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The present work addresses the problem of chaos control in an electrostatic MEMS resonator by using an output-feedback control
scheme. One of the unstable orbits immersed in the chaotic attractor is stabilized in order to produce a sustained oscillation of
the movable plate composing the microstructure. The orbit is carefully chosen so as to produce a high amplitude oscillation. This
approach allows the enhancement of oscillation amplitude of the resonator at a reduced control effort, since the unstable orbit
already exists in the system and it is not necessary to spend energy to create it. Realistic operational conditions of the MEMS are
considered including parametric uncertainties in the model and constraints due to the difficulty in measuring the speed of the
plates of the microstructure. A control law is constructed recursively by using the technique of backstepping. Finally, numerical
simulations are carried out to confirm the validity of the developed control scheme and to demonstrate the effect of controlling
orbits immersed in the chaotic attractor.

1. Introduction

This paper addresses the problem of chaos control in an elec-
trostatic MEMS resonator with parametric uncertainties and
constraints in the measure of its state. The considered device
is a structure with dual drive using differential actuation, as
shown in Figure 1.

ManyMEMS devices exhibit chaotic behaviour in certain
operational conditions [1–4]. It is observed in recent results
concerning the improvement of the output energy in oscil-
lators using MEMS [5] that controlling MEMS in chaotic
mode can be useful to increase the amplitude of the periodic
oscillations of these systems. Therefore, controlling chaos in
MEMS can enhance the performance of different systems
in which an accurate control of amplitude of oscillation is
mandatory.

Chaos control has been extensively studied in the lit-
erature. Different methods have been applied to stabilize
equilibrium points and unstable orbits immersed in the
chaotic attractor or to track orbits that can be chaotic. The
considered approaches cover the application of a wide range

of control techniques, from the use of Lyapunov theory to
stabilize chaotic oscillators designed via local linearization or
linear feedback [6, 7], to optimal control [8], robust control
[9], and adaptive control [10], to name a few. Chaos control
in MEMS is reported recently in [1, 11]. In [1] a fuzzy control
algorithm is applied to control the chaotic motion and track a
sinusoidal orbit. In [11] an adaptive control is used to control
an uncertain model of a MEMS device and to synchronize it
with a class of uncertain chaotic oscillators. Nevertheless, the
enhancement of oscillation amplitude for MEMS resonators
by appropriate control techniques remains an interesting and
open research subject.

The oscillation amplitude of electrostatic MEMS res-
onators is restricted by the so-called pull-in phenomena
related to a bifurcation arising in electrostatic actuation [12].
The stable traveling range is limited to one-third of its full
gap due to the instability beyond that point. The pull-in
phenomena can be used to accelerate the reaction speed for
switching structures. However, it limits the stable operational
range of the device, which is mandatory for applications
requiring a sustained oscillation of the plates.
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Figure 1: Schematic of the electrostatically actuated MEMS res-
onator.

In order to operate electrostatic MEMS devices beyond
the pull-in, one can use closed-loop control schemes (see,
e.g., [13, 14]). However, it may require a considerable control
effort to produce an arbitrary trajectory. In order to increase
the amplitude of periodic oscillations of the device with a
low energy consumption, we consider in the present work
controlling the resonator in chaotic mode to stabilize an orbit
which is part of the chaotic attractor.

There are different ways to select this orbit. One can pick
an unstable periodic orbit embedded in the chaotic attractor,
take an orbit close to an unstable periodic one, or even choose
a part of a chaotic trajectory that has an almost periodic
behavior.

In the present work, we tackle the amplitude enhance-
ment problem by stabilizing one of these orbits to produce
a high amplitude oscillation.

There are some constraints that must be considered in a
practical implementation of a chaos control scheme applied
to MEMS. In particular, it is very difficult to sense the
velocity of the plates during the operation of the device, which
motivates the use of output-feedback control techniques. In
this work, the output is chosen as the position of the plates,
and, in order to implement the control, the velocity must
be estimated by constructing an observer. We deal with the
uncertainties in the model and the constraints on sensing the
velocity by designing a controller by means of an adaptive
observer backstepping scheme.

The organization of the rest of the paper is as follows.
In Section 2, the dynamics of a chaotic MEMS actuator are
briefly explained. Then, the design of an adaptive observer
control scheme is presented in Section 3. Simulations are
carried out and the results are presented in Section 4. Finally,
concluding remarks are given in Section 5.

