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RESEARCH ARTICLE Open Access
Degradation of progestagens by oxidation with
potassium permanganate in wastewater effluents
Paul B Fayad1, Arash Zamyadi2, Romain Broseus2, Michèle Prévost2 and Sébastien Sauvé1*
Abstract

Background: This study investigated the oxidation of selected progestagenic steroid hormones by potassium
permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second
order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel,
medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural
organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the
laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for
the quick determination of oxidation rate constants and increasing sample throughput.

Results: The second-order rate constants for progestagens with permanganate determined in bench-scale experiments
ranged from 23 to 368 M-1 sec-1 in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of
progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M-1 sec-1 in
ultrapure water and 26 to 149 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to
224 M-1 sec-1 in ultrapure water and 180 to 368 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0). The presence of dissolved
natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium
permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide
conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to
potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone
(48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using
potassium permanganate dosages of 1 to 5 mg L-1 after contact times of 10 to 60 min.

Conclusion: This work presents the first results on the permanganate-promoted oxidation of progestagens, as a
function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were
analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the
analysis of water sample for progestagens.

Keywords: Oxidation, Potassium permanganate, Steroid hormones, LDTD-APCI-MSMS, Endocrine disruptors,
Kinetic rate constant
Background
Many endocrine-disrupting compounds (EDCs), such
as steroid hormones (SH) have been detected in waste
and surface water matrices [1-4]. They originate from
naturally-occurring (e.g. normal urine excretion of es-
trogens from mammals) and synthetic (e.g. progestagens in
oral contraceptives and hormone replacement therapy)
sources. There has been growing concerns towards EDCs’
effects on the reproductive physiology of wildlife populations
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at very low concentrations, i.e. from 0.1 to 1.0 ng L-1 [5-7].
Given their strong endocrine-disrupting potency and their
occurrence, selected estrogens (estradiol, estrone and 17-
α-ethinylestradiol) and progestagens (progesterone,
levonorgestrel, medroxyprogesterone and norethin-
drone) have been targeted and detected in wastewater,
surface water and drinking water [8-14].
Although the impact of natural and synthetic estro-

gens has been well documented, only a limited number
of studies have been conducted on the ecotoxicological
and environmental risk related to progestagens [15,16].
Progestagens are steroid hormones that produce effects
l Ltd. This is an Open Access article distributed under the terms of the Creative
commons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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similar to those of progesterone, a C-21 steroid hormone
involved in the female menstrual cycle, pregnancy and the
embryogenesis of humans and other species [17]. Several
synthetic progestagens have been developed, given that
natural progesterone is very rapidly inactivated in the hu-
man body. Synthetic progestagens can have various hor-
monal activities, such as estrogenic, anti-androgenic and
androgenic [15]. Their presence in wastewater treatment
plant (WWTP) effluents can pose a risk for the aquatic
environment given their potential for impact on the repro-
ductive success and the chemoreception of fish [18,19].
Synthetic progestagens were first developed and used in
the 1960s as an effective method for contraception [20].
In Europe and America, the consumption rates of syn-
thetic progestagens ranks as the first among all contracep-
tion methods, i.e. 33% in the United States and as high as
58% in some European countries [16]. In the United King-
dom, the estimated yearly usage of progestagens from oral
contraception (~1723 kg/year) is higher than that of estro-
gens and androgens combined (~706 kg/year) [21]. In
addition, the environmental amounts of progestagens and
androgens excreted via urine is estimated to be 100 to
1000 times higher than that of estrogens in humans [22].
Therefore, progestagenic steroid hormones will be
discharged into environmental waters from WWTP efflu-
ents and such releases should be better documented.
Several studies conducted in numerous countries

[9,12,17], have shown that WWTP effluents and receiving
water bodies contain sufficient amounts of progestagenic
compounds to induce harmful effects on fish, with their
concentrations varying from 0.2 to 205 ng L-1 for
progestagens in wastewater samples [12,17,23]. With
growing populations and increased discharge from
WWTPs, the presence of progestagens in surface waters
could be a cause for concern for drinking water treatment
plants and therefore improved removal methods should be
explored since conventional treatment methods have
proven to be inadequate.
Permanganate [Mn(VII); KMnO4] is a relatively inex-

pensive and versatile oxidation agent with multiple ap-
plications in the degradation of multiples classes of
contaminants, including phenolic and non-phenolic
EDCs (dichlorvos, 4-t-butylphenol, estrone, triclosan
and bisphenol-A) and various pharmaceuticals [24-28].
Permanganate may oxidize organic compounds through
several reaction pathways, including electron exchange,
hydrogen abstraction or direct donation of oxygen [29].
In acidic conditions, permanganate will decompose
according to reaction (1), whereas in strong basic
medium, reaction (2) will occur [30]:

MnO−
4 þ 4Hþ þ 3e−→MnO2 sð Þ þ 2H2O E0 ¼ 1:68V

ð1Þ
MnO−
4 þ 2H2Oþ 3e−WMnO2 sð Þ þ 4OH− E0 ¼ 0:60V

ð2Þ

In contrast to other oxidants such as chlorine and fer-
rate (VI), permanganate is effective over a wide pH
range and can control the formation of trihalomethanes
and other disinfection by-products [30,31]. In addition,
permanganate will generate an insoluble environmen-
tally benign reduction product (MnO2(s)), which can en-
hance coagulation and simultaneously adsorb trace
metals before their removal by sedimentation/filtration
[27,32,33]. Previous work has established rate constants
for selected estrogens (estradiol, estriol and estrone)
using potassium permanganate, with values ranging
from 16 to 38 300 M-1 s-1 at pH 5.0 to 12 [24,26]. Cur-
rently, no published information for the removal of
progestagens by potassium permanganate is available.
Progestagens should have different reactivity towards
permanganate due to the absence of a phenolic moiety
in their structures as compared to the estrogens.
Based on geology, climate, human influence and the

surrounding watershed, different water sources will con-
tain variable amounts of natural organic matter (NOM)
with different characteristics, such as high and low
molar mass organic material [34-36]. During the past
20 years, a significant increase in NOM concentrations
has been observed in several surface water sources
worldwide [37-40]. Permanganate has been shown to
react with NOM compounds and should be considered
when evaluating reaction rate constants [26,28]. The op-
eration of water treatment facilities will therefore be
influenced by NOM, since it can interfere with the oxi-
dation removal of other contaminants by competitive
consumption [41]. The impact of temperature (an espe-
cially relevant parameter for water utilities spawning
their operation over four distinct seasons) and the
dissolved fraction of NOM on kinetic rates have not yet
been studied for the oxidation of progestagens with po-
tassium permanganate.
To date, all analytical procedures used to determine oxi-

dation rate constants for EDCs and steroid hormones have
included the use of chromatography (liquid or gas) coupled
to tandem mass spectrometry (MS/MS), ultraviolet or
diode array detection [42]. Fayad et al. (2010) developed a
sensitive method enabling high-throughput sample analysis
of eight selected steroid hormones using a novel sample
introduction method, LDTD-APCI coupled to MS/MS.
The analysis time is achieved in seconds (<10 sec) com-
pared to several minutes using the more traditional chro-
matography methods. As a result, the identification and
quantification of the studied compounds will be much
faster, the total analysis cost will be reduced and sample
throughput will be significantly increased.
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The objectives of this study were to: i) determine the
rate constants for the reaction of potassium permanganate
with progestagens (levonorgestrel, medroxyprogesterone,
norethindrone and progesterone) in pure water and
wastewater effluents using laboratory bench-scale assays,
ii) evaluate the influence of operating conditions, i.e. pH,
presence of NOM and temperature, on permanganate rate
constants, iii) assess the validity of the determined rate
constants when permanganate oxidation is applied to
wastewaters. Furthermore, this work illustrates the
advantages of using a novel analytical method, the LDTD-
APCI-MS/MS apparatus, which is an alternative approach
to chromatographic methods. This analytical approach fa-
cilitates the implementation of large experimental designs
that require the evaluation of many different conditions
and various time intervals. This method has allowed us to
realize a quick determination of oxidation rate constants,
while lowering analysis cost (no chromatography system is
necessary) and increasing sample throughput. To the best
of our knowledge, this paper presents the first results on
the permanganate-promoted oxidation of steroid hor-
mones without aromatic moieties, i.e. progestagens, as a
function of pH, temperature as well as NOM levels.

Experimental
Chemicals
The selected steroid hormones (levonorgestrel (LEVO),
medroxyprogesterone (MEDRO), norethindrone (NORE)
and progesterone (PROG)) used for this study are listed
in Additional file 1: Table S1 with their molecular struc-
tures presented in Additional file 1: Figure S1. All
progestagen standards (purity ≥ 97%) were purchased
form Sigma Aldrich (St. Louis, MO). Isotopically-labeled
17α-ethinylestradiol, [13C2]-EE2, was used as an internal
standard (IS) and obtained from ACP Chemical Inc.
(Montreal, QC, Canada). Other chemicals, including po-
tassium permanganate (KMnO4), potassium phosphate
(monobasic and dibasic) and ascorbic acid were of ana-
lytical grade and used without further purification. All
solvents used were of HPLC grade purity from Fisher
Scientific (Whitby, ON, Canada) and ultrapure water (18
MΩ cm) used was produced with a Milli-Q (Millipore,
USA) apparatus.
Individual steroid hormone stock solutions were

prepared in methanol (MeOH) at a concentration of
1000 mg L-1 and kept at −20°C in amber vials for a max-
imum of three months. A mixed steroid hormone working
solution was prepared prior to the experiments at a con-
centration of 200 mg L-1 by dilution in MeOH of individ-
ual stock solutions aliquots for spiking solutions at the
desired concentrations. Phosphate buffers of pH 6 and 8
(final concentrations: 50 mM) were prepared by dissol-
ution of the commercial compounds in water. Potassium
permanganate working solution (5.638 mmol L-1),
ascorbic acid working solution (65.68 mmol L-1) and other
reagents were also freshly prepared in Milli-Q water prior
to the experiments and stored in amber bottles at 4°C.
Water quality characterization
For the laboratory bench-scale experiments, wastewater
effluents samples were taken from the water outlet of
two municipal WWTPs in the province of Quebec,
Canada. The first, WWTP A produces water with a
DOC of 2.3 mg C L-1, an alkalinity of 80 mg CaCO3 L

