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Montréal, Québec, Canada

Email: lionel.birglen@polymtl.ca

In this paper, we introduce a mechanism consisting of a pair
of noncircular pulleys with a constant-length cable. While
a single noncircular pulley is generally limited to continu-
ously winding or unwinding, the differential cable routing
proposed here allows to generate non-monotonic motions at
the output of the arrangement, i.e. the location of the idler
pulley redirecting the cable. The equations relating its mo-
tion to rotation angles of the noncircular pulleys and to the
cable length are presented in the first part of this paper. Next,
we introduce a graphical method allowing us to obtain the
required pulley profiles for a given output function. Our ap-
proach is finally demonstrated with two application exam-
ples: the guiding of a cable-suspended robot along a com-
plex trajectory using a single actuator, and the static bal-
ancing of a pendulum with a 360 degree rotational range of
motion.

1 Introduction
Unlike with their circular counterparts, the length of ca-

ble which is wound or released during the rotation of a non-
circular pulley (also referred to as a noncircular spool or a
variable-radius drum) is a nonlinear function of its rotation
angle and is highly sensitive to its profile. This property
has been exploited in many robotic systems, for example to
achieve a coordinated motion between two joints [1, 2] as
an alternative to mechanical linkages, gears, or cams. One
of the main advantages of using noncircular pulleys for this
specific application is the reduced weight and increased dis-
tance between the joints that one can achieve. However, the
most common usage of noncircular pulleys one can find in
the literature so far appears to be the design of nonlinear

∗Corresponding author

rotational springs for which the rotation angle vs. torque
relationship is nontrivial and determined by the pulley pro-
file [3–5]. Most noticeably, one can use this type of springs
with the aim of statically balancing mechanisms, as for in-
stance in the pioneer work presented in [6]. It is worth re-
minding that a statically balanced mechanism is defined as
being in equilibrium for all the positions in its workspace.
This property helps improving the energy efficiency of the
system by restricting the actuators solely to the task of over-
coming inertia and friction [7]. The use of springs instead
of counterweights to achieve static balance allows to curtail
the increase of the mechanism’s moments of inertia due to
the addition of the balancers, as well as to keep compact-
ness within acceptable limits. Moreover, by connecting the
spring’s elongation to the winding or unwinding of a cable
around a noncircular pulley, it is possible to circumvent the
requirement of an ideal zero-free-length spring [8] in these
balancers. In this application, noncircular pulleys have also
been used to design transmission systems allowing to bal-
ance multiple-DOF serial mechanisms with as few springs
as possible [9].

Another promising application of noncircular pulleys
is the guiding of cable-suspended robots through a prede-
fined trajectory. Instead of using several actuators to wind
or unwind each cable connecting the end-effector to the
frame of the robot, it has been proposed to couple the wind-
ing/unwinding rates of several cables and use a single actua-
tor for this task [10, 11]. This approach shares several simi-
larities with the use of differentials to drive cable manipula-
tors introduced in [12, 13], although the latter work focused
exclusively on circular pulleys.

For both these applications however, the noncircular
pulley mechanisms presented in the literature are limited to
a continuously winding (or unwinding) motion of the out-
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put cable. Thus, with static balancing for instance, the rela-
tionship between the spring elongation and the pulley rota-
tion angle is restricted to a strictly increasing (or decreasing)
function. In this paper, we introduce a serial cable routing for
antagonistic pulleys, similar to that of the classical Weston
differential [14], in which the position of an idler pulley is
guided by a cable simultaneously winding on one noncircu-
lar pulley while unwinding from another. This simultaneous
winding and unwinding allows to generate non-monotonic
functions which can be very advantageous in both applica-
tions discussed here as will be shown. It should be noted that
a pair of antagonistic springs whose elongations are guided
by noncircular pulleys has previously been presented to stati-
cally balance an inverted pendulum in [15]. However, as will
be shown, the use of a single constant-length cable as dis-
cussed in this paper allows for much greater angular ranges
of motion and for the generation of more complex functions,
including multiple stationary points.

