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RÉSUMÉ

La congestion routière est un état particulier de mobilité où les temps de déplacement aug-
mentent et de plus en plus de temps est passé dans le véhicule. En plus d’être une expérience
très stressante pour les conducteurs, la congestion a également un impact négatif sur l’en-
vironnement et l’économie. Dans ce contexte, des pressions sont exercées sur les autorités
afin qu’elles prennent des mesures décisives pour améliorer le flot du trafic sur le réseau
routier. En améliorant le flot, la congestion est réduite et la durée totale de déplacement
des véhicules est réduite. D’une part, la congestion routière peut être récurrente, faisant ré-
férence à la congestion qui se produit régulièrement. La congestion non récurrente (NRC),
quant à elle, dans un réseau urbain, est principalement causée par des incidents, des zones de
construction, des événements spéciaux ou des conditions météorologiques défavorables. Les
opérateurs d’infrastructure surveillent le trafic sur le réseau mais sont contraints à utiliser le
moins de ressources possibles. Cette contrainte implique que l’état du trafic ne peut pas être
mesuré partout car il n’est pas réaliste de déployer des équipements sophistiqués pour assurer
la collecte précise des données de trafic et la détection en temps réel des événements partout
sur le réseau routier. Alors certains emplacements où le flot de trafic doit être amélioré ne
sont pas surveillés car ces emplacements varient beaucoup. D’un autre côté, de nombreuses
études sur la congestion routière ont été consacrées aux autoroutes plutôt qu’aux régions
urbaines, qui sont pourtant beaucoup plus susceptibles d’être surveillées par les autorités de
la circulation. De plus, les systèmes actuels de collecte de données de trafic n’incluent pas
la possibilité d’enregistrer des informations détaillées sur les événements qui surviennent sur
la route, tels que les collisions, les conditions météorologiques défavorables, etc. Aussi, les
études proposées dans la littérature ne font que détecter la congestion ; mais ce n’est pas
suffisant, nous devrions être en mesure de mieux caractériser l’événement qui en est la cause.
Les agences doivent comprendre quelle est la cause qui affecte la variabilité de flot sur leurs
installations et dans quelle mesure elles peuvent prendre les actions appropriées pour atté-
nuer la congestion.

Dans cette thèse, nous proposons la collecte de données de trafic via les réseaux ad hoc de
véhicules ou VANET. Cette technologie de surveillance avancée est capable d’agréger des
variables de trafic microscopiques et macroscopiques à divers niveaux de granularité. Nous
avons conçu un algorithme pour la détection et l’évaluation en temps réel de l’état du trafic
routier. Nous proposons des modèles de classification basés sur les caractéristiques de trafic
collectées pour l’inférence sur la cause de la congestion dans un réseau routier urbain. Nous
mettons en place un processus de coopération pour augmenter la précision des estimations
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car d’un côté, le trafic est multiforme et aussi pour dissimuler le fait que les véhicules ont
une connaissance partielle de l’état de la route. Si les véhicules connectés peuvent détecter la
congestion et en attribuer une cause potentielle, nous croyons qu’ils peuvent alors transférer
cette connaissance en temps réel à une entité située sur un segment de route en aval pour
que cette dernière puisse prédire avec précision le flot sur ce segment. Nous proposons une
méthodologie de prédiction de flot de trafic prenant en compte les flots historiques sur le
segment en question ainsi que des attributs, tels que les données obtenues en temps réel par
les véhicules connectés et les indices de temps de parcours sur les trajectoires des véhicules.
Nous montrons comment cette nouvelle approche dans ce domaine améliore la précision de la
prédiction. Pour valider les modèles nous simulons des scénarios élaborés à partir de traces
réelles de mouvement de véhicules dans un milieu urbain afin de construire un jeu de don-
nées synthétique pour le processus d’apprentissage que doivent effectuer les modèles proposés.
Nous décrivons dans ce qui suit les trois phases de cette thèse.

La première phase de la thèse affine les approches proposées dans la littérature quant à la
détection de la congestion via les réseaux ad hoc de véhicules qui regroupent la congestion
non récurrente et la congestion récurrente. Nous soutenons que détecter la congestion ne
suffit pas, et nous prévoyons estimer la cause de la congestion, soit étant une congestion ré-
currente ou non récurrente. Et plus particulièrement dans ce dernier cas, nous estimerons si
la cause est due à un incident, zones de construction, événement spécial dans les environs ou
à des conditions météorologiques défavorables. Pour ce faire, nous proposons un problème de
classification et nous appliquons des méthodes d’apprentissage automatique pour résoudre le
problème de classification de la congestion en ses composants en prenant en compte les ca-
ractéristiques de trafic collectées à partir des véhicules connectés pour l’inférence sur la cause
de la congestion. En particulier, nous considérons un ensemble de caractéristiques uniques
pour chaque type de NRC et extrayons ces caractéristiques à partir des données collectées
pour déduire la NRC. Plus précisément, les incidents et les zones de construction sont es-
sentiellement caractérisés par des points problématiques sur le segment de route. Pour les
conditions météorologiques défavorables, nous évaluons le temps de parcours, la vitesse et la
distance inter-véhiculaire tout au long de la trajectoire du véhicule. Et les événements spé-
ciaux sont caractérisés par leur région d’impact et l’accroissement de la demande autour de
cette région. Nous intégrons des mécanismes d’apprentissage automatique et des politiques
compilées dans les véhicules qui effectuent une détection locale en temps réel pour déduire
la cause réelle de la congestion non récurrente. Le classificateur bayésien naïf proposé (NB),
l’arbre de décision (CT), la forêt aléatoire (RF) et une technique d’amplification classent avec
une grande précision les causes de la congestion détectée. Cette méthodologie peut aider les
organismes de transport à réduire la congestion urbaine car sachant les causes sous-jacentes
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de la congestion détectée, ils peuvent élaborer des stratégies efficaces pour l’atténuer.

Dans la deuxième phase, afin d’améliorer davantage la précision des estimations de la cause
de la congestion obtenue à la phase précédente et d’obtenir des informations en temps réel
plus approfondies sur l’état de la circulation, nous présentons des méthodes faisant appel à
la coopération décentralisée entre les véhicules connectés. Une méthodologie distribuée basée
sur l’exploration de données pour élaborer collectivement une décision concernant la cause
de la congestion du trafic sur un réseau routier via les technologies émergentes des véhicules
connectés a été développée. Dans l’état actuel, si un événement reçu par un véhicule est une
fausse alarme, l’algorithme à bord du véhicule fusionne cette information avec d’autres re-
çues sur le même segment de route et propage l’incertitude entre les véhicules. Cela pourrait
engendrer une congestion encore plus importante. Un processus d’évaluation doit avoir lieu
après la détection et avant la fusion des données. Nous ajoutons cette couche pour remédier
à la vulnérabilité des algorithmes de fusion et pour réduire les effets secondaires des fausses
alarmes car les approches proposées dans la littérature ne traitent pas les données avant de
les fusionner. Elles représentent ainsi une menace de sécurité pour le réseau routier. En outre,
nous explorons les données collectées à des fins d’apprentissage en construisant des modèles
capables d’apprentissage automatique. Nos méthodes d’exploration de données consistent en
une procédure de vote, des fonctions de Croyance et une technique d’association de données
pour une inférence efficace sur la cause de la congestion du trafic via la technologie des ré-
seaux ah hoc de véhicules. L’évaluation des performances de nos méthodes montre qu’elles
améliorent la précision de l’estimation de la cause de la congestion, réduisent le temps de
détection et diminuent les fausses alarmes déclenchées dans le réseau. Ceci certifie que les
phénomènes complexes de trafic routier sont mieux observés à travers les interactions entre
les véhicules échangeant des messages entre eux. Enfin, les simulations démontrent que les
méthodes requiert seulement 63% de taux de pénétration de la technologie des véhicules
connectés pour obtenir tous les avantages des communications entre les véhicules.

Dans la dernière phase de la thèse, nous abordons le problème de la prédiction du flot de
véhicules sur un segment de route donné. Nous intégrons à la prédiction du flot, le fait que
les véhicules peuvent détecter une congestion excessive tout au long de leur trajectoire et
en attribuer collectivement une cause. Particulièrement, nous incorporons l’impact de divers
événements survenant sur la route dans la prédiction du flot de trafic. Nous proposons un
réseau de neurones profonds (DNN) et abordons le problème en apprenant le DNN cible
dans une technique d’apprentissage multitâche. Les entrées du DNN prennent en compte à
la fois les variables macroscopiques et microscopiques du trafic. En effet, en plus des données
de flots historiquement observés sur le segment, les données provenant des réseaux ad hoc



viii

de véhicules, tel que l’indice sommaire de temps de parcours éprouvé au long de la trajec-
toire et les évènements en temps réel vécus sur le réseau urbain sont utilisées par la modèle
pour l’apprentissage. Le modèle apprend une représentation prenant en compte les différents
événements rencontrés sur les différents segments de sa trajectoire. Les résultats montrent
que notre approche surpasse significativement les approches existantes qui ne s’adaptent pas
à des situations changeantes de trafic. Le modèle DNN a appris des similitudes historiques
entre les différents segments, contrairement à l’utilisation des tendances historiques directes
dans la mesure elle-même, car parfois les tendances peuvent ne pas exister dans la mesure,
mais le sont dans les similitudes.

En somme, un système de transport est un réseau fortement corrélé. Les caractéristiques des
systèmes de transport, tels les grandes quantités de données et les dimensions élevées des
variables de la circulation, font de l’apprentissage automatique une approche prometteuse
pour la recherche sur les problématiques dans ce domaine. Particulièrement, la prédiction du
flot de véhicules permet une modélisation avancée, car la connaissance du volume de trafic
allant vers une destination donnera plus d’informations sur les demandes attendues dans un
proche avenir. Les techniques proposées pour la collecte de données via la technologie des
véhicules connectés, la classification coopérative de la cause de la congestion et la méthodo-
logie développée pour la prédiction du flot aideront les autorités à améliorer le flot de trafic
du réseau routier et ainsi réduire la congestion.
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ABSTRACT

Road traffic congestion is a particular state of mobility where travel times increase and more
and more time is spent in vehicles. Apart from being a quite-stressful experience for drivers,
congestion also has a negative impact on the environment and the economy. In this context,
there is pressure on the authorities to take decisive actions to improve the network traffic
flow. By improving network flow, congestion is reduced and the total travel time of vehicles
is decreased. In fact, congestion can be classified as recurrent and non-recurrent (NRC).
Recurrent congestion refers to congestion that happens on a regular basis. Non-recurrent
congestion in an urban network is mainly caused by incidents, workzones, special events and
adverse weather. Infrastructure operators monitor traffic on the network while using the
least possible resources. Thus, traffic state cannot be directly measured everywhere on the
traffic road network. But the location where traffic flow needs to be improved varies highly
and certainly, deploying highly sophisticated equipment to ensure the accurate estimation
of traffic flows and timely detection of events everywhere on the road network is not feasi-
ble. Also, many studies have been devoted to highways rather than highly congested urban
regions which are intricate, complex networks and far more likely to be monitored by the
traffic authorities. Moreover, current traffic data collection systems do not incorporate the
ability of registring detailed information on the altering events happening on the road, such
as vehicle crashes, adverse weather, etc. Operators require external data sources to retireve
this information in real time. Current methods only detect congestion but it’s not enough,
we should be able to better characterize the event causing it. Agencies need to understand
what is the cause affecting variability on their facilities and to what degree so that they can
take the appropriate action to mitigate congestion.

In this thesis, to optimize the traffic flow in the transportation system in order to mitigate
congestion, we propose the collection of measurable traffic features extracted by an advanced
monitoring technology, Vehicular Ad hoc NETworks (VANET), capable of aggregating mi-
croscopic and macroscopic traffic variables at various levels of granularity. We designed an
algorithm for the real-time assessment and evaluation of road traffic condition. We pro-
pose classification models based on the traffic features collected for inference on the cause
of congestion in an urban road network. We implement a cooperation process to increase
estimation accuracy because traffic is multifaceted and to conceal the fact that individually,
vehicles have partial knowledge about the road condition. If connected vehicles can detect
congestion and cooperatively attribute a possible cause to it, we believe that they can then
transfer this knowledge in real time to an entity able to accurately predict flow on a road
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segment. We propose a traffic flow prediction framework taking into account historical flows
as well as innovative features, such as real-time reports from connected vehicles and travel
time along a trajectory for accurate forecasting of flow in an urban network in order to cope
with the fact that existing approaches that do not adapt to the varying traffic situations. We
show how this novel approach in this domain improves accuracy of prediction. To validate
the models and the framework, we simulate scenarios extended from a realistic urban city
vehicular motion traces in order to build a synthetic dataset to feed the models for learning
purposes. The work in this thesis is carried out in three phases.

In the first phase of our thesis, we refine previous VANET-based congestion detection ap-
proaches that group non-recurrent congestion together with recurrent congestion. Not only
we propose that detecting congestion is not enough, we plan to further classify the recurrent
and non-recurrent congestion (incidents, workzones, special events and adverse weather). We
portray this as a classification problem and we apply machine learning methods to solve the
classification of congestion into its components taking traffic features collected from con-
nected vehicles into account for the inference on the cause of congestion. Particularly, we
consider a set of unique features for each type of NRC and extract such features from the
data to infer the NRC. Specifically, incidents and workzones are essentially characterized by
problematic spots. For inclement weather, we assess the trajectory travel time, speed and
gap. And special events are characterised by their impact region and demand surge. We em-
bed reasoning machinery or compiled policies in vehicles that perform local, real-time sensing
to infer the actual cause of the non-recurrent congestion. The proposed Naive Bayesian clas-
sifier (NB), Classification Tree (CT), Random Forest (RF) and a boosting technique classify
with high accuracy the causes of the underlying congestion status. This framework can as-
sist transportation agencies in reducing urban congestion by developing effective congestion
mitigation strategies knowing the root causes of congestion.

In the second phase, to obtain deeper real-time insights of traffic conditions and improve
estimation accuracy, we present methods using decentralized cooperation between individual
vehicles. A distributed data mining based methodology to elaborate a decision collectively
concerning the cause of traffic congestion on a road network via emerging connected vehicle
technologies was developed. In the current state, if an event received by a vehicle is a false
alarm, the algorithm will fuse the obtained information with others located on a same road
segment and spread uncertainty among vehicles and this in turn causes more congestion. An
evaluation process has to take place after data sensing and before data fusion. We add this
layer to address the vulnerability of fusion algorithms and to lower the side effects of false
alarms because the approaches proposed in the literature fail to process the data before fusion
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and present a security threat to the network. Also, we explore the collected data for learning
purposes by building models capable of machine learning. Our mining methods consist of a
voting procedure, belief functions and a data association technique for efficient inference on
the cause of traffic congestion via connected vehicles technology. The performance evaluation
of the our methods show that they enhance estimation accuracy, lower detection time and
decrease false alarms triggered by the network. This implies that the complex traffic phe-
nomena is better observed through the interactions between vehicles exchanging messages.
Finally, the methods require only 63% penetration rate to obtain the full benefits of vehicle-
to-vehicle communications.

In the last phase of our work in this thesis, we address the problem of traffic flow predic-
tion. We integrate the fact that vehicles traveling along a trajectory can detect excessive
congestion and collectively attribute a cause to it into the forecasting of traffic flow on a
target road segment. This means that we incorporate the impact of various events happen-
ing on the road into the forecasting of traffic flow on a target road segment. We propose
a Deep Neural Networks (DNNs), and tackle the problem by learning the target DNN in a
multitask learning technique. The DNN input features take into account both macroscopic
and microscopic traffic variables in the prediction of traffic flow. In fact, using historical
flows and well engineered features, such as real-time reports from connected vehicles and
travel time along a trajectory for accurate forecasting of flow in an urban network, the model
learns a representation that takes into account the various events that vehicles realistically
encounter on the segments along their trajectory. The results show our approach significantly
outperforms existing approaches that do not adapt to the varying traffic situations. DNN
learned historical similarities between road segments, in contrast to using direct historical
trends in the measure itself, since sometimes trends may not exist in the measure but do in
the similarities.

In general, a transportation system is a highly correlated network. The characteristics of
transportation systems, such as the large amounts of data and the high dimensions of fea-
tures, makes machine learning a promising approach for transportation research. In fact, traf-
fic flow prediction allows advanced modelling because knowing the volume of traffic heading
toward a destination will give more insights about the expected demands in the near future.
The proposed techniques for data collection via connected vehicles technology, the coopera-
tive classification of the cause of congestion and the developed framework for flow prediction
will help infrastructure authorities improve the network traffic flow and thus reduce traffic
congestion.
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CHAPTER 1 INTRODUCTION

With the increasing number of vehicles and limited expansion of paved roads, traffic conges-
tion is to be expected. Road traffic congestion happens gradually as vehicles accumulate on
a common path. Congestion is a particular state of mobility where travel times increase and
more and more time is spent in vehicles. Apart from being a quite-stressful experience for
drivers, congestion also have a negative impact on the environment and the economy. In
this context, as the complexity of traffic increases, there is pressure on the authorities to
take decisive actions to improve the network traffic flow. These actions include optimizing
traffic elements such as traffic lights and turning restrictions, lane control, signal timing and
route planning. By improving network flow, congestion is reduced and the total travel time
of vehicles is decreased.

However, the location where traffic flow needs to be improved varies highly. Since the traffic
state cannot be directly measured everywhere, infrastructure operators interpolate informa-
tion from incomplete, noisy and local traffic data. They are strained to monitor traffic on
the road network while using the least possible resources. To scale to larger cities, advan-
ced monitoring techniques should be deployed and must be capable of aggregating traffic
data feeds from various levels and at various levels of granularity. Also, the duration and
timing of traffic events varies a lot making it difficult to monitor traffic in real time with
the conventional monitoring mechanisms. To evaluate the traffic state in real time, operators
necessitate extensive data sources to guarantee the accurate evaluation of the traffic state.
Besides, well-tailored data sources may not always be available for a particular area of the
traffic network. We see that future systems should enable continuous monitoring of the traffic
condition along all roads of the traffic network.

One of the hot topics in Intelligent Transportation Systems (ITS) is the development of dis-
tributed Traffic Information Systems (TIS) [1] . Such distributed systems monitor and collect
data from many sources. These data provide enough comprehensive information in order to
better characterize the events detected. Current techniques fail to process the knowledge
acquired from the data. In the big data era, techniques should be implemented to make use
of the acquired information. Agencies need to understand what is the cause affecting varia-
bility on their facilities and to what degree so that they can take the appropriate action to
mitigate congestion. Furthermore, at the current stage, the ITS is partially efficient since the
vehicle is the only entity that is not contributing to the system. In fact, presently, vehicles
are uninformative as they are not engaged in the process of traffic event detection. However,
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equipped with a communication technology, vehicles can exchange information and coope-
rate collectively so as to provide their input to the system. Models should be implemented
to make use of the cooperation between vehicles to better assess the road traffic condition.
Finally, knowing the volume of traffic heading toward a destination will give more insights
about the expected demands in the near future. Indeed, traffic flow prediction allows ad-
vanced modelling so that traffic managers take early actions to control the traffic flow and
prevent the congestion state. However, current models need to be improve so as to allow fast
and more accurate prediction.

In this thesis, to optimize the traffic flow in the transportation system in order to mitigate
congestion, we propose the real-time distributed detection and classification of the compo-
nents of congestion in urban traffic using connected vehicles. Via this next generation sensing
technology, we are interested in identifying road traffic events on the basis of exchanging traf-
fic flow data between vehicles. If connected vehicles can detect congestion and cooperatively
attribute a possible cause to it, we believe that they can then transfer this knowledge in
real time to an entity able to accurately predict flow on a road segment. The traffic flow
prediction framework we introduce aims at evaluating anticipated traffic flow at future time
frames on a target road segment based on real time feeds provided by connected vehicles
and historical data. We show how this novel approach in this domain improves accuracy of
prediction so that in real time, valuable information with regard to the potential impacts
of the predicted flow can be disseminated to individual drivers and traffic management cen-
ters can apply proactive strategies for recovering traffic conditions back to normality. The
methods and models we proposed to solve the problems in this thesis are based on machine
learning approaches. Since the transportation system is a highly correlated network, with
characteristics such as large amounts of data and high dimensions of features, we show how
artificial intelligence makes a promising approach for transportation research.

This chapter is divided as follows. Firstly, definitions and basic concepts related to our re-
search are defined and explained to allow for a better understanding of the foundations of
our research problem. Then, the addressed problem is described and research objectives are
defined. Afterwards, we present the main research contributions and their originality. Finally,
the structure of the thesis is outlined.

1.1 Definitions and basic concepts

This section aims at defining the terminology and concepts that will be used in the rest
of the thesis, which will help the reader in better grasping the context of our work. We
start by introducing the traffic flow theory and describing the microscopic and macroscopic
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traffic variables. Then, the data collection methods are explained. Finally, a description of
congestion and its components is elaborated.

1.1.1 Traffic flow Theory

In this section, we review the basic concepts related to the traffic flow theory. In transporta-
tion engineering, traffic flow is the study of the interactions between travellers, their vehicle
and the infrastructure with the aim of understanding and developing an optimal transport
network with efficient movement of traffic and minimal traffic congestion problems. Fig. 1.1
shows the interactions between the three elements of the road traffic network.

Figure 1.1 Road traffic network

The infrastructure in this context is the road with signage and traffic control devices. It has
a quasi-stable geometric configuration. The density is calculated in terms of the number of
vehicles per kilometer of road. We also count the number of lanes on a road and classify
the infrastructure in terms of highway, road, street segments, lane, junction. The vehicles
are of different sizes and are equipped with more and more powerful devices integrating se-
veral technologies. Vehicle embedded systems include systems for collecting, processing and
disseminating information in the perimeter of the vehicle. The multiple sensors, speedome-
ter, wheel rotation sensors, rain sensors, reversing radars, Global Positioning System (GPS)
and mobile phone which tends to be more and more connected to the vehicle by means of
Bluetooth technology, the systems of detection by internal and external cameras, positioning
sensors on the roadway, obstacle detection radars, they all provide information about the
vehicle and its surroundings. Finally, the travellers is the key component of the road system.
The traveller usually has a traveling purpose, which is to get from an origin to a destination
in a certain period of time. The road traffic network is composed of segments. Each vehicle
travels on the road traffic network along a trajectory composed of segments to get from an
origin to a destination. It is only when these three elements of infrastructure, vehicles and
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travellers are put together that there is traffic flow. Thus, traffic flow prediction approaches
cannot be developed without an understanding of traffic flow theory.

Traffic flow theory is a recent field of transportation. It’s the characterization of flow through
the laws of physics and mathematics. A general, unified and coherent theory has not yet
been developed, and the problem has been tackled in different ways. There are different
representations of the traffic flow. In what follows we expose the microscopic representation,
the macroscopic representation and the variables associated with each representation.

1.1.1.1 Microscopic representation

At the most basic scale of observation, every vehicle is considered individually in the mi-
croscopic representation. The following Fig. 1.2 shows the trajectories of eight vehicles on a
space-time diagram [2].

Figure 1.2 Trajectories of eight vehicles on a space-time diagram

We describle below some microscopic variables of the circulation illustrated in the figure :

— v : instantaneous speed, speed has the dimensions of distance divided by time, it is
the rate of change of the vehicle’s position.

— s : spacing, space separating the front of two successive vehicles at a given instant on
the same lane, spacing and instantaneous speed are connected, s3 (t1) on the figure.

— h : headway, duration of time between the passage of the front of two successive
vehicles at a given point on the same lane. Headway is used to calculate the density of
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vehicles. Headway is considered dangerous if h (x) <1 second. Traffic can be described
in terms of headway, h3(x1) = s3(t1) / v.

— Travel time : time required to travel one unit of distance.
— Gap : distance between the rear of a vehicle and the front of the vehicle following it.

1.1.1.2 Macroscopic representation

The macroscopic scale represents the flows of vehicles at a high level of aggregation. It neglects
everything that is not average behaviour. Macroscopic models can help characterize different
states of the circulation from free flow to congested and cover larger areas, from a road
segment to the whole road traffic network. There is a fundamental equilibrium relationship
that connects the macroscopic variables. The three variables of the fundamental relationship
are density, velocity and flow. We describle them here :

— u : average speed (km/h), average of all distance travelled by each vehicle divided by
the duration of the time.

— q : flow (V/h, number of vehicles over time and can be represented by the average
flow rate q(t1, t2, x) at the abscissa x between the instants t1 and t2 which is the
ratio n(t1, t2, x) of the number of vehicles that passed by x between the two instants.

— k : Density (V/km), distribution of vehicles in space. The link with the microscopic
representation is that the average density is the inverse of the mean inter-vehicular
distance or spacing.

The fundamental equilibrium relationship is : q (x, t) = u * k ( x, t) . It’s valid when all
vehicles move at the same mean spatial velocity and its variables vary simultaneously as
shown in Fig. 1.3 [2].
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Figure 1.3 Flow-Speed-Density Relationship Diagrams

1.1.2 Traffic data collection

In this section, we present the concept of traffic data collection which refer to the monitoring
of traffic by heterogeneous road equipments that measure and collect traffic variables such as
traffic gap, density, speed, flow, etc. Subsequently, these data feeds are fused and aggregated
to extract useful traffic information. This acquired knowledge from the processed data is
used to compute optimal routes for the vehicles, short-term traffic forecasts to reduce road
traffic congestion, improve response time to incidents, and ensure a better travel experience
for commuters. Finally, a traffic management system can delivers this knowledge to the end
users. Traffic data collection is an important phase of the traffic management system and
should be done at short intervals to provide good quality because stale data is useless in
dynamic environments. In transportation engineering, they rely mainly on the traditional
methods based on the infrastructure, such as induction loops, cameras or sensors, to collect
the macroscopic or microscopic traffic variables. On the other hand, collection methods done
by the vehicles, are floating car data and recently using connected vehicles technologies. We
present the traditional methods of collection and connected vehicles technology approach.