2. Dynamics of a Chaotic MEMS Resonator

2.1. Model of the Chaotic MEMS. The MEMS device con-
sidered in this study is presented in Figure 1, which is
based on a model given in [1, 15]. This device is modeled

by a nonlinear mass-spring-damper system with external
electrostatic actuation, expressed as

𝑚�̈� + 𝑏�̇� + 𝑐1𝑧 + 𝑐3𝑧3 = 𝐹, (1)

where 𝑚 is the mass of the movable structure, 𝑏 is the
damping constant, 𝑐1 and 𝑐3 are the linear and cubic stiffness
coefficients, respectively, and 𝐹 is the electrostatic actuation
force given by

𝐹 = 12 𝐶0𝑑(𝑑 − 𝑧)2 (𝑉DC + 𝑢)2 − 12 𝐶0𝑑(𝑑 + 𝑧)2𝑉2DC. (2)

In (2), 𝐶0 is the capacitance of the actuator at rest, which
has an initial gap 𝑑 between themovable and fixed plates.The
input voltage 𝑉𝑖 = (𝑉DC + 𝑢) is applied as shown in Figure 1
and contains two components: aDCvoltage𝑉DC and a forcing
voltage 𝑢, whichmay be a control signal that varies according
to control objectives.

Note that, in the present work, we ignore the dynamics
of the driving circuit by assuming that they are much faster
than those of the mechanical structure. Moreover, as the
MEMS are used as a resonator, we assume that the system
operates in such a way that the moveable and fixed plates do
not come into contact. Hence, we do not take into account
contact dynamics. Nevertheless, for those applications, where
the contactmay occur, a differentmodel should be considered
to capture the dynamics of impacts and the control strategy
should be modified adequately [16].

In order to facilitate control system design and analysis,
it is convenient to work in normalized coordinates and
redefine the time variable. For this purpose, we define the new
variables 𝜓 = 𝑧/𝑑, 𝜏 = 𝜔0𝑡, and �̃� = 𝑢𝐴 and introduce the
following dimensionless constants:

𝜎 = 𝑐1𝑚𝜔20 , 𝜂 = 𝑐3𝑑2𝑚𝜔20 , 𝛿 = 𝐶0𝑉2DC2𝑚𝜔20𝑑2 ,
𝐴 = 2𝛿 1𝑉DC

, 𝜇 = 𝑏𝑚𝜔0 ,
(3)

where 𝜔0 is the natural frequency defined by

𝜔0 = √ 𝑐1𝑚. (4)

In this way, by assuming that the DC voltage is sufficiently
higher than the amplitude of the forcing voltage 𝑢, the dimen-
sionless equation ofmotion (1)may be fairly approximated by

�̈� + 𝜇�̇� + 𝜎𝜓 + 𝜂𝜓3
= 𝛿( 1

(1 − 𝜓)2 −
1

(1 + 𝜓)2) + �̃�
(1 − 𝜓)2 .

(5)

It can be shown that system (5) behaves chaotically by
selecting 𝑢 = 𝑉AC sin(�̃�𝑡) and 𝑉AC𝐴 = 0.04, �̃� = 0.5,𝛿 = 0.338, 𝜇 = 0.01, 𝜎 = 1, and 𝜂 = 12, as indicated in
the Lyapunov exponents diagram in Figure 2. The Lyapunov
exponents are calculated by using the algorithm proposed
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Figure 2: Lyapunov exponents for the system (5) with the set of
parameters: 𝛿 = 0.338, 𝐴 = 0.04, 𝜔 = 0.5, 𝜎 = 1, 𝜇 = 0.01, and𝜂 = 12.

in [17]. The existence of one positive Lyapunov exponent
confirms the sensitive dependence on initial conditions of the
system.

System (5) can be written in state space form as

�̇�1 = 𝜓2,
�̇�2 = −𝜇�̇�2 − 𝜎𝜓1 − 𝜂𝜓31 + 𝑓 (𝜓1) + �̃�

(1 − 𝜓1)2 ,
𝑦 = 𝜓1,

(6)

where

𝑓 (𝜓1) = 𝛿( 1
(1 − 𝜓1)2 −

1
(1 + 𝜓1)2) (7)

and 𝑦 is the output.

2.2. Unstable Orbits in the Strange Attractor. Themain idea to
obtain a sustained oscillation of theMEMS with a low energy
consumption is not to create a new orbit different from those
already present in the attractor.The orbit could be an unstable
periodic orbit embedded in the chaotic attractor, an orbit
close to an unstable periodic one, or even part of a chaotic
trajectory which has an almost periodic behavior.

In order to find one of such orbits, one may measure the
phase space dynamics of the system and obtain a set of points
from which one can extract the orbit by applying the close
return method [18]. Note that other approaches, such as the
shootingmethod [19], can also be used for this purpose.With
the aim of simplifying the discussion, we will only consider
systems, where the state 𝑥 = (𝑥1, 𝑥2) ∈ R2 and an external
periodic force is applied. Under these conditions, a Poincaré
map can be easily constructed from stroboscopically logging
the value of the variable 𝑥 at multiples of the period 𝑇 of the
forcing. Time can be seen as one of the states, and the problem
of finding periodic orbits reduces to find fixed points inR2 on
the Poincaré surface.