In Section 2.1 of this paper, the kinematic analysis of a
single noncircular pulley connected to an idler pulley is first
carried out. In addition, Section 2.2 introduces a graphical
method for the synthesis of such a non-circular pulley pro-
file, which allows for a more intuitive design process com-
pared with previous numerical [8] or analytical [15, 16] ap-
proaches. Next, in Section 3, the single-cable antagonistic
(i.e. differential) arrangement proposed here is described
and analyzed. The advantages of this configuration are then
demonstrated in practice for two applications in Section 4: a
cable-suspended parallel robot that is able to follow a pick-
and-place trajectory while being driven by a single actuator
is achieved as well as a statically balanced pendulum with a
360◦ angular range. Finally, Section 5 presents a discussion
comparing the advantages and disadvantages of the proposed
mechanism with respect to the current state of the art.

2 Single Noncircular Pulley Mechanism
2.1 Kinematic Analysis

As shall be detailed in this section, the behavior of a
noncircular pulley can be described as the interaction, for a
defined pulley profile, between three variables: the rotation
angle of that pulley, the total length of the cable between its
attachment point on that pulley and an exterior attachment
point (or an idler pulley redirecting the cable), and the dis-
tance between the noncircular pulley and the latter point. The
general geometric parameters of a single noncircular pulley
are illustrated in Figure 1a. A cable, assumed inextensible,
is fixed to this noncircular pulley of radius r = f (θ) at point
F, and is wound around its profile until reaching the tangent
point T. Then, from points U to V, the cable is wound around
an idler pulley of constant radius q. The centers of the non-
circular and idler pulleys, respectively named points O and
P, are located at a distance x one from the other.

While a first reference frame Rpulley is fixed to the cen-
ter of the noncircular pulley, a second frame ROP can be at-
tached arbitrarily to any point on the line from O to P, with
its x-axis directed towards P. The relative rotation between
these two frames is measured by the angle θP. The winding
or unwinding of a noncircular pulley is therefore described

O

F

P

P0

T

U

V

r

x

α

β

θT

θP

θF

Idler pulley

Cable

Noncircular pulley

Constant lFV curve
(i.e. involute)

ROP

RPulley

q

θP

x

0° 120°60°
0.5

1.0

1.5

Distance between points O and P 
for a constant lFV cable length:

Fig. 1: Geometry of a single noncircular pulley

mathematically as:

g(x,θP, lFV ) = 0, (1)

where lFV denotes the cable length from point F to point V .
A similar notation is used throughout this paper for all cable
lengths, i.e., the length of cable between two arbitrary points
i and j is noted as li j.

The locus of the idler pulley center, i.e. all the possi-
ble locations of point P for which the cable length lFV is
constant, is of particular interest for the analysis performed
in this paper. As plotted for the chosen example in Fig.1b,
the polar equation representing this position is a strictly de-
creasing function x= f (θp) defined by the noncircular pulley
profile. It should be noted that there is an evolute-involute re-
lationship between the profile of the noncircular pulley and
the curve x(θP) when the radius of the idler pulley is ne-
glected [17].

The derivative of the latter curve, namely dx
dθP

, can be ob-
tained by considering the differential form of the interaction
between x, θP, and lFV , i.e.:

dlFV =
∂lFV

∂θP
dθP +

∂lFV

∂x
dx (2)

and setting dlFV , the infinitesimal variation of the cable
length, to zero in the above equation. The assumption of
a constant cable length therefore yields:

dx
dθP

=− ∂x
∂lFV

∂lFV

∂θP
. (3)

The partial derivatives involved in Eq. (2) are highly depen-
dent on angles α and β shown in Fig. 1a. These angles can
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be calculated for a given angle θP by solving the geometric
closure equations, namely:

q− xsinβ− r sinα = 0, (4a)
α+β+θP−θT = π (4b)

where r and θT are the radius and angle at the tangency
point T. As established in [16], the angle α is a function of
the pulley profile, i.e.:

sinα =
r√

( dr
dθT

)2 + r2
. (5)

Then, the total cable length lFV can be expressed as lFV =
lFT + lTU + lUV with:

lFT =
∫

θT

θF

√
(

dr
dθ

)2 + r2dθ, (6a)

lTU = r cosα+ xcosβ, (6b)

lUV = q
(

π

2
−β

)
, (6c)

where θF is the angle corresponding to the cable attachment
point on the pulley (point F). Note that Eqs (2) and (4a) to
(6c) are valid whether the total cable length lFV is constant
or not. Taking the partial derivative of this total length lFV
with respect to θP then yields:

