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RÉSUMÉ 

Les besoins énergétiques des bâtiments contribuent de manière significative à la demande de 

pointe du réseau électrique. Cependant, les bâtiments, par leur capacité de stockage de l’énergie, 

peuvent fournir des services de flexibilité énergétique au réseau. La Gestion de la Demande de 

Puissance (GDP) du bâtiment est considérée comme une solution pratique pour réduire les 

demandes de pointe du réseau. Cette approche est moins coûteuse et plus écologique que 

d’utiliser la réserve de puissance ou que d'investir dans de nouvelles infrastructures. La GDP peut 

également jouer un rôle plus important au niveau de l’équilibrage de charge, lorsque le réseau 

intègre des sources d’énergie renouvelables, qui sont intermittentes et variables. 

Cette thèse étudie le potentiel de flexibilité énergétique des bâtiments vis-à-vis du réseau 

électrique par le biais de la simulation. Une méthodologie générale pour caractériser la flexibilité 

énergétique des bâtiments, ainsi qu’un ensemble d’indicateurs sont proposés. La méthodologie 

est testée sur un modèle détaillé de maison canadienne type, calibré avec des données mensuelles 

et horaires mesurées. La calibration permet de représenter fidèlement la consommation d'énergie 

selon les critères de la directive 14 de l’ASHRAE, ainsi que les variations dynamiques des 

conditions thermiques intérieures, ce qui est nécessaire pour l'étude des stratégies de commande. 

Les résultats des simulations, basés sur ce modèle calibré, montrent que la flexibilité énergétique 

fournie par la masse thermique du bâtiment est importante, même pour les bâtiments résidentiels 

à faible masse thermique. La quantité d'énergie flexible dépend cependant des conditions 

météorologiques, de l'heure du jour, de la durée de la GDP et de l'occupation du bâtiment. 

La flexibilité énergétique est également fortement liée à la stratégie de commande du système de 

chauffage et climatisation. Une méthode de contrôle avancée est étudiée : la Commande 

Prédictive basée sur un Modèle (CPM). Avant d’appliquer cette méthode à la flexibilité 

énergétique, un cadre général de CPM est proposé. Les erreurs de modélisation, l’estimation de 

l’état et l’identification des paramètres y sont discutées en détail. Ce cadre est ensuite appliqué à 

deux types de modèles de contrôleurs différents : un modèle détaillé et un modèle simplifié du 

bâtiment étudié. 

Les résultats montrent que la CPM peut améliorer la flexibilité énergétique par rapport à une 

stratégie de Commande Basée sur les Règles (CBR). La flexibilité énergétique obtenue par une 
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CPM avec modèle détaillé est la plus élevée. Cette énergie est deux à trois fois supérieure à celle 

obtenue par une stratégie CBR, selon l'heure de l'évènement de la GDP. L'énergie flexible 

obtenue par une MPC avec modèle simplifié est moindre que celle avec modèle détaillé. Mais 

son coût de calcul est beaucoup moins cher. Il est similaire à celui de la méthode CBR : de 

l’ordre de quelques secondes. D’autre part, l'effet de rebond des méthodes CPM est plus 

prononcé, ce qui génère une efficacité flexible inférieure à celle de la stratégie CBR. 
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ABSTRACT 

Energy needs from buildings contribute a large share to the peak demand of the electric grid. 

Meanwhile, buildings can also provide energy flexibility services to the grid with their related 

assets, e.g. energy storage. Demand Response (DR) of building systems has been considered a 

feasible solution to shift loads, or to reduce the peak demands. This approach is less costly and 

more environmentally-friendly than operating reserve power, or investing in extra power plants. 

DR can play a more important role for load balancing when the grid integrates with renewable 

energy sources, which are intermittent and variable. 

This thesis investigates the energy flexibility potential in buildings for the grid through 

simulation studies. A general methodology to characterize the building energy flexibility is 

proposed along with a set of indicators. The methodology is applied to a detailed building model 

of a typical Canadian home, which is calibrated with monthly and hourly measured data. The 

calibration evaluates not only the energy use required by the ASHRAE guideline 14, but also the 

dynamic indoor conditions, which is important to study control strategies.  

Simulation results, based on the calibrated model, show that the energy flexibility provided by 

the building thermal mass is significant, even for typical Canadian residential buildings with a 

low thermal mass. The amount of flexible energy however depends on the weather condition, 

time of day, duration of the DR event and occupancy scenario of the building. 

The control strategy of the space conditioning system has also a high impact on the energy 

flexibility. An advanced control method called Model Predictive Control (MPC) is investigated. 

Prior to applying the MPC method on energy flexibility study, a general supervisory MPC 

framework is presented. Common issues associated with modelling errors, state estimation, and 

parameter identification are discussed in detail. The framework is then applied to two different 

types of controller models: a detailed model and a simplified model of the studied building 

respectively. 

The MPC method is shown to be able to increase the building flexibility as compared to the Rule-

Based Control (RBC) strategy. MPC with the detailed model delivers the highest flexible energy, 

twice or three times of the RBC method depending on the time of the DR event. MPC with the 

simplified model presents less flexible energy than that with the detailed model, but its 
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computation cost is also less expensive, in the same magnitude as the RBC method in seconds. 

On the other hand, the rebound effect of the MPC methods is more pronounced, resulting in 

lower flexible efficiency than RBC. 
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CHAPTER 1 INTRODUCTION  

1.1 Context 

The electric grid generally experiences on-peak and off-peak times on a daily basis, which are 

highly correlated with human activities. The blue curve in Figure 1.1 shows the power demand of 

Ontario’s utility Independent Electricity System Operator (IESO) in four consecutive days from 

December 27 to December 30, 2017, where two peaks can be observed each day in this winter 

month (IESO, 2016). This shape of daily demand profile with a morning peak, an afternoon dip, 

and another evening peak is very typical. When a large amount of generation from photovoltaic 

(PV) panels adds to the grid on a sunny day, the system curve displays an even more obvious 

“belly” appearance in the midday and a steep rise after the sunset, portraying the silhouette of a 

duck. This phenomenon of grid demand profile is also known as “duck curve” (Denholm, 

O’Connell, Brinkman, & Jorgenson, 2015).   

 

Figure 1.1: IESO daily power demand  

The grid also experiences seasonal critical peak periods, i.e. the annual highest peak demand 

hours. For instance, the critical peak hours for IESO annually occur in summer due to air 

conditioning loads; while for Hydro-Quebec, the utility company in Quebec, the critical peak 

hours happen in winter because of space heating demands. Figure 1.2 shows the annual critical 
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peak durations on January 17 in the year of 2009 for Hydro-Quebec. It can be seen that the 

highest peak demand occurred in the morning at around 7 AM.   

 

Figure 1.2: Hydro-Quebec seasonal critical peak demand   

The grid has traditionally been regulated to control the supply to meet demand variations, where 

grid reliability or resilience requires balancing demand and supply. Historically, the balancing 

has been technically achieved from the supply side: operating reserve generators when there is 

supply shortage; or curtailing generation during oversupply. The last issue has been a growing 

occurrence for grids integrated with Renewable Energy Sources (RES), for example, for the 

Californian utility California Independent System Operator (California ISO, 2017) and also for 

the German grid (Schwarz & Cai, 2017).   

Another approach for flattening the demand curve is through Demand Response (DR), where 

consumers adjust their electricity usage during a certain amount of time in response to grid 

signals. The signals can be time-based rates, penalties, contracts or other forms of financial tools. 

Considering the electricity as a commodity, it can be bought and sold like stocks in spot markets. 

Energy policy researchers have been studying this topic, which is outside of the scope of this 

work. 

DR has been proven less costly and more environment-friendly than operating reserve power or 

investing in extra plants when the capacity is insufficient for the peak demand (Davito, Tai, & 

Uhlaner, 2010). It can play a more significant role for the load balancing when the RES are 
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integrated to the grid, where the variable generation power and dependence on climate conditions 

of the renewables add more challenges to the grid balance.  

On the consumption side, the power demand of Heating, Ventilation, and Air Conditioning 

(HVAC) systems in buildings contributes significantly to the grid peak power demand. In 

Ontario, the summer peak demand is dominated by residential air conditioning with almost 22% 

of the peak demand (Hydro One, 2003). In Quebec, it is estimated that residential electric heating 

accounts for 30% of the winter peak, with a market share of 70% (Kummert, Leduc, & Moreau, 

2011). Buildings can, therefore, play an important role in DR. The magnitude and flexibility of 

buildings’ energy demand can actually become a key asset for DR if well managed (Li, Dane, 

Finck, & Zeiler, 2017).  

DR programs have been successfully implemented in practice to shift the peak power demand of 

buildings from critical periods to off-peak time (Palensky & Dietrich, 2011). For instance, the 

utility could turn off heat pumps or electric water heating systems in buildings during peak time 

through direct load control. In Ontario, a DR program in residential HVAC systems has been 

promoted through voluntary participation. The device installed in homes receives signals from 

the grid to cycle down the air conditioner during peak hours. The participants benefit by paying 

less for on-peak electricity. Hydro-Quebec also tested several experimental DR programs with its 

employees’ homes (Fournier, Leduc, & Sansregret, 2018; Laurencelle & Moreau, 2018). 

Besides the “direct control” program discussed above, another “indirect control” approach may 

be more practical, where buildings can actively respond to grid signals rather than being 

passively controlled by the grid directly.  

With the effort of grid modernization or “smart grid”, demand-response buildings can help 

facilitate and optimize grid operations, resources, and infrastructure. This possibility of demand 

response of buildings is provided by the temporal elasticity of building energy demand, or more 

concretely, the energy flexibility of buildings. 

The energy flexibility of a building is defined broadly as “the ability to manage its demand and 

(energy) generation according to its local climate conditions, user needs and energy network 

requirements” by the Annex 67 of the International Energy Agency (IEA) Energy in Buildings 

and Communities Programme (EBC) (Jensen, Marszal-Pomianowska, et al., 2017).  
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The flexibility of buildings is largely contributed by energy storage systems (e.g. thermal mass, 

hot water tanks, ice storage, phase change materials, battery) or energy generation systems (e.g. 

photovoltaic panels, solar thermal collectors, wind turbines) in or around buildings, or fuel switch 

if more than one type of fuel is available to supply the building energy needs.  

This new terminology is closely related to more established terms like load shifting or load 

shedding, but it is a more general concept and can be applied to broader circumstances, especially 

for future smart grid and intelligent buildings, where two-way communications between the grid 

and buildings would become a common practice. It can act as a label for buildings similar to the 

energy performance certificate practice carried out in many countries. A position paper published 

by the Annex 67 more thoroughly explained the context and functionality of energy flexible 

buildings (Jensen, Henrik, et al., 2017). 

A closely related project called “Smart Readiness Indicator (SRI)” for buildings has been 

launched by the European Energy Performance of Building Directive (EPBD) since 2017, where 

flexibility is one of the impact criteria for the smartness of buildings. Based on eight different 

criteria, a single score is given to the assessed building classifying its smart readiness (Vito NV, 

2018). The United States Green Building Council (USGBC) and New Building Institute have 

also initiated a project called GridOptimal in mid-2018. The two institutes aim at creating a rating 

system with standardized metrics and guidance for building-grid interactions, somewhat similar 

to the well-established Leadership in Energy and Environmental Design (LEED) program of 

USGBC (New Buildings Institute, 2018).  

In summary, the new operating conditions (e.g. RES integration, oversupply risk) of the electric 

grid require novel concepts and methodologies to tackle the associated problems. With the 

advancement of internet and communication technologies, buildings, with its embedded energy 

flexibility, can contribute significantly to the process of grid modernization, as well as the 

indispensable part of the smart grid. 

1.2 Objectives 

The overall goal of the dissertation is to study the potential of building energy flexibility for the 

grid through simulation studies. It aims at investigating how the advanced control strategy Model 

Predictive Control (MPC) can contribute to the flexibility potential which is highly impacted by 
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the HVAC control method. The thesis further aims at proposing a general methodology with 

simple indicators to quantify the amount of energy flexibility.  

More specifically, the objectives of the work can be summarized into the following items: 

• Constructing reliable models of the studied building system in order to apply MPC 

strategy as modelling is the first part of the proposed control approach; 

• Proposing a general MPC framework which works for different purposes including 

energy flexibility; 

• Investigating a general method with universal Key Performance Indicators (KPIs) to 

quantify the energy flexibility including using different control strategies; 

• Applying the defined MPC framework for energy flexibility simulation and quantifying 

the flexibility potential according to the investigated KPIs.     

1.3 Structure 

Based on the aforementioned objectives, the structure of the thesis is illustrated in the following 

diagram. 

 

Figure 1.3: Structure of the thesis 

Chapter 1 is an overview of the thesis which illustrates the background and objective of the 

study.  

Chapter 2 presents the construction and calibration process for a detailed building model. This 

simulated building is the basis of the thesis; therefore this chapter is devoted to detailing the 

modelling and calibrating results. The calibrated model is further used to investigate the general 

methodology to quantify building energy flexibility and to test the proposed KPIs in Chapter 3. 

The detailed building model is also employed to identify simplified models in Chapter 5 and used 
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as the model for MPC in Chapter 6. The arrows in Figure 1.3 visualizes the connections among 

the chapters. 

Based on the calibrated model of Chapter 2, Chapter 3 illustrates a methodology with KPIs to 

quantify the energy flexibility of building thermal mass. A brief sensitivity analysis is conducted 

for the methodology. 

Chapter 4 introduces a general supervisory MPC framework which can be regarded as a tutorial 

for building energy modellers to try MPC strategy on their own modelled system. 

Chapter 5 and 6 test two different MPC implementation methods: one uses a simplified building 

model while the other the calibrated detailed model. The energy flexibility results are reported 

and analyzed based on these two MPC methods. 

Chapter 7 concludes the thesis and provides recommendations for future work. 

References and Appendices follow Chapter 7. 

1.4 Contributions 

The original contributions of this thesis include the following: 

• A detailed building model based on measured data has been calibrated, where both yearly 

results and dynamic characteristics have been analyzed. The calibration method with 

associated sensitivity analysis could be referenced by other researchers to calibrate their 

own models. 

• A general model predictive control framework applied to buildings has been proposed 

with detailed and step-by-step guidance. The mathematics and jargons from control 

theory have been kept to a minimum with examples only for buildings. It is especially 

beneficial for building mechanical engineers who are not familiar with but intend to 

understand control theory and applications on building systems. Although this framework 

has only been applied to a single building in this thesis, it can be extended to more 

complex building systems such as high-rise buildings or district thermal networks. 

• A general method to quantify energy flexibility potential of buildings has been verified 

and modified metrics have been tested based on a case study. The method and metrics 

have also been proved to be applicable to MPC strategy.  
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• A comparative study of two different MPC implementation methods has been conducted. 

The potential of MPC to facilitate building energy flexibility has been presented and 

compared with the rule-based control strategy. This simulation study has laid a theoretical 

foundation for further real-life experiments. 
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CHAPTER 2 DETAILED BUILDING MODEL 

This chapter describes a detailed building model calibrated based on measurements. To apply 

model predictive control, we first need a mathematical model of the controlled system. Buildings, 

in our case, can be modelled in different approaches as well as using various software programs. 

This calibrated model is further used to test the energy flexibility of the case building, as well as 

to identify simplified building models and apply MPC. 

2.1 Introduction  

2.1.1 A literature review of calibrated building simulation 

Calibrating building models using real-world data such as utility bills has been a practice since 

the 1980s (Reddy, 2006). The initiation of Demand Side Management (DSM) to reduce the 

energy consumption of buildings led to utility bill analysis and identification of Energy 

Conservation Measures (ECMs) for building retrofits. The calibrated simulation was thus adopted 

as a useful technique for the ECM identification as well as for Monitoring and Verification 

(M&V).    

Calibrated simulation can also be utilized for other purposes, where a review paper summarized 

six different applications of the approach, including fault detection and diagnosis, load control 

measures and supervisory control from over 30 papers (Reddy, 2006). The paper discussed the 

problems of the calibrated simulation, for example, the lack of a generic methodology or 

procedure for the calibration practice. This review paper is part of the results of the American 

Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) Research Project 

1051 “Procedures for Reconciling Computer-Calculated Results with Measured Energy Data”. 

Besides the literature review, the research project also proposed a methodology which can be 

divided into four main steps: gathering data, blind coarse bounded grid search, guided refined 

search and uncertainty analysis. For the statistical criteria, the research team proposed a 

goodness-of-fit index based on ASHRAE guideline 14, which was often referenced in the 

literature for the calibration criteria of results (ASHRAE, 2014). It also discussed in detail about 

the sensitivity analysis to identify strong and weak parameters based on the Chi-square test 

(Reddy, Maor, & Panjapornpon, 2007a). After presenting their calibration method, they applied 
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the method to three case study office buildings: two synthetic and one actual and summarized the 

lessons learned on how to implement the proposed calibration method (Reddy, Maor, & 

Panjapornpon, 2007b). A fourth paper from the same project presented the calibration using an 

analytic optimization approach (Sun & Reddy, 2006).  

Following the same idea, a thesis calibrated a mixed-use university building. The principal 

difference was that the thesis adopted a stochastic Latin Hypercube Sampling method instead of 

mid-point Latin Hypercube Monte Carlo method proposed in the ASHRAE project (Johnson, 

2017).  

Another important review paper on calibration was written by Coakley, Raftery, & Keane (2014). 

They presented a thorough review of approaches used to model development and calibration and 

commented on the problems and advantages of different methods. Furthermore, they assessed 

various analytical and statistical tools utilized by practitioners. A similar review paper also 

presented common calibration methodologies (Fabrizio & Monetti, 2015).   

It should be noted that the aforementioned studies discussed building model calibration solely 

from the perspective of energy use. In other words, only monthly energy use from utility bills or 

hourly energy data from metering or auditing were used for calibration, without considering the 

indoor conditions calibration. This approach is in accordance with the purpose of ASHRAE 

guideline 14, where the calibrated simulation is just one approach to quantify energy and demand 

savings of buildings. Similarly, most case studies in the literature calibrated only the energy 

consumption predicted by the building energy models.  

Outside of the calibration purpose for energy and demand savings, early studies in the PASSYS 

project had reported calibration practice with a focus on indoor temperature prediction (Clarke, 

Strachan, & Pernot, 1993). The pioneered project was intended to show the replicated potential of 

passive solar techniques based on the calibrated model. Another paper from the project also 

proposed a method to compare simulation results with measurements using residual analysis 

(Palomo, Marco, & Madsem, 1997), which were not adopted by the ASHRAE guideline.  

A recent study presented both energy and space temperature calibration (Royapoor & Roskilly, 

2015). However, only the monthly average temperature calculated from hourly values were 

compared and the transient phenomenon of temperature variation in a certain zone was not 
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discussed between the simulation and measurements. Another study also only reported monthly 

zone temperature error in their calibration study (Coakley, Raftery, & Molloy, 2012).   

An evidence-based methodology was proposed for the calibrating process, which recommended 

that available evidence under clearly defined priorities should be used as the model inputs 

(Raftery, Keane, & O’Donnell, 2011). To achieve this, a version control programme could be 

utilized to facilitate and document the iterative process. The method adopted in our study is based 

on existing evidence and documents for model inputs selections, which is close to the approach in 

that study, although not quite the same. 

With widespread building management systems, communicative devices such as meters and 

sensors installed, and the increasing popularity of smart buildings and Internet of Things (IoT), 

buildings are experiencing an explosion of operation data. The availability of building operation 

data will only become helpful for the calibration studies as well as to extend the current practice 

and research to a new level.  

2.1.2 Objective 

The purpose of this chapter is to calibrate a whole building performance model using measured 

data. The calibrated model should satisfy the calibration criteria in terms of energy use as well as 

for indoor conditions. The model should be able to capture the dynamic behaviour of space 

temperature variations in the building zones, which is especially important to investigate control 

strategies for the energy flexibility.   

2.1.3 Case study building 

This dissertation selects the Canadian Centre for Housing Technology (CCHT) houses as an 

example for discussion and illustration. They are among the several houses that have been studied 

in the course of this research project.  

The CCHT houses are twin houses, composed of a test house and a reference house (see Figure 

2.1). They were built in 1998 in Ottawa as an experimental platform to assess the energy 

performance of new technologies related to building envelope and HVAC devices (Swinton, 

Moussa, & Marchand, 2001).  
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Figure 2.1: Canadian Centre for Housing Technology (CCHT) twin houses 

The houses are common North-American wood-frame buildings with brick facing, constructed 

according to the Canadian standard R-2000 (Natural Resources Canada, 2012). The houses have 

two floors above ground, a basement, an unfinished attic, and an attached garage. The liveable 

area is approximately 210 m2 excluding the basement. Table 2.1 summarizes the brief 

characteristics of the houses with key parameter values from a CCHT research publication 

(Manning, Swinton, Szadkowski, Gusdorf, & Ruest, 2007). 

Table 2.1: Brief characteristics of CCHT houses 

Feature Details 

Liveable area 210 m2 (2 storeys) 

Insulation Walls: R=3.5 m2K/W;  

Rim joists: R=3.5 m2K/W; 

Attic: R=8.6 m2K/W 

Basement Poured concrete, full basement 

Floor: concrete slab, no insulation 

Walls: R=3.5 m2K/W in a framed wall 

Windows Low-e coated, argon filled windows 

Area: 35 m2 total, 16.2 m2 south facing 

Exposed floor over garage R=4.4 m2K/W with heated/cooled plenum air space between 

insulation and sub-floor 

Airtightness 1.5 h-1 @ 50 Pa 

 

In the houses, home automation systems are installed to simulate occupant behaviour by 

activating appliances, lights and water valves etc. according to predefined schedules. 
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Incandescent bulbs are installed and controlled to account for sensible internal gains due to 

occupants. Both houses are fully instrumented and a data acquisition system tracks more than 20 

meters and 250 sensors.  

2.1.4 Available measurement data 

The validation datasets were historic data recorded for the reference house for the year 2002 – 

2003. Table 2.2 summarizes the duration and frequency of the available data. They were provided 

by National Research Council Canada responsible for operating the facility. The measurement 

accuracy, however, is unclear due to the replacement of measuring devices and staff in charge. 

Therefore, the measurement error is not further discussed in this work.  

Table 2.2: Summary of available measurements 

Dataset Duration Frequency Data 

1 Nov 2002 –  Oct 

2003 (1 year) 

Daily Energy use: appliances, occupants, lighting, 

ventilation, heating and cooling; 

2 Nov 2002 – Oct 

2003 (1 year) 

Daily Outdoor dry bulb temperature, 

global horizontal solar radiation; 

3 Jan, Mar, Aug, Oct 

2003 (4 months) 

Hourly  Outdoor dry bulb temperature, outdoor relative 

humidity, global horizontal solar radiation; 

4 Jan, Mar, Aug, Oct 

2003 (4 months) 

Hourly Indoor dry bulb temperature, indoor relative 

humidity. 