1.1.2.1 Traditional methods

Traffic data can be collected from fixed monitoring equipment, such as induction loops, sen-
sors and cameras. Examples of infrastructure sensors that are in-roadway include inductive-
loop detectors, which are sawcut into the pavement ; magnetometers, which may be placed
underneath a paved roadway or bridge structure ; and tape switches, which are mounted on



7

the roadway surface. Examples of over-roadway sensors are video image processors that uti-
lize cameras mounted on tall poles adjacent to the roadway or traffic signal mast arms over
the roadway ; microwave radar, ultrasonic, and passive infrared sensors mounted in a similar
manner ; and laser radar sensors mounted on structures that span the lanes to be monitored
[3].

While single inductive-loop detectors give direct information concerning vehicle passage and
presence, gap, heading and spacing, other traffic flow parameters such as density and speed
must be inferred from algorithms that interpret or analyze the measured data. When these pa-
rameters are calculated from inductive-loop data, the values may not have sufficient accuracy
for some applications (such as rapid freeway incident detection) or the available information
may be inadequate to support the application (such as calculation of link travel time). Fur-
thermore, the operation of inductive-loop detectors is degraded by pavement deterioration,
improper installation, and weather-related effects. Street and utility repair may also impair
loop integrity. Thus, a good loop installation, acceptance testing, repair, and maintenance
program is required to maintain the operational status of an inductive-loop-based vehicle
detection system.

Evaluation of over-roadway sensors show that they provide an alternative to inductive-loop
detectors. Particularly, video image processing automatically analyze the scene of interest
and extract information for traffic surveillance and management. Cameras can replace se-
veral in-ground inductive loops, provide detection of vehicles across several lanes. They can
classify vehicles by their length and report vehicle presence, density, lane occupancy, and
speed for each class and lane. They can track vehicles and may also have the capability to
register turning movements and lane changes. Vehicle density, link travel time, and origin-
destination pairs are potential traffic parameters that can be obtained by analyzing data
from a series of image processors installed along a section of roadway. However, installa-
tion and maintenance, include periodic lens cleaning, require lane closure when camera is
mounted over roadway. Their performance is affected by inclement weather such as fog, rain,
and snow ; vehicle shadows ; vehicle projection into adjacent lanes ; occlusion ; day-to-night
transition ; vehicle/road contrast ; and water, salt grime, icicles, and cobwebs on camera lens
also, reliable night time signal actuation requires street lighting

In sum, although the traffic flow parameters measured with over-roadway sensors satisfy the
accuracy requirements of many applications, infrastructure-based detectors provide fixed-
points and short-section traffic information that is extracted from vehicles passing through
the detection zone only. The traffic evaluation is restricted to surrounding locations that are
close to these installed sensors. Moreover, it is expensive to install and to regularly maintain
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these sensor equipments, especially in large downtown scenarios

On the other hand, monitoring can be done using mobile data sources such as GPS-based
systems, floating car data of probe vehicle, which are methods based on the vehicle. Probe
vehicles or mobile sensors appeared as a complementary solution to fixed sensors for in-
creasing coverage areas and accuracy without requiring expensive infrastructure investment.
Two popular types of mobile sensors are GPS-based and cellular-based. GPS-based sensors
are sensors with GPS capability and cellular-based sensors are sensors that use information
from cellular networks as traffic sensors. Cellular-based sensors are low in cost due to the
large number of mobile phones and their associated infrastructures already in service. This
potential source of traffic flow data is from cellular telephone companies who monitor the
transmitting status of telephones that are engaged in conversations in support of the wireless
enhanced all automatic location. The location of these telephones can potentially be made
available to traffic management agencies and can assist in estimating congestion and travel
time over wide areas. However, most of the probe vehicle techniques that are used for de-
termining the link travel time make use of GPS technology. GPS-based sensors are far more
efficient to pinpoint vehicle locations ; thus they can provide highly accurate vehicle move-
ment information. But the major problem with GPS is that the accuracy of a typical GPS
receiver is about 10 meters. This makes it difficult to pin-point a crossing for the purpose
of congestion measurement. Secondly, it has been noticed that GPS sends erroneous velocity
data even when the vehicle is stationary.

New technologies can be used to improve the accuracy, timeliness, and cost efficiency of data
collection. In fact, researchers have been focusing their efforts on exploiting the advances
in sensing, communication, and dynamic adaptive technologies to efficiently monitor the
evolving critical road infrastructure [4], we present the Connected Vehicles (CVs) technology
in the next section.

1.1.2.2 Connected Vehicles

Recently, the Intelligent Transportation System (ITS) research has shifted its focus to the
next generation sensing technology, Vehicular Ad-hoc NETwork (VANET). The application
of wireless technology to moving vehicles enables the creation of vehicular ad hoc networks,
also called Connected Vehicles (CVs). Advances in Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) wireless communications have increased the potential of real-time
monitoring of traffic variables, for instance, in a distributed manner. Real-time distributed
monitoring refers to the process by which macroscopic and microscopic traffic variables are
collected by vehicles themselves without the need to send information to a traffic management
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center. V2I refers to the communication between the vehicle and the Road Side Unit (RSU).
Fig. 1.4 shows the interactions in a connected environment.

Figure 1.4 Vehicular ad hoc networks

The communication characteristics of a VANET are mostly based on a message called BEA-
CON, periodically transmitted by each vehicle. Current VANET technology supports delivery
of vehicle-to-vehicle BEACONs that are sent every 0.1 seconds. Therefore, networked cars
can be extremely fast in warning their surroundings regarding events. By receiving BEA-
CON messages, each vehicle therefore becomes ’aware’ of what or who is around it, as well as
its mobility characteristics. Accordingly, these messages will be the primary communication
mean to acquire data for traffic monitoring.

The BEACON message contains a part that is fixed and carries time-stamped basic vehicle
state information, such as senderID, position, direction, current speed, acceleration, with
optional information also possible. BEACONs can be correlated with their senders via sen-
derID. A vehicle in a VANET can continuously collect BEACONs from other vehicles along
his path and from those, estimate traffic characteristics representing the evolution of traffic
over time on the road network. Consequently, a huge amount of traffic condition data can
be archived at a vehicle level. A vehicle stores vehicles’ characteristics on each segment in
information structures. Each structure consists of the following fields :

— SegmentID : The unique identifier of the road segment that this measurement belongs
to.

— Time : Time of the measurement’s creation.
— SenderID : The unique identifier of the vehicle that created this measurement.
— Position : Coordinates of the vehicle.
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— Vinfo : Direction, speed and acceleration information of a vehicle.

After obtaining quantitative fine-grain traffic data, self-organized vehicular ad hoc networks
can monitor the variation in traffic information of neighbour nodes in order to estimate
real-time features.

1.1.3 Congestion

Congestion can be classified as recurrent and non-recurrent. Recurrent congestion refers to
congestion that happens on a regular basis and usually occurs when a large number of
vehicles use the limited capacity of the road network simultaneously. Non-recurrent congestion
(NRC) in an urban network is mainly caused by incidents (accidents, vehicular breakdowns,
police checks), workzones, special events (sport games, concerts, religious activities, political
demonstrations), adverse weather[5].

Common causes of congestion are a widely investigated topic within the research community.
Available research focus on studying the influence of a cause on traffic, such as the influence
of weather, special events, incidents and workzones on traffic. In order to identify a set of
variables representing spatial and temporal features of the components of congestion capable
of distinguishing non-recurring congestion in an efficient way, we highlight from previous
research key spatiotemporal characteristics and findings.

Inclement weather (rain, fog, snow, ice) has an impact on the fundamental macroscopic
traffic flow variables (flow, speed and volume). It was also shown that microscopic traffic
variables such as desired speed, desired acceleration and deceleration and minimum following
distance parameters can be influenced during snowy road conditions for different reasons
[6]. The free flow speed is defined by the speed driven when the driver is not influenced
by nearby road users. Free speed is reduced to desired speed if the speed is influenced by
other drivers, the road, characteristics of the vehicle, conditions such as weather and traffic
rules (speed limits). For instance, drivers reduce their speed in order to avoid skidding in
inclement weather. A reduction of desired speed, which reaches up to 30% for snowy roads,
has been found. The reaction to adverse weather conditions varies between regions. As for the
desired acceleration and deceleration, a slippery road reduces friction between road surface
and tyres, thus drivers are not able to accelerate and decelerate as strongly as compared with
dry road conditions, that is, maximum acceleration and deceleration decrease during snowy
road conditions. Moreover, drivers reduce acceleration and deceleration to avoid skidding.
Finally, drivers try to maintain a higher minimum following distance in order to cope with
longer stopping distances caused by slippery roads [7]. From these findings, we assume that
the features collected along a vehicle’s trajectory and experience on other road segment that
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can help infer weather conditions are : higher minimum following distance, reduced desired
speed and higher travel times on some segments of the trajectory.

Regarding special events (sport games, concerts, religious activities, political demonstra-
tions), previous researches have highlighted that they may lead people to travel towards the
same destination in a very limited time interval, and then to leave the venue again in a very
short time span [8]. The impact of a special event on traffic has been thoroughly studied
in [9] for different demand categories of people going to the event (inbound traffic) and lea-
ving after its end (outbound traffic). Special events may cause congestion depending on the
intensity of ingress traffic demand or sharp traffic surge in concentrated time span. Thus a
special event has an impact on the traffic behaviour in a specific region over time. Such an
impact region can be defined as the list of congested segments of the road network around the
special event. From these findings, we conjoncture that the most informative features along
a vehicle’s path that are the most informative of a special event traffic condition are firstly,
the observed demand along the path in order to detect the presence of a sharp traffic surge.
Also, if a vehicle experiences a NRC caused by a special event, then the vehicle is necessarily
in the impact region of the event. Finally, if some road segments of the vehicle’s path are
inside the impact region, and the travel time on those segments are abnormally high, then
we may associate this characteristic to a congestion caused by a special event.

Incidents (emergencies, accidents, vehicular breakdowns, road defects, police checks) and
workzones also have an impact on the traffic flow variables. Particularly, these events phy-
sically block one or multiple lanes of the road segment. The blocked section of the road is
called a problematic spot (Pspot) and can be defined by an interval of start and end point
depending on the lane. No vehicles can traverse this section, thus reducing the capacity of
the road. Trajectories of vehicles on a segment comprising a problematic spot cannot register
coordinates of the blocked section. Regarding workzones, it was shown that if they happen at
day time, especially at rush hours, their impact on traffic is severe, sometimes exceptionally
larger than that of traffic accidents happening at the same time. On the other hand, if they
happen at night, their impact is not that significant. Often times, workzones occupy the road
segment a longer period of time than incidents because incidents are undesired and should be
cleared as fast as possible. Thus, the duration of the Pspot is a good indicator of a workzone
event.

Before we proceed, some definitions shall be highlited.

Definition 1 : A road segment is 5-tuple r = {s(x, y), e(x, y), l, r, TTh}. Where s and e are
the start and end point with location (x, y). l is the number of lanes. The road segment
length is the Euclidian distance r between s and e. And the historical travel time TTh
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is a list of average expected travel times in seconds every five minutes interval along
that road segment.

Definition 2 : A road network is a graph RN = (N,E). Where E is the set of all road
segments and N is the set of all road segments junctions.

Definition 3 : Trajectory is a sequence of connected road segments. It can be denoted as
T = (r1, r2, ..., rn, ) where ri ∈ E.

Definition 4 : A trip is a vehicle movement from one place to another defined by the
starting segment, the destination segment, and the departure time. A route is an
expanded trip that means that a route definition contains not only the first and the
last segment, but all segments the vehicle will pass along its trajectory.

With the above definitions, the traffic congestion problem can be formulated as follows. The
observed travel time of a vehicle (oTT ) along a road segment on an urban road network is
composed of recurrent delay (Drec) and non-recurrent delay, d, such as incident , workzone,
weather or special event induced delays.

oTT = Drec +Dn−rec

oTT = Drec +
4∑

i=1
(xi ∗ d), where (1.1)

4∑
i=1

xi = 1,

xi = 0or1

Drec is the expected recurring travel time TTh that is location and time specific, based on
the fact that the average speed on roads are usually similar at the same time of different
days of the week. In transportation there is a big difference between weekday and weekend
traffic. Weekday traffic is usually worse than the weekend. Expected values are derived offline
using past historical data for each segment. The preloaded digital maps available on the
vehicular nodes may provide this traffic statistic of the roads at different time of the day. If
the observed travel time on the segment is higher than a threshold, which is determined as
in [10] by multiplying the congestion factor c with the expected recurring delay, the travel
time is said to be excessive.

∀r ∈ E, oTT > (1 + c) ∗ r.TTh ⇒ oTT is excessive. (1.2)
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Based on the road traffic condition, if congestion is detected on a specific segment and
excessive travel time delay is observed, the oTT in an urban network is composed of a
recurrent delay and a non-recurring delay due to the other components of congestion such as
incident, workzone, bottleneck, weather or special event.

1.2 Problem definition

In the context of road traffic congestion, many studies have been devoted to highways rather
than highly congested urban regions. In a highway scenario, the road section can be modeled
as a network flow model that require flow conservation on all segment. The amount of flow
entering an arc equals the amount of flow leaving the arc. In an urban scenario, on the
other hand, each arc of the underlying graph has an associated positive gain or loss factor.
Flow passing through the arc is magnified or diminished by a factor. Therefore, the design of
accurate and scalable models for urban road networks is required which are intricate, complex
networks and far more likely to be monitored by the traffic authorities.

Also, currently, traffic state cannot be directly measured everywhere on the traffic road
network. Infrastructure operators monitor traffic on the network while using the least possible
resources. The location where traffic flow needs to be improved varies highly and certainly,
deploying highly sophisticated equipment to ensure the accurate estimation of traffic flows
and timely detection of events everywhere on the road network is not feasible, due to the
limitation in financial resources to support dense deployment and the maintenance of such
equipment, in addition to their lack of flexibility. In fact, at this time, monitoring techniques
do not scale to large cities. Infrastructure sensors that are in-roadway include inductive-
loop detectors, which are sawcut into the pavement ; magnetometers, which may be placed
underneath a paved roadway or bridge structure ; and over-roadway sensors such as video
image processors that utilize cameras mounted on tall poles adjacent to the roadway or traffic
signal mast arms over the roadway ; microwave radar, ultrasonic, and passive infrared sensors
mounted in a similar manner are not capable of evolving over time and covering increasingly
large geographic regions To scale to larger cities, advanced monitoring techniques should be
deployed and must be capable of aggregating traffic data feeds at various levels of granularity.

Furthermore, the duration and timing of traffic events varies a lot. To evaluate the traffic
state in real time, operators necessitate extensive data sources to guarantee the accurate
evaluation of the traffic state. Current traffic data collection systems do not incorporate the
ability of registring detailed information on the altering events happening on the road, such as
vehicle crashes, adverse weather, etc. Operators require external data sources to retireve this
information in real time. Besides, well-tailored data sources may not always be available for
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a particular area of the traffic network. Future systems should enable continuous monitoring
of the traffic condition along all roads of the traffic network based on real-time information.

Moreover, traffic bottlenecks are disruption of traffic on a roadway caused either due to road
design, traffic lights, accidents, work zones, weather condition, special events occurring in
the region, etc. There are two general types of bottlenecks, stationary and moving bottle-
necks. Stationary bottlenecks are those that arise due to a disturbance that occurs due to
a stationary situation like narrowing of a roadway, an accident. Moving bottlenecks on the
other hand are those vehicles or vehicle behaviour that causes the disruption in the vehicles
which are upstream of the vehicle. Moving bottlenecks can be caused by heavy trucks as
they are slow moving vehicles with less acceleration and also may make lane changes. Also,
moving bottlenecks can be active or inactive bottlenecks. If the reduced capacity caused due
to a moving bottleneck is greater than the actual capacity downstream of the vehicle, then
this bottleneck is said to be an active bottleneck. If the reduced capacity of the truck is less
than the downstream capacity, then the truck becomes an inactive bottleneck. This portrayal
shows that there are many causes to congestion or bottlenecks. Current methods only detect
congestion but it’s not enough, we should be able to better characterize the event causing
it and distinguish between temporary induced traffic pattern change that is mitigated in
a short period vs permanent pattern change. The existing methods can only quantify the
spatial and temporal impact of the detected event. Agencies need to understand what is the
cause affecting variability on their facilities and to what degree so that they can take the
appropriate action to mitigate congestion.

The problem is that most existing works ignore the context information when proposing
models in their study of traffic congestion. The context information can include : Time context
(time of day), situation context (presence of traffic incident, workzone, weather condition or
special event that occurred nearby in the region), trajectory context (travel time in the
region), history context (past flows registered on road segments). While using all context
dimensions will provide the most refined information and thus lead to the best performance,
it is equally important to investigate which dimension or set of dimensions is the most
informative if the task is to detect congestion, classify it or predict flow on a segment. The
benefits of revealing the most relevant context dimension include reduced cost due to context
information retrieval and transmission, reduced algorithmic and computation complexity and
targeted active traffic control.

Many travellers have an overall sense of the status of traffic and the overall times until
congestion at bottlenecks will likely start and end, based on their long-term experiences.
People may be familiar with typical traffic patterns, some situations whether traffic states
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of interest would be viewed as surprising. Current methods do not incorporate this overall
sense, this experience, although the TIS is capable via its distributed systems to monitor
and collect data from many sources. These data provide enough comprehensive information
in order to better characterize the events detected. Current techniques fail to process the
knowledge acquired from the data. With the widespread traditional traffic sensors and new
emerging traffic sensor technologies, traffic data are exploding, and we have entered the era of
big data transportation. In the big data era, techniques should be implemented to make use
of the acquired information. Furthermore, at the current stage, the ITS is partially efficient
since the vehicle is the only entity that is not contributing to the system. In fact, presently,
vehicles are uninformative as they are not engaged in the process of traffic event detection.
However, equipped with a communication technology, vehicles can exchange information and
cooperate collectively so as to provide their input to the system because of the unpredictable
nature of traffic and because of the myriad factors that affect traffic flows such as weather
conditions, the behaviour of other drivers, traffic issues, and other events.

Knowing the flow of traffic heading toward a destination will give more insights about the ex-
pected demands in the near future. Indeed, traffic flow prediction allows advanced modelling
so that traffic managers take early actions to control the traffic flow and prevent the conges-
tion state. However, current models need to be improved so as to allow fast and more accurate
prediction. In fact, in addition to traditional traffic sensors, a variety of data sources, such
as lidar, radar, and video from surveillance cameras, have emerged in traffic flow prediction
research [11]. The problem is that traffic flow prediction heavily depends on historical and
real-time traffic data collected from various sensor sources, including inductive loops, radars,
cameras, mobile Global Positioning System, crowd sourcing, social media, etc. As the data
originate from different sources, their conversion is the most important step. In this process,
the first obstacle is the amount of data collected which is increasing exponentially, and the
second is its complexity. This makes data conversion increasingly difficult and highly time
and resource consuming. Relevant data extraction and cleaning, as well as data reduction,
is required. Each of these tasks has its own challenges, including defining what is relevant
and what is noise, identifying one or the other, and extracting the useful data, given certain
accuracy expectations. In sum, data aggregation poses many challenges when a variety of
data sources are required in the process of data collection.

On the other hand, the problem with current traffic flow prediction models is their inadap-
tability of detecting and tracking the traffic patterns changes. There is a new pattern every
time a non recurrent congestion occurs in the traffic flow and in this case, the model is not
able to predict as accurately as when there is recurrent congestion. Existing approaches to
traffic flow prediction do not adapt to the varying traffic situations because their distribu-
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tion are memoryless, and they need a structure that will characterize the system at each
step, not independently from the prior stage. To improve the flow prediction accuracy, the
model should update from its normal path and track the changed traffic pattern, generating
forecasts according to the new traffic pattern. A forecasting system will adjust its structure
to accommodate the extraordinary patterns and the significant traffic flow pattern changes
indicated will in turn drive the parameters of the short term forecasting system changing
significantly to adapt to the traffic flow pattern change.

Finally, due to economic issues and lack of large scale deployment of connected vehicles tech-
nology, currently no datasets are available for researchers to test their models. Consequently,
simulation is the main choice in the validation of models based on vehicular ad hoc networks.
Although many discreet-event network simulators, such as ns-2, ns-3, OPNET, OMNet++,
and QualNet, have been widely used by the researchers to validate their ideas and approaches,
they cannot be used in ITS scenarios without an accurate vehicular mobility model because
this may lead to unrealistic configurations of traffic distribution in the environment resulting
in false representations of the network topology and network partitioning in isolated groups
of nodes [6], [12], [13]. The insufficiency common to all these plateforms is that they ignore
the spatiotemporal variability of mobility patterns (temporal aspect and external influence
modules). The variability is due to both mobility rate of vehicles that changes periodically
during the same day and daily during the week, and the characteristics of the environment
that may dynamically change at any time due to external events that may occur, such as
accidents, weather condition, special event and workzones.

These problems have led to the elaboration of the following research questions that we ad-
dressed thoroughly throughout the thesis :

— How are we going to collect microscopic and macroscopic traffic variables in real-
time everywhere on the urban road traffic network since the location of congestion
happening on the road varies highly and we don’t know when and on what road
segment traffic congestion is going to install ?

— Can vehicles estimate the cause of congestion they experience on the road and cha-
racterize it solely based on sensors they have on board and traffic flow theory and
without any input from outside sources, such as weather information or police reports
for incidents, etc. ?

— If vehicles can share their knowledge with the others in their vicinity, will they be able
to better assess the traffic situation experienced or will they never conclude together on
the real traffic condition because traffic is chaotic and multifaceted and each vehicle’s
trajectory experience is different from the other ?
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— How can we predict flow on a target road segment with a model able to adapt to any
varying traffic situations around the segment ?

— How are we going to test and validate any model we propose since connected vehicles
technology is still at its early stage and with economic issues and lack of large scale
deployment no dataset is available from any research ?

Thus, these questions led us to state the main research objectives presented in the next
section.

1.3 Research objectives

This thesis aims at designing a traffic flow prediction framework that considers classification
models able to estimate the cause of congestion via machine learning techniques. Mainly, by
analyzing road traffic congestion through the advanced connected vehicles communication
technologies, the goal is for vehicles to detect excessive congestion and classify collectively
its cause on the segments of the trajectory in order to forecast flow on a target road segment
so that infrastructure operators can take appropriate actions to mitigate traffic congestion.
More specifically, the objectives of the thesis are :

— Collect measurable traffic features extracted by an advanced monitoring technology
capable of aggregating microscopic and macroscopic traffic variables at various levels
of granularity.

— Propose classification models based on the traffic features collected for inference on
the cause of congestion and validate the models through the simulation of scenarios ex-
tended from a realistic urban city vehicular motion traces in order to build a synthetic
dataset to feed the models for learning purposes.

— Implement a cooperation process to increase estimation accuracy and design data
mining techniques for the real-time advanced distributed and continuous evaluation
of road traffic condition. Test and validate the techniques via a combination of a
microscopic urban mobility simulator, and a network simulator for the simulation of
communication between connected vehicles.

— Design a traffic flow prediction framework taking into account historical flows as well
as innovative features, such as real-time reports from connected vehicles and travel
time along a trajectory for accurate forecasting of flow in an urban network in order
to cope with the fact that existing approaches that do not adapt to the varying traffic
situations. Validate the proposed framework through simulation generated scenarios
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extended from a realistic data set of urban city vehicular motion traces.

1.4 Main contributions and their originality

The main originality of this thesis lies in the use of the next generation sensing technology
of connected vehicles to identify road traffic events on the basis of exchanging traffic flow
data between vehicles. This novel approach in this domain allow the real-time distributed
detection and classification of the components of congestion in urban traffic. Moreover, if
connected vehicles can detect congestion and cooperatively attribute a possible cause to it,
we show that they can transfer this knowledge in real time to an entity able to accurately
predict flow on a road segment. The traffic flow prediction framework we introduced aimed
at evaluating anticipated traffic flow at future time frames on a target road segment based
on real time feeds provided by connected vehicles and historical data.

The principal contributions consist of conceiving the models and framework, and can be
described as follows :

— Development of an algorithm for the distributed and real time advanced
monitoring and evaluation of road traffic condition. This first innovation re-
sides in defining a set of qualitative and quantitative features that describe the real-
time traffic state experienced by any vehicle along its trajectory via the connected
vehicles technology. Since currently, monitoring techniques do not scale to large cities
and traffic state cannot be directly measured everywhere on the traffic road network,
infrastructure operators monitor traffic on the network while using the least possible
resources. The location where traffic flow needs to be improved varies highly and
certainly, deploying highly sophisticated equipment to ensure the accurate estima-
tion of traffic flows and timely detection of events everywhere on the road network is
not feasible, due to the limitation in financial resources to support dense deployment.
Connected vehicles technology enables distributed and real time advanced monitoring.

— Classification of congestion into its components via machine learning me-
thods. The methods we propose take the traffic features extracted by the connected
vehicles into account for the inference. The deterministic classification tree, the naïve
Bayesian classifier, the random forest and boosting techniques we presented are built
on an understanding of the spatial and temporal causality measures of traffic data.
This was the first work in the literature that try to estimate the cause of congestion
based solely on traffic data extracted by vehicles. Conventional approaches use mul-
tiple external sources of information, merge them and compute an estimation of events
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present on the road. Our contribution proved and validated that connected vehicles
have enough technology on board, sensors and communication ability, to indepen-
dently evaluate the cause of congestion. This contribution can assist transportation
agencies in reducing urban congestion by developing effective congestion mitigation
strategies knowing the root causes of congestion.

