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Abstract

Background: Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure
and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis
is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal
pathology and on its severity. Therefore, this study aims to develop the AMRSID (analysis of MR signal intensity
distribution) method to analyze the 3D distribution of the MR signal intensity within the IVD and to evaluate their
sensitivity to scoliosis and spondylolisthesis and their severities.

Methods: This study was realized on 79 adolescents who underwent a MRI acquisition (sagittal T2-weighted
images) before their orthopedic or surgical treatment. Five groups were considered: low severity scoliosis (Cobb
angle <50°), high severity scoliosis (Cobb angles >50°), low severity spondylolisthesis (Meyerding grades | and II),
high severity spondylolisthesis (Meyerding grades lll, IV and V) and control. The distribution of the MRI signal
intensity within the IVD was analyzed using the descriptive statistics of histograms normalized by either
cerebrospinal fluid or bone signal intensity, weighted centers and volume ratios. Differences between pathology
and severity groups were assessed using one- and two-way ANOVAs.

Results: There were significant (p < 0.05) variations of indices between scoliosis, spondylolithesis and control
groups and between low and high severity groups. The cerebrospinal fluid normalization was able to detect
differences between healthy and pathologic IVDs whereas the bone normalization, which reflects both bone and
IVD health, detected more differences between the severities of these pathologies.

Conclusions: This study proves for the first time that changes in the intervertebral disc, non visible to the naked
eye on sagittal T2-weighted MR images of the spine, can be detected from specific indices describing the
distribution of the MR signal intensity. Moreover, these indices are able to discriminate between scoliosis and
spondylolisthesis and their severities, and provide essential information on the composition and structure of the
discs whatever the pathology considered. The AMRSID method may have the potential to complement the current
diagnostic tools available in clinics to improve the diagnostic with earlier biomarkers, the prognosis of evolution
and the treatment options of scoliosis and spondylolisthesis.
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Background

Spinal deformities such as scoliosis and spondylolisthesis
affect both the structural and the biochemical compos-
ition of the intervertebral disc (IVD) [1,2] and lead to its
degeneration. Adolescent Idiopathic Scoliosis (AIS) is
marked by a wedging of the IVD linked with a displace-
ment of the nucleus pulposus and changes in the glyco-
saminoglycan and water content repartition [3-6].
Spondylolisthesis is characterized by a loss of IVD height
[7] and most of the time a disc degeneration [8]. Current
radiologic measurements for AIS and spondylolisthesis
are the Cobb angles and the Meyerding grades, respect-
ively. However, they are 2D measurements of 3D spinal
deformities and in addition they do not provide informa-
tion on the biological and phenotypical aspects of the
pathological discs.

Magnetic resonance imaging (MRI) can be a powerful
tool for the diagnosis of spine pathologies. Diminished
signal intensity in the IVD and evidence of radial tears
in the annulus fibrosus (AF) were highly associated with
positive symptoms on discography [9-18]. Changes in
the intervertebral disc height, area or volume were
quantified from MR images to highlight the effect of
daily activities or various loading of the spine [19-22].
The displacements of the IVD components under vari-
ous movements of the spine were also measured from
MR images, highlighting significant correlations between
the nucleus zone migration and the flexion-extension
movements of the spine [23-25], or correlations between
nucleus zone migration and intervertebral disc wedging
in scoliosis [6,26]. Thus MRI can potentially help to
monitor spine pathologies progression in vivo [27-29].
For instance, MRI gives reliable non-invasive 3D images
of the IVD [30] allowing longitudinal follow-up studies
in spine pathologies and T2-weighted images are used to
assess the IVD degeneration [27,30,31]. Analysis of T2-
weighted images can help to detect early signs of disc
degeneration [4,32] but the current clinical use of T2-
weighted images is for the detection of late stages of the
spine pathologies [30].

Recent studies further investigated MRI in the spine
field with automated diagnosis. Disc herniation was
evaluated with high precision of prediction (specificity
99%, sensitivity 93%) [33,34]. These studies were based
on active shape modeling (2D), classifiers (2D) and his-
tograms (2D/3D), which were also used as research tools
for automated diagnosis of other diseases such as liver
metastases [35] or myocardial fibrosis by shape recogni-
tion and histogram analysis [36].