-1,
UV absorbance (at 254 nm) of 0.027 cm-1, and a pH of
8.24. The second, WWTP B, produces water with a
DOC of 7.7 mg C L-1, an alkalinity of 27 mg CaCO3 L

-1,
UV absorbance (at 254 nm) of 0.047 cm-1, and a pH of
6.30. Wastewater samples were not adjusted for pH and
oxidation was carried out at ambient pH. The water
samples were not analyzed for steroid hormones prior to
oxidation experiments since their concentrations are or-
ders of magnitude lower than the concentration spiked
during the bench-scale experiments, as previously docu-
mented [43]. The water samples were collected in 10 L
polypropylene carboys washed and rinsed successively
with distilled and ultrapure water (Milli-Q). Wastewater
effluent samples were filtered (0.45 μm polyethersulfone)
and kept at 4°C prior to the oxidation experiments. Prior
to DOC analyses, samples were passed through pre-
rinsed (1 L ultrapure water) 0.45 μm cellulose nitrate
Supor-450 membrane filters (PALL Life Sciences, USA).
DOC measurements were made using a 5310C total or-
ganic carbon analyzer (Sievers Instruments Inc., USA).
Analytical methods
The validation and optimization parameters of the
LDTD-APCI-MS/MS method used for the detection and
quantification of the selected steroids were previously
described [44]. Briefly, water samples recuperated from
the bench-scale oxidation experiments were first spotted
(2 μL) into the LazWell 96-well polypropylene plate cav-
ities and then left to dry (in a forced air oven at 30°C).
Upon operation, a glass transfer tube is inserted into a
well by an air-powered piston to avoid any sample loss.
An infrared (IR) laser diode (980 nm, 20 W, continuous)
is then focalized to impact the back of the metal inserts,
thermally desorbing the dried sample which is vaporized
into the gas phase. The uncharged analyte molecules
travel along the transfer tube by a carrier gas to eventu-
ally reach the corona region for ionization by APCI and
then be transferred to the MS inlet [44]. The MS/MS pa-
rameters for the selected steroid hormones are presented
in Additional file 1: Table S2. Further details of the the-
ory and principles behind the LDTD (Phytronix Tech-
nologies, Quebec, QC, Canada) are provided in the SI
(Text S1).
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In the kinetic experiments, permanganate was ana-
lyzed at 515 nm with a spectrophotometer (Varian-
Cary 100, Victoria, Australia) in a 1-cm quartz cell, by
the N, N-diethyl-p-phenylenediamine (DPD) colori-
metric method [45].

Laboratory bench-scale experiments
Oxidation experiments with potassium permanganate
were conducted in 500 mL amber bottles (Fisher Scien-
tific, Whitby, ON, Canda). All reactor assays were
performed in duplicates. For ultrapure water (Milli-Q)
samples, the pH was adjusted to 6.0 and 8.0 using the
appropriate buffered phosphate solutions prior to the
oxidation tests. It has been reported that phosphate
buffers can enhance oxidation by permanganate of a cer-
tain number of phenolic compounds (i.e. triclosan, phe-
nol, 2,4-dichlorophenol [46,47]). This is in contrast with
several other studies performed on non-phenolic and
phenolic compounds alike (e.g. chlorinated ethylenes,
microcystins and carbamazepine) where phosphate buf-
fer had no reported impact on oxidation mechanisms
using permanganate [27,30,48]. There are no reported stud-
ies in the literature that would suggest that progestogenic-
like steroid hormones (non-phenolic) would be influenced
by the addition of phosphate buffer for permanganate oxi-
dation. For WWTP A and WWTP B effluents samples,
buffered solutions were not necessary since their natural
pH values were 8.24 and 6.30, respectively. Phosphate
buffers were only used for the assays using ultrapure water.
The pH values in the reactors were constant throughout
the oxidation tests with changes between the initial and
final pH not exceeding 0.2.
In order to perform the oxidation experiments at differ-