— Proposing simulation generated scenarios to build a synthetic dataset to
train the machine learning methods. To learn representations via artificial intel-
ligence, the methods require examples of inputs to train on, and each input is obtained
by the vehicles of the connected vehicles. These examples are stored and constitute a
dataset. The classification methods we propose need a dataset to estimate the cause of
congestion. But due to economic issues and lack of large scale deployment of connected
vehicles, currently no dataset is available to train the models. We relied on simula-
tion to create a synthetic dataset. We used a microscopic urban mobility simulator,
and a network simulator for the simulation of communication between CVs to create
experiments on scenarios extended from a realistic urban city vehicular motion traces.

— Implementation of a cooperation process to increase estimation accuracy.
We add an evaluation layer before fusion can take place on board of each vehicle
in order to increase accuracy and lower false alarms that are comparable to security
threats on the traffic network. We present distributed data mining techniques via
connected vehicles to elaborate collectively a decision concerning the cause of traffic
congestion on a road network. Our aim is improving the level of knowledge from
exchanged messages to obtain deeper insight of traffic condition using decentralized
cooperation between individual vehicles and local traffic behaviour. Observing the
complex phenomena from the interactions between vehicles will allow more precise,
efficient, and reliable view of the traffic condition. The originality of the contribution is
the generation of a dataset for association rules mining to extract more knowledge and
implementation of the rules on board of the vehicles for analysis and evaluation of the
cause of urban traffic congestion. We evaluate a Voting Procedure, Belief Functions
and a Data Association Technique.

— Forecasting of short term traffic flow on a target road segment via input
from connected vehicles. The prediction of traffic flow constitutes a fundamental
contribution of this thesis. The basis of this prediction lies in the fact that we integrate
the impact of various events into the forecasting of traffic flow on a target road segment.
We propose a Deep Neural Networks (DNNs), and tackle the problem by learning the
target DNN in a multitask learning technique. We conjecture that when the tasks
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involved in MTL are semantically connected, a larger improvement in predication
accuracy can be obtained. More specifically, MTL can be more effective when we
can encode the instances from different tasks using the same representation layer
expressing similar semantics. Using historical flows and well engineered features, such
as real-time reports from connected vehicles and travel time along a trajectory for
accurate forecasting of flow in an urban network, the model learns a representation
that takes into account the various events that vehicles realistically encounter on the
segments along their trajectory. They may come across incidents, workzone, inclement
weather, special events or recurrent congestion. All these situations are assessed by
the connected vehicles and are modeled by creative features to be fed to the DDN for
the sake of learning to predict traffic flow.

In general, traffic flow prediction allows advanced modelling because knowing the volume of
traffic heading toward a destination will give more insights about the expected demands in the
near future. The proposed techniques for data collection and classification and the developed
framework for flow prediction will help infrastructure authorities improve the network traffic
flow and thus reduce traffic congestion.

1.5 Thesis structure

Having defined the basic concepts related to the work in this thesis, described the research
problem, cited the objectives of the thesis and briefly explained our major contributions,
chapter 2 will review the literature related to each element of the research problem that we
described. An analysis of the limitations of existing work and the gaps that must be filled
will also be elaborated throughout this chapter. In chapter 3, a detailed description of our
research work and published articles is given, and the relationship between our objectives is
emphasized.

Chapter 4 presents the full text of the article titled "Distributed Classification of Urban
Congestion Using VANET", which was published in IEEE Transactions on Intelligent Trans-
portation Systems. The main contribution of this article lies in the evaluation of machine
learning methods for the classification of congestion into its components taking traffic fea-
tures collected from connected vehicles into account for the inference on the cause of the
non recurrent traffic congestion. Because detecting congestion is not enough, this article pro-
poses that congestion can be further classified as recurrent and non-recurrent congestion.
In particular, NRC in an urban network is mainly caused by incidents, workzones, special
events and adverse weather. The framework considers the real-time distributed classification
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of congestion into its components on a heterogeneous urban road network using connected
vehicles. Models are built on an understanding of the spatial and temporal causality measures
and trained on synthetic data extended from a real case study of Cologne. The performance
evaluation shows an estimation accuracy of 87.63% for the deterministic Classification Tree
(CT), 88.83% for the Naive Bayesian classifier (NB), 89.51% for Random Forest (RF) and
89.17% for the boosting technique. This framework can assist transportation agencies in re-
ducing urban congestion by developing effective congestion mitigation strategies knowing the
root causes of congestion.

Chapter 5 presents the full text of the article titled "Cooperative Evaluation of the Cause
of Urban Traffic Congestion via Connected Vehicles ", which was submitted in IEEE Tran-
sactions on Intelligent Transportation Systems. In this article, firstly, the framework for the
classification of congestion previously developed, where each vehicle can detect individually
excessive congestion and attribute a cause to it, was implemented on board of each vehicle.
To obtain deeper real-time insights of traffic conditions and improve estimation accuracy,
in the article, methods using decentralized cooperation between individual vehicles where
applied. A distributed data mining based methodology to elaborate a decision concerning
the cause of traffic congestion on a road network via emerging connected vehicle technologies
was developed. The performance evaluation shows that the proposed methods enhance the
estimation of the cause of congestion, reduce detection time and trigger less false alarms.
This implies that the complex traffic phenomena is better observed through the interactions
between vehicles exchanging messages.

Chapter 6 presents the full text of the article titled " Prediction of Traffic Flow via Connected
Vehicles", which was submitted in IEEE Transactions on Intelligent Transportation Systems.
The article addresses the problem of traffic flow prediction. It integrates the fact that vehicles
traveling along a trajectory can detect excessive congestion and collectively attribute a cause
to it into the forecasting of traffic flow on a target road segment. A multitask learning deep
neural network technique is proposed and takes as input the real-time reports from connec-
ted vehicles as well as other relevant features, such as travel time, historical flows. The DNN
input features take into account both macroscopic and microscopic traffic variables in the
prediction of traffic flow. The results show our approach significantly outperforms existing
approaches that do not adapt to the varying traffic situations. DNN learned historical simi-
larities between road segments, in contrast to using direct historical trends in the measure
itself, since sometimes trends may not exist in the measure but do in the similarities.

Chapter 7 presents a general analysis and discussion regarding the strong points and limita-
tions of our research work in this thesis. Finally, chapter 8 concludes the thesis by presenting
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a summary of our work and a discussion about future potential research avenues that could
extend our work.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, we discuss the recent work that has been done in the research areas related
to this thesis. First, the work on congestion detection will be examined. This includes the
state-of-the-art methods based on infrastructure and those based on the vehicles. Then, a
description of the research related to the classification of congestion will be elaborated. This
includes the point of view from the transportation engineering which is an offline approach.
We also present the studies done online which are in traffic event analysis and anomaly detec-
tion systems. Afterwards, current approaches for the evaluation of the cause of congestion by
vehicular ad hoc networks will be reviewed. Finally, the literature related to the prediction of
traffic flow will be investigated from two perspectives : the type of traffic data source used to
collect the data and the technique used to model traffic data as they are factors that affect
the forecasting accuracy. At the end of the chapter, we carry out a thorough analysis of the
described work to show its limitations and identify the research gaps that need to be filled.

2.1 Detection of congestion

In this section, we review the works done on congestion detection. In transportation enginee-
ring, they rely mainly on the methods based on the infrastructure such as induction loops,
cameras or sensors in order to collect traffic data and detect congestion. On the other hand,
other methods to detect congestion on a road segment are based on collection methods done
by the vehicles, such as floating car data and recently using connected vehicles technologies.
We mainly focus on the connected vehicles’ ability to detect congestion. Particularly, we
present the studies in this field that attempt to detect traffic congestion by vehicle to Road
Side Units (RSU) communications. We also present the studies that avoid the installation of
RSU, and detect congestion via V2V communications.

2.1.1 Methods based on the infrastructure

In transportation engineering, they rely mainly on the methods based on the infrastructure to
collect data and detect road traffic congestion [3]. While single inductive-loop detectors give
direct information concerning vehicle passage and presence, other traffic flow parameters such
as density and speed must be inferred from algorithms that interpret or analyze the measured
data. When these parameters are calculated from inductive-loop data, the values do not have
sufficient accuracy for calculation of link travel time [14]. Evaluation of over-roadway sensors
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show that they provide an alternative to inductive-loop detectors. Particularly, video image
processing automatically analyze the scene of interest and extract information for traffic
surveillance and management [11]. Although the traffic flow parameters measured with over-
roadway sensors satisfy the accuracy requirements of many applications, infrastructure-based
detectors provide fixed-points and short-section traffic information that is extracted from
vehicles passing through the detection zone only [1].

2.1.2 Methods based on the vehicles

We present here the methods to detect congestion on a road segment that are based on the
vehicle, such as floating car data of probe vehicles, and recently using connected vehicles
technologies.

Probe vehicles or mobile sensors appeared as a complementary solution to fixed sensors for
increasing coverage areas and accuracy without requiring expensive infrastructure investment.
In [15], they detect congestion with data collected from probe vehicles. In [16], they assess
the traffic variables from cellular feeds and identify the traffic condition based on speed of
vehicles.

On the other hand research in VANET proved and validated that via distributed computing
and mobile communication, vehicular networks can efficiently assess the status of the road.
Based on the road traffic condition, the congestion status can then be identified. Vehicles ex-
change via wireless communication microscopic or macroscopic traffic variables and different
studies apply different schemes for the detection of congestion. In some studies they attempt
to detect traffic congestion by vehicle to Road Side Units communications [17]. While in
others, to avoid the installation of RSU, vehicles exchange the traffic data by vehicle to ve-
hicle communication [18]. Once the traffic data is gathered, the schemes introduced in the
literature using VANET mainly use characteristics such as traffic density, traffic speed, traffic
volume or estimated traveling time to detect congestion.

In [19], they defined a saturated traffic density (SDi) of each road segment i. The density
level is the ratio between the number of vehicles at each road segment and the road segment
length per lane on the respective road segment. The congestion level is correlated with the
traffic density at each road and is set as low congestion level of 0.025 to a high congestion
level of 0.125 a vehicle per meter in each lane. In [20], they detect urban traffic conges-
tion with single vehicle and distinguish congested from free-flow road segments. In [21], they
integrated feature-level and decision-level information fusion to improve the reliability of
congestion detection. Lots of works utilize machine learning mechanisms to classify the traf-
fic state into congested or free-flow [22], [23]. To classify the level of congestion, [24] proposes
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a traffic congestion quantification process based on fuzzy theory. The fuzzy-based detection
mechanism takes the traffic density estimate and the vehicle’s speed as input parameters,
and provides the traffic congestion level as output parameter (free-flow, slight congestion,
moderate congestion, severe congestion). Similarly, estimation of congestion degree is done
in [18], where LoC, the level of congestion has values from 0 to 1, ranging from free flow to
severely congested. Moreover, traffic congestion notification combines vehicular cooperation
and human assistance to determine the overall congestion degree and the area of conges-
tion. Research on VANET proved and validated that via distributed computing and mobile
communication, vehicular networks can efficiently assess traffic conditions on roads. These
approaches only detect congestion and do not clarify if the observed congestion is due to
recurrent or non recurrent congestion. They cannot be used to classify the congestion into
its components.

2.2 Classification of congestion

In this section, we present the studies that tackled the classification of the cause of traffic
congestion. In the field of transportation in civil engineering, understanding how much of the
total congestion is due to NRC has been thoroughly studied for both highway [25] and urban
traffic [5] in an offline approach. From the networking point of view, research has not yet
tackled the problem of classifying the congestion detected into its components. Instead, in
this field, they carry out traffic event analysis and present anomaly detection systems which
are online approaches. We will present studies in each of these domains and explain how they
are not solving the problem of classification of congestion into its components.

2.2.1 Offline approach

In [25], the congestion pie chart was introduced to visualize the contribution of the com-
ponents of congestion. Data requirements for the studies include traffic incident logs from
agencies, data on travel time along routes over days for a specific time of day, weather,
workzones and special events data during the time interval. For instance, large volumes of
information at very high spatial and temporal resolutions from different sources are required
for the methods to be applied. Moreover, research on detecting NRC events has only recently
gained importance. In the work [10], they propose methods for NRC event detection on he-
terogeneous urban road networks based on link journey time (LJT) estimates. The LJT data
is estimated from vehicle journey times that are obtained by matching the data of automatic
plate number recognition cameras. Since an NRC would cause an unexpected delay with
respect to expected travel times, they detect statistically significant clusters of high LJTs.
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Expected LJTs capture the recurrent nature of traffic. Excess LJT is the difference between
the observed and expected LJT. If the observed LJT is higher than a threshold, which is
determined by multiplying the congestion factor c with the expected LJT, the LJT is said to
be excessive. The data quality of the LJT estimates depends on the size of the sample used
to compute it. The higher the number of vehicles’ journey times that are used to estimate
an LJT, the higher the data quality of the estimated LJT is. They suggest important values
regarding the threshold to determine whether or not an LJT is excessive, high confidence
episodes and localization index in order to detect reasonable NRC. These methods not only
need extensive datasets, but they are also not deployed in real-time. In real-time, valuable
information with regard to the potential impacts of the detected NRC can be disseminated
to individual drivers and traffic management centers so that appropriate proactive strategies
for recovering traffic conditions back to normality can be set in place.

2.2.2 Online approach

2.2.2.1 Traffic event analysis

On the other hand, the effect of events on traffic has been studied in the field of data mining
[26]. For example, the impact of incidents on traffic is studied in [27]. Congestion caused by
special events is examined in [8]. The impact of inclement weather on the fundamental traffic
flow variables is investigated in [28]. Workzone events create conditions that are different
from both normal operating conditions and incident conditions and they are investigated in
[29]. There are also several studies that mainly concern the cause of the events, aiming at how
to design the network or re-direct the traffic flows to avoid the delay of events [30]. Knowing
the event, the studies analyse its impact on the traffic variables. We aim at doing the inverse ;
we need the traffic variables that can help infer the component causing the excessive delay.

In [31], a software agent based approach to disseminate critical information during critical
situations is proposed. The cognitive model which performs pull and push processes assumes
that an agent platform exists in vehicles, base stations and regional transport station. The
proposed agent based information dissemination model is a network and application archi-
tecture. In [32], the authors put forward an event-driven architecture (EDA) as a mechanism
to get insight into VANET messages to detect different levels of traffic jams ; the mechanism
takes into account environmental data that come from data external sources, such as weather
conditions, web services or onboard sensors. EDA is a software architecture where relevant
real-world activities are reflected as events in the lowest layers of the EDA architecture. This
method is not local and self-organized to generate events based on the real-time relevant
information extraction because it needs external data sources for inference.
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Context mining is complementary to network-sensing technologies, when properly aligned
in space and time, they become essential to understand transport-related phenomena [33].
Context-awareness is the potential to access available semantic information such as time,
location, weather, temporary events and other attributes. The context information used in
[32] fuses different data-sources (internal sensors, external data-sources from Internet or cloud
services and passenger sensors such as smartphone) in almost real-time. In [34], the authors
propose a traffic condition detection algorithm in V2V communication. They suppose that
context can either be derived from the activity of the individual cars’ electronic helpers like
ESP (Electronic Stability Program) or ABS (Anti-locking Brake System), or alternatively,
sensors embedded in the individual vehicle may provide this information. In this research,
we do not use those indicators to detect a weather condition, instead, we use traffic flow
theory because it was shown that a weather condition such as (rainy, snowy, slippery, foggy)
has an impact on the fundamental traffic flow variables, flow, speed and density [28]. A
detection based on a theory has a stronger foundation than that based on the hypothetical
assumptions of car sensor integration rate. Vehicles need to be context aware and able to
consider multiple but adequate explanatory sources, well-tailored information won’t always
be available, particularly in dynamic urban networks.

2.2.2.2 Anomaly detection systems

Recent studies have attempted to develop algorithms to detect traffic anomalies, or outliers
also known as traffic patterns that do not conform to expected behaviour [35]. The majority
of the studies on abnormal traffic pattern using macroscopic and microscopic traffic variables
attempt to detect anomalies prior to the occurrence of an incident [36]. The aim for the
analysis of the traffic variables in this case is to identify incident precursor phases. In [37],
the authors propose a system for automatic detection of problematic road conditions. They
analyze possible events on some lane by using vehicle’s lane-changing information and it is
designed to enhance the existing incidents detection techniques. Beside the lane-changing in-
formation, [38] makes use of more information to derive incidents, in sensor-assisted VANET.
The scheme extracts the distribution of vehicle footprints on the road, the lane-switching pat-
terns and the traffic density. Vehicles record their footprints (i.e., the geographical position
at each sampling time point) periodically, and the footprints are aggregated and analyzed to
infer the occurrence and locations of problematic conditions.

While traffic incidents can lead to congestion and understanding the precursor phases by
analyzing the traffic variables is a first step, workzones, weather and special events are also
events that disrupt the normal flow of traffic. The fact that incidents are not the only cause
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of NRC limit the usefulness of existing automatic incident detection methods for identifying
NRC on urban road networks. These methods cannot solve the classification of congestion
into its components problem.

2.3 Evaluation of the cause of congestion

Since urban traffic is essentially unstable, chaotic, and unpredictable, each vehicle assessment
is not enough, an evaluation process is essential in order to elaborate a decision on the cause
of congestion. This would result in a more precise, efficient, and reliable view of the traffic
condition by observing the complex phenomena from the interactions between vehicles. In
this section, we present the studies in the literature that try to solve this problem, and they
mainly use data fusion as a technique to evaluate traffic events.

Data fusion algorithms take the data collected by the connected vehicles and use it to im-
prove : the reliability of a judgment by the contribution of redundant information ; or the
interpretation ability by the provision of complementary information. Particularly, a large
portion of literature has been proposed for the distributed data fusion for uncertain reasoning
in ad hoc and dynamical networks [39] [40] [41] [42]. In [39], they introduced belief functions
to combine and fuse data in vehicle for the management of uncertainties about events in vehi-
cular networks. The theory of belief functions is a generalization of the Bayesian probability
theory. Belief functions combine degrees of confidence about events reported in exchanged
messages. Their methods were tested and compared using a Matlab simulator where roads
are divided into segments and one event is considered per segment. Exchanged messages via
V2V inform of the presence or the absence of events. Their methods do not learn from the
data they collect and fuse. Also, it should also be remarked that V2V algorithms for combi-
ning and fusing data are very different from algorithms developed in Vehicle to Infrastructure
(V2I) communication applications [43] [4]. In the latter study, a centralized module combines
collected data and disseminates global information.

Specifically, concerning spatio-temporal events such as traffic jams, some studies propose me-
thods that tackle both the information dissemination and information fusion problem. In [40],
belief regarding the presence of an event on a geographical point is obtained by : discounting
[41] neighbouring information according to their distance from the point ; then combining the
obtained information [42]. In [40], authors propose to use the cautious combination rule [44]
to fuse information located on a same road segment. In [45], they presented a system to ma-
nage information about uncertain events, but unlike the model in [40], was the choice of the
event dissemination strategy considered. Each vehicle sends new events or repeats received
one. A choice has been undertaken to keep combinations of messages in each vehicle and to
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not diffuse it, each driver making its own overview of the situation, the environment being not
overloaded with partial fused messages. With the use of belief functions, an overview of the
situation regarding each event can be given to the driver such that each event is associated
with a degree of confidence and then broadcasted to the outside world if necessary. Also, the
model allowed events of the same type to be present on the same road segment, for instance :
different accidents, different parking space, etc. It implied the necessity to assure a procedure
to determine identical events. For validation, the model was implemented and tested using
Hong-Ta Corporation (HTC), an application using smartphones. The application proposed
required driver assistance to send the events and the authors proposed that camera or sensors
might be installed in vehicles in such a way to automatically detect events.

In [41], a method is proposed to exchange and manage information about events on the road
in V2V communication taking into account non-spatial events and spatial extent of a traffic
jam. The performance of the method is measured by considering the adequacy between the
information given to the drivers in each vehicle and the reality. Authors propose to divide map
traffic lanes into small rectangular areas named cells. The map is composed of horizontal and
vertical two-way streets in particular a traffic lane is composed of NbSimCells cells depending
on the type of event. Authors suggest that sensors might be used to detect events in order
to create messages automatically, without driver assistance.

In [42], different strategies are compared to manage as best as possible fusion of acquired
information, message aging of local events and dynamics and spatiality of traffic jams. They
extend the work in [41] by developing new methods based on the notion of update and by
proposing a way to automatically compute the message aging (by discounting or reinforcing)
using historical data. Their work distinguishes local events (such as accident) and spatial
events (such as traffic jam). The list of sources is kept in vehicle database in order to consider
finely the dependence between messages, and use the most suitable combination operator
(either the conjunctive rule or the cautious rule) to combine information.

In [42], since their influence mechanism predicts the transfer of the traffic, different causes
of congestion require different types of management for the mechanism to work properly
and not generate false influences. They stated that unlike traffic jams, the spatiality of fog
blankets does not depend on maps and to manage this spatial event, roads are divided into
cells, without taking into account traffic directions. In other words, if a fog blankets event
is present on one side of a traffic lane, it is also certainly present on the opposite side. The
influences of a fog blankets event concern surrounding cells, without any certainty of its
presence or its absence. None of the aforementioned methods specify any procedure to gather
data for the sake of learning. In fact, data mining techniques such as clustering, association,
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classification, have been applied in VANET to extract useful patterns and information [26].

2.4 Prediction of traffic Flow

The traffic flow prediction problem aims at evaluating anticipated traffic flow at future time
frames on a target road segment. In this section, we present the literature related to the
prediction of traffic flow. We review it from two perspectives : the type of traffic data source
used to collect the data and the technique used to model traffic as they are factors that affect
the forecasting accuracy. Traffic flow prediction techniques can be mainly classified in three
categories : 1) parametric approach ; 2) nonparametric approach ; and 3) hybrid approach.

2.4.1 Parametric approach

The main techniques used in this category are time-series models, AutoRegressive Integra-
ted Moving Average (ARIMA)-based models [46] and Kalman filtering [47]. In [48], they
applied an ARIMA model for traffic volume prediction in urban arterial roads. Many va-
riants of ARIMA were proposed to improve prediction accuracy, such as Kohonen-ARIMA
(KARIMA) [49], ARIMA with explanatory variables (ARIMAX) [50], vector autoregressive
moving average (ARMA) and space–time ARIMA [51], and seasonal ARIMA (SARIMA)
[52]. Other types of time-series models were also used for traffic flow prediction such as the
statistical models. They make the assumption of stationarity of the underlying process. This
assumption is often violated as observable traffic conditions can evolve differently at different
times. Also, the linearity of the time series approach presents an inconvenience for traffic
prediction. Traffic flow has stochastic and nonlinear nature, unfortunately, even an enhanced
ARIMA cannot accurately predict flow in the presence of accidents. ARIMA, due to its de-
layed reaction, is not an ideal method to use in the case of events which cause sudden changes
in the time series data. If we know per say, from police event streams, that there is an acci-
dent (say, 30 minutes) ahead of us, we may be able to predict its delays and account for it.
On the other hand, historical data can be used to identify similar accidents, i.e., with similar
severity, similar location and during the similar time, so that we can use their impact on ave-
rage speed changes and backlog to predict the behaviour of the accident in front of us. For
example, an accident that may happen between 4 :00PM and 8 :00PM on a particular road
segment might cause 5.5 miles of average backlog ahead of the accident location. If the same
accident happens between 8 :00PM and midnight the backlog will be 2.5 miles. In addition,
these techniques predict traffic flow on each road segment separately. Since transportation
networks are complex and much correlated, it is crucial to predict traffic flow from a network
perspective. Moreover, while time-series analysis models are probabilistic, they are ignorant
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of the underlying process that generates the data. Thus, time-series-based approaches are
more prone to large errors in traffic flow forecasting.

2.4.2 Nonparametric approach

Nonparametric regression [53] is a widely used technique. In [54], an online boosting regression
technique that ensures traffic prediction under abnormal traffic conditions was proposed.
Otherwise, boosting is disabled. In [55], a support vector regression was used to establish
the prediction model, whereas particle swarm optimization was used to optimize the model’s
parameters. Among all of these techniques, neural-network-based forecasting had the best
performance in terms of prediction accuracy and are considered to be relatively effective
methods because of their well established models.

2.4.2.1 Neural Networks

A panoply of artificial neural networks (ANNs) were proposed to predict traffic flow [56].
Typical computational intelligence-based forecasting methods mainly include the back pro-
pagation (BP) neural network [53], radial basis function (RBF) neural network [57], recurrent
neural network [58], time-delayed neural network [59], and resource allocated networks [60].
Particularly, deep learning is a neural network of more than one hidden layer. This technique
has attracted researchers from various domains as it considers complex correlations between
features and outputs. Besides the factors of scope, data resolution and technique used to
model the traffic, we will compare the works in this approach with regards to the features
used to train the models and the type of traffic data source used to collect the data.

In [61], they propose a stacked auto-encoder model to learn generic traffic flow features by
considering the spatial and temporal correlations. The model is trained in a greedy layer-wise
fashion. The traffic data are collected every 30s from over 15 000 individual detectors, which
are deployed state wide in freeway systems across California. Their input features consists
of traffic flow data at previous time intervals, on the target road segment. The target road
segment is the link of interest in the road network where the model wants to predict flow on.
Considering the temporal relationship of traffic, to predict the traffic flow at time interval
t, they use the traffic flow data at previous time intervals. In this study, their simulations
indicate that four past time intervals of 15 minutes are enough to get good performance.

