applications of the proposed piezoelectric 

fibers and textiles include micro-power-generation and remote sensing in the wearable, military, 

automotive and aerospace industries. 
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          Compared with the piezoelectric planar generators, the piezoelectric fibers and textiles have 

the more advantages such as higher output power, better flexibility, three-dimensionally 

deformable, lightweight and comfortable. The all-polymer fibers have the ability to retain their 

structural integrity towards a number of washing and wear cycles. The properties of the 

piezoelectric fibers can be stable when the temperature is lower than 110 ℃, which is appropriate 

for most of the applications in our daily life. Thus, the commercialization of the piezoelectric fibers 

and textiles could be imagined in the near future. However, it is still necessary to conduct 

systematic fundamental studies on the hierarchy structures and electronic properties of the fibers 

and textiles [208]. Based on much improved fundamental understandings, the powerful design 

tools will be established to guide the selection and design of the fiber and textile architectures for 

the wearable energy generators and systems. Also, it is essential to study the packaging and 

connection of the electronic fibers together with other textiles and electronic devices. To meet the 

requirements of the practical applications, these connections and packages has to be soft and 

flexible, as well as stand the long-time deformation and friction [209]. Additionally, it is important 

to study the strength and failure modes of the fibers in order to improve the durability of the fibers. 

Finally, we believe the studies on the flexible piezoelectric fibers and textiles will pave the way of 

future generation of self-powered wearable systems and smart personalized health-monitoring 

clothing systems. 
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