The Poincaré map may be defined as follows. Given the
differential equation

�̇� = 𝑓 (𝑥, 𝑡) , 𝑥 ∈ R
2, (8)

Σ

Σ

X
P(X)

t

t + T

Figure 3: Poincaré section Σ and Poincaré map 𝑃 for the periodic
vector field defined by (8) and (9).

with periodic phase space of period 𝑇 such that

𝑓 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡 + 𝑇) , (9)

then the Poincaré map is defined as

𝑃 : Σ → Σ,
𝑥 → 𝜑 (𝑇, 𝑥) , (10)

where 𝜑(𝑡, ⋅) denotes the flow generated by (8) and Σ is a
Poincaré section as shown in Figure 3.

The procedure for finding orbits with almost periodic
behaviour is similar to the one of finding periodic orbits. In
both cases, the image under the Poincaré map of a point close
to the orbit, which intersects the Poincaré surface, is close to
the point. Finding such point is the aim of the close return
method.

For the purpose of applying the method, one records
discretely sampled time series 𝑥(0), 𝑥(𝑇𝑠), . . . , 𝑥((𝑁 − 1)𝑇𝑠)
containing𝑁points, where𝑇𝑠 is the sample time.Then, for a 𝑘
given, one takes a point 𝑥(𝑘𝑇𝑠) and its iteration𝑚 on the map𝑥(𝑘𝑇𝑠+𝑚𝑇) and evaluates the distance𝑑(𝑥(𝑘𝑇𝑠), 𝑥(𝑘𝑇𝑠+𝑚𝑇))
between the points, by using, for example, the Euclidean
norm. If the distance is less than a small 𝜖𝑠, then this is a 𝑚-
period orbit that could be used.

In order to show the application of the close return
method, we use three different time series from which we
extract unstable orbits of different periods. Each of these
series comprises a set of 𝑁 = 120000 points with sample
time of 𝑇𝑠 = 0.01, which corresponds to a logging time of
approximately 100 times the period of the forcing term. The
orbits were obtained by using 𝜖𝑠 = 0.005 and can be seen in
Figures 4, 5, and 6. The figures suggest that the bifurcations
occurred when the period increases.

In order to enhance the oscillation amplitude of the plates,
we chose an unstable orbit surrounding the chaotic attractor,
which produces a high amplitude periodic output.This orbit,
shown in Figure 7, was used as the reference trajectory in the
simulation given subsequently. It can be approximated by its
truncated Fourier series up to five terms, given by

𝑦𝑟 = 𝑎0 + 𝑎1 cos (𝑤1𝑡) + 𝑏1 sin (𝑤1𝑡) + 𝑎2 cos (2𝑤1𝑡)
+ 𝑏2 sin (2𝑤1𝑡) + 𝑎3 cos (3𝑤1𝑡) + 𝑏3 sin (3𝑤1𝑡)
+ 𝑎4 cos (4𝑤1𝑡) + 𝑏4 sin (4𝑤1𝑡) + 𝑎5 cos (5𝑤1𝑡)
+ 𝑏5 sin (5𝑤1𝑡) ,

(11)
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Figure 4: Unstable orbits found using close return method. The period of the orbit is identified with 𝑛.
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Figure 5: Unstable orbits found using close return method for a second set of data. The period of the orbit is 𝑛.
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Figure 6: Unstable orbits found using close return method for a third set of data. 𝑛 identifies the period of the orbit.
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Figure 7: Unstable orbit surrounding the chaotic attractor.

where

𝑎0 = 0.0175400, 𝑎1 = −0.4498000,
𝑏1 = −0.000563, 𝑎2 = 0.0112600,
𝑏2 = 0.0008906, 𝑎3 = −0.029140,
𝑏3 = 0.0000376, 𝑎4 = 0.0006330,
𝑏4 = 0.000231, 𝑎5 = −0.001090,

𝑏5 = 0.0000852.

(12)

By taking the time derivative of (11), we obtain

̇𝑦𝑟 = 𝑎1 cos (𝑤1𝑡) + 𝑏1 sin (𝑤1𝑡) + 𝑎2 cos (2𝑤1𝑡)
+ 𝑏2 sin (2𝑤1𝑡) + 𝑎3 cos (3𝑤1𝑡) + 𝑏3 sin (3𝑤1𝑡)
+ 𝑎4 cos (4𝑤1𝑡) + 𝑏4 sin (4𝑤1𝑡) + 𝑎5 cos (5𝑤1𝑡)
+ 𝑏5 sin (5𝑤1𝑡) ,

(13)

where

𝑎1 = −0.00052, 𝑏1 = 0.4163,
𝑎2 = 0.0016, 𝑏2 = −0.0208,
𝑎3 = 0.00010, 𝑏3 = 0.0809,
𝑎4 = 0.00085, 𝑏4 = −0.0023,
𝑎5 = 0.00039, 𝑏5 = 0.00500.