 

A preliminary data processing was carried out and some missing data points were filled for the 

furnace gas and electric use measurement. The most significant problem was found in the 

weather data: the daily temperature means of Dataset 3 show significant differences with the 

available daily means from Dataset 2 in Table 2.2. Therefore, external weather data files for 2002 

and 2003 were obtained for reference from WhiteBox Technologies for the Ottawa airport 

(WhiteBox Technologies, 2018).  

Figure 2.2 shows the comparison of daily average ambient temperature between WhiteBox 

Technologies and the hourly measured values. We can see that the two data sets match quite well. 

To quantify the differences in the ambient temperature data, the heating and cooling degree days 

were calculated for both sets of data (when available) using a base temperature of 21 °C. The 

difference between the two datasets is less than 0.5 %. 
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Figure 2.2: Daily average ambient temperature - weather data file vs. measured values  

The agreement with hourly data is not perfect, but the daily averages are consistent with the 

recorded ones for all days. The match for solar radiation is not as good, as shown in Figure 2.3.  

 

Figure 2.3: Global horizontal solar radiation - weather data file vs. measured values 

Solar radiation in the weather file is estimated from satellite measurements, so the accuracy can 

be expected to be lower. Solar radiation is also more complex to measure, so on-site 
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measurements could also present some inconsistencies. The total global horizontal solar radiation 

(integrated over the periods when measurements are available) is 93 % of the measured value. 

Figure 2.4 shows a 10-day period in summer where the agreement between both sets of data is 

very good. The satellite-based estimation is less accurate for cloudy days but provides a 

reasonable estimate of daily solar gains. 

 

Figure 2.4: Global horizontal solar radiation - weather data file vs. measured values (August) 

Figure 2.5, on the other hand, shows a period in March where the weather data file consistently 

underestimates solar radiation for 8 days and then shows variations that bear little resemblance to 

the measured data.  

Given the above analysis, a hybrid weather data file was adopted. The measured solar radiation 

was used when available while the outdoor dry bulb temperature was from WhiteBox 

Technologies since the difference is minor. This means that the differences shown in the above 

figures for solar radiation have been cancelled in the simulation. The solar radiation in the 

WhiteBox Technologies weather data for the other months cannot be verified, and it probably 

represents a relatively crude estimate of the actual solar radiation at the CCHT site. This may 

import considerable uncertainties to the calibration accuracy given that large south-facing 

windows are installed in the houses. 
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Figure 2.5: Global horizontal solar radiation - weather data file vs. measured values (March) 

2.2 Methodology 

2.2.1 Calibration criteria  

In the literature, three guidelines were mentioned for calibration criteria: the International 

Performance Measurement and Verification Protocol (IPMVP), the U.S. Federal Energy 

Management Program (FEMP) M & V guidelines and ASHRAE guideline 14-2014 (ASHRAE, 

2014). The last two guidelines propose consistent criteria, which are employed as the calibration 

criteria in this study. The equations below explain the procedure to calculate the two main 

indicators Normalized Mean Bias Error (NMBE) and Coefficient of Variation of the Root Mean 

Squared Error (CVRMSE).   

The Root Mean Squared Error (RMSE) is an absolute value in the variable units (e.g. kWh for 

energy use). In the equations below, 𝑦 denotes the simulation value while 𝑦𝑚 the measured value. 

�̅�𝑚 denotes the average value of the N measurements. 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦 − 𝑦𝑚)2

𝑁 − 1
 

(2.1) 



16 

 

The RMSE can be normalized by dividing it by the average value of the measured variable and 

expressed in %. This is usually referred to as the Coefficient of Variation of the RMSE 

(CVRMSE): 

 

𝐶𝑉𝑅𝑀𝑆𝐸 =
√∑

(𝑦 − 𝑦𝑚)2

𝑁 − 1
�̅�𝑚 

× 100%  

(2.2) 

The RMSE is an unsigned value, so it does not indicate whether a model has a bias error. The 

Mean Bias Error can be used for that purpose. It is again a value expressed in the same units as 

the variable: 

 
𝑀𝐵𝐸 =

∑(𝑦 − 𝑦𝑚)

𝑁 − 1
  

(2.3) 

The MBE can be normalized by dividing the value by the average of measured values, as for the 

CVRMSE. This gives the Normalized Mean Bias Error (NBME), expressed in %: 

 
𝑁𝑀𝐵𝐸 =

∑(𝑦 − 𝑦𝑚)

(𝑁 − 1) × �̅�𝑚 
× 100%  

(2.4) 

The first three columns of Table 2.3 summarizes the recommended calibration criteria by the 

ASHRAE guideline 14 to assess the uncertainty of the model. It only provides targets for the 

monthly and hourly calibration but not for daily calibration. It is reasonable to estimate that the 

targets for daily values would be between the targets for monthly values and for hourly values as 

shown in the last column of Table 2.3. 

Table 2.3: Criteria of calibrated building energy models 

Indicators Monthly Hourly Daily 

NMBE 5% 10% 5%~10% 

CVRMSE 15% 30% 15%~30% 

2.2.2 Model inputs assumptions 

The CCHT houses, unlike most calibration case studies, have rich reported information in 

relative reports and research papers; however, the presence of conflicting information is not 
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uncommon. The obtained data for internal gains, for example, are significantly different from the 

theoretical schedules presented in CCHT documents.  

The method for selection and assumptions of the model inputs are based on the following steps: 

• literature review: a thorough literature review is conducted to collect all reported 

information available about the houses. The information is then categorized in tables in 

order to identify the most possible value for each input. For instance, the value occurring 

most frequently is ranked as more trustworthy; 

• on-site visits and meetings with colleagues from Natural Resources Canada: photos of 

houses and HVAC systems have been taken during the visits; a large part of the data and 

documents have been verified with on-site project managers;  

• email verification: emails are exchanged for further verification during the course of the 

calibration process; 

• engineering judgment: experience from engineering practice is the last resort to assume 

certain inputs for unconfirmed information. 

Finally, when the uncertainty of input parameters is high or the input information unavailable, for 

example, the soil properties used for basement modelling is unknown, some alternative values are 

explored within boundaries to improve the model performance. 

The iterative process of calibration is manually conducted. The optimization method is not 

employed because the model of the initial version has a good performance basis before the 

calibration. Optimization may pose a risk to overfit the model to the data. When simulation 

results of the model reach within the set criteria, no further improvement is explored to reduce the 

gaps between the simulation and the measurements. 

A sensitivity analysis of some key input assumptions is further carried out after the calibration. 

2.3 Detailed modelling in TRNSYS 

In this work, TRNSYS was employed to model the building system based on first principles 

(Thermal Energy System Specialists LLC, 2018). This software has been certified based on 

ASHRAE standard 140 (ASHRAE, 2014) and accepted for certifications such as LEED and 
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ASHRAE standard 90. The sections below explain the essential components of the whole 

building model. 

2.3.1 Zones and constructions 

Figure 2.6 presents the sketch of floor plans with room separations. Type 56 (TrnBuild), a multi-

zone building module in TRNSYS, uses the concept of thermal zones by assuming a 

homogeneous air temperature across a zone. Therefore, zoning scenarios in a Type 56 model may 

not be identical to the real world room separations. In the final model, a 3-zone scenario was used 

by regarding each floor as a thermal zone with open doors: the first floor, the second floor, and 

the basement. The garage and attic are always included as two separate zones in the model to 

account for the thermal interaction between conditioned and unconditioned zones. 

 

Figure 2.6: Floor plans of the CCHT houses 

Type 56 requires data of construction properties including conductivity, specific capacity and 

density of layers composed of the building structures as well as the geometry of enclosed spaces. 

This information was taken from the as-built engineering drawings of the houses.  

Equivalent layers of the wood studs were calculated using thermal properties from the literature. 

In particular, the thermal conductivity for insulation batts is assumed to be 0.046 W/m-K 

(ASHRAE Fundamentals 2009 Chapter 18), which leads to thermal resistance RSI values for the 

walls that are significantly lower than the “nominal” values mentioned on the as-built drawings. 

For example, nominal RSI value of the insulation layer mentioned in the drawings is 3.85 m²-

K/W; the actual RSI value for the insulation layer, with a thickness of 140 mm and a conductivity 

of 0.046 W/m-K is 3.04 m²-K/W or 79 % of the nominal value. 
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The window type in the model uses an equivalent window, which assumes an identical window 

type with overall U-value 1.73 W/m²-K for all the windows in the house. The window area is 

then assigned for each window in the zones.   

2.3.2 Basement 

Basement is an important part in the residential house modelling, as it introduces a significant 

uncertainty in the heat transfer between the building and the ground. Type 1244 (Thornton et al., 

2018) was adopted in the whole building model for the interaction between the ground and 

building parts in contact with it (e.g. basement and garage slab). This type requires physical 

parameters of soil and the environment (e.g. soil density, soil specific heat, and the day of 

minimum surface temperature), as well as geometry information and heat transfer rates from the 

building to the surrounding ground.  

Type 1244 uses a 3D array to map the geometry of the built volume and the defined surrounding 

space. It divides the given building geometry and maximum distances beyond the building in 

multiple 3D cells. The elements of the array do not necessarily represent volumes of the same 

size. The closer to the boundaries, the smaller. The contents of the array indicate the volume to be 

inside of one of the building zones, above or in the ground.  

The CCHT house has two building zones: the garage slab, and the basement. Considering all the 

detailed dimensions for the basement, the resulting array has 60 × 51 × 15 cells along the three 

dimensions (𝑥, 𝑦, 𝑧). The first horizontal layer (𝑥, 𝑦) of the array is shown in Figure 2.7, where 

the global shape of the house (see in Figure 2.6) can be recognized. The yellow color represents 

the basement and the red color represents the floor in contact with the garage. The z-axis is 

represented as successive layers in the text file. 

 

Figure 2.7: The first layer of the 3D ground model input file 



20 

 

Clay type soil parameters are taken in the model and are listed below. The uncertainty on most of 

these parameters is relatively high, so alternative values were explored in the calibration process. 

A brief sensitivity analysis can be found in section 2.4.3. 

Table 2.4: Type 1244 (3D ground coupling) parameters 

Parameter Value Units 

Soil thermal conductivity 1.9 (values between 1 and 2.4 were explored) W/(m-K) 

Soil density 
1930 (values between 1900 and 2400 were 

explored) 
kg/m3 

Soil specific heat 0.84 kJ/(kg-K) 

Deep earth temperature 8.3 (values between 5.8 and 8.9 °C were explored) °C 

Amplitude of surface 

temperature 

14.2 (value between 12 and 14.2 °C were 

explored) 
°C 

Day of minimum surface 

temperature 
41 

Day of the 

year 

Soil surface mode 1 - 

Soil surface emissivity 0.90 - 

Soil surface absorptance 0.40 - 

2.3.3 Infiltration and HRV 

The infiltration model used in the study was the Alberta Infiltration Model (AIM-2). The AIM-2 

(Walker & Wilson, 1998) model only applies to detached single-family buildings up to 3 storeys. 

It implements a simple natural ventilation algorithm with empirical functions for the 

superposition of wind and stack effect. Furnace, fireplace and Domestic Hot Water (DHW) flues 

are considered as separate leakage sites. The model differentiates houses with basements (or slab-

on-grade) and crawlspaces. Parameters from the blower door test of the CCHT houses were used 

in the model. 

A Heat Recovery Ventilation (HRV) unit was installed in the houses and Type 760 in TRNSYS 

was used to model this unit. Figure 2.8 shows the schematic of the ventilation system in the 

TRNSYS model. Part of the return air goes through the HRV and then mixes with the rest of the 

return air before entering the furnace system. 
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Figure 2.8: Diagram of a forced air system with HRV 

Constant air volume to each zone was assumed in the model with total flowrate 65 cfm with the 

defined ratio to each zone. The HRV power is set to a constant value of 94.5 W. The 

effectiveness of the HRV is assumed to vary linearly with the ambient temperature. The 2 points 

at 0 °C and -25 °C are taken from the HVI ratings for Venmar AVS HE1.8 at the lowest flowrate 

(Venmar, 2018), where Venmar was the original system installed in the reference house. The 

rated values at the two points are respectively 84 % and 72 %. Note that the effectiveness is not 

extrapolated, i.e. 84 % is kept above 0 °C, and 72 % is kept under -25 °C. The following equation 

is implemented in the model: 

 
𝜀𝐻𝑅𝑉 = min ( 0.84,𝑚𝑎𝑥 ( 0.72, 0.84 + 𝑇𝑑𝑏𝑎𝑚𝑏 ⋅

0.12

25
 ) ) 

(2.5) 

Defrost is modelled in a simple way: if the ambient temperature is below -5 °C, the HRV 

switches to defrost mode for 12 min per hour, based on a fixed schedule. This means that the 

fresh air flowrate goes to zero and the fan power increases to 175 W. That heat is injected into the 

return air before the furnace. 

2.3.4 Forced air system 

As presented in Figure 2.8, the original system in the reference house is a forced air system, 

commonly seen in Canadian single-family homes. The conditioned air is supplied from the 
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basement to each zone through ducts with fresh air handled by the HRV system. The furnace uses 

gas as the main fuel source and shares the same blower fan with the air conditioner.  

In the TRNSYS model, the furnace is modelled with a constant efficiency of 80.2 % and a 

capacity of 17584.3 W (60000 Btu/h). The setpoint for the supply air temperature is unknown. It 

is set to a high value (60 °C) in the model so that the supply air temperature is limited by the 

furnace capacity. The supply air temperature actually never reaches 60 °C in the simulation 

because the flowrate is high enough.  

The air-conditioner is modelled with TESS Type 921. A TRNSYS performance map has been 

created from the manufacturer data. The rated conditions are taken from the performance map: 

• Total cooling capacity = 6.86 kW 

• Sensible cooling capacity = 5.14 kW (sensible heat ratio of 75 %) 

• Power use = 2.06 kW 

• COP = 3.32 

The power used by the condenser fan is assumed to be included in the data. The manufacturer 

data provides the motor horsepower 1/5 hp. Assuming a permanent split capacitor motor 

efficiency of 60 %, the actual power usage of the fan would be 250 W. This power is used in 

Type 921 but has no impact on performance as it is assumed to be included in the performance 

map. 

The air handler flowrate and fan power are estimated as follows: 

• Low speed (circulation): 450 L/s, 350 W 

• 2nd highest speed (heating): 620 L/s, 530 W 

• Highest speed (cooling): 680 L/s, 570 W  

The power used for the furnace power vent motor is not explicitly taken into account (i.e. it is 

supposed to be included in the 530 W). 

These 3 points are used to define a power curve for a variable speed fan. The control signal is 

adapted to the operation mode (circulation, heating, or cooling). In TRNSYS, this is implemented 

as follows: 
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Fan rated flowrate 2947.392 kg/h, fan rated power 2052 kJ/h 

Fan power curve:  

 𝑃 = −1.056445 +  3.439614𝑚 − 1.383168𝑚2 (2.6) 

𝑚 is the flowrate in each mode and 𝑃 is the power. 

Fan control signal (speed ratio):  

𝑠𝑝𝑒𝑒𝑑𝑅𝑎𝑡𝑖𝑜 =  0.661765 +  𝑓𝑢𝑟𝑛𝑎𝑐𝑒𝑂𝑛 ⋅  0.250000 +  𝑎𝑐𝑂𝑛 ⋅  0.338235 (2.7) 

2.3.5 Internal gains and occupancy 

The appliances, lighting and occupant simulators in the CCHT houses were operated according to 

a predefined schedule repeated daily. Note that the occupants were simulated using lightbulbs, so 

there were no humidity gains. This experimental setting reduced the complexity of the calibration 

study associated with the accessory energy use. In the calibrated model, the schedule with 

measured power consumptions for all equipment was imported as external data into the model. 

Therefore, there are no differences between simulation results and measurements for the 

appliance yearly energy use.  

For internal gains due to lighting, appliance, and occupants, they are split between convective and 

radiative parts according to standard ratios from the ASHRAE handbook fundamentals 

(American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2017). The ratios 

of the internal gains that are actually released in the room are also referred from the handbook, 

e.g. for the dryer, most of the electricity (70%) is used to heat the exhausted air, which means 

only 30% becomes internal gains.  

2.4 Calibration results 

Since the calibration is an iterative process, different versions of TRNSYS models of the whole 

house were simulated with different parameters and inputs. All simulations during the process 

were run for 2 full years (2002 and 2003) with a time step of 5 minutes. The results reported here 

is the final version of the model, and results from November 2002 to October 2003 are used for 

comparison and analysis. 
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2.4.1 Energy use results 

Yearly results 

Table 2.5: Annual energy use, measured and simulated 

Item 

Meas. 

values 

Model version 

r205 Comments 

MJ MJ % diff. 

Lighting and 

appliances 
11577 11577 0.0% 

Model inputs including lights and receptacles, fridge, 

stove, dishwasher, clothes washer, dryer 

Furnace fan 12910 12375 -4.1% 

Fan power at different speeds is model input, 

differences caused by operating hours in different 

modes 

HRV fans 3054 3090 1.2% 
Fan power is model input, differences caused by 

operating hours in defrost mode 

DHW blower 203 203 0.2% 
Blower power when operating is model input, 

differences caused by operating hours 

Air 

conditioner 
5759 5729 -0.5% 

Includes compressor power and outdoor fan power. 

Performance map is an input 

Furnace gas 65701 65558 -0.2% 
Furnace steady-state efficiency is model input  

(80 %), differences caused by load differences 

DHW gas 25569 25630 0.2% 
Differences can be attributed to mains water 

temperature 

Total 

electricity 
33503 32973 -1.6% 

Differences mostly come from furnace air-handler 

power, somewhat compensated by other categories 

Total gas 91270 91188 -0.1% 
Relatively similar differences for furnace and DHW 

(both slightly overestimated) 

Total energy 124773 124162 -0.5% 
Obtained by summing gas and electricity MJ, 

without equivalence factors 

 

Table 2.5 summarizes the annual energy use for each category with the second column showing 

the measured energy use. The third column lists the simulated energy use with the number r205 

indicating the model version accepted as the calibrated model. Note that this number in the 

figures and tables below means the same final model version. 

We can see that the error on total energy use (gas and electricity combined) is as low as 0.5 %. 

This includes lighting and appliances, which are model inputs and account for 10 % of the total 



25 

 

energy use. The relative error on annual energy use for heating and cooling are both less than 

1 %. These differences could be even reduced by fine-tuning some of the parameters, but this was 

not attempted given the relatively high uncertainty on some key parameters e.g. Air Changes per 

Hour (ACH) @ 50 Pa. A discussion on the impact of some key parameters is presented in section 

2.4.3. 

 

Monthly results 

Figure 2.9 presents the monthly energy use for heating (furnace gas) and cooling (air-conditioner 

electricity). Both values are expressed in MJ/day. It should be noted that the negative bars for 

cooling do not denote negative electricity use. The negative sign is only used as per the TRNSYS 

convention.  

 

Figure 2.9: Monthly furnace gas and air-conditioner electricity use 

We can find that the energy use differences of each month are within 10%. Larger differences are 

observed for January (underestimation) and for February and March (overestimation). The 

overestimation in February could be related to low solar radiation in the data file. The profile of 

the undisturbed ground surface temperature could also have an impact. The underestimation in 

October could be related to start-up problems or slight setpoint differences at the beginning of a 

new heating season. 
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The 𝐶𝑉(𝑅𝑀𝑆𝐸) of monthly energy use of the model are: 

Furnace gas use: 𝐶𝑉(𝑅𝑀𝑆𝐸)  =  7.9 %  

Air-conditioner electricity: 𝐶𝑉(𝑅𝑀𝑆𝐸)  =  6.2 % 

Both results indicate a good performance of the calibrated model, well under the ASHRAE target 

of 15 %. Note that the results here only count the heating season for furnace gas use and cooling 

season for air conditioner electricity use. The 𝑁𝑀𝐵𝐸 values of the model are also well under the 

ASHRAE target of 5% as shown below:  

Furnace gas use: 𝑁𝑀𝐵𝐸 = −0.1 %  

Air-conditioner electricity: 𝑁𝑀𝐵𝐸 = −0.6 %  

 

Daily results 

Given that our measurements have daily energy use data for a full year, we compared the 

simulated daily energy use with the measurements, although daily results comparison are not 

required by the ASHRAE guideline. Figure 2.10 shows the daily values for furnace gas use and 

air-conditioner electricity use, while Figure 2.11 shows the daily errors for the same variables.  

Both values are in very good agreement. The day-to-day variability of heating and cooling 

demands seems to be well captured by the model. Figure 2.11 also identifies the data points that 

were interpolated in the experimental data. Some of the largest differences occur during 

interpolated days, which would seem to indicate that the procedure used to fill in missing daily 

values is at least partly responsible for these larger discrepancies. Some relatively large errors are 

still present during the non-interpolated days, and the model seems to consistently overestimate 

the heating load in late February / early March. However, most of the large errors are all within 

20% of the absolute values for that particular day. 
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Figure 2.10: Daily furnace gas and air-conditioner electricity use 

 

Figure 2.11: Daily error on furnace gas and air-conditioner electricity use 

Table 2.6 shows the daily performance indicators and the ASHRAE targets. All performance 

indicators for daily energy use are well within the ASHRAE targets for hourly values and in most 

cases even within the targets for monthly values.  
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Table 2.6: ASHRAE goodness-of-fit indicators for daily energy use 

 
Model  

r205 

ASHRAE 

target 

(hourly) 

ASHRAE 

target 

(monthly) 

Daily 𝐶𝑉(𝑅𝑀𝑆𝐸) for furnace gas use 13.5 % 30 % 15 % 

Daily 𝑁𝑀𝐵𝐸 for furnace gas use -0.2 % 10 % 5 % 

Daily 𝐶𝑉(𝑅𝑀𝑆𝐸) for furnace gas use  

(Excluding interpolated days) 
12.0 % 30 % 15 % 

Daily 𝑁𝑀𝐵𝐸 for furnace gas use 

(Excluding interpolated days) 
0.0 % 10 % 5 % 

Daily 𝐶𝑉(𝑅𝑀𝑆𝐸) for air-conditioner electricity use 16.9 % 30 % 15 % 

Daily 𝑁𝑀𝐵𝐸 for air-conditioner electricity use -0.5 % 10 % 5 % 

2.4.2 Dynamic results 

Hourly values are available for the first floor, for selected periods. These values are plotted with 

hourly-averaged simulation results in Figure 2.12.  

 

Figure 2.12: Room temperatures - hourly measured and simulated values 

Hourly temperatures show significant variation within the margins of the controllers deadbands, 

due to the on/off nature of the heating and cooling control. The free-floating behaviour during 
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shoulder periods seems to be well reproduced by the model (early October 2003). The basement 

is significantly colder than the other floors, and this will be analyzed below. 