On another hand, recent work has shown that it is possible to jointly train a general system for
solving different tasks simultaneously [62], multitask learning (MTL). If the tasks can share
what they learn, the learner may find it is easier to learn them together than in isolation.
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MTL is one way of achieving inductive transfer between tasks. The goal of inductive transfer
is to leverage additional sources of information to improve the performance of learning on
the main task.

In [63] and [62], they train a MTL model to predict flows on links. Unlike traditional traffic
flow forecasting that predicts a future flow of a certain link only using the historical data
on the same link, which is also called single-link traffic flow forecasting, the authors propose
multilink forecasting models, which take the relations between adjacent links into account.
Single-link forecasting approaches ignore the relationships between the measured link and its
adjacent links. In fact, each link is closely related to other links in the whole transportation
system. The multilink model predicts traffic flows using historical traffic flow data from all of
the adjacent links. The features in [63] are flow data collected from sensors on the road. In [64],
they propose a combination of multitask learning and an ensemble learning method bagging,
for traffic flow forecasting. In [62], they propose a deep architecture that consists of two parts,
i.e., a deep belief network (DBN) at the bottom and a multitask regression layer at the top.
In a transportation system, all roads and entrance–exit stations are connected to each other.
There is a lot of shared information among these roads and stations. The data are collected
from inductive loops continuously collecting data in real time for more than 8100 freeway
locations throughout the State of California. In [65], they proposed approaches showing
significant improvements in prediction accuracy when compared to baseline predictors but
their focus lies on highways that are one-directional road segments, whereby usually in the
inner cities the impact of traffic is a multi-dimensional problem, evolving in a 2D, more
complex route network.

Current research on traffic flow prediction mainly focuses on data traffic history and neglects
other conditions affecting traffic. In [66], they investigate and quantify the impact of weather
on traffic prediction in a freeway scenario. They admit that transportation systems might
be heavily affected by factors such as accidents and weather. But they just considered the
weather factor. They claim that inclement weather conditions may have a drastic impact
on travel time and traffic flow. Their MTL architecture incorporate deep belief networks for
traffic and weather prediction and decision-level data fusion scheme to enhance prediction
accuracy using weather conditions. The traffic flow predictions provided by their approach
use past values of the traffic flow and the current weather data is fused to provide future
traffic flow prediction. They state that their scheme avoids compounding prediction errors
that may ensue had weather data been predicted rather than been used as real information.
Traffic flow is measured every 30 s using inductive loop sensors deployed throughout the
freeways.
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2.4.3 Hybrid approach

Some studies have investigated hybrid approaches [67]. To obtain adaptive models, some
works explore hybrid methods by combining several techniques. Although the aforementioned
hybrid models are flexible, they do not fully take profit from spatial information collected
from the whole road network. Moreover, these studies rely only on information collected by
sensors such as the Global Positioning System, loop detectors, and smart-phones. In traffic
event analysis, the effect of events on traffic prediction has also been studied in the fields of
data mining and transportation engineering. The majority of these studies focused on real
time event/outlier detection using probabilistic or rule-based approaches (e.g.,[68], [69], [35]).
There are also several studies that mainly concern the cause of the events, aiming at how to
design the network or re-direct the traffic flows to avoid the delay of events [35]. However,
none of these studies incorporate events into traffic flow prediction techniques, and hence fail
to provide realistic forecasting in the presence of events.

2.5 Analysis and limitations

As the complexity of traffic increases, data collection methods that are based on the infra-
structure, such as the loop detectors and those that rely on floating car data are not scalable
for the urban network because data collection efforts are too expensive to replicate on a large
scale or on a continuing basis. Due to real-time constraints much more information extrac-
tion techniques are needed to extract transport-relevant parameters. New technology such
as connected vehicles can be used to improve the accuracy, timeliness, and cost efficiency of
data collection. Real-time distributed monitoring refers to the process by which macroscopic
and microscopic traffic variables are collected by vehicles themselves. Such systems are still
at an early stage and their development has been hampered by the inability of existing mo-
nitoring systems to deliver traffic flow data with sufficient spatial granularity and timeliness.
The larger coverage due to the distribution and high mobility of connected vehicles is taken
as an advantage for urban detection of congestion.

The studies presented in this review on connected vehicles validated that via distributed
computing and mobile communication, vehicular networks can efficiently detect road traffic
congestion. However, the studies proposed only detect congestion and do not clarify if the
observed congestion is due to recurrent or non-recurrent congestion. Furthermore, they cannot
be used to classify the congestion into its components. The problem is that the research in
this field is not evolving at the same pace as that in the transportation engineering area.

In order to classify the cause of congestion, data requirements for the studies done in civil
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engineering in the transportation field include traffic incident logs from agencies, data on
travel time along routes over days for a specific time of day, weather, workzones and special
events data during the time interval. For instance, large volumes of information at very high
spatial and temporal resolutions from different sources are required for the methods to be
applied. Also, they not only need extensive data sources, but they are deployed offline. In
real-time, traffic management centers are interested in detecting NRC and specially its cause
so that they can set in place appropriate proactive strategies for recovering traffic conditions
back to normality. Online approaches proposed in the literature for traffic event analysis in the
connected networks field also require extensive data sources. The context information fuses
different data sources (internal sensors, external data-sources from Internet or cloud services
and passenger sensors such as smartphone) in almost real-time. Although vehicles need to be
context aware, we see that well-tailored information won’t always be available, particularly
in dynamic urban networks. Due to real-time constraints much more information extraction
techniques are needed to extract transport-relevant parameters. An automatic method where
contextual information is taken into account in the assessment process is needed.

On the other hand, if each vehicle classifies individually the cause of congestion, the assess-
ment and classification is done locally at a vehicle level. If one vehicle sends a false alarms,
it spreads uncertainty among vehicles and this in turn causes more congestion. Sending false
information disrupts the proper network operation and presents a threat to the traffic net-
work. This makes exploring the cause of congestion at a vehicle level a partial solution. The
studies reviewed in this thesis for the evaluation of the cause of congestion focus on data
fusion techniques. Because traffic is multifaceted, we warn that a vehicle by itself has partial
knowledge about the road condition, it knows to some degree the traffic condition surroun-
ding it, so fusion of data alone is a limited solution. If we collect the fusion results for the
sake of learning, we believe that knowledge can be acquired from the fused data that the
vehicles exchange in a presence of a particular road condition. In urban networks, vehicles
are repeatedly faced with situations where they encounter congestion. Vehicles will have to
repeatedly determine its cause based on the variables they collected. They should be intelli-
gent enough to learn from their experiences. Currently, there is no mechanism that is able to
extract valuable knowledge from the situations experienced by the vehicles. Every situation
should be a suite of instances learned for better decision making because the monitoring
currently done by the proposed schemes does not allow for summarizing valuable knowledge.
Also, to improve the accuracy of the evaluation of the cause of congestion, vehicles should
elaborate a decision collectively.

Finally, a prediction algorithm uses real-time feeds and applies an advanced modeling tech-
nique combined with historical data to predict the future traffic flow on a segment. To the
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best of our knowledge, no research was done on the use of connected vehicles as real-time feeds
to the prediction model. In fact, in all studies in the literature, data is collected from fixed
monitoring equipments, such as sensors and CCTV cameras, or using mobile data sources
such as floating GPS data and SMS, social data feeds [70]. The type of traffic data source is
a very important factor as it affects the efficiency and accuracy of the prediction algorithm.
Also, most of the studies have been devoted to highways rather than highly congested urban
arterials, which are far more likely to be monitored by the traffic authorities. Therefore, the
design of accurate and scalable traffic prediction tools for urban road networks is required.

The majority of the techniques in the parametric approach focus on predicting traffic in
typical scenarios (e.g., morning rush hours), and more recently in the presence of accidents
or a weather condition. Existing techniques are only applicable to predict one of the scenarios.
ARIMA prediction model is more effective in predicting the speed in normal conditions but
at the edges of the rush-hour time (i.e., the beginning and the end of rush hour), the HAM
model is more useful. This becomes even more challenging when considering different causes
for congestion, e.g., recurring (e.g., daily rush hours), occasional(e.g., weather conditions),
unpredictable (e.g., accidents), and temporarily—for short-term (e.g., a basketball game)
or long-term (e.g., road construction) congestions. The techniques consider traffic flow as a
simple time-series data and ignore phenomenons that particularly happen to traffic data. For
example, for generic time-series, the observations made in the immediate past are usually
a good indication of the short-term future. However, for traffic time-series, this is not true
at the edges of the rush hours, due to sudden speed changes. The statistical approaches,
by their very nature the mathematics of collecting, organizing, and interpreting numerical
data, can provide more insights on the mechanisms creating and processing the data. On the
other hand, the statistical approaches frequently fail when dealing with complex and highly
nonlinear data and suffer from the curse of dimensionality. Finally abnormal traffic patterns
caused by non recurrent congestion may deteriorate the performance of these models [71].
Nevertheless, under most situations, extreme values are of primary interest in forecasting the
change in traffic conditions.

In general, literature shows promising results when using neural networks models as they are
used as benchmarking methods for short-term traffic prediction. But since simulations have
shown that one hidden layer would not be enough to describe the complicated relationship
between the inputs and the outputs of the prediction model, deep learning has attracted
researchers in this domain as it considers complex correlations between features and outputs.
But even the studies that trained a deep neural network to solve different tasks simulta-
neously, used MTL with flows only as inputs to the model. No studies integrate the impact
of various events into the forecasting models by considering spatiotemporal characteristics
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of traffic in training of the models. In fact, no studies have tackled the problem of training
an MTL by analyzing the tight correlation between traffic data and external factors for the
prediction of traffic flow in an urban traffic network. It should be noted that the prediction
of traffic flow under atypical conditions is evidently more challenging than doing so under
typical conditions and, hence, much desired by operational agencies.
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CHAPTER 3 METHODOLOGY

The aim of this thesis is to analyse road traffic flow in the transportation system through the
connected vehicles technologies in order to mitigate congestion. To this end, techniques for
data collection via connected vehicles technology, cooperative classification of the cause of
congestion and a framework for flow prediction were envisioned as announced in section 1.3.
To attain these objectives, the work was carried out in three main phases. This chapter aims
at explaining the different steps that led to the realization of the objectives and connecting
them to the work presented in the subsequent chapters.

3.1 Phase 1 : Classification of traffic congestion

In the first phase of our work in this thesis, our efforts were directed towards the achievement
of the first two objectives. The work consisted of : 1) first, collecting measurable traffic
features extracted by an advanced monitoring technology capable of aggregating microscopic
and macroscopic traffic variables at various levels of granularity, and 2) second, proposing
classification models based on the traffic features collected for inference on the cause of
congestion. These objectives were attained in the first article titled "Distributed Classification
of Urban Congestion Using VANET" presented in chapter 4.

3.1.1 Components of congestion

Firstly, vehicles should be able to detect congestion via the connected vehicles technology
while travelling along routes of their trajectory. We use the travel time variable to assess the
traffic condition as it is the most accurate metric that CVs can calculate and that is what
distinguishes them from conventional data collection methods. In fact, the observed travel
time of a vehicle (oTT ) along a road segment on an urban road network is composed of
recurrent delay (Drec) and non-recurrent delay, d, such as incident , workzone, weather or
special event induced delays.

oTT = Drec +Dn−rec

oTT = Drec +
4∑

i=1
(xi ∗ d), where (3.1)

4∑
i=1

xi = 1,



38

xi = 0or1

Drec is the expected recurring travel time, also known as historical travel time, TTh that
is location and time specific, based on the fact that the average speed on roads are usually
similar at the same time of different days of the week. In transportation there is a big difference
between weekday and weekend traffic. We are only looking at the weekday traffic which is
usually worse than the weekend. Expected values are derived offline using past historical data
for each segment. The preloaded digital maps available on the vehicular nodes may provide
this traffic statistic of the roads at different time of the day. On the other hand, the observed
travel time along a segment can be easily obtained by each vehicle in real time by its sensors.
If the observed travel time on the segment is higher than a threshold, which is determined
as in [10] by multiplying the congestion factor c with the expected recurring delay, the travel
time is said to be excessive.

∀r ∈ E, oTT > (1 + c) ∗ r.TTh ⇒ oTT is excessive. (3.2)

3.1.1.1 Monitoring of traffic variables

A fundamental aspect of our first objective is to identify the relevant microscopic and ma-
croscopic traffic variables that connected vehicles should monitor along their trajectory in
order to estimate the cause of the congestion they detect. Common causes of congestion
are a widely investigated topic within the research community. Available research focus on
studying the influence of a cause on traffic, such as the influence of weather, special events,
incidents, workzones and bottlenecks on traffic. In order to identify a set of variables represen-
ting spatial and temporal features of the components of congestion capable of distinguishing
non-recurring congestion in an efficient way, we highlight from previous research key spatio-
temporal variables characterizing each cause of congestion.

Inclement weather (rain, fog, snow, ice) has an impact on the fundamental macroscopic
traffic flow variables (flow, speed and volume). It was also shown that microscopic traffic
variables such as desired speed, desired acceleration and deceleration and minimum following
distance parameters can be influenced during snowy road conditions for different reasons
[6]. The free flow speed is defined by the speed driven when the driver is not influenced
by nearby road users. Free speed is reduced to desired speed if the speed is influenced by
other drivers, the road, characteristics of the vehicle, conditions such as weather and traffic
rules (speed limits). For instance, drivers reduce their speed in order to avoid skidding in
inclement weather. A reduction of desired speed, which reaches up to 30% for snowy roads,
has been found. The reaction to adverse weather conditions varies between regions. As for the
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desired acceleration and deceleration, a slippery road reduces friction between road surface
and tyres, thus drivers are not able to accelerate and decelerate as strongly as compared with
dry road conditions, that is, maximum acceleration and deceleration decrease during snowy
road conditions. Moreover, drivers reduce acceleration and deceleration to avoid skidding.
Finally, drivers try to maintain a higher minimum following distance in order to cope with
longer stopping distances caused by slippery roads [7]. From these findings, we assume that
the features collected along a vehicle’s trajectory and experience on other road segment that
can help infer weather conditions are : higher minimum following distance, reduced desired
speed and higher travel times on some segments of the trajectory.

Regarding special events (sport games, concerts, religious activities, political demonstra-
tions), previous researches have highlighted that they may lead people to travel towards the
same destination in a very limited time interval, and then to leave the venue again in a very
short time span [8]. The impact of a special event on traffic has been thoroughly studied
in [9] for different demand categories of people going to the event (inbound traffic) and lea-
ving after its end (outbound traffic). Special events may cause congestion depending on the
intensity of ingress traffic demand or sharp traffic surge in concentrated time span. Thus a
special event has an impact on the traffic behaviour in a specific region over time. Such an
impact region can be defined as the list of congested segments of the road network around the
special event. From these conclusions, we also identify features along a vehicle’s path that are
the most informative of a special event traffic condition. Firstly, we assume that if a vehicle
experiences a NRC caused by a special event, then the vehicle is necessarily in the impact
region of the event. Secondly, we hypothesize that along the path of the vehicle, if some road
segments of the vehicle’s path are inside the impact region, and the travel time on those seg-
ments are abnormally high, then we may associate this characteristic to a congestion caused
by a special event. Finally, we assess the observed demand along a vehicle’s path in order
to detect the presence of a sharp traffic surge. These features were found to be especially
relevant to measuring operational performance during special events.

Incidents (emergencies, accidents, vehicular breakdowns, road defects, police checks) and
workzones also have an impact on the traffic flow variables. Particularly, these events phy-
sically block one or multiple lanes of the road segment. The blocked section of the road is
called problematic spot (Pspot) and can be defined by an interval of start and end point [s,
e] depending on the lane. No vehicles can traverse this section, thus reducing the capacity of
the road. Trajectories of vehicles on a segment comprising a problematic spot cannot register
coordinates of the blocked section. Regarding workzones, it was shown that if they happen at
day time, especially at rush hours, their impact on traffic is severe, sometimes exceptionally
larger than that of traffic accidents happening at the same time. On the other hand, if they
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happen at night, their impact is not that significant. Often times, workzones occupy the road
segment a longer period of time than incidents because incidents are undesired and should
be cleared as fast as possible. Instead of features extracted from experience on other road
segments, we identify features that are specific to the road segment where the excessive delay
is observed to infer an incident or a workzone event. Essentially, we suppose that if there is
a Pspot on the road, then the NRC is caused by either an incident or a workzone. We also
assume that the duration of the Pspot is a good indicator of a workzone event.

3.1.1.2 Features extraction

After obtaining quantitative fine-grain traffic variables, self-organized vehicular ad hoc net-
works can further monitor the variation in traffic information of neighbour nodes in order to
estimate real-time features. We present below relevant features that can be extracted from
observable trajectory data : CurrentTravelTime, TrajectorySpeed, TrajectoryGap, Trajecto-
ryTravelTime, Pspot, ImpactRegion, ImpactRegionTravelTime, TrajectoryDemand, Store-
dEvent.

1. CurrentTravelTime : According to Equation 3.2, this feature categorizes the travel
time observed along a segment as normal or excessive.

2. TrajectorySpeed : It is not trivial to assess the macroscopic impact of an event on
the road network from a vehicle point of view. Investigation of features from a micro-
scopic view is required at a vehicle level to better assess the situation and detect the
weather condition. The TrajectorySpeed aims at summarizing speed data along the
vehicles’ path in order to detect the presence or absence of a weather condition. The
large number of data collected is aggregated into a valuable indicator of normal or ab-
normal weather conditions. The deterministic aspects of vehicles movements include,
following the speed of the front vehicles and driving within the speed limits. While
random aspects include : changing lane, passing other vehicles, radical changing the
speed because of an accident or the appearance of heavy traffic and excessive speed.
According to the car-following model developed by Stefan Krauss [72], each vehicle
speed can be computed as per Equation (3.3) below. The model uses the following
parameters :

a : the maximum acceleration of the vehicle (in m/s2)

b : the maximum deceleration of the vehicle (in m/s2)

vmax : the maximum velocity of the vehicle (in m/s)
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e : the driver’s imperfection in holding the desired speed (between 0 and 1)
The safe velocity is computed using the following equation :

vsafe(t) = vl(t) +
g(t)− vl(t)τ

v

bv
+ τ

Where :

vl(t) : speed of the leading vehicle in time t

g(t) : gap to the leading vehicle in time t

τ : the driver’s reaction time (usually 1s)

As vsafe may be larger than the maximum speed allowed on the road, the minimum
of these values is computed as next. The resulting speed is called the desired speed.

vd(t) = min{vsafe(t), v(t− 1) + a, vmax} (3.3)

It should be assumed that most drivers will operate their vehicles in a reasonable man-
ner, considering such things as road and weather conditions, traffic volumes, adjacent
obstructions and distractions. This assumption leads to the theory of 85th percentile
speed, defined as the speed 85% of drivers are moving at or below [73]. TrajectoryS-
peed is referred to as normal or abnormal, depending on the 85th percentile speed the
vehicle calculated along its trajectory.

3. TrajectoryGap : Similarly, this feature also aims at summarizing minimum following
distances along a vehicles’ trajectory. TrajectoryGap is categorized as high or normal.

4. TrajectoryTravelTime : The vast majority of drivers want to reach their destinations
as quickly as possible. This feature aims at aggregating values of travel time. Since to
every road segment is associated an expected travel time, we compare the observed
travel time on a segment with the expected travel time. We evaluate the travel time
on all segments of the path and compare them to their respective expected travel
time. TrajectoryTravelTime is then the indicator of normal or abnormal traffic delay.
In order to reduce the randomness of a vehicle driving voluntarily slow, the average
method is taken to calculate the travel time and considers the impact of the travel
time of all vehicles within the scope, the formula is set as follows :

TT = (1− α) ∗ TTs + α ∗ TTt (3.4)

where TTs is selected as the travel time of the representative, TTt is a mean value of
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the vehicular travel time in the wireless coverage of the representative vehicle and α
is a weighting factor which means the different degrees of importance.

5. Pspot : This feature is specific to the road segment where the excessive delay is ob-
served and uses position data to detect the presence or absence of a problematic spot.
As in [38], we use position data to extract the distribution of vehicle footprints on
the road. When the cause of the NRC is an incident or workzone, lots of vehicles
periodically register coordinates of their neighbors. If a section of the road segment is
blocked, no position coordinates are recorded between the start and end point [s, e]
of the problematic spot as shown in Fig. 3.1. This feature also considers the temporal
aspect of the observed problematic spot. It is a good indicator of an NRC caused by
a workzone if the event lasts more than one hour.

Figure 3.1 Trajectory of vehicles around a problematic spot

6. ImpactRegion : Each segment of the road network is labeled as inside or outside
of an impact region. Transportation impact studies are carried out for individual
developments, and traffic engineers are able to identify a list of congested segments of
the road network around developments where special events occur.

7. ImpactRegionTravelTime : This feature is extracted in the same manner as the Tra-
jectoryTravelTime except that it looks if in the path of the vehicle, there are road
segments that are labeled inside an impact region. The travel time on those segments
is either normal or abnormal. ImpactRegionTravelTime might also indicate that no
segment of the path of the vehicle is inside an impact region.

8. TrajectoryDemand : From the average densities and speeds, we aggregate the values
to obtain an understandable TrajectoryDemand feature. The observed traffic demand
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along a vehicle’s path is either high or normal.

9. StoredEvent : Excessive travel time can be noted on a road segment adjacent to
one where the congestion was initially detected. Cooperation between vehicles can
propagate the event to a maximum number of adjacent roads. StoredEvent might
indicate that incident, workzone, special event, weather, bottleneck or that no stored
event on the segment exists.

Finally, along each road segment, besides the features extracted above, each vehicle computes
a local traffic evaluation. They estimate average speed, average density and travel time on
the segment. Based on those characteristics, the congestion status can be locally identified.
A vehicle can recognize via its neighbours if it’s in a jam via cooperative VANET congestion
detection. Numerous research studies have investigated VANET-based congestion detection
[1], [19] and any of these solutions can be used to accurately detect congestion. Congestion is
a particular state of mobility and as in [19], we will use mean speed, estimated traveling time
and density characteristics to detect highly congested road segments along a given direction in
urban areas. Following local traffic evaluation, if the segment is congested and from Equation
3.2, oTT is excessive, the observable trajectory characteristics and the results of the local
traffic evaluation are provided to the feature vector as input to the classification model for
inference on the cause of the NRC.

It’s only when a vehicle detects congestion and that it is excessive, that the vehicle enters
the inference process. The focus of the first phase is to integrate these observed traffic flow
variables characterizing NRC events into the classification models.

3.1.2 Classification models

As part of the iterative process of building and refining models, we experimented with many
machine learning methods in order to solve the classification problem at hand. All models
require a feature vector in order to predict the output class. The feature vector x is composed
of the following input variables used by the classification models for prediction :

x1 : CurrentTravelTime

x2 : TrajectorySpeed

x3 : TrajectoryGap

x4 : TrajectoryTravelTime

x5 : Pspot

x6 : ImpactRegion
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x7 : TrajectoryInsideImpactRegionTT

x8 : TrajectoryDemand

x9 : StoredEvent

All features have finite discrete domains and the dependent target variable Y that we are
trying to predict is the NRC cause. The target variable can take a finite set of values :

y1 : Recurrent

y2 : Incident

y3 : Workzone

y4 : Special event

y5 : Adverse weather

Tree models where the target variable can take a finite set of values are called classification
trees (CT) [74]. Each element of the domain of the classification is called a class. In these tree
structures, leaves represent class labels and branches represent conjunctions of features that
lead to those class labels. The goal is to create a model that predicts the value of a target
variable based on several input features. Each interior node corresponds to one of the input
features ; there are edges to children for each of the possible values of that input feature. Each
leaf represents a value of the target variable given the values of the input features represented
by the path from the root to the leaf. Training data set comes in records of the form :

(x, Y ) = (x1, x2, x3, ..., Y )

C4.5 is an algorithm used to build classification trees from a set of training data using the
concept of information entropy [74]. The purpose is to split at each node with the feature
having the highest normalized information gain. The algorithm then recurs on the smaller
subsets of the split. The recursion is completed when the subset at a node has all the same
value of the target variable, or when splitting no longer adds value to the prediction. We
employ such an algorithm in the training of the CT described in this paper in Chapter 4.
We present in the paper the details of the classification tree obtained. Also, in the paper, we
show a possible extension of the CT method, random forests which is an ensemble learning
method also used for classification.

We also developed a probabilistic model based on a Naive Bayesian classifier which gives
useful predictions about the congestion. We sought to abstract the problem of traffic conges-
tion classification to a consideration of probabilistic dependencies among a set of random
variables, representing properties of key components features and contextual observations.
Such representation helps to reduce the parameter space of the learning and inference effort
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as well as provide a model of congestion classification. We set out to learn a statistical model
that could provide inferences about the non-recurrent component that is causing the conges-
tion. The aim of the Naive Bayesian classifier, as with other classifiers, is to assign a target
variable to one of a discrete set of categories based on its observable features. We present
in the paper in Chapter 4 the Bayesian network we propose for our classification problem.
Also, in order to solve the classification problem, we experimented with a boosting technique.
Boosting is a fairly recent technique in supervised learning. In the article in Chapter 4, we
presented AdaBoostM1, a standard boosting scheme where diversity is created by focusing
on where the existing model makes errors.

