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Summary 

While lifecycle assessment (LCA) is a tool often used to evaluate the environmental 

impacts of products and technologies, the amount of data required to perform such studies 

make the evaluation of emerging technologies using the conventional LCA approach 

challenging. The development paradox is such that the inputs from a comprehensive 

environmental assessment has the greatest effect early in the development phase, and yet, the 

data required to perform such an assessment is generally lacking until it is too late. Previous 

attempts to formalize strategies for performing streamlined or screening LCAs were made in 

the late 1990s and early 2000s, mostly to rapidly compare the environmental performance of 

product design candidates. These strategies lack the transparency and consistency required 

for the environmental screening of large numbers of early-development candidates, for which 

data is even sparser. We propose the Lifecycle Screening of Emerging Technologies method 

(LiSET). LiSET is an adaptable screening-to-LCA method that uses the available data to 

systematically and transparently evaluate the environmental performance of technologies at 

low readiness levels. Iterations follow technological development and allow a progression to 

a full LCA if desired. In early iterations, LiSET presents results in a matrix structure 

combined with a “traffic-light” color grading system. This format inherently communicates 
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the high uncertainty of analysis at this stage and presents numerous environmental aspects 

assessed. LiSET takes advantage of a decomposition analysis and data not traditionally used 

in LCAs to gain insight to the lifecycle impacts and ensure that the most environmentally 

sustainable technologies are adopted.  

Keywords: emerging technology; environmental screening; LiSET; lifecycle screening of 

emerging technologies; matrix LCA; streamlined LCA 

Introduction 

Aim of study 

Lifecycle assessment (LCA) is a standardized method that strives to determine all of 

the environmental burdens connected to a product or activity. However, capturing all of these 

environmental flows is very difficult  (Rebitzer et al. 2004; Hellweg and Milà i Canals 2014). 

Although LCA is a powerful tool, it is not without limitations. For instance, the 

comprehensive nature of an LCA makes it costly and time intensive to perform (Hellweg and 

Milà i Canals 2014; Graedel et al. 1995; Weitz et al. 1996; Hochschorner and Finnveden 

2003; Finnveden et al. 2009). Perhaps more importantly, the standard LCA method also 

struggles to evaluate technologies at low technological readiness levels (Gavankar et al. 

2015). In some cases, there are a multitude of technology candidates at the experimental or 

laboratory scale, and therefore insufficient data are available to perform an adequate LCA. 

Furthermore, these data gaps are difficult to readily identify in typical LCA results unless 

explicitly highlighted by the practitioner.  

The abovementioned limitations make LCA unsuitable in early stages of technology 

development as the necessary information is not usually available (Hetherington et al. 2014). 

Additionally, the precise quantification of environmental impacts is not the focus in these 

early phases of development. Rather, it is capturing the relative environmental potential of 
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these developments, and identifying areas of potential concern or dead-end development 

pathways that is of greatest importance. In these stages of development, there are dozens of 

potential candidates and there are significant data gaps. What little data that are available may 

be qualitative, and derived from expert judgment rather than observed values. Such 

conditions make conventional, full LCAs impossible, and whatever single-score impacts that 

are extracted from any attempts at a full LCA would be highly under-informed and of limited 

usefulness due to the quality and quantity of data available for the assessment. However, 

technology development and design choices made early in the process have a significant 

effect on the overall environmental performance of the final product (Hetherington et al. 

2014). It is therefore during this development phase that the results of an LCA would 

paradoxically have the greatest influence on the technology (Hellweg and Milà i Canals 

2014). Moreover, changes to design or technology selections are significantly less likely to 

occur later in the development process due to technological lock-in. A systematic framework 

allowing for an efficient and transparent environmental evaluation of multiple technological 

candidates early in development would therefore be useful. Such a framework, the Lifecycle 

Screening of Emerging Technologies (LiSET), is presented here.  

Background  

In the 1990s, much effort was placed in developing less time- and cost intensive 

versions of the standard LCA method. In an attempt to address the issues with and develop 

approaches to reduce the labor and data intensity of the LCA method, the United States 

Environmental Protection Agency (EPA) hosted a meeting between LCA practitioners from 

industry, consulting and academia (Curran and Young 1996).  

Despite this, there are few universally accepted, systematic means of performing a 

simplified LCA. While the need for simplified LCA methods was addressed in the 1990s 

(Graedel et al. 1995; Wenzel et al. 2000; Hunt et al. 1998; Weitz et al. 1996), seemingly little 
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cohesion in this type of assessment remains. Indeed, frameworks designed to assess specific 

technologies exist (Arena et al. 2013; Tang et al. 2016; Bauer et al. 2008), but development 

of generic frameworks that can be applied to any emerging technologies seems to have 

stalled. Two levels of non-full LCAs exist, namely matrix mapping, or screening LCAs, 

which can be qualitative or semi-quantitative, and streamlined LCAs, which are quantitative 

(Wenzel 1998). 

