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Segmenting axon and myelin from microscopic images is relevant for studying the
peripheral and central nervous system and for validating new MRI techniques that aim at
quantifying tissue microstructure. While several software packages have been proposed,
their interface is sometimes limited and/or they are designed to work with a specific
modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg,
which allows to perform automatic axon and myelin segmentation on histology images,
and to extract relevant morphometric information, such as axon diameter distribution,
axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-
based graphical user interface (GUI) and can easily be adapted to a variety of imaging
modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-
segmentation of axons over a cropped image and discriminant analysis (DA) to select
the best parameters based on axon shape and intensity information; (iii) automatic axon
and myelin segmentation over the full image; and (iv) atlas-based statistics to extract
morphometric information. Segmentation results from standard optical microscopy (OM),
SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented,
along with validation against manual segmentations. Being fully-automatic after a
quick manual intervention on a cropped image, we believe AxonSeg will be useful to
researchers interested in large throughput histology. AxonSeg is open source and freely
available at: https://github.com/neuropoly/axonseg.

Keywords: axon, myelin, segmentation, discriminant analysis, histology, microscopy, graphical user interface,
g-ratio

INTRODUCTION

The central nervous system, which consists of the brain and the spinal cord, relies on the
transmission of electrical signals via white matter axons. The myelin sheath, wrapped around
the axons, has a key role in the transmission process over long distances (Zoupi et al., 2011;
Seidl, 2014). In case of degenerative diseases such as multiple sclerosis, myelin tends to
degenerate by undergoing significant morphological changes, affecting signal propagation
(Lassmann, 2014; Alizadeh et al., 2015; Papastefanaki and Matsas, 2015). A large body of
research focuses on the understanding of the intrinsic patterns related to demyelination in animal
models (e.g., Experimental Autoimmune Encephalomyelitis, shivered, Wallerian degeneration;
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Baker and Amor, 2014; Ben-Nun et al., 2014; Papastefanaki and
Matsas, 2015). Therefore, it is of particular interest to image
white matter microstructure with high enough resolution to
identify axon and myelin morphology. Histology has provided
valuable information, but popular imaging techniques such as
transmission electron microscopy (TEM) can only image small
regions (typically ∼100 × 100 µm2). New imaging techniques
with a sliding acquisition window and stitching capabilities
have emerged that can provide a full picture of a sample
under investigation, e.g., a 1 × 1 cm2 cross-section of a spinal
cord. However, axon and myelin segmentation of these large
datasets is extremely time-consuming and difficult, as a dataset
covering several cm2 contains millions of axons. Moreover,
manual segmentation is subject to user bias and is therefore not
reproducible within and across sites.

The first software tools capable of accomplishing
segmentation of nerve fibers have mostly focused on simple
segmentation algorithms for microscopic images stained with
toluidine blue (Cuisenaire et al., 1999; Romero et al., 2000). Some
research groups have opted for manual segmentation (Berthold
et al., 1983; Dula et al., 2010; Liewald et al., 2014). Liewald et al.
(2014) performed manual segmentation on TEM samples in
order to study the distribution of axons diameters in the cortical
white matter. Begin et al. (2014) introduced an algorithm capable
of segmenting both axon and myelin in large-scale images from
coherent anti-Stokes Raman scattering (CARS) microscopy.
Their software can be used to extract morphological data from
the input images and is fully automated. Although their software
could be used on different contrasts, all the parameters are set
to work on CARS images, and no graphical user interface (GUI)
is included to adapt them to other contrasts. More et al. (2011)
introduced a simple semi-automated algorithm designed to work
on scanning electron microscopy (SEM) images. While a GUI
is included, its function is limited to segmentation parameters
only, which are hard to provide without prior knowledge of
the tissue sample to segment. Moreover, the axon segmentation
needs to be manually corrected before launching the myelin
sheath segmentation and there is no integrated framework
for extracting relevant morphometric information afterwards.
Other segmentation tools focus on TEM images from optic
nerves (Zhao et al., 2010) or cross sectional images of rat nerve
fibers from the sciatic nerve in optical microscopy (OM; Wang
et al., 2012). However, both work only on specific imaging
modalities.

Most of the published work describes the segmentation
algorithms without giving open access to the related scripts, or
without providing an intuitive interface for other researchers to
use. In summary, there is no single software for axon/myelin
segmentation that is adapted to all imaging contrasts, is available
for free, handles large-scale histology data and has a GUI. Having
such software would facilitate the processing of large microscopy
images and standardize processing across research groups.