∂lFV

∂θP
=

∂lFT

∂θP
+

∂lTU

∂θP
+

∂lUV

∂θP
(7a)

with:

∂lFT

∂θP
=

r
sinα

dθT

dθP
, (7b)

∂lTU

∂θP
= r sinα− r

sinα

dθT

dθP
+q

dβ

dθP
, (7c)

∂lUV

∂θP
=−q

dβ

dθP
. (7d)

Thus, combining Eqs (7a) to (7c), one finally obtains:

∂lFV

∂θP
= r sinα. (8)

This partial derivative has a geometric meaning and can be
interpreted as the moment arm around point O of the cable
tension between points T and U assuming a constant distance
x. Similarly, the partial derivative of lFV with respect to x
while assuming a constant rotation angle θP is:

∂lFV

∂x
=

∂lFT

∂x
+

∂lTU

∂x
+

∂lUV

∂x
(9a)

with:

∂lFT

∂x
=

r
sinα

dθT

dx
, (9b)

∂lTU

∂x
= cosβ− r

sinα

dθT

dx
+q

dβ

dx
, (9c)

∂lUV

∂x
=−q

dβ

dx
, (9d)

yielding:

∂lFV

∂x
= cosβ. (10)

Equations (3), (8) and (10) can finally be combined into:

dx
dθP

=
−r sinα

cosβ
. (11)

For a given pulley profile, given by the function r(θ),
it is therefore possible to obtain, through integration, the re-
lationship between θP and lFV assuming a constant x with
Eq. (8), or between θP and x assuming a constant lFV with
Eq. (11).

2.2 Graphical Synthesis
As mentioned in the previous section, the winding or

unwinding of a noncircular pulley can be described as the
function relating the relative angle θP to x, the distance from
points O to P, and the cable length lFV . Three operation
modes are therefore conceivable:

1. Constant x: in this mode, by far the most prevalent in the
literature, the idler pulley (or the cable endpoint) is con-
strained to a purely rotational motion with respect to the
noncircular pulley. The variation of lFV during the ro-
tation, i.e. ∆lFV , must therefore be compensated by the
elongation of a spring (as in [3,5,8,15]) or by the motion
of a guided body to which the cable is connected, such
as the end-effector of a cable-suspended robot, see [10].

2. Constant lFV : in this less frequent case, the distance x
between points O and P varies. It is the common char-
acteristic of the examples presented in this paper. The
idler pulley must therefore be fixed to a moving body at
the output of the system.

3. Constant θP: while no example of such an arrangement
has been found in the literature, it is theoretically pos-
sible and could possibly be useful to realize nonlinear
springs.

In all these cases, the synthesis of the noncircular pulley pro-
file is a problem that can be formulated as follows:

“Assuming a required relationship g(θP,x, lFV ) = 0,
what is the corresponding noncircular pulley profile
defined by r = f (θ).”
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x = 0.1 for 0° < θP < 180°
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O P0

RPulley
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 profile

(c)

O
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O P

O P
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(d)

Fig. 2: Illustration of the proposed noncircular pulley syn-
thesis method. In a) the target function g(θP,x, lFV ) = 0 is
shown, in b) the involute curve is drawn, and, in c) the pulley
shape is obtained from the latter curve. The rotation of the
noncircular pulley in the external axes system is shown in d).

For situations where x is constant, both numerical and
analytical methods have previously been used to solve this
problem, e.g. in [8, 15, 16]. For the general relationship
g(θP,x, lFV ) = 0, a new graphical approach is proposed here.
When q = 0, namely when the idler pulley radius is small
and can be neglected or there is no idler pulley and the cable
endpoint is fixed, the successive steps of the method are:

1. From the function g(θP,x, lFV ) = 0, compute
s(θP,x, lFV ) defined as the difference between lFV
and its maximum over the domain, as shown in Fig. 2a.

2. Discretize the functions g and s into a sequence of lo-
cations Pi of point P and associated quantities si, with
i = 0,1...,n.

3. In the Rpulley frame, draw a circle of radius si centered at
Pi for each of the latter points, as illustrated in Fig. 2b.
The envelope of these circles is the involute curve of the
pulley profile.