ent temperatures (from 5 ± 2°C to 30 ± 2°C), the reactors
were placed in a temperature-controlled water bath. The
initial concentrations of steroid hormones spiked in the
reactors ranged from 0.883 to 9.76 μM, with 17 to 53 μM
of permanganate added for the oxidation tests. Aliquots of
1.8 mL were collected at specific time intervals into a 2
mL amber vial containing a stoichiometric ratio of ascor-
bic acid to immediately quench the residual permangan-
ate. It was previously established that ascorbic acid was
suitable to quench oxidant residuals during sampling,
while not affecting the stability of the studied ECDs [43].
Samples were then analyzed by LDTD-APCI-MS/MS to
determine the residual concentration of steroid hormones.
The solvent used for the dissolution of the steroid hor-

mones spiked in the reactors was MeOH. Initial tests
were performed with acetonitrile and MeOH to assess
their impact on permanganate decay rates in reactors
with ultrapure water (without steroid hormones). Using
MeOH showed that there was no decrease of initial per-
manganate concentration for up to 60 min contact times
(Additional file 1: Figure S3). Reactor blank experiments
(no steroid hormones added) for both wastewaters with
the addition of permanganate were also conducted. All
rate constants were determined under pseudo-first-order
conditions, with permanganate in excess, in a batch re-
actor in ultrapure and wastewaters at pH 6.0-8.2.

Determination of rate constants for the reaction
potassium permanganate
The kinetics of the reactions of permanganate with or-
ganic and inorganic compounds is typically second
order, i.e. first order with respect to the oxidizing agents
(OAs) and the contaminant concentrations [49]. The
degradation of steroid hormones by permanganate can
be described with the following equation:

−
d TC½ �
dt

¼ kOA OA½ � TC½ � ð3Þ

Where TC = target compounds and kOA = reaction rate
constant for the applied oxidant. The rate constant is
obtained from the integration of Eq. (3):

ln
TC½ �t
TC½ �o

� �
¼ −kOA

Z t

o

OA½ �dt ð4Þ

where
Z t

o

OA½ �dt is the time-integrated oxidant concen-

tration. The value of the second-order rate constant can
be found from the gradient of a plot of ln removal of the
target compound against the time-integrated oxidant
concentration. The latter defines an oxidant exposure
(CT). In this study, CT values (mg.min L-1) were
performed using the integrated CT concept [50], for
which the effective CT at time t (min) is equal to the
area under the decay curve at that time. CT values were
calculated using the oxidant concentration profiles
(Eq. (4)) and assuming a simple first-order decay:

CTeffective ¼ ∫C tð Þ dt ¼ Co

k0
1− exp −k0⋅tð Þ½ � ð5Þ

where C = oxidant residual (mg L-1); Co = initial oxidant
residual (mg L-1) determined from the exponential fit of
the relation between the oxidant residual and the time
(min); k’ = oxidant first-order decay constant (min-1).

Results and discussion
Permanganate decay in ultrapure and wastewaters
Experimental decay data fit the first-order decay rates of
permanganate (R2 ≥ 0.90) in ultrapure and effluent wa-
ters (Additional file 1: Figure S3). The values of apparent
first-order rate constants for permanganate (kOA, sec

-1),
with and without the addition of steroid hormones (SH)
were calculated by linear regression and resulting



Fayad et al. Chemistry Central Journal 2013, 7:84 Page 5 of 11
http://journal.chemistrycentral.com/content/7/1/84
apparent rate constants are summarized in Table 1, in
wastewaters at ambient pH 6.3 for WWTP B and pH of
8.2 for WWTP A. The rate constants increased slightly
in the presence of SHs (1.2 and 1.13 × 10-3 sec-1) com-
pared to wastewaters without the addition of SHs (0.57
and 0.44 × 10-3 sec-1), and were not influenced by pH
(Table 1). The decay rates with KMnO4 were similar in
ultrapure water and wastewaters in the presence of SHs
at pH 6.3 and 8.2 (1.0-1.2 × 10-3 sec-1). This suggests that
the influence of NOM did not further contribute to per-
manganate decay when compared to the presence of
SHs.
Oxidation of steroid hormones
Previous studies have investigated the reaction between
oxidizing agents (permanganate and chlorine) with es-
trogenic steroid hormones [26,49]. They have shown
that the reaction followed second-order kinetics overall,
first-order with respect to estrogens and oxidation
agents (OA). In determining the apparent first-order rate
constants, the initial concentration of SH found in
wastewaters was considered negligible (low ng L-1), about
a thousand time lower than the spiked concentration used
in batch reactors (~0.5 to 2 mg L-1). Additional file 1:
Figure S3 shows that the decay of the four progestagens
exposed to permanganate follows the second-order rate
law expressed by Eq. (3). The tabulated first-order rate
constants (Table 1) were derived from the dissolved per-
manganate residual decay curves in the presence of SH
(Additional file 1: Figure S4) from which CT values were
calculated using Eq. (5). The second-order rate constants
(kOA-SH, M

-1 sec-1) were then measured by linear regression
of ln([SHres]/[SHres]0) as a function of CT (mg.min L-1), as
Table 1 First-order apparent rate constants (k, sec-1) for
permanganate decay with and without progestagens in
wastewaters at 22 ± 2°C for pH 6.3 (WWTP B, DOC 7.7 mg
C L-1) and 8.2 (WWTP A, COD 2.3 mg C L-1)a

kKMO4(×10
–3sec–1)