(14)

The second derivative of 𝑦𝑟 is obtained by taking the
derivative of (13).

In what follows, we use the following general assumption.

Assumption 1. The reference signal 𝑦𝑟(𝑡) and its first two
derivatives are known and bounded. In addition, 𝑦(𝑝)𝑟 (𝑡),∀𝑝 ≥ 3, is piecewise continuous.

3. Output-Feedback Control of Chaotic MEMS

The objective of the control is to stabilize the unstable orbit
(11) of the chaotic uncertain system (6). This objective can be
achieved by forcing the tracking error to tend to zero:

lim
𝑡→∞

[𝑦 (𝑡) − 𝑦𝑟 (𝑡)] = 0. (15)

We use adaptive observer backstepping to deal with the
parametric uncertainties in the model and also consider
more realistic designs where only the output is available for
measurement.

3.1. Adaptive Observer Backstepping Control. In order to
apply a backstepping design procedure to system (6), we
transform it into the parametric output-feedback form by
using the following change of variables [20]:

𝑥1 = 𝜓1,
𝑥2 = 𝜓2 + 𝜇𝜓1. (16)

System (6) becomes

�̇�1 = 𝑥2 − 𝜃1𝑥1,
�̇�2 = −𝜃2𝑥1 − 𝜃3𝑥31 + 𝜃4𝑓 (𝑥1) + 𝛽 (𝑦) 𝑢,

𝑦 = 𝑥1,
(17)

where 𝜃 = (𝜃1 𝜃2 𝜃3 𝜃4) = (𝜇 𝜎 𝜂 𝛿) is a vector of
uncertain parameters and

𝛽 (𝑦) = 1
(1 − 𝑦)2 . (18)

Equation (17) can be written in a more compact form

�̇� = 𝐴𝑥 + 𝑘𝑦 + 𝑏𝑢 + 𝜑𝜃,
𝑦 = 𝑐𝑇𝑥, (19)

where 𝑥 = (𝑥1 𝑥2)𝑇 is the state vector,𝑦 is the output, 𝑢 is the
input, and 𝑘 = (𝑘1 𝑘2)𝑇 is a vector with 𝑘1, 𝑘2 ∈ Z+, defined
in such a way that the matrix 𝐴, given by

𝐴 = [−𝑘1 1−𝑘2 0] , (20)

is Hurwitz, 𝑏 = (0 𝛽)𝑇, 𝜑 is a nonlinear matrix defined by

𝜑 = [−𝑥1 0 0 00 −𝑥1 −𝑥31 𝑓 (𝑥1)]
= (𝜑1 𝜑2 𝜑3 𝜑4) ,

(21)

and 𝑐 = [1 0]𝑇.
We will reconstruct the state of the system through the

use of the filters 𝜉𝑖, 𝑖 = 0, 1, . . . , 4. The state is reconstructed
as

𝑥 = 𝜉0 + 𝜃1𝜉1 + 𝜃2𝜉2 + 𝜃3𝜉3 + 𝜃4𝜉4 + 𝜖, (22)
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where 𝜖 is the error between the state and its estimation. The
virtual estimate of 𝑥 depends on the uncertain parameter 𝜃,
but all we need in the design is the vector (𝜉0 𝜉1 𝜉2 𝜉3 𝜉4).
In order to guarantee that the error 𝜖 tends exponentially to
be zero, we define the filters as

̇𝜉0 = [−𝑘1 1−𝑘2 0] [𝜉01𝜉02] + [𝑘1𝑘2] 𝑦 + [0𝛽] 𝑢,
̇𝜉1 = [−𝑘1 1−𝑘2 0] [𝜉11𝜉12] + [−𝑦0 ] ,
̇𝜉2 = [−𝑘1 1−𝑘2 0] [𝜉21𝜉22] + [ 0−𝑦] ,
̇𝜉3 = [−𝑘1 1−𝑘2 0] [𝜉31𝜉32] + [

0−𝑦3] ,
̇𝜉4 = [−𝑘1 1−𝑘2 0] [𝜉41𝜉42] + [ 0𝑓 (𝑦)]

(23)

or in a compact way as

̇𝜉0 = 𝐴𝜉0 + 𝑘𝑦 + 𝑏𝑢,
̇𝜉𝑗 = 𝐴𝜉𝑗 + 𝜑𝑗 (𝑦) , 𝑗 = 1, 2, 3, 4. (24)

