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a b s t r a c t

The generalized mixture rule (GMR) is used to provide a unified framework for describing Young’s (E),
shear (G) and bulk (K) moduli, Lame parameter (l), and P- and S-wave velocities (Vp and Vs) as a function
of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of
the GMR for E, G, K and l of each material are systematically different and display consistent correlations
with the Poisson’s ratio of the nonporous material (n0). For the materials dominated by corner-shaped
pores, the fixed point at which the effective Poisson’s ratio (n) remains constant is at n0 ¼ 0.2, and
J(G) > J(E) > J(K) > J(l) and J(G) < J(E) < J(K) < J(l) for materials with n0 > 0.2 and n0 < 0.2, respectively.
J(Vs) > J(Vp) and J(Vs) < J(Vp) for the materials with n0 > 0.2 and n0 < 0.2, respectively. The effective n

increases, decreases and remains unchanged with increasing porosity for the materials with n0 < 0.2,
n0 > 0.2 and n0 ¼ 0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral
cleavages, grain boundaries and foliation, however, the n fixed point decreases nonlinearly with
decreasing pore aspect ratio (a: width/length). With increasing depth or pressure, cracks with smaller a
values are progressively closed, making the n fixed point rise and finally reach to the point at n0 ¼ 0.2.
� 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by

Elsevier B.V. All rights reserved.
1. Introduction

Porosity is a fundamental microstructural parameter for most
natural and man-made materials and influences significantly
physical properties of these materials such as diffusion coefficient,
elastic wave velocities, elastic moduli, Poisson’s ratio, yield, rupture
or ductile strength, thermal conductivity, electrical conductivity,
fluid permeability, dielectric constant, magnetic permeability.
Sediments and rocks (e.g. soils, sands and sandstone) are typical
examples of natural porous materials. The main goal of this study is
to calibrate the porosity-dependence of seismic velocities (e.g. P-
and S-wave velocities: Vp and Vs), Vp/Vs ratio or Poisson’s ratio, and
elastic moduli of isotropic solid rocks because such a calibration is
required to interpret correctly the geophysical data of natural re-
sources (e.g. petroleum and natural gases). Such a calibration is also
helpful to the understanding of the mechanical properties of geo-
tectonical engineering materials that are equally porous.
ock and Soil Mechanics, Chi-

ics, Chinese Academy of Sci-
hts reserved.
Furthermore, foamed metals, sintered ceramics, hollow concretes
and cellular polymers are man-made porous materials that have
been widely used for thermal and acoustic insulation, impact en-
ergy absorption, vibration suppression, air or water filtration, fluid
flow control, self-lubricating bearing, floatation and lightweight
components. Therefore, to model accurately the mechanical prop-
erties of candidate solid materials in terms of their component
properties, porosity and microstructure have broad significance for
a wide range of fields frommaterials engineering to Earth sciences.

In the present study, our particular attention is paid to the in-
fluence of porosity on the compressional (P) and shear (S) wave
velocities (Vp and Vs) as well as the Poisson’s ratio, which is a
function only to the ratio of Vp/Vs, of isotropic solid materials and
rocks. The reason for this purpose is simple and given below. Direct
observations on the nature of the materials that constitute the
Earth are limited to studies of surface outcrops and rocks that have
been obtained from mining and drilling. Drilling for mining and
scientific purposes has penetrated to generally a few kilometers
and the maximum to 10e12 km (10 km for the KTB hole in Ger-
many, and 12 km for the Kola hole in Russia) beneath the surface,
leaving much of the Earth’s interior inaccessible. Much of our
knowledge of the chemical composition, physical state and struc-
ture of the Earth’s interior mainly comes from seismic data. Inter-
pretation of these seismic data, in turn, is largely constrained by the
extrapolation of laboratory-measured seismic properties of

mailto:sji@polymtl.ca
http://dx.doi.org/10.1016/j.jrmge.2015.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jrmge.2015.07.004&domain=pdf
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relevant rocks thought to exist in a given geological and physical
(i.e. pressure and temperature) environment. Apart from chemical
composition, phase transformation, metamorphic reaction, dehy-
dration, partial melting, temperature and pressure (e.g. Ji et al.,
2002), porosity is a critical factor to affect the elastic wave prop-
erties of dry and wet rocks. However, the studies of this kind are
extremely difficult because the geometrical shape, size distribution
and connectivity of pores in three-dimensional, opaque rocks are
generally unknown. Thus, the results from laboratory studies on
the dependence of the elastic and seismic properties of isotropic
man-made materials (e.g. metals, ceramics, and oxides) with
known porosities may help to better understand seismic data from
the natural rocks.

The elastic properties of an isotropic material or rock can be
described by any two of the four elastic moduli termed Young’s
modulus (E), shear modulus (G), bulk modulus (K) and Lame
parameter (l). The Young’s modulus (E) is defined as the ratio of the
stress along an axis over the strain along that axis in the range of
uniaxial stress in which Hooke’s law holds. The bulk modulus (K)
measures a substance’s resistance to uniform compression while
the shear modulus (G) is defined as the resistance to a simple shear
strain that produces a shape change without changing total vol-
ume. The Lame parameter (l) is quite special because it relates
stresses and strains in perpendicular directions (Jaeger, 1969). The
physical meaning of l can be clearly illustrated in a special case of
uniaxial strain where ε1 s 0, and ε2 ¼ ε3 ¼ 0 (i.e. no displacement
occurs in the direction perpendicular to the x-axis): l ¼ s2/ε1 ¼ s3/
ε1 (Ji et al., 2010). Goodway (2001) believed that l is closely related
to material’s incompressibility (l¼ K � 2G/3) and contains a higher
proportion of information about the resistance to a change in vol-
ume caused by a change in pressure. The above 4 parameters (i.e. E,
G, K and l) are the most intrinsic elastic coefficients to express
stress in terms of strain.