3.1.3 Real-time continuous evaluation of traffic

Since the purpose of this phase is to accurately detect and classify a NRC, we use communica-
tion between vehicles to propagate the local caption of a vehicle to the vicinity in order assess
if the temporary induced traffic change related to an event can be mitigated in a short period
or does the event represent a permanent change representing an NRC. To do so, in addition
to BEACON messages that are regularly sent to nearby vehicles, two types of messages are
implemented in our system : Extraordinary Event Request (RQ) and Extraordinary Event
Response (RP). This process requires a 100% penetration rate of VANET enabled vehicles. If
an NRC is locally detected, the back-propagation algorithm activates in real-time a process
that shares the individual estimation made by the vehicle. The back-propagation algorithm
is presented in the article in Chapter 4. In fact, according to Equation 3.2, most vehicles
in the vicinity will have assessed the same deviation from normal recurrent road condition.
The extraordinary event request is transmitted upstream via broadcast to all nearby cars in
its communication range, and hop by hop until the entry of the road segment. RQ contains
the time of the event, segment ID and event type fields. RQ escalades backwards because
of congestion spill-back and the consequence of an extraordinary event will have measurable
impacts on the K adjacent roads. Also, according to [10], the minimum duration before an
extraordinary event is recognized as NRC corresponds to the number of consecutive link
journey time that the episode contains. To this purpose, every vehicle on the segment main-
tains the extraordinary event request. The last vehicle on the road segment is responsible of
sending it back upstream once it is going to exit the road segment in order to ensure the
event lasted enough time and that it corresponds indeed to a high confidence episode. Each
vehicle has 3 modes :

Mode 1 : One activates when it is ready to send an extraordinary RQ or RP event and
no one has sent one yet on the segment.
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Mode 2 : Another executes when the vehicle is near the virtual line of the road or at
the entry of the road segment.

Mode 3 : The other is idle, listening to events : the decision of forwarding is based on
the overheard retransmissions. Each node keeps track of the messages received during
the time slot of t seconds, where t corresponds to the inverse of the distance to the
node in the last hop.

Transmitting extraordinary events helps to obtain a more scalable traffic evaluation and
detect reasonable NRC. A vehicle sends events upstream only if a reasonable NRC is detected.
If a vehicle enters a road segment and receives the RQ while the duration is not yet reached,
it is in mode 2. If the event is an accident or workzone, vehicles do not wait for the duration
to end because the NRC is considered reasonable. An extraordinary event response is sent to
first order adjacent roads. Opposite direction to the flow of traffic on adjacent segments are
not connected to the segment where the event occurs. If congestion is due to weather, special
event, the last vehicle has to store, carry and forward backwards the extraordinary request
once it reaches the end of the road segment, to reach the duration before high confidence
episode can be recognized. Similar to the RQ, the RP contains the time of the event, segment
ID and event type fields where the message is defined as a response event.

3.1.4 Performance analysis

Firstly, we present in this section a detailed analysis of how each feature performed in terms
of accurately being able to split the macroscopic or microscopic data collected.

CurrentTravelTime on a segment measures the travel time of a vehicle on each segment and
compares it with TTh of each segment. The observed travel time along a segment can be easily
obtained by the vehicles of the VANET. If it is higher than a threshold, which is determined
by multiplying the congestion factor c with the expected recurring delay, the travel time is
said to be excessive, or else, it is considered normal. Fig. 3.2 shows the expected recurring
travel time TTh that is location and time specific. Values are derived from the base scenario
for each segment and tabulated in a database.

Particularly, we examined the travel time variability on the base scenario to get the appro-
priate value of c in the urban network characterized by signalized and interrupted flow. Fig.
3.3 shows the variability of the collected values of travel times for vehicles on a particular
segment. We studied different road segments with an average of 800 vehicle data point per
segment and we varied the congestion factor to find that the appropriate value of c for the
urban network in order not to get excessive travel time in absence of NRC in the base scenario
is 1.8. This is shown in Fig. 3.3, when c = 1.8, most data points are below the curve.
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Figure 3.2 Historical TT on a segment at 5 minutes interval and excessive TT with c=1.4
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Figure 3.3 Variability of travel time data

TrajectorySpeed feature analysis is conducted starting with creation of a cumulative speed
distribution curve of the desired speeds collected along a vehicle’s route. Fig. 3.4 illustrates
v(t) the speed of a vehicle on an urban interrupted road network. On the figure, we highlight
the desired speeds that the vehicle is attaining along its trajectory. A frequency distribution
table lists the number of vehicles observed at each desired speed. Fig. 3.5 shows the distri-
bution in percent. This allows for a more detailed speed analysis. The 85th percentile speed
is shown where the plotted curve intersects the 85% line and is 14.2614 m/s for this vehicle
in the base scenario. In Fig. 3.6, we show the 85th percentile speed measures collected by
vehicles in different scenarios. We note the effect of weather on mobility. Percentile values
indicate that most vehicles lower their speeds in inclement weather.

Similarly, Fig. 3.7 illustates g(t), the empty space after the leading vehicle along a vehicle’s
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Figure 3.5 Cumulative speed distribution curve of a vehicle in the base scenario
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trajectory in the urban network. The following distance mainly depends on the speed of the
following vehicle which is adapted to the speed of the leading vehicle. The desired following
distance between two consecutive vehicles is highlighted in Fig. 3.7 and corresponds to the
minimum safe gap attained by the vehicle. TrajectoryGap feature analysis starts with the
collection of desired gaps, creation of cumulative gap distribution and calculation of the 85th

percentile gap observed. In Fig. 3.8, we show the 85th percentile gap measures collected by
vehicles in the base scenario and the weather scenario. Incident, workzone, special event and
bottleneck scenarios showed values that are similar to the base scenarios, thus, they are not
presented. From the figure, we see that in inclement weather, most vehicles augment their
following distance in comparison to normal weather conditions.

TrajectoryTravelTime of a vehicle measures the observed travel time of a vehicle on each
segment of its route and compares it with TTh of each segment. Fig. 3.9 shows TTh, oTT and
the excessive travel time for each segment of a vehicle’s route on the base scenario. We note
that in normal conditions, oTT is always lower than excessive travel time. In Fig. 3.10, we
compare trajectory travel time of the same vehicle in different scenarios. From these results,
we can classify the travel time along a route as normal or abnormal. Classifying the base
scenario as normal behaviour, the feature shows no deviation from normal in the incident,
workzone and bottleneck scenarios. Atypical behaviour is evident in the weather and special
event scenarios and that is why we only present these scenarios. As indicator, we use the
average percent deviation from excessive travel time.

Average travel time deviation(%) =
eTT − oTT

eTT

We only consider observed travel time on edges that are below the excessive travel time
because the other edges will have another treatment as they are indicators of another feature.
The vehicle in Fig. 3.10 experiences 66.63% average deviation of travel time in the base
scenario, 43.85% in the weather scenario and 62.81% in the special event scenario. It shows
that along a vehicle’s trajectory in the weather and special event scenarios, oTT ’s are closer
to excessive travel times than in other scenarios.

TrajectoryInsideImpactRegionTT considers from the TrajectoryTravelTime feature, the edges
from the route of a vehicle that are inside an impact region. If travel time along those edges
is near the excessive threshold, it is considered abnormal. We use as indicator a weighted
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Figure 3.8 85th percentile gap values of vehicles in different scenarios

average travel time deviation (WATTD).

WATTD(%) =
β1
oTT1

eTT1
+ ...+ βn

oTTn

eTTn∑n
i=1 βi

with βi =
oTTi

eTTi

,

and n = number of edges inside impact region.
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Figure 3.10 Comparative observed travel time along a route of a vehicle in different scenarios

TrajectoryDemand measures the flow on the edges of a route. We analyse below how this
feature is extracted. Macroscopic stream models represent how the behavior of one parameter
of traffic flow changes with respect to another. These relations are shown in Fig. 3.11, Fig.
3.12 and Fig. 3.13 for an edge in the urban base scenario. The simplest assumption is the
assumed linear equation between speed and density proposed by Greenshield [75].

v = vf − (vf/kj) ∗ k
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where v is the mean speed at density k, vf is the free speed and kj is the jam density. The
relation with flow and density can be derived because the flow q = k ∗v. We get the following
parabolic equation :

q = vf ∗ k − (vf/kj) ∗ k2

Finally, we derive the relation between speed and flow :

q = kj ∗ (v − v2/vf ) (3.5)

Once the relationship between the fundamental variables of traffic flow is established, the
boundary conditions can be derived. The boundary conditions that are of interest are jam
density, free flow speed, and maximum flow. From Equation (3.5), we find the critical density
at maximum flow by the following derivative :

dq

dk
= vf ∗ (1− 2 ∗ (kc/kj)) = 0

kc = kj/2

Therefore, density corresponding to maximum flow can be approximated by half the jam
density. Once we get kc, we can derive maximum flow, qmax.

qmax = (vf ∗ kj)/4 (3.6)

Thus the maximum flow is approximated by one fourth the product of free flow and jam
density. Finally, speed at maximum flow, vc, is found by substitution.

vc = vf/2

Therefore, speed at maximum flow is half of the free speed. Each edge in the simulation
of urban mobility with SUMO has one of three speed limit values assigned to it, vf =
[8.33, 13.89, 19.44]m/s. Also, the space occupied by a vehicle is approximately 6.65m. Jam
density on a segment corresponds to the maximum number of vehicles on a segment divided
by the number of lanes times the length of the segment. Considering this approximation,
kj
∼= 0.155038V/m. Using the speed-flow relationship and knowing the average observed

speed on the segment and current density, we estimate flow and compare flow with qmax.
Demand is normal or high. This detailed breakdown of demand based on average speeds and
density is useful to reflect local demand that significantly characterize traffic condition on
an edge. Fig. 3.14 shows the demand in terms of flow along a vehicle’s trajectory in different
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Figure 3.11 Speed-Density
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Figure 3.12 Flow-Density

scenarios. We also use the weighted average as indictor of excess demand along a trajectory.
Results indicate that weather scenarios show lower weighted average demand than other
scenarios. TrajectoryDemand is particularly high in the special event scenario. Special event
related traffic has a much sharper traffic surge ; exceeding threshold in a shorter, concentrated
time span. Traffic demand distribution in all other scenarios appears normal compared to the
qmax denominator. Since the impact depends on the existing condition of the particular road
that is being impacted by the change in demand, we only use this feature as overall sense
and feel of the road segment in comparison to a denominator qmax that makes this measure
comparable.

We show in Fig. 3.15 and Fig. 3.16 how the parameters of traffic flow change with time in
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Figure 3.13 Speed-Flow
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Figure 3.14 Trajectory demand along a route for different scenarios

the urban road network on a particular edge. The flow is zero either because there are no
vehicles or there are too many vehicles so that they cannot move. We observe mean speed
and density on a segment in order to declare congestion status. It’s only when vehicles detect
congestion that they analyze if it is excessive. In case oTT is excessive, vehicles assume they
are experiencing NRC and collect the observable trajectory characteristics in order to form
a feature vector for the classification models.

Finally, to evaluate the performance of the classification models, the accuracy of the classifier
is the primary metric and is determined by the percentage of the test dataset examples that
are correctly classified. For the CT, we performed 10 fold cross-validation on the training set
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Figure 3.16 Variation of flow and density on an edge

and we got 87.98% of correctly classified instances. For the Naive Bayesian classifier’s, we
got 88.83% of correctly classified instances. Weka’s implementation yielded 89.51% accuracy
of Random forest of 100 trees, each constructed while considering 4 random features. And,
AdaBoostM1 with 10 iterations, yielded 89.17% of accuracy.
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3.2 Phase 2 : Cooperative evaluation of the cause of congestion

Because traffic is multifaceted and to conceal the fact that individually, vehicles have partial
knowledge about the road condition, in the second phase of our work, we implemented an
evaluation process to increase even more the estimation accuracy of the classifiers regarding
the cause of congestion. Unlike the back-propagation algorithm presented in the previous
section, vehicles not only propagate information, we show that if they cooperate, they evaluate
better the traffic situation and thus increase estimation accuracy. To do so, we needed to
simulate scenarios extended from a realistic urban city vehicular motion traces in order to
build a synthetic dataset to feed the mining techniques we propose for learning purposes.
The completion of objective 3 was carried out in this phase. The objective was attained
as described in the article titled "Cooperative Evaluation of the Cause of Urban Traffic
Congestion via Connected Vehicles" presented in chapter 5.

3.2.1 Data mining methods

Firstly, congestion in an urban network is mainly caused by incidents, work-zones, special
events, adverse weather, or recurrent congestion. On the other hand, vehicles are equipped
with a method to detect excessive congestion in an urban network and from the work in
the previous phase, they have a classification algorithm on board able to attribute a possible
cause to it. In this phase of the study, we seek to improve the vehicle’s estimation of the cause
of congestion and reduce false alarms by cooperative methods infused with knowledge about
the others evaluation specifically in the event of traffic congestion. In fact, the classification
algorithm returns the cause with the greatest probability, the most likely cause. We make
use of the other probabilities computed by the classifier to extract more knowledge. We
propose that each vehicle represent its uncertainty about the cause of congestion in a vector
of probabilities associated to each of the possible causes of congestion. In particular, the
vector of probabilities exchanged between the CVs should have this form :

C = [Pincident, Pworkzone, Pweather, Pspecialevent, Precurrent]

After proper representation of vector C, different methods to elaborate a decision concerning
the cause of urban congestion on the segment are presented in the paper in Chapter 5. The
result is a voting procedure, belief functions method and a data association technique. Each
vehicle has its own decision module and it contains one of the Voting Procedure (VP), Belief
Functions (BF) or Data Association Technique (DAT).
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3.2.1.1 Voting procedure

When a vehicle experiences excessive congestion and wants to evaluate the cause of the urban
traffic congestion on the road segment, the probabilistic classification model on board of each
vehicle predicts the cause of congestion and returns the result in the form of the probabilities
vector presented above, with one cause of congestion having the highest probability. The
vehicle broadcasts the probabilities vector in the vicinity. Vehicles on the road segment collect
the messages received and the decision module on board of each vehicle computes the counts
for each cause. The cause having the highest count is highlighted by this voting procedure
as being the cause of congestion on the road segment.

3.2.1.2 Belief functions

The theory of belief functions [39] extends both the Set-membership approach and Probabi-
lity Theory. The aim of this theory is to improve the level of knowledge and thus enhance
the prediction accuracy of the cause of congestion experienced by vehicles on the road seg-
ment. Firstly, vehicles detect excessive congestion and are able to estimate the cause with
the classification models introduced in the paper of Chapter 4. If the most likely cause of
congestion computed by a vehicle is an incident, then the model can also inform that the
second best possible cause it predicted is a weather condition. In this case, there is a singleton
{Incident} and a 2-items subset, {Incident, Weather}. We transfer the Bayesian probability
of the subset to a mass function. A mass function m is held by each vehicle and is defined on
the frame of discernment Ω={Incident, Workzone, Weather, SpecialEvent, Recurrent}. Each
vehicle assigns a mass on any of the singletons and another on a subset containing the single-
ton. The subset containing the singleton represents added knowledge about the sensed traffic
condition. We limit the strategy to 2-items because results showed very little improvement
in the accuracy of prediction when more items are considered. The strategy is detailed in the
paper, and we present how the theory of belief functions is applied to our problem.

3.2.1.3 Data association technique

This method also aimed at improving the level of knowledge from exchanged messages for
efficient evaluation of the cause of congestion. But this time, since each vehicle’s assessment
is communicated to vehicles in the vicinity, we collect the vector of probabilities exchanged
by the vehicles in many scenarios to build a supervised dataset. The association rule mining
method is presented in the paper of Chapter 5. Association rules are if/then relationships
that help uncover seemingly unrelated data in a relational database. We analyse the messages
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for frequent patterns in order to identify the relationships for rule generation. We extract the
general association rules from the messages exchanged regarding the cause of the congestion.
Consequently, data association between messages exchanged by the connected vehicles helped
further scrutinise the road condition.

3.2.2 Synthetic dataset for training

In order for any machine learning model to learn anything, we need a dataset for training.
However, because the technology of connected vehicles is at its early stage, there is no dataset
of vehicles exchanging data in a V2V setting available for research. Our strategic contribution
was the construction of a synthetic dataset for training. Synthetic datasets are designed to
obtain information via simulation, while still maintaining statistical properties of the original
data. Our experiments utilize validated real-world traffic traces of the Travel and Activity
PAtterns Simulation (TAPAS) Cologne scenario because the realism of the simulation is a
paramount aspect in transportation engineering ; traffic traces are available for research in
civil engineering and they report the coordinates of each vehicle on the map every second.
TAPAS Cologne scenario is assumed to be one of the largest traffic simulation data set [45] as
it covers the main road network within the inner city of Cologne. The information is generated
from a combination of various different sources including Floating Car Data, GSM probe data
and data from stationary sensor obtained from local traffic management centers. From these
combined sources, a base scenario is derived. In the base scenario, traces for the 6-8am peak
hours are provided. We create extended scenarios mounted on top of the base scenario to
model atypical traffic conditions such as weather, incident, workzone, special event. Our
experiments are then built on the extended scenarios. Evaluation of our framework using
complex real-world scenarios allow determining whether the proposed models can handle the
real life’s complexity.

We create extended scenarios using SUMO, a microscopic traffic simulator for the simulation
of urban mobility [72]. Our investigations need the microscopic view for different reasons.
Fine microscopic simulations model each vehicle explicitly and compute the traffic flow’s
progression by modelling each vehicle’s speed and lane choice, mostly using discrete time
steps of one second, calculating different traffic specific values like the amount of vehicle
in a specific point and so on. Also, simulating a large area is necessary in each scenario
because trajectory data along a vehicles’ trip needs to be collected. Finally, SUMO enables
generation of trace files that are necessary for the simulation of communication in a VANET
in the network simulator ns-2 [76]. In a simulation, atypical traffic conditions are not direct
model parameters but must be converted into ones. We describe below the extended scenarios
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of atypical traffic conditions simulated using SUMO :

1. Extended Scenario of an incident : On the base scenario, we stop two or three vehicles,
for a specific amount of time, on a lane to simulate incidents. We simulate incidents
at the beginning, middle and end of a lane. We also simulate incidents on different
lanes, for a long or short duration as well as inside or outside of an impact region of
a special event.

2. Extended Scenario of a workzone : Similar to the above extended scenario, we stop
vehicles on an edge to simulate a workzone. We vary the position on the edge and the
duration.

3. Extended Scenario of bad weather : We convert the base scenario into an extended
scenario of bad weather, snow for example. Snow might lead to slippery roads and
reduced sight, leading to decreases in the vehicles’ velocities and a more careful and
defensive driver behaviour. Such behavioural changes would be reflected in simulation
parameters, such as the driver’s preferred velocities. Parameters of the car-following
model are affected by the weather. Therefore we use eWorld because it supports these
events [77]. eWorld is a framework to import mapping data, visualize it, edit and enrich
it with events or annotational attributes and pass it to traffic simulators. eWorld uses
constructs of SUMO to simulate events. How much an event influences the speed limit
is defined within eWorld, it takes the environmental characteristics into account.

4. Extended Scenario of a special event : To generate trips to a particular destination edge
where there is a special event, we have to generate random departures and random
routes. We use a Poisson process to generate random timings for trips. Departures will
occur individually, stochastically independent to all the others in the road network,
at random moments. The rate parameter λ is the demand per second from different
sources in the network, and can be seen as the flow. To generate random routes, given
trips are assigned to respective fastest routes according to their departure times and
a given travel-time updating interval by SUMO’s traffic assignment model.

We then perform experiments on these extended scenarios based on real-world traffic. The
experiments are described in the article of chapter 5. Vehicles collect macroscopic and micro-
scopic traffic variables along their trajectory. They form the feature vector. In this phase of
the study, we call the feature vector a transaction for the data mining methods. Along with
the supervised target variables and characteristics, we construct a synthetic training dataset.
The training dataset is a matrix with rows corresponding to transactions and columns to
items. The data set generation steps are shown in Fig. 3.17.
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Figure 3.17 Synthetic training data set generation for model building

3.2.3 Performance evaluation

The methods are validated by three indicators ; accuracy of prediction, detection time and
percentage of false alarms. When compared to the Back-Propagation (BP) algorithm propo-
sed in the literature, the VP outperforms the BP method in terms of percentage of vehicles
accurately detecting the cause of congestion. On average, it did so by approximately 48%.
Also, VP outperforms BP in terms of detection time because the algorithm of the BP requires
that vehicles exchange their evaluation only if they experience the excessive congestion for a
certain duration of time and they are in the communication range of each other. However, we
found that on average the percentage of false alarms triggered by the VP is 3% to 11% higher
than the BP. A false alarm is a vehicle initiating a VP or a BP method and the simulation
shows no excessive congestion, i.e. the situation captured by each vehicle is compared with
the real simulation.

On the other hand, the method using Belief functions increases estimation accuracy and de-
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creases detection time. Compared to the VP method, BF also decreases the percentage of false
alarms by approximately 1.8%. In the recurrent scenario, BF yields the same performance
as the BP method. This shows that in the evaluation process, not only cooperation between
vehicles but adding knowledge to the messages exchanged improves the performance. None-
theless, BP still outperforms BF by approximately 4.25% less false alarms in the incident,
weather, work-zone and special-event scenarios. As a solution, we add more knowledge on
board of each vehicle by implementing the data association technique. In the VP and BF me-
thods, vehicles decide cooperatively without applying the association rules. When applying
the mining rules in DAT, performance is greater in terms of estimation accuracy. BF models
partial knowledge allowing earlier detection of the cause and DAT gives further precision
on incoherencies in the data having the best estimation. In the DAT experiment, vehicles
make use of the belief functions and association rules to estimate the cause of congestion.
The β-DAT is detailed in the paper of Chapter 5 and improved estimation accuracy by ap-
proximately 70% compared to the BP method. Also, detection time of β-DAT is 7.09% lower
than that of the BP method, informing of the congestion cause earlier. β-DAT has the lowest
percentage of false alarms in all scenarios. In fact, compared to the DAT method, β-DAT
decreases the percentage of false alarms by approximately 3.6%. Also, β-DAT outperforms
BP by approximately 1.25% less false alarms triggered by the network on the road segment.
This shows that adapting the duration in combination with cooperation between CVs and
knowledge on board of each vehicle improves overall performance for the accurate estimation
of the cause of congestion.

3.3 Phase 3 : Prediction of traffic flow in an urban traffic network

In the last phase of our work, our main goal was to propose a traffic flow prediction framework
taking into account historical flows as well as innovative features, such as real-time reports
from connected vehicles and travel time along a trajectory for accurate forecasting of flow in
an urban network. In the framework, we make use of the classification model presented in
phase 1 and the cooperative evaluation technique obtained in phase 2 ; this permits vehicles
to classify cooperatively the cause of any congestion encountered along their trajectory and
constitutes one of the innovative features to be fed to the models of prediction that we
propose. In this context, the prediction of traffic flow was modeled as a multitask problem
because we conjecture that when the tasks involved in multitask are semantically connected
a larger improvement in accuracy of prediction can be obtained. This work is the result of
the last objective of the thesis and is described in the article titled " Prediction of traffic flow
via connected vehicles" presented in chapter 6.
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3.3.1 Problem definition

The traffic flow prediction problem can be stated as follows. Let Xi(t) denote the observed
traffic flow quantity during the tth time interval at the ith observation location in a trans-
portation network. Given a sequence of observed traffic flow data, i = 1, 2, . . . , m, and t =
1, 2, . . . , T , the problem is to predict the traffic flow at time interval (t+∆) for some pre-
diction horizon ∆. This is the short-term traffic flow prediction problem. Some other works
may focus on predicting the traffic flow of the next several time intervals from T + ∆ + m to
T + n as well, it is called the long-term traffic prediction. On the other hand, most models
in the literature predict flow Xi (t+∆) at time (t+∆) based on the traffic flow sequence X
= {Xi, t|i ε O, t = 1, 2, . . . , T } in the past, where O is the full set of observation points
(roads and stations). In supervised learning, our problem becomes, given the feature X and
task Y pairs obtained from history traffic flow {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, learn
the best parameters for a predicting model that minimizes a loss function.

3.3.2 Proposed approach

In our work, we consider the short-term traffic flow prediction problem. Since traffic flow
prediction not only depends on historical data but heavily depends on real-time traffic data,
we incorporate to the input feature X, not only previous traffic flows observed on the target
road segment but knowledge acquired from related roads. From well engineered features, such
as real-time reports from connected vehicles and travel time along a trajectory, the model
learns a representation that takes into account the various events that vehicles realistically
encounter on the segments along their trajectory. Moreover, the problem of predicting short-
term flow is handled as a classification task. In fact, we propose that the target variable Y
represent multiple classes of discrete interval of flows and the task is to predict the range of
flow that the current traffic situation will generate at a near future time.

In machine learning, we normally break a complex problem down into tractable sub-problems,
and learn to solve one problem at a time. This potentially ignores rich sources of information
found in the training signals of other tasks. It is possible to jointly train a general system for
solving different tasks simultaneously. The classifier will prefer hypotheses that explain more
than one task, improving generalisation. In [78], they proposed multitask learning (MTL) as
a means of inductive transfer between tasks. The update is done with both error signals. Also,
a transportation system is a highly correlated network. The characteristics of transportation
systems, such as the large amounts of data and the high dimensions of features, would make
deep learning a promising method for transportation research.
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We proposed a feedforward neural network or Multi-Layer Perceptron (MLP), which is a
series of logistic regression models stacked on top of each other, with the final layer being
another logistic regression because we are solving a classification problem. The purpose of
the hidden units is to learn non-linear combinations of the original inputs. We can easily
extend the MLP to predict multiple outputs in order to do multitask learning. Precisely, to
use MTL for time series prediction, we use a single net with multiple outputs, each output
corresponding to the same task at a different time. If output k referred to the prediction for
the time series task at time Tk, this net makes predictions for the same task at three different
times. The output used for short-term flow prediction would be the middle one so that there
are tasks earlier and later that the model trained on. In particular, we propose that given a
fresh new road network traffic situation at time t, Xt, the first task consists in determining
what flow c ε Y is a suitable flow prediction at t+5. The second task is to find what flow c ε
Y is a suitable short-term flow prediction at t+15 based on the similar road network traffic
situation and on the relevant prediction of the first task and the third task is to find the flow
at t+20.