The ASHRAE indicators can be calculated for the 4 months for which hourly measurements are 

available. The table below shows that the 𝐶𝑉(𝑅𝑀𝑆𝐸) for air-conditioner power usage is slightly 

above the ASHRAE target. Unfortunately, it is difficult to draw conclusions given that only one 

month of data (August) and a few days in October are available. 

Table 2.7: ASHRAE goodness-of-fit indicators for hourly energy use 

 
Model  

r205 

ASHRAE target 

(hourly) 

Hourly 𝐶𝑉(𝑅𝑀𝑆𝐸) for furnace gas use 31.5 % 30 % 

Hourly 𝑁𝑀𝐵𝐸 for furnace gas use -3.7 % 10 % 

Hourly 𝐶𝑉(𝑅𝑀𝑆𝐸) for air-conditioner electricity use 38.7 % 30 % 

Hourly 𝑁𝑀𝐵𝐸 for air-conditioner electricity use -2.3 % 10 % 

Hourly 𝐶𝑉(𝑅𝑀𝑆𝐸) for room temperature 1.8 % 30 % 

Hourly 𝑁𝑀𝐵𝐸 for room temperature -0.4 % 10 % 

 

The next figures show more details on the dynamic behaviour, plotting the 5-min simulated 

values against hourly measured values for typical periods in winter and summer. 

Figure 2.13 shows a typical cold winter week. The on/off furnace control leads to large 

oscillations around 21 °C for the main floor, while the second floor is generally slightly warmer 

and the basement is significantly colder (but with similar oscillations as their flowrate is 

controlled simultaneously). Even during very cold periods, the furnace rarely turns on for two 

consecutive time steps with the selected deadband. During periods with higher gains, the furnace 

sometimes remains off for several hours. 

The average measured main floor temperature (hourly measurements are only available for two 

months) is 21.1 °C, while the average simulated 1st-floor temperature over the same period is 

21.07 °C. The measured temperature corresponds to one point (thermostat location), while the 

simulated value models the volume average of the entire floor, so this good match hides 

differences such as the ones visible in Figure 2.13 during the high gain periods. 
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Figure 2.13: Hourly measured main floor temperature and simulated 5-min values – winter 

Figure 2.14 shows a typical warm summer week. The air-conditioner is not oversized as the 

furnace is, so it operates for long periods, from 30 min to several hours. Off periods range from 

about one hour to a few hours at night. The average measured main floor temperature (over the 

period for which measurements are available) is 20.8 °C, and the simulated 1st-floor temperature 

for the same period has the same average value. Again, given the different nature of measured 

temperature (discrete thermostat sensor) and modelled temperature (volume average for the 

thermal zone), this agreement may hide short-term discrepancies. 
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Figure 2.14: Hourly measured main floor temperature and simulated 5-min values – summer 

2.4.3 Sensitivity analysis 

Thermostatic control 

In the absence of 5-min experimental data, it is difficult to assess the accuracy of the model in 

terms of the fine dynamic behaviour of the thermostat control. The following figures compare 

available hourly data with 5-min and hourly averaged simulation results, focusing on furnace gas 

input and air-conditioner power. 

Figure 2.15 shows the furnace gas input power for January 21st and 22nd. During these very cold 

days, the furnace operates for most of the day. The average gas input over these 2 days is 7.9 kW, 

which is still far from the furnace rated input (17.6 kW), so the furnace cycles On and Off during 

the whole period. The variation in furnace use during periods with higher heat gains seems to be 

mostly captured by the model. 

Figure 2.16 shows a similar graph for October 24 and 25, two relatively mild days. The model 

seems to capture the times when more or less heat is required by the house, except for a delay 

when heating starts again late at night on October 24. This seems to be related with the over-

prediction of the room temperature during the day. Without 5-minute data and more accurate 
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weather data, it is difficult to investigate the exact cause of this difference, as some other days 

show the opposite behaviour (i.e. overheating during the day is under-predicted). 

 

Figure 2.15: Furnace gas input and main floor temperature Jan 21 and 22 

 

Figure 2.16: Furnace gas input and main floor temperature for October 24 and 25 

Figure 2.17 shows the power used by the air-conditioner during two very warm days (August 12 

and 13, 2003). The overall shape of the air-conditioner usage seems to be captured by the model, 
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except during very late night / very early morning periods, where the model shows more 

oscillations resulting from long On/Off cycles. 

 

Figure 2.17: Air-conditioner power use - August 12 and 13 

 

Figure 2.18: Air-conditioner power use - October 8 and 9 

Figure 2.18 shows the air-conditioner power usage for milder days (October 8 and 9). Again, the 

model seems to have captured the dynamic behaviour of the building and HVAC system, 

although with one significant difference. The simulation starts the air-conditioner later in the 
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morning, which is probably related to the underestimation of the main floor temperature at night. 

Without 5-min data, it is difficult to analyze the exact cause of this difference. The internal mass 

could be underestimated by the model, although there is no evidence of such a difference in 

winter. 

 

Model sensitivity to some key parameters 

Table 2.8: Model sensitivity to key parameters 

Model 

version 

Parameters ASHRAE indicators 

𝐴
𝐶
𝐻
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0
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𝑁
𝑀

𝐵
𝐸

𝐻
 

𝑁
𝑀

𝐵
𝐸

𝐶
 

𝐶
𝑉 𝑅

𝑀
𝑆
𝐸
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𝐶
𝑉
𝑅
𝑀

𝑆
𝐸
,𝐶

 

1
/h

 

W
/m

-K
 

k
g
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³ 

°C
 

°C
 

- - - °C
 

°C
 

°C
 

°C
 

%
 

%
 

%
 

%
 

r201 1.25 1.9 1930 8.5 12 31 0.75 0.25 21 2 20.5 2 -1.0 -3.1 13.8 16.5 

r202 1.25 1.9 1930 8.5 12 31 0.75 0.25 21.1 1 20.75 1 1.0 -6.4 13.8 18.1 

r203 1.5 1.9 1930 9 12 31 0.5 0.2 21.1 1 20.75 1 1.0 0.2 13.7 17.0 

r204 1.5 1.6 1930 8 12 31 0.5 0.2 21.1 1 20.75 1 0.8 -2.4 13.6 17.4 

r205 1.5 1.6 1930 8.5 12 31 0.5 0.2 21.1 1 20.75 1 -0.2 -0.5 13.5 16.9 

r206 1.5 1.6 1930 8 14 31 0.5 0.2 21.1 1 20.75 1 1.4 -1.0 13.8 17.0 

 

Explanation of the parameters: 

𝐴𝐶𝐻50 : infiltration rate at 50 Pa 

𝑘𝑔𝑛𝑑 : ground thermal conductivity 
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𝜌𝑔𝑛𝑑 : ground density 

𝑇𝑎𝑣𝑔,𝑔𝑛𝑑 : average surface temperature 

𝐴𝑚𝑝𝑙𝑔𝑛𝑑 : amplitude of the surface temperature 

𝑑𝑎𝑦𝑚𝑖𝑛 : day with minimum surface temperature 

𝜌𝑆𝐻𝐴𝐷 : 𝑅𝐸𝐹𝐿𝐼𝑆𝐻𝐴𝐷𝐸  and 𝑅𝐸𝐹𝐿𝑂𝑆𝐻𝐴𝐷𝐸 in Type 56 (reflectivity of shading device) 

𝐼𝑆𝐻𝐴𝐷 : 𝐼𝑆𝐻𝐴𝐷𝐸 in Type 56 (fraction of incoming radiation that is intercepted) 

𝑇𝑠𝑒𝑡𝐻: heating setpoint 

𝛥𝑇𝐻: heating deadband 

𝑇𝑠𝑒𝑡𝐶: cooling setpoint 

𝛥𝑇𝐶: cooling deadband 

Table 2.8 shows a brief summary of the impact of some key parameters on the ASHRAE hourly 

goodness-of-fit indicators. Only six different model versions are listed while the r205 is the 

chosen final version as mentioned previously. The notation of 𝐶 and 𝐻  indicates cooling and 

heating respectively.  

From the model version r201 to r202 shown in the table, the heating and cooling setpoint 

temperature were slightly changed with the deadband reduced from 2 °C to 1 °C. The 𝑁𝑀𝐵𝐸 for 

the cooling energy is nearly doubled but the dynamic behaviour shows better performance. The 

setpoint temperature and deadband values were kept until the final version.  

The air infiltration rate is a parameter impacting the space conditioning energy use significantly, 

yet the real value is difficult to measure; therefore, it is commonly regarded as a fine-tuning 

button for calibration studies. The calibration results show that reducing the infiltration rate 

decreases heating load; however, its impact on the cooling load is less significant because the 

driving temperature differences for infiltration and the energy impact of incoming air are lower in 

summer. During the process, several values for infiltration rate were tried out to reduce the 

calibration errors, but as we can see from Table 2.8, the final value 1.5 1/h @50 Pa was chosen, 

the same as reported in many papers (Manning et al., 2007; Swinton, Moussa, & Marchand, 
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2001; Zirnhelt, 2013). It was not further explored to make the errors smaller in case of over 

calibration, in line with the proposed calibration method. 

The calibration results are also sensitive to the ground properties for the basement model, as 

mentioned in the section 2.3.2. The impact of the ground thermal conductivity, average ground 

surface temperature and amplitude are shown from the last four runs. Increasing the ground 

surface temperature decreases the heating load, but it also reduces the cooling load. Increasing 

the assumed temperature amplitude for the surface temperature, on the other hand, increases both 

the heating and cooling loads.  

2.5 Discussions 

This chapter introduced the case study building in the thesis, the CCHT houses. They were three-

storey twin houses, selected to represent the typical single-family dwelling in Canada. The 

detailed whole building model was built in TRNSYS and the main TRNSYS modules such as the 

basement and HVAC system were presented. The model calibration was conducted with historic 

measured data; the calibration method and the analysis of the calibration results were also 

illustrated. The uncertainty on some key parameters and the lack of detailed (sub-hourly) 

measurements made this calibration study difficult; the results, however, showed a good 

agreement with measured values. They were well below the targets suggested by ASHRAE 

Guideline 14 for calibrated simulations for monthly values, and fairly close for hourly values.  

Fine-tuning parameters of the model to reduce the energy use gap between simulation and 

measurements was not pursued in this study, because the initial goal was not only calibrating the 

energy use, but also the space temperatures. The dynamic results showed that the calibrated 

model could capture the temperature variations in the space quite well. This is particularly 

important for the study because the model will be used for control purpose in the following 

chapters.  

The sensitivity analysis of the calibration study showed that several parameters affect energy 

usage quite significantly. For example, the ground conductivity is a parameter with a relatively 

high uncertainty and impacts both the heating and cooling load. The air infiltration rate, 

commonly used as a “tuning button”, impacts the heating load more than the cooling load. For 
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temperature variation in the zones, the heating and cooling setpoints and deadbands are critical 

parameters. 

The literature on calibrated simulations mostly concerned about calibration of energy use. This 

chapter presented a study not only dealing with energy use but also indoor conditions calibration. 

The results and analysis presented may be helpful for other similar studies. 
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CHAPTER 3 ENERGY FLEXIBILITY CHARACTERIZATION 

This chapter presents a general methodology to characterize energy flexibility in buildings. 

Definitions for Key Performance Indicators associated with the energy flexibility are explained in 

detail. The methodology and KPIs are applied to the calibrated building model described in the 

last chapter. Only simple Rule-Based Control (RBC) is investigated in this chapter. 

3.1 Introduction 

3.1.1 Literature review 

Energy flexibility is essential to operate the electric grid, which needs long-term as well as short-

term flexibility to meet variable electricity demand on the daily and seasonal basis (Aggarwal & 

Orvis, 2016). In this context, buildings, due to their large electricity demand and energy storage 

capability, can provide an energy flexibility service to the grid. Note that the very short timescale 

electrical storage in seconds used to stabilize grid frequency is not within the scope of this thesis 

(Ulbig, Borsche, & Andersson, 2014). The short-term flexibility contributed by buildings is in the 

magnitude of hours.  

The term “energy flexibility” in buildings is not completely new but its formalization has been 

underpinned by the Annex 67 of the Internal Energy Agency Energy in Buildings and 

Communities Programme. The project “Energy Flexible Buildings” (2014-2019) is in the process 

of exploring a standard approach to evaluate the potential of building energy flexibility (IEA 

EBC Annex 67, 2014). The project is divided into three subtasks. The first subtask “Definitions 

and Context” solves the problem of scientific definitions for terms associated with energy 

flexible buildings. The second subtask “Analysis, Development, and Testing” intends to propose 

a generic approach to analyze the potential of energy flexibility in buildings through both 

simulations and experiments, and develop technologies applicable to real systems. The last 

subtask “Demonstration and User Perspective” investigates the acceptance of building users and 

operators and showcases the applicability of the developed technologies through demonstration 

projects. 

Clauß, Finck, Vogler-finck, & Beagon (2017) reviewed most of the previous studies related to 

the energy flexibility and listed existing Key Performance Indicators in a wide range of studies, 
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like for PV or thermal storage systems. A more detailed report for the literature review is also 

included on the website of the Annex (Finck et al., 2018). Yin et al., (2016) investigated the DR 

potential for both residential and commercial buildings through global setpoint temperature 

adjustment using regression models which were adopted to reduce the computation intensity. 

They defined the DR potential as the percentage of the difference between baseload and DR load 

divided by the base load. They discussed the DR potential for individual customers as well as for 

the sub-station level of the grid. De Coninck & Helsen (2016) used an MPC approach to optimize 

energy cost based on dynamic imbalance price in Belgium. The energy flexibility was achieved 

by adjusting the temperature within the thermal comfort band (between 21.8 °C and 23.5 °C) as 

well as by thermal storage tank associated with the heat pump system.  

Le Dréau & Heiselberg (2016) discussed the energy flexibility for two types of residential 

buildings in Denmark (a passive house and an old house built in the 1980s) as well as for two 

kinds of heating systems (radiators and underfloor heating). The adopted KPIs were the amount 

of thermal energy stored and the amount of energy discharged. The charged amount was always 

positive and the discharged always negative. Another indicator was the shifting efficiency, 

calculated as the absolute ratio of these two terms. A similar approach was taken to assess the 

energy flexibility for detached and terraced dwellings from 4 different ages in Belgium 

(Reynders, Diriken, & Saelens, 2015, 2017). The proposed KPIs were flexibility capacity and 

storage efficiency. As in the paper by Le Dréau and Heiselberg, the authors focused on the 

storage performance of the thermal mass and thus the storage capacity was always positive. 

The methodology and KPIs proposed by the last two teams investigated the energy flexibility 

from the perspective of buildings. They looked at the building thermal mass as a storage medium 

and characterized how much energy the building could store or discharge in a DR event based on 

their indicators. And those indicators are not directly associated with the electric load of the grid. 

Therefore, those KPIs are difficult to interpret from the utility perspective. KPIs that quantify the 

flexibility of electric power and energy demand of buildings are assessed from the grid 

perspective in the present study. 

3.1.2 Objective 

The amount of building energy flexibility contributed by its thermal mass is impacted by how the 

HVAC system is controlled. An advanced control strategy like MPC could possibly provide 
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larger energy flexibility than a simple thermostatic modulation, but advanced control strategies 

are less common in real residential buildings.  

The objective of this chapter is to characterize building energy flexibility in a quantitative way 

using a straightforward case. Specifically, we are going to investigate the energy flexibility 

through setpoint temperature modulation, which is fairly feasible to implement as a potential DR 

program on real buildings. Starting from a simple case is also helpful to define a general 

methodology and metrics to quantify the energy flexibility. When the methodology and metrics 

are ready, they can be applied or extended to more complex situations. 

3.2 Methodology 

3.2.1 KPIs 

To quantify the energy flexibility contributed by the building thermal mass, we introduce the four 

following indices in the present study. Figure 3.1 presents a conceptual energy flexibility of 

buildings with a downward flexibility event happening from 8 am to 10 am, with 𝐸𝑓  flexible 

energy; 𝐸𝑟𝑏  rebound energy; 𝑃𝑓𝑚𝑎𝑥  maximum flexible power and 𝑡𝑑𝑟 duration of demand 

response event. 

Note that this plot only presents the reactive response case; in other words, the system responds 

to the grid at the moment when the DR event starts. When one considers the anticipative 

capability of the building system like with a predictive controller, the shape of the curve becomes 

different. Chapter 5 will discuss the transformations of the KPIs.  



41 

 

 

Figure 3.1: Flexible energy demand of buildings (downward flexibility) 

Flexible energy 𝑬𝒇 

The flexible energy quantifies the amount of energy that has been shifted compared with the 

reference scenario, either downward or upward. It indicates the decreased or increased energy 

usage during the DR event. The cyan shaded area shown in Figure 3.1 indicates the downward 

flexible energy amount during a DR event. A formal equation to calculate the flexible energy can 

be written as: 

 
𝑬𝒇 = ∫ (𝑃𝑑𝑟 − 𝑃𝑟𝑒𝑓)𝑑𝑡

𝑡𝑑𝑟

0

 
(3.1) 

Note that 𝑃𝑑𝑟 and 𝑃𝑟𝑒𝑓 in the equation are electric power, not thermal power. This index also 

shows the amount of shifted power in average during the DR duration: the average shifted power 

equals 𝐸𝑓 divided by the time of DR duration 𝑡𝑑𝑟. 

Rebound energy 𝑬𝒓𝒃 

After the DR event, there is a high possibility of energy rebound, positively or negatively. If we 

have saved energy during the peak (in the case of downward flexibility), we may immediately see 

power demand go up after the peak. Similarly, if we have increased energy use during the 

demand valley (in the case of upward flexibility), the energy need may ramp down after the event 

because part of the excess energy can be stored. The rebound energy 𝐸𝑟𝑏 is used to denote this 
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amount of energy rebounded after the DR event (as shown by the yellow shaded area in Figure 

3.1). 

 
𝑬𝒓𝒃 = ∫ (𝑃𝑑𝑟 − 𝑃𝑟𝑒𝑓)𝑑𝑡

𝑡∞

𝑡𝑑𝑟

 
(3.2) 

Note that the upper bound for the integration in Equation (3.2) is infinite, but we take it as 48 

hours in the calculation. In all our simulation results, we have confirmed that no rebound effect 

lasts longer than this horizon; therefore, 48 hours is effectively infinite for our study. It may, 

however, be different in other situations. 

Flexible energy efficiency 𝜼 

The DR action does not necessarily save energy consumption for electricity users. The flexible 

energy efficiency is introduced to quantify the energy consumption change. Similarly, a cost 

efficiency could also be introduced to consider the price change, for instance, time-of-use or 

dynamic electricity price. This study intends to be general and not to address the price signals. 

 
𝜼 = |

𝐸𝑓

𝐸𝑟𝑏
| × 100% 

(3.3) 

Maximum flexible power 𝑷𝒇𝒎𝒂𝒙 

This indicator is helpful to identify the maximum potential for power change during a DR event 

against the reference case. Eq. (3.4) is separated into the downward and upward cases instead of 

using absolute values to take into consideration that the rebound phenomenon may occur during 

the DR event. 

 
𝑷𝒇𝒎𝒂𝒙 = {

max 
𝑡𝑑𝑟

(𝑃𝑟𝑒𝑓 − 𝑃𝑑𝑟)

max 
𝑡𝑑𝑟

(𝑃𝑑𝑟 − 𝑃𝑟𝑒𝑓)
     for 

 downward
upward

 
(3.4) 

3.2.2 Implementation 

The simple RBC setpoint control during a DR event to be implemented is 

• Decreasing the reference setpoint by 2 °C for 2 hours in the downward flexibility; 
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• Increasing the reference setpoint by 2 °C for 2 hours in the upward flexibility. 

The same control strategy has also been adopted by (Le Dréau & Heiselberg, 2016; Reynders et 

al., 2017). Note that this 2 °C change happens in one-time step (15 minutes in our case). The 

reference setpoint case represents a typical setpoint profile as shown in Table 3.1.  

Table 3.1: Reference setpoint scenario 

Zone Reference setpoint DR event 

First floor 21 °C 2 °C change 

Second floor 21 °C 2 °C change 

Basement 17 °C Not modified 

 

To investigate the general energy flexibility of buildings, we assume the DR event can occur at 

any hour of the year. We focus on the heating season starting from October 15th to April 29th 

(altogether 196 days); in other words, the DR event happens at 4704 different hours (196 × 24 

hr.). To assure independent DR events, one simulation corresponds to only one event.   

The validated building model presented in Chapter 2 was used with CWEC weather file for 

Montreal, Canada in this section (Numerical Logics, 1999). The electric baseboard heating 

system was modelled using the idealized heating in TRNSYS Type 56. The setpoint control was 

thus idealized in the simulation that the setpoint can be perfectly reached given the available 

heating capacity. There is neither a cycling effect of on/off control nor errors related to 

Proportional-Integral-Derivative (PID) control such as overshooting. Matlab was used to run the 

simulation in batches for different DR events in different scenarios. 

3.3 Results of a single DR event  

The temperature and power change during a 2-h downward flexibility event on a typical day is 

shown in the left figure of Figure 3.2. In this case, the setpoint temperatures for the first floor and 

second floor both drop 2 °C from 7 am to 9 am during the DR event (the black dashed curve in 

Figure 3.2 presents the setpoint change for the second floor; the modulation for the first floor is 

the same).  

We can observe that the total power demand decreases drastically when the setpoint suddenly 

drops by 2 °C. The heating system is shut off during the first hour and then turned on with 
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minimum power to maintain the setpoint. In result, the zone temperature of the second floor 

drops by 1 °C after 1 hour and remains at the setpoint for the second hour of the event. When the 

event ends and the setpoints go back to normal, we then observe a power rebound (shown by the 

magenta curve). This consequence is expected since this is a simple thermostatic control and no 

strategy is implemented to counteract the rebound effect. 

 

Figure 3.2: Temperature and power profiles in a DR event (left: downward; right: upward) 

The blue curve shows the total power demand in the reference scenario, whose setpoint 

temperature remains at 21 °C all the time. On this day, the reference power demand stays 

relatively stable. It decreases slightly when the ambient temperature goes up and the building 

absorbs the solar radiation during the daytime.  

The flexible energy 𝐸𝑓 for this DR event is the difference between the sum of the power use for 

the demand response and the total reference power use from 7 am to 9 am, i.e., the difference 

between the magenta and blue curves. This is the real power change profile of the conceptual line 

as presented in Figure 3.2. Similarly, the rebound energy is the difference of the same two terms 

but the integration period starts after the event (from 9 am on) and lasts for the next 48 hours. 

From Figure 3.2, we can see that the rebound effect is strong during the first half an hour and 

lasts for about 3 hours.  