The most common geophysical parameters measurable are
compressional (P) and shear (S) wave velocities (Vp and Vs) and
densities (r) of elastic media. E, G, K and l for isotropic elasticity can
be easily determined from the measured seismic data:

Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4

3G
r

s
(1)

Vs ¼
ffiffiffiffi
G
r

s
(2)

n ¼ E
2G

� 1 (3)

K ¼ E
3ð1� 2nÞ (4)

l ¼ K � 2
3
G (5)

where n is the Poisson’s ratio. l � 0 if Vp/Vs �
ffiffiffi
2

p
. l/G � 1 if Vp=Vs �ffiffiffi

3
p

(e.g. almandine, antigorite, calcite, dolomite, fayalite, feldspar,
hematite, hornblende, lizardite, sillimanite, spinel, spessartine, talc,
rutile, and wustite), and 0 � l/G < 1 if

ffiffiffi
2

p
� Vp/Vs <

ffiffiffi
3

p
(e.g. quartz,

bronzite, diallage, enstatite, forsterite, sapphire, periclase, and
staurolite). The information about G and l can be extracted from the
inversion of P- and S-wave reflectivities (Estabrook and Kind, 1996;
Goodway et al., 1997; Gray and Andersen, 2000; Goodway, 2001;
Dufour et al., 2002; Gray, 2003; Li et al., 2003). Obviously, any
two of these four moduli (E, G, K and l) offer the most fundamental
parameterization of elastic seismic waves to extract information
about the composition and structure of rocks in the Earth’s interior.
In the literature, however, only E, K, G and n are usually reported
although l is also an intrinsic and invariant property of elastic
media under given conditions. So far, little systematic research
work has been carried out on the characterization of l values for
crystalline rocks and materials (Ji et al., 2010). Here we also cali-
brate the porosity-dependence of l values for the solid materials of
interest.

Poisson’s ratio (n) is the negative of the ratio of transverse strain
to the axial strain when an isotropic material is subjected to uni-
axial stress. For an isotropic material at a given temperature and a
given pressure, n is a constant which lies between �1 and 0.5.
Materials with n< 0 are called auxetic materials because there is an
increase in volume when compressed (Lakes, 1987). Here only the
Poisson’s ratios of isotropic materials are considered, which can be
calculated from P- and S-wave velocities (Vp and Vs) in the isotropic
material:

n ¼ 0:5� 0:5�
Vp

�
Vs
�2 � 1

(6)

Among the elastic properties, Poisson’s ratio is the least studied,
but at the same time the most interesting only (Christensen, 1996;
Gercek, 2007; Ji et al., 2009; Wang and Ji, 2009). For example,
Poisson’s ratio is a helpful hint to overcome the non-uniqueness of
the interpretation of either Vp or Vs alone in terms of petrological
composition (e.g. Ji et al., 2013a,b; Shao et al., 2014). The crustal
Poisson’s ratio information can be obtained from the analysis of
teleseismic receiver functions using single station techniques
(Clarke and Silver, 1993; Zandt and Ammon, 1995; Ji et al., 2009).
The interpretation of such crustal Poisson’s ratio results (e.g. Owens
and Zandt, 1997; Chevrot and van der Hilst, 2000; Nair et al., 2006)
has been largely based on an assumption that Poisson’s ratio de-
pends primarily on SiO2 content (with more mafic rocks corre-
sponding to higher n values) and fluid content (Tarkov and Vavakin,
1982; Christensen, 1996; Owens and Zandt, 1997). As shown in
Fig. 1a, the common silicate rocks form an arc-shaped trend line
indicating that the Poisson’s ratio increases with density as the li-
thology changes from granite, schist, felsic gneiss, through diorite-
syenite, intermediate gneiss and metasediment, to gabbro-diabase,
amphibolite, and mafic gneiss, and then decreases as the rocks
become ultramafic in composition (i.e. pyroxenite and peridotite).
However, the monomineralic rocks such as quartzite, serpentinite,
anorthosite, limestone and marble are significantly deviated from
the trend line (Ji et al., 2009). Sandstone has a chemical composi-
tion similar to quartzite but significantly a higher n value than
quartzite, indicating that n increases with increasing porosity since
n ¼ 0.08 for quartz (Fig. 1b). The effects of porosity on the Poisson’s
ratio for the other types of natural rocks have not been studied in
detail due to the lacking of experimental data over a wide range of
porosities and pore geometry. Thus, one of the main goals of this
investigation is to constrain the effects of porosity on the Vp/Vs ratio
or the Poisson’s ratio of porous materials and rocks.
2. Generalized mixture rule (GMR)

In the present study, we use the generalized mixture rule (GMR)
(Ji, 2004; Ji et al., 2004) to model the variations of seismic velocities
and elastic moduli as a function of porosity. The GMR is expressed
as