3.3.3 Performance evaluation

The results show our approach significantly outperforms existing approaches that do not
adapt to the varying traffic situations. Meaning that our models can predict flow in the
presence of an incident, inclement weather, work zone or a special event. Also, since rush
hours happen at almost same time of that particular day, we can even predict the flow
changes at the boundary of rush hours, something the actual methods fail to accurately do.
In fact, to measure the predictive power of the proposed MTL model, we compared it with the
performance of the state-of-the-art ARIMA time series approach and with baseline classifiers.
Baselines include : (i) RF : Random Forest ; (ii) ANN : Artificial Neural Net. MTL and the
ANN model are implemented using Torch 5 package. Random Forest was from the Weka.

We use the performance index Root-Mean-Square Error (RMSE) which gives the score of
the actual and predicted traffic flows at time t. We use this to measure the linear score that
averages the error with the same weight and to measure the residuals by assigning larger
weights to larger errors. We feed ARIMA the original traffic flow data. When compared with
ARIMA and Random Forest, MTL performs best. It presents an average RMSE equal to 0.05.
We compare the performance of single task learning with ANN, learning just one task of 15-
min traffic flow prediction task, and multitask. Indeed, our experiments with the data show
that ANN have a lower performance (0.113 for RMSE) than MTL, but higher performances
than ARIMA. The results confirm the merit of MTL to forecast traffic flow and confirm the
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importance of having highly related tasks.

3.4 Conclusion

This chapter presented a complete description of the research phases carried out in this
thesis. The different methodologies that we adopted to solve the defined research problems
were elaborated and the connection between the declared objectives and the contributions
presented in the following chapters was established.
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CHAPTER 4 ARTICLE 1 : DISTRIBUTED CLASSIFICATION OF
URBAN CONGESTION USING VANET

Ranwa Al Mallah, Alejandro Quintero, and Bilal Farooq
IEEE Transactions on Intelligent Transportation Systems, vol. 18, issue 9.

Abstract

Vehicular Ad-hoc NETworks (VANET) can efficiently detect traffic congestion, but detection
is not enough because congestion can be further classified as recurrent and non-recurrent
congestion (NRC). In particular, NRC in an urban network is mainly caused by incidents,
workzones, special events and adverse weather. We propose a framework for the real-time
distributed classification of congestion into its components on a heterogeneous urban road
network using VANET. We present models built on an understanding of the spatial and
temporal causality measures and trained on synthetic data extended from a real case study
of Cologne. Our performance evaluation shows a predictive accuracy of 87.63% for the de-
terministic Classification Tree (CT), 88.83% for the Naive Bayesian classifier (NB), 89.51%
for Random Forest (RF) and 89.17% for the boosting technique. This framework can as-
sist transportation agencies in reducing urban congestion by developing effective congestion
mitigation strategies knowing the root causes of congestion.

4.1 Introduction

Congestion can be classified as recurrent and non-recurrent. Recurrent congestion refers to
congestion that happens on a regular basis and usually occurs when a large number of vehicles
use the limited capacity of the road simultaneously. Non-recurrent congestion (NRC) in an
urban network is mainly caused by incidents, workzones, special events and adverse weather
[5].

Recently, the intelligent transportation system research has shifted its focus to the next
generation sensing technology, vehicular ad-hoc network (VANET). Advances in vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications have increased
the potential of real-time monitoring of traffic variables in a distributed manner. Distribu-
ted monitoring refers to the process by which macroscopic and microscopic traffic variables
are collected by vehicles themselves without the need of infrastructure. A large amount of
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works have been proposed for the congestion detection problem using VANET [19]. These
approaches only detect congestion and do not clarify if it is due to recurrent or NRC. They
cannot be used to classify the congestion into its components.

In transportation, although understanding how much of the total congestion is due to NRC
has been thoroughly studied for both highway [25] and urban traffic [5], several unresolved
problems still exist. Firstly, the duration, timing and location of NRC in an urban road
network varies highly. Thus making it difficult to monitor traffic in real time or on a continuing
basis with conventional induction loops, cameras and floating cars mechanisms which are
expensive to deploy and maintain for large coverage areas. Alternative cost-effective and
flexible solutions are needed to guarantee better monitoring of road traffic at various level of
granularity. Secondly, existing NRC detection methods not only need extensive datasets, but
they are also not deployed in real-time. In real-time, valuable information with regard to the
impacts of the detected NRC can be disseminated to drivers and traffic management centers
so that appropriate proactive strategies for recovering traffic conditions back to normality
can be set in place. Finally, NRC detection methods should be able to better characterize
a NRC event once it is detected. Existing methods only quantify the spatial and temporal
impact of the detected NRC. We should be able to also classify the root cause of the NRC.

This study considers a set of unique features for each type of NRC and extracts such features
from the data to infer the NRC. Thereafter, machine learning models are used to identify
the specific type of NRC. Specifically, incidents and workzones are essentially characterized
by problematic spots. For inclement weather, we assess the trajectory travel time, speed and
gap. And special events are characterised by their impact region and demand surge. The
contributions of this paper are :

— Evaluation of machine learning methods for the classification of congestion into its
components taking traffic features into account for the inference.

— An algorithm able to detect, identify and propagate via VANET the cause of NRC.
— Validation of the inference methods is made relying on simulation scenarios extended

from the real-world Cologne scenario [45].

This paper is organized as follows. Related work is provided in Section 4.2. In Section 4.3,
we present our framework. In Section 4.4, we describe the simulation and provide results.
Finally, conclusions and future work are outlined in Section 4.5.
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4.2 RELATED WORK

Lots of works in congestion detection via VANET utilize machine learning to classify the
traffic state into congested or free-flow [23]. To classify the level of congestion, [24] proposes
a traffic congestion quantification process based on fuzzy theory. The level has values ranging
from free flow to severely congested. These approaches only detect congestion and do not
clarify if it is due to recurrent or NRC. The monitoring done by the schemes does not allow
summarizing valuable knowledge in an efficient way.

Context-awareness is the potential to access available semantic information such as time,
location, weather, temporary events and other attributes [33]. The context information used
in [32] fuses different data-sources (internal sensors, web services or passenger sensors) for
congestion detection. Their scheme requires additional infrastructure and communication.
Without the use of external data sources for inference, our local and self-organized method
classifies based on the real-time relevant information extraction by taking advantage of the
streaming differentiating characteristic of VANET. Vehicles need to be context aware and able
to consider multiple but adequate explanatory sources, well-tailored information won’t always
be available, particularly in dynamic urban networks. Due to real-time constraints much
more information extraction techniques are needed to extract transport-relevant parameters.
Statistical inference and machine learning algorithms can provide crucial help in this process.
Understanding the causes of urban congestion is a prerequisite for deriving policies and
management plans so that appropriate proactive strategies can be set in place.

4.3 GENERAL PROCESS

The observed travel time of a vehicle (oTT ) along a road segment may be composed of
recurrent delay (Drec) and non-recurrent delay (Dn−rec) such as incident (Di), workzone
(Dwo), weather (Dwe) or special event (Dse) induced delays.

oTT = Drec + (Di ∨Dwo ∨Dwe ∨Dse) (4.1)

Drec is the expected recurring historic travel time TTh that is location and time specific. The
observed travel time along a segment can be easily obtained by the vehicles of the VANET.
If it is higher than a threshold, which is determined as in [10] by multiplying the congestion
factor c with the expected recurring delay, the travel time is said to be excessive.

oTT > (1 + c) ∗ TTh ⇒ oTT is excessive. (4.2)
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We claim that real-time traffic flow data collected along a single vehicle trajectory, experience
on other road segment and aggregated values offer statistically understandable spatial and
temporal features that can help infer the component causing the excessive delay. The resulting
classification problem takes the real-time estimates as input feature vector for inference on
the cause of congestion. Thus, the general process of our framework is divided into three
phases : Features extraction, classification models and cooperative process.

Phase 1 : Features extraction

A vehicle can recognize via its neighbours if it’s in a jam via cooperative VANET congestion
detection. The communication characteristics of a VANET are mostly based on a message
called BEACON, transmitted by each vehicle every 0.1 seconds. The message contains time-
stamped basic vehicle state information, such as senderID, position, direction, current speed,
with optional information also possible. We present below relevant features that characterize
each NRC component.

Incidents and workzones are essentially characterized by problematic spots, Pspot. As in [38],
we use position data to extract the distribution of vehicle footprints (i.e., the geographical
position at each sampling time point on the road). Vehicles periodically register coordinates
of their neighbors. If a section of the road is blocked, no position coordinates are recorded
between the start and end position of the Pspot as shown in Fig. 4.1. This feature also consi-
ders the temporal aspect of the observed problematic spot. It is a good indicator of an NRC
caused by a workzone if the event lasts more than one hour. Often times, workzones occupy
the road segment a longer period of time than incidents because incidents are undesired and
should be cleared as fast as possible.

Figure 4.1 Trajectory of vehicles around a Pspot

NRC caused by inclement weather impacts the trajectory travel time (TrajectoryTravelTime),
speed (TrajectorySpeed) and gap (TrajectoryGap). TrajectoryTravelTime measures travel
time on the edges upstream in the trajectory of the vehicle and compares them to their
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respective expected travel time. TrajectorySpeed aims at summarizing speed data along the
vehicles’ path. TrajectoryGap collects minimum following distances because in inlcement
weather drivers try to maintain a higher minimum following distance in order to cope with
longer stopping distances caused by slippery roads.

Special events are characterized by their impact region (ImpactRegion) and demand surge
(TrajectoryDemand). Each segment of the road network is labeled as inside or outside of
an impact region. Such an impact region can be defined as the list of congested segments
of the road network around the special event [9]. We assume that if a vehicle experiences a
NRC caused by a special event, then the vehicle is necessarily in the impact region of the
event. TrajectoryDemand measures the flow on the edges of a route. Using the speed-flow
relationship and knowing the average observed speed on the segment and current density, we
estimate flow and compare it with maximum flow, approximated by one fourth of the product
of free flow and jam density. When the vehicle detects excessive congestion on a segment,
the algorithm ignores the information broadcasted from the trajectory in the last congested
segments leading to the excessive congestion segment. The algorithm then only takes into
account the flow on the prior segments totaling on average 1.5km. On those upstream seg-
ments, traffic is free-flowing and the flow equals the demand. We then compute the weighted
average as indictor of demand along a trajectory. Since the demand surge depends on the
existing condition of the particular road that is being impacted by the change in demand,
we use this feature as an overall sense and feel of the road segment in comparison to the
maximum flow denominator that makes this measure comparable. The procedure starts with
every vehicle measuring the flow on each road segment of its trajectory.

Finally, CurrentTT is a feature that categorizes the travel time observed along a segment
as normal or excessive according to Equation (4.2). Also, excessive travel time can be noted
on a road segment adjacent to one where the congestion was initially detected. Cooperation
between vehicles can propagate the event to adjacent roads. A StoredEvent feature might
indicate that incident, workzone, special event, weather, or that no stored event on the
segment exists. The vector of features is provided as input to the classification models for
inference on the cause of the NRC.

Phase 2 : Classification models

Tree models where the target variable can take a finite set of values are called classification
trees [74]. C4.5 is an algorithm used to build classification trees from a set of training data
using the concept of information entropy [74]. The purpose is to split at each node with the
feature having the highest normalized information gain. We employ such an algorithm in the
training of the CT described in this paper.
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We also developed a probabilistic model based on a Naive Bayesian classifier which gives
useful predictions about the congestion. The aim of the Naive Bayesian classifier is to assign
a target variable to one of a discrete set of categories based on its observable features.

P (Y |x) =
P (Y )P (x|Y )

P (x)

Applied to our problem, translation of the a posteriori observable characteristics x1, x2, ..., xi

into congestion component class I of y1, ..., yj is computed by using Bayes rules :

P (I ∈ Yj|x1, ..., xi) =
P (I ∈ Yj)P (x1, ..., xi|I ∈ Yj)

P (x1, ..., xi)

The classifier is naive because it makes the strong assumption that the features are mutually
conditionally independent ; that is, the conditional probability that I belongs to a particular
class given the value of some feature is independent of the values of all other features. There
is no statistically significant data for assessment of the more complicated causality between
explanatory variables. Also, since the parameters of the NB model are estimated, probabi-
listic dependencies among features need contextual observations, the lack of ground-truth
data prevents this research from fully modeling the realism of this transport-related pheno-
mena. Despite this assumption, empirical studies demonstrate that it does not significantly
compromise the accuracy of the prediction. This reduces the probability to :

P (I ∈ Yj|x1, ..., xi) =
P (I ∈ Yj)

i∏
z=1

P (xz|I ∈ Yj)

P (x1, x2..., xi)

I is typically assigned to the category with the greatest probability. The most likely j is
chosen as follows :

j∗ ∈ arg maxP (I ∈ Yj)
i∏

z=1
P (xz|I ∈ Yj) (4.3)

and assigning I to class Yj∗.

Phase 3 : Cooperative process

If excessive travel time is detected on a segment, the scheme activates a cooperative process
that shares the individual estimation made by the vehicle. We present in Fig. 4.2 the algo-
rithm implemented on board of each vehicle and that is primarily for signalized arterials. We
highlight the monitoring, aggregating, analysis and dissemination procedures. The purpose
is to assess if the temporary induced traffic change related to an event can be mitigated in a
short period or does the event represent a permanent change representing an NRC. We imple-
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mented the methods described in [19], Basic Traffic Data Gathering algorithm, Local Traffic
Evaluation Algorithm and Expanding the Evaluated Area algorithm. We add two types of
messages : Extraordinary Event Request (RQ) and Extraordinary Event Response (RP). RQ
is transmitted upstream via broadcast to all cars in its communication range, and allow to
retain the event info locally on the segment for a minimum duration before propagating it to
adjacent segments. In [10], it was shown that continuously high values of travel time along
a segment that last at least four successive time intervals was the criterion used as evidence
of a NRC event. This prevents false positive NRC detection. RP is the message used to send
the NRC event to adjacent segments after the duration expires.

4.4 SIMULATION

The method provided in our study is applied to a heterogeneous network of both urban
highways and signalized arterials [10]. The real-world traffic dataset of the Travel and Activity
PAtterns Simulation (TAPAS) Cologne scenario [45] is considered a ‘complex network’ that
mimics the real-life context of vehicle mobility. Heterogeneity exists on urban road networks
where the structure of links varies substantially. The dataset comprise 700 000 individual
car trips. Each line of the dataset contains the time, the vehicle identifier, its position and
speed. Using SUMO, a microscopic traffic simulator for the simulation of urban mobility [72],
we create extended scenarios mounted on top of the base scenario to model atypical traffic
conditions such as weather, incident, workzone and special event. SUMO simulator needs
two inputs : The Road Network of the city of Cologne is imported from the OpenStreetMap
(OSM) database and the Traffic Demand is the dataset of car trips. The output of SUMO is
the movement of vehicular nodes in a large urban network and data such as the acceleration,
density, flows, gap between vehicles and other microscopic parameters at a vehicle level. From
the simulation data collected by each vehicle, we extract features constituting an instance of
the train dataset.

To simulate the Extended Scenarios of an Incident/Workzone, on the base scenario, we stop
on a lane some vehicles for a specific amount of time. We vary the position on the edge and the
duration. For the Extended scenario of bad weather, which lead to decreases in the vehicles’
velocities and a more careful and defensive driver behaviour, we change the parameters of
the car-following model in the simulator. For the special event scenario, to generate trips
to a particular destination, we generate random departures and random routes. We use a
Poisson process to generate random timings for trips. The rate parameter λ is the demand
per second from different sources. To generate random routes, given trips are assigned to
respective fastest routes according to their departure times and a given travel-time updating
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DATA - Vi : Vehicle in the scenario, oTT : Observed travel time, TTh : Historical travel
time, CurrentTT(Vi) : Travel time and local traffic evaluation, TrajectoryTT(Vi) : Travel
time on edges of route stored in EdgesofRouteofV, TrajectorySpeed(Vi) : Speed of vehicles
stored in ListeEdges, TrajectoryDemand(Vi) : Flows in ListeEdgesD, TrajectoryGap(Vi) :
Gap distances in vehiclesG.

1: Vi broadcasts and recieves BEACON message from neighbors // MONITORING
2: Get current road segment of Vi and CurrentTT(Vi) on the segment // AGGREGATING
3: Update TrajectoryTT(Vi), TrajectorySpeed(Vi), TrajectoryDemand(Vi) and Trajecto-

ryGap(Vi)
4: if oTT > 1.8 * TTh then // ANALYSIS and DISSEMINATION
5: Calculate features
6: Create feature vector and Predict with BN
7: if StoredEvent == 0 then
8: Vi creates and backpropagates RQ
9: else

10: if Duration not reached then
11: Store RQ
12: else
13: if Duration reached or NRC is Incident or Workzone then
14: Backpropagate RP to adjacent road segments
15: end if
16: end if
17: end if
18: end if

Figure 4.2 Algorithm - Cooperative Process of VANET
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interval by SUMO’s traffic assignment model.

We construct a training dataset, a matrix with rows corresponding to samples and columns to
features. The train dataset contains 591 instances. To obtain a realistic environment for the
simulation of vehicular communications, we extract from the extended scenarios in SUMO,
the vehicular traces that we will use in ns2 [76]. We assume that vehicles are equipped with
a Global Positioning System (GPS) device for positioning, a transceiver for communication
using Dedicated Short-Range Communications (DSRC), and an enriched digital road map
containing information about the map, including the length of each road, number of lanes
per road, SegmentID and the expected travel times on the segments. We use data forwar-
ding techniques to pass information through the VANET such as geographical routing, and
broadcast. For communication among all cars, we assume standard signal range of the 802.11p
protocol, which is 300 meters.

4.4.1 Results

We demonstrate the robustness of our scheme by examining the performances of accuracy of
classification, timing, and impact of NRC in an urban network. Firstly, we use Weka to ge-
nerate a pruned classification tree [79]. Weka is a suite of machine learning software for data
analysis and predictive modeling. The proposed CT is presented in Fig. 4.3. The accuracy of
classification measures the predictive performance of the classifier and is determined by the
percentage of the test dataset examples that are correctly classified. We performed 10 fold
cross-validation on the training set and we got 87.63% of correctly classified instances. The
value ranges of the splitting arcs are learned by the classifier and shown as nominal values
on the arcs of the tree. The tree starts with CurrentTravelTime feature as the root node.
CurrentTravelTime on a segment measures the travel time of a vehicle on each segment and
compares it with TTh of each segment. CT confirmed that when travel time on a segment
is below its excessive treshold, the congestion is due to recurrent congestion. Otherwise, it
is a NRC and if there is a problematic spot on the segment, the tree attributes the NRC
cause to either an incident or a workzone. Then, the tree splits on the StoredEvent feature.
If the vehicle is in a congestion due to a special event, its location is necessarily inside the
impact region of the event. The tree splits on the internal non-leaf node labeled Impac-
tRegion. The leaf node SpecialEvent is on branches coming out of inside an impact region.
TrajectoryDemand and TrajectoryGap diffrentiate data between a special event and a wea-
ther condition. Problems of small-data mainly revolve around high variance were outliers are
present. More training cases are needed for the statistical inference to pick up the causality
between explanatory features in order to make strong assumption.
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Figure 4.4 Bayes Network

BN is presented in Fig. 4.4. We performed 10 fold cross-validation on the training set to
test the model. It’s accuracy in terms of prediction error is 88.83% of correctly classified
instances. Dependencies between a cause of congestion and its consequences are represented
by arcs on the graph. All causes of congestion, except the recurrent congestion, have arcs
going to ImpactRegion and SoredEvent features. This is because any NRC might occur inside
an impact region as well as outside. Also, a StoredEvent feature will rule out all other causes
of congestion if its value reports workzone, incident, weather or special event. We conducted a
sensitivity analysis on the features of the model to note the importance of a feature for some
partial classification. We removed one feature at a time and used the filtered training set for
classification. We show in Fig. 4.5 the sensitivity of each feature on the accuracy of the CT
and BN. We see that except for StoredEvent, the other features have the same performance.
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Figure 4.5 Sensitivity of the CT and NB models

A possible extension of the CT method described in our paper is Random forests. It’s an
ensemble learning method also used for classification. It’s combining multiple models into
ensembles to produce an ensemble for learning. It operates by constructing a multitude of
decision trees at training time and outputting the class that is the mode of the classes of the
individual trees. As in CT, we use J48 to produce decision trees, then we produce slightly
different decision trees by randomization. Weka’s implementation yielded 89.51% accuracy
of Random forest of 100 trees, each constructed while considering 4 random features.

Boosting is a fairly recent technique in supervised learning. AdaBoostM1 is a standard boos-
ting scheme where diversity is created by focusing on where the existing model makes errors.
Iteratively, new models are influenced by the performance of previously built models. Ex-
tra weight is given to instances that are misclassified to make a training set for producing
the next model in the iteration. This encourages the new model to become an ’expert’ for
instances that were misclassified by all the earlier models. AdaBoostM1 is implemented in
Weka. With 10 iterations, it yielded 89.17% of accuracy. In an urban road network context,
the models were able to classify the cause of the congestion on both highways and signali-
zed arterials because classification is based on the collection of features (problematic spot,
currentTT, etc.) that are nonspecific to the type of the facility.

Secondly, vehicles in our scheme are able to monitor traffic and detect NRC during different
times. In Fig. 4.6, we illustrate average travel time (TT1-TT4) of vehicles during incidents
happening at different times (T1-T4 correspondingly) on the same busy road segment. Any
time congestion is detected and the average travel time is above ExcessiveTT, we assess
the number of vehicles reporting severe congestion compared to the number of vehicles on
the segment. We highlight on Fig. 4.6 the time when congestion from incidents happens
and denote it by TC. TC1 is related to the incident happening at T1 because the time of
congestion differs from the time of the incident. The level of excessive travel time induced
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by the incidents can be observed in the figure but it’s only when congestion is detected at
TC and values are higher than the threshold determined with the congestion factor that
NRC is declared. Also, as in [10], continuously high values for at least four successive time
intervals was the other criterion used as evidence of an event. The results indicate that on
average, 88% of vehicles were able to detect the NRC and the percentage gradually increased
to 95% in the next 5-15 minutes interval. We conclude that severe delay caused by NRC
can be accurately detected any time it happens. To guarantee monitoring of road traffic at
various level of granularity, a variable congestion factor could be considered interactively for
management purposes. But for NRC detection, studies showed that a fixed congestion factor
can accurately detect most NRC [10], as was the case in our experiments.

Finally, we demonstrate that vehicles are able via VANET to propagate the cause of NRC.
For special events, we tested the accuracy of the impact region. We report the percentage of
vehicles experiencing NRC due to a special event inside the impact region in contrast to all
those experiencing the congestion from the special event, inside and outside the predefined
impact region of the event. We monitor an impact region of only one road segment and we
note that the size of the impact region has an initial impact on the detection rate, as seen in
Fig. 4.7.
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Figure 4.7 Accuracy of the impact region

Congestion from the special event starts around t= 22100s but it’s only at t=23422s, that
it becomes excessive. Vehicles inside the impact region are the first to detect the congestion
and its cause and the detection rate is very high. After, the detection gradually decreases to
27.58% and increases again to 50.24% at t=24670s. This behavior is due to the cooperative
process of our method. Communication between vehicles on the same segment has to happen
for a certain duration before propagation of the event to first order adjacent segments can
be done. During this period, more vehicles outside the impact region are experiencing severe
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Figure 4.6 Average Travel Time on a signalized arterial during incidents happening at times
T1 to T4

congestion from the special event but cannot accurately assess the cause, for this reason,
detection rate decreased. Then, detection rate increased when more vehicles outside the
region became aware of the event after communication between segments via VANET. The
algorithm stops after the first-order adjacent segments ; consequently, detection rate cannot
get any higher. The scheme does not evaluate the spatial extent of the NRC. It is out of the
scope of this study. But the demonstration showed that the ImpactRegion feature can be used
without any knowledge about the event because the region is reshaped via communication.

4.5 CONCLUSION

The duration, timing and location of non-recurrent congestion (NRC) in an urban network
varies a lot making it difficult to monitor traffic in real time with conventional mechanisms.
We have proposed a framework for the distributed classification of congestion into its compo-
nents using VANET as an alternative cost-effective and flexible solution to guarantee better
monitoring of road traffic on heterogeneous networks. The proposed framework aims to ex-
change traffic flow data and to embed reasoning machinery in vehicles to infer the cause of
NRC.