The environmentally responsible product assessment (ERPA) matrix (Graedel et al. 

1995) and the material-energy-chemicals-other (MECO) method (Wenzel 1998; Pommer et 

al. 2001) are the most prominent semi-quantitative methods for performing a lifecycle 

screening. While these approaches both provide a fairly comprehensive assessment of early-

phase products, they lack flexibility and are subject to arbitrariness (Hochschorner and 

Finnveden 2003). These approaches also mirror the understanding of and subsequent 

environmental priorities of their era (i.e., the 1990s). These methods therefore focus on the 

most visibly apparent aspects of pollution, such as packaging and landfilling (Guinée et al. 

2011), rather than the current issues of global warming and biodiversity impacts, among 

others. Furthermore, the ERPA matrix is limited in its ability to evaluate indirect impacts, 

such as differences between electricity sources or material production technologies. 

Additionally, qualitative information has no place in the ERPA matrix, which forces the 

absence of potentially useful information in an evaluation.  

Streamlined LCAs, on the other hand, are fully quantitative, and are therefore 

preferentially applied to products or technologies with relatively high readiness level rather 

than those in an early developmental phase. Streamlining approaches usually involve reduced 

levels of detail or data quality. While more development has occurred in the area of 

streamlined LCAs than screening LCAs, most of these streamlined LCA approaches seem to 

entail adopting the strategies developed in the EPA meeting to varying degrees rather than 



5 
 

spearheading novel approaches to streamlining. The streamlining strategies developed in the 

EPA meeting (Curran and Young 1996; Todd and Curran 1999) appear to have been readily 

adopted (Moberg et al. 2014; Arzoumanidis et al. 2017), yet not further explored or 

developed. These strategies are: 

1. Abandoning, partially or fully, upstream or downstream processes 

2. Reducing the number of environmental impacts evaluated 

3. Using a threshold value to determine which components are studied 

4. Using proxies 

5. Mixing qualitative and quantitative data, depending on availability 

6. Establishing “zero-tolerance” criteria that when met, discontinues further analysis 

These strategies, however, are not all created equal, as some strategies result in vastly 

different rankings of the evaluated candidates than others (Hunt et al. 1998; Moberg et al. 

2014). Moreover, there is no universal guidance as to which of the strategies to apply, nor in 

what context are they appropriate or to what extent should they be used. For example, 

strategy 5 does not specify how exactly qualitative and quantitative data could or should be 

combined in an assessment. The resulting haphazard application and combination of the 

strategies underpins the subjectivity of current streamlined LCAs. More importantly, the 

strategies of streamlined LCA are defined very broadly, and when these strategies are applied 

together, they could essentially yield a zero-information LCA due to the compounding of 

uncertainties introduced by each strategy. Such an LCA undermines confidence in 

streamlined LCA results and their ability to guide technology development in a more 

sustainable direction. It is therefore crucial to accompany streamlining LCAs with a 

systematic means of communicating assumptions and tracking the evolution of a study 

through iterations.    
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This article describes an adaptable screening-to-streamlined-to-full LCA method. This 

method can be useful in mapping technology candidates in early stages of development, in 

performing a feasibility assessment of novel technologies, and in pinpointing candidates for 

further pursuit with relatively little investment in cost and time. While we focus on using the 

method to inform technology development pathways, the product design process is analogous 

and therefore similarly applicable. 

Proposed new method 

In this paper, we propose a formal method for a lifecycle screening framework that 

should add practical guidance and transparency to strategies of both screening and 

streamlined LCAs. Unlike previously developed screening and streamlining LCA methods, 

this method is best suited to the mapping of a large number of candidates at early stages of 

development. Our LiSET method constitutes the generalization and refinement of an 

approach developed specifically to screen the literature for nanomaterial candidates with the 

potential of improving the lifecycle sustainability of traction batteries and fuel cells 

(Ellingsen et al. 2016). A subsequent application of the method to electrode materials for a 

rechargeable aluminum battery can be seen in Ellingsen et al. (2018). 

The method involves a three-step process to perform relative comparisons between 

technologies. These three steps can be iterated and refined in a fourth step as the technology 

develops, and eventually converted to a quantitative analysis in a fifth step (Figure 1). Each 

step is described in detail later in the text with examples from various sector technologies, but 

briefly, the process is as follows. First, the technology lifecycle is decomposed into the 

classic components of impact sources: the amount of inputs and outputs required for fulfilling 

the designed function and the environmental intensity of these inputs and outputs. Second, 

the decomposition terms are linked to objective, evaluable lifecycle aspects. Third, 

quantitative and qualitative data for these aspects are collected and evaluated using a relative 
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scale. The fourth and fifth steps accompany the iterative refinement and transition to a 

streamlined quantitative LCA comparison, and eventually full-fledged LCA evaluation. After 

describing the five steps in detail, we close this section with a discussion of transparency 

matters and approaches to mitigate the subjectivity of the LiSET method.