In this article, we introduce AxonSeg, which is designed to
perform axon and myelin segmentation on large-scale histology
images, features an intuitive GUI, works with various contrasts
and is open source. This article is organized as follows:
(i) the ‘‘Methods’’ Section lists the main steps of AxonSeg,

details the segmentation strategies and the discrimination
model, then details the validation part; (ii) the ‘‘Results’’
Section presents validation results, proof-of-concept axon and
myelin segmentation obtained from three different contrasts
(CARS, OM and SEM) and shows statistics results on
relevant morphological metrics from the input images; (iii)
the ‘‘Discussion’’ Section addresses pros/cons of AxonSeg and
discusses further possible developments; and (iv) an example use
case describes the typical workflow in order to segment an OM
sample.

MATERIALS AND METHODS

Algorithm
AxonSeg aims at performing both axon andmyelin segmentation
on various imaging contrasts, including a robust axon candidate
discrimination step that aims at optimizing sensitivity and
precision.

Axon Segmentation
The axon segmentation strategy is based on Begin et al. (2014)
and uses the extended minima method (also known as gradient-
based region growingmethod) to output binary segmentations of
the intracellular part of the axon (i.e., axon without myelin). The
extended minima algorithm is defined as the regional minima of
the H-minima transform. The H-minima transform eliminates
all minima whose intensity is less than input threshold h. The
regional minima, i.e., connected components of pixels with the
same intensity value, and whose outer boundary pixels have
higher values, are then computed.

The binary axon segmentation image is then post-
processed by common morphological operations: remove
isolated individual pixels, fill isolated interior pixels, perform
morphological closing, remove H-connected pixels, perform
morphological opening and finally, remove all partial axon
candidates that touch the outside border.

Axon Discrimination
During the axon segmentation step, false positives (FPs) are
inevitably introduced in the resulting output image. Thus, a
discrimination step is needed to keepmost of the true axons while
trying to reject the false ones. Our discrimination strategy aims
at combining shape (morphology) and intensity features in order
to build a discriminant analysis (DA) classifier that distinguishes
true/false axons.

The DA model is initiated by using a training dataset as
input. This training dataset is generated by the user using the
procedure described in section ‘‘discriminant analysis’’ and is
made of two groups: one group contains true axons and the other
group contains false axons. Shape features are determined for
every labeled object of the training groups:

– Circularity: describes the roundness of the object, defined as
4π× Area/Perimeter2;

– Solidity: describes the compactness of the object, computed
as Area/ConvexArea, where the convex area is the area of the
polygon containing the object;

Frontiers in Neuroinformatics | www.frontiersin.org 2 August 2016 | Volume 10 | Article 37

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


Zaimi et al. AxonSeg: Software for Axon and Myelin Segmentation

– Ellipticity: describes the flattening of the object, defined as the
ratio between the minor and major axes;

– Equivalent diameter: diameter of the object, computed as the
diameter of a circle with the same area as the object.

In a similar way, intensity features are computed for every
labeled object of the training groups:

– Object intensity mean and standard deviation;
– Neighborhood intensity mean and standard deviation: the

neighborhood is defined by performing a small morphological
dilation of the object (disk-shaped structuring element with a
radius of 2 pixels);

– Contrast: intensity difference between object and
neighborhood intensity means.

True axons are usually described as round, convex, low
intensity shapes, enclosed by a higher intensity myelin sheath
annulus. The output of this process is a linear or quadratic
classifier in the n-parameters space that can predict true/false
axons from the untrained dataset.

Myelin Segmentation
The myelin segmentation strategy is based on the algorithm
developed by Begin et al. (2014) which relies on radial screening
of the axon neighborhood and the minimal-path algorithm
(Vincent, 1998). First, after labeling the axons, the gradients
of the radial profiles of each axon are computed by using a
Sobel filter. The minimal-path algorithm is applied on radial
profile gradients in order to detect the outer border of the
myelin. In our implementation, we apply a subsequent maximal
path to detect the inner border of the myelin sheath in order
to refine the axon segmentation. Also, additional constraints
have been added in order to improve the robustness of the
myelin segmentation. This was done using a double snake
algorithm (active contours) adapted from MATLAB Central File
Exchange1, designed to detect both the outer and the inner
boundary of the myelin sheath, and constrained to have a
homogenous myelin thickness across the axon circumference
(More et al., 2011) and a g-ratio (defined as the ratio of the inner
to the outer diameter of the myelin sheath) within the range 0.4
and 1.

Next, a cleaning step is done by verifying the presence of
conflicts between adjacent myelin areas. If more than 50% of
the myelin sheath area from one axon is overlapping with the
myelin sheath area from another adjacent axon, then the former
axon is rejected from the analysis. The final axon segmentations
are obtained from the corresponding myelin segmentations after
computing a morphological filling.