Our hypothesis is that the distribution of the MRI
signal intensity within the IVD in T2-weighted images
depends on the spinal pathology and on its severity, and
consequently has the potential to provide essential
information on spine pathologies that could not be
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appreciated by direct visual observation as currently
performed in clinics [37]. Therefore, this study aims to
develop new tools to analyze the 3D distribution of the
MR signal intensity within the IVD and to evaluate their
sensitivity to different spinal deformities (scoliosis or
spondylolisthesis) and severities.

Methods

Subjects’ selection

Seventy-nine subjects (32 with scoliosis, 32 with spondy-
lolisthesis and 15 with herniated IVD) with an average
age of 15.1 (range, 8—19.8) were selected from a clinical
database of patient’s images. The selected cases pre-
sented no other pathologies such as severe discopathies,
herniation over the lumbar discs, no brace or surgical
treatments prior to the MRI acquisition and/or no arti-
facts in the images. The subjects were divided into 5
groups: high severity scoliosis (Cobb Angle 50° to 90°, n
=16), low severity scoliosis (Cobb Angle 10° to 49°, n=
16), high severity spondylolisthesis (Meyerding grade III
to V, n=16), low severity spondylolisthesis (Meyerding
grade I or II, n=16) and controls (non-afflicted IVD
from herniated patients, n=15). There were no signifi-
cant differences in the distribution of the morphological
parameters (Table 1) between each group, providing
randomization. Each participating subject or in the case
of minors, their legal guardian, gave informed consent
for the use of their clinical data in future research pro-
jects. The research protocol was approved by the re-
search ethics committee of our institutions. MR images
(Figure 1) were all performed on the same 1.5 T system
(Sonata, Siemens Healthcare, Erlangen, Germany) using
a sagittal turbo spin echo T2-weighted sequence (slice
thickness 3 mm, gap 3.6 mm, field of view of
350*350 mm, matrix size of 512*512, echo time of 121—
126 ms and repetition time of 3,200-3,690 ms).

IVD selection and segmentation

For the scoliosis groups, the disc under the apical verte-
bra of the lumbar curve was selected. For the spondylo-
listhesis groups, the L4/L5 IVD was selected, as high
grades (IV and V) deformation of L5-S1 IVDs gives
unreliable MR signal intensity. For the control group,
the healthy IVD (L4/L5 or L2/L3) was selected. The seg-
mentation was semi-automatically performed by a M.Sc.
student in Biomedical Engineering using Slice-O-Matic
(Tomovision, Magog (QC), Canada). This segmentation
was realized for three zones (Figure 1): IVD, nucleus
pulposus (NP) and annulus fibrosus (AF) and took about
fifteen minutes per disc.

Data normalisation
Two-step normalization was done in order to minimize
the discrepancy between the subjects and acquisition
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Table 1 Patient morphology and MRI scanning time of the day

Patient Mean Median Standard deviation Min Max
Age (years) 15.1 14.8 23 8.0 19.8
Height (cm) 161.0 161.7 122 1083 1816
Weight (kg) 56.3 56.8 134 183 99.2
Body Mass Index 215 210 4. 130 36.0
MRI acquisition time of the day 12:10 13:26 1:45 7:40 18:00

techniques (MatLab, Mathworks, Naticks (MA), USA).
First, each voxel was set to a fraction of the IVD’s vol-
ume to normalize the count of voxels between patients’
histograms due to the variable disc sizes and image reso-
lution between subjects. Then, MR intensity values were
divided by normalizing intensities to minimize the vari-
ability due to variable patients’ morphologies, variable
MR acquisition gain and slightly variable TR and TE
parameters. Two different normalizing intensities were
used: the mean cerebrospinal fluid (CSF) intensity,
which is known for its constant chemical composition
and which is already used in the literature to normalize
MR intensities [38-40], and the mean cancellous bone
intensity of the above vertebra.