Figure 1 - Workflow for performing LiSET. The numbers indicate the three core steps of the method, with an 
optional fourth step of iteration and fifth step of transition to quantitative evaluation. Depending on whether a 

relative scoring or absolute, quantitative results are obtained from the evaluation, a table-based LiSET 
screening or first-round LCA with collapsed lifecycle impact assessment (LCIA) results.

Decomposition analysis 

The basis of LiSET is a decomposition of a technology’s lifecycle into a finite number 

of contributors to environmental impacts that can be identified from first principles. By using 
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this top-down approach, all of the factors influencing environmental impact are explicitly 

included in the analysis, irrespective of the initial availability of data.  

Conceptually, we start decomposing the total lifecycle causal connections by 

separating direct and embodied impacts (Figure 2, Row I). The former arise from direct 

exchanges between the technology under evaluation and the environment. These exchanges 

are those that arise from the technology itself, and are analogous to Scope 1 emissions from 

the Greenhouse Gas Protocol corporate standard. These direct exchanges might be the water 

required to irrigate genetically modified crops, the evolution of heat during the operation of a 

battery, or volatile fumes arising from a 3D printing process. On the other hand, the 

embodied impacts are mediated through the value chains supplying the technology during 

manufacturing, operation or disposal of the technology. These embodied impacts are 

analogous to Scope 2 and 3 emissions. Examples of embodied impacts include the impacts 

arising from the research and development of the genetically modified crops, of the electricity 

mix used to charge the battery and the amount of steel (and environmental impacts thereof) 

used to make the 3D printer. The total environmental impact from the technology is the sum 

of all direct and embodied impacts.   

In the next level (Row II), direct exchanges are categorized as material emissions of 

pollutants such as carbon dioxide, particulate matter, etc. and energy releases in the form of 

heat, radiation or even noise. Direct inputs of materials or energy from the environment, 

otherwise referred to as resource use, to the technology are also considered here. In a similar 

manner, the impacts from embodied inputs to the technology are categorically decomposed 

into value chains of material inputs (e.g., metals, chemicals, or water), of energy in the form 

of electricity or heat requirements, or of non-consumptive inputs, hereafter termed “services” 

(e.g., person-hours, land-use, transport).  
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Figure 2 - General decomposition of environmental impacts. Practitioners may choose to decompose further to 

adapt to the priorities of their analysis, e.g., by distinguishing between individual emission species, midpoint 
indicators, areas of protection, lifecycle phases, or all of the above.  

The impacts arising from each of the terms in Row II are further decomposed as a 

multiplication of two dimensions: the magnitude of the flow (exchange or input) per unit of 

delivered functionality, and the specific environmental intensity (damage per unit mass, 

energy or service) of these flows1 (Minx et al. 2011) (Row III). That is, impacts arising from 

direct exchanges are dictated by both the quantity of the emissions per functional unit as well 

as the disruptive potential (i.e., characterization factor) of the emitted species (Row III, first 

four terms). Parallels can be drawn to the impacts of embodied emissions (remainder of Row 

III). Considering both quantity and environmental intensity is particularly important, as 

technologies demonstrating higher material/energy/service efficiency (i.e., more functionality 

per mass), often also have the tradeoff of using materials with higher specific environmental 

intensity (e.g., CO2 per kg of material) to achieve the increased efficiency.  

These first three rows will be the same for all technologies. A decomposition with 

higher resolution is achieved by extending into more levels. For example, a practitioner may 

separate inputs from outputs (collectively referred to as “exchanges” in Figure 2).  

For example, in a fourth row of decomposition, each of the “environmental intensity” 

terms in Row III could logically then break down into “greenhouse gas intensity” and “other 

environmental impacts”. Similarly, the “material efficiency” in Row III might be split into 

“material requirements for production”, “material requirements during use phase” in Row IV. 
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One might further distinguish production materials between materials that are incorporated 

into the technology, “production materials” and materials used in production, but not directly 

part of the technology, “consumables for production”, in Row V. Extending the 

decomposition analysis retains the complete coverage of lifecycle impacts for the technology 

candidates while concurrently adding resolution via disaggregation of individual flows. As 

the decomposition analysis ensures full coverage of all factors leading to environmental 

impacts, practitioners should strive to also include a comprehensive range of environmental 

impact types. As an example, this can be done by ensuring that all three areas of protection 

(human health, ecosystem health, and resource use) are in some way covered by the 

decomposition terms, even partially. 

Lifecycle aspects  

The decomposition conceptually splits the lifecycle impact into aggregated 

decomposition terms. Because decomposition terms conceptually represent multiple flows 

(e.g., inputs of electricity, heat, etc.), there is a need to translate these decomposition terms 

into evaluable metrics, or lifecycle aspects.  