AxonSeg Software
Figure 1 shows the main steps in AxonSeg: cropping of a
small region, image pre-processing, axon segmentation and DA,
and axon and myelin segmentation of the full image. The

1Kroon (2010). Snake: Active Contour (http://www.mathworks.com/
matlabcentral/fileexchange/28149-snake---active-contour), MATLAB
Central File Exchange. Retrieved October 30, 2015.

main GUI tool of AxonSeg can be accessed by launching the
SegmentationGUI function. Note that if the image is already small
(e.g., less than 2000 × 2000 pixels), it is possible to bypass the
cropping step and the DA step and just run the segmentation
over the full image. Each step has a previewing capability and is
composed of a ‘‘Go to next step’’ button that uses the selected
parameters/options to generate and display the output. A ‘‘Reset
Step’’ button allows the user to go back to the previous step.

Pre-Processing of Cropped Image
At the beginning of the process, the user has access to
the following pre-processing tools: (i) a color inversion
(complement) module to ensure that axons are darker than
the myelin, as required by the segmentation strategy; (ii) a
smoothing module (averaging filter, size 3× 3); and (iii) contrast
enhancement via histogram equalization and deconvolution. The
user is asked to enter the pixel size, so that all morphological
measurements regarding axon or myelin are given in distance
units. If a scaling bar is present on the image (sometimes
integrated frommicroscope outputs), the user can define the size
of the scaling bar and select the two extreme points of this bar to
get the pixel size.

Axon Segmentation From Cropped Image
Axon segmentation is performed using the extended minima
algorithm, as explained in Section ‘‘Axon Segmentation’’. The
user can adjust segmentation results in real time by tuning the
parameters of the extended minima (threshold values) with a
slider (see ‘‘Example Use Case’’ Section for a typical use case).

Discriminant Analysis
A first global discrimination step, conducted by the user, aims
at cleaning up the axon candidates field by eliminating a
significant number of FPs. The ‘‘Minimal size’’ slider is used
to remove FPs associated with small debris or artifacts (e.g.,
holes naturally present in the tissue), while the ‘‘Solidity’’ and
‘‘Ellipticity’’ sliders can help eliminate FPs coming from inter-
nerve-fiber regions (extended intercellular spaces) of the image.
The ‘‘Go to next step’’ button combines the result of each
slider. On the next step, the user can manually remove the
remaining FPs by clicking on the image. The selection of
the features for the prior axon discrimination was made in
accordance with the parameters analysis performed on control
datasets. Similar feature analysis was performed by other research
groups in order to find the best parameters that can separate
the true positives (TPs) and FPs (Romero et al., 2000; Zhao
et al., 2010; More et al., 2011; Wang et al., 2012; Begin
et al., 2014), but none of them were able to find a perfect
combination due to the large variability among axon shapes and
intensities.

The DA tool is then launched on the corrected cropped
image: the remaining axons are considered as TPs while those
eliminated earlier are considered as FPs. The user can select
either the linear DA or the quadratic one: the classification
results will be displayed on the GUI, and the user can scroll
through the ‘‘discriminant analysis’’ slider in order to select the
sensitivity and specificity combination adapted to their needs.
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FIGURE 1 | Diagram illustrating the main steps of AxonSeg. Pre-processing, axon segmentation and discrimination are first performed on a cropped image.
Then, the segmentation parameters applied on the cropped image are saved and can be used to launch the automatic full-scale segmentation of the axons and the
corresponding myelin sheaths. Note that axons within a range of 2 µm from the edge of the image are discarded to prevent the segmentation of incomplete axons.

Opting for a higher sensitivity is a way to keep more axons,
although it usually leads to lower specificity, thus accepting
more FPs in the axon segmentation output. In our application,
we aim at obtaining a classifier with maximal sensitivity and
maximal specificity, i.e., the closest possible to the upper left
corner of the receiver operating characteristic (ROC) curve.
The minimal Euclidean distance from the upper left corner
can thus be computed, and is available in the GUI along with

other options (e.g., maximal sensitivity, maximal specificity).
Figure 2 shows a screen capture of the GUI during the
DA step.

Note that we do not let the user add missing axons in the
GUI at this step for two main reasons. First, manually adding
missed axons can add bias in shapes and thus strongly affect the
DA. Secondly, AxonSeg comes with a smaller GUI tool called
ManualCorrectionGUI, which can be used in order to correct
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FIGURE 2 | Discriminant analysis (DA) step in the AxonSeg graphical user interface (GUI). The user can scroll through available sensitivity and specificity
combinations and display the results. For each sensitivity/specificity value, accepted axons are displayed in green while rejected axons are displayed in orange. The
user can also decide to select a receiver operating characteristic (ROC) metric (e.g., minimal Euclidian distance, maximal sensitivity, maximal specificity). When
satisfied with the DA classifier, the user can launch the myelin segmentation.

a segmentation result by adding, removing or modifying axons
after the full-image segmentation.