Descriptive statistics of the MR intensities histogram

The Gaussian distribution of the MR intensities histo-
gram for the IVD, NP and AF was analyzed using the
following indices: the standard deviation, the standard
error, the median value, the sum of squared values, the
750 percentile, the maximal voxel count in an intensity
interval, the Skewness (index on the symmetry of the
Gaussian distribution of the histogram) and the

Figure 1 Segmentation process. An VD is selected from a sagittal
slice of the whole spine (Left). This IVD is then semi-automatically
segmented into three parts: IVD (Top right), AF (middle right) and
NP (bottom right).

Kolmogorov-Smirnov distance (maximum cumulative
distance between the histogram distribution, and the
Gaussian distribution of intensity data).

Volume ratio between NP and full disc

The volume ratio was computed as the ratio between
the number of voxels within the segmented NP 3D
matrix and the number of those within the segmented
IVD 3D matrix as described by Violas et al. [41].

Distance between weighted and geometrical centers

The center of intensity (W) was adapted from Périé
et al. [42]. It was defined as a tridimensional point which
position was weighted by the MR intensity in each IVD,
NP and AF zones (Figure 2) and calculated as follow:

Z;l:l[i(xia)/ia zi)Pi(x1, 91, zi)

Z?lei(xiv YirZi)

where I is the MR signal intensity at the space position

W(x,y,2) =

P described using x, y, and z coordinates in the local co-
ordinate system of each disc and n is the total number
of points in the segmentation.

The normalized distance (d) between the center of in-
tensity W and the geometric center (G) of the IVD,
which allows minimizing the effects of the variable IVD

aT—

Figure 2 2D projection of the 3D distance between the
geometric center (G) and the MRI intensity weighted center (W)
in a spondylolisthesis patient’s IVD.
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sizes and different local coordinate systems of each disc
between subjects on the result, was calculated as follow:
_ |W(X7Y7 Z) - G(X7 Y, Z)l

N

d

where N is the total number of voxels in the studied
zone. This index represents an undirected translation in
the IVD morphology from an ideally symmetric disc to a
pathologic disc.

Statistical analysis between groups

Statistical analyses were performed using SIGMAPLOT
11.0 (Systat software Inc., San Jose, CA, USA). Differ-
ences between the scoliosis, spondylolisthesis and con-
trol groups were investigated using a one-way ANOVA
for normally distributed, equal variance data. Kruskal-
Wallis ANOVA and Dunn’s method of comparison were
used for non-normal distributions. Differences between
severity (low and high) and pathologic groups (Scoliosis
and spondylolisthesis) were investigated using a two-way
ANOVA for normally distributed, equal variance data.
ANOVA on ranks with manual rank ordering was used
for non-normal distributions. The distribution of the
morphological parameters within the groups (Table 1)
was unbiased and considered to have a negligible effect
on the data.
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Results

CSF normalized histograms of IVD

In the AF significant differences were found in the
standard deviation, standard error, 75™ percentile and
Kolmogorov-Smirnov distance between the control
group and the groups with spinal deformity (Table 2).
The Kolmogorov-Smirnov distance was significantly lar-
ger in low severity than in high severity groups. In the
NP, significant differences were found in the standard
deviation, standard error and Kolmogorov-Smirnov dis-
tance between control and scoliotic subjects. However,
no significant differences were observed between the
scoliosis and spondylisthesis groups. In the IVD, no sig-
nificant differences were observed for all parameters be-
tween all groups, as illustrated by the similarity between
the histograms (Figure 3a).

Bone normalized histograms of the IVD

In the AF significant differences were found in the
standard deviation, standard error, maximal voxel count
in an intensity interval, median, 75™ percentile and
Kolmogorov-Smirnov distance between the control and
the groups with spinal deformity (Table 2). Significant
differences were also noted in the skewness between the
severity groups. In the NP, significant differences were
observed in the Kolmogorov-Smirnov distance between

Table 2 Significant differences found on the descriptive statistics of the histogram between pathology and severity

groups
Region of Standard Standard  Kolmogorov-Smirnov 75" Median Maximal voxel Sum of Skewness
interest deviation error distance percentile count in an squared
intensity interval values
Control/Scoliosis
CSF AF *% *¥ *% *% *%
normalization
NP * * *%
normalization
NP *
Control/Spondylolisthesis
CSF AF *% *% *% *% *%
normalization
*% *% *%

Bone AF * * **
normalization

Scoliosis/Spondylolisthesis

Bone VD *
normalization

Severity low/high

CSF AF *
normalization

Bone VD * *
normalization

AF

Results were considered significant (*) for p < 0.05 and highly significant (**) for p <0.001.
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Figure 3 Comparative MRI signal intensity histogram in the IVD between pathologies from normalized data using the average value of
the CSF intensity (a) and the average value of the cancellous bone (b). The x axis represents the gray level and the Y axis the number of

pixels.