The practitioner selects these lifecycle aspects: physical properties that are proxies 

used to represent the decomposition terms. The lifecycle aspects should consist of data types 

that are readily available for many of the technology candidates being evaluated, at the time 

of the evaluation. Note that several lifecycle aspects may be used concurrently to represent 

one decomposition term and that these representations should be selected such that all 

lifecycle phases are considered in the overall evaluation. Furthermore, the aspects are not a 

“next level” of decomposition, but should rather be thought of as physical manifestations, or 

overall indicators, of each decomposition term. 
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During this step, it is important to use a consistent, reasonably transparent and 

accessible data source across all evaluated technologies. Similarly, with the comparison of 

several technologies, care should be taken to ensure all candidates are evaluated. The 

uncertainty involved in early phase assessments mean that the assumptions used in this step 

have a considerable influence on the results and overall conclusions drawn from the study. 

Table 1 provides some non-exhaustive, generalized examples of lifecycle aspects that can be 

used for the different decomposition terms.  

It is useful to explicitly identify whether each lifecycle aspect is intrinsic or extrinsic. 

Intrinsic properties will largely be immutable and are inherent to the technology itself. In 

contrast, to some extent, extrinsic properties depend on the value chain design and can 

therefore be adjusted by selecting a different value chain. Using energy devices as an 

example, intrinsic properties include theoretical efficiency, or power density, or the crust 

concentration of the elements required in the device. In contrast, extrinsic properties for the 

same devices include transport requirements, or the carbon intensity of the electricity used to 

assemble the device. Thus, most extrinsic parameters are not affected by the technological 

choice, and should receive less attention in guiding early technology development. Choices of 

providers, geographies of production, and other value-chain related considerations are more 

the focus of technological deployment and scale-up phase.  

Using Ellingsen and colleagues (2016) as an example, the lifecycle aspects selected to 

represent the material efficiency portion of embodied material inputs included the battery 

power density, energy density, material synthesis losses, recyclability, and lifetime and 

stability. These aspects were selected due to their fitness as representations of the 

decomposition terms, their relevance to the functionality of the energy device, their roles in 

contributing to the overall material requirements of the devices, and because these were often 

the data that were typically published in materials research articles, and therefore available 
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for the lifecycle screening of these early phase developments. Thus, a few data points 

efficiently serve as indicators for the whole lifecycle phase, and are represented individually, 

without being aggregated (hidden) in the calculation of a highly uncertain LCA impacts. This 

feature of LiSET therefore constitutes one of the advantages of this approach: it adapts to 

available, “non-conventional” data to perform an evaluation of lifecycle impacts. 

Table 1 - Examples of lifecycle aspects that could be used to represent the lifecycle decomposition terms (e.g., 
Row II from Figure 2)  

 

An important point to recognize is the treatment of tradeoffs. Few technologies 

present a true “silver bullet” in terms of environmental impacts. For example, compared to 

their traditional predecessors, advanced lightweighting materials often provide use-phase 

gains, or allow for the use of less material in the manufacturing phase. These advanced 

materials, however, may have higher production impacts than conventional materials via 

greater energy or material requirements or require more intensive precursors (Luk et al. 
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2017). These would be covered individually under the separate lifecycle aspects of material 

efficiency (lightweighting effects) and environmental intensity of materials (resource 

scarcity) or energy efficiency (production or synthesis energy) such that a complete 

evaluation of strengths and weaknesses is performed. Cause-and-effect tradeoffs are therefore 

considered as separate lifecycle aspects as far as possible. 

Each lifecycle aspect is graded according to the available data for its evaluation; the 

data quality, i.e., quantitativeness determines the grading system (Figure 1). For ranking, 

results are presented in a matrix form similar to the ERPA and MECO approaches where the 

evaluated candidates are placed across the columns and the different criteria within the 

lifecycle decomposition terms across the rows (example, Figure 3). Practitioners may opt to 

include a reference candidate in their evaluation. Such a reference candidate might be, for 

example, the state-of-the-art technology currently performing the same function. In Ellingsen 

et al (2016), these were the current state of lithium-ion battery technology, bulk-phase 

lithium-nickel-cobalt-aluminum oxide as the cathode, and graphite as an anode. However, 

any grading that occurs is performed on an internal, relative scale. This means that none of 

the candidates, including this optional reference candidate, acts as a “benchmark”. Such an 

evaluation scheme ensures that the benefits and disadvantages of every candidate, including 

the reference candidate, is clearly communicated by being on the same scale. Tradeoffs 

within each technology are easily identified.  