From (22) we can obtain the error dynamic equation

̇𝜖 = �̇� − ̇𝜉0 − 𝜃1 ̇𝜉1 − 𝜃2 ̇𝜉2 − 𝜃3 ̇𝜉3 − 𝜃4 ̇𝜉4, (25)

and by using (19) and (23) we obtain

̇𝜖 = (𝐴𝑥 + 𝑘𝑦 + 𝑏𝑢 + 𝜑𝜃) − (𝐴𝜉0 + 𝑘𝑦 + 𝑏𝑢)
− 𝜃1 (𝐴𝜉1 + 𝜑1) − 𝜃2 (𝐴𝜉2 + 𝜑2)
− 𝜃3 (𝐴𝜉3 + 𝜑3) − 𝜃4 (𝐴𝜉4 + 𝜑4)

= 𝐴 (𝑥 − 𝜉0 − 𝜃1𝜉1 − 𝜃2𝜉2 − 𝜃3𝜉3 − 𝜃4𝜉4)
= 𝐴𝜖.

(26)

Since 𝐴 is Hurwitz, 𝜖 converges to zero exponentially.
The adaptive output-feedback controller is designed

recursively applying backstepping as follows.

Step 1. We define the first error variable as the tracking error:

𝑧1 = 𝑦 − 𝑦𝑟, (27)

where 𝑦𝑟 is the reference signal which satisfies Assumption 1.
Its dynamic is given by

�̇�1 = ̇𝑦 − ̇𝑦𝑟 = �̇�1 − ̇𝑦𝑟
= 𝑥2 + 𝜃1 (−𝑥1) − ̇𝑦𝑟; (28)

since we cannot measure 𝑥2, it cannot be used as a virtual
control. We replace it with its virtual estimation and the
corresponding error:

𝑥2 = 𝜉02 + 𝜃1𝜉12 + 𝜃2𝜉22 + 𝜃3𝜉32 + 𝜃4𝜉42 + 𝜖2; (29)
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0

0.2

0.4
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x
2
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Figure 8: Unstable orbit immersed in the chaotic attractor and orbit
not immersed.

hence (28) becomes

�̇�1 = 𝜉02 + 𝜃1𝜉12 + 𝜃2𝜉22 + 𝜃3𝜉32 + 𝜃4𝜉42
+ 𝜃1 (−𝑥1) − ̇𝑦𝑟 + 𝜖2. (30)

By choosing 𝜉02 as the virtual control and defining the second
error variable as

𝑧2 = 𝜉02 − 𝛼1 − ̇𝑦𝑟 (31)

(30) becomes

�̇�1 = (𝑧2 + 𝛼1 + ̇𝑦𝑟) + 𝜃1𝜉12 + 𝜃2𝜉22 + 𝜃3𝜉32
+ 𝜃4𝜉42 + 𝜃1 (−𝑥1) − ̇𝑦𝑟 + 𝜖2. (32)

Since 𝜃 is an uncertain vector, we must use its first estimated
value 𝜗1 = (𝜗11 𝜗12 𝜗13 𝜗14)𝑇. By defining the first
stabilizing function 𝛼1 as

𝛼1 = −𝑐1𝑧1 − 𝑑1𝑧1 − 𝜗1𝜔, (33)

where 𝜔 = (𝜉12 − 𝑥1 𝜉22 𝜉32 𝜉42)𝑇, then (32) becomes

�̇�1 = −𝑐1𝑧1 + 𝑧2 − 𝑑1𝑧1 + (𝜃 − 𝜗1) 𝜔 + 𝜖2. (34)

If we use the Lyapunov function candidate

𝑉1 = 12𝑧21 + 12𝛾1 (𝜃 − 𝜗1) (𝜃 − 𝜗1)
𝑇

+ 1𝑑1 𝜖
𝑇𝑃0𝜖,

(35)
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Figure 9: Reference signal and its derivative: (a) 𝑦𝑟; (b) ̇𝑦𝑟.

where 𝛾1 > 0 is the adaptation gain and 𝑃0 = 𝑃𝑇0 > 0 satisfies𝑃0𝐴 + 𝐴𝑇𝑃0 = −𝐼, then

�̇�1 = 𝑧1�̇�1 − 1𝛾 ̇𝜗1(𝜃 − 𝜗1)𝑇 − 1𝑑1 𝜖
𝑇𝜖

= 𝑧1 (−𝑐1𝑧1 + 𝑧2 − 𝑑1𝑧1 + (𝜃 − 𝜗1) 𝜔 + 𝜖2)
− 1𝛾 (𝜃 − 𝜗1) ̇𝜗𝑇1 − 1𝑑1 𝜖

𝑇𝜖
= − 𝑐1𝑧21 + 𝑧1𝑧2 − 𝑑1𝑧21 + (𝜃 − 𝜗1) (𝑧1𝜔 − 1𝛾 ̇𝜗𝑇)
+ 𝑧1𝜖2 − 1𝑑1 𝜖

𝑇𝜖
= − 𝑐1𝑧21 + 𝑧1𝑧2 − 𝑑1(𝑧1 − 12𝑑1 𝜖2)