4. The shape of the noncircular pulley is then defined by
the envelope of the normals to the involute curve, as
shown in Fig. 2c.
In the example illustrated in Fig. 2, the numerical val-

ues used correspond to the synthesis of a rotational spring
having a constant torque-angle relationship, i.e. τ = 1 for
0 < θP < π. This constant torque spring is obtained by com-
bining a noncircular pulley with a linear spring assumed to
have a force-elongation relationship F = F0 + ke where e is
the spring elongation, k is its rate, and F0 is its initial tension.
By using the virtual work principle, one obtains:

∫ θP

0
τ(θ)dθ =

∫ e

0
Fde, (12)

RPulley

Involute
curve

Circle 
Involutes

P0

Pi

θP

OPn

rotation = σi

σ0=0

(a)

P0Pn
O

RPulley

Involute
curveDesired

 profile

(b)

ROP

O

O

O

P

P

P

(c)

Fig. 3: Proposed synthesis method with a nonzero idler pul-
ley radius. In a) the involute curve is drawn, and, in b) the
pulley shape is obtained from the latter curve. The rotation
of the noncircular pulley in the external axes system is shown
in c).

which can be solved for e to yield:

e(θP) =
−F0 +

√
F02 +2k

∫ θP
0 τ(θ)dθ

k
. (13)

This required spring elongation is realized by connecting the
spring to the winding cable after it is redirected by a fixed
idler pulley, which allows to write s(θP) = max(e(θP))−
e(θP) and x = constant. The target function g(θP,x, lFV ) = 0
thus obtained is plotted in Fig. 2a. After using the proposed
graphical method (Figs. 2b-c) to generate the noncircular
pulley profile, the latter is illustrated in the ROP frame for
three values of θP in Fig. 2d. Notice in this figure how,
while the tension generated by the spring increases when the
pulley rotates, the moment arm of the spring force decreases
accordingly to keep the generated torque around O constant.

In cases where q �= 0, the method must be adapted. At
each of the successive locations Pi, one must draw the idler
pulley as well as its involute curve rotated by an angle σi ≡
max(si)−si

q , as illustrated in Fig. 3a. The envelope of these
circle involutes is the involute of the noncircular pulley, and
can be used to determine the profile of the latter (see Fig.
3b). The numerical values used for the example of Fig. 3
are identical to those of Fig. 2, with q = 0.02 and x changed
to 0.2 to increase readability. The resultant pulley profile is
shown in the ROP frame for three values of θP in Fig. 3c.
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3 Differential Cable Routing
3.1 Kinematic Analysis

As shown earlier, the winding of the cable around a pul-
ley due to the latter’s rotation leads to either an elongation of
the cable, or to a reduction of the distance between the pul-
ley and the cable’s attachment point. Although noncircular
pulleys provide a useful way to generate non-linear functions
relating these quantities, only strictly increasing or decreas-
ing functions can be obtained when continuously winding or
unwinding the pulley. To overcome this limitation, the use
of two antagonistic noncircular pulleys, one winding and the
other unwinding, has been proposed in [15] to generate a
bidirectional torque profile around a neutral position. How-
ever, the parallel configuration proposed in the latter refer-
ence means that each pulley had its own independent cable
and associated spring. Consequently, the rotational range of
motion of this design remains small and limited by the con-
figurations when either one of the springs is at its maximal
elongation. Conversely, in the differential cable routing pro-
posed here and illustrated in Fig. 4a, a single cable winds
around a first noncircular pulley from points F+ to T+ and is
then redirected by an idler pulley to a second (coaxial) non-
circular pulley, synchronously unwinding from points T− to
F−. Since the total length of the cable is constant, the angle
θp is not limited and in practice can exceed 360◦. The rates
at which both noncircular pulleys wind / unwind allow to
control the motion of the idler pulley with much more liberty
and non-monotonic x(θP) functions can be obtained.

To keep the cable length constant, the distance x between
the noncircular and idler pulleys must vary for the cable to
be kept taut. This can be realized by either relying on gravity
(see the first application example, Section 4.1), or by a spring
(see the second application example, Section 4.2). This vari-
ation is apparent from the locus of the idler pulley center
as illustrated in Fig. 4a to which corresponds the function
x = f (θp) plotted in Fig. 4b. The latter can now possess
several increasing or decreasing regions depending on the in-
stantaneous winding and unwinding rates.