Progestagens

Wastewaters pH 6.3 pH 8.2

without SH 0.57 ± 0.02 0.44 ± 0.06

(0.99) (0.99)

with SH 1.2 ± 0.1 1.13 ± 0.07

(0.94) (0.98)

Milli-Q water pH 6.0 pH 8.0

with SH 1.1 ± 0.2 1.0 ± 0.2

(0.90) (0.93)
a Values in parentheses represent coefficients of determination (R2) and
uncertainties on k values represent calculated standard deviation (SD) given
from the linear regression equation.
shown in Figure 1. The oxidation experiments were
conducted at 22 ± 2°C, and the calculated rate constants
obtained from duplicate experiments are presented in
Table 2. The standard deviations (SD) remained below 10%
in all case with R2 ≥ 0.96 for all kinetic plots. The sec-
ond order reaction rate constant for progestagens with
permanganate varied from 23 (PROG) to 368 (NORE)
M-1 sec-1 in Milli-Q and wastewaters at both pH values
(6.0 and 8.0). Two pairs of progestagens exhibited
similar reaction rate constants, i.e. PROG and MEDRO
(23 to 80 M-1 sec-1 in Milli-Q water and 26 to 149 M-1 sec-1

in wastewaters, at pH 6.0 and 8.0) and LEVO and NORE
(179 to 224 M-1 sec-1 in Milli-Q water and 180 to 368
M-1 sec-1 in wastewaters, at pH 6.0 and 8.0). The dif-
ferent ranges of kinetic decay rates could be related to
the differences in their chemical structures and attack
sites (Additional file 1: Figure S1). This similarity was
also observed when ozone was applied to progestagens
in Milli-Q water (pH 8.10) at 20°C, where PROG and
MEDRO had rate constants of 601 M-1 sec-1 and 558
M-1 sec-1, respectively [43]. Several proposed mecha-
nisms suggest that the potential sites of attack on the
four progestagens by permanganate are the double
bond between C4-C5, the hydroxyl group on C12 and
the double-bonded oxygen on C3 (Additional file 1:
Figure S1) [29,33]. The presence of the ethynyl groups
on C12 for LEVO and NORE (Additional file 1: Figure
S1) are reputed to react with permanganate [29] and
could explain the higher rate constants we observed
relative to PROG and MEDRO (Table 2). The very low
rate constants measured for PROG could result from
the absence of a hydroxyl function on the C12, lower-
ing the potential attack sites for permanganate.
Table 2 also shows that pH did not have an impact on

rate constants for progestagens either in ultrapure or
wastewater effluents. This was expected since these
compounds do not present any acid or basic character
with predicted pKa values between 17.0 and 19.3 for
LEVO, NORE and MEDRO (Additional file 1: Table S1).
The influence of dissolved organic matter was also in-
vestigated by using effluent wastewaters with different
levels of NOM (WWTP A with 2.3 mg C L-1 and
WWTP B with 7.7 mg C L-1) and conducting the oxida-
tion experiments at ambient pH. With aromatic moiety
being one of the main predicted sites of attack for per-
manganate, a competition effect is possible with back-
ground components in waters that contain electron rich
moieties, such as humic acids [51]. Figure 1a and 1c as
well as Table 2, show that at pH 6 the presence of
NOM, regardless of the concentration present, did not
have a significant effect on the rate constants with per-
manganate for LEVO, NORE and PROG (e.g. 179 to 180
M-1 sec-1 for LEVO, in Milli-Q (pH 6.0) and effluent wa-
ters (WWTP B, pH 6.3). On the other hand, oxidation of



Figure 1 Second-order rate kinetic plots for the oxidation of progestagenic steroid hormones (SH) by permanganate and the resulting
effect of dissolved natural organic matter (NOM) from wastewaters (WWTP A and WWTP B) for progestagens at a) and c) pH 6.0, b)
and d) pH 8.0 when compared to Milli-Q water according to progestagens having similar reaction rate constants. Experimental
conditions were, [KMnO4]0 from 17 to 39 μM and [progestagens]0 from 1.9 to 3.9 μM. Solid lines represent the linear regression of the measured
data (symbols) with their related coefficients of determination (R2)≥ 0.96.
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MEDRO was limited in effluent waters at pH 6.3. At
higher pH, the presence of NOM systematically improved
the efficiency of the oxidation of progestagens, as illus-
trated in Figure 1b and 1d as well as in Table 2.
Several ligands such as phosphate buffer, EDTA, and

humic acid, have been shown to exert pH-dependent
oxidation enhancement of phenolic compounds (Jiang
et al. 2009) supporting the hypothesis of a catalytic role
produced by the aqueous manganese intermediates (Mn
Table 2 Steroid hormone (SH) oxidation rate constants (k, M-

and half-lives (t1/2, min) derived from oxidation experiments
A, pH 8.2, DOC 2.3 mg C L-1 and WWTP B, pH 6.3, COD 7.7 m