2

+ 14𝑑1 𝜖
2
2 − 1𝑑1 𝜖

𝑇𝜖 + (𝜃 − 𝜗1) (𝑧1𝜔 − 1𝛾 ̇𝜗𝑇1 )
⩽ 𝑧1𝑧2 − 𝑐1𝑧21 + (𝜃 − 𝜗1) (𝑧1𝜔 − 1𝛾 ̇𝜗𝑇1 )
− 34𝑑1 𝜖

𝑇𝜖.
(36)

It is possible to eliminate the term (𝜃 − 𝜗1) by the update law
̇𝜗𝑇1 = 𝛾𝑧1𝜔. (37)

Step 2. The derivative of 𝑧2 is
�̇�2 = ̇𝜉02 − �̇�1 − ̈𝑦𝑟
= 𝛽𝑢 + 𝑘2 (𝑥1 − 𝜉01) − ̈𝑦𝑟 − �̇�1
= 𝛽𝑢 + 𝑘2 (𝑥1 − 𝜉01) − 𝜕𝛼1𝜕𝑦
× (𝜉02 + 𝜃1𝜉12 + 𝜃2𝜉22 + 𝜃3𝜉32 + 𝜃4𝜉42 + 𝜖2 + 𝜃1 (−𝑥1))
− 𝜕𝛼1𝜕𝜉12 (−𝑘2𝜉11) −

𝜕𝛼1𝜕𝜉22 (−𝑘2𝜉21 − 𝑥1)
− 𝜕𝛼1𝜕𝜉32 (−𝑘2𝜉31 − 𝑥

3
1) − 𝜕𝛼1𝜕𝜉42 (−𝑘2𝜉41 + 𝑓1)

− 𝜕𝛼1𝜕𝑦𝑟 ̇𝑦𝑟 − 𝜕𝛼1𝜕𝜗1 (𝛾𝑧1𝜔) − ̈𝑦𝑟.
(38)

The control signal is chosen as

𝛽𝑢 = − 𝑘2 (𝑥1 − 𝜉01) + 𝜕𝛼1𝜕𝜉12 (−𝑘2𝜉11)
+ 𝜕𝛼1𝜕𝜉22 (−𝑘2𝜉21 − 𝑥1) +

𝜕𝛼1𝜕𝜉32 (−𝑘2𝜉31 − 𝑥
3
1)

+ 𝜕𝛼1𝜕𝜉42 (−𝑘2𝜉41 + 𝑓1) +
𝜕𝛼1𝜕𝑦𝑟 ̇𝑦𝑟 + 𝜕𝛼1𝜕𝜗1 (𝛾𝑧1𝜔)

+ ̈𝑦𝑟 + 𝜕𝛼1𝜕𝑦 (𝜉02 + 𝜗2𝜔) − 𝑑2(𝜕𝛼1𝜕𝑦 )
2𝑧2

− 𝑐2𝑧2 − 𝑧1,

(39)
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Figure 10: Simulation results for the controller: (a) output for the immersed orbit; (b) output for the nonimmersed orbit; (c) tracking errors;
(d) control signals.

where 𝜗2 = (𝜗21 𝜗22 𝜗23 𝜗24)𝑇 is a second estimate of 𝜗.The
dynamic of the error 𝑧2 is

�̇�2 = − 𝑐2𝑧2 − 𝑧1 − 𝑑2(𝜕𝛼1𝜕𝑦 )
2𝑧2 − 𝜕𝛼1𝜕𝑦 𝜖2

− 𝜕𝛼1𝜕𝑦 (𝜃 − 𝜗2) 𝜔.
(40)

Defining the Lyapunov function

𝑉2 = 𝑉1 + 12𝑧22 + 12𝛾 (𝜃 − 𝜗2) (𝜃 − 𝜗2)𝑇

+ 1𝑑2 𝜖
𝑇𝑃0𝜖,

(41)

its derivative is computed as

�̇�2 = �̇�1 + 𝑧2�̇�2 − 1𝛾 ̇𝜗2(𝜃 − 𝜗2)𝑇 − 1𝑑2 𝜖
𝑇𝜖

≤ 𝑧1𝑧2 − 𝑐1𝑧21 − 34𝑑1 𝜖
𝑇𝜖 − 𝑐2𝑧22 − 𝑧1𝑧2

− 𝑑2(𝜕𝛼1𝜕𝑦 )
2𝑧22 − 𝜕𝛼1𝜕𝑦 𝜖2𝑧2

− (𝜕𝛼1𝜕𝑦 𝜔𝑧2 + 1𝛾 ̇𝜗2) (𝜃 − 𝜗2) − 1𝑑2 𝜖
𝑇𝜖
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Figure 11: Estimated parameter 𝜗 for the immersed orbit: (a) 𝜗11; (b) 𝜗12; (c) 𝜗13; (d) 𝜗14.