The right figure of Figure 3.2 shows the upward flexibility event occurring at the same time of 

the same day as in the left figure. Contrary to the downward flexibility, the upward flexibility 

event increases the setpoint temperatures by 2 °C. We can observe an immediate power increase 

in response to this action. This phenomenon occurs because we allow the setpoint increase by 
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2 °C in one-time step in the simulation and the heating capacity also suffices for this change (note 

that the setpoint temperatures shown in these two figures are average values over one time step). 

This sudden peak in power demand could be reduced if it was a concern (as for the power 

rebound effect in the downward flexibility). For example, the setpoint temperature could be 

increased linearly over a few time steps.   

When the DR event ends, we see that the zone temperature of the demand response case (the red 

curve) drops slowly and its power demand remains almost 0 for a while. This is because the 

thermal mass has stored heat during the event. The power demand then goes back to the same 

level as the reference case after about 5 hours. 

3.4 Sensitivity analysis 

The building energy flexibility and the associated KPIs proposed in the study are performance-

based; therefore many parameters could impact the results. The building construction (insulation 

level, airtightness, thermal mass etc.) is a common parameter discussed in the literature as 

mentioned above. This chapter investigates the energy flexibility of one typical housing 

archetype and the studied parameters include weather, DR duration 𝑡𝑑𝑟, setpoint change scale and 

setpoint profiles representing different occupancy profiles. 

3.4.1 Weather impact 

Figure 3.3 presents the downward flexible energy 𝐸𝑓 for 2-h DR events happening every hour for 

the whole heating season (note the negative values in the y axis). As in Figure 3.2, each 

independent DR event lasts for 2 hours with 2 °C modulation of setpoint temperatures for the first 

and second floor (the big blue dot in Figure 3.3 presents the flexible energy of the single event in 

Figure 3.2). Each data point in the figure represents one simulation result, and all the data points 

were sorted out by the hour of the day as well as their correspondent months. The transparent 

boxes are the same as in boxplots with the top edge indicating the 75th percentiles and the bottom 

edge indicating the 25th percentiles. 

The blue curve in the middle shows the median value of the flexible energy. We can observe that 

the amount of energy which can be shifted is highly correlated to the hour of the day. During the 

night time, the shifted energy is much more significant than that of daytime with maximum value 
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three times the minimum. This is because the building experiences higher ambient temperature 

generally during the day and can have solar gains as well. This daily cycle of temperature results 

in lower energy demand in the reference case and therefore reduced DR potential. 

The colours of the data points indicate the months. Among the 7 months investigated, it is clear 

that the coldest months (January and December) have higher flexibility than the shoulder months 

(like March, April, and October). The small values of flexible energy that spread out in the top 

part of the figure mostly fall in the three shoulder months. This seasonal trend is the same as 

explained for the daily phenomenon in that the reference case has lower energy demand, 

therefore the DR has also lower potential to shift the energy demand.  

Figure 3.4 shows the upward energy flexibility in the same format as shown in Figure 3.3, in 

which the big blue dot indicates the flexible energy of the single event in Figure 3.2. We find a 

similar daily and seasonal trend for the upward flexibility due to the same reasons as discussed 

above. The spread of 𝐸𝑓 values shows a strong daily variation, but the median upward flexible 

energy is approximately constant (and close to the available heating capacity). This shows that 

the thermal mass capacity of the studied building is large enough to store the heating energy 

provided during the 2-h DR event. 

The maximum power shift 𝑃𝑓𝑚𝑎𝑥 displays the same trends as the flexible energy for both cases 

and figures are not shown in the study. 

Based on our discussion above, we conclude that the potential of buildings to shift heating power 

demand is higher during colder weather. This is beneficial for the utility, which experiences a 

higher demand during these periods. The ability to use more power by buildings is also higher in 

colder weather but the weather impact on the median values is not as significant. The building 

could still have the potential to use more energy when the grid would experience a significant 

solar power input during the day.  

Figure 3.5 presents the downward flexible efficiency. We find a near-constant median efficiency 

of around 1.2. This means that the rebound energy is almost always 20% less than the saved 

energy (the several zero points represent cases when both the flexible energy and rebound energy 

are 0). The upward flexible efficiency shows similar results as the downward one as shown in 

Figure 3.6. This confirms that the DR strategy in our study is not energy inefficient. 
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Figure 3.3: Downward flexible energy of the heating season 

 

Figure 3.4: Upward flexible energy of the heating season 
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Figure 3.5: Downward flexible efficiency of the heating season 

 

Figure 3.6: Upward flexible efficiency of the heating season 

3.4.2 DR duration  

The DR duration 𝑡𝑑𝑟 discussed in the above scenarios is 2 hours. This parameter depends on the 

utility requirements and is related to the impact of DR strategies on thermal comfort (a drop of 

2 °C may be acceptable for one hour but not for 6 hours). Different DR durations were compared 

to assess the impact of this parameter and to investigate whether an optimal value exists. 

Figure 3.7 shows the upward and downward flexible energy amount 𝐸𝑓 as a function of the DR 

duration 𝑡𝑑𝑟. For the two scenarios at each duration, each box in the figure presents the results 

from 4704 simulations. We can see an increasing trend from the median values (the red lines 

inside the boxes) that the longer the duration, the larger the flexible energy. The top edge of the 
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box indicates the 75th percentiles of the results excluding the outliers accounting for around 0.7% 

of the results (not displayed in the plot), while the bottom edge indicates the 25th percentiles. We 

can see that more data points are concentrated around the median values for the upward 

flexibility than the downward flexibility, which means the upward flexible energy reports steadier 

values and is less likely to be impacted by other factors than the downward flexibility. This result 

is consistent with the results from Figure 3.3 and Figure 3.4. 

 

Figure 3.7: Flexible energy as a function of DR duration 

Figure 3.8 presents boxplots for the rebound energy 𝐸𝑟𝑏 in a similar style to Figure 3.7. The 

upper plot shows the rebound energy for the upward flexibility; therefore it is a negative value. 

The lower plot shows the opposite. We can also observe an increasing trend for the rebound 

energy as the DR duration increases. However, its increase slows down when the duration 

becomes longer. This observation is clearer in Figure 3.9, which shows the median flexible 

efficiency 𝜂 as a function of DR duration. 
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Figure 3.8: Rebound energy as a function of DR duration 

We can see from Figure 3.9 that the median efficiency is always larger than 1 for both scenarios, 

which means that the amount of flexible energy 𝐸𝑓 is always larger than the rebound energy 𝐸𝑟𝑏. 

For instance, when the DR duration is 2 hours, the downward efficiency is close to 1.2, which 

signifies that this DR event saves around 20% of energy use. This result is consistent with what 

we discussed in the last section (Weather impact).  

 

Figure 3.9: Median flexible efficiency as a function of DR duration 

Although the DR duration does impact the flexible energy 𝐸𝑓 and rebound energy 𝐸𝑟𝑏, it has a 

negligible impact on the maximum flexible power 𝑃𝑓𝑚𝑎𝑥 as shown in Figure 3.10. In our case, 

the heating system has no time delay to respond to the demand no matter when the event begins. 

Thus, the power shift ability can almost always reach its maximum at the beginning of the event. 
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Figure 3.10: Maximum flexible power vs. DR duration 

Based on the above analysis for the four indicators, we conclude that the flexible energy 

increases as the DR duration increases; so does the rebound energy and flexible efficiency. 

However, the increase of the flexible energy slows down when the duration is longer. And the 

long duration of DR events could lead to thermal comfort compromise; therefore, 2 to 3 hours 

could be an optimal DR duration. 

3.4.3 Setpoint temperature change  

In the previous simulations, the setpoint temperature change is always 2 °C, upward or 

downward. This section investigates the impact of that parameter for a DR event duration of 2 

hours. 

The top two plots in Figure 3.11 show respectively the downward and upward flexible energy as 

a function of setpoint temperature change. We can see that when the setpoint drops by 2 °C, the 

median downward flexible energy amount is about 1.5 times that obtained with a  1 °C decrease. 

When the setpoint increases by 2 °C, the median upward flexible energy is about twice as large as 

with an increase of 1 °C. The flexible efficiency, however, remains almost the same for both 

cases, as can be seen from the middle two plots. This shows that the rebound effect remains 

relatively similar no matter how the setpoint temperature is modulated during the DR event. 

The lower two figures show that the maximum power reduction capability does not change much 

for the two setpoint changes, while the maximum power increasing capability for the 2 °C change 

is twice that for 1 °C.  
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Figure 3.11: Setpoint temperature change 

In summary, we find that a 2 °C increase of setpoint is more effective than 1 °C increase for the 

upward flexibility. For downward flexibility, 2 °C drop of setpoint gives a higher flexible energy 

but the improvement over a 1 °C increase is not as large as for the upward flexibility. This 

conclusion is interesting if a 2 °C drop is deemed unacceptable for thermal comfort, although it 

should be noted that the temperature will not reach the lower setpoint very quickly for shorter DR 

durations. 

3.4.4 Occupancy (constant setpoint vs. setback) 

For all the simulations above, we used a constant setpoint profile for the reference case. This 

scenario is not uncommon in reality if the installed thermostat is not programmable. If the 

reference setpoint profile includes a setback, we would expect different results. The studied 

setback scenario is summarized in Table 3.2, which represents a typical setback profile in 

Canadian households.  

For the downward DR event, we impose a 2 °C decrease during the event. For the upward DR 

event, we assume an upper limit of 23 °C, the same as the constant setpoint case. This means 6 

°C increase for both zones when they are unoccupied, 2°C increase when the first floor is 

occupied and 4 °C increase when the second floor is occupied. In the same way, the basement is 

not modified for DR events. Note that the DR duration always remains 2 hours for this case. 
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Table 3.2: Reference setback profile 

Zone 
Temperature Time 

Occupied / unoccupied Occupied 

First floor 21 / 17 °C 06:00~08:00, 16:00~22:00 

Second floor 19 / 17 °C 22:00~06:00 

Basement 17 °C / 

 

Figure 3.12 summarizes the simulation results for the setback profile as a reference case. 

Compared with the constant setpoint reference case, we can see that the median downward 

flexible energy of the setback case is around 33% smaller (4 kWh vs. 6 kWh). Both reference 

cases have very similar maximum and minimum values for the flexible energy, but the values are 

more widely spread out for the setback case (therefore lower median value). Contrarily, the 

upward flexible energy of the setback case is much larger, almost twice of the constant case. The 

difference of the maximum flexible energy is even more pronounced with the setback case 

reaching 21 kWh and the constant case around 8 kWh.  

 

Figure 3.12: Setback setpoint scenario 

The maximum flexible power shows a similar situation as the flexible energy, but the differences 

between the two cases are smaller. This is expected since the setpoint increases are much larger 

for the setback case when the zones are not occupied, while for the downward flexibility, the 

setpoint decrease will not produce much flexibility during the setback periods. 
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The flexible efficiency does not show much difference for both upward and downward flexibility 

for the two reference cases.  

3.5 Discussions 

This chapter assessed the energy flexibility of an electrically heated Canadian house during the 

heating season. Energy flexibility is defined as the ability of a building to modify their energy 

demand compared to “normal” operation.  

The energy flexibility was categorized into two scenarios: downward and upward flexibility. The 

former scenario is similar to load shifting, which shows the ability of buildings to reduce power 

demand during peak periods. The upward flexibility denotes the ability to use more energy when 

the power demand is low for the grid. Energy flexibility at the individual building level results 

from the use of energy storage and on-site generation. This study focused on the use of thermal 

mass, through modifications in the building heating setpoint to respond to Demand Response 

events. 

To quantify the amount of energy flexibility, the chapter investigated four key performance 

indicators, which are flexible energy, rebound energy, flexible efficiency and maximum flexible 

power. Each indicator applies for both flexibility scenarios (upward and downward). Numerous 

simulations were carried out based on a validated TRNSYS model of a typical Canadian house 

modified to use electric baseboard heating, and the indicators were then computed. 

Results show that the energy flexibility potential of using thermal mass is significant. The studied 

house shows a median decrease in the energy use by 6 kWh and a median increase of 7.5 kWh 

for 2-h DR events. The flexibility depends on the time of the DR event, as it is affected by 

weather and building operation. The flexible energy amount is higher during colder weather 

because the normal operation of the house has a higher energy demand during these periods. In 

addition, the maximum flexible power is also very promising, especially for the upward 

flexibility. 

An analysis of the rebound effect after the demand response event shows that the rebound energy 

is never higher than the shifted energy. The median energy savings associated with the DR event 

are about 20%. 
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A sensitivity analysis of the indicators was conducted. Results show that an optimal duration of 

the event is around 2 or 3 hours considering both the amount of energy flexibility and the thermal 

comfort in the building. A setpoint modulation of 2 °C as a control strategy during a downward 

DR event is probably acceptable most of the time because the thermal mass will prevent the 

building from actually reaching the lower setpoint. The impact of the reference scenario (constant 

setpoint or setback) is relatively mild on downward flexibility but strong on upward flexibility, 

the setback scenario providing a higher upward energy flexibility than the constant setpoint case. 

The discussions about the method to characterize energy flexibility of buildings and associated 

KPIs as well as the sensitivity analysis in this chapter are beneficial to investigate more complex 

scenarios like applying MPC strategy to increase energy flexibility.   
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CHAPTER 4 MODEL PREDICTIVE CONTROL FRAMEWORK 

The chapter details a supervisory model predictive control framework. Several scenarios 

associated with the framework are discussed such as modelling errors, state estimation, and 

parameter identification. This framework is further employed in the next two chapters to 

investigate its potential for energy flexibility. 

4.1 Introduction 

4.1.1 Literature review 

Model Predictive Control (MPC) has been practically applied and theoretically investigated in 

chemical engineering since the 1960s (Morari & Lee, 1999) and it has drawn increasing interest 

lately in building engineering field (Coffey, 2013). The idea of MPC proposed for building 

supervisory control can be dated back as early as in 1988 (Kelly, 1988); however, it did not 

witness steady growing research projects until the last decade. 

This phenomenon follows with a rapid increase of research publications of MPC for buildings, 

and it attracts attention from control researchers as well (Privara et al., 2013). The popularity of 

MPC is supported by the urgent needs of advanced control strategies in current engineering 

projects or potential challenges confronted buildings in the near future. For instance, for high 

performance buildings or net-zero energy buildings, integration of on-site renewable energy 

generation, energy management in the community scale, and interaction with smart grid such as 

demand response, MPC can play a vital role to achieve those goals (Coffey, Haghighat, 

Morofsky, & Kutrowski, 2010; Henze, 2013).  

Prior to the MPC application in the building field, James Braun and his team worked on related 

optimal control for demand limiting since 1990. Their first work investigated optimal control of a 

cooling system in a commercial building (Braun, 1990).  To model the thermal zones of the 

building, a simple discrete-time polynomial model proposed by (Seem et al. 1989) was adopted. 

Parameters were identified with data generated from a detailed TRNSYS model by minimizing 

least squares errors. The components of the cooling plant were modelled using empirical 

regression equations. The simulation results found the optimal setpoint profile for zone 

temperature, mode of operation for air handlers and supply air temperature setpoint trajectory.  
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Following these papers, a review of the state-of-the-art load control studies was conducted with 

the conclusion that both computer simulation and field test at that time were in a preliminary 

stage with few findings (Braun, 2003).  

Another type of simplified model for the demand control purpose was also investigated (Braun & 

Chaturvedi, 2002). The new model was based on an RC network, whose parameters were 

identified using measured data. The RC network model was applied on two following papers 

(Lee & Braun, 2006b, 2008b), where the building was modelled by a 10th-order RC network 

model. In those two papers, a constant cooling rate was optimized to maintain the zone 

temperature within the thermal comfort boundary during peak time. When the target cooling load 

was reached, the setpoint temperature would increase to limit the cooling load below the target. 

The target cooling load was further adjusted so that the zone temperature reached the upper 

bound of thermal comfort at the end of the occupied time. In such a way, an optimal setpoint 

profile was acquired. The optimal precooling starting time was also investigated. 

Experimental work was conducted to validate the simulation outcomes (Lee & Braun, 2006a, 

2008b). Results showed 30% reductions in peak cooling loads with a little thermal 

uncomfortableness in the morning due to precooling. Another experiment was carried out with 

less aggressive setpoint changing, leading to better thermal comfort. 

To investigate the manipulation of setpoint temperature trajectory, Braun & Lee (2006) proposed 

a simple algorithm to obtain the optimal setpoint profile based on a first-order building model. A 

relation was proposed between the setpoint and 3 variables: effective time constant which can be 

estimated using experiment; demand-limiting duration which can be obtained or set up; and the 

cooling starting time. Since the first two variables are known constants, the setpoint temperature 

only changes with cooling starting time. This simple algorithm was applied to a small 

commercial building in different regions of California, USA. It should be noted that the setpoint 

temperature was assumed to equal zone temperature in the research, which might be an issue. 

Another questionable assumption was the zero air thermal mass in each zone. 

Following the same idea, three heuristic methods for optimal setpoint trajectory were proposed 

(Lee & Braun, 2006b, 2008a). The first two methods “semi-analytical” and “exponential setpoint 

equation-based semi-analytical” were based on the same first-order RC network model 

mentioned above and the same assumption that setpoint temperature equals zone temperature, 
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while the third method “load weighted-averaging” was based on a data-driven black-box model. 

The main difference among these three methods was the requirement of input data. Companion 

papers assessed the application of the three methods on different sizes of commercial buildings 

(Lee & Braun, 2006c, 2008a). All three methods showed promising peak demand reduction 

capabilities, while the last method provided a slightly better performance with an easier 

implementation. 

The heuristic method has also been studied by (J. A. Candanedo, Dehkordi, Saberi-Derakhtenjani, 

& Athienitis, 2015), which focused on the transition period between two constant temperature 

setpoints specifically. The two constant temperature setpoints were assumed to be known in 

advance due to the fact that the thermal comfort must be within a minimum and maximum 

temperature range. Global Optimization Toolbox in Matlab was used to find the sequence of the 

intermediate setpoints yielding the smallest load. A general formulation of the setpoint trajectory 

was proposed, which was expressed by a single “curvature” parameter. The parameter was a 

function of another two parameters: building time constant and user-required transition time. The 

former may be not easy to estimate. This approach was more suitable for a programmable 

thermostat given that several parameters must be known or set up in advance such as the 

temperature oscillation boundary and transition time periods. Note that it was not a predictive 

controller. 

Most studies in demand limiting control in the literature focused on space cooling in commercial 

buildings. The heating system in residential buildings was considered through several studies by 

the team from the Laboratoire des technologies de l’énergie (LTE) at Hydro-Quebec. 

Using TRNSYS simulation, Leduc, Daoud, & Le Bel (2011) studied three main load control 

strategies: setback, preheating and power limitation. A useful concept Reset Ratio (RR) was 

proposed to quantify the power rebound effect after the load control strategy because the possible 

demand rebound may cause new peaks. This indicator was also adopted in the paper by (J. A. 

Candanedo et al., 2015). Fournier & Leduc (2014) tested the setpoint modulation strategy in the 

twin houses test bench built at the LTE sites. Date, Athienitis, & Fournier (2015) studied 

different temperature profiles considering different levels of thermal mass, both theoretically and 

experimentally. It was found that floor coverings would impact the demand response strategy 

because floor coverings would increase the thermal mass, and one or two-hour temperature ramp 
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could reduce the peak demand up to 10% to 20% by simply replacing the night setback 

temperature profile. 

The Henze team from the University of Colorado at Boulder investigated MPC on ice storage 

tank and building thermal mass in a variety of studies (Henze et al., 2005; Henze, Felsmann, & 

Knabe, 2004). MPC application on window operation for mixed natural and mechanical 

ventilation was also studied in an office building by the team (Corbin, Henze, & May-Ostendorp, 

2013; May-Ostendorp, Henze, Corbin, Rajagopalan, & Felsmann, 2011).  

MPC applications on Variable Air Volume (VAV) systems were studied by (Nassif, Kajl, & 

Sabourin, 2005a, 2005b; Wang & Jin, 2000). Other systems were also discussed in the Model 

Predictive Control in Buildings workshop in Canada in 2011 and related papers were published 

later such as thermally activated building system with ground coupled heat pump (Sourbron, 

Verhelst, & Helsen, 2012) and chiller and cooling tower system (Y. Ma, Borrelli, Hencey, 

Packard, & Bortoff, 2009).  

Plenty of industrial and academic MPC tools and techniques have been developed, e.g., the MPC 

toolbox in Matlab is very powerful (Bemporad, Morari, & Ricker, 2015). Nonetheless, the 

developed theories and methods, techniques and tools, as well as practical experiences were 

meant for their own contexts, which are not necessarily suitable for the building industry. The 

applicability of the existing MPC theory cannot be easily extended to the building engineering 

domain. 

Offset-free tracking is a common topic in the MPC control theory, where the objective of the 

MPC controller is to track the given reference signal as close as possible. Certain performance 

indicators or design parameters are used to quantify the controller performance, such as 

overshoot percentage and settling time. For the case of room temperature in buildings, this 

assumption of tracking reference signal (setpoint temperature) may not be suitable, because the 

thermal comfort can allow setpoint ranges instead of a constant value. System stability composes 

of a big section of the MPC discussion when formulating the prediction, which may be minor for 

the room temperature regulation (Camacho & Bordons, 2007; Rawlings & Mayne, 2012; 

Rossiter, 2003). 

Another important area in the control domain is the discussion of disturbances. A common 

assumption is to incorporate a term of white Gaussian noise in the equation of input, output or 
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both, to compensate for measurement errors. However, for building control, the foremost 

disturbance comes from weather and/or building users, which cannot usually be assumed to be 

white noise. The daily and seasonal variations of weather and occupants have a strong impact on 

the building thermal behaviour.   

4.1.2 Objective 

To address the gap from MPC theory to the application on buildings, the aim of this chapter is to 

describe a simple approach to apply MPC on building simulations. It introduces the MPC concept 

and illustrates what MPC is and how it works for supervisory control. It demonstrates how to 

implement the MPC technique step by step from the perspective of building energy modellers. 

Simple examples are given herein with results analysis. This may be helpful for building energy 

modellers who are interested in this topic but not familiar with it.  

Three scenarios are discussed in this work, i.e., MPC without model mismatch, MPC with online 

parameter identification and MPC with state estimation. The study also investigates the 

optimization results in detail for each scenario. Examples corresponding to each scenario are 

explained. Complex applications can be implemented based on the proposed approach and given 

examples.  

4.2 Methodology 

4.2.1 Supervisory control 

Many MPC frameworks in the literature dedicated to local control (J. Candanedo, Dehkordi, & 

Lopez, 2013), where the MPC controller interacts directly with actuators or HVAC systems. This 

is a common approach in the control studies, for example, the offset-free tracking discussed in 

Section 4.1 takes such an approach.  

In this work, we present a simple scheme of MPC for supervisory control. In this method, the 

MPC works at the supervisory level, where it computes the optimal signal for the local 

controllers or actuators. Figure 4.1 shows an example of thermostatic temperature control with 

supervisory control. At the top level, the supervisory MPC computes the optimal setpoint based 

on its own model predictions, and then sends the control sequence to the thermostat. The 

thermostat compares the feedback temperature from the zone and decides whether or not 
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activates the HVAC system by its own control logic. In such a way, the existing local controller 

does not need to be replaced.  