Myelin Segmentation on Cropped Image
The myelin segmentation is performed on the accepted axons
(after manual correction or as determined by the selected DA
result), as explained in Section ‘‘Myelin Segmentation’’. The
results are displayed on theGUI. The user can go back to previous
steps and can adjust the parameters iteratively until satisfied with
the final result.

Outputs
At the end of the DA and myelin segmentation on the cropped
image, an output folder is created. A very important feature
of our software is the axonlist structure, which stores for each
axon object the following fields: the data (all the pixels belonging
to the axon object, in x and y coordinates), the axon and
myelin areas (in both pixels and µm2), the centroid (in x and
y coordinates), the axon ID (from labeling), the myelin g-ratio,
the axon equivalent diameter (in µm), the myelinated fiber
equivalent diameter (in µm) and the myelin thickness (in µm).
These metrics are also stored in a comma-separated values (CSV)
file, also in the output folder. Figure 3 illustrates the main
morphological metrics computed by AxonSeg.

The default segmentation images saved in the output folder
are labeled in axon equivalent diameter color code: a first one
displaying the axon segmentation and a second one displaying
the myelin segmentation. Other segmentation displays can be
produced by using the as_display_label function included in
AxonSeg. Two display types are available (either axon or myelin),
color mapped in axon equivalent diameter, g-ratio, myelin
thickness or axon ID. Additional images are also saved in the
output folder: pre-processed input cropped image, binary image
of the initial axon segmentation candidates and binary image of
the final axon segmentation result after discrimination.

All parameters that have been adjusted using the GUI are
saved into the MATLAB structure SegParameters.mat which is
subsequently used for the full image segmentation. This structure
can also be loaded in the GUI at any time if needed, in
particular if the user wants to segment another image with similar
contrast. Relevant parameters include pre-processing options,
axon segmentation thresholds, prior axon discrimination values
and DA classifiers.

Full Image Segmentation
If the user worked on a cropped region of the initial image,
the full image segmentation can be launched by applying the
same parameters as those used throughout the segmentation and
processing of the cropped region. To avoid RAM saturation,
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FIGURE 3 | Main morphological properties computed by AxonSeg. For
each myelinated fiber, the centroid, the axon and myelin areas, the axonal
diameter, the myelinated fiber diameter, the myelin thickness and the myelin
g-ratio are calculated.

the full image is processed by smaller blocks, with 20%
overlap, and then stitched together. Note that this feature
allows the segmentation of much larger images than the
initial implementation by Begin et al. (2014) (images up to
21,000 × 12,000 pixels were processed successfully). This
segmentation per block also allows parallelization across CPUs
by using the Parallel Computing Toolbox in MATLAB (parfor
and parpool), if supported by the computer.

This full segmentation can be run without using the GUI, by
calling the as_Segmentation_full_image function, which requires
the image input name and the SegParameters.mat file (see
‘‘Example Use Case’’ Section for an example). The block size, the
overlap between adjacent blocks and the output folder name can
also be specified if needed.

Morphometric Analysis
In order to analyze the results, additional tools have been
developed to extract statistics in specific regions of interest (ROI),
for instance the axon diameter distributions in the posterior
fasciculus of the spinal cord. Other statistics are: axon and
myelin areas, myelin thickness, g-ratio and axon count. These
ROI can be manually drawn or can be imported from a digital
version of an existing atlas (e.g., the human white matter atlas
from Lévy et al., 2015). A registration module which is based
on an affine 2D transformation is also provided to register the
ROI to the segmentation. These operations (mask registration,
labeling and metrics calculations) can be performed by a set of
AxonSeg functions (see ‘‘Example Use Case’’ Section for more
details).

Validation
Data
Spinal cord images were acquired with three different imaging
techniques: OM, SEM and CARS. Standard OM images
were obtained from one rat and one cat (cervical sections).
Samples were embedded in paraffin and imaged using a
whole slide scanner with 20× magnification (Hamamatsu
NanoZoomer 2.0-HT). SEM images were obtained from
one rat (cervical section). Sample was stained in osmium,
embedded in epoxy, polished and imaged using an SEM
system (Jeol 7600F) with 1000× magnification (pixel size
of 0.08 µm). CARS images were obtained from one rat
(thoracic section). Sample was imaged with a 60× objective lens
(UPLSAPO 1.2 NA w, Olympus) and recorded images were
stitched to reconstruct the whole section (∼0.2 µm/pixel).
All animals were perfusion-fixed using 2% PFA and
2% Glutaraldehyde.