≤ − 𝑐1𝑧21 − 𝑐2𝑧22 − ( 34𝑑1 +
1𝑑2) 𝜖
𝑇𝜖

− (𝜕𝛼1𝜕𝑦 𝜔𝑧2 + 1𝛾 ̇𝜗2) (𝜃 − 𝜗2) .
(42)

To eliminate the term (𝜃 − 𝜗2) we use the update law
̇𝜗2 = −𝛾𝜕𝛼1𝜕𝑦 𝜔𝑧2, (43)

and we finally obtain

�̇�2 ≤ −𝑐1𝑧21 − 𝑐2𝑧22 − ( 34𝑑1 +
1𝑑2) 𝜖
𝑇𝜖. (44)

By applying the LaSalle-Yoshizawa theorem [20], we can
conclude that 𝑧1, 𝑧2, 𝜗1, and 𝜗2 are bounded and 𝑧 → 0 as𝑡 → ∞. Therefore, the output 𝑦(𝑡) tracks 𝑦𝑟(𝑡) globally and
asymptotically.

4. Simulation Results

Numerical simulations have been carried out to validate the
design made in Section 3. Two orbits are stabilized using the
control strategy developed in the previous section with the
aim of comparing the corresponding control effort.

First we will stabilize the unstable orbit (11) of the chaotic
system (6), and then we stabilize the orbit:𝑦𝑟1 = 𝑎0 + 1.15𝑎1 cos (𝑤1𝑡) + 𝑎2 cos (2𝑤1𝑡) ,̇𝑦𝑟1 = −1.15𝑎1𝑤1 sin (𝑤1𝑡) − 2𝑤1𝑎2 sin (2𝑤1𝑡) , (45)
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Figure 12: Estimated parameter 𝜗 for the nonimmersed orbit: (a) 𝜗21; (b) 𝜗22; (c) 𝜗23; (d) 𝜗24.

where

𝑎0 = 0.01754, 𝑎1 = −0.4, 𝑎2 = 0.01126. (46)

These orbits have the same fundamental frequency 𝑤1, and
(45) is a perturbation of (11).The orbits are shown in Figure 8
and their states are compared in Figure 9. Although these
two orbits are similar, one is immersed in the chaotic MEMS
attractor while the other is not.

Figure 10(a) shows the output of the system when the
orbit immersed in the chaotic attractor is stabilized by
the algorithm developed in Section 3. In Figure 10(b) the
output of the system is shown when the nonimmersed orbit
is stabilized by using the same algorithm. The agreement
between the curves and the effect of the controller can be
seen.

The tracking errors are compared in Figure 10(c) from
which we can observe a rapid decay as expected. A com-
parison between the control signals for stabilizing the two

orbits is given in Figure 10(d). It clearly shows that, in steady-
state, an affordable control effort is required for tracking the
orbit immersed in the chaotic attractor, which is significantly
smaller than that for the nonimmersed orbit.

Finally, the evolution of the estimates of the parameters
given by the vector 𝜃 is shown in Figure 11 for the immersed
orbit and in Figure 12 for the nonimmersed orbit.We can ver-
ify that the estimated values of the parameters are bounded as
expected.

5. Conclusions

This work presented a solution for the enhancement of the
oscillation amplitude of a MEMS resonator based on the
chaotic properties of the system. In order to enhance the
amplitude of the oscillation at a reduced control effort, a high
amplitude unstable orbit immersed in the chaotic attractor
was chosen as the reference trajectory. The method of close
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returns was used to compute the orbit, which was then
approximated by a five-term truncated Fourier series. With
the aim of stabilizing this orbit, a control law was designed
by using output-feedback and considering parametric uncer-
tainties in the model. It has been shown through adaptive
observer backstepping that this control law allows the system
output to globally and asymptotically track the desired orbits.
Numerical simulations were carried out and the results show
that the unstable orbits immersed in the chaotic attractor
are stabilized with an affordable control effort compared
to those required for stabilizing a nonimmersed orbit. This
demonstrated the advantage of the proposed approach.

Finally, it is worth noting that the scheme developed in
the present work is realistic in the sense that it is based on
output-feedback and considers parametric uncertainties in
the model. Variables as the speed of some components of
the MEMS are very difficult to be measured, and a precise
knowledge of the parameters of the system is hard due to
the fabrication technology. In the approach proposed, the
speed of the plates of the device was estimated by means of
a virtual observer at the price of increasing the differential
equations needed to construct the controller. Reducing the
dynamic equations is beyond the scope of this paper and will
be considered in a future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] H. S. Haghighi and A. H. D. Markazi, “Chaos prediction and
control in MEMS resonators,” Communications in Nonlinear
Science and Numerical Simulation, vol. 15, no. 10, pp. 3091–3099,
2010.