J

the control and the scoliotic groups. Similarly, in the
IVD, the Kolmogorov-Smirnov distance was significantly
higher for scoliosis than spondylolisthesis subjects, as
illustrated by a different histogram shape for spondylo-
listhesis than for scoliosis or control (Figure 3b). Signifi-
cant differences were also found in the standard
deviation, standard error, skewness and sum of squared
values between severity groups.

Mean bone and CSF intensities

The mean bone intensity was not influenced by neither
the pathology (p =0.19) nor the severity (p=0.72). On
the contrary, the mean CSF intensity was highly influ-
enced by both the pathology (p =0.02) and the severity
(p=0.04). The CSF being constant between subjects,
these signal changes are only due to the gain of the MR
system between acquisitions. Thus the gain of the MR
system is influenced by both the pathology and the

severity. However, the ratio of the bone mean intensity
divided by the CSF mean intensity was not linked to the
pathology (p=0.42) nor its severity (p=0.1). The
coupled effect of the MR system gain and vertebral bone
changes are not influenced by the pathology nor its
severity.

Volume ratio between NP and full disc

A significant decrease was observed between control
and pathologic groups (p <0.001, Table 3). However, no
significant differences were observed between the scoli-
osis and the spondylisthesis groups, and between the se-
verity groups.

Distance between weighted and geometrical centers

In the AF, NP and IVD, a significant increase of 50%
(Table 4) was found (p<0.001, Table 5) between the
control and the scoliosis groups. Highly significant
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Table 3 Volume ratio (%) between the NP and IVD for
each pathology and severity group

Group Severity Mean value Standard deviation
Scoliosis Low 18.9% 34%

High 19.9% 5.0%
Spondylolisthesis Low 22.2% 3.6%

High 18.0% 4.8%
Control 27.0% 6.3%

differences were also detected (p <0.001, Table 5) be-
tween the scoliosis and the spondylolisthesis groups.
Similarly, significant differences was found (p=0.05,
Table 5) between severity groups in the NP zone. How-
ever, no significant differences were found between the
control and the spondylolisthesis groups in any zone.

Discussion

The histograms of MR intensities within the interverte-
bral discs were analysed for the first time using descrip-
tive statistics. Our hypothesis was validated as the
results revealed a variation of the MR signal intensity
within T2-weighted images of IVDs, which was different
between spine pathologies and their severities. The
AMRSID method and the new parameters proposed to
analyse the MR signal within the IVD has the potential
to provide essential information on spine pathologies

Table 4 Normalized distance between weighted and
geometrical centers for each pathology and severity

group

Pathology Severity Mean value Std
VD
Scoliosis Low 0.50 0.28
High 0.50 0.17
Spondylolisthesis Low 0.12 0.09
High 0.16 0.10
Control 0.22 0.1
AF
Scoliosis Low 052 0.28
High 0.50 0.22
Spondylolisthesis Low 0.28 0.12
High 035 028
Control 0.20 0.06
NP
Scoliosis Low 1.86 143
High 201 112
Spondylolisthesis Low 0.80 0.56
High 141 091
Control 0.95 0.52
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that could not be appreciated by direct visual observa-
tion as currently performed in clinical routine.