Compounds Milli-Q water

k KMnO4-SH (M–1 sec–1) Removal (%) t 1/2 (min

pH 6.0 pH 8.0 pH 6.0 pH 8.0 pH 6.0 pH

LEVO 179 ± 10 199 ± 6 89 ± 12 89 ± 12 5.6

(0.96) (0.98)

MEDRO 73 ± 2 80 ± 2 57 ± 20 58 ± 12 14

(0.98) (0.98)

NORE 219 ± 13 224 ± 8 90 ± 11 78 ± 3 4.6

(0.96) (0.97)

PROG 28 ± 2 23 ± 1 48 ± 11 41 ± 5 36

(0.97) (0.98)
a Values in parentheses represent coefficients of determination (R2) and uncertainti
linear regression equation. Uncertainties on removal values represent standard dev
(INT)aq) which are seemingly stabilized by metal-
binding ligands [46]. This was illustrated with an en-
hancement of the oxidation of phenolic compounds that
was also noted for the presence of NOM in river water
and wastewaters and attributed to the formation of such
unidentified Mn(INT)aq species with a pH dependency
of the rligand up to pH 9 [46].
The different trends observed in our data may reflect

the fact that the role of ligands in Mn-promoted
1 sec-1), removal efficiency (%) between 10 and 60 min
using permanganate in Milli-Q and wastewaters (WWTP
g C L-1) at 22 ± 2°C for pH 6.0 and 8.0a

Wastewaters

) k KMnO4-SH (M–1 sec–1) Removal (%) t 1/2 (min)

8.0 pH 6.3 pH 8.2 pH 6.3 pH 8.2 pH 6.0 pH 8.0

5.0 180 ± 5 302 ± 9 97 ± 8 90 ± 1 5.6 3.3

(0.96) (0.98)

12 49 ± 2 159 ± 4 71 ± 1 87 ± 4 2.1 6.3

(0.98) (0.99)

4.5 257 ± 10 368 ± 11 96 ± 2 92 ± 1 3.9 2.7

(0.98) (0.98)

44 26 ± 2 109 ± 4 58 ± 3 80 ± 20 38 9.2

(0.98) (0.98)

es on k values represent calculated standard deviations (SD) given from the
iations (SD) between replicates (n = 2).
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oxidation is closely related to the structure of the target
organic molecules, as proposed by Jiang et al. [46]. A
significant improvement of oxidation of phenolic com-
pounds using humic acids of various origins has been
reported [46,47,52]. One could hypothesize that the
presence of NOM in this case also contributes to en-
hance the oxidation of the progestagens. Hu et al. [27]
have attributed the degradation efficiency of the oxida-
tion of carbamazepine in the presence of permanganate
to an electrophilic attack, the stabilization of Mn(INT)aq
could also help improve this electrophilic attack onto
the molecules of progestagens. In the case of our target
compounds, NOM did not enhance oxidation at a
pH 6.3 while a significant and consistent enhancement
was noted at pH 8. Hu et al. did not observe any en-
hancement of carbamazepine oxidation at pH 5, 6 and 7
in the presence of 10 and 20 mg L-1 of humic acids [27].
Within our dataset, it is difficult to fully dissociate what
proportion of the difference in efficiency between pH
values of 6 and 8 is attributable to an effect due an un-
known difference in the chemistry of both effluent
wastewaters tested. With the presumption that the effect
is solely attributable to the pH difference, the nature of
the NOM as a function of pH could also partly explain
the observed results.
Dissolved humic substances have been known to influ-

ence removal of organic compounds from municipal and
industrial wastewaters [53,54] as well as being respon-
sible for capturing and transporting both nonpolar (such
as p,p’-DDT, 2,4,5,2’,5’-PCB and 2,4,4’-PCB) and polar
(pesticides) contaminants [55,56]. This could be a result
of the humic macromolecules that have been shown to
be densely coiled at lower pH values, such as that of the
WWTP B (pH = 6.3) effluent (Figure 1a and 1c) for
progestagens, as depicted by the random coil model
[57]. Therefore, i) the affinity of NOM to complex and
stabilize Mn(INT)aq is lowered and the resulting cata-
lytic activity is no longer observed and ii) progestagens
Figure 2 Effect of temperature on the second-order decay of progest
constants for oxidation of progestagenic steroid hormones (SH) by p
53 μM, [progestagens]0 from 2.1 to 4.1 μM in wastewater (WWTP A) at pH
linear regression of the measured data (symbols) with their related coefficie
(log Kow ≥ 2.97, Additional file 1: Table S1) could be
complexed by the humic macromolecules in their
hydrophobic structural voids cavities [58] making
them less available for oxidation by permanganate. In-
versely, at more alkaline pH, such as that of the
WWTP A (pH = 8.2) effluent (Figure 1b and 1d) for
progestagens, there is formation of negatively charged
carboxyl groups found in the humic macromolecules.
This induces mutual repulsion and expansion of the
formerly coiled macromolecules [59], making them
more flexible and slightly more polar in nature, thus
promoting its reactivity allowing for the formation of
more stable Mn(INT)aq compounds while reducing
the progestagens affinity with the NOM. The impact
of the structure of the target compound, the nature of
the ligand and the pH dependency of NOM on the
kinetics of permanganate oxidation needs to be further
investigated.
As the presence of NOM generally had little impact