M J
c ¼

XN
i¼1

�
ViM

J
i

�
(7)



Fig. 1. (a) Poisson’s ratio-density plots for main categories of rocks. This figure was
constructed based on the data from 620 samples, compiled in Handbook of Seismic
Properties of Minerals, Rocks and Ores (Ji et al., 2002). The trend line was calculated
from the correlations between the elastic moduli and density for 14 common lithol-
ogies (open squares) excluding the monomineralic rocks of serpentine, calcite and
quartz (filled squares). (b) Poisson’s ratio-density plots for main rock-forming minerals.
Ab: albite; Alm: almandine; And: andradite; Aug: augite; Br: bronzite; Bt: biotite; Cal:
calcite; Cpx: clinopyroxene; Di: diopside; En: enstatite; Grs: grossular; Grt: garnet;
Hbl: hornblende; Jd: jadeite; Kfs: K-feldspar; Ms: muscovite; Ol: olivine; Omp:
omphacite; Opx: orthopyroxene; Phl: phlogopite; Pl: plagioclase; Prp: pyrope; Qtz:
quartz; Srp: serpentinite. The trend line is the same as that shown in (a).
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whereM is a measurable physical property (e.g. E, G, K, Vp and Vs); V
is the volume fraction of component; the subscripts i and c repre-
sent, respectively, the ith phase and the composite consisting of N
phases; and we have

XN
i¼1

Vi ¼ 1 (8)

Effects of microstructures are expressed by a scaling, fractal
parameter J, which is mainly controlled by the shape, size distri-
bution, and distribution (continuity and connectivity) of the phases
(Ji, 2004; Ji et al., 2004, 2006). Since then, the GMR has beenwidely
used in the materials and Earth sciences (e.g. Pal, 2005; Takeda and
Griera, 2006; Barzegari and Rodrigue, 2007; Yu and Wu, 2010;
Culliton et al., 2013; DiRienzo et al., 2014).

According to Ji (2004) and Ji et al. (2006),Mc(J) has the following
characteristics:

(1) Mc(J) is a continuous, strictly monotone function with respect
to the volume fraction for all J values in the ranges (�N, þN).
(2) For J < 1, J ¼ 1 and J > 1, Mc(J) as a function of the individual
grades of membership Mi is strongly concave, linear, and
strongly convex, respectively.

(3) For a binary system that consists of a strong phase (f) and a
weak phase (m), J < 0 for the weak-phase supported structure
while J > 0 for the strong-phase supported structure. The GMR
fulfills the following boundary conditions: (i) For Vf ¼ 0 (pure
weak phase aggregate), the effective properties are equivalent
to the properties of the weak phase for all values of J. (ii) For
Vf ¼ 1 (pure strong phase aggregate), the effective properties
are equivalent to the properties of the strong phase for all
values of J. (iii) For Vf ¼ Vm ¼ 0.5, we get the symmetric power
means. (iv) In the circumstance thatMf ¼Mm (two phases have
an equivalent property),Mc ¼Mf ¼Mm for all values of J and all
values of Vf.

(4) The case J ¼ 1 yields the arithmetic mean or Voigt average
(which assumes constant strain). The case J ¼ �1 yields the
harmonic mean or Reuss average (which assumes constant
stress). For isotropic composites, the Voigt and Reuss averages
are generally regarded as the upper and lower bounds for
effective elastic mechanical properties (e.g. E, G, K and l) but
not for effective seismic properties (e.g. Vp, Vs or Poisson’s ra-
tio). For the seismic properties (e.g. Vp, Vs or Poisson’s ratio),
the J values can be either higher than 1 or lower than �1. The
GMR with J / 0 yields the geometrical mean. However, the
geometrical mean becomes physically meaningless when one
of the constituent phases has a null property (e.g. in the case of
porous materials). In this special case, the overall property of
the composite acquired from the geometrical meanwill always
vanish regardless of the volume fraction of the constituent that
has a null property (e.g. pores).

For a two-phase composite, Eq. (7) can be simplified:

M J
c ¼ ð1� VmÞM J

f þ VmM J
m (9)

Porous materials are a special class of two-phase composites in
which null strength pores are dispersed within a solid framework.
Setting the mechanical property of the weak phase equal to zero
(i.e.Mm¼ 0) and taking Vm as the volume fraction porosity (p) allow
an estimation of the effect of porosity on the effective property
(Mc). Eq. (9) can be written as

Mc

Ms
¼ ð1� pÞ1=J ¼ V1=J

s ¼
�
rc
rs

	1=J

(10)

where the subscript s represents the solid medium; and the
parameter J depends on the geometrical shape, spatial arrange-
ment, orientation and size distribution of pores, and in turn on the
materials and the fabrication method (i.e. cold pressing, sintering,
hot isostatic pressing, sedimentation and deformation); rc and rs
are the densities of the porous and nonporous materials, respec-
tively. rc/rs is the relative density that equals the volume fraction
mass. The value of J lies in the range from 0 to 1 for any of the four
elastic moduli (E, G, K, and l). As mentioned before, the J value can
be larger than 1 for seismic velocities (Vp and Vs) and Poisson’s ratio.
The variation of J with microstructure yields a large range of vari-
ations in elastic and seismic properties of porous solids. Clearly, the
porosity has a greater effect on the properties at smaller values of J.