Descriptive statistics of normalized histograms

The results highlighted the following links between MR
signal intensity and morphologic variations of the IVD.
The standard deviation represents the width of the
Gaussian peak and rises with increasing severity, which
represented a decrease for the transition sharpness be-
tween the AF and NP, and morphologically the degener-
ation of the inner AF and NP. The sum of square
showed the loss of the high white intensities values
within the IVD and rose with increasing severity, which
represented the loss of the healthy NP and inner-AF
and thus was likely to reflect their degeneration. The
Skewness detected the loss of inner AF intensities and
rose with increasing severity, which represented the
structural degeneration of the AF. The Kolmogorov-
Smirnov distance detected the original slope of the curve
as well as the loss of high AF and IVD intensities. It was
greater for scoliotic than for spondylolisthesis patients
and decreases with increasing severity. It gave essential
information on the structural degeneration of the IVD
with a loss of the original morphologic equilibrium. The
maximum, the median and the 75™ percentile likely illu-
strated the homogeneity of the IVD tissues given by the
concentration of the total MR intensity data around a
few number of intensities. The more homogeneous the
IVD, the more degenerated it was. This degeneration
reflected a loss of the collagen matrix integrity in the NP
and a diffusion of the molecules such as proteoglycans,
leading to a loss of osmotic pressure and of disc hydra-
tion. The standard error represented the variation of the
mean value between the perfect Gaussian and the
obtained distribution and rose with increasing severities,
which represented a decrease of the IVD’s hydration on
T2-weighted images.

Volume ratio and weighted center

The results were consistent with those in the literature
with a mean volume ratio equal to 24% for scoliotic
discs [41]. This index was found higher for control than
for pathologic groups, which was expected since it
detected the loss of the NP volume within the pathologic
discs. The distance between the weighted and geomet-
rical centers was only analysed in 2D by Perie et al.
[6,26,42]. Our 3D index, which showed significant differ-
ences due to the pathology and severity, related the geo-
metric intensity distribution variations and thus
expressed structural and composition changes in the
IVD, AF and NP. It detected the asymmetry in the IVD
and described the tridimensional geometry of the disc
degeneration. A clinical longitudinal follow-up of these
indices would lead to a better understanding of the
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Table 5 Significant differences on the distance between weighted and geometrical centers and on the volume ratio

between pathology and severity groups

Region of interest Significance
Control vs. Scoliosis
Distance between weighted and geometrical centers VD **
AF >
NP x*
Volume Ratio **
Control vs. Spondylolisthesis
Volume Ratio **
Scoliosis vs. Spondylolisthesis
Distance between weighted and geometrical centers VD **
AF x*
NP **
Severity Low vs. High
Distance between weighted and geometrical centers NP *

Results were considered significant (*) for p < 0.05 and highly significant (**) for p <0.001.

various IVD degeneration processes caused by spinal de-
formities. It is believed to have potential in providing
critical information on the evolution of the spinal path-
ologies, and of the treatment.

Bone and CSF normalizations

Normalizations were based on CSF and bone tissues MR
signal intensity. Because of its constant composition
between patients, the CSF normalization suppresses the
acquisition gain from the signal intensity. Because bone
tissues are known to remodel with spine pathologies
[43,44], the bone normalization evaluated bone health
and suppressed the acquisition gain at the same time.
Based on the highly significant differences between
groups from this study, we concluded that CSF
normalization was able to detect differences between
healthy and pathologic IVD whereas bone normalization
detected more differences between the severities of these
pathologies. The bone normalization was able to reflect
both the bone and IVD health. This particularity allowed
finding differences between the two severity groups.

Limitations of the study

Each patient group was created to separate the surgical
cases from the non-surgical cases. However, the distribu-
tion of age, height, weight, body mass index and MRI
acquisition time of the patients in each group was het-
erogeneous. Such parameters are known to influence the
MR signal intensity because of physiologic variations
during growth peak and diurnal changes within the IVD
[38,45]. As no significant differences in the distribution
of these parameters were found between each group,
the randomization was assumed and their effect was
neglected.

The control cases are not from normal subjects but
from patients with a herniated IVD. Because the bio-
mechanical forces that are responsible in the pathophysi-
ology of the IVD disease are usually exerting their effect
over several levels, we chose a healthy disc three levels
away from the herniated IVD, and we verified with a
radiologist that the chosen IVD did not have abnormal
MR signal distribution.