Ground Truth
Ground truth images of axon segmentations were produced
by manually correcting results of AxonSeg, using the
ManualCorrectionGUI tool. Correction included: adding
missed axons, removing FPs and correcting axons shape when
necessary. The resulting binary images (identifying axons as
logical true and background as logical false) were used to assess
segmentation quality, sensitivity and precision.

Sensitivity and Precision of Axon Detection
In order to evaluate the ability of AxonSeg to distinguish
between true and false axon candidates, sensitivity and precision
measurements were computed. TP, false negative (FN) and FP
counts were obtained by automatically comparing the binary test
and control images by using the centroid positions. Here, a TP
is defined as a correctly identified axon (present in both test and
control images), while a FN is defined as an incorrectly rejected
one (present in control image but absent from the test image).We
can also identify the FPs, described as axon candidates present in
the test image, but absent from the control image. The sensitivity,
also called TP rate (TPR), is defined as:

TPR =
TP

TP + FN
(1)
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TABLE 1 | Assessment of axon detection and segmentation quality provided by AxonSeg.

Axon detection Segmentation quality (from individual axon dice coefficients)

Sensitivity Precision 10th Percentile 50th Percentile 90th Percentile

OM No DA 0.8900 0.8194 0.7781 0.8636 0.9254
Linear DA 0.8720 0.8519
Quadratic DA 0.8857 0.8304

SEM No DA 0.7886 0.6745 0.6876 0.8271 0.9221
Linear DA 0.8607 0.5492
Quadratic DA 0.8593 0.5959

CARS No DA 0.5634 0.4751 0.7708 0.9234 0.9688
Linear DA 0.5746 0.5126
Quadratic DA 0.5618 0.5181

Three modalities were tested: optical microscopy (OM), scanning electron microscopy (SEM) and coherent anti-Stokes Raman scattering (CARS). Sensitivity and precision

were computed from the true positive (TP), false positive (FP) and false negative (FN) counts for three conditions: no discriminant analysis (DA) model, linear DA model or

quadratic DA model. Segmentation quality was assessed by using the true positives without DA (see “Quality of Axon Segmentation” Section for Justification): 10th, 50th

and 90th percentiles were computed from the Dice coefficient distribution.

The precision, also called positive predictive value (PPV), can
be defined as:

PPV =
TP

TP + FP
(2)

Quality of Axon Segmentation
The quality of the axon segmentations was measured by
comparing segmentation results obtained from the GUI to the
ground truths by using the Dice coefficient. Given two binary
images I and J of the same size, we can define a as the number of
pixels where the corresponding values of I and J are both 1 (true).
In a similar way, we can also define b and c as the number of pixels
where a 0 (false) value in I has a corresponding 1 value in J, and
where a 1 value in I has a corresponding 0 value in J, respectively.
We can then define the Dice coefficient between I and J:

D =
2a

2a+ b+ c
(3)

For every axon object in test image I and its corresponding
one in the ground truth image J (i.e., for every TP detected), the
Dice coefficient was calculated. 10th, 50th and 90th percentiles
were obtained from the Dice distributions. Note that we have
not quantified the quality of the myelin segmentation, as this has
already been done by Begin et al. (2014).

RESULTS

Sensitivity and Precision of Axon Detection
To validate the sensitivity of axon detection (TPs), three
conditions were tested: axon segmentation without DA, axon
segmentation with linear DA and axon segmentation with
quadratic DA. The axon segmentation without DA was
performed by visual assessment on a cropped region, using the
feature sliders available in the GUI and trying to keep most of the
TPs while eliminating as much FPs as possible. Then, linear and
quadratic DAs were computed by using the same cropped region
as training dataset and selecting the sensitivity/specificity value
for which the Euclidean distance metric was minimal. Cropped

regions of about 25% of the full image were used in all cases.
Sensitivity and precision were then computed on the full images.
Results are reported in Table 1 for the three available modalities
(OM, SEM and CARS).

Quality of Axon Segmentation
Quality of axon segmentation was assessed by computing the
Dice coefficient between the automatic segmentation and the
ground truth (segmentation with manual correction). For all
modalities tested, segmentation results were produced without
the use of DA, as only TPs are considered in the Dice
computation and because the use of DA does not affect the
quality of the segmentation (it only affects the detection of
axons). Results are reported in Table 1 for the three modalities
(OM, SEM and CARS).