3. Experiments

In the literature of materials sciences, there is a significant
amount of investigations on the effects of porosity on the seismic
properties and the effective mechanical properties (e.g. elastic
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moduli and strengths) of the materials. In the following, we will
examine, using the GMR expressed in Eq. (10), the experimental
results of the porous materials for which both P- and S-wave ve-
locities and densities have been measured as a function of porosity
so that the elastic moduli and Poisson’s ratio can be calculated from
the experimental results.

3.1. Silver compacts

Yeheskel et al. (2001) investigated experimentally the elastic
wave velocities of silver compacts with porosities smaller than
0.33 using the pulse-echo method (Fig. 2). The pure silver without
porosity has a density of 10.505 g/cm3. Both P- and S-wave ve-
locities can be well described by the GMR with J(Vp) ¼ 0.37
(R2 ¼ 0.96) and J(Vs) ¼ 0.85 (R2 ¼ 0.952), respectively, rather than
the linear relations. Vp/Vs ¼ 2.477exp(�1.782p) (R2 ¼ 0.994), cor-
responding to n ¼ 0.403exp(�4.13p) (R2 ¼ 0.893). The GMR with
J(E) ¼ 0.249 (R2 ¼ 0.992), J(G) ¼ 0.298 (R2 ¼ 0.976), J(K) ¼ 0.122
(R2 ¼ 0.963), and J(l)¼ 0.104 (R2 ¼ 0.937) provides excellent fitting
for the dependences of the elastic moduli E, G, K and l for the silver
compacts (Fig. 2), which were calculated from the data of Vp, Vs
and densities.

3.2. Iron compacts

Panakkal et al. (1990) measured the P- and S-wave velocities of
iron compacts containing up to 22% porosities (Fig. 3). These
compacts were prepared by hot isostatic pressing at 0.2e1.2 GPa
and 1250 �C�1523 �C. The pore-free iron displays the following
properties: r ¼ 7.86 g/cm3, Vp ¼ 6.089 km/s and Vs ¼ 3.289 km/s.
The experimental data of Vp and Vs (Fig. 3) are in good agreement
Fig. 2. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d)
with the values predicted by the GMR with J(Vp) ¼ 0.701
(R2 ¼ 0.945) and J(Vs) ¼ 0.89 (R2 ¼ 0.967). Vp/Vs decreases with
increasing porosity: Vp/Vs ¼ 1.852exp(�0.336p) (R2 ¼ 0.997), cor-
responding to n ¼ 0.294exp(�0.82p) (R2 ¼ 0.993). The elastic
moduli E, G, K and l of the hot-pressed iron compacts can be well
fitted by the GMR with J(E) ¼ 0.294 (R2 ¼ 0.979), J(G) ¼ 0.308
(R2¼ 0.984), J(K)¼ 0.233 (R2¼ 0.949), and J(l)¼ 0.205 (R2¼ 0.919),
respectively.

3.3. Porcelain

Boisson et al. (1976) reported ultrasonic velocities of sintered
porcelain with porosities ranging from 0.09 to 0.37 (Fig. 4). The Vp
and Vs values of the pore-free porcelain were estimated to be
7.811 km/s and 5.084 km/s, respectively. The best fitting of the
experimental data using the GMR yields J ¼ 0.412 (R2 ¼ 0.969) and
0.343 (R2 ¼ 0.978) for Vp and Vs, respectively (Fig. 4b). Vp/Vs in-
creases with increasing porosity (Fig. 4b): Vp/Vs¼ 1.536exp(0.584p)
(R2 ¼ 0.991). The elastic moduli E, G, K and l of the porous porce-
lains can be well described by the GMR with J(E) ¼ 0.155
(R2 ¼ 0.981), J(G)¼ 0.146 (R2 ¼ 0.984), J(K)¼ 0.202 (R2 ¼ 0.957) and
J(l) ¼ 0.325 (R2 ¼ 0.816) (Fig. 4c), respectively. The Poisson’s ratio
increases with increasing porosity under the experimental condi-
tions (Fig. 4d): n ¼ 0.132exp(2.602p) (R2 ¼ 0.995).

3.4. Fused glass beads

Berge et al. (1995) measured P- and S-wave velocities in order to
investigate the elastic properties of synthetic sandstone using
sintered glass beads (71%e74% SiO2, 12%e15% NaO2, 8%e10% CaO,
1.5%e3.8% MgO, 0.2%e1.5% Al2O3, and 0%e0.2% K2O, all in weight
of silver compacts as a function of porosity. GMR curves labeled according to J values.



Fig. 3. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) of hot-pressed iron compacts as a function of porosity. GMR curves labeled according to J
values.

Fig. 4. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) of porcelain as a function of porosity. GMR curves labeled according to J values.