Segmentations of the IVD, NP and AF zones were pro-
cessed semi-automatically, including the user’s percep-
tion. Thus we studied the sensitivity of the method to
the segmentation process and data normalization [46].
The repetition of the semi-automatic segmentation by a
same operator did not influence the quality of the con-
tour or our new MR distribution parameters while the
skills of the operator influenced only the MR distribu-
tion parameters. The instructions given prior to the seg-
mentation influenced both the quality of the contour
and the MR distribution parameters. Bone normalization
produces an index which jointly highlights IVD and
bone health, whereas CSF normalization only suppresses
the effect of the acquisition gain. Segmentations used in
this study provided reliable analysis results.

The segmentation is the longest process in our data
analysis as it requires a manual intervention of the
operator and takes about fifteen minutes per disc. An
automatic process would decrease drastically this seg-
mentation time. Some attempts to perform automatic
segmentation of the IVD were proposed on T1-weighted
images [47,48], but not for T2-weighted images in which
there is not enough contrast between bone and annulus
fibrosus.

MRI studies are realized in supine position and not in
standing posture. However, our team demonstrated that
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the MR parameters of IVDs are not sensitive to com-
pression (up to 40% deformation) neither to the partial
confined relaxation that followed the compression [49].

Clinical applications

X-ray films do not allow the analysis of the IVD, except
its height that shows late stages of degeneration. The
AMRSID method showed promising results that sug-
gested the potential to change the prognosis or treat-
ment options of scoliosis and spondylolisthesis. In AIS,
the quantitative analysis of the apical disc may help pre-
dict curve progression in primary or secondary curves
by indicating the level of IVD abnormalities and degen-
eration. However, no study has already correlated the
IVD changes to the prognosis or the rate of progression
of the AIS. To that end, longitudinal follow-up studies
associated to the AMRSID method are necessary, in
which the comparison of the MR signal distribution pat-
terns will allow the definition of predictive factors of
scoliosis progression using contingency tables, relative
risk and percentage attributable risk factors. In L5-S1
spondylolisthesis, the AMRSID method may help surgi-
cal decision making by revealing evidence of disc degen-
eration above the affected level, and help surgeons to
decide if this adjacent level should or should not be
included in the fusion. Consequently, the clinical prac-
tice could be modified by the inclusion of a MRI acquisi-
tion associated to the AMRSID method for the
diagnosis. Moreover, the treatment planning could be
monitored in part by the results of the AMRSID
method.

The application of the AMRSID method to elderly
subjects needs to consider the IVD aging as a factor in-
fluencing the MR signal. Thus, a similar study has to be
performed to verify that the distribution of the MRI sig-
nal intensity within the IVD in T2-weighted images
depends on the spinal pathology, its severity and the
aging degradation.

Images with enhanced resolution could lead to the dis-
covery of more significant indices describing scoliosis
and spondylolisthesis. Moreover, multi-parametric MRI
is known to provide information on mechanical, struc-
tural and biochemical properties of the IVD [50-53] and
could lead to new indices reflecting more aspects of the
changes induced in the IVD by spine pathologies. Proton
MR-spectroscopy, which evaluates the relative concen-
tration of metabolites in tissues, might be used to assess
IVD degeneration and proteoglycan content [54,55].

Conclusions

This study proves for the first time that changes in the
intervertebral disc, non appreciated by direct visual ob-
servation as currently performed in clinical routine, can
be detected from specific indices describing the
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distribution of the signal intensity on sagittal T2-
weighted MR images of the spine. Moreover, these indi-
ces are able to discriminate between the spinal deform-
ities and their severities, and provide essential
information on the composition and structure of the
discs whatever the spine deformity considered. The
AMRSID method has the potential to complement the
current diagnostic tools available in clinics to improve
the diagnostic with earlier biomarkers, the prognosis of
evolution and the treatment options of scoliosis and
spondylolisthesis. However, before being used in clinics,
the resolution of the MR images has to be increased dur-
ing the acquisition or during the post-treatment, an
automatic segmentation process of the IVD has to be
developed to reduce the data treatment duration, and
longitudinal studies have to be performed to investigate
the relationship between the IVD degenerescence and
the evolution of scoliosis and spondylolisthesis.
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