Figure 3 represents a simplified, fictional example of the results after screening two 

alternatives for an energy device, loosely based on Ellingsen et al (2016). Note that missing 

data and irrelevant lifecycle aspects are still present in the LiSET matrix, but are represented 

with blank cells. The advantages of this approach is further discussed below, in 

Documentation and transparency.  
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Decomposition 
term 

Intrinsic/ 
Extrinsic Lifecycle aspect Candidate 

1* 2 3 … n 

Direct material 
exchanges 

Intrinsic Exposure risks and hazards          …    

Extrinsic 
Scarcity          …    
Damages to human health          …    
Damages to ecosystems          …    

Material inputs 
Intrinsic 

Energy density          …    
Power density           …    
Lifetime and stability           …    
Recyclability          …    

Extrinsic Synthesis material losses          …    

Energy inputs 
Intrinsic Device efficiency           …    
Extrinsic Energy of synthesis  †        …    

Service inputs Extrinsic Research and development          …    

                

Other  Cost  †        …    

Figure 3 - Fictional simplified implementation of early design phase LCA screening for energy devices using 
“traffic light” grading. Green cells denote a relative strength, red relative weakness, and yellow intermediate 
characteristics. Blank cells indicate missing information, † indicates data available, but fewer than three 
candidates have data for the lifecycle aspects, so a three-step grading cannot be made. Candidate 1* represents 
a reference candidate, e.g., the current state-of-the-art. Practitioners may wish to present additional factors 
such as costs or ethical considerations that should be considered in the technology’s development, as shown 
here at the end of the table.  

The results table presents the evaluated lifecycle aspects in rows, grouped according 

to the decomposition term they fall under. Furthermore, the intrinsic and extrinsic nature of 

each aspect is noted. At the right, technology candidates are placed in columns.  The current 

technology (1*) is also evaluated as a reference candidate. 

Making the grade: evaluating the lifecycle aspects 

The first thing to note is that the three candidates are graded relative to each other; 

adding another candidate with values greater or less than the current maximum or minimum, 

respectively, could change the grading scheme. As this is a mapping, the goal of Figure 3 is 

not to declare a “winner”, but rather to pinpoint areas of concern, strengths, and aspects to 

consider in future commercialization.  
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At the coarse end of the grading spectrum, a three-level “traffic light” color system 

denoted by green (advantageous), yellow (intermediate) and red (poor) may be used. Criteria 

with insufficient data are left blank, thereby highlighting areas requiring further investigation. 

Similarly, when fewer than three candidates have data, an internal grading of red-yellow-

green cannot be made, but those candidates can be marked with either the data value or a 

symbol († in Figure 3). This simple, yet intuitive system provides an at-a-glance assessment 

of technologies both as a whole (i.e., down columns) and with other alternatives (across 

columns). Furthermore, this system naturally communicates the inherent high uncertainty of 

the assessment; unlike a scale from 0-10 or 1-100 and so on, there is less than one significant 

digit of resolution in the three-color scale. As the data become more refined, so does the 

grading scale (see Iterative refinement and transition to LCA).   

Concisely representing a wide range of quantitative and qualitative data for multiple 

technology candidates across a large number of lifecycle assessments presents specific 

challenges. In a semi-quantitative evaluation, quantitative data can be presented as-is with 

their actual value, or they can be translated to an evaluation scale. Mixing evaluation systems 

or presenting large amounts of quantitative results with different units makes a general 

overview and thereby drawing conclusions difficult. Using a coarse grading system to 

represent quantitative data also removes the misleading situation where the differences 

between quantitative results are less than or of similar magnitude to the uncertainty of the 

results themselves (e.g., removes the apparent superiority of a 96% vs 94% rating, when each 

of these values has a ±20% uncertainty). We therefore recommend the use of a lowest-

common-denominator approach to the graphical representation of the LiSET screening; until 

all available lifecycle aspects can be expressed on a 1-10 scale, all should be evaluated using 

the three-color scale. 
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However, attempting to reduce quantitative data to a coarser (i.e., color) scale raises 

issues of subjective choices and boundary conditions. Where does one draw the lines between 

green, yellow and red rankings? As a means of ranking quantitative data in an unbiased 

manner, a segmentation algorithm should be used to group data. Segmentation algorithms 

distribute data points into segments or clusters by e.g., minimizing the sum of squares of the 

distance to the mean within each segment while maximizing the difference between segment 

means, thus providing groupings without arbitrary thresholds. Jenks natural breaks 

optimization is an example of such an algorithm (Khan 2012). In cases where the data for a 

lifecycle aspect spread over multiple orders of magnitude, segmentation should be performed 

using the log10 values to avoid grouping together in the green category small quantities that 

nonetheless display large relative spread over orders of magnitude. This second approach 

thus captures relative similarities in order of magnitude, rather than the absolute values of the 

criterion. 