C. Yu et al. / Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 35e49 39



C. Yu et al. / Journal of Rock Mechanics and Geotechnical Engineering 8 (2016) 35e4940
percent) with porosities ranging from 0.01 to 0.43. The fully dense
glass shows: r ¼ 2.48 g/cm3, Vp ¼ 5.86 km/s, Vs ¼ 3.43 km/s, Vp/
Vs ¼ 1.707, n¼ 0.239, E¼ 72.33 GPa, G¼ 29.2 GPa, K¼ 46.1 GPa, and
l ¼ 26.63 GPa. As shown in Fig. 5, clear drops of the seismic wave
velocities and elastic moduli occur towards a critical porosity of
w0.3. For porosities below w0.3, the samples are believed to have
similar microstructures with isolated pores embedded in a
continuous solid glass and the experimental data can be well
described by the GMR (Eq. (10)) with J(E) ¼ 0.4 (R2 ¼ 0.993),
J(G) ¼ 0.403 (R2 ¼ 0.992), J(K) ¼ 0.386 (R2 ¼ 0.957) and J(l) ¼ 0.37
(R2 ¼ 0.872). The critical porosity presumably coincides with the
minimum porosity for near-closely packed quasi-identical spheres.
The J values for E and G decrease progressively fromw0.4 tow0.25
with increasing porosity from 0.3 to 0.43, reflecting that the ge-
ometry of pores in the synthetic sandstone (fused glass beads)
becomes complex due to the interaction between pores in this
range of porosities.

3.5. SiO2 glass

The sound velocities, densities and elastic moduli of porous SiO2
glass samples with a wide range of porosities from 0 to 0.726 were
reported in Adachi and Sakka (1990). The diameters of pores vary
from 5 nm to 35 nm with an average value of about 16 nm. As
shown in Fig. 6a, the GMR with J(Vp) ¼ 1.067 (R2 ¼ 0.984) and
J(Vs) ¼ 1.047 (R2 ¼ 0.985) gives good predictions of the Vp and Vs
variations over the wide range of porosity. The Vp/Vs ratio (Fig. 6b)
increases slightly with increasing porosity: Vp/Vs ¼ 1.57exp(0.029p)
(R2 ¼ 0.934), corresponding to n ¼ 0.159exp(0.186p) (R2 ¼ 0.956),
indicating that n increases with increasing porosity for this
Fig. 5. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) o
material. Moreover, the linear expression used by previous authors
(e.g. Panakkal et al., 1990; Panakkal, 1991) is disqualified for
describing either the Vp/Vs or the Poisson’s ratio data of the porous
silica glasses. The experimental data of E, G, K and l (Fig. 6c)
essentially track the theoretical curves predicted by the GMR with
J(E) ¼ 0.346 (R2 ¼ 0.993), J(G) ¼ 0.344 (R2 ¼ 0.993), J(K) ¼ 0.353
(R2 ¼ 0.992) and J(l) ¼ 0.366 (R2 ¼ 0.99), respectively. It is impor-
tant to note that there is no clear drop of the elastic moduli over the
wide porosity range from 0 to 0.726, indicating that the samples
have similar microstructures with isolated pores embedded in a
continuous solid glass and the pores have not formed inter-
connected channels.

3.6. Alumina (Al2O3)

Asmani et al. (2001) investigated the influence of porosity on
the compression and shear wave velocities in alumina ceramics
containing porosities ranging from 0.02 to 0.25 (Fig. 7). In the pure
alumina without porosity, Vp ¼ 10.904 km/s and Vs ¼ 6.399 km/s.
The experimental data are consistent with the GMR with
J(Vp) ¼ 0.882 (R2 ¼ 0.994) and J(Vs) ¼ 1.046 (R2 ¼ 0.981). Vp/
Vs ¼ 1.704exp(�0.202p) (R2 ¼ 0.996), corresponding to n ¼
0.237exp(�0.803p) (R2 ¼ 0.989). The Young’s, shear and bulk
moduli and the Lame parameter of the alumina ceramics,
computed from ultrasonic velocities and densities, are plotted in
Fig. 7c. The elastic properties can be well fitted by the GMR curves
of J(E) ¼ 0.329 (R2 ¼ 0.994), J(G) ¼ 0.343 (R2 ¼ 0.991), J(K) ¼ 0.278
(R2 ¼ 0.998) and J(l) ¼ 0.241 (R2 ¼ 0.994). The GMR is much better
than the linear relation used by Asmani et al. (2001) for describing
the dependence of the elastic moduli on the porosity.
f fused glass beads as a function of porosity. GMR curves labeled according to J values.



Fig. 6. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) of porous SiO2 glasses as a function of porosity. GMR curves labeled according to J values.

Fig. 7. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) of Al2O3 aggregates as a function of porosity. GMR curves labeled according to J values.
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3.7. Periclase (MgO)

Fig. 8 demonstrates the sound velocity and Poisson’s ratio data
of polycrystalline MgO aggregates with porosities up to 5% (Soga
and Schreiber, 1968). The least-squares fit using the GMR for the
experimental data of MgO yields that J(Vp) ¼ 1.163 (R2 ¼ 0.973) and
J(Vs) ¼ 0.966 (R2 ¼ 0.991). The Vp/Vs ratio increases with increasing
porosity: Vp/Vs ¼ 1.6exp(0.178p) (R2 ¼ 1), corresponding to
n ¼ 0.18exp(1.003p) (R2 ¼ 1). The elastic moduli E, G, K and l can be
well described by the GMR with J(E) ¼ 0.343 (R2 ¼ 0.994),
J(G) ¼ 0.326 (R2 ¼ 0.996), J(K) ¼ 0.426 (R2 ¼ 0.964), J(l) ¼ 0.665
(R2 ¼ 0.746) over the range of porosity from 0 to 0.05 (Fig. 8). There
is a tendency that J(l) > J(K) > J(E) > J(G).
3.8. Spinel (MgAl2O4)