The analysis performed in Section 2.1 for a single non-
circular pulley can be expanded for the differential cable
routing discussed here by considering simultaneously both
pulleys. Equation (11) thus becomes:

dx
dθP

=
r− sinα− − r+ sinα+

cosβ− + cosβ+
, (14)

where the + and − subscripts respectively refer to geometri-
cal parameters pertaining to the winding and unwinding pul-
leys, as illustrated in Fig. 4a.

3.2 Graphical Synthesis
Similarly to the graphical synthesis method intro-

duced in Section 2.2 for the generation of a function
g(θP,x, lFV ) = 0 using a single noncircular pulley, a graph-
ical method can be obtained to generate such a function
(rewritten as g(θP,x) = 0 since lF+F− is assumed constant in

0° 270°135°
1.0

1.25

1.5

θP

x

P0

Cable

Unwinding pulley

Winding pulley

V
Idler pulley

Constant lF+F-
 curve

P

T+

F+

F-

T-
O

U+
U-

α+

β+

θP

r+α-

x

β-

ROP

RPulley

Distance between points O and P 
for a constant lF+F-

 cable length:

Fig. 4: Geometry of the serial cable routing for antagonistic
noncircular pulleys

the arrangement discussed in this section) with a differential
cable routing.

As illustrated in Fig. 5, the goal is once again to obtain
the involute curves for the winding and unwinding pulleys
from the locus of the idler pulley centers, by drawing circles
of radius si centered at each successive locations Pi of point P
if q = 0, or by drawing circle involutes if q 6= 0. In this case,
the variable si (or σi) is a design parameter representing the
variation of lF−V and the opposite variation of lF+V required
to keep the total cable length lF+F− constant.

From a given target function g(θP,x) = 0 (Fig. 5a), dis-
cretized into successive points Pi, the designer must find
a function s(θP) (Fig. 5b), such that the polar functions
of the winding and unwinding involute curves are respec-
tively strictly decreasing and strictly increasing (Fig. 5c).
The shape of each noncircular pulley can then be obtained
from the envelope of the normals to its respective involute
curve, as illustrated in Fig. 5d (since both involute curves
are symmetric here, only the drawing of the winding pul-
ley is shown). As illustrated in Fig. 5e, when a spring is
used to keep the cable taut, its elongation is a function of θP,
which allows to generate complex torque-angle relationships
τ = f (θp) around the common center of the non-circular pul-
leys.
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Fig. 5: Proposed synthesis method for the differential case.
In a) the target distance is shown, in b) the length of cable
transfered from lF+V to lF−V is illustrated, in c) the involute
curves are drawn, and, in d) the winding pulley shape is ob-
tained from its involute curve. The rotation of the differential
pulley system in the external axes system is shown in e).

4 Applications
4.1 First Example: Cable Robot Trajectory Guiding

Several applications could benefit from the differential
cable arrangement introduced in this paper. For instance,
cable-suspended robots which are frequently used to move
payloads through space due to their low inertia and large
workspace. A common example of this technology is the
SkyCam, a suspended camera often installed in stadiums
[18]. Cable robots have been extensively studied, e.g. in.
[19–21].

The use of noncircular pulleys has been suggested for
cable-suspended mechanisms in [10], where a simplified sce-
nario consisting in the guiding of a payload supported by two
cables through a horizontal linear trajectory was considered,
and further developed for a two degree-of-freedom mecha-
nism in [11]. While the length of each cable would tradition-
ally be controlled by an independent actuator, which requires
additional coordination in order to generate the desired path,
the design presented in the latter references uses a single ac-
tuator driving two different pulley profiles to obtain the de-

Amplification
Pulley

Idler

Differential noncircular 
Pulleys

x

End-effector

Trajectory

To end-effector

To idler pulley

(a)
x (m)0.45

0.40

0.35

0.30

0.25 θP
900°0° 450°

(b) (c)

Fig. 6: Trajectory guiding for a cable-suspended robot. In a),
the 3d model of the prototype is shown. In b), the target dis-
tance function is illustrated. This function can be generated
using the pair of differential noncircular pulleys shown in c).

sired cable lengths corresponding to a horizontal motion at
the end-effector. Altering this design to use differential ca-
ble routings for the noncircular pulleys allows to generate
more complex trajectories, for which the distances between
the end-effector and the attachment points of the cables vary
non-monotonically. As an example, in the mechanism illus-
trated in Fig. 6a, the end-effector follows a pick-and-place
trajectory, consisting in a sequence of upwards, horizontal,
and downwards motions, a more realistic case for a practical
application than solely a translation.