Figure 4 illustrates the advantage of using segmentation algorithms by providing 

examples of how grouping is affected by different algorithms for two different situations. The 

first situation (Figure 4a) is a sample group with moderate spread of results (i.e., within one 

order of magnitude). Examples of lifecycle aspects that would follow this trend could be 

product lifetimes, or efficiencies. The second situation (Figure 4b) is a sample group with a 

large spread of results covering several orders of magnitude. Examples of data types 

demonstrating similar spreads of magnitude include elemental crust concentration (as a 

fraction), or toxicity characterization factors (measured in, e.g., mg 1,4-dichlorobenzene 

equivalents). Four algorithms are demonstrated in Figure 4: Jenks optimization on both linear 

and logarithmic scales, placing equal number of samples in each color grade (tertiles), and 

groups covering intervals of equal magnitude. In Figure 4a, using Jenks optimization with 

log10 values is not relevant, due to the single order of magnitude in data spread. Both the 
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tertile and equal interval groupings create grading boundaries between samples with very 

similar values (candidates 3 and 4 for the former, and 7 and 8 for the latter). With the samples 

containing large spread, a linear Jenks optimization results in seven orders of magnitude 

being covered with the green category, while yellow and red categories combined cover only 

two orders of magnitude. The tertile approach results in the same issue as the first situation, 

wherein two samples with very similar values are placed in different grading categories 

(candidates 6 and 7). Finally, using the equal interval approach with large spread results in 

the lack of samples in the “middle” grade. We provide a thoroughly documented, open-

source Python module to facilitate the LiSET clustering analysis and visualization, available 

at https://github.com/majeau-bettez/LiSET (Majeau-Bettez 2018).  

 
a) b) 

 

Figure 4 - Illustration of clustering approaches for quantitative data in LiSET. a) Samples with moderate 
spread (linear scale), b) samples with large relative spread (note the logarithmic scale). The bars indicate the 

groupings of the samples according to different clustering thresholds: 1) Groups produced using Jenks 
clustering, 2) Groups produced using Jenks breaks of log10 values, 3) Groups containing an equal number of 

samples, 4) Groups using equal interval classification (i.e., intervals of equal magnitude)  

https://github.com/majeau-bettez/LiSET
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Iterative refinement and transition to LCA 

The iterative process in the LiSET framework produces more refined LiSET results, 

or leads to the conversion to streamlined or full LCA.  

Iteration within the LiSET screening with relative scoring 
 

After a first pass through steps 1-3 in Figure 1, what is known about the lifecycle 

aspects of the different technology candidates is mapped out following a decomposition that, 

by definition, should cover the candidates' entire lifecycle. The matrix mapping resulting 

from this initial assessment, however, is not completely filled, has a low resolution, relies on 

a limited number of lifecycle aspects, and is evaluated following a rough, relative scale. 

Below, we address these four issues in order to guide iterative data collection efforts (Figure 

1Figure 1, step 4.1). 

First, the data collection should focus on the completeness of the screening (Figure 1, 

step 4.2). Data gaps are clearly identified in the LiSET matrix by blank cells. Practitioners 

should evaluate the feasibility of obtaining data on lifecycle aspects that represent these 

ignored parts of the technology candidates' lifecycle, even if these are only an approximation. 

In other words, this step aims to eliminate truncation of the lifecycle system description by 

filling data gaps early in the technological development and while the LiSET decomposition 

is still at a low resolution. The practitioners should stop once they evaluate that further data 

search on the missing aspects of the inventory is proving inefficient. 

Second, practitioners should increase the resolution of the screening (Figure 1, step 

4.3) by disaggregating the rows of the LiSET matrix. This disaggregation of the lifecycle 

description is performed by furthering the decomposition analysis presented in Figure 2. For 

example, in Figure 2 Row III, the impacts caused by embodied inputs are decomposed so as 
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to single out material requirements per unit of functionality, expressed as (material 

efficiency)-1. The next step would then be to further decompose this material requirement 

score in terms of the material types that dominate the lifecycle of the different technology 

candidates, for example, ferrous metals, nickel, other non-ferrous metals, polymers and other 

materials. As the material requirement term is multiplied by another term (i.e., 

“environmental intensity of material inputs”) in Figure 2, any decomposition in the former 

should be matched by a decomposition of the latter in order to ensure unit consistency. Then, 

for each new decomposition term, a corresponding lifecycle aspect should be identified and 

evaluated. 

Third, the practitioners should focus on the robustness of the screening (Figure 1, step 

4.4). This is also done by adding new rows to the LiSET matrix, but this time by finding 

additional lifecycle aspects to further quantify (or serve as additional proxies for) each of the 

different decomposition terms. For example, in the case of “Material inputs” in Figure 3, 

multiple lifecycle aspects serve as indicators for this one decomposition term: energy density, 

power density, and lifetime expectancy of the energy device. Disagreements between 

different lifecycle aspects of the same decomposition term, or between different data sources, 

may indicate less robust evaluation. Such data triangulation and validation may, in turn, guide 

further data collection and disaggregation efforts. 

Fourth, the practitioner should strive to increase the precision of their relative, 

ranking (Figure 1, step 4.5) As more quantitative data is collected, it should be evaluated 

whether the level of confidence in the data allows for a refined color-scale, going from a 

coarse green-yellow-red grading to a more subtle scale, with one significant digit (0-9), or 

eventually two significant digits (0-100) to reflect an increased confidence in the 

practitioners' ability to capture finer distinctions between technology candidates. 
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These four steps should be repeated in short iterations, to follow and accompany the 

development of the technology candidates. The different iterations of the LiSET matrix 

should be archived, and the different iteration steps, strategic decisions (e.g., elimination of 

candidates), and expert judgements should be logged for transparency (Pauliuk et al. 2015). 