We have obtained a predictive accuracy of 87.63% for the classification tree (CT), 88.83%
for the Bayesian network (BN), 89.51% for Random forest (RF) and 89.17% for the boos-
ting technique trained on synthetic data extended from the real case study of the Cologne
scenario. In the future, we note that more sophisticated methods can be employed in the
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cooperative process, such as a voting process, a likelihood evaluation or a model of the value
of information. Also, data of connected vehicle operations in real-world conditions, such as
Ann Arbor Automated Vehicle Operational Test, can be used as a test environment and
provide real-world training dataset in occurance of different NRC scenarios [80].
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CHAPTER 5 ARTICLE 2 : COOPERATIVE EVALUATION OF THE
CAUSE OF URBAN TRAFFIC CONGESTION VIA CONNECTED

VEHICLES

Ranwa Al Mallah, Alejandro Quintero, and Bilal Farooq
submitted to IEEE Transactions on Intelligent Transportation Systems

Abstract

We developed a distributed data mining based methodology to elaborate a decision concer-
ning the cause of traffic congestion on a road network via emerging connected vehicle (CV)
technologies. Our aim is to obtain deeper real-time insights of traffic conditions using decen-
tralized cooperation between individual vehicles. We observe the complex phenomena through
the interactions between vehicles exchanging messages via Vehicle to Vehicle (V2V) commu-
nication. Results are based on real-time data from vehicles experiencing traffic congestion
on the simulation generated scenarios extended from the real-world traffic Travel and Acti-
vity PAtterns Simulation (TAPAS) Cologne scenario. We extract from the traces a dataset
and evaluate a Voting Procedure (VP), Belief Functions (BF), a Data Association Technique
(DAT) and an adapted β-DAT. Methods are tested and compared using a microscopic urban
mobility simulator, SUMO and a network simulator, ns-2, for the simulation of communica-
tion between CVs. Compared to the Back-Propagation algorithm (BP) extensively used in
the past literature, our performance evaluation shows that the proposed methods enhance
the estimation of the cause of congestion by 48% for the proposed VP, 58% for the BF, 71%
for the DAT and 70% for β-DAT. The methods also enhance detection time from 7.09% to
10.3%, and β-DAT outperforms BP by approximately 1.25% less false alarms triggered by
the network, which can be significant in the context of real-time decision making. We show
that a market penetration rate between 63% and 75% is enough to obtain the full benefits
of V2V communications technology and ensure satisfactory performance.

5.1 Introduction

With the increasing number of vehicles and limited road network expansion, the urban traffic
congestion is growing at an alarming rate. Urban environment exerts a profound influence
over traffic, such as facilities and activities, weather, legal, social involvement and recurring
incidents. Due to the high complexity and uncertainty of contemporary transportation sys-
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tems, traditional traffic data collection and estimation tools fail to capture the dynamics in
detail and in real time. Vehicular Ad hoc NETworks (VANET) known as connected vehicles
(CVs), are key players’ in the future self-organizing traffic information systems [81]. With
the progress in information and communication technologies, CVs data collection and dis-
semination aims at building an intelligent public transportation system based on real-time
information. For traffic management, the future will be in cooperative systems as they can
benefit from the information collected from the mobile wireless vehicular ad hoc network.

A large body of work has already focused on the congestion detection problem using CVs
[19] [82] [24]. Recently, a framework was proposed to further characterise the congestion
detected. In [5], they tackled the problem of classification of congestion into its components
in urban traffic. In fact, congestion can be classified as recurrent or non-recurrent. Recurrent
congestion refers to congestion that happens every day on a regular basis [25]. Non-recurrent
congestion in an urban network is mainly caused by incidents, work-zones, special events,
adverse weather and bottlenecks [10]. In [83], if a vehicle detects congestion, it is able to
predict with high accuracy its cause based on macroscopic and microscopic traffic variables
that the vehicle collected along its trajectory.

Several unresolved problems exist for CVs-based congestion classification on urban networks.
Firstly, each vehicle classifies individually the cause of congestion based on data from vehicles
it encountered along its route. When congestion occurs, the vehicle tries to estimate the cause
based on its experience. The assessment and classification are done locally at a vehicle level. If
one vehicle sends a false alarms, it spreads uncertainty among vehicles and this in turn causes
more congestion. The side effects of false alarms on the congestion level are a serious challenge
because sending false information disrupts the proper network operation. This behaviour is
a threat to the traffic network and in terms of security, it is comparable to the simulation of
multiple entities or sybil attack in which an attacker uses different identities at the same time
to send false information or simulate a false congestion. Besides, Sybil attack are very hard to
detect, particularly in such highly dynamic environment like VANET. This makes exploring
the cause of congestion at a vehicle level a partial limited solution since occasionally, honest
vehicles in this scheme behave as malicious users without their intent but because of the
scheme.

Secondly, in the schemes proposed in the literature each vehicle classifies individually the
type of event based on its personal information [40] [42], but because traffic is multifaceted,
we warn that the vehicle has partial knowledge about the road condition, it knows to some
degree the traffic condition surrounding it. This decreases the estimation accuracy of the real
cause of congestion. Schemes should be implemented to obtain deeper insight on the cause of
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traffic congestion using cooperation between individual vehicles. This will increase estimation
accuracy because inaccurately estimating the cause of congestion misleads other vehicles as
well as traffic controllers and leads to devastating consequences. It has similar consequences
on the network as false alarms.

Thirdly, in urban networks vehicles are repeatedly faced with situations where they encoun-
ter congestion. Vehicles will have to repeatedly determine its cause based on the variables
they collected. In addition to connectivity, they should be intelligent enough to learn from
their experiences. Currently, there is no mechanism that is able to extract valuable know-
ledge from the situations experienced by the vehicles. Every situation should be a suite of
instances learned for better decision making because the monitoring currently done by the
proposed schemes does not allow for summarizing valuable knowledge. Since congestion in an
urban network is mainly caused by incidents, work-zones, special events, adverse weather, or
recurrent congestion [10], for a given situation, the classification algorithm proposed in the
literature returns the cause with the greatest probability as the most likely cause [83]. In fact,
a classification algorithm is a procedure for selecting a hypothesis from a set of alternatives
that best fits a set of observation. In other words, although the classifier is able to compute
the probability that a traffic situation belongs to a particular cause given the value of some
features, the algorithm returns only the cause with the highest probability. For example, if
the classifier computed a probability of 0.32 for the cause of congestion being an incident
and 0.31 for the cause of congestion being due to a work-zone, then the most likely cause
of congestion selected by the classification algorithm is an incident. We propose that we can
make use of each probability computed by the classifier to extract more knowledge.

The goal here is to obtain deeper insights on the cause of traffic congestion using cooperation
between individual vehicles. Since urban traffic is essentially unstable, chaotic, and unpre-
dictable, individual vehicle assessment is not enough, the next step is to elaborate a decision
collectively. This would result in a more precise, efficient, and reliable view of the traffic
condition by observing the complex phenomena from the interactions between vehicles. In
the current state, if an event received by a vehicle is a false alarm, the algorithm will fuse the
obtained information with others located on a same road segment and spread uncertainty
among vehicles and this in turn causes more congestion. An evaluation process has to take
place after data sensing and before data fusion. We add this layer to address the vulnerabi-
lity of fusion algorithms and to lower the side effects of false alarms because the approaches
proposed in the literature fail to process the data before fusion and present a security threat
to the network. Furthermore, since information is a subject of interest to the vehicles in a
given geographical area, the methods we propose elaborate a decision collectively on a given
geographical area to obtain deeper insights of traffic condition before fusion is applied.
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Also, we propose that each vehicle represent its uncertainty about the cause of congestion
in a vector of probabilities associated to each of the possible causes of congestion before
exchanging the vector with the vehicles on the road segment. We explore the collected vectors
for learning purposes by building a dataset and extracting relationships via data mining
techniques to develop useful patterns and information. Particularly, this data analysis is used
to build models capable of machine learning.

Our mining methods consist of a voting procedure, belief functions and a data association
technique for efficient inference on the cause of traffic congestion via CVs technology. We
consider a realistic map configuration of the city of Cologne in the evaluation of our me-
thods. Compared to the backpropagation (BP) technique proposed in the literature [83], the
proposed techniques enhance the estimation accuracy by 48% for the proposed VP, 58% for
the BF, 71% for the DAT, and 70% for the adapted data association technique (β-DAT). The
methods also enhance the detection time by 10.3% for VP, 9.40% for BF, 9.45 for DAT and
7.09% for β-DAT. β-DAT outperforms BP by approximately 1.25% less false alarms trigge-
red by the network. The methods also require only 63% penetration rate to obtain the full
benefits of V2V. Knowing the root causes of congestion that are affecting their facilities will
enable road authorities to make more informed decisions about how to best reroute traffic,
change lane priorities and modify traffic light sequences. It may also assist the road autho-
rities for better planning of road network expansion, as well as optimal road sign placement
and speed limit setting.

The contributions of this paper are summarised as follows :

— Addition of an evaluation layer before fusion can take place in order to lower false
alarms that are comparable to security threats on the traffic network.

— Implementation of a cooperation process to increase estimation accuracy because traf-
fic is multifaceted and to conceal the fact that individually, vehicles have partial know-
ledge about the road condition.

— Generation of a dataset for association rules mining to extract more knowledge and
implementation of the rules on board of the vehicles for analysis and evaluation of
the cause of urban traffic congestion with short-range communication between ve-
hicles, Vehicle-to-Vehicle (V2V), being the communication architecture for seamless
decentralized exchange of information between the cooperating vehicles.

— Validation of the methods using a microscopic urban mobility simulator, SUMO [72]
and a network simulator, ns-2 [76], for the simulation of communication between CVs.

— Evaluation of the influence of the penetration rate of CVs on the methods and detection
of the necessary market penetration rate of V2V communications technologies on the
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performance of the methods for transportation to obtain the full benefits of V2V
communications.

This paper is organized as follows. A review of related studies is provided in Section 5.2.
The methods are detailed in Section 5.3. In Section 5.4, we provide results, analysis and
discussion. Finally, conclusion and future work are outlined in Section 5.5.

5.2 RELATED WORK

A traffic management system consists of a set of complementary phases, each of which plays
a specific role in ensuring efficient monitoring and control of the traffic flow in the city [4].
In Fig. 5.1, the data sensing and gathering phase, heterogeneous road monitoring measures
traffic parameters such as traffic volumes, speed, road segments’ occupancy, etc. Subsequently,
these data feeds are fused and aggregated to extract useful traffic information. This acquired
knowledge from the processed data is used in the data exploitation phase to compute optimal
routes for the vehicles, short-term traffic forecasts to reduce road traffic congestion, improve
response time to incidents, and ensure a better travel experience for commuters. Finally, in
the service delivery phase, the traffic management system delivers this knowledge to the end
users.

Figure 5.1 Different phases of data in a traffic management system

In the first phase, traffic data can be collected from fixed monitoring equipment, such as in-
duction loops, sensors and CCTV cameras. However, in this scheme, discovering the dynamic
properties of the traffic is a difficult task due to the sparseness of the deployed equipments
[81]. On the other hand, monitoring can be done using mobile data sources such as GPS-
based systems, floating car data, SMS, social data feeds, etc [4]. In this case, the challenge
is the low penetration rates of the entities transmitting the data. In both cases, deploying
highly sophisticated equipment to ensure the accurate estimation of traffic flows and timely
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detection of events may not be the ideal solution, due to the limitation in financial resources
to support dense deployment and the maintenance of such equipment, in addition to their
lack of flexibility. In sum, the currently deployed technologies for road traffic surveillance still
suffer from a lack of traffic parameter measurement accuracy to enable granular and timely
monitoring of events that occur on the roads.

New technologies can be used to improve the accuracy, timeliness, and cost efficiency of data
collection. In fact, researchers have been focusing their efforts on exploiting the advances
in sensing, communication, and dynamic adaptive technologies to efficiently monitor the
evolving critical road infrastructure [4]. The application of wireless technology to moving
vehicles enables the creation of vehicular ad hoc networks, also called VANET. Connected
vehicles of the VANET are scalable enough to enable better control of the traffic flow and
enhance management of large cities’ road networks [32]. Many studies have been proposed
in the literature to illustrate that CVs improve the accuracy of the acquired real-time traffic
information [43]. In our study, we use CVs to monitor the traffic parameters experienced by
a vehicle along its trajectory.

Subsequently, the vehicles periodically exchange the data collected with the vehicles in their
surroundings. Algorithms based on V2V communications are very different from algorithms
developed in vehicle to infrastructure (V2I) communication applications [43] [4]. In the latter
study, a centralized module combines collected data and disseminates global information. This
present work concerns V2V communication mode where vehicles do not use any centralized
access point to build their own information assembly. Particularly, different strategies have
been proposed in the literature [84] [85] concerning the problem of information dissemination,
i.e., proposing a strategy to exchange information between the CVs. Indeed, when the road
traffic is high, the bandwidth is limited and the number of message exchanges would have to
be reduced. In our work, we can use any of the information dissemination strategies proposed
in the literature to exchange information between vehicles because our aim is rather to
explore the exchanged data by using data mining techniques in order to elaborate a decision
collectively regarding the traffic condition experienced by the vehicles.

In the second phase, data fusion algorithms take the data collected from the information dis-
semination process and use it to improve : the reliability of a judgment by the contribution
of redundant information ; or the interpretation ability by the provision of complementary
information. Particularly, a large portion of literature has been proposed for the distributed
data fusion for uncertain reasoning in ad hoc and dynamical networks [39] [40] [41] [42]. In
[39], they introduced belief functions to combine and fuse data in vehicle for the management
of uncertainties about events in vehicular networks. The theory of belief functions is a gene-
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ralization of the Bayesian probability theory. Belief functions combine degrees of confidence
about events reported in exchanged messages.

Specifically, concerning spatio-temporal events such as traffic congestion, in [40], belief re-
garding the presence of an event on a geographical point is obtained by : discounting [41]
neighbouring information according to their distance from the point ; then combining the
obtained information [42]. The authors propose to use the cautious combination rule [44] to
fuse information located on a same road segment. In [42], strategies to fuse acquired informa-
tion consider message aging of local events. They extend the work in [41] by developing new
methods based on the notion of update and by proposing away to automatically compute the
message aging (by discounting or reinforcing) using historical data. In [45], unlike the model
in [40], was the choice of the event dissemination strategy considered. Each vehicle sends
new events or repeats received one. A choice has been undertaken to keep combinations of
messages in each vehicle.

There are two major drawbacks to these approaches. Firstly, if the event received by the
fusion algorithm is a false alarm, the algorithm will fuse the obtained information with
others located on a same road segment and spread uncertainty among vehicles and this in
turn causes more congestion. The methods we propose elaborate a decision collectively on a
given geographical area to obtain deeper insight of traffic condition before fusion is applied.
We add this layer to cope with the vulnerability of fusion algorithms and to lower the side
effects of false alarms. Secondly, the approaches fail to process the data before fusion. The
methods manage uncertainties by combining degrees of confidence about events reported in
exchanged messages based on attributes such as the geographic distance of the event from the
receiver and message aging of the event. Unlike the approaches proposed in the literature,
we deal with uncertainties by the accurate evaluation of the cause of the congestion by
cooperation between vehicles on the road segment before the management methods can take
place. Since information is a subject of interest to vehicles in a given geographical area, an
evaluation process has to take place in this phase before data fusion and aggregation. Our
work can then use any of the management strategies proposed by all these works to fuse
information.

For validation, in [39] the methods were tested and compared using a Matlab simulator
where roads are divided into segments and one event is considered per segment. In [45],
the model was implemented and tested using Hong-Ta Corporation (HTC), an application
using smartphones. The application proposed required driver assistance to send the events
and the authors proposed that camera or sensors might be installed in vehicles in such a
way to automatically detect events. In [41], authors propose to divide map traffic lanes into
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small rectangular areas named cells. The map is composed of horizontal and vertical two-way
streets in particular a traffic lane is composed of NbSimCells cells depending on the type of
event. A mechanism allows smoothing results by considering neighbouring influence. Results
depend on method cells size and influence mechanism rate σ. The automatic computation
of the method cells sizes and the values of σ are still underdevelopment ; currently they
are set manually. The authors propose a possible solution to use historical knowledge to
study these parameters or to choose a small method cell length and have a short time step
if bandwidth and databases spaces permit. For example, supposing that traffic jam takes
place starting from ten successive vehicles driving very slowly ; then the method cell length
is equal to ten times the average length of a vehicle. Authors suggest that sensors might be
used to detect events in order to create messages automatically, without driver assistance.
In [42], they propose an influence mechanism to predict overall road situation based on the
fact that traffic jams evolve in the reverse direction of traffic lanes and disappear in the
same direction of roads. For each cell of length 67 m, on which a vehicle has information
about the presence or the absence of a traffic jam event, m is the result of the fusion f mass
functions of all stored messages concerning this event, the influence of m is the discounted
mass function where 1 - β is the discounting rate. The influence mechanism consists for
each cell c in combining conjunctively : obtained influences on cell c and the result of the
combination of mass functions of all created or received messages. If m informs that a traffic
jam is present on the cell c, the vehicle generates influences on following cells and stop this
operation when arriving to a slowing down event exit. The mechanism requires a slowing
down event exist to be generated by the vehicles of the cells. A slowing down event can
be : related to map infrastructures and always present on the map (the map is known by all
vehicles) as a roundabout ; or an event on the road known in vehicle database like an accident.
Since their influence mechanism predicts the transfer of traffic, different causes of congestion
require different types of management for the mechanism to work properly and not generate
false influences. They stated that unlike traffic incidents, the spatiality of fog blankets does
not depend on maps and to manage this event, roads are divided into cells without taking
into account traffic directions. In other words, if a fog blankets event is present on one side
of a traffic lane, it is also certainly present on the opposite side. The simulator the authors
used is a research tool ; they suggested that coupling their method with an ad hoc network
simulator will be a real added value for validation. The authors recommended TraNS [44]
simulators : it combines SUMO [72] (mobility simulator) and NS-2 [76] (network simulator)
simulators.

In our work, we use SUMO and NS-2 for the simulations of our scenarios. Moreover, unlike
the previous literature, we consider a realistic map configuration of the city of Cologne in
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the evaluation of our methods. Also, we simulate experiments on the real-world traffic Travel
and Activity PAtterns Simulation (TAPAS) Cologne scenario. To the best of our knowledge,
this is the first attempt to assess in the most realistic way, the reality concerning traffic jam
events on the road for the sake of accurate estimation of the cause of congestion via CVs.

Finally, the reality concerning traffic congestion can be better assessed if we look into the
causes of the traffic congestion. In [83] vehicles detect excessive congestion on a road segment
and are able to estimate with high accuracy its cause based on a classification algorithm
implemented on board of each vehicle. A classification algorithm is a procedure for selecting
a hypothesis from a set of alternatives that best fits a set of observation. Since congestion
in an urban network is mainly caused by incidents, work-zones, special events, adverse wea-
ther, or recurrent congestion, the classification algorithm returns the cause with the greatest
probability, the most likely cause. In other words, although the classifier is able to compute
the probability that a traffic situation belongs to a particular cause given the value of some
features, the algorithm returns the cause with the highest probability. For example, if the
classifier computed a probability of 0.32 for the cause of congestion being an incident and 0.31
for the cause of congestion being due to a work-zone, then the most likely cause of congestion
selected by the classification algorithm is an incident. We discovered that we can make use
of the other probabilities computed by the classifier to extract more knowledge. In fact, we
propose that each vehicle represent its uncertainty about the cause of congestion in a vector
of probabilities associated to each of the possible causes of congestion before exchanging the
data with the vehicles on the road segment. Vehicles in the surrounding collect and evaluate
the data before fusion can take place. We explore the collected data for learning purposes
by building a dataset and extracting relationships via data mining techniques to elaborate
a decision on the current traffic condition on the road segment. In fact, data mining tech-
niques such as clustering, association, classification, have been applied in VANET to extract
useful patterns and information [86]. Particularly, association rules mining is useful for data
analysis, and is used to build models capable of machine learning. By simulating numerous
scenarios, on different road segments, we can learn from the macroscopic and microscopic
parameters the vehicles collected. The mechanisms for the exchange and management of the
events are beyond the scope of this paper.

These systems cannot be deployed in the near future, as one has to wait until the necessary
market penetration of V2V communications technologies has been reached. The fact that few
vehicles are equipped with transceivers leads to network fragmentation [4]. As there is no other
exchange of traffic information, its performance strongly depends on the penetration rate of
participating vehicles. However, the question that arises in such a case is what percentage of
penetration is enough to obtain the full benefits of the methods. We study the impact of the
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market penetration rate on the performance of the methods.

Unlike previous works, we seek to improve the vehicle’s estimation of the cause of congestion
and reduce false alarms by cooperative methods infused with knowledge about the others
evaluation specifically in the event of traffic congestion. Also, vehicles in our methods make
use of each probability computed by the classifier to extract more knowledge. We prove that
this data mining also reduces false alarms. These methods will leverage some properties of
the road network such as the spatiotemporal correlation for efficient estimation of the cause
of traffic congestion. The result is a voting procedure, belief functions and a data association
technique for efficient evaluation of the cause of urban traffic congestion via CVs.

5.3 DATA MINING METHODS

Congestion in an urban network is mainly caused by incidents, work-zones, special events,
adverse weather, or recurrent congestion. Vehicles are equipped with a method to detect
excessive congestion in an urban network and a classification algorithm able to attribute
a possible cause to it, as in [83]. The classification algorithm returns the cause with the
greatest probability, the most likely cause. We make use of the other probabilities computed
by the classifier to extract more knowledge. In fact, we propose that each vehicle represent
its uncertainty about the cause of congestion in a vector of probabilities associated to each of
the possible causes of congestion. In particular, the vector of probabilities exchanged between
the CVs should have this form :

C = [Pincident, Pworkzone, Pweather, Pspecialevent, Precurrent]

After proper representation of vector C, different methods to elaborate a decision concerning
the cause of urban congestion on the segment are presented in this paper. The environment
is without infrastructure, i.e., there is no centralized access point that collects and dissemi-
nates global data on the road segment. Each vehicle has its own representation based on
macroscopic and microscopic traffic variables the vehicle collected along its trajectory. When
vehicles experience excessive congestion, they exchange via broadcast the representation sto-
red in vehicle as illustrated in Fig. 5.2. Each vehicle also has its own decision module for the
cooperative evaluation of the cause of congestion experienced. The decision module contains
one of the Voting Procedure (VP), Belief Functions (BF) and Data Association Technique
(DAT) methods described in the following sections.

A. Voting procedure

The voting procedure (VP) starts when a vehicle experiences excessive congestion and wants
to evaluate the cause of the urban traffic congestion on the road segment. From [83], the
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Figure 5.2 Vehicles exchanging via geographic routing information about the cause of conges-
tion

probabilistic classification model on board of each vehicle predicts the cause of congestion
but we extract the rest of the probabilities and the result is in the form of the probabilities
vector presented above, with one cause of congestion having the highest probability. The
vehicle broadcasts the probabilities vector in the vicinity for efficient evaluation of the cause
of urban traffic congestion with short-range communication between vehicles, Vehicle-to-
Vehicle (V2V), being the communication architecture for seamless decentralized exchange
of information between the cooperating vehicles. Vehicles on the road segment collect the
messages received and the decision module on board of each vehicle computes the counts for
each cause. The cause having the highest count is highlighted by this voting procedure as
being the cause of congestion on the road segment.

The VP is an improvement of the algorithm for backpropagation presented in [83]. None-
theless, if vehicles vote, some vehicles cannot quantify their ignorance on the presence or
the absence of congestion. In other words, their vote is not an accurate representation of
information. Belief functions avoid this problem because partial or total ignorance can be
represented.

B. Belief functions

The aim of this belief functions method (BF) is to improve the level of knowledge and thus
enhance the prediction accuracy of the cause of congestion experienced by vehicles on the
road segment. When reasoning with epistemic uncertainty, due to lack of knowledge (partial
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knowledge) and uncertain information, uncertainty can be reduced. Probability theory can be
used to represent epistemic uncertainty. In this case, probabilities are subjective, interpreted
as degrees of belief. The main objection against the use of probability theory as a model
of epistemic uncertainty is its inability to represent ignorance. The principle of Indifference
states that in the absence of information about some quantity X, we should assign equal
probability to any possible value of X. Also, probability theory is not a plausible model of
how people make decisions based on weak information. Set-membership approach is another
framework that can be used to represent epistemic uncertainty. Partial knowledge about some
variable X is described by a set of possible values E (constraint). The advantage is that it is
computationally simpler than the probabilistic approach in many cases because it’s an interval
analysis. But the drawback is that there is no way to express doubt making it a conservative
approach. The theory of belief functions [39] extends both the Set-membership approach and
Probability Theory. The theory includes extensions of probabilistic notions (conditioning,
marginalization) and set-theoretic notions (intersection, union, inclusion, etc.).

Let Ω={ω1, ω2, ..., ωk} denotes a finite set containing all the possible answers to a given
question Q of interest ; Ω being called the frame of discernment. Information given by different
sources regarding the answer to question Q can be represented by a basic belief assignment
(BBA), also called a mass function, denoted by m. It is defined from 2Ω (the set of all possible
subsets of Ω) to [0,1] such that the sum of all the masses is equal to 1 :

∑
A⊆Ω

m(A) = 1 (5.1)

A mass m(A) represents the belief supporting A, where A is a subset of Ω. It is the mass
allocated to the hypothesis : the answer to question Q belongs to the subset A of Ω. Each
subset A of Ω such that m(A)> 0 is called a focal element of m. The theory of belief functions
allows the allocation of belief to subsets of Ω with no influence on the singletons, contrary to
the probability theory [40]. Note that due to a lack of information, the part of belief cannot
always be given to a singleton. The mass m(Ω) represents the degree of ignorance of the
source which has provided the information m. The mass on the empty set m(∅) represents
the conflict.