 

Figure 4.1: MPC scheme for supervisory control 

In summary, the difference between local and supervisory control depends on where the 

reference signal comes from. In the supervisory control, the reference signal comes from the 

high-level MPC, while in the local control the reference signal is user-defined. For the 

implementation of the supervisory MPC in reality, the optimal reference signal can have the 

option to be overridden by users if necessary.  

4.2.2 MPC implementation 

There are many different ways to implement MPC in building simulation tools. This work adopts 

the method of co-simulation: the virtual buildings implemented in a Building Performance 

Simulation (BPS) tool with the MPC controller in another environment. This work uses co-

simulation between TRNSYS and Matlab; but the BPS tool can be other programs such as 

EnergyPlus, ESP-r etc. 

The co-simulation, in this case, allows the two programs to communicate with each other 

iteratively, which mimics the online control fashion in the real world. The Matlab component 

Type 155 from the TRNSYS library is useful for this realization (using BCVTB (Wetter, 2011) is 

another way), where at each time step or defined duration of time steps the controller in Matlab 

sends an optimal control signal to TRNSYS, while the latter sends feedback signal instantly to 

the former.  
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4.2.3 Example building and control context  

To explain the procedure simply, we use an example building and a representative context to 

develop the idea of the study. We consider a 2-zone building inspired by the two BESTEST suite 

cases: Case 900 and Case 600 (Henninger & Witte, 2004). Case 900, a heavy-weight room, 

represents Zone 1. Case 600, a light-weight room adjacent to Zone 1, represents Zone 2. Figure 

4.2 displays a sketch of the two-zone building. The window areas of both zones are reduced to 4 

square meters and the internal gains for Zone 2 is modified to 200 Watts. 

 

Figure 4.2: Sketch of an example 2-zone building 

The control objective is to minimize energy consumption with time-of-use power price and the 

control signal is the optimal setpoint temperature for the thermostat in the Zone 1. We suppose 

Zone 2 is uncontrolled for the ease of explanation for state estimation later. Peak periods are 

assumed to be 5:30~9:30 and 16:30~20:30 with off-peak times for the rest hours. The two yellow 

bars in Figure 4.5 represent the two peak periods when its power price is twice the off-peak price.  

We use the CWEC weather data file for Montreal (Numerical Logics, 1999), where space heating 

is dominated. Assuming this is a residential building with actively occupied time from 6:30 to 

8:00 and from 16:30 to 22:00, when the thermal comfort range in winter is assumed to be 20~23 

°C. When the building is not occupied during the rest hours of the day, the thermal comfort range 

is 18~25 °C. The green dash-dotted curves in Figure 4.5 represent the comfort ranges at different 

hours of a day. Note that the weather and occupancy forecast is not addressed in this chapter, 

which may deserve investigation separately. In this work, the disturbance from the weather and 

occupancy is assumed to be known. In a real-world implementation, the weather forecast can be 

obtained from the Internet conveniently. 
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4.3 MPC without model mismatch 

The work of modelling accounts for half of the workload for MPC and model mismatch is often 

referred as one of the reasons when analyzing the imperfection of the model-based optimal 

controllers in the past studies (Morari & Lee, 1999). This argument can be reasonable because 

real systems are often much more complicated than models, which makes it difficult to consider 

all the nonlinearities and uncertainties associated with the physical system. 

For this reason, we first investigate an MPC without model mismatch. This can be easily realized 

in computer simulation by using an identical model for the controlled system and the controller. 

In such a way, we can assess the controller performance by excluding the impact of modelling 

errors. It indicates the best performance the controller can deliver under perfect circumstances. It 

is also beneficial to investigate issues such as the optimization accuracy which may occur to 

certain algorithms. In addition, it helps to test the effectiveness of our MPC approach before 

beginning to analyze potential errors or mistakes. 

4.3.1 Modelling 

To have the same model in TRNSYS and Matlab, we consider a lumped-capacitance building 

model of second order, where each zone is represented by 1 node. Type 660 in TRNSYS is such 

a model ready for use. To simplify the illustration, the moisture balance of each zone is not 

considered; therefore only heat balance is treated here. However, the moisture equations can be 

added to the model in the same fashion if needed. 

To neglect the moisture impact, we set all parameters and variables of absolute humidity identical 

in TRNSYS to keep moisture constant. We then need to develop a lumped-capacitance model for 

the controller in Matlab. The governing heat balance equation for each zone can be written as: 

 𝐶𝑝1�̇�1 = 𝑈𝐴1(𝑇𝑎 − 𝑇1) + 𝑚𝑠𝑎1𝑐𝑝𝑎1(𝑇𝑠𝑎1 − 𝑇1) + 𝑚𝑖𝑛𝑓1 𝑐𝑝𝑎1(𝑇𝑎 − 𝑇1)

+ 𝑈𝑝(𝑇2 − 𝑇1) + 𝑄𝑠𝑔1 + 𝑄𝑖𝑔1 + 𝑄ℎ1 

(4.1) 

 𝐶𝑝2𝑇2̇ = 𝑈𝐴2(𝑇𝑎 − 𝑇2) + 𝑚𝑠𝑎2𝑐𝑝𝑎2(𝑇𝑠𝑎2 − 𝑇2) + 𝑚𝑖𝑛𝑓2 𝑐𝑝𝑎2(𝑇𝑎 − 𝑇2)

+ 𝑈𝑝(𝑇1 − 𝑇2) + 𝑄𝑠𝑔2 + 𝑄𝑖𝑔2 + 𝑄ℎ2 

(4.2) 
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The left side of the two equations are thermal storage in each zone; the right side are respectively 

heat loss through building envelope, ventilation heat injection, infiltration heat loss, solar gains, 

internal gains, heat transfer between two zones, and heating rate from the heating system. If we 

present the model in Resistance-Capacitance (RC) network, the diagram can be drawn as below.  

 

Figure 4.3: RC network of the lumped-capacitance model 

The thermal capacities and overall heat loss coefficients are assumed constant in our system. The 

specific air capacity 𝑐𝑝𝑎 is a property of air and suppose the ventilation flowrate 𝑚𝑠𝑎 is known. 

Regard the two zone temperatures as the states 𝑇(𝑡) = [
𝑇1(𝑡)
𝑇2(𝑡)

], 𝑄ℎ the controlled input 𝑢(𝑡), 𝑇𝑠𝑎, 

𝑇𝑎, 𝑄𝑠𝑔 and 𝑄𝑖𝑔 the uncontrolled but measured inputs. Suppose the output that we are interested 

in is 𝑇1(𝑡), then we can rewrite the equations using state space representation: 

 
{
�̇�(𝑡) = 𝐴𝑐𝑇(𝑡) + 𝐵𝑐𝑢(𝑡) + 𝐸𝑐𝑤(𝑡)

𝑦 = 𝐶𝑐𝑇(𝑡)
 

(4.3) 

𝐴𝑐 =

[
 
 
 
 
𝑈𝐴1 + 𝑚𝑠𝑎1𝑐𝑝𝑎1 + 𝑚𝑖𝑛𝑓1 𝑐𝑝𝑎1 + 𝑈𝑝

𝐶𝑝1

𝑈𝑝

𝐶𝑝1

𝑈𝑝

𝐶𝑝2

𝑈𝐴2 + 𝑚𝑠𝑎2𝑐𝑝𝑎2 + 𝑚𝑖𝑛𝑓2𝑐𝑝𝑎2 + 𝑈𝑝

𝐶𝑝2 ]
 
 
 
 

 

𝐵𝑐 = [

1

𝐶𝑝1
0

0
1

𝐶𝑝2

], 𝑢(𝑡) = [
𝑄ℎ1

𝑄ℎ2
], 𝑤(𝑡) =

[
 
 
 
 
 
 
 
𝑇𝑠𝑎1

𝑇𝑠𝑎2

𝑇𝑎

𝑄𝑠𝑔1

𝑄𝑠𝑔2

𝑄𝑖𝑔1

𝑄𝑖𝑔2]
 
 
 
 
 
 
 

, 𝐶𝑐 = [1 0] 
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𝐸𝑐 =

[
 
 
 
 
𝑚𝑠𝑎1𝑐𝑝𝑎1

𝐶𝑝1

0
𝑈𝐴1 + 𝑚𝑖𝑛𝑓1 𝑐𝑝𝑎1

𝐶𝑝1

1

𝐶𝑝1
0

1

𝐶𝑝1
0

0
𝑚𝑠𝑎2𝑐𝑝𝑎2

𝐶𝑝2

𝑈𝐴2 + 𝑚𝑖𝑛𝑓2 𝑐𝑝𝑎2

𝐶𝑝2

0
1

𝐶𝑝2
0

1

𝐶𝑝2]
 
 
 
 

 

We separate the controlled input with uncontrolled inputs for easier formulation of the objective 

function, which will be discussed soon. We input the same parameters in TRNSYS and Matlab; 

then we validate whether Matlab gives the same results as TRNSYS. Figure 4.4 shows the free-

floating room temperatures of the two zones from the controller model in Matlab and the system 

model in TRNSYS for the first two days (ventilation rate is assumed to be 0). We can see that 

both models give exactly identical outputs (Matlab results are hidden by TRNSYS). Identical 

results for a longer duration under different weather conditions are omitted here. 

 

Figure 4.4: Validation of the controller model in Matlab 

In order to get the same results, we need to pay attention to the TNRSYS outputs, where all 

values are averaged within each time step to perform better energy balance. Therefore we also 

need to calculate the average solutions of the differential state equation in Matlab. Details about 

the average solutions can be found in Appendix A. 

4.3.2 Objective function formulation 

Our MPC approach is divided into two steps: deriving predictive output and then finding the 

optimal control trajectory. The predictive output is intuitive to obtain by using a discretized state 
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equation. The Appendix A includes how to formulate the predictive output with unspecified 

prediction and control horizon. The predictive output can be formulated in the following equation  

 𝑌(𝑡) = 𝐴𝑝𝑇(𝑡) + 𝐵𝑝𝑈(𝑡) + 𝐸𝑝𝑊(𝑡) (4.4) 

𝑌(𝑡)  is the vector of predictive outputs; 𝐴𝑝 , 𝐵𝑝 , 𝐸𝑝  are the predictive matrices; 𝑇(𝑡)  is the 

feedback state; 𝑈(𝑡) is the vector of future controlled input; 𝑊(𝑡) is the forecast of disturbances. 

The optimization toolbox in Matlab generally takes three types of constraints: inequality and 

equality equations, as well as upper and lower bounds for the optimization variables. In our 

optimization problem, the predictive output should stay within the variable comfort range 

[𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥]; that is 

 𝑌𝑚𝑖𝑛 ≤ 𝐴𝑝𝑇(𝑡) + 𝐵𝑝𝑈(𝑡) + 𝐸𝑝𝑊(𝑡) ≤ 𝑌𝑚𝑎𝑥 (4.5) 

We transform the above inequalities as an expression of our optimization variable 𝑈(𝑡) as below: 

 𝐴𝑖𝑛𝑒𝑞𝑈(𝑡) ≤ 𝑏𝑖𝑛𝑒𝑞 (4.6) 

With 𝐴𝑖𝑛𝑒𝑞 = [−𝐵𝑝; 𝐵𝑝], 𝑏𝑖𝑛𝑒𝑞 = [−𝑌𝑚𝑖𝑛 + 𝐴𝑝𝑇(𝑡) + 𝐸𝑝𝑊;𝑌𝑚𝑎𝑥 − 𝐴𝑝𝑇(𝑡) − 𝐸𝑝𝑊] 

The bounds for the controlled input are the physical range of the input. It should be noted that the 

constraints applied here are quite stringent for the optimization. Cases with looser constraints 

would be easier to converge for the optimization algorithm. 

The control objective is to reduce power cost with time-of-use price, thus we can formulate the 

objective function as a function of the optimization variable 𝑈(𝑡), the vector of future controlled 

input. A simple objective function can be written in a linear form as 

 𝐽 = 𝑓𝑇𝑈(𝑡) (4.7) 

𝑓 is a vector of power prices in the control horizon. Other forms of objective function can also be 

formulated such as the commonly-used quadratic function which guarantees convexity. The 

function “fmincon” in Matlab optimization library allows free-form nonlinear objective function 

and constraints. In our case here, the linear programming function “linprog” is selected to solve 

the problem because of its simplicity and efficiency. The linear programming solves optimization 
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problems whose objective function, equality and inequality constraints are all linear. These linear 

requirements may not be applicable for many cases but suitable for the demonstrative purpose 

here.  

There are three algorithms available for the “linprog” function in Matlab, in which the “interior-

point” is chosen for the study. This method searches solutions in the interior of the feasible 

region. A barrier parameter is adapted in each iteration to approach the minimum of the objective 

function. The algorithm may yield slightly less accurate solutions compared with other 

algorithms, but it is capable to solve both large-scale and small-scale problems efficiently 

(Nocedal & Wright, 2006). 

4.3.3 Optimal control solution 

The parameters for the lumped-capacitance model are obtained from the BESTEST Cases report; 

the overall heat loss coefficients and capacitances are derived by summing the construction 

properties. As mentioned previously, only Zone 1 is controlled with idealized heating. Zone 2 is 

not controlled without any heating system. If our MPC method works well, we can anticipate that 

more power will be used to preheat the building during off-peak periods so that less power will 

be needed during peak times.  

Figure 4.5 shows the optimal control results for one day. We can see that the system temperatures 

of the two zones (represented by TRNSYS) are exactly the same as the temperatures from the 

controller (represented by Matlab) due to identical modelling. The optimal setpoint for Zone 1 is 

not included in the Figure because it is the same as the room temperature. During the off-peak 

time, the heating power is kept minimum until the last moment for preheating; then maximum 

heating power is used until the arrival of peak time. Zero heating power is used during the two 

peak periods. From 20:30 to 22:00, the necessary heating power is provided to maintain the room 

temperature at the lower bound of the thermal comfort. We have thus confirmed that the control 

signal (setpoint temperature) determined by our MPC method is optimal, where no extra heat is 

used to further increase the room temperature, as higher room temperature would lead to higher 

heat losses. 
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Figure 4.5: MPC results without model mismatch 

4.3.4 Receding horizon control  

MPC is a type of receding horizon control. At each time step, the controller predicts future 

outputs within the prediction window, sends optimal signals to the system and receives feedback 

from the system; then this process moves forward to a next iteration. This mechanism gives the 

phenomenon of a receding horizon. Figure 4.6 clearly represents this phenomenon, which shows 

the predictive temperature profiles from 4:00 to 18:00 with a 12-hour prediction horizon. The 

temperatures before 15:00 predicted at different time steps are actually identical to each other. 

They are spread out in the figure for better visualization. We can find that as the prediction 

horizon approaches the peak time at 16:30, the controller starts to correct the predictive 

temperatures from 4:45 on and this correction continues as time moves closer and closer to the 

critical periods. In such a manner, the optimal setpoint temperature is found out by the algorithm 

along a receding horizon. This prediction and correction process perfectly present the main 

advantage of the modelled-based optimal control. 

The results shown in the above two figures have validated our proposed MPC approach. The co-

simulation shows a fast convergence of the selected algorithm. The approach delivers exactly the 

optimal control trajectories when no model mismatch exists between the system and the 

controller model. This can help us to assess the MPC with a model mismatch in the following 

sections. 
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Figure 4.6: The predictive temperature at each time step (15 min) 

4.4 MPC with online parameter identification 

Parameter estimation or system identification in the literature generally deals with offline 

identification (Žáčeková, Váňa, & Cigler, 2014). Offline identification has the advantage of 

collecting a large amount of data beforehand and adopting computationally-intensive and time-

consuming algorithms, which is commonly seen in the machine learning functions. In this offline 

process, iterative try and error can be employed until reasonable parameters or models are 

obtained. 

In this section, we present a method to implement online parameter identification, which uses a 

simple approach called recursive least squares. It does not require a lot of data nor time for the 

training or learning process, and the parameters can be identified very quickly with acceptable 

accuracy. With the co-simulation structure to represent online control as described previously, the 

method is particularly suitable. 

For the virtual building in TRNSYS, we build a detailed two-zone building model using Type 56. 

Unlike the lumped-capacitance model Type 660 used in Section 4.3, the building model in Type 

56 constructs all the layers of walls, floors, and ceilings with their physical properties such as 

density, conductivity and specific capacitance as well as detailed window models. The outputs 

from this model are used as “measured” data for parameter identification in Matlab. 
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4.4.1 Parameterization of the state equation 

To implement the online parameter identification, we first need to discretize and parameterize the 

state equation (4.1) into the following form: 

 𝑇1(𝑡 + 1) − 𝑇1(𝑡)

= {
𝑈𝐴1 + 𝑚𝑖𝑛𝑓1 𝑐𝑝𝑎1

𝐶𝑝1

[𝑇𝑎(𝑡) − 𝑇1(𝑡)] +
𝑚𝑠𝑎1𝑐𝑝𝑎1

𝐶𝑝1

[𝑇𝑠𝑎1(𝑡) − 𝑇1(𝑡)]

+
𝑈𝑝

𝐶𝑝1

[𝑇2(𝑡) − 𝑇1(𝑡)]+
𝛼1

𝐶𝑝1

𝑄𝑠𝑟1(𝑡) +
1

𝐶𝑝1

[𝑄𝑖𝑔1(𝑡) + 𝑄ℎ1(𝑡)]} 𝑑𝑡 

(4.8) 

Equation (4.8) is a discretized form of Equation (4.1) using the forward Euler method. The 

parameter 𝛼1  is introduced as a coefficient for the total (beam and diffuse) solar radiation 

incident on the window surface. We can rewrite the equation (4.8) as  

 𝑦1(𝑡) = Φ1(𝑡 − 1)𝜃1 (4.9) 

with 𝑦1(𝑡) = 𝑇1(𝑡) − 𝑇1(𝑡 − 1) , Φ1
𝑇(𝑡 − 1) =

[
 
 
 
 
 

[𝑇𝑎(𝑡 − 1) − 𝑇1(𝑡 − 1)]𝑑𝑡

[𝑇𝑠𝑎1(𝑡 − 1) − 𝑇1(𝑡 − 1)]𝑑𝑡

[𝑇2(𝑡 − 1) − 𝑇1(𝑡 − 1)]𝑑𝑡

𝑄
𝑠𝑔1

(𝑡 − 1)𝑑𝑡

[𝑄
𝑖𝑔1

(𝑡 − 1) + 𝑄
ℎ1

(𝑡 − 1)]𝑑𝑡]
 
 
 
 
 

and 𝜃1
𝑇 =

[
𝑈𝐴1+𝑚𝑖𝑛𝑓1 𝑐𝑝𝑎1

𝐶𝑝1

𝑚𝑠𝑎1𝑐𝑝𝑎1

𝐶𝑝1

𝑈𝑝

𝐶𝑝1

𝛼

𝐶𝑝1

1

𝐶𝑝1
]. 

𝜃1 is the parameter vector and we assume it is constant. The vector Φ1(𝑡) is called regressor and 

we can find that the variables in the regressor and the output 𝑦1(𝑡) are all measurable. Using the 

least squares method, we can solve the parameter vector as  

 𝜃1 = 𝑅1(𝑡)
−1𝑆1(𝑡) (4.10) 

With 𝑆1(𝑡) = ∑ Φ1(𝑡 − 1)𝑦1(𝑡)
𝑁
𝑡=1  and 𝑅1(𝑡) = ∑ Φ1(𝑡 − 1)𝑇Φ1(𝑡 − 1)𝑁

𝑡=1 .  𝑆1(𝑡) is the 

summation of cross-correlation between past inputs and outputs during 𝑁 series and 𝑅1(𝑡) is the 

summation of the auto-correlation of the past inputs. Details about how the parameter vector is 

solved can be found in the Appendix A. And we can similarly estimate the parameters for Zone 2. 

The function “recursiveLS” in Matlab is a handy function to use to estimate the parameters. The 

most important parameter of the function is the number of parameters to estimate. It includes a 
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white noise term in the regression model to compensate for disturbances such as measurement 

errors. The function also provides several algorithms as options, each of which derives the 

parameter vector in a robust way by ensuring the covariance matrix to be positive-definite during 

the updating process. The default algorithm is called “forgetting factor” with a value of 1, which 

corresponds to “no forgetting” for all the past inputs and outputs. It is suitable for estimating 

constant parameters of a model. 

4.4.2 MPC with identified parameters 

After a two-day identification process, the parameters are subsequently used in the model for 

control. The predictive output and objective function are formulated in the same manner as 

discussed in Section 4.3. 

Figure 4.7 presents the optimal setpoint temperature for Zone 1 shown by the red solid curve. We 

can see that the controller tries to preheat the building before the peak times by increasing the 

setpoint. Then during the peak periods, the setpoint drops to the lower bound of thermal comfort. 

The controller uses the maximum power before the peak times and no power during peak periods 

based on its own model shown by the blue dotted curve. Instead, the virtual building does not 

provide maximum power before the arrival of peak time and certain power is still used during the 

peak periods to maintain the setpoint temperature (see blue solid curve), due to the model 

discrepancy from the controller.  

 

Figure 4.7: MPC results with parameter estimation (Zone 1) 



72 

 

If we compare the optimal setpoint temperature with the case of no model mismatch discussed in 

Section 4.3 (shown by red dotted curve), we can find that the two optimal setpoint profile are 

quite close to each other. This shows that the controller has proposed a near-optimal result based 

on its model with estimated parameters.  

Checking the temperature of Zone 2 further proves that the controller model predicts the zone 

temperature fairly well. Figure 4.8 shows the estimated temperature of Zone 2 in Matlab and the 

“measured” temperature in TRNSYS on the same day as shown previously. The maximum 

discrepancy between the two temperatures is within 1 °C, which is mainly caused by the 

underestimation of solar gains. This relatively good performance of our controller is associated 

with its structure. Firstly, the controller updates its prediction at each time step by taking the 

feedback temperature from the virtual building. Secondly, the formulation of parameters and 

regressors in the identification process is taking the zone temperatures as outputs. Therefore, it 

can predict the temperatures better than the heating rate. If the heating rate is also taken as one of 

the outputs, the controller model would be more likely to deliver a better estimation. 

 

Figure 4.8: MPC results with parameter estimation (Zone 2) 

Note that this result is based on an online parameter estimator with identification data of only two 

days. If more data is used for the identification process, or we take the approach of offline system 

identification, we could get a better model for the controller. However, this can be an 

independent study and is beyond the scope of this work. 
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4.5 MPC with state estimation 

State estimation is not uncommon in the design of model predictive controllers because not all 

states are always available or measurable, for instance, the wall temperature can be an important 

state in some situations, but not necessarily measured or measurable. Other times, measuring all 

the states is just not a good solution when there are too many, which may be costly or difficult to 

manage. In those cases, we can design a model predictive controller with a state estimator.  