The dynamic evolution of the mapping should serve as a tool for dialogue between LCA 

practitioners and technology developers. 

As the mapping progresses and data collection intensifies, identified “dead-end” 

candidates are eliminated from the LiSET matrix under subsequent iterations. Candidates 

demonstrating obvious internal tradeoffs (i.e., strong benefits in some lifecycle aspects, and 

strong disadvantages in others), however, should not be excluded in the spirit of maintaining 

objectivity and transparency.  

 
Transition from relative scoring to LCA 
 

One of the shortcomings of previous LCA screening frameworks is the difficulty to 

“collapse” their mapping into a meaningful indicator of environmental impacts (Graedel et al. 

1995; Wenzel 1998). In contrast, LiSET's iterative approach naturally leads to the calculation 

of lifecycle environmental impacts. 

As the LiSET decomposition analysis is refined and more rows are added to the 

LiSET matrix (Figure 1, step 4.3), the screening increases in resolution until each data point 

comes to approximate specific product flows, elementary flows, or key parameters. For 

example, in successive iterations, an analysis may go from using a proxy for “material 

inputs” to acquiring data on metallic and non-metallic inputs, to eventually knowing the 

particular requirements of copper, low-alloyed steel, and graphite of a given process. 

When practitioners require a lifecycle score (i.e., lifecycle impact assessment results) 

rather than a mapping, and when the resolution and completeness of the LiSET matrix is 
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deemed sufficient to allow for a first quantitative comparison, the relative scale is dropped, 

revealing a collection of data with disparate dimensions and units (Figure 1, step 3). The 

equation of the decomposition analysis (Figure 2), which has grown along with the LiSET 

matrix through every iteration, directly dictates how these data should be combined to 

calculate lifecycle scores. That is, which terms should be multiplied and which should be 

summed. 

It should be noted that resulting quantitative scores will represent more or less 

streamlined LCA results, depending on the level of resolution of the LiSET matrix. The 

authors should interpret these results with caution, and continue to rely on further LiSET 

iterations of decomposition and mapping to further transition towards a full-fledged LCA. 

The LiSET iteration process only truly ends when the practitioners start to require 

more extensive connections to LCA unit-process databases such as ecoinvent, graphing and 

contribution analysis capabilities, and detailed uncertainty analyses (e.g., pedigree and Monte 

Carlo analyses). 

 
 Documentation and transparency 

LiSET aims to reduce subjectivity and bias by including documentation of all steps, 

particularly the decomposition analysis.  

Current screening, streamlined and full LCA approaches generally ignore missing 

data altogether when presenting method and results, which presents obvious transparency 

issues. In contrast, LiSET uses blank spaces to explicitly indicate what data are missing and 

which decomposition terms have been deemed irrelevant2. This treatment of unknowns is 

unique to any of the screening and streamlining methods in that the status of these are 

explicitly communicated as unknown or irrelevant. The obvious benefit of this is the 
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systematic and documented approach to omitting aspects, and the communication of this 

process.  

Thus, the presentation of the results matrix such as Figure 3 would be accompanied by 

the full decomposition analysis and a short description justifying each blank term. Similarly, 

the data gathered to evaluate each lifecycle aspect and boundary conditions for color 

groupings should be documented in e.g., a spreadsheet or database structure. This 

documentation is not only for transparency and quality assurance purposes, but also to 

facilitate the iteration process. This documentation also ensures that data resolution is not 

“lost” in the use of simplifying color- or numeric scales. Data uncertainty should be 

documented by including ranges of published values, triangulation of single lifecycle aspects 

with other data sources, or quantified uncertainty in such documentation. Once the method 

has been iterated sufficiently, these data will be readily available to perform more robust 

uncertainty assessments. 

The intended audience for LiSET is researchers working on the technology studied 

and the agents who play a role in technology adoption. To fully capture the lifecycle 

perspective of the technology, we envision that the best results would be obtained when a 

practitioner familiar with LCA principles performs the method in conjunction with those 

intimately familiar with the technology. However, when technology researchers or product 

designers are performing the screening themselves, the documentation of all steps makes it 

easier to consult LCA practitioners and pinpoint missing or weak areas. In other words, rather 

than offering an oversimplified and under-informed LCA for the uninitiated, the LiSET 

framework relies on a systematic approach to iteratively explore and map out what is known 

and not known about the lifecycle aspects of an emerging technology, creating a meeting 

point and a tool of dialogue for technology developers and LCA experts. The thorough 

documentation process encourages discussions between screening practitioners, researchers, 
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designers and stakeholders. Such discussions would play a key role in guiding the 

technology’s development and avoiding lock-in effects of suboptimal pathways by 

identifying dead-end candidates, potential technical and environmental pitfalls at an early 

phase. 