Fig. 9 illustrates the variation in the P- and S-wave velocities
in hot-pressed spinel (MgAl2O4) aggregates (Porter et al., 1977).
The GMR with J(Vp) ¼ 0.726 (R2 ¼ 0.959), J(Vs) ¼ 0.828
(R2 ¼ 0.978), J(E) ¼ 0.284 (R2 ¼ 0.991), J(G) ¼ 0.293 (R2 ¼ 0.989),
J(K) ¼ 0.247 (R2 ¼ 0.947) and J(l) ¼ 0.221 (R2 ¼ 0.889) provides
statistically meaningful descriptions for the wave velocities and
elastic moduli. Scatter in the velocity or modulus data shown in
the plots (Fig. 9) can be attributed to variations in shape, size,
and spatial distributions and orientations of micropores within
the samples. For the spinel aggregates, Vp/Vs ¼ 1.76exp(�0.199p)
(R2 ¼ 0.994), corresponding to n ¼ 0.262exp(�0.653p)
(R2 ¼ 0.969).
Fig. 8. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) of
values.
3.9. Clean sandstone

Han (1986) measured both P- and S-wave velocities of 10 nat-
ural, dry, clean sandstones which consist of nearly pure quartz
grains without clay (Fig. 10). Their Vp and Vs data as a function of
porosity can be described by the GMR with J(Vp) ¼ 0.714
(R2 ¼ 0.992) and J(Vs) ¼ 0.59 (R2 ¼ 0.988), respectively. The elastic
moduli calculated from the measured velocity and density data
(r0¼ 2.65 g/cm3) also follow the theoretical curves of the GMRwith
J(E) ¼ 0.246 (R2 ¼ 0.995), J(G) ¼ 0.228 (R2 ¼ 0.993), J(K) ¼ 0.328
(R2 ¼ 0.986), and J(l) ¼ 2.091 (R2 ¼ 0.288). The quartz sandstones
display a clear increase in either Vp/Vs or n: Vp/Vs ¼
1.494exp(0.326p) (R2 ¼ 0.997) and n ¼ 0.094exp(3.202p)
(R2 ¼ 0.994). This observation is consistent with the comparison
between the Poisson’s ratios of pore-free quartzite and porous
quartz sandstones (Ji et al., 2009). These authors investigated 7
quartzite and 9 sandstone samples and obtained n ¼ 0.104 for
quartzite (Vp ¼ 5.951 km/s and Vs ¼ 3.991 km/s) and n ¼ 0.182 for
sandstone (Vp ¼ 5.097 km/s and Vs ¼ 3.243 km/s).

4. Discussion

Fig. 11a plots J(Vs) versus J(Vp) data from the experiments
described above together with the results of SiC (Jeong and Hsu,
1996), titanium aluminide (Matikas et al., 1997), ZnO (Martin
et al., 1996), UO2 (Panakkal, 1991), 3Y-TZP ceramics (Luo and
Stevens, 1999), Gd2O3 (Haglund and Hunter, 1973), Sm2O3
(Hunter et al., 1974), HfO2 (Dole et al., 1977), ZrO2 (Smith and
Crandall, 1964), Lu2O3 (Hunter and Graddy, 1976) and Si3N4
periclase (MgO) aggregates as a function of porosity. GMR curves labeled according to J



Fig. 9. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) of polycrystalline spinel aggregates as a function of porosity. GMR curves labeled ac-
cording to J values.

Fig. 10. Seismic wave velocities (a), Vp/Vs ratio (b), elastic moduli (c) and Poisson’s ratio (d) of quartz sandstones as a function of porosity. GMR curves labeled according to J values.
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Fig. 11. Plots of J(Vs) versus J(Vp) (a), c value versus n0 (b), and b value versus (Vp/Vs)0 (c). Solid dots: n0 > 0.2; Open dots: n0 < 0.2.
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(McLean and Fisher, 1981). It is interesting to find that J(Vs) > J(Vp)
for the porous materials with n0 > 0.2 (solid dots in Fig. 11) whereas
J(Vs)< J(Vp) for those porous materials with n0< 0.2 (open circles in
Fig. 11). For those materials with n0 z 0.2, J(Vs) z J(Vp).

For the variation of effective Poisson’s ratio (nc) as a function of
porosity, described by nc ¼ n0exp(cp), we plotted c as function of n0
(Fig. 11b) and obtained the following correlation: c ¼ �5.395
�3.352lnn0 (R2 ¼ 0.764). When n0 ¼ 0.2, the effective Poisson’s
ratio becomes independent on the porosity. However, c > 0 (i.e.
the effective Poisson’s ratio increases with the porosity) and c < 0
(i.e. the effective Poisson’s ratio decreases with the porosity)
when n0 < 0.2 and n0 > 0.2, respectively. For the relation (Vp/
Vs)c ¼ (Vp/Vs)0exp(bp), the b�(Vp/Vs)0 plots (Fig. 11c) yield a linear
relation: b ¼ 2.965e1.816(Vp/Vs)0 (R2 ¼ 0.863). When (Vp/
Vs)0 ¼ 1.633, corresponding to n0 ¼ 0.2, the (Vp/Vs)c remains un-
changed with the variation of the porosity. However, b > 0 (i.e.
(Vp/Vs)c increases with the porosity) and b < 0 (i.e. (Vp/Vs)c de-
creases with the porosity) when (Vp/Vs)0<1.633 and (Vp/
Vs)0>1.633, respectively.