Application to Large-Scale Image
Figure 4 shows results of full image segmentation (axon display)
from a cervical cross-section of a cat spinal cord from OM,
including a zoom in on a small region (myelin display). The
displayed spinal cord slice has an area of about 4 mm2. Visual
assessment suggests fairly good segmentation quality, with the
majority of axons detected and correctly segmented. This result
can also be found on our laboratory website with a zooming
feature2. Some axons are missed, which is largely due to the poor
resolution of the image.

Atlas-Based Morphometric Analysis
Morphometric statistics were extracted from the same full-scale
image as that in Figure 4. Results are shown in Figure 5. For each
region, the following metrics were extracted: axon count, axon
diameter and myelin g-ratio.

Results in Various Imaging Modalities
As a proof of concept, the software has been tested on three
different histology contrasts: OM, SEM and CARS microscopy.

2http://www.neuro.polymtl.ca/histology.php
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FIGURE 4 | Large-scale segmentation (axon display) in a cat spinal cord (cervical section), color-coded for axon diameter. Myelin display (color-coded
for axon diameter) is used in the zoomed region. Note that the regions outside of the white matter were masked out for better clarity, using automatic tools from
AxonSeg.

Figure 6 shows the results of axon and myelin segmentation,
displayed using an axon diameter colormap.

Computation Time
All data presented in this article were processed on a Macintosh
(2.9 GHz Intel i5 processor, 4 cores, 8 GB 1600 MHz DDR3
RAM). The average computing time to process a single axon
(including both axon and myelin segmentation) was 0.26 s.
Therefore, it takes less than 8 h to automatically process a large-
scale dataset (e.g., 21,000 × 12,000 pixels image, around 100,000
axons).

DISCUSSION

This article introduced the Axon Segmentation Toolbox:
AxonSeg, a software that can segment both axon andmyelin from
histology images. We will now discuss the axon discrimination,
validation results, computation time and results obtained from
the three imaging methods assessed, and future perspectives.

Axon Detection
AxonSeg was able to detect most of the true axons in OM
and SEM images, with a sensitivity of 0.8+ in all three cases
tested (see Table 1). OM presented the best detection results
overall, obtaining sensitivities around 0.9 and precisions higher
than 0.8 (see ‘‘Image Quality and Modalities’’ Section for
more details). Better precision was obtained when using a DA
classifier for OM and CARS images, for a similar sensitivity.
The use of DA classifiers in the CARS sample increases
precision by 5%, suggesting that the DA approach could be
more robust than the approach without DA for this type of
image. It can also be pointed out that CARS results presented
lower performance overall when compared to the two other
modalities. We believe this could mostly be due to the poor
image quality of this particular dataset (sub-optimal fixation,
sub-optimal focus, intensity inhomogeneities), the presence of a
high number of very small axons (<1 µm) in the mouse spinal
cord that are difficult to detect due to their size (in comparison,
OM was performed on a cat cervical spinal cord, which has
overall larger axons), and the similarity of intensity values
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FIGURE 5 | Atlas-based morphometry from segmented images. (A) Segmented histology results. (B) Atlas of white matter tracts registered to the histology
image. Morphometric statistics for each of the tracts are extracted: (C) Axon count; (D) Axon diameter (mean); (E) Myelin g-ratio. Note the slightly lower g-ratio
compared to the expected values from the literature (about 0.7; Chomiak and Hu, 2009), which is likely due to the poor resolution of the optical microscope inducing
an over-segmentation of the myelin sheath.

between the intracellular compartment and the background,
which is inherent to the CARS modality. The benefits of
each modality are discussed in Section ‘‘Image Quality and
Modalities’’.

Discriminant Analysis
We believe that the AxonSeg software is the first to feature
a controllable DA tool allowing more flexibility on the type
of contrast/modality, whereas previous software packages have
set fixed parameters (e.g., axon shape and size) for detecting
axons (More et al., 2011; Begin et al., 2014). Moreover, the
user can decide on the ideal sensitivity/specificity depending
on the application. We believe that the best way to exploit
the implemented DA model is to build a template classifier by
using large dataset of labeled true/false axons for each imaging
modality. Therefore, the user could bypass the DA step on the
cropped image and simply input one of the template classifiers
available.

Segmentation Quality
In all three modalities assessed, we observed high Dice
coefficients. All Dice medians (50th percentiles) were
higher than 0.8. In addition, 10th percentiles were all high,
with the lower one being 0.69 (SEM), meaning 90% of
axons have a Dice value higher than 0.69. After further
analysis of the data, we observed that almost all the Dice
coefficients lower than 0.5 come from the smaller axons,
which is expected, as the small area (and thus number of
pixels) used to calculate the Dice values adds bias to the
measures. Note that small differences between the ground
truth and segmentation results are expected, as AxonSeg
produces smooth contours (as described in section ‘‘Myelin
Segmentation’’).