Discussion 

The aim of this article was to formalize a lifecycle screening approach suitable for 

emerging technologies with limited data available for full LCAs. LiSET is suited to both 

qualitative and quantitative data, and encourages the use of what data is available to assess 

the environmental characteristics of the technology. Furthermore, evaluations using LiSET 

may be adapted from an initial screening of technologies to a full LCA through multiple 

iterations.  

In particular, LiSET aims to facilitate screening assessments of very early phase, or 

emerging, technologies (i.e., lab-scale or design phase). These assessments can be iteratively 

upgraded, or adapted, with data as the technology develops, thereby providing a systematic, 

flexible, transparent and objective means of evaluating the environmental aspects of 

technologies and products. The qualitative and semi-quantitative method described here uses 

lifecycle principles by considering the manufacturing, use and end-of-life phases of the 

technology candidates. LiSET also systematically decomposes causal connections that lead to 

environmental effects. To this end, we distinguish between intrinsic and extrinsic 

characteristics. If two technologies demonstrate similar gradings for intrinsic properties, but 

value chain aspect of one is superior to the other, then it is not undoubtedly the superior 

technological choice. It is simply the superior choice under the evaluated conditions.  

A comparison of LiSET to previously developed methods for screening and 

streamlining LCAs is provided in the Supporting Information. 
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A new method for lifecycle screening 

While there is certainly high demand for screening and streamlining LCA methods, 

the development of such approaches has largely stagnated since the 1990s. We introduce 

LiSET, a method that is intended for screening of technologies in the early design phase, or at 

low readiness levels.  

The color indicators used in early stages of LiSET have several advantages. Firstly, 

the use of a single scale to communicate all of the criteria considered is an elegant means to 

harmonize quantitative measurements, qualitative descriptions and estimates. Further, the 

overview of the results is immediately visually apparent without “translation” to target plots 

such as that used with ERPA. The strengths and weaknesses of the technologies are 

individually presented, thus highlighting the tradeoffs, potential hotspots and areas of 

improvement, both within individual candidates (down columns), and across lifecycle aspects 

(i.e., rows). The use of a low-resolution three-color scale also conveys the inherent 

uncertainty in the approach used through avoiding quantitative, finer scales such as scores 

from 1 to 100 or even 1 to 10, which imply both certainty and resolution that are not possible 

in an early phase evaluation. With a quick look, stakeholders and designers are able to 

identify strengths and weaknesses of technology candidates. In addition to this, the 

representation of insufficient data via a blank space also gives an indication of the data 

availability without influencing the final evaluation as is the case in some numerical scoring 

systems. As the technology continues developing, the data continues to “fill out”, certainty 

increases and the “traffic light” system may eventually be replaced by a number scale, e.g., 

from 1-10 to indicate greater certainty, and eventually filled out to represent a full LCA. 

While LCA aims at providing a comprehensive assessment of multiple environmental 

impact categories (e.g., acidification, resource depletion, climate change) (Pelton and Smith 
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2015), LiSET aims to quickly map a large number of technology candidates and pinpoint 

hotspots of damages to human health, ecosystems, and resource availability. A decomposition 

analysis ensures that all lifecycle impacts are considered. Lifecycle aspects, used as metrics, 

are tailored to the specific technologies assessed and the available data. The matrix format for 

presenting results avoids the communication pitfalls associated with presenting single-score 

type results at such an early development phase and explicitly includes data gaps.  

The iterative nature of LiSET follows and grows with a given technology through its 

development and maturation. Combined with iterations of the method and prescriptions for 

objective grading of candidates, the tailored lifecycle aspects allow for a flexible yet 

objective assessment. The results matrix can be expanded to include more drivers and 

strategies as the data required for the evaluation of these becomes available. As the 

technology matures and approaches commercialization, qualitative data may be replaced by 

quantitative data as greater certainty/knowledge is acquired.  

LiSET offers a systematic approach to map the environmental aspects of the 

technology through its development: from its uncertain, qualitative beginning to the 

quantitative state of a full LCA. This method is applied as early as possible in the 

development phase. Early phase assessments allow for the investigation of novel technologies 

to identify those that are most promising and thereby guide further research directions 

towards minimizing the environmental impact of new technologies. 
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1 Note that in Figure 2, the environmental intensity of exchanges is referred to as ‘disruptive potential’ 
and is different from the term describing the analogous property for embodied inputs (‘environmental 
intensity’). This is because the environmental exchanges refer to individual stressors that have a direct 
environmental consequence, while the intensity of the embodied inputs may be represented by the overall 
disruptive potential of processes or process chains, i.e., a combination of exchanges.  

2 The latter would be affected by the nature of the technology, its level of development and the 
practitioner’s understanding of the technology. For example, the environmental intensity of energy inputs to the 
technology might be left blank because this value is dependent on the energy mix and sources used, but 
manufacturing or supplier locations might not yet be determined. 
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