The motion of the end-effector consists in two verti-
cal translations separated by an horizontal translation, with
smooth transitions. The dimensions of the target trajectory
are 750 mm (horizontal) per 500 mm (vertical), whereas
the frame of the mechanisms is a square with 1000 mm
sides. To generate the trajectory, the length of cable from
the end-effector to its attachment points on the frame (near
the square upper vertices) goes from 560 to 1330 mm with
a non-monotonic variation. This variation is generated by
connecting the end-effector cables to the motion of idler pul-
leys, the position of which depends on the rotation of the
differential non-circular pulleys. In order to reduce the size
of the mechanism, an amplification stage (shown in Fig. 6a)
consisting in two coaxial pulleys with a diameter ratio of 6:1
allows to limit the idler pulley displacement to 130 mm over
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an angular range set at 900 degrees, as plotted in Fig. 6b. The
addition of an amplification stage does not fundamentally al-
ter the mechanical principles behind the noncircular profile
synthesis, which yields the shapes shown in Fig. 6c) through
application of the graphical method described in Section 3.2.

The manufactured prototype, with ABS 3D-printed non-
circular pulleys, is illustrated in Fig. 7a-b and further de-
scribed in an online video: youtu.be/13cEN7iKrMM. It
is driven by a RE90 Maxon motor with a 15:1 gearbox and
position-controlled with an EPOS2 24/2 drive. Polyethylene
fiber (Honeywell Spectra) was selected for the cable due to
its high resistance and very low compliance in elongation.
The end effector weighs 130 g.

The behavior of the prototype has been quantified by
measuring the location of the end-effector at 45 degree in-
tervals along the range of the input rotation. As shown in
Fig. 7c-d, a relatively precise linearity has been achieved for
the translations forming the trajectory. The mean deviation
of the experimental coordinates from the expected trajectory
is however relatively high at 9.8 mm, as the actual trajectory
width, 716 mm, is significantly smaller than the expected 750
mm. However, over the total length of the trajectory, 1650
mm, this mean deviation amounts to 0.59%, while the maxi-
mal deviation of 21 mm amounts to 1.27%. Possible sources
for the systematic error found for the position of the vertical
translation parts of the trajectory include imprecise position-
ing of the cable attachment points, and imprecise cut of the
initial cable lengths. From a theoretical point of view, the fact
that non-circular pulleys are modeled as planar curves, al-
though their physical implementation is a three-dimensional
spiral, also leads to errors for high pulley rotation angles, as
previously documented for a similar design in [10].

4.2 Second Example: Static Balancing of a Pendulum

Although noncircular pulleys are often used for static
balancing applications [6, 8, 15], the allowable range of mo-
tion is often limited due to the strictly increasing spring elon-
gations. Conceptually, a mass m fixed at the extremity of a
pendulum of length lp rotating in a direction perpendicular
to the gravitational acceleration field is said to be statically
balanced if an external system provides a torque τ perfectly
compensating the gravitational torque acting on the mass,
namely:

τ = mglp sinφ, (15)

where g is the gravitational acceleration and φ is the angle
of the pendulum with respect to its stable equilibrium po-
sition. It is also possible and often more elegant to define
static balancing in terms of energy, i.e. the pendulum with
its mass is balanced if and only if the sum of its gravitational
energy Ugrav with the energy provided by a storage element
Uext is constant (see Fig. 8a). When this external element is

Actuator

(a)

(b)

0 750250 500
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Vertical position (mm)

0

500

250

Horizontal phase

Vertical
 phase

Vertical
 phase

(c)
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16500 300 600 900 1200

0
5

-5
-10

-25

Deviation (mm)

-15
-20

Verticality 
error : ± 2mm

Verticality 
error : ± 4mm

Horizontality 
error : ± 1mm

(d)

Fig. 7: Experimental results for the trajectory guiding robot.
In a), an overall view of the prototype is provided, with a
composite photograph of its motion shown in b). Position
measurements (in blue), are superimposed on the expected
trajectory (in red) in c). In d), the trajectory is unfolded to
show the experimental deviations.