Overall, the data obtained shows only small Dice coefficient
variations between different imaging techniques, demonstrating
the versatility of AxonSeg. While other algorithms exist that
might produce more robust segmentations (Wang et al., 2012;
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FIGURE 6 | Results in various imaging modalities: optical microscopy (OM) from a cat spinal cord, scanning electron microscopy (SEM) and coherent
anti-Stokes Raman scattering (CARS) microscopy from a rat spinal cord. All figures are color-coded for axon diameter. Note: myelin sheaths overlap more on
the OM contrast due to the low resolution, inducing a blurring of the myelin sheath and therefore an apparent over-segmentation. This effect could be compensated
using deconvolution algorithms applied to the image, although this will require further investigation.

Liu et al., 2012), we believe that our software is a relevant addition
to the existing tools, and its modularity enables other researchers
to add more powerful segmentation techniques.

Image Quality and Modalities
While AxonSeg is designed to work with a variety of
modalities, further consideration is needed to properly interpret
segmentation results in each of the tested modalities. OM
images tend to have lower resolution than TEM (Zhao et al.,
2010), which can facilitate the segmentation of axons due
to the blurring of the smaller details in the intracellular
compartments (e.g., mitochondria, neurotubules, etc.). However,

the blurriness also induces a systematic over-segmentation of
the myelin sheath, yielding a downward-bias in the g-ratio
(see Figure 5). In addition, small axons (typically <1 µm)
are not easily distinguishable at the OM resolution, thereby
inducing an upward-bias in axon diameter distribution (Romero
et al., 2000) and downward-bias in axon density. SEM
images usually have higher resolution and can be noisier,
therefore filtering is recommended during pre-processing.
Finally, while CARS images produce exquisite specificity to
myelin without the need for staining, images sometimes
present some inhomogeneities within the myelin (dark patterns),
especially in poorly-fixed samples (Fu et al., 2008; Schie et al.,
2015). Moreover, axon and background signal have similar
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values, which makes it a bit more difficult to detect true
axons. Filtering during pre-processing can help improving the
detection.

In general, AxonSeg like any other segmentation tool strongly
depends on the image contrast and resolution. Therefore,
the user needs to find the optimal pre-processing parameters
for their type of image before proceeding to the next
steps. These parameters can then be applied to subsequent
histology samples if the image contrast and resolution is kept
the same.

Computation Time and Efficiency
Computation time in AxonSeg is reasonably low, needing∼0.26 s
processing time per axon. This requires about 8 h for processing
100,000 axons on standard laptop (4 CPUs, 2.9 GHz). Note
that optimization is ongoing to further reduce processing time
(optimal data types, sparse matrices, etc.). AxonSeg also includes
a feature to automatically partition sub-sections of the full image
in order to avoid RAM saturation, as explained in Section ‘‘Full
Image Segmentation’’.

One of the advantages of AxonSeg in terms of implementation
efficiency is the axonlist structure: every information regarding
the objects (axon and myelin segmentation, morphological
statistics) is stored in a memory-efficient way, making it easier
afterwards to work with the data. In that way, data on the axonlist
can easily be processed in case the user needs to select specific
fibers (e.g., based on position, diameter, and g-ratio).

Distribution of AxonSeg
AxonSeg is an open source software, distributed under an MIT
licence. It can be downloaded from either Github or MATLAB
Central. It is compatible with version R2014a and does not come
with compiled binaries, therefore there is no need for an OS
cross-compiler. Detailed documentation on how to use AxonSeg,
including example scripts, sample data and video demos, can be
found on Github. Maintenance, optimization and the addition of
new features are constantly made. Moreover, any researcher is
welcome to contribute to the project by adding for instance other
detection/segmentation methods and post-processing tools.

Perspectives
Although AxonSeg has shown promising results, there is
room for improving the quality of the axon detection and
segmentation. This is a challenging task because one of the
main purposes of AxonSeg is to be compatible with as many
imaging modalities as possible, in order to be useful for the
community at large. This article focused on presenting the
main steps of AxonSeg as a proof of concept. Future work
aims to explore new segmentation approaches (Markov Random
Fields, Level Set), as well as other discrimination strategies,
possibly integrating a machine learning module to increase
robustness. A complementary approach that is being investigated
is an extrapolation of segmentation metrics, robust to FNs
and FPs.

Among possible applications of AxonSeg is the validation
of quantitative MRI metrics from large-scale histology data, as

recently demonstrated by our group (Stikov et al., 2015a,b; Duval
et al., 2016).