Fig. 12 shows that the J values for the elastic moduli (E, G, K and
l) vary with the elastic wave velocities (Vp and Vs) in quite
different manner. J(K) displays an excellent correlation with J(Vp)
for the materials with n0 > 0.2 (Fig. 12c) while such a linear cor-
relation becomes deteriorated between J(K) and J(Vs) (Fig. 12g).
The dependences of J(E) on J(Vp) and J(Vs) are nonlinear and linear,
respectively. The correlations between J(E) and J(Vs) (Fig. 12e) and
particularly those between J(G) and J(Vs) are nearly the same for
the materials with any n0 values (>0.2 or <0.2, Fig. 12f). However,
the correlations between J(E) and J(Vp) and those between J(G) and
J(Vp) are remarkably different for the materials with n0 > 0.2 and
n0 < 0.2 (Fig. 12aeb). The J(l) demonstrates nicely a linear rela-
tionship with J(Vp) for the materials with n0 > 0.2 (Fig. 12d). There
are generally large scatters in the data of the materials with
n0 < 0.2.

It is important to note that J(G)>J(E)>J(K)>J(l) for all the ma-
terials with n0 > 0.2 while J(G)<J(E)<J(K)<J(l) for all the materials
with n0 < 0.2 (Fig. 13). For the materials n0 ¼ 0.2,
J(G)¼ J(E)¼ J(K)¼ J(l). As shown in Fig. 13a, the plots of J(G) versus
J(E) all lie near the line J(G) ¼ J(E), but those for the porous solids
with n0 > 0.2 and n0 < 0.2 occur above and below the line,
respectively. J(G) ¼ 0.936J(E)þ0.035 (R2 ¼ 0.965) and J(G) ¼
1.029J(E) � 0.018 (R2 ¼ 0.994) for the materials with n0 > 0.2 and
n0 < 0.2, respectively. In other words, J(E) > J(G) for all the ma-
terials with n0 > 0.2 while J(E)<J(G) for the materials n0 < 0.2. As
shown in Fig. 13bef, J(K) < J(E), J(K) < J(G), J(l) < J(E), J(l) < J(G)
and J(l) < J(K) for the solids with n0 > 0.2. In contrast, J(K) > J(E),
J(K) > J(G), J(l) > J(E), J(l) > J(G) and J(l) > J(K) for the solids with
n0 < 0.2.



Fig. 12. Correlations of the J(E), J(G), J(K) and J(l) with J(Vp) and J(Vs) for the porous materials studied. Solid dots: n0 > 0.2; Open dots: n0 < 0.2.
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Substituting Eq. (10) into Eq. (3), we obtain:

nc ¼ ðn0 þ 1Þð1� pÞ1=JðEÞ�1=JðGÞ � 1 (11)

where 1 � p is always less than or equal to 1.

(1) If J(G) > J(E) (the materials with n0 > 0.2, Fig. 12a),
ð1� pÞ1=JðEÞ�1=JðGÞ < 1, then n < n0, that is, an increase in
Fig. 13. Correlations among the J(E), J(G), J(K) and J(l) values for the p
porosity will always lead to a decrease in Poisson’s ratio
(Figs. 2, 3, 5, 7, 9). In the crust, an increase in hydrostatic
pressure (or depth) will lead to a reduction in porosity, and
thus an increase in the effective Poisson’s ratios of the rocks
with n0 > 0.2 (e.g. amphibolite, gabbro, mafic granulite, peri-
dotite, and serpentinite).

(2) If J(G) ¼ J(E) (the materials with n0 ¼ 0.2), n ¼ n0, the effective
Poisson’s ratio of the porous material is independent on
orous materials studied. Solid dots: n0 > 0.2; Open dots: n0 < 0.2.
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porosity, and thus remains invariable with change in pressure
(Wang and Ji, 2009). The Poisson’s ratio displays a fixed point at
n ¼ n0 ¼ 0.2 (Fig. 13a).

(3) If J(G) < J(E) (the materials with n0 < 0.2, Fig. 12a),
ð1� pÞ1=JðEÞ�1=JðGÞ > 1, then n > n0. In this case, the effective
Poisson’s ratio of the porous material increases with
increasing porosity (Figs. 4, 6, 8 and 10) and should thus
decrease with increasing hydrostatic pressure because the
latter decreases the porosity.

Using the Mori and Tanaka (1973) mean-field approach, Dunn
and Ledbetter (1995) analyzed theoretically the effective Pois-
son’s ratio of macroscopically isotropic solids containing randomly
distributed and randomly oriented spherical, needle-shape or
disk-shape pores. They reported that the fixed point of Poisson’s
ratio changes with the aspect ratio of pores (a: width/length). For
the materials containing spherical (a ¼ 1) and needle-shape
(a >> 1), the fixed point of Poisson’s ratio is at n ¼ n0 ¼ 0.2. For
the materials containing disk-shape pores (a < 1), however, the
fixed point of Poisson’s ratio decreases nonlinearly with
decreasing pore aspect ratio (Fig. 14). For the extremely thin disk-
shape pores (a / 0), the fixed point is at n0 / 0. For all the ma-
terials described in Section 3, the fixed point of Poisson’s ratio is
clearly at n ¼ n0 ¼ 0.2 (Fig. 11a), indicating that the pores in the
isostatically hot-pressed, sintered polycrystalline materials (e.g.
metals, ceramics, and glasses) and natural quartz sandstones are
dominated by corner-shaped holes rather than thin disk-shape
pores. The materials containing the corner-shaped holes seem to
have the same fixed point of Poisson’s ratio at n ¼ n0 ¼ 0.2 as those
containing spherical or tubular pores.