(at pH values around 6) or enhanced oxidation of the
four progestagenic compounds tested (at pH values
around 8), reaction rates measured in Milli-Q water
could therefore be used by operators as a conservative
estimate to predict the oxidation of the four selected
progestagens in natural source waters when exposed to
permanganate. It could be presumed that under favor-
able conditions (alkaline pH and organic ligands) the
oxidation can be enhanced relative to than predicted in
pure water.

Effect of temperature on kinetic rate constants
Temperature dependence of the reaction between perman-
ganate and progestagens was determined by measuring the
rate constants at four different temperatures (6, 15, 22 and
30°C), at pH 8.0 (WWTP A) in wastewater. The effect of
temperature on second-order rate constant plots is illus-
trated for LEVO in Figure 2, with the reaction rates in-
creasing as a function of temperature. The corresponding
agens: a) levonorgestrel and b) its impact on measured rate
ermanganate. The experimental conditions were, [KMnO4]0 from 38 to
8.2 and temperature ranging from 6 to 30°C. Solid lines represent the
nts of determination (R2) also given.



Table 3 Temperature effect on first-order apparent rate constants (k, sec-1), oxidation rate constants (k, M-1 sec-1) and
activation energy (Ea, KJ mol-1) for permanganate decay with and without progestagens (SH) in wastewater at pH 8.2
(WWTP A)a

Compounds Natural waters WWTP A (pH 8.2)

k KMnO4 (×10
–4 sec–1) without SH k KMnO4-SH (M–1 sec–1) Ea (KJ mol-1)

5°C 15°C 22°C 30°C 5°C 15°C 22°C 30°C

LEVO 184 ± 5 278 ± 9 302 ± 9 389 ± 13 20 ± 2

(0.99) (0.98) (0.99) (0.98)

MEDRO 58 ± 1 115 ± 3 159 ± 4 171 ± 5 31 ± 2

1.9 ± 0.2 1.8 ± 0.8 4.4 ± 0.6 5.4 ± 0.2 (0.99) (0.99) (0.99) (0.98)

(0.98) (0.82) (0.99) (0.94) 172 ± 8 288 ± 12 368 ± 11 429 ± 13 26 ± 2

(0.97) (0.98) (0.99) (0.98)

PROG 48 ± 1 89 ± 2 109 ± 3 112 ± 3 23 ± 7

(0.99) (0.99) (0.93) (0.99)
a Values in parentheses represent coefficients of determination (R2) and uncertainties on k values represent calculated standard deviation (SD) given from the
linear regression equation.

Figure 3 Steroid hormone (SH) decay curves following
oxidation with permanganate in wastewaters (WWTP A, pH 8.2
and WWTP B, pH 6.3) for progestagens. [KMnO4]0 ranged from
17 to 39 μM. Solid (WWTP A) and doted (WWTP B) lines represent
the trend of the measured data (symbols).
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second-order rate constants (Table 3) were used to cal-
culate the activation energy by means of the linearized
Arrhenius equation (Eq. (6)).

ln KKMnO4−SHð Þ ¼ ln A−
Ea

RT
ð6Þ

with k the rate constant, Ea the experimental energy of acti-
vation, R the gas constant, T the absolute temperature (K)
and A the frequency factor. After linear regression analysis
(R2 ≥ 0.87), the apparent activation energies (Ea), ranging
from 20 to 31 KJ mol-1, were calculated (Table 3). To the
best of our knowledge, there are no published values for
temperature dependent rate constants for progestagens.
These Ea are lower than reported earlier for the oxidation
of E1 by permanganate (43.07 KJ mol-1) [24], while compar-
able to other organic compounds, such as cyanotoxins
(28.8 and 20 KJ mol-1) [30,60] and chloroethylene (24.4 and
39.1 KJ mol-1) [61,62]. According to the activation energy
values measured, a temperature increase of 10°C will raise
the oxidation rate by a factor between 1.4-1.6. As a result,
the impact of temperature could be a relevant parameter
for water utilities where oxidation removal potential could
be optimized according to weather conditions.