a spring, this condition becomes:

mglp(1− cosφ)︸ ︷︷ ︸
Ugrav

+F0e+
1
2

ke2︸ ︷︷ ︸
Uext

= constant
(16)

where e is the spring elongation, k is its rate, and F0 is its ini-
tial tension. Thus, in the case where the spring elongation is
0 at the unstable equilibrium position (c.f. Fig. 8a), Eq. (16)
becomes:

mglp(1− cosφ)+F0e+
1
2

ke2 = 2mglp, (17)

and the required elongation is:

e(φ) =
−F0 +

√
F02 +2kmglp(cosφ+1)

k
. (18)
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Fig. 8: Static balancing of a pendulum. In a), the constant to-
tal energy is shown for −π< φ< pi. In b), the target distance
function is illustrated for both considered designs.

(a) (b)

Fig. 9: Two implementations of a static balancing mecha-
nism. In a), the motion of the idler pulley is a translation
(Design #1), while in b) it is a rotation (Design #2).

The generation of the desired function e(φ) can be
achieved using the antagonistic noncircular pulleys with a
differential cable routing discussed in this paper by express-
ing x as x = x0 − e where the initial distance between the
noncircular and idler pulleys x0 is a design parameter. If the
motion of the idler pulley is purely radial with respect to the
noncircular pulleys in the Rre f reference frame, it is possible
to directly equal the pendulum rotation φ with the relative
pulley angle θp. In this case, the target function x(θP), shown
in Fig. 8b, is symmetrical and can be physically generated
by the design D#1 illustrated in Fig. 9a. For easier assembly,
the motion of the idler pulley can also be constrained by a
rotating link, as illustrated in Fig. 9b. In this case, the varia-
tion of the spring length creates an additional angular offset,
which can be accounted for with simple trigonometry. In
this case, however, the target function x(θP), shown in Fig.
8b with design D#2 (Fig 9b), becomes slightly asymmetric.

The two implementations of an axis-based mechanism
transforming the pendulum’s rotation into a reciprocating
motion of the balancing spring discussed above share several
similarities with the mechanism recently proposed in [22].
The latter reference uses a planetary set of noncircular gears
and torsion bars to statically balance a pendulum over an

Fig. 10: Static balancing prototype shown for various pendu-
lum angles

unlimited range of motion. This increased range however
comes at the cost of more difficult machining due to the use
of complex gear profiles, and increased friction due to the
high number of mobile parts, as reported in that work.

Figure 10 shows a proof-of-concept prototype of the
second geometry (Fig. 9b) balancing a mass of 0.17
kg fixed on a 10 cm pendulum for a 360◦ angular
range, as further demonstrated in this online video :
youtu.be/yUw34IeZnIM. The mechanism was manu-
factured using laser-cut acrylic for the frame body and links,
3d-printed ABS for the noncircular pulleys, and polyethy-
lene fiber for the cable. The selected springs have a stiff-
ness of k = 112 N/m, with an initial preload of F0 = 1.56 N,
and their elongation x varies between 0 and 41 mm over the
mechanism’s range of motion.

For this second prototype, performance has been evalu-
ated by measuring the generated torque at 30 degree intervals
over the angular range of the mechanism. At each position,
the maximal and minimal payload weight which could be
statically held (displacement smaller than 1◦ following the
weight addition) were recorded. The hysteresis due to fric-
tion was then computed from this weight difference using
Eq. (15) and is plotted in Fig. 11. In comparison with the
nominal peak-to-peak compensated torque of 0.33 Nm, the
maximal hysteresis is 0.055 Nm, which represents a relative
value of 17%.
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Fig. 11: Experimental results for the static balancing proto-
type. The minimal and maximal compensated torques are
shown for various pendulum angles.

5 Discussion
While the trajectory guiding mechanism introduced in

this paper is able to follow a more complex trajectory than
previous implementations similarly using a simple rotation
as input [10], it shares the main disadvantage of other one
degree-of-freedom systems, namely changing this output tra-
jectory through programming is not possible. Indeed, al-
tering its shape, even slightly, would require replacing the
noncircular pulleys driving the system. Similarly, while the
cable-suspended nature of this robot allows it to have a re-
duced footprint, it also makes impossible to exert pushing
forces beyond the effector’s weight, as the cables can only be
used in tension. The maximum deviation of 1.27% is compa-
rable in magnitude with reported relative errors of 0.79% and
0.83% for similar designs [10,11], notably when considering
the presence of an amplification stage in the mechanism in-
troduced here, which makes small errors in the idler pulley
location responsible for larger deviations at the end-effector.