[2] S. K. De and N. R. Aluru, “Complex oscillations and chaos in
electrostatic microelectromechanical systems under superhar-
monic excitations,” Physical Review Letters, vol. 94, no. 20, 2005.

[3] S. Liu, A. Davidson, and Q. Lin, “Simulation studies on
nonlinear dynamics and chaos in a MEMS cantilever control
system,” Journal of Micromechanics and Microengineering, vol.
14, no. 7, pp. 1064–1073, 2004.

[4] A. C. J. Luo and F. Y.Wang, “Chaoticmotion in amicro-electro-
mechanical system with non-linearity from capacitors,” Com-
munications inNonlinear Science andNumerical Simulation, vol.
7, no. 1-2, pp. 31–49, 2002.

[5] K. Park, Q. Chen, and Y.-C. Lai, “Energy enhancement and
chaos control in microelectromechanical systems,” Physical
Review E, vol. 77, no. 2, Article ID 026210, 2008.

[6] G. Chen and X. Dong, “Ordering chaos of Chua’s circuit,” in
Proceedings of the IEEE International Symposium onCircuits and
Systems, pp. 2604–2607, May 1993.

[7] X. Dong and G. Chen, “Controlling chaotic continuous time
systems via feedback,”Nonlinear Analysis, vol. 69, p. 3409, 2008.

[8] A. Jimenez, E. N. Sanchez, J. P. Perez, and G. Chen, “Real-time
chaos stabilization via inverse optimal control,” in Proceedings
of the IEEE International Symposium on Intelligent Control,
ISIC ’05 and the13th Mediterranean Conference on Control and

Automation (MED ’05), pp. 1333–1336, Limassol, Cyprus, June
2005.

[9] Y. Deng, G. Sun, Y. Ye, F. Zhou, and K. Chen, “New chaos robust
controller and its application,” in Proceeding of the International
Conference on Electric Information and Control Engineering
(ICEICE '11), pp. 2387–2390, Wuhan, China, April 2011.

[10] S. S. Ge and C. Wang, “Adaptive control of uncertain Chua’s
circuits,” IEEE Transactions on Circuits and Systems. I. Funda-
mental Theory and Applications, vol. 47, no. 9, pp. 1397–1402,
2000.

[11] A. Jimenez-Triana, G. Zhu, and L. Saydy, “Chaos synchro-
nization of an electrostatic MEMS resonator in the presence
of parametric uncertainties,” in Proceedings of the American
Control Conference (ACC ’11), pp. 5115–5120, San Francisco,
Calif, USA, July 2011.

[12] G.N.Nielson andG. Barbastathis, “Dynamic pull-in of parallel-
plate and torsional electrostatic MEMS actuators,” Journal of
Microelectromechanical Systems, vol. 15, no. 4, pp. 811–821, 2006.

[13] G. Zhu, “Electrostatic MEMS: modelling, control, and applica-
tions,” in Advances in theTheory of Control, Signals and Systems
with Physical Modeling, vol. 407 of Lecture Notes in Control and
Information Sciences, pp. 113–123, Springer, Berlin, Germany,
2011.

[14] D. H. S. Maithripala, J. M. Berg, andW. P. Dayawansa, “Control
of an electrostatic microelectromechanical system using static
and dynamic output feedback,” Journal of Dynamic Systems,
Measurement and Control, vol. 127, no. 3, pp. 443–450, 2005.

[15] R. M. C. Mestrom, R. H. B. Fey, J. T. M. van Beek, K. L.
Phan, and H. Nijmeijer, “Modelling the dynamics of a MEMS
resonator: simulations and experiments,” Sensors and Actuators
A: Physical, vol. 142, no. 1, pp. 306–315, 2008.

[16] J. Awrejcewicz, K. Tomczak, and C. H. Lamarque, “Controlling
systems with impacts,” International Journal of Bifurcation and
Chaos in Applied Sciences and Engineering, vol. 9, no. 3, pp. 547–
553, 1999.

[17] A.Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determin-
ing Lyapunov exponents from a time series,” Physica D, vol. 16,
no. 3, pp. 285–317, 1985.

[18] D. P. Lathrop and E. J. Kostelich, “Characterization of an
experimental strange attractor by periodic orbits,” Physical
Review A, vol. 40, no. 7, pp. 4028–4031, 1989.

[19] J. Awrejcewicz, “Gradual and sudden transition to chaos in a
sinusoidally driven nonlinear oscillator,” Journal of the Physical
Society of Japan, vol. 58, no. 12, pp. 4261–4264, 1989.

[20] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear
andAdaptive Control Design, JohnWiley& Sons, NewYork, NY,
USA, 1995.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 201

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Stochastic Analysis
International Journal of


	2014_Zhu_Output-Feedback_Control_Chaotic_MEMS_Resonator2