Removal efficiencies and half-life
The elimination of SH by permanganate in Milli-Q and
in wastewaters for pH 6.0 and pH 8.0, was investigated
and values of removal percentage and half-life are sum-
marized in Table 2.
Steroid hormone decay curves following oxidation

with permanganate in wastewaters (WWTP A, pH 8.2
and WWTP B, pH 6.3) for progestagens are presented in
Figure 3. Removal efficiencies with permanganate were
not affected by pH or dissolved NOM, with values from
Milli-Q and wastewater effluents being similar (consider-
ing standard deviations). The removal of progestagens
was lower for both pairs (similar chemical structures)
PROG and MEDRO than LEVO and NORE, i.e. 48 to
87% with half-lives between 2.1 and 44 min compared to
78 to 97% with half-lives between 2.7 and 5.6 min, in
Milli-Q and wastewaters at pH 6.0-8.2, respectively. This
could be attributed to the presence of the ethynyl groups
on C12 for LEVO and NORE (Additional file 1: Figure
S1). In the case of PROG and MEDRO, a positive impact
of dissolved NOM is observed with lower half-lives and
higher degradation rates in wastewaters than in Milli-Q
water, especially at pH 8.0. This background matrix of
wastewaters has been shown to accelerate the oxidation
of estrogens by permanganate [26]. These values were
measured under typically-applied permanganate dosages
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(1 to 5 mg L-1) with a minimum contact time of 10 min
and maximum of 60 min. A CT value of 25 mg.min L-1

is needed to reduce concentration by 94 and 99% for
LEVO and NORE, between 67 and 94% for MEDRO,
whereas for PROG the removal ranged from 59 to 87%,
at both pH 6.0 and 8.0 in Milli-Q and natural waters.
The results for progestagens show that LEVO, NORE
and MEDRO are most susceptible to permanganate at-
tack with even better results in wastewater effluents, es-
pecially for MEDRO at pH 8.0. PROG is less affected by
permanganate and would require very long contact
times for sufficient removal to occur which would not
be representative of realistic operating conditions for
typical water treatment plants.

Conclusion
Oxidation kinetics of four selected progestagens (proges-
terone, medroxyprogesterone, norethindrone and levo-
norgestrel) with permanganate were investigated as a
function of pH, NOM and temperature. The second-
order rate constants ranged for 23 to 224 M-1 sec-1 in
Milli-Q water and 26 to 368 M-1 sec-1 in wastewater, at
pH 6.0 and 8.0, respectively. It was found that a variation
in pH did not significantly influence the rate constant.
The impact of NOM at typical ranges found in wastewa-
ter effluents was also minimal with a slight enhancement
of oxidation at pH values around 8. The removal of
progestagens was lower for both progesterone and
medroxyprogesterone than for levonorgestrel and nor-
ethindrone, i.e. 48 to 87% with half-lives between 2.1
and 44 min compared to 78 to 97% with half-lives be-
tween 2.7 and 5.6 min, in Milli-Q and wastewaters at
pH 6.0-8.2, respectively.
This work demonstrates the potential of permanganate

to oxidize progestagens in drinking water within the typ-
ical ranges of operational values of pH and NOM.
Proper attention should be given to provide adequate
CT values in order to ensure the efficient removal of
progestagenic steroid hormones and recalcitrant ana-
logues. Further kinetic studies targeting the identifica-
tion and environmental impact of possible by-products
related to progestagens reaction with permanganate
appear warranted.

Additional file

Additional file 1: Text S1. LDTD-APCI Source Principles. Figure S1.
Molecular structures of selected steroid hormones and their acronyms,
with atom numbering for the base structure of steroid hormones.
Figure S2. Impact of solvents (methanol, MeOH and acetonitrile, ACN)
on permanganate decay in batch reactor conditions without the addition
of steroid hormones. Experimental conditions were, [KMnO4]0 = 10 mg/L
at pH 8.0 in Milli-Q water with a 0.2% v/v addition of solvent into 500 mL
batch reactor. Error bars represent the standard deviation of replicate
measurements/batch (n = 3). Figure S3. Pseudo-first-order kinetic plots
corresponding to decay curves of permanganate with progestagens
(LEVO, MEDRO, NORE and PROG) in ultrapure and wastewater effluents
according to pH values (WWTP A, pH 8.2 and WWTP B, pH 6.3).
Experimental conditions were, [KMnO4]0 from 17 to 39 μM and
[progestagens]0 from 1.9 to 3.9 μM. Solid lines represent the linear
regression of the measured data (symbols) with their related coefficients
of determination (R2) also given. Figure S4. Permanganate decay curves
of a) permanganate with estrogens and b) permanganate with
progestagens in Milli-Q and natural (WWTP A, pH 8.2 and WWTP B,
pH 6.3) waters according to pH values. Experimental conditions were,
[KMnO4]0 from 17 to 39 μM and [progestagens]0 from 1.9 to 3.9 μM. Solid
and doted lines represent the trend for the measured data (symbols).
Table S1. Physicochemical Properties of Selected Steroid Hormones.
Table S2. MS/MS Parameters for the Analysis of Selected Steroid
Hormones Analytes in Both Negative (NI) and Positive (PI) Ionization
Mode by LDTD-APCI-MSMS.
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