In the case of the 360◦ static balancing mechanism, the
maximal relative hysteresis of 17% is half the 36% value re-
ported for the geared prototype described in [22], although
the latter design allowed for an unlimited range of motion.
In the case of noncircular pulley static balancing mecha-
nisms, the reported maximal errors were rather 8.6% [15]
and 10% [8], with angular ranges of 72◦ and 130◦ respec-
tively. As expected, the presence of additional rotating mo-
bile parts, whether in the form of the present prototype’s idler
pulley or in that of the referenced prototype’s gears, signifi-
cantly increases the effect of friction.

From a mechanical point of view, both prototypes have
also demonstrated the need to carefully design the three-
dimensional shape of the pulley in order to prevent the cable
from slipping out of its groove. The flanges, instead of being
perpendicular to the pulley axis, should be directed towards
the expected location of the idler pulley, as sudden move-
ments, for instance of the pendulum in the case of the second
mechanism, can cause the cable to break loose.

Besides the applications described above, an additional
contribution of the present paper lays in the introduced
graphical method for noncircular pulley synthesis. In com-
parison with more common numerical or analytical methods,

the proposed approach implemented with a graphical user in-
terface in Matlab, provides the designer with a visual tool
allowing to quickly see the impact of different parameters on
the pulley shape. The main advantage of this method lies in
its generality and versatility as changes of the rotation an-
gle, distance between the pulleys (both selectable through
the locations Pi), and cable length (changing the radii si or
the angles σi) can be arbitrarily combined. This last property
is especially useful for the design of differential systems for
which the distance between non-circular and idler pulleys is
not constant.

6 Conclusion
In this paper, the capabilities of noncircular pulley

(a.k.a. variable radius drum) mechanisms are expanded by
introducing a differential cable routing. By simultaneously
winding and unwinding the same cable from two of these
pulleys, complex and previously impossible behaviors can be
generated. This property was illustrated with two examples
improving on common applications of noncircular pulleys,
namely trajectory guiding and static balancing. Moreover,
the novel graphical method for pulley profile synthesis de-
scribed in this work offers an additional tool to efficiently
design such mechanisms, whether differential or not.
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Listing of figure captions

Fig. 1: Geometry of a single noncircular pulley

Fig. 2: Illustration of the proposed noncircular pulley synthesis method. In a) the target function g(θP,x, lFV ) = 0 is shown,
in b) the involute curve is drawn, and, in c) the pulley shape is obtained from the latter curve. The rotation of the noncircular
pulley in the external axes system is shown in d)

Fig. 3: Proposed synthesis method with a nonzero idler pulley radius. In a) the involute curve is drawn, and, in b) the pulley
shape is obtained from the latter curve. The rotation of the noncircular pulley in the external axes system is shown in c).

Fig. 4: Geometry of the serial cable routing for antagonistic noncircular pulleys

Fig. 5: Proposed synthesis method for the differential case. In a) the target distance is shown, in b) the length of cable
transfered from lF+V to lF−V is illustrated, in c) the involute curves are drawn, and, in d) the winding pulley shape is obtained
from its involute curve. The rotation of the differential pulley system in the external axes system is shown in e).

Fig. 6: Trajectory guiding for a cable-suspended robot. In a), the 3d model of the prototype is shown. In b), the target
distance function is illustrated. This function can be generated using the pair of differential noncircular pulleys shown in c).

Fig. 7: Experimental results for the trajectory guiding robot. In a), an overall view of the prototype is provided, with
a composite photograph of its motion shown in b). Position measurements (in blue), are superimposed on the expected
trajectory (in red) in c). In d), the trajectory is unfolded to show the experimental deviations.

Fig. 8: Static balancing of a pendulum. In a), the constant total energy is shown for −π < φ < pi. In b), the target distance
function is illustrated for both considered designs.



Fig. 9: Two implementations of a static balancing mechanism. In a), the motion of the idler pulley is a translation (Design
#1), while in b) it is a rotation (Design #2).

Fig. 10: Static balancing prototype shown for various pendulum angles

Fig. 11: Experimental results for the static balancing prototype. The minimal and maximal compensated torques are shown
for various pendulum angles.
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