EXAMPLE USE CASE

In this section, we will present an example of workflow and
some guidelines to segment an OM sample. This dataset is
available when downloading the AxonSeg toolbox, under the
‘‘data’’ folder. Note that there is also a line-by-line tutorial
available that shows more examples (as_tutorial.m).

Segmentation
The AxonSeg GUI can be launched using the following Matlab
command line:

SegmentationGUI test_image_OM.tif;

The pixel size for this histology sample is 0.25 µm. This value
can be entered in the corresponding field. This value is important
as it will be subsequently used for morphometric statistics.

In this example, axons are bright and myelin is dark.
Therefore, the ‘‘Invert color’’ option needs to be checked.
Histogram equalization is recommended in order to improve the
axon-to-myelin contrast.

Due to the large size of the image (2000 × 2000 pixels), the
selection of a region of interest is necessary. This can be done
by drawing a small rectangle (typically 50–100 µm large) on the
image using the ‘‘Crop Image’’ button. A preview window will
zoom in this rectangle for the following steps. To go to the next
step, click on ‘‘Go to next step’’. To reset parameters and zoom,
click on ‘‘Reset Step 0’’.

In the axon segmentation step (step 1), two ‘‘ExtendedMin’’
sliders are available. Two different thresholds can thus be used
for the extended minima algorithm if needed. Smaller threshold
values do not segment correctly the whole axonal region for
bigger axons, but are more efficient in order to segment the
smaller ones due to the smaller contrast axon/myelin. On the
other hand, higher thresholds are useful for segmentation of
bigger axons, but tend to merge smaller axons together (if
close to each other). Once the thresholds are set, click on
‘‘Go to next step’’ to merge the segmentation (logical OR)
from the two sliders. Results are displayed in the preview
window.

In the axon discrimination step (step 2), three sliders control
different criteria (‘‘Minimal Size’’, ‘‘Solidity’’, and ‘‘Ellipticity’’)
in order to eliminate most of the FPs. Special care is required to
avoid the elimination of TP. Click on ‘‘Go to next step’’.

In the post-processing and myelin segmentation step
(step 3), the remaining FPs can be removed using the
‘‘Remove’’ button. Use left click to select axons to remove
and right click to validate. Knowing these FP axons, the
DA can be applied to improve the specificity of the axon
detection. ‘‘Quadratic’’ DA usually gives better results in our
tests (results not shown). Finally the ‘‘Myelin Segmentation’’
or ‘‘Segment full image (uncropped)’’ buttons perform the
myelin segmentation of the cropped region and full image,
respectively.
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The SegParameters.mat structure contains all segmentation
parameters after the myelin segmentation is done on the cropped
image. For instance, values that can applied for the segmentation
of this sample are:

PixelSize=0.25; invertColour=true;
HistEq=true; Deconv=false; Smoothing=false;
ExtendedMin1=47.3334; ExtendeMin2=100;
minSize=6.4730; Solidity=0.8400;
Ellipticity=0.2100.

Any other similar image (same resolution and contrast) can now
be segmented using the following command:
as_Segmentation_full_image
('test_image_OM.tif','SegParameters.mat');

Visualization
Segmentation results can be displayed in various ways. For
example, as myelin sheaths color-coded for g-ratio:

load('axonlist.mat');
bw_axonseg=as_display_label(axonlist,
size(img),'gRatio','myelin');
display=sc(sc(bw_axonseg,'hot')+sc(img));
imshow(display);

Alternatively, both axon and myelin segmentations
can be overlaid on the image, color-coded for axon
diameter:

bw_axonseg_1=as_display_label(axonlist,
size(img),'axonEquivDiameter','axon');
bw_axonseg_2=as_display_label(axonlist,
size(img),'axonEquivDiameter','myelin');

display=sc(sc(bw_axonseg_1,'hot')+sc
(bw_axonseg_2,'hot')+sc(img));imshow
(display);

Statistics
Statistics can be computed using the axonlist structure. Below is
an example to compute the axon diameter distribution:

load('axonlist.mat');

axon_diameters=cat(1,axonlist.
axonEquivDiameter);
figure; hist(axon_diameters,50);

It is also possible to extract statistics from specific ROI using
a provided RGB mask. Registration between the mask and
the segmentation can be performed by running the following
code:

[mask_reg_labeled, P_color]=as_reg_mask
(mask,img);

Next, axon IDs belonging to each ROI of the mask are obtained
with the following function:

indexes=as_stats_mask_labeled(axonlist,
mask_reg_labeled);

Statistics for each ROI can be displayed as follows:

as_stats_barplot(axonlist,indexes,P_color);
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