4.5.1 State estimator  

In this example case, the output is again the Zone 1 temperature while the Zone 2 temperature is 

the unmeasured state that we are supposed to estimate. The estimator we adopt is called 

Luenberger observer. In the implementation, we estimate the temperatures of both zones in the 

observer in Matlab, but Zone 1 has a state feedback while Zone 2 does not. This approach is 

called the full-order Luenberger observer. A reduced-order observer that eliminates the known 

state (Zone 1 temperature) can be found in (Wu & Duan, 2004). 

The idea of this simple observer is to place the poles of the observer where it can converge faster 

than the original system. We need to find the system poles, which are the eigenvalues of the 

matrix 𝐴𝑐  in the state space representation. After getting the system poles, we can place the 

observer poles where they converge faster. In general, the faster the observer poles converge, the 

bigger errors the observer give at the beginning (peaking phenomenon) and the more sensitive to 

disturbances it will be. 

There are many advanced observers to reduce the peaking phenomenon, such as sliding mode 

control. The family of the Kalman filter is another common type of state estimator which has 

more attractive noise resilience property. This work adopts the Luenberger observer by 

considering its simplicity and ease of explanation. 

4.5.2 State estimation predictive control 

The controller model used for the state estimation in this section is the same as the identified 

model obtained in Section 4.4. After formulating the state estimator, we then use the same 

approach to formulate the predictive controller. Figure 4.9 shows the setpoint profile for Zone 1 

with state estimation of Zone 2 temperature. It can be found that the shape of the setpoint profile 
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proposed by the observer-controller (red solid curve) is fairly similar to the optimal setpoint 

profile without any model mismatch between the system and the controller (red dotted curve). 

However, the virtual building still requires heating in the peak periods according to setpoint 

signals sent by the observer-controller, while the controller model case does not need any heating 

during peak times by maximizing the heating power before the peaks. 

 

Figure 4.9: MPC results with state estimation (Zone 1) 

Figure 4.10 presents the state estimation results for Zone 2. It can be easily seen that the 

deviation of the state estimation can be high when the solar gains are strong. The largest 

difference between the measured and estimated temperature of Zone 2 is around 7 degrees at 

14:00 when the solar gains approach the maximum. This temperature difference remains until the 

evening because part of the heat is stored in the thermal mass. If we compare the solar gains with 

the heating rate of Zone 1, we find that their maximum power is of the same magnitude at around 

3 kW. This shows that the impact of solar gains presents the highest disturbance in this example. 

Since Zone 2 has no heating system, a slight estimation error results in a large deviation. 

However, the impact of this gap does not impact the control of Zone 1 as shown in Figure 4.9. 

As can be seen, the solar gains play an important role in the examples for both state and 

parameter estimation. This is because the two adopted BESTEST cases were initially designed to 

test the performance of BPS tools; therefore they are especially sensitive to weather conditions. 

Meanwhile, we also find that the observer presents a good performance for the control purpose. 
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This is due to the effect of state feedback control. And the performance can be further improved 

by tuning the design parameters of the observer if necessary. 

 

Figure 4.10: MPC results with state estimation (Zone 2) 

4.6 Discussions 

This chapter described an MPC framework for supervisory control. The MPC approach is 

especially suitable for building systems, and the chapter aims at explaining the MPC approach 

pedagogically for building energy modellers who are not yet familiar with this control method.  

Although this framework is only applied to the example buildings at the zone level, it can be 

applied to more complex building systems or to district-level energy systems.  

Three different scenarios were investigated in this work. The first scenario “MPC without model 

mismatch” addressed the optimal control method theoretically. Since the identical model is used 

for the controller and the controlled system, it is easy to identify the potential error occurring in 

the optimization process. Simple optimization function from Matlab was used in order to better 

examine the optimization results and interpret them physically. This often becomes difficult as 

increasingly complicated optimization or machine learning algorithms are applied in the research. 

The online parameter identification method showcased the capability of the MPC framework 

without accurate models or lack of data to identify models offline. The latter can be a problem for 

data-driven models. The last scenario discussed a state estimator coupled with the MPC method. 
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State estimation may be useful for state space models and state feedback systems. Each scenario 

comes with simple examples and the results are analyzed. 

The same MPC framework is applied on the CCHT house in Chapter 6. 
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CHAPTER 5 MODEL PREDICTIVE CONTROL WITH DETAILED 

MODEL 

The present chapter investigates the Model Predictive Control (MPC) method using a detailed 

building model as the controller model. The MPC potential for energy flexibility is presented for 

two separate scenarios: independent single Demand Response (DR) event and two consecutive 

DR events. Heuristic MPC methods are explored in order to save computation cost associated 

with optimizing the detailed building model. 

5.1 Introduction 

5.1.1 Literature review 

Among the research issues in MPC on buildings, the foremost is the choice of building models, 

which determines the effectiveness and efficiency of control strategies. The main building models 

utilized by researchers can be divided into three categories: white box, grey box, and black box. 

Note that this nomenclature does not necessarily reflect its corresponding literal meaning, nor 

should they be confused with that used in the domain of system identification.  

The first model type, often referred to as physical models, can be built by Building Performance 

Simulation programs such as EnergyPlus, TRNSYS, and ESP-r. The second type is often 

represented by RC network models, which go in between the white-box and black-box models. It 

is simpler than the white-box models and may be able to be physically interpreted to a certain 

degree. The third type is also called a data-driven model. It mainly relies on data to construct 

models whose parameters cannot be explained from the building physics perspective. Machine 

learning models are typically black-box. This section reviews papers with white-box or physical 

models; the other two types are included in Section 6.1. 

The white-box model describes a building in details based on first principles of building physics. 

Based on physical parameters and thermodynamic laws familiar to building engineers, the white-

box model is a very intuitive representation of buildings, for example, information about 

geometry and materials of building construction are required for this type of model. Thus it 

allows building engineers easily to use, understand, analyze or even redevelop them. However, 

because of a large amount of input information, it suffers from the complexity of model 
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construction (Privara et al., 2013; Prívara, Váňa, Žáčeková, & Cigler, 2012). In addition, it causes 

difficulty in real-time control application due to its high computation cost and difficulty of state 

estimation and parameter identification. 

Because of their complexity and high-computation requirement, the white-box models are mostly 

used for offline predictive control with other optimization tools, e.g. GenOpt (Wetter, 2001). 

Several studies explored the “offline” control application based on the white-box model. Coffey 

et al. (2010) proposed a model predictive control strategy using a detailed TRNSYS building 

model in the controller for the purpose of peak shaving. A software framework was outlined, 

where the optimization work was executed externally by GenOpt with a genetic algorithm. The 

optimal decision was handled in another organization layer, where optimal outputs were sent to 

the building energy management system. May-Ostendorp et al. (2011) developed a model of a 

small office building in EnergyPlus, which was used for extraction of supervisory building 

control rules. 

Besides offline control application, the white-box model is more often used to generate a 

synthetic database, which is further employed for system identification and validation of 

simplified models. Examples of this type of application are included in Section 6.1. 

5.1.2 Objective 

For building engineers and researchers, modelling building systems using BPS tools is a common 

practice. It can be interesting and convenient to test MPC with BPS tools, especially when the 

detailed models are already available. Although optimizing these types of models are 

computationally-intensive, computation services that are getting less expensive make it 

promising in the future. In addition, the optimization time is not that significant compared with 

machine learning algorithms. 

The goal of this chapter is to investigate MPC based on detailed models. In this case, there is no 

modelling error in the controller, as the same model is used for the controlled system. Energy 

flexibility results based on KPIs described before are reported for this approach. 
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5.2 Methodology  

5.2.1 KPIs adapted to MPC 

Due to the anticipative capability of MPC, the KPIs for the energy flexibility may need to be 

adjusted. Figure 5.1 presents a theoretical downward flexibility case with the MPC strategy 

assuming the system knows the occurrence of the demand response event in advance. It shows 

that the MPC preheats the building before the event, uses energy as least as possible during the 

event and reheats the building to an acceptable comfort level after the event. The notations in the 

figure are the same as discussed in Figure 3.1 in Chapter 3. 

 

Figure 5.1: Flexible energy demand of buildings with MPC (downward flexibility) 

The flexible energy 𝐸𝑓 remains identical as Equation (3.1). The rebound energy 𝐸𝑟𝑏 needs to be 

adjusted to include the preconditioning energy as shown in the equation below. The flexible 

energy efficiency 𝜂 and maximum flexible power 𝑃𝑓𝑚𝑎𝑥  remain the same. 

 
𝑬𝒓𝒃 = ∫ (𝑃𝑑𝑟 − 𝑃𝑟𝑒𝑓)𝑑𝑡

𝑡∞

𝑡𝑑𝑟

+ ∫ (𝑃𝑑𝑟 − 𝑃𝑟𝑒𝑓)𝑑𝑡
𝑡𝑑𝑟

𝑡−∞

 
(5.1) 

The first part of Equation (6.1) is the same as Equation (3.1) indicating the possible rebound after 

the DR event; the second part of the equation indicates the energy consumed during the 

preconditioning period. The −∞ is used similarly as the ∞ to denote the rebound horizon. When 

calculating 𝐸𝑟𝑏, −∞ can be several hours or longer depending on the preconditioning response of 

the MPC strategy. 
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5.2.2 Cost function 

The optimization objective is to reduce power demand during peak hours. The cost function, in 

equation (5.2), represents a measure of the total power demand during the optimization horizon. 

The measure can be monetary cost of electricity or power for the electricity users if the time-of-

use (TOU) electricity rates are used or cost for players in the electricity market if associated price 

signal is used.    

 𝐽 =  ∑𝑅𝑘𝑈𝑘 + 𝜇|𝑇𝑘 − 𝑇𝑏,𝑘| 
(5.2) 

In this equation, the first term represents the power demand costs, where 𝑈𝑘 denotes the power at 

time 𝑘. 𝑅𝑘 denotes the price signal. This is expressed as a linear function as in Equation (4.7) in 

Chapter 4 but as discussed before, any other forms can be used e.g. quadratic and nonlinear form 

if deemed necessary. 

The second term of the cost function is a penalty function which indicates certain constraints 

should not be jeopardized in the optimization process. In the building case, it normally means the 

desired temperature comfort levels.  𝑇𝑘 denotes the zone temperature here and 𝑇𝑏,𝑘 represents the 

thermal comfort bounds for the zone at time 𝑘. 𝜇 is the weighting factor which scales the penalty 

function to a close dimension of the first term. The penalty function is evaluated as zero when the 

room temperature is within the defined intervals but becomes much larger when the temperature 

does not fall within the comfort limits. 

The penalty function term is described as inequality constraints in Equation (4.5) in Chapter 4. It 

is expressed in such a fashion here because it is easier to implement in the selected program 

GenOpt which is introduced in the following section.   

5.2.3 Implementation  

To test MPC with detailed building models, we need an easy-to-use optimization tool. In this 

work, we adopt the optimization program GenOpt with detailed models in TRNSYS. GenOpt is a 

generic program developed mainly for building system optimization with an extended library of 

optimization algorithms and can be used with any text-based simulation program. It is especially 
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useful for derivative-free optimization and does not require any specific form for the objective or 

cost function.  

Figure 5.2 shows the interaction between TRNSYS and GenOpt in the optimization process 

(Quintana & Kummert, 2015). Before launching the optimization in GenOpt, templates of input 

and output files have been created in TRNSYS. In each optimization, GenOpt updates the 

variables, i.e. setpoints in this case, in the templates. GenOpt then searches for the minimal cost 

function value among all the optimization results.  

In this study, the “Hybrid Generalized Pattern Search (GPS) Algorithm with Particle Swarm 

Optimization (PSO)” algorithm is employed. This algorithm first starts a global optimization 

using the PSO algorithm for the user-defined generations (10 generations in our case). Afterward, 

the hybrid algorithm launches the GPS algorithm starting from the set of variables with the 

lowest cost function value obtained from the PSO. The optimization process terminates when the 

cost function value does not further decrease on the mesh points as well as on the mesh points 

with reduced distance in iterations.  

In this structure, the cost function is calculated inside of TRNSYS, as well as penalty function 

and all other constraints so that GenOpt only needs to read the designated parameters in 

corresponding files. 

 

Figure 5.2: MPC scheme with TRNSYS and GenOpt (Quintana & Kummert, 2015) 

The following steps detail the implementation path for the MPC strategy. 
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• Define optimization objectives, parameters to be optimized, constraints, assumptions for 

the optimization problem; 

• Define the cost function that includes on-peak/off-peak electricity cost and penalties for 

constraints violation; 

• Build a detailed model of the selected building that is used to investigate control strategies 

if there is not one already; 

• Configure GenOpt and TRNSYS (or other BTS tools); couple the two programs for test 

runs so that syntactic errors can be identified; 

• Check the optimization results to see if the algorithm works correctly; if not, recheck the 

configuration and cost function definition; 

• Assess control strategies based on a reference case and compute evaluation metrics. 

5.3 Results of a single DR event 

The MPC results of a single downward flexibility event happening between 7 AM and 9 AM is 

presented in Figure 5.3 with a 15-minute time step in the simulation.  

The reference setpoint in the zone is 21 °C showing by the dashed curve. The reference heating 

power drops suddenly at around 19 h because the dishwasher (1.7 kW) and dryer (8.1 kW) are 

turned on at this moment, generating thermal gains in the building. Other drops are due to one or 

more zones overheating because of internal or solar gains. 

The thermal comfort range is assumed to be within 2 °C of the reference case for the optimal 

controller, the same assumption as used for the rule-based temperature modulation in Section 3.2. 

It is observed that the controller increases the setpoint in the zones before the event to preheat the 

building, as shown by the black dashed curve. The setpoint ramps up until the upper temperature 

bound 23 °C and stays there for half an hour; then it drops immediately during the peak periods 

and keeps at the minimum temperature bound of 21 °C. In result, we observe a power demand 

increase before the event, a dramatic power reduction during the event and a power rebound after 

the event. The zone temperature of the first floor, shown by the purple curve, follows the setpoint 

increase and decrease but is never outside the defined thermal comfort range. 
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Figure 5.3: MPC results for a downward flexibility event 

Table 5.1 presents the results of the flexibility indicators for both the MPC method and the rule-

based control method. The RBC method modulates the setpoint temperature by 2 °C during the 

DR event as assumed in Chapter 3. We find that the MPC method delivers 16% more flexible 

energy. This shows that the anticipative capability of the MPC method is effective, given that the 

thermal comfort limit is the same in both cases. On the other hand, the rebound energy of MPC is 

also higher due to the same anticipation effect. The resulting flexible efficiency of MPC is lower 

than that of RBC. The maximum flexible power is identical for both methods, which reach the 

maximum potential.  

Table 5.1: Flexibility results of MPC for a single DR event (downward flexibility)  

 MPC  RBC 

Flexible energy [kWh] 7.3 6.3 

Rebound energy [kWh] 7.8 5.0 

Flexible efficiency [-] 0.84 1.19 

Maximum flexible power [kW] 4.0 4.0 
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Comparing the resulting MPC profiles of downward flexibility with those of the general upward 

flexibility, we find that they are quite similar in terms of variations: using more energy during the 

first period and saving energy in a next period. They are however two different types of DR 

events and the price signals in these two scenarios are very different.  

5.4 Results with occupancy constraint 

The MPC strategy for a signal DR event presented in the above section is a simple case. This 

section discusses a more realistic scenario taking into account the occupancy in the building. Two 

consecutive peak periods in the same day are also investigated. 

The two peak periods are defined from 5:30 to 9:30 and from 16:30 to 20:30 respectively, which 

are typical winter daily peaks for the electric utility of Quebec (Hydro-Quebec, 2013). Here a 

much larger price signal is imposed for the peak periods because we try to assess the potential of 

peak savings for a utility, not to optimize a customer’s electrical bill with a realistic TOU tariff. 

Electricity is not considered to be free outside of these on-peak periods but its value is 

significantly reduced. This price contrast is depicted in Figure 1.1 for the IESO daily power 

demand and price. 

It is assumed that the thermostat setpoint can be adjusted between 20 °C and 23 °C when the 

rooms are occupied; between 18 °C and 23 °C when they are not occupied. Occupancy in the 

living area and basement is assumed to be the same, during a morning period (6:30 AM to 8:00 

AM after the occupant wake up and before they leave the house) and an evening period (4:30 PM 

to 10 PM after the occupants return from school/work and before they go to their bedrooms). It is 

assumed that the control system is allowed to modify the setpoints in the basement and the living 

area of the house, but not in the bedrooms (which are also electrically heated). These assumptions 

for occupancy and peak durations are identical as applied in Chapter 4. 

Only one day is considered in the optimization study, January 12th. The simulation is run from 

January 1st to January 12th to allow for building preheating, as the multizone building model 

Type 56 is initialized with unrealistic temperature profiles (uniform temperature across zones and 

building envelope) at the start of the simulation.  

Uncontrolled disturbances such as weather variables (e.g. temperature, solar radiation) and 

internal gains (from occupants, lighting, and appliances) are considered to be known to the 
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optimization process (perfect forecasts). This will provide a higher bound for the performance of 

the MPC method and isolate the differences attributable to different models from other 

influences.  

5.4.1 Brute-force optimization 

The setpoint profile obtained by MPC with GenOpt is shown in Figure 5.4. The two bars in the 

figure indicate the peak demand durations and the green dashed curves indicate the thermal 

comfort bounds. We can see that the optimal control strategy reduces the heating setpoint during 

unoccupied periods and ramps up the setpoint to the maximum allowed value before the on-peak 

periods so that the building is preheated before the critical periods. The preheating time in the 

early morning is around 4 hours, while it is 1 hour shorter in the afternoon. However, the rebound 

effect for the second peak period is more obvious due to the narrower thermal comfort band of 

occupied time in the evening. It can also be more cost-efficient to increase then decrease the 

setpoint seen by the optimization algorithm as discussed in Figure 5.3. 

 

Figure 5.4: MPC results for two consecutive DR events 
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It is interesting to see that at around noon the building is left free-floating until it cools down to 

the lower setpoint limit, showing by the jagged profile. This period of the unsmooth signal may 

be due to a lack of feedback of the optimization scheme: when the setpoint drops at a faster rate 

than the building cools down naturally, there is no difference in the cost function until the 

setpoint reaches some constraints. Secondly, GenOpt algorithms are sensitive to numerical noise 

in the cost function and building simulation programs often result in noisy numerical results. The 

optimization process was also found to be sensitive to initial values discussed which will be 

discussed in section 5.4.3. The setpoint drifts below the thermal comfort limit at around 19:30 but 

the room temperatures are still within the comfort bound due to the internal thermal gains in the 

building. When the peak demand ends at 20:30, the setpoint ramps up to add more heat to the 

zones because the occupancy time lasts until 22:00. 

This MPC result with two consecutive long peak periods and constricted occupancy proves that 

the preheating time does not need to be very long, in this case not longer than the peak duration. 

The evening peak period even requires less preheating time because the ambient temperature and 

solar radiation help to reduce the thermal losses when the building is being charged with heat.  

The figure also shows that the power reduction during the two peak periods is very effective for 

the utility. The power demand during the peak hours remains zero for most of the time or close to 

zero if not. The rebound effect before or after the events is also quite pronounced. 

Table 5.2 summarizes the flexibility metrics for this MPC approach. We can see that the 

delivered flexible energy is very impressive. The flexible efficiency is not very high with rebound 

energy higher than the flexible energy for both events. The maximum flexible power for both 

periods reaches the maximum potential. 

Table 5.2: Flexibility results of MPC for two consecutive DR events  

 Event 1 (morning)  Event 2 (afternoon) 

Flexible energy [kWh] 15.1 9.5 

Rebound energy [kWh] 21.0 18.2 

Flexible efficiency [-] 0.72 0.52 

Maximum flexible power [kW] 4.8 3.3 
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5.4.2 Heuristic optimization 

The computing time of the Brute-force MPC method is fairly significant, with a 12-day 

simulation (with a 1-day optimization) taking more than 16 h of computing time on an i7-4770 

CPU (3.5 GHz) – the same simulation with a constant setpoint profile takes about 20 seconds. 

Hence, several heuristic MPC approaches are explored to reduce the computation time. Heuristic 

MPC methods are conceived to limit the maximum power demand during the peak times and to 

decrease the computational requirements of the complex optimization process.  

The heuristic methods are inspired from the papers by (Coffey et al., 2010; Lee & Braun, 2008a). 

The general idea is to reduce the number of optimization variables to save computation cost. For 

the three off-peak periods, a constant setpoint temperature for each period is assumed. For the on-

peak periods, there are different numbers of variables depending on various methods.   

Figure 5.5 illustrates the results for the “Jump” profile for optimal setpoints. In this case, higher 

constant temperatures are assumed for the three off-peak periods with two lower constant 

temperatures for the on-peak times. The setpoint jumps from a high value to a low value at the 

beginning of the peaks, showing by the black dot-dashed curve in Figure 5.5. In result, only 5 

free parameters for the setpoint values need to be optimized, while the Brute-force MPC need to 

optimize 96 different variables for one-day optimization with a 15-minute timestep. Note that all 

the heuristic strategies respect the thermal comfort constraints presented previously. 
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Figure 5.5: Heuristic MPC with an optimal Jump setpoint profile 

We can see that the peak power reduction is quite effective for both peak durations from Figure 

5.5. This method delivers similar power reduction capabilities as the Brute-force optimization 

with a much reduced computational time (20 minutes vs. 16 hours). The steep power increase 

after the peaks is as impressive, which is however expected since the setpoint is allowed to 

increase abruptly within one timestep after the peaks. Curtailment strategy can be implemented, 

for example, increasing the setpoint linearly within a period of time, if this after-peak power 

increase is of concern.  

Instead of changing the setpoint within one timestep as with the case of Jump strategy, another 

method called “Linear” setpoint profile was examined, which allows the setpoint to drop linearly 

during each stretch of 4h peak period depicted by the dot-dashed curve in Figure 5.6. The peak 

power reduction is quite significant as well but less effective than the Jump method. On the other 

hand, the zone temperature is higher than the latter. Therefore, it can be considered as a less 

aggressive demand reduction strategy with better thermal comfort results. 
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Figure 5.6: Heuristic MPC with an optimal Linear setpoint profile 

 

Figure 5.7: Heuristic MPC with an optimal Exponential setpoint profile 
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Figure 5.7 shows the results with “Exponential” setpoint profile which guides the setpoint to 

decrease exponentially during the peak times. The resulting shape of the two exponential drops is 

different because two different time constants are assumed for the two on-peak periods. The 

exponential profile delivers a similar power decrease capability as the Jump method. 

The last heuristic method considered is to find the lowest power demand during the peak time. 