As discussed by Wang and Ji (2009), the presence of thin-disk-
shaped pores in a solid material with 0 < n0 < 0.5 always reduces
its effective Poisson’s ratio, and displays an effect much more
pronounced for the materials with a larger n0. Furthermore, the
thin-disk-shaped pores with a smaller a value play a much more
important role in the reduction of the effective Poisson’s ratio than
those with a larger a value (Wang and Ji, 2009). Natural rocks in the
upper crust, which may be different from the intact samples of
man-made materials used in the laboratory, contain often thin-
disk-shaped microcracks including intragranular cracks (e.g.
cleavage cracks in amphibole, feldspar, mica and pyroxene; intra-
granular cracks in garnet and quartz) and intergranular cracks (e.g.
Fig. 14. The fixed point of Poisson’s ratio of a porous material as a function of the pore
aspect ratio (Modified after Dunn and Ledbetter, 1995).
grain boundary cracks, foliation-parallel cracks, lineation-
perpendicular or oblique cracks). The smaller the a value, the
easier to close the thin-disk-shaped microcracks by hydrostatic
pressure. With increasing depth or pressure, the thin-disk-shaped
microcracks with smaller a values are progressively closed, and
the Poisson’s ratio fixed point increases and will finally reach to the
point at n ¼ n0 ¼ 0.2. Below and above the fixed point, the effective
Poisson’s ratio increases and decreases with increasing porosity,
respectively.
5. Conclusions

The studies on the porosity-dependence of elastic and seismic
properties of natural rocks are extremely difficult because the
geometrical shape, size distribution and connectivity of pores in
three-dimensional, opaque rocks are generally unknown. For this
reason, experimental results from isotropic man-made materials
(e.g. metals, oxides, ceramics and glasses) with calibrated poros-
ities are particularly important for better understanding of seismic
data from the natural rocks. In the present study, we used the
GMR, which is a simple but rigorous mathematical expression, to
provide a unified description for the best fitting relationship be-
tween the overall elastic properties (e.g. elastic constants, and
seismic velocities) and the porosity in solid materials such as sil-
ver, iron, porcelain, fused glass beads, silica glasses, alumina,
periclase, spinel and quartz sandstone. The characteristic J value of
the GMR, which is regarded as the microstructural coefficient, is
controlled mainly by the shape, size distribution, continuity and
connectivity of the pores in the solid medium. The most inter-
esting finding is that the J values for Young’s (E), shear (G) and bulk
(K) moduli and Lame parameter (l) for a given porous material are
systematically different and display some consistent correlations
with the Poisson’s ratio of the nonporous material (n0). For the
intact samples of metals, ceramics, glasses and rocks containing
dominantly corner-shaped holes, the Poisson’s ratio fixed point is
at n ¼ n0 ¼ 0.2. In other words, J(G) > J(E) > J(K) > J(l) for the the
materials with n0 > 0.2 while J(G) < J(E) < J(K) < J(l) for the ma-
terials with n0 < 0.2. For the materials n0 ¼ 0.2,
J(G) ¼ J(E) ¼ J(K) ¼ J(l). J(Vs) > J(Vp) for the porous materials with
n0 > 0.2 whereas J(Vs) < J(Vp) for those porous materials with
n0 < 0.2. For those materials with n0 z 0.2, J(Vs) z J(Vp). The
effective Poisson’s ratio increases, decreases and remains invari-
able with increasing porosity for the materials with n0 < 0.2,
n0 > 0.2 and n0 ¼ 0.2, respectively. J(K) displays an excellent cor-
relationwith J(Vp) for thematerials with n0> 0.2. The dependences
of J(E) on J(Vp) and (Vs) are nonlinear and linear, respectively. The
J(l) demonstrates nicely a linear relationship with J(Vp) for the
materials with n0 > 0.2. However, natural rocks in the upper crust,
which may be different from the intact samples of man-made
materials used in the laboratory, contain generally thin-disk-
shaped microcracks such as cleavage cracks in rock-forming min-
erals, grain boundary cracks, foliation-parallel cracks, lineation-
perpendicular or oblique cracks (e.g. Ji et al., 1997; Sun et al.,
2012). For these materials containing disk-shape pores, the fixed
point of Poisson’s ratio decreases nonlinearly with decreasing pore
aspect ratio (a: width/length). For the extremely thin disk-shape
pores (a / 0), the fixed point is at n0 / 0. With increasing
depth or pressure, the thin-disk-shaped microcracks with smaller
a values are progressively closed, and the Poisson’s ratio fixed
point increases and will finally reach to the point at n ¼ n0 ¼ 0.2.
Below and above the fixed point, the effective Poisson’s ratio in-
creases and decreases with increasing porosity, respectively. The
present work provides a foundation upon which to base further
studies.
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