This may be interesting from the perspective of a utility company, which allows a given power 

usage to selected customers during peak events. The optimization strategy for this method is 

different from the other methods: it optimizes the maximum peak demand value instead of 

minimizing the overall power cost in the optimization horizon. Figure 5.8 illustrates the results of 

this approach. The average power usage during on-peak periods is slightly higher than that of the 

other optimization results, but the maximum power requested at any 15-min timestep by the 

building is the lowest of all, at 4 kW (vs. 5 to 8 kW for the other results). 

 

Figure 5.8: Heuristic MPC with Minimum Power at peak time 

A night setback case is also tested, which can be considered as a heuristic optimization since 

building occupants often adopt this “manually optimal” strategy to save energy. In this case, the 

setback periods are chosen by trial and error so that the temperature can reach the thermal 
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comfort requirement just when the living room is occupied. This is often referred to as an 

“optimal start” scenario in the literature. The resulting setback setpoint profile shown in Figure 

5.9 is very close to the case in reality, where the setpoint is set back between 7:45 and 16:00, and 

between 21:30 and 6:00. As we can see, it leads to a large increase in the heating power at the 

end of the 2 setback periods, resulting in a higher power demand at the beginning of the morning 

on-peak period. Since the setback period starts within the on-peak period, the overall 

performance is marginally worse than that of the constant setpoint scenario. 

 

Figure 5.9: Night setback profile 

The figures above show that the heating power profile during off-peak is affected by different 

strategies, with large peaks at the beginning of the preheating periods. These large peaks would 

also be present with conventional setbacks strategies, but not with a constant setpoint as shown 

by the reference case. The impact on overall system efficiency, capital or maintenance cost is 

probably negligible for electric baseboard heating, as considered in this study. However, this 

impact needs to be taken into account if other heating system types were considered, e.g. 

hydraulic heating with a boiler or heat pump. 
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Table 5.3 presents the peak power demand results from all the scenarios discussed in this chapter. 

The computation time is included in the Table given that it is an important factor for the MPC 

approach with detailed models. The indicative CPU Time is the time taken to run a 12-day 

simulation including the optimization process.  

From the Table, we can see that the Exponential profile shows near-optimal results compared 

with the Brute-force MPC, while its computational time is much less. The Jump method also 

delivers very close power reduction to the exponential profile; the Linear method is less effective 

in terms of power demand reduction. The Minimum Power method requires the lowest maximum 

power demand during peak periods, which is just over 4kW. The Night Setback approach shows 

the highest maximum power demand, which is also part of the reason why the grid experiences 

peak demand. 

Table 5.3: Power demand reduction and computation time 

  

Average Power Demand 

(peak) [kW] 

Max Power Demand 

(peak) [kW] 

Indicative 

CPU Time[-] 

Constant 6.0 8.1 16 sec 

Night Setback 6.6 15.9 19 sec 

Brute-force MPC 2.6 5.6 16.3 h  

Jump 3.0 4.9 18 min 

Linear 3.6 7.7 25 min 

Exponential 2.9 5.4 21 min 

Minimum Power  3.5 4.2 6.7 h  

 

Table 5.4 summarizes the energy flexibility characteristics of the Brute-force MPC and the 

heuristic approaches discussed above for the first or morning peak period. The Brute-force MPC 

method delivers the highest flexible energy and its rebound energy is also the largest. Similarly, 

the Exponential setpoint profile results in the closest amount of flexible energy as that of the 

Brute-force MPC and its flexible efficiency is the even higher than the latter. However, in terms 

of Maximum flexible power, the Exponential method is not as good as the Jump and Minimum 

Power methods, both of which deliver the same magnitude of power reduction as the Brute-force 

MPC. 
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Table 5.5 presents the flexible characteristics for the afternoon peak case. The overall results are 

similar to the morning peak case (Event 1), except that the Minimum Power method gives the 

lowest flexible energy and maximum flexible power. 

Table 5.4: Summary of flexible results of MPC and heuristic approaches (morning peak) 

  

Flexible 

energy 

[kWh] 

Rebound 

energy 

[kWh] 

Flexible 

efficiency 

[-] 

Maximum 

flexible power 

𝑷𝒇𝒎𝒂𝒙 [kW] 

Brute-force MPC  15.1 21.0 0.72 4.8 

Jump 13.1 17.2 0.76 4.8 

Linear 11.4 17.2 0.67 4.2 

Exponential 14.1 18.1 0.78 4.3 

Minimum Power  11.9 16.5 0.72 4.8 

Table 5.5: Summary of flexible results of MPC and heuristic approaches (afternoon peak) 

  

Flexible 

energy 

[kWh] 

Rebound 

energy 

[kWh] 

Flexible 

efficiency 

[-] 

Maximum 

flexible power 

𝑷𝒇𝒎𝒂𝒙 [kW] 

Brute-force MPC  9.5 18.2 0.52 3.3 

Jump 8.3 20.8 0.40 3.3 

Linear 6.0 18.4 0.32 3.8 

Exponential 8.3 20.8 0.40 3.3 

Minimum Power  4.2 18.7 0.22 2.9 

 

5.4.3 Sensitivity of optimization 

Different initial conditions of the Brute-force MPC approach were tested with the same algorithm 

Hybrid Generalized Pattern Search with Particle Swarm Optimization. The PSO algorithm 

always starts the global search using the initial values given by users; then a random number 

generator is used to uniformly spread the particles or sets of solutions. In the process, it is found 

that a set of well-initialized solution helps facilitate the optimization. Therefore, the optimal 

setpoint profiles from previous iterations were used for later optimizations until the cost function 

value was not further decreased.  

If initial values are set to 21 °C for the whole day, the optimization process reaches a very 

different solution with large oscillations as shown in Figure 5.10. Even though the difference in 

cost function (power used during the on-peak periods) is only marginally affected, the solution is 
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clearly less desirable than the one obtained with “informed” initial values. The computational 

time is also affected (more than doubled). 

Very large oscillations can be observed on setpoint temperatures and heating power. This can be 

partly explained by the fact that the exact value of the setpoint has no impact on the building 

behaviour once it is above the temperature that could be reached with full power or once it is 

below the temperature that would be reached in free-floating, without heating. So there is no 

impact on the cost function when GenOpt tries very different values of setpoint. To illustrate this 

phenomenon, consider the situation at 11 AM. GenOpt reduces the setpoint drastically, which 

results in no heating power being required. The building reaches a temperature close to 23.5 °C in 

free-floating, while the setpoint is at 20 °C. For that particular time step, the results and the cost 

function would be exactly the same for any setpoint below 22.5 °C. So the value of 20 °C is 

somewhat arbitrary and affected by numerical artifacts. One possible workaround to avoid such 

behaviour would be to impose an additional penalty on rapid changes in the setpoint. 

 

Figure 5.10: Brute-force MPC with poor initial values 
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5.5 Discussions  

This chapter applied the MPC framework using detailed building models in BPS tools. This 

method is easy to use for building engineers and also convenient if building models are already 

available.  

Two scenarios of DR events were discussed, i.e., a single event and two consecutive events 

within one day. It is found that the MPC method delivers higher flexible energy than the RBC 

method. The flexible efficiency of the MPC strategy is however not as high because the rebound 

effect is very pronounced; in other words, the preheating energy before the event (and rebound 

energy after if there is any) is larger than the flexible energy. The power demand reduction during 

the event is very effective, which reaches the maximum potential that is possible. It is also found 

that the preheating time is not longer than the peak duration. This indicates that the building has 

enough thermal storage capability to handle consecutive DR events as long as the interval 

between the two events is not shorter than the coming DR event. 

The case study only optimized one day of the simulated period because this approach is rather 

computationally-intensive. To reduce computation time, different heuristic MPC strategies were 

studied, which restrict the possible setpoint profiles to predefined shapes. Heuristic methods were 

shown to deliver near-optimal performance in terms of flexible energy and maximum flexible 

power during on-peak periods, while significantly reduce the computation time (simulation time 

increased by a factor of 60 to 80 compared to the base MPC case). The flexible efficiency is also 

as promising even though there is an abrupt rebound power after the peaks.  

A different set of electricity price signals was investigated instead of the time-of-use rates 

adopted in the last chapter. This proved that the cost function of the MPC framework can apply to 

different market contexts. A performance evaluation and comparison on a longer period can be 

possible as well. 

Two main simplifications were made in this study in developing predictive control strategies. 

First, perfect forecasting was assumed for internal gains, occupancy and weather. Second, there is 

no model mismatch between the system and the controller. The obtained profiles are sensitive to 

optimization parameters (cost function and initial values) and to numerical noise. Further work 

needs to investigate the sensitivity of optimization methods and alternative implementations. 
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CHAPTER 6 MODEL PREDICTIVE CONTROL WITH SIMPLIFIED 

MODEL 

This chapter applies the Model Predictive Control (MPC) method based on simplified building 

models presented in Chapter 4 to the case study building. Energy flexibility results are analyzed 

and compared with the rule-based control strategy and with the MPC method using the detailed 

controller model. 

6.1 Introduction 

6.1.1 Literature review 

A building model in the literature can be categorized into three groups: white-box, grey-box, and 

black-box as discussed in Section 5.1.1. This section dedicates to the literature review on grey-

box and black-box models.  

The grey-box model describes a building using resistors and capacitors based on an electric 

analog of building Resistance and Capacitance (RC), hence it is also called the RC network 

model. A node of the network represents a space or a layer of wall/floor with a homogeneous 

temperature; the thermal mass of the space or construction is represented by a capacitor. Figure 

6.1 shows examples of RC network representation of a wall (left), a house with radiators (middle) 

and with a floor heating system (right) (Masy, Georges, Verhelst, Lemort, & André, 2015). 

Chapter 1This type of model is the most widely applied in the literature by far.  

 

Figure 6.1: RC network representation of a building wall using different nodes 

The RC network model is termed grey-box because the identified parameters such as the building 

resistance and capacitance could be physically interpreted. Research findings on electric RC 

networks can be transplanted to the building system too. For instance, the number of capacitors 

determines the order of the dynamic system, whose time constant can be analyzed for the 
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building system in a similar way. Observations and findings could be pursued, which may also be 

helpful for the controller design. 

Candanedo et al., (2013) analyzed the capacitance ratio of the central zone and perimeter zone of 

an office building after the parameter identification of an RC model. It was observed that the 

central zone, due to larger capacitance, showed slower temperature variation than the perimeter 

zone. According to Madsen & Holst (1995), an RC model may or may not describe the long-term 

dynamics of a building, depending on the number of time constants of the corresponding RC 

network. They suggested using at least two time constants for a single-storey building because 

the physical building system is nonlinear, while the RC network approximates it using the linear 

system. To what extent an RC network represents well enough a building system was further 

investigated (Bacher & Madsen, 2011). Different scenarios of envelope, heater and sensor 

combinations were examined and discussed and the final selected model was composed of 1 node 

for each of the following components: the envelope, heater, internal space, and sensor.    

Comparing with the white-box physical model, the grey-box model is much simpler. It requires 

much less computation power and can be easily implemented in the real-time control application. 

However, some researchers questioned the accuracy of the grey-box model and proposed some 

in-between models. In the study of Wang & Xu (2006), a model was created by combining 

functions based on thermodynamics laws with the grey-box model. Then the parameter 

identification technique was applied with operation data to obtain the model. Besides the 

dynamics of different thermal zones, the model also took into account the dynamics of internal 

mass and multilayer external walls and roof. 

Unlike the grey-box model, the black-box model cannot necessarily be understood from the 

physical point of view. They are often pure mathematical models, deriving from data based on 

different machine learning algorithms, such as polynomial models (e.g. Autoregressive Moving 

Average (ARMA) models) and Artificial Neural Network (ANN). 

Jiménez, Madsen, & Andersen (2008) presented a detail guidance on how to identify an ARMA 

with Exogenous terms (ARMAX) model for the building using the Matlab system identification 

toolbox. The relationship between the RC network and the polynomial models (or parametric 

models) were also explored. Huang, Chen, & Hu, (2014) developed an ANN model based on the 

model structure of nonlinear Autoregressive with Exogenous terms (ARX). A three-layer 
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Multilayer Perceptions was chosen and the Levenburg-Marquardt algorithm was used as the 

training algorithm to minimize the mean square errors between the predicted and measured data. 

In the study, an RC-network model was also created and compared; results showed that the ANN 

model gave slightly better predictions. A study showed that the ANN model could perform better 

even than the white-box model (Ruano, Crispim, Conceição, & Lúcio, 2006). However, choosing 

the correct orders or layers of the ANN model is challenging. The ANN model structure is 

complicated, which could result in a non-convex optimization problem that is difficult to solve. 

Dong & Lam (2014) examined the feasibility and applicability of the support vector machine 

(SVM) algorithm in building load forecasting. Results showed that coefficients of variance and 

the percentage errors of all prediction results are within 5%. 

The advantage of the black-box model is their flexibility of model structure, compared with the 

grey-box model. Jiménez et al. (2008) showed that the RC network model is just one special type 

of the polynomial models. However, since the polynomial model is more flexible in its 

parameters and structure, the original physical meaning of the RC network model cannot be 

retained in the expansion of parameters and structure. As for other machine learning algorithms, 

the choices can be abundant, but each of them has its own limitations too. 

Black-box and grey-box models are generally simpler than white-box models, so they are more 

widely applied for real-time control in practice. However, the former two types rely heavily on 

measurement data, which could remain an obstacle in reality. In the literature, one common 

approach is using the white-box model built in BPS programs to generate a synthetic database for 

system or parameter identification for the simplified models. This approach diminishes the 

potential problems existing in system identification using real measurements, such as sampling 

rates selection, satisfaction of excitation condition and data duration requirement etc. Moreover, 

the simplified models can also be validated with the white-box model (Ma, Qin, & Salsbury, 

2014) 

In a study by Ma, Qin, Salsbury, & Xu (2012), the Building Controls Virtual Test Bed 

environment was utilized to integrate EnergyPlus and Matlab. The input-output information of 

the EnergyPlus model was used to identify the ARX model in Matlab. This simplified model was 

used in the MPC to provide optimal cooling setpoints for a five-zone building (see Figure 6.2).  
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The study from Garnier, Eynard, Caussanel, & Grieu (2015) created a complex building model in 

EnergyPlus, and an ANN model was then identified based on the input-output data generated by 

EnergyPlus. The optimal network topology was identified with 18-24 hidden neurons using a 

dataset of 2 months. 

Although different types of model exist, each of them has its own advantages and disadvantages 

as well as its field of applications. Finding the right model and tool to solve one’s own problem is 

perhaps more critical than showing one model structure is better than the other. And conclusions 

drawn from one case study are very likely to be reversed under different conditions.  

 

Figure 6.2: Co-simulation in BCVTB with Matlab and EnergyPlus (Ma. et al., 2012) 

6.1.2 Objective  

The aim of this chapter is to apply the MPC framework discussed in Chapter 4 to the case of the 

studied building: CCHT houses. A simplified model of the building system is first obtained 

through parameter identification technique. The identification data is generated from the 

calibrated detailed model presented in Chapter 2.  

The simplified model is then employed as the controller model for the MPC method. The same 

online co-simulation structure is adopted using TRNSYS Type 155. The energy flexibility results 

are analyzed and compared with the rule-based control as well as with the MPC method with 

detailed modelling. 
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6.2 Methodology 

6.2.1 Simplified model construction 

As discussed in the literature review, there are quite many ways to build simplified models. In 

this work, we use the RC network to formulate our building model. More specifically, we use 1 

resistance and 1 capacitance to represent 1 thermal zone. This choice of 1R1C to represent 1 

thermal zone has been proved to be able to model the dynamics of the thermal zone (Bacher & 

Madsen, 2011). This approach results in lumped parameters for the resistances and capacitances. 

Based on those assumptions, we can draw a network of six resistances and three capacitances for 

the CCHT house as shown in Figure 6.3. 
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C1

C2
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Figure 6.3: RC model schematic 

There is a thermal resistance between every two nodes, and a resistance between nodes and the 

ambient and ground temperature respectively. The solar radiation injects heat directly into the 

thermal zones. For simplicity, 𝜙𝑠, 𝜙𝑙  and 𝜙𝑏 in the figure denote the overall heat injected into the 

three zones (respectively sleeping room, living room and basement), including the heating power, 

internal heat gains and solar radiation.  

Concretely, we can write the following state space equation to represent the system. The output 

equation is omitted because our concerned outputs are the same as the states. The input vector is 

separated into two vectors 𝑈  and 𝑊 . 𝑈  is the controlled inputs while 𝑊  is uncontrolled but 

measured inputs. 
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 �̇� = 𝐴𝑐 𝑥 + 𝐵𝑐𝑈 + 𝐸𝑐𝑊 (6.1) 

The vector 𝑥 = [𝑇𝑠 𝑇𝑙 𝑇𝑏]
𝑇  denotes the state matrix of the system: temperatures of the 

sleeping room, living room and basement. 𝑈 = [𝑈𝑠 𝑈𝑙 𝑈𝑏]
𝑇  denotes the heating powers in 

each zone, and 𝑊 = [𝜙𝐼𝐺𝑠
𝜙𝐼𝐺𝑙

𝜙𝐼𝐺𝑏
𝜙𝑠𝑜𝑙 𝑇𝑎𝑚𝑏 𝑇𝑔]  represents the disturbance inputs 

where 𝜙𝐼𝐺𝑠
, 𝜙𝐼𝐺𝑙

 and 𝜙𝐼𝐺𝑏
 denote the internal gains to each zone; 𝜙𝑠𝑜𝑙  denotes the incident solar 

radiation;  𝑇𝑎𝑚𝑏  denotes the ambient temperature and 𝑇𝑔  the ground temperature. The triple 

(𝐴𝑐, 𝐵𝑐, 𝐸𝑐) is obtained with only parameters to be identified as follows. 
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Where 𝛼1, 𝛼2 and 𝛼3  denote multiplication coefficients applied to the solar radiation for each 

thermal zone.  

6.2.2 Parameter identification 

When the symbolic model is ready, we then fit the model to input-output data to obtain the 

unknown parameters. The data can be from measurements, or from BPS simulation. The data 

from the latter approach is sometimes termed synthetic data. The benefit of using synthetic data is 

the availability of the information about the states, control inputs, disturbance inputs, and outputs. 

Some of those data may not be measured or measurable in real experiments. In our case, we 

obtain the data from the calibrated TRNSYS model. Note that the offline parameter estimation 

approach is employed in this chapter, unlike the online parameter identification method used in 

Chapter 4. This choice was made to improve the simplified model performance.  

We discretize the state equation (6.1) for the purpose of parameter identification as well as for 

MPC. The discrete-time form of the state equation can be written as equation (6.2): 
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 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑈(𝑘) + 𝐸𝑊(𝑘) (6.2) 

The triple (𝐴, 𝐵, 𝐸) ∈ 𝑅3×3×6 denotes the discretized form of (𝐴𝑐, 𝐵𝑐, 𝐸𝑐). Based on the data, we 

estimate the parameter values that result in the minimal error between the predictions and true 

values by solving the following problem: 

Given 𝑥(𝑘), 𝑈(𝑘) and  𝑊(𝑘)  for 𝑘 = 0,1, … , 𝐾 … ,𝑁 − 1 , find the matrices 𝐴, 𝐵  and 𝐸 that 

minimize the error function 𝐽𝐸: 

 

𝐽𝐸 = ∑[�̂�(𝑘 + 1) − 𝑥(𝑘 + 1)]𝑇[�̂�(𝑘 + 1) − 𝑥(𝑘 + 1)] 

𝑁−1

𝑘=0

 

(6.3) 

𝑁 denotes the number of training samples; the period of time selected for training is 𝑁/𝑓𝑠 hours, 

where 𝑓𝑠 is the sampling frequency or timestep.  

�̂�(𝑘) denotes the predicted model state at time 𝑘, which depends on the 12 parameters, namely 

[𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝐶1 𝐶2 𝐶3 𝛼1 𝛼2 𝛼3].  

 �̂�(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑈(𝑘) + 𝐸𝑊(𝑘)    for        𝑘 = 0,1, … , 𝐾 … ,𝑁 − 1 (6.4) 

The training period for the identification process is 12 days with a 15-minute sampling frequency 

or 𝑁 = 1152 samples for each variable. The GenOpt optimal setpoint profiles were used as one 

of the main inputs for the training data. The corresponding outputs, i.e., the zone temperatures are 

collected along with the disturbance inputs 𝑊(𝑘). This choice was made to ensure excitation in 

the input/output training data. Using randomly generated input signals is a common practice to 

ensure the excitation requirement. The large oscillation of setpoint temperatures from GenOpt 

optimization was proved to enable the parameter identification. Note that all of the states of the 

system are measurable due to the model structure; therefore there is no need to observe the states. 

The predicted outputs are formulated based on current system states, the current control input, 

current disturbance inputs, and the unknown parameter matrices (𝐴, 𝐵, 𝐸) based on Equation 

(6.4). The prediction error minimization problem with the objective function (6.3) is then solved 

using the “fmincon” function in Matlab Optimization Toolbox, yielding results for the matrices 

(𝐴, 𝐵, 𝐸). The algorithm “interior-point” is employed from the options provided by the function. 

This algorithm was also selected for the “linprog” function as described in Chapter 3.   
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When the parameters were identified, the model was validated with a new set of data. The results 

are shown in Figure 6.4. We can observe that the one-step-ahead prediction is really close to the 

“measured” temperatures for each zone during this day. The RMSE between the measured 

outputs and the one-step-ahead predicted outputs of the three zones are 0.08, 0.4 and 0.5 °C 

respectively for the sleeping room, living room and basement. The 1-day ahead (96 steps ahead) 

prediction gives worse results than the 1-step ahead prediction; however the RMSE for the 1-day 

ahead predictions are acceptable, which are 0.7, 1.15 and 2.05 °C for the sleeping room, living 

room and basement separately. 

 

Figure 6.4: Validation results of the RC model  

6.2.3 MPC formulation 

The identified model is in discrete-time form, therefore the predicted states (or outputs) over the 

prediction horizon can be obtained intuitively as: 

 𝑥(𝑘 + 𝑖 + 1|𝑘) = 𝐴𝑥(𝑘 + 𝑖|𝑘) + 𝐵𝑈(𝑘 + 𝑖|𝑘) + 𝐸𝑊(𝑘 + 𝑖|𝑘) (6.5) 

In the equation, 𝑖 = 0, 1, … , 𝐾,… , 𝑃 − 1, where 𝑃 indicates the prediction horizon. The predicted 

information is then used to calculate the future controlling input (heating system in the building). 

The optimal control signal is obtained by solving an optimization problem. The objective of the 
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controller is to reduce power demand during the peak hours; thus we formulate the objective 

function as follows: 

 

𝐽(𝑘) = ∑  𝑈𝑇(𝑘 + 𝑖|𝑘) 𝑅(𝑘 + 𝑖) 𝑈(𝑘 + 𝑖|𝑘)

𝑃−1

𝑖=0

 

(6.6) 

𝑈(𝑘 + 𝑖|𝑘) is the future controlling input vector corresponding to the time instant 𝑘 + 𝑖 for 𝑖 =

0,1, …𝐾,…𝑃 − 1, while  𝑅(𝑘 + 𝑖) denotes a positive definite matrix representing the changing 

price signal. The cost function 𝐽(𝑘) is minimized given the current state 𝑥(𝑘) and the predicted 

disturbance {𝑊(𝑘),𝑊(𝑘 + 1), …𝑊(𝑘 + 𝑃 − 1)} . The solution is the optimal input sequence 

{𝑈(𝑘|𝑘), 𝑈(𝑘 + 1|𝑘), … , 𝑈(𝑘 + 𝑃 − 1|𝑘)}, where only the first signal is applied in the feedback 

loop. Note that this objective function is formed as a quadratic function, instead of the linear form 

used in Chapter 4. The quadratic form shows better convergence performance in this case here.   

The objective function is also subjected to constraints of the physical system, and without loss of 

generality, we can express the constraints as equations below: 

{

𝑆(𝑘 + 𝑖)𝑈(𝑘 + 𝑖|𝑘) ≤ 𝑠(𝑘 + 𝑖)

𝐺(𝑘 + 𝑖)𝑥(𝑘 + 𝑖 + 1|𝑘) ≤ 𝑔(𝑘 + 𝑖)

𝐺𝑒𝑞𝑥(𝑘 + 𝑖 + 1|𝑘) = 𝑔𝑒𝑞(𝑘 + 𝑖)
 

(6.7) 

The first inequality represents the constraints on inputs, for example, the minimum and maximum 

boundary of the heating capacity, while the second inequality represents the set of state 

constraints at each time instant 𝑘 + 𝑖 + 1  for 𝑖 = 0,1, …𝐾, …𝑃 − 1, i.e., the lower and upper 

temperature limits for thermal comfort. They are expressed as a function of time because they 

may change when the room is occupied or non-occupied. The last equation represents the 

equality constraint on zone temperatures which obeys the governing equation of the building 

system.  

6.3 MPC results 

Based on the MPC formulation discussed in the last section, the optimization problem was solved 

using the “fmincon” function in MATLAB, the same as used in parameter estimation in section 

6.2.2. This function was selected because it delivers more robust results than the “linprog” used 



105 

 

in Chapter 4 for this case study. The “fmincon” function also provides more algorithm options 

and its objective function can be any form.  

The algorithm “active-set” was chosen through trial and error for this problem, which delivered 

the best results. The algorithm is termed active set because it determines the active constraints 

which influence the final optimization results in each iteration. For instance, the equality 

constraints are always active until an iteration violates them. The algorithm can take large steps, 

which may however result in intermediate errors for some problems in the optimization process 

(Wong, 2011).  

The prediction and control horizon are both set at 4 hours; tests show that longer horizons only 

improve the results slightly yet require much longer simulation time. A receding horizon is 

applied to the control process: the optimal setpoint from the controller is sent to TRNSYS, whose 

temperatures are fed back to the controller. This feedback loop is repeated at each time step.  

 

Figure 6.5: MPC with RC network model 

Figure 6.5 shows the MPC results with the simplified controller model. The same occupancy 

constraints and peak durations are applied as in the Brute-force MPC with the detailed model 

discussed in section 5.4.1. A similar preheating phenomenon before the occurrences of peaks can 



106 

 

be observed in the Figure. The controller decides to preheat the building around 1 AM, several 

hours before the first peak starts. Preheating is employed again before the second on-peak period, 

although the maximum available power is not used.  

The preheating effect is less significant than the Brute-force MPC with the detailed model as 

shown in Figure 5.4. The average power demand during on-peak periods, which is not as 

impressive as the Brute-force MPC either, results in about 4 kW. From the optimal setpoint 

profile, it is clear that the setpoint has the potential to further go down during the peak periods to 

yield higher flexible energy. Since the simplified controller model cannot give 100% accurate 

prediction, it is reasonable that the optimal setpoint change is less aggressive than the Brute-force 

MPC which has no modelling error.  

A significant peak power reduction can still be observed for the MPC with the simplified model 

compared to the reference case. The computing time is very efficient, with the 12-day simulation 

taking about 20 seconds, which is the same magnitude as the reference scenario but substantially 

faster than the Brute-force MPC approach (20 s vs. 16.3 h).  

6.4 Sensitivity analysis 

As presented in Section 6.2, the RC network was employed to construct the simplified model 

structure and then parameter identification technique was used to obtain the model parameters. 

Another system identification approach called “ssest” is tried to get the simplified model. The 

advantage of this method is that it reduces the two-step approach of the RC model to one step.  

This approach first estimates a state-space model using the subspace method. Both time-domain 

or frequency-domain input-output data can be utilized. The estimated parameters are then 

improved through minimizing the prediction error (Ljung, 1999). The general model structure is 

presented as follows: 

{
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑒(𝑡)
 

(6.8) 

The state-space representation in equation (6.8) is typical, except that the last term 𝑒(𝑡)  is 

additional. It denotes the error term or “disturbance”, a terminology commonly used in control 

system analysis. The function provides the option to set the 𝐾 matrix to zero or to estimate this 



107 

 

parameter. In our case, the 𝐾 matrix is not estimated since the input-output data is synthetic from 

the calibrated detailed model. The other important free parameter in this function is the order of 

the system. Results show that setting the order to 1 is sufficient to represent the controller model 

in our case. After the system identification, the state-space model is used in the same fashion as 

the RC model for the control and optimization process. 

Figure 6.6 presents the MPC results with the estimated state-space model. We can see that this 

model delivers similar profiles as the RC network model that it preheats the building before the 

peaks and reduce setpoints during the peaks. Although the results are not as good as the RC 

network model (which can also be improved), fine-tuning the model can definitely improve the 

performance. This demonstrates that the optimal controller is not very sensitive to the modelling 

approach. Even if the model sometimes does not give accurate predictions, the feedback scheme 

allows the model to correct its errors promptly.    

 

Figure 6.6: MPC results with state-space model 
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6.5 Comparison between MPC and RBC 

Chapter 3 investigated the energy flexibility based on the Rule-Based Control, which modulates 

the setpoint by 2 °C in a period of 2 hours. It was intended to study the general scenario of the 

energy flexibility; peak durations were therefore not specified. To make a fair comparison, the 

same constraints for occupancy and peak times imposed on the MPC approach was implemented 

on the RBC method discussed in this section. 

Figure 6.7 shows the results of one possible RBC strategy. The setpoint temperature remains at 

21°C before the morning peak; it then decreases by 1 °C from 5:30 to 8:30. When the occupants 

leave the building, the setpoint reduces another 2 °C until the end of the morning peak. The 

setpoint change from 5:30 to 6:30 is 1 °C instead of 2 °C or 3 °C to the thermal comfort lower 

bound, because 2 °C setpoint change would result in power rebound larger than the reference 

power at 6:30, when the setpoint comes back to 20 °C required by the thermal comfort limit. This 

power rebound during the peak time is what we should avoid. For the afternoon peak, the setpoint 

drops only 1 °C for the whole duration, because that is what the thermal comfort constraints 

allow.  

 

Figure 6.7: Rule-based control strategy with occupancy constraint 
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Table 6.1 summarizes the results of the two MPC approaches as well as the RBC strategy. 

Comparing the two MPC methods, the simplified model provides less flexible energy than the 

detailed model. Meanwhile, it has also less rebound energy. The resulting flexible efficiency with 

the simplified model is higher than with the detailed model, especially for the afternoon peak. 

The maximum flexible power of the simplified model is only slightly lower than the detailed 

model.  

Table 6.1: Flexibility characteristics comparison between MPC and RBC 

 Event 1 (morning) Event 2 (afternoon) 

Modeling 
MPC 

(detailed) 

MPC 

(simplified) 
RBC 

MPC 

(detailed) 

MPC 

(simplified) 
RBC 

Flexible energy [kWh] 15.1 9.1 7.3 9.5 5.4 3.7 

Rebound energy [kWh] 21.0 11.7 4.7 18.2 6.8 2.6 

Flexible efficiency [-] 0.72 0.78 1.55 0.52 0.79 1.4 

Max flexible power [kW] 4.8 4.5 4.0 3.3 2.8 2.8 

 

Comparing the MPC methods with RBC, it is clear that MPC provides higher flexible energy 

than RBC; this phenomenon is more obvious for the afternoon peak event. The MPC method 

with the detailed model has more than twice flexible energy than RBC for the morning peak 

event and more than three times flexible energy for the afternoon peak event. It should be noted 

that the RBC method has been refined by trial and error, so it represents a well-tuned 

conventional controller.  

The MPC methods provide more flexible energy but their rebound effect is also more 

pronounced. The rebound energy in both MPC methods is larger than the flexible energy, 

resulting in flexible efficiency lower than 1. On the other hand, the RBC method has much lower 

rebound energy and its flexible efficiency is about 1.5 for both events, around twice as efficient 

as the MPC methods.  

The maximum flexible power of MPC is higher than that of RBC, but the difference is not as 

significant as the flexible energy shows for the two strategies.  

6.6 Discussions 

In this chapter, the model predictive control framework presented in Chapter 3 was applied to a 

model of a real building, the same case study of a typical Canadian house employed in Chapter 5. 
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The MPC approach of this chapter differs from the last chapter in that a simplified model was 

used in the optimal controller instead of a detailed controller model. Data used for parameter 

identification and model validation of the simplified model were obtained from the detailed 

model.  

The optimal controller was further co-simulated with the detailed building model in TRNSYS to 

emulate the online control scheme. Perfect forecasts were assumed for the weather and 

occupancy.  

Energy flexibility of the MPC methods was discussed. It is found that both MPC methods deliver 

a significant flexible energy during the on-peak periods. The MPC with the detailed model 

delivers larger flexible energy at the cost of a very high computational effort, while the simplified 

model delivers less impressive performance but at a much more reasonable computational cost 

(its simulation time is the same magnitude as the reference case).  

A rule-based control strategy was also investigated for the same day with the same occupancy 

and thermal comfort constraints. Results show that both MPC methods provide more flexible 

energy than the RBC method; however, their rebound effect is also more pronounced. The 

resulting RBC flexible efficiency is around twice of MPC. The MPC methods also deliver higher 

maximum flexible power than RBC, although the maximum flexible power difference is not as 

significant as that of flexible energy. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

7.1 Summary 

Buildings with their energy storage capability can be beneficial for the electric grid to balance its 

supply and demand. This capability allows buildings to operate in an energy-flexible way while 

preserving the indoor thermal comfort requirement. The aim of this research was to characterize 

the energy flexibility in buildings in a quantitative way and to assess the impact of supervisory 

control strategies on this flexibility through simulation studies.  

A good model of the studied system is the basis of a valid simulation work; therefore, modelling 

composed an important part of this thesis. At first, a detailed physical model of the case study 

building was built using TRNSYS, a state-of-the-art dynamic building performance simulation 

tool. This model was further calibrated using monthly and hourly measured data from 

experiments of the real building. The calibration work included evaluation of both energy usage 

and indoor conditions. The indoor conditions calibration was not required according to the 

ASHRAE guideline 14 but was essential for our study because the calibrated model was further 

used for control study. Results in Chapter 2 showed that the calibrated model could capture the 

dynamic behaviour of the space heating and cooling system as well as satisfy the criteria for 

integrated energy. 

This detailed model was further employed in three different ways.  

First, it was used to examine a methodology to quantify the building energy flexibility. This 

general methodology was proposed with a set of Key Performance Indicators (KPIs) intended for 

a variety of systems, e.g. passive or active energy storage, different Heating, Ventilation and Air-

Conditioning (HVAC) systems, on-site energy generation, and associated control strategies. 

Chapter 3 applied the methodology to assess the energy flexibility potential of building thermal 

mass based on simple setpoint modulation. It was shown that the energy flexibility provided by 

the thermal mass was significant: a median downward flexible energy at around 6 kWh and a 

median upward flexible energy at around 7.5 kWh for 2-h Demand Response (DR) events. The 

setpoint change in the DR events was 2 °C, which was assumed to be acceptable within the 

thermal comfort limit. A sensitivity analysis of the KPIs showed that the flexibility was subject to 

the weather condition, DR duration, setpoint change magnitude etc. 
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Second, the detailed building model was adopted to generate synthetic data for parameter 

identification of a simplified model, which was employed in a supervisory Model Predictive 

Control (MPC) framework. The general MPC framework, detailed in Chapter 4, explained an 

online co-simulation method from the perspective of building energy modellers. This method 

could be helpful for those modellers who are unfamiliar with but interested in MPC. Three 

common issues related to MPC application on buildings were discussed, which are respectively 

modelling errors, parameter identification and state estimation.  

Last, the detailed building model was tested as the controller model of MPC. This approach 

optimized a set of variables from the detailed model, which required a large computation power. 

Several heuristic MPC methods were explored to reduce the computation cost. Results in Chapter 

5 presented that the heuristic methods delivered near-optimal performance with much less 

computation time. 

Since the control method has a high impact on the amount of the energy flexibility, the Rule-

Based Control (RBC) strategy was compared with the MPC strategy. Comparison results in 

Chapter 6 showed that MPC delivered higher flexible energy and larger maximum flexible power 

than RBC, where MPC with the detailed model delivered the highest flexible energy, twice or 

three times of RBC depending on the hour of the DR event. MPC with the simplified model 

showed less flexible energy than that with the detailed model, but its computation time is in the 

same magnitude as the RBC method in seconds. On the other hand, the rebound effect of the 

MPC methods was more pronounced, resulting in lower flexible efficiency than RBC. 

7.2 Conclusions 

To conclude, buildings possess the high potential to provide energy flexibility services to the 

grid, even for typical Canadian residential buildings with a low thermal mass. In other words, 

buildings can become an asset in the grid system instead of being passive “customers”. The 

impact of control strategies on the available energy flexibility is significant. Predictive strategies 

have the potential to increase the flexibility but also present a risk of increasing the rebound 

effect, where “rebound” includes the period before a DR event. MPC is demonstrated as a good 

candidate for supervisory control to improve the energy flexibility. The proposed framework 

offers a method for building and HVAC scientists to pursue the application and analysis of MPC 

strategies. 
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The thesis includes the following contributions:  

• A whole building performance model is calibrated using measured data. The calibrated 

model satisfies the criteria by ASHRAE guideline 14 in terms of monthly and hourly 

energy use. In addition, the model can capture the dynamics of the indoor temperature 

variations and the power demand of the HVAC system. 

• A general methodology with performance indicators is investigated to characterize the 

energy flexibility of building systems. This methodology can be applied to different 

energy storage and generation systems, as well as to different levels of buildings from a 

cluster of buildings to district energy systems. 

• An MPC framework is proposed for online supervisory control based on co-simulation. 

The framework offers a simple method for the MPC application on building simulations. 

• The impact of control strategies on building energy flexibility is quantified and analysed. 

The proposed MPC method is compared with an RBC strategy. Advantages and 

disadvantages of both control strategies are analyzed. 

7.3 Further studies 

The general methodology proposed to quantify energy flexibility only applied to the building 

thermal mass in this work. Other energy storage systems such as hot water tank, ice water tank, 

and electrical storage systems can be examined with the same methodology. In addition, the 

integrated effect of different storage systems in one building can be investigated.  

The methodology can also be applied to various HVAC systems and associated control strategies. 

Different HVAC systems produce different demand profiles, which may result in different 

flexibility characteristics. Other types of buildings (e.g. commercial, office, and institutional 

buildings), a cluster of buildings and district energy systems can also adopt the general 

methodology to quantify their energy flexibility potential. 

The supervisory MPC framework proposed in this thesis can be extended to different levels of 

systems such as district energy systems. Experiments on the RBC and MPC methods can be 

carried out to investigate their applicability in the real world. 
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APPENDIX A 

A.1 State equation solutions 

The state-space model can be easily discretized and solved in Matlab; however, when the 

sampling rate is too big, it can result in errors. To eliminate the discrepancies between Matlab 

and TRNSYS, it is necessary to use the same approach as TRNSYS to solve differential 

equations in Matlab.  

Unlike Matlab, TRNSYS takes the exact solution of discrete differential equations for internal 

iteration while outputs the average value during each time step to perform better energy balance. 

Therefore, we need to hard-code the instantaneous and average solutions of state-space models in 

Matlab, so that we can achieve a true model match. In general, the discrete state equation 

solution, in our case, the discrete instantaneous solution 𝑇(𝑡) can be written as follows 

 𝑇(𝑡) = 𝐴𝑑𝑇(𝑡 − 1) + 𝐵𝑑𝑢(𝑡 − 1)  

With 𝐴𝑑 = 𝑒𝐴𝑐Δ𝑡, 𝐵𝑑 = 𝐴𝑐
−1(𝑒𝐴𝑐Δ𝑡 − 𝐼𝑛)𝐵𝑐. Note that the parameters 𝐴𝑐 , 𝐵𝑐 are matrices; 𝐼𝑛 is 

the same size as 𝐴𝑐.  

By using the definition of average values over one time step period, we can derive the average 

solution �̅�(𝑡) as 

 �̅�(𝑡)  = 𝐴𝑑𝑎𝑇(𝑡 − 1) + 𝐵𝑑𝑎𝑢(𝑡 − 1)  

With 𝐴𝑑𝑎 = (𝐴𝑐Δ𝑡)−1(𝑒𝐴𝑐𝛥𝑡 − 𝐼𝑛), 𝐵𝑑𝑎 = (𝐴𝑐Δ𝑡)−1𝐴𝑐
−1(𝑒𝐴𝑐𝛥𝑡 − 𝐼𝑛)𝐵𝑐 − 𝐴𝑐

−1𝐵𝑐. 

By outputting the average solution of the state equation while iterating using instantaneous 

solution, we can get exactly identical results in Matlab as TRNSYS.  

A.2 Predictive output formulation 

The general discrete-time state-space equations for linear systems can be written as: 
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{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)
 

Suppose the control horizon is 𝑁𝑐; then the future control input 𝑈 at time 𝑘 is   

𝑈[𝑁𝑐 × 1] = [𝑢(𝑘 + 1|𝑘) 𝑢(𝑘 + 2|𝑘) 𝑢(𝑘 + 3|𝑘) … 𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)]𝑇; 

Suppose the prediction horizon is 𝑁𝑝 (𝑁𝑝 ≥ 𝑁𝑐); then the output prediction 𝑌 at time 𝑘 is 

𝑌[𝑁𝑝 × 1] = [𝑦(𝑘 + 1|𝑘) 𝑦(𝑘 + 2|𝑘) 𝑦(𝑘 + 3|𝑘) … 𝑦(𝑘 + 𝑁𝑝 − 1|𝑘)]
𝑇
. 

We then formulate each one-step-ahead output based on the state equation as follows until the 

prediction horizon. 

𝑦(𝑘 + 1|𝑘) = 𝐶𝑥(𝑘 + 1|𝑘) = 𝐶𝐴𝑥(𝑘) + 𝐶𝐵𝑢(𝑘) 

𝑥(𝑘 + 2|𝑘) = 𝐴𝑥(𝑘 + 1|𝑘) + 𝐵𝑢(𝑘 + 1|𝑘) = 𝐴[𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)] + 𝐵𝑢(𝑘 + 1|𝑘)

= 𝐴2𝑥(𝑘) + 𝐴𝐵𝑢(𝑘) + 𝐵𝑢(𝑘 + 1|𝑘) 

𝑦(𝑘 + 2|𝑘) = 𝐶𝑥(𝑘 + 2|𝑘) = 𝐶𝐴2𝑥(𝑘) + 𝐶𝐴𝐵𝑢(𝑘) + 𝐶𝐵𝑢((𝑘 + 1|𝑘) 

…                              … 

𝑥(𝑘 + 𝑁𝑝|𝑘) = 𝐴𝑁𝑝𝑥(𝑘) + 𝐴𝑁𝑝−1𝐵𝑢(𝑘) + ⋯+ 𝐴𝑁𝑝−𝑁𝑐𝐵𝑢(𝑘 + 𝑁𝑐 − 1|𝑘) 

𝑦(𝑘 + 𝑁𝑝|𝑘) = 𝐶𝐴𝑁𝑝𝑥(𝑘) + 𝐶𝐴𝑁𝑝−1𝐵𝑢(𝑘) + 𝐶𝐴𝑁𝑝−2𝐵𝑢(𝑘) + ⋯+ 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵𝑢(𝑘 + 𝑁𝑐

− 1|𝑘) 

Let  

𝐹[𝑁𝑝 × 1] = [𝐶𝐴 𝐶𝐴2 𝐶𝐴3 … 𝐶𝐴𝑁𝑝]𝑇 

and  

Φ[𝑁𝑝 × 𝑁𝑐] =

[
 
 
 
 

𝐶𝐵 0 0 … 0
𝐶𝐴𝐵 𝐶𝐵 0 … 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 … 0

… … … … …
𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2𝐵 𝐶𝐴𝑁𝑝−2𝐵 … 𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]

 
 
 
 

 

Then we have 

𝑌 = 𝐹𝑥(𝑘) + Φ𝑈 
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A.3 Least squares estimation 

The parameterized regression model, in general, can be written as 𝑦(𝑡) = Φ(𝑡 − 1)𝜃. We let 

𝑒(𝑡, 𝜃) = 𝑦(𝑡) − Φ(𝑡 − 1)𝜃 and set the objective function as  

𝐽(𝑡, 𝜃) =
1

2
∑𝑒(𝑡, 𝜃)2

𝑁

𝑡=1

 

The minimal result can be found when the first derivative of the objective function equals 0. 

𝜕𝐽(𝑡, 𝜃)

𝜕𝜃
= −Φ(𝑡 − 1)∑𝑒(𝑡, 𝜃)

𝑁

𝑡=1

= 0 

Φ(𝑡 − 1)∑[𝑦(𝑡) − Φ(𝑡 − 1)𝜃]

𝑁

𝑡=1

= 0 

∑Φ(𝑡 − 1)𝑦(𝑡)

𝑁

𝑡=1

= 𝜃 ∑Φ(𝑡 − 1)𝑇Φ(𝑡 − 1)

𝑁

𝑡=1

 

We can notice that the left-hand side of the equation is the summation of cross-correlation 

between the inputs and outputs and the right-hand side is the summation of the auto-correlation 

of the inputs. 

Let 𝑆(𝑡) = ∑ Φ(𝑡 − 1)𝑦(𝑡)𝑁
𝑡=1  and 𝑅(𝑡) = ∑ 𝛷(𝑡 − 1)𝑇𝛷(𝑡 − 1)𝑁

𝑡=1 , then 

𝜃 = 𝑅(𝑡)−1𝑆(𝑡) 

Note that the term Φ𝑁−1
𝑇Φ𝑁−1 should be nonsingular for the convergence of this method. 
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