In case two vehicles express their beliefs over the frame, to combine the independent sets
of probability mass assignments, m1∩2 , quantified by m1 and m2 and expressed on Ω,
Dempster’s rule of combination is the appropriate fusion operator. This rule derives common
shared belief between multiple sources and ignores all the conflicting (non-shared) belief
through a normalization factor. Specifically, the combination is calculated in the following
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manner :

m1 ∩ 2(A) = 1
1−K

∑
B∩C=A

m1(B)m2(C),∀A ⊆ Ω (5.2)

where

K =
∑

B∩C=∅
m1(B)m2(C) (5.3)

K is a measure of the amount of conflict between the two mass sets. With this combination,
masses are transferred to focal elements intersections. The TBM postulates that uncertain
reasoning and decision making are two fundamentally different operations occurring at two
different levels : Uncertain reasoning is performed at the credal level using the formalism of
belief functions. Decision making is performed at the pignistic level, after the mass function
on Ω has been transformed into a probability measure. The pignistic transformation BetP
transforms a normalized mass function m into a probability measure as follows :

BetP ({ω}) =
∑

A⊆Ω,ω∈A

m(A)
| A | (1−m(∅)) ,∀ω ∈ Ω (5.4)

Applied to our problem, a mass function m is held by each vehicle and is defined on the frame
of discernment Ω={Incident, Workzone, Weather, SpecialEvent, Recurrent}. Each vehicle
assigns a mass on any of the singletons and another on a subset containing the singleton.
This strategy is possible because of the classification model implemented on board of each
vehicle. In fact, the probabilistic Bayesian network in [83] infers on the cause of congestion
based on the macroscopic and microscopic traffic variables the vehicle collected along its
trajectory. The model is not only able to return the cause having the greatest probability,
but it can also return the 2-item subset containing that singleton and its probability. In
other words, if the most likely cause of congestion computed by a vehicle is an incident,
then the model can also inform that the second best possible cause it predicted is a weather
condition. We consider this 2-items subset, {Incident, Weather} and transfer the Bayesian
probability of the subset to a mass function. The subset containing the singleton represents
added knowledge about the sensed traffic condition. We limit the strategy to 2-items because
results showed very little improvement in the accuracy of prediction when more items are
considered.

Many studies had proved and validated the accuracy of the theory of belief functions for the
distributed data fusion for uncertain reasoning in vehicular ad hoc networks [39] [40] [41]
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[42]. We specifically applied this theory to the uncertain reasoning about the cause of traffic
congestion experienced on a road segment. We isolated the analysis in order to get more
insight on the reasoning. In the next section, we propose to collect the fusion results for the
sake of learning. We believe that knowledge can be acquired from the fused data that the
vehicles exchange in a presence of a particular road condition. In fact, data mining techniques
such as association rules mining have been applied in VANET to extract useful patterns and
information. It is useful for data analysis, and is used to build models capable of machine
learning.

C. Association rules mining method

A data association technique (DAT) is presented in this section to obtain more informa-
tion about the cause of the congestion. Since each vehicle’s assessment is communicated to
vehicles in the vicinity, we collect the vector of probabilities exchanged by the vehicles in
many scenarios to build a dataset. We extract the general association rules from the mes-
sages exchanged regarding the cause of the congestion. We analyse the messages for frequent
patterns in order to identify the relationships for rule generation. Consequently, data asso-
ciation between messages exchanged by CVs will help analyze the road condition. Our aim
is to improve the level of knowledge from exchanged messages for efficient evaluation of the
cause of congestion. Let Ims be the set of all possible items Ims = { i1, i2, i3, i4, i5}. Applied
to our problem, i1= Incident (I), i2=Work-zone (Wo), i3= Weather (We), 4= Special Event
(SE), i5= Recurrent (Re).

Also, let ti be a subset of items also called an itemset, T is the set of all transactions
T={ t1, t2, t3... tN} and N being the total number of transactions in the dataset. Let support
indicate how frequent items appear in the dataset i.e. the number of transactions that contain
a particular itemset X.

σ(X) = |{ti|X ⊆ ti, ti ∈ T}| (5.5)

Association rules are if/then relationships that help uncover seemingly unrelated data in a
relational database. There are two parts, the antecedent is the if, found in the data and the
consequent is the then. If X and Y are disjoint sets X ∩ Y = ∅, for the rule X→ Y, we use
the two criteria, support and confidence to identify relationships.

— support of X→ Y :

s(X → Y ) = σ(X ∪ Y )/T (5.6)
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— confidence of X→ Y : number of times if/then statement have been found true.

c(X → Y ) = σ(X ∪ Y )/σ(X) (5.7)

It is how frequently items in Y appear in transactions that contain X. It measures
the reliability of the inference made by a rule. It also provides an estimate of the
conditional probability P(Y|X). We note that inference made by an association rule
does not imply causality. It suggests strong co-occurrence relationship between items
in antecedent and consequent of a rule. Causality requires knowledge about the causal
and effect attributes in the data.

The problem can be stated as follows : Given a dataset, find all the rules having support
>= minsup and confidence >= mincon, minsup and mincon are thresholds derived from
the dataset. Support of rule X→ Y depends on support of its corresponding itemset X
∪Y, frequency of X∪Y in T. Fig. 5.3 and Fig. 5.4 show examples of how transactions can
be collected from different scenarios to build a dataset for learning. If a road segment is
congested due to a special event occurring in the surrounding area as in Fig. 5.3, firstly, each
vehicle computes a probabilities vector. Then, each vehicle constructs a transaction composed
of two items. If the probabilities vector [Pincident, Pworkzone, Pweather, Pspecialevent,
Precurrent] of vehicle A is [0.15, 0.12, 0.23, 0.3, 0.2], this means that the cause having
the highest probability 0.3 corresponds to a special event (SE). The second probable cause
of congestion as evaluated by vehicle A is attributed to a weather condition (We) with a
probability of 0.23. Vehicle A creates a transaction TA ordered as follows SE, We, with items
SE and We being categorical elements. In Fig. 5.4 for example, we collect transactions from
a scenario simulating an incident.

A common strategy adopted by many association rule mining algorithms is to decompose
the problem into two major subtasks.

Frequent itemset generation : We analyse data for frequent patterns by determining support
count in the transactions for each candidate itemset. The objective is to find all the itemsets
that satisfy the minimum support threshold. These itemsets are called frequent itemsets.
According to the Apriori principle theorem, if an itemset is frequent, then all of its subsets
must also be frequent. Support-based pruning is done first to trim the exponential search
space because of the property that the support for an itemset never exceeds the support of its
subsets, it’s the anti-monotone property of the support measure. We adapt the pseudocode
for the frequent itemset generation part of the Apriori algorithm as follows : - Generate the
list of all possible itemsets. With a dataset that contains k items, it can possibly generate up
to 2k-1 frequent itemsets, excluding the null set. If k is very large, the search space of itemsets
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Figure 5.3 Transactions created by vehicles on a congested road segment due to a Special
event

that need to be explored is exponentially large. - Determine support count for every candidate
itemset. - Compare each candidate against every transaction. - If candidate is contained in
a transaction, its support count will be incremented. In an initial iteration, the algorithm
makes a single pass over the dataset to determine the support of itemsets containing one
item, candidate 1-itemsets. Upon completion of this step, the set of all frequent 1-itemsets,
F1, will be known.

Fk= {i| i ∈ Ims ∧ σ({i}) >= N*minsup}

By replacing σ({i})>=threshold with max(σ({i})), we find all maximum 1-itemsets as per
the voting procedure described in the previous section.

Next, the algorithm will iteratively generate new candidate k-itemsets using the maximum (k-
1) itemsets found in the previous iteration. Candidate 2-itemsets are generated using only the
frequent 1-itemsets because the Apriori principle ensures that all supersets of the infrequent
1-itemsets must be infrequent. After counting the support of the 2-itemsets candidates, the
algorithm eliminates all candidates itemsets whose support counts are less than a threshold,
by replacing the extraction of frequent k-itemsets by the extraction of the maximum support
k-itemset :
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Figure 5.4 Transactions created by vehicles on a congested road segment due to an Incident

Fk= {c| c ∈ Ck ∧ max(σ({c})) }

The algorithm terminates when there are no new itemsets to be generated, i.e. Fk= ∅ . After
support-based pruning, we identify the candidates that has the highest support and look at
the items they contain for the extraction of high confidence association rules. In fact, for the
purpose of our application, when the support for each candidate is counted and tested against
the maximum value possible instead of the minsup threshold, we either get the voting process,
or a potential candidate itemset for the extraction of high confidence association rule.

Rule generation : The objective is to extract all the high-confidence rules from the frequent
itemsets found in the previous step. These rules are called strong rules. - An association rule
can be extracted by partitioning the itemset Y into two non-empty subsets X and Y-X such
that X→Y-X satisfies the confidence threshold, mincon. - Each k-itemset, Y, can produce up
to 2k-2 association rules, ignoring rules that have empty antecedents or consequents (0→Y
or Y→0). We determine the confidence of each rule by using the support counts as in Eq.
(7). Confidence-based pruning compares rules generated from the same frequent itemset to
consider rules that have higher confidence. Rules with low confidence are pruned.

In sum, with a large dataset of transactions, we can better understand the prediction models
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if we look at the association rules. We implement the rules on board of the vehicles with the
aim of getting a more efficient and reliable evaluation of the cause of congestion.

D. Back-Propagation algorithm

The methods we propose are compared to the Back-Propagation algorithm (BP) introduced
in the literature [83], where vehicles transfer messages only if they have total knowledge about
the cause. In this section, we will briefly describe the rules of BP for the sake of readability.
The algorithm activates a process that shares the individual information collected by vehicle
i in the following sequence :

— Vehicle i continuously broadcasts and receives BEACON messages from neighbours ;
— Vehicle i knows its current road segment and computes current travel time on the

segment ;
— Update of traffic data on board of Vehicle i (Trajectory speed, travel time, Demand

and gap between vehicles) ;
— If the observed travel time is above a threshold, Vehicle i creates a feature vector and

predicts with a classifier the cause of congestion ;
— If there is no stored event in the database concerning this event, the vehicle creates

and propagates backwards a message called Event Request (RQ). RQ is transmitted
upstream via broadcast to all cars in its communication range, and allow to retain
the event info locally on the segment for a minimum duration before propagating it
to adjacent segments ;

— Otherwise if the duration is not reached, then the vehicle stores the RQ, because
communication between vehicles on the same segment has to happen for a certain
duration before propagation of the event to first order adjacent segments can be done ;

— Once the duration is reached, Vehicle i propagates backwards the Event Response
(RP) message to adjacent road segments. RP is the message used to send the non-
recurrent congestion event to adjacent segments after the duration expires.

The implementation of the VP, BF, DAT and BP methods in real conditions is presented in
the following section.

5.4 IMPLEMENTATION AND RESULTSl

The proposed methods to elaborate a decision concerning the cause of urban congestion are
tested and compared through different scenarios described next.
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5.4.1 Simulation outline

The TAPAS Cologne scenario is assumed to be one of the largest traffic simulation dataset
[45]. It covers the main road network within the inner city of Cologne. Demand mobility
data traces for the 6-8am peak hours are provided. We create extended scenarios mounted
on top of the base scenario to model atypical traffic conditions such as weather, incident,
work-zone, special event and bottleneck. We create them using SUMO, a microscopic traffic
simulator for the simulation of urban mobility [72]. To simulate an Incident/Work-zone, on
the base scenario, we stop on a lane some vehicles for a specific amount of time. We vary
the position on the edge and the duration. In inclement weather, which lead to decreases
in the vehicles’ velocities and a more careful and defensive driver behaviour, we change
the parameters of the car-following model in the simulator. To simulate a special event,
we generate trips to a particular destination, with random departures and random routes.
We use a Poisson process to generate random timings for trips. The rate parameter λ is
the demand per second from different sources. To generate random routes, given trips are
assigned to respective fastest routes according to their departure times and a given travel
time updating interval by SUMO’s traffic assignment model. Table 6.1 contains a description
of the experiments in each scenario used for synthetic training set generation.

In total, 24 experiments are investigated in this case study. Data of independent vehicles
passing on the congested segments of each experiment in each scenario are evaluated. Tran-
sactions are created by the vehicles and later put into a supervised dataset for learning.
The training dataset is a matrix with rows corresponding to transactions and columns to
items. A data sample belongs to a target variable and each of the 6,970 data samples is thus
represented by equal number of items. The comparative analysis is presented below.

5.4.2 Comparative analysis

The methods are validated by three indicators ; estimation accuracy, detection time and
percentage of false alarms. Accurate estimation of the root cause of congestion will enable
road authorities to make more informed decisions about how to best reroute traffic. Also,
lower detection time and false alarms will permit a rapid and exact reaction to resolve the
traffic condition.

5.4.2.1 Voting Procedure

In SUMO, we simulated two scenarios of congestion due an incident and a weather condition
with experiments 1.1 and 3.1. We generate urban mobility traces from the scenarios for usage
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Table 5.1 Description of experiments

Scenario Experiment# Description
Incident 1.1 - Incident at the beginning of a lane

1.2 - At the middle of a lane
1.3 - At the end of a lane
1.4 - For short duration
1.5 - For long duration
1.6 - Incident inside Impact Region
1.7 - Outside Impact region

Workzone 2.1 - 2.8 - Similar to incident experiments
Weather 3.1 - Heavy weather condition
Special Event 4.1 - 4.4 - Four different ingress flows
Bottleneck 5.1 - 5.4 - Four junctions on the base scenario

in ns-2, the discreet-event network simulator. In the simulation of vehicular communications,
we assume that vehicles are equipped with a Global Positioning System (GPS) device for
positioning, a transceiver for communication using Dedicated Short-Range Communications
(DSRC), and an enriched digital road map containing information about the map. We use well
known data forwarding techniques to pass information through the CVs such as geographical
routing (Geocast), and broadcast. For communication among all cars, we assume standard
signal range of the 802.11p protocol, which is 300 meters. BEACON messages are exchanged
every 0.1 seconds.

Fig.5.5 compares the average percentage of vehicles accurately estimating the cause of conges-
tion in each scenario between VP and BP method. The best results the BP can do are after
a certain time has elapsed because according to the algorithm, the first minutes following
an excessive congestion not all vehicles on the segment are going to exchange messages re-
garding the event. On the other hand, at 4200s, vehicles in an incident start to vote via the
VP. Only a few would have assessed that excessive congestion is present and will vote about
the cause. Votes of all other vehicles on the segment are not counted because they did not
have a probabilities vector for the estimation of the cause. At 5700s, when almost 62% of the
vehicles in VP voted about the cause of congestion and all vehicles on the road segment were
aware of the cause of congestion for more than 1500s, the BP algorithm activates and start
signalling to vehicles that congestion is due to an incident. After 5700s, the accuracy in VP
is almost the same as that in BP in this scenario. We also notice that the increasing speed of
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the percentage of vehicles in VP is smaller than that in BP because according to the BP al-
gorithm, after the duration has elapsed, vehicles experiencing excessive congestion propagate
the message backwards if they are in the communication range of each other and regardless
if all others finally experience excessive congestion or not. Similarly, in the weather scenario
at 5220s vehicles vote via the VP and it’s only at 5820s, when almost 52% of the vehicles in
VP estimated the cause of congestion, that the BP algorithm activates and start signalling
to vehicles that congestion is due to weather. We simulated the scenario of an incident and
a weather condition on 15 other road segments and found that the VP outperformed the
BP method in every experiment in terms of percentage of vehicles accurately estimating the
cause of congestion. On average, it did so by approximately 48%. This increase in perfor-
mance is due to the fact that the VP method use CVs to elaborate a decision collectively on
the cause of congestion. This shows that cooperation on a given geographical area to obtain
deeper insight of traffic condition improves the accuracy of the estimation in contrast to BP
that used CVs to disseminate the information and not for the sake of evaluation.

To study the performance of the methods in terms of detection time, firstly we show in Fig.5.6
how the parameters of traffic flow change with time in the urban road network on a particular
edge. The flow is zero either because there are no vehicles and density is zero or there are
too many vehicles so that they cannot move and it is maximum density. Vehicles observe
their travel time on the segment in order to detect congestion. It’s only when vehicles detect
congestion that they analyze if it is excessive. In case the observed travel time on a road
segment is excessive, vehicles assume they are experiencing non-recurrent congestion and
estimate the cause. In Fig.5.5, VP outperforms BP in terms of detection time because the
algorithm of the BP requires that vehicles exchange their evaluation only if they experience
the excessive congestion for a certain duration of time and they are in the communication
range of each other. In the VP, vehicles on the road segment are involved in the exchange as
soon as one vehicle detects the excessive congestion and triggers the procedure, even if the
other vehicles don’t yet experience it. Precisely, we observe from the figure that detection
time is reduced from 5640s to 360s for the incident scenario and for the weather condition,
reduction corresponds to 10.3%.

On the other hand, in Fig. 5.7 we compare the methods with the percentage of false alarms
in five different scenarios. A false alarm is a vehicle initiating a VP or a BP method and
the simulation shows no excessive congestion, i.e. the situation captured by each vehicle is
compared with the real simulation. We perform two experiments on each scenario. In the first
experiment vehicles execute the BP procedure and in the second the VP. On 200 different
road segments, we monitored vehicles passing and we report on average the percentage of
false alarms triggered by the BP and VP. We found an average percentage error ranging
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Figure 5.5 Voting Procedure - Percentage of vehicles accurately estimating the cause of
congestion in different scenarios
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Figure 5.6 Variation of the parameters of traffic flow on an edge

from 3% to 11%. Although VP outperforms BP in terms of detection time and estimation
accuracy, we notice in Fig. 5.7 that the voting procedure has the highest percentage of false
alarms.

To investigate the situation further, we notice that VP detects the cause of congestion earlier
than BP in every situation where the real simulation represented excessive congestion. The
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problem is that VP triggers false alarms in the other scenarios, where there was no excessive
congestion. This is due to the fact that VP lacks a procedure that is able to control situations
where the assessment of a few vehicles do not represent a statistically compliable state. In
fact, voting is triggered as soon as one vehicle detects excessive congestion. BP handles false
alarms in a better manner than the VP because the BP algorithm requires that vehicles in
the communication range of each other be aware of the same situation for a certain duration
of time before triggering the back propagation of the events and declaring that the road
segment is congested. We try to solve this problem with the theory of belief functions. The
theory adds knowledge to the messages exchanged in order to decrease false alarms and we
present it in the next section.

5.4.2.2 Belief functions

The VP is an improvement of the BP presented in terms of estimation accuracy and detec-
tion time. Nonetheless, if vehicles vote, some vehicles cannot quantify their ignorance on the
presence or the absence of congestion. In other words, their vote is not an accurate represen-
tation of information. Vehicles cannot quantify their ignorance on the presence or the absence
of congestion. With belief functions partial knowledge or total ignorance can be represented.

We simulated a scenario of a congestion caused by inclement weather. Vehicles exchange
at the same time period messages assigning a mass for the singleton, another for a subset
and an ignorance degree correspondingly. We report in Table 5.2 results of vehicles S1-S22
exchanging messages M1-M22 at time t=5580s. Their mass functions have been combined
using the conjunctive rule of combination resulting with a high confidence degree of 0.85 in
the congestion caused by a weather event, and a low ignorance degree, with no conflict.

For the same scenario, we collect messages exchanged by the BF method during 1980 seconds
after congestion is detected. Fig. 5.8 shows the estimation accuracy of the BF compared to
the VP and BP.

Results show that the BF method gives the best estimation of the cause of congestion.
Specifically, BF outperforms the BP method by approximately 58%. We also notice the time
elapsed before vehicles on a segment decide about the cause of congestion. The classification
algorithm infers on the cause of congestion at 5220 seconds, only when there is congestion on
the road segment and when this congestion becomes excessive. In terms of detection time,
the VP and BF methods outperform the BP by 9.4%. In fact, the BF and VP methods detect
the cause of congestion 560 seconds before BP. The reaction time of the BP is slower because
the algorithm requires that vehicles transfer in the vicinity their assessment only when they
have total knowledge about the cause of congestion and that a certain duration has elapsed.
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Figure 5.7 Percentage of false alarms of the VP and BP

Table 5.2 Combination of mass functions mi from messages Mi,i ∈ {1,2,3,...,22}

Hypothesis m1 m2 m3 m4 ... m21 m22 m1∩2 ∩ ... ∩22 BetP
∅ 0 0 0 0 0 0 0.652
Incident (I) 0 0 0 0 0 0 0.022 0.04
Weather (We) 0.4 0.62 0.7 0.6 0 0.67 0.1637 0.85
Workzone (Wo) 0 0 0 0 0 0 0
Special Event 0 0 0 0 0 0 0
Recurrent (Re) 0 0 0 0 0.61 0 0.1068 0.11
{I or We} 0 0 0.2 0.1 0 0.3 0.0234
{I or Wo} 0 0 0 0 0 0 0
{I or SE} 0 0 0 0 0 0 0
{I or Re} 0 0 0 0 0 0 0
{We or Wo} 0 0 0 0 0 0 0
{We or SE} 0 0 0 0 0 0 0
{We or Re} 0.3 0.3 0 0 0.34 0 0.032
{Wo or SE} 0 0 0 0 0 0 0
{Wo or Re} 0 0 0 0 0 0 0
{SE or Re} 0 0 0 0 0 0 0
Ω 0.3 0.08 0.1 0.3 0.05 0.03 0.0000011

In the VP and BF methods, vehicles share their partial knowledge and the voting or the
belief functions conclude earlier about the cause having the highest probability.

In Fig. 5.9 we monitor the methods with the percentage of false alarms in five different
scenarios. Compared to the VP method, BF decreases the percentage of false alarms by
approximately 1.8%. In the recurrent scenario, BF yields the same performance as the BP
method. This shows that in the evaluation process, not only cooperation between vehicles
but adding knowledge to the messages exchanged improves the performance. Nonetheless, BP
still outperforms BF by approximately 4.25% less false alarms in the incident, weather, work-
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Figure 5.8 Estimation accuracy of different methods in a scenario of congestion caused by
weather

zone and special-event scenarios. To add more knowledge on board of each vehicle, in the
next section we present the implementation and results of the data association technique. We
explore data the vehicles collected for learning purposes by building a dataset and extracting
relationships via a data mining technique to extract more knowledge.

5.4.2.3 Data mining technique

We analyse the messages exchanged by CVs for frequent patterns in order to identify rela-
tionships for rule generation. We use the default settings of the Apriori principle implemented
in Weka [79], a data mining software, to generate the rules. We then proceeded to the eva-
luation of the association rules. Association rule algorithms tend to produce a large set of
rules, many of them are ’uninteresting’. To determine the interestingness, we consider the
subjective interestingness measure. A rule is considered subjectively uninteresting unless it
reveals unexpected information about the data, or provides useful knowledge that can lead to
profitable actions. This measure is defined based on domain information. As domain experts,
we extract the rules of interest because support and confidence measures are insufficient at
filtering out uninteresting association rules. We present in Table 5.3 the rules extracted from
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Figure 5.9 Percentage of false alarms of the BF, VP and BP methods

the supervised dataset.

Rules 1 to 9 are learned from the dataset. Rules 1 and 2 are extracted from the mining of the
ordered items in each transaction, and we seize that when vehicles are experiencing congestion
caused by a special event, their second guess will never be an incident or a work-zone.
We considered only the first and second item in each transaction because of the subjective
interestingness measure. Similarly, for rules 3 to 6, we understand the guess of vehicles in
any scenario. Differently, rules 7-8-9 are extracted from the first item in each transaction
and the label of the transaction. The consequent part of the rule is the label. Because each
transaction is created by a vehicle in a specific scenario, the label of the transaction is the
scenario. If the label is different from the first item in the transaction, it means that the
vehicle wrongfully predicted the cause of congestion. By mining the dataset we uncover those
rules that when applied in the DAT method, enhance the accuracy of prediction of the cause
of congestion. We consider the scenario of congestion occurring on a road segment due to
recurrent traffic. Fig. 5.10 shows the percentage of vehicles accurately estimating the cause
of congestion with different methods.

In the VP and BF methods, vehicles decide cooperatively without applying the association
rules. When applying the mining rules in DAT, performance is greater in terms of estimation
accuracy. BF model’s partial knowledge allowing earlier detection of the cause and DAT
gives further precision on incoherencies in the data having the best estimation. In the DAT
experiment, vehicles make use of the belief functions and association rules to estimate the
cause of congestion. The DAT improves estimation accuracy of 71% compared to the BP
method. In this scenario, detection time is decreased by 9.45% informing of the congestion
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Table 5.3 General association rules
Rules Frequency Description
1. SE→ We 50% If a vehicle predicts that the main cause of congestion

is a SE, then 50% of the time the second guess is that
the cause might be We.

2. SE→ Re 50% If a vehicle predicts that the main cause of congestion
is a SE, then 50% of time the second guess is that the
cause might be Re.

3. We→ Re 60% If a vehicle predicts that the main cause of congestion
is a We, then 60% of the time the second guess is that
the cause might be a Re.

4. We→ I 40% If a vehicle predicts that the main cause of congestion
is a We, then 40% of the time the second guess is an
incident.

5. I→ SE 100% If a vehicle predicts that the main cause of congestion
is an Incident, then 100% of the time the second guess
is that the cause might be a SE.

6. Wo→ SE 100% If a vehicle predicts that the main cause of congestion
is a Wo, then 100% of the time the second guess is that
the cause might be a SE.

7. We,SE-→ We 100% If some vehicles on the road segment predict that
the cause of congestion is due to We and others on
the same segment predicts it is due to a SE,
then the cause of congestion is always due to Weather.

8. Re,SE-→ Re 100% If some vehicles on the road segment predict that
the cause of congestion is due to recurrent traffic
and others on the same segment predicts
it is due to a SE, then the cause of congestion is
always recurrent.

9. Re,We-→ Re 100% If some vehicles on the road segment predict that
the cause of congestion is due to weather condition
and others on the same segment predicts
it is recurrent, then the cause of congestion
is always recurrent.

cause earlier. Created messages with the BP method have a confidence equal to 100%, and
they are transferred depending on the evaluation of the cause of congestion done in each
vehicle in the range of communication of the vehicle that initiated the backpropagation.
For these reasons, this method gives poor results, but later in the simulation, BP tends to
better results and that is only when there are enough vehicles adequately positioned in the
communication range of the initiating vehicle and having the same evaluation as the initiator.

In Fig. 5.11, we compare the methods with the percentage of false alarms in five different
scenarios. Compared to the BF method, DAT decreases the percentage of false alarms by
approximately 1.33%. This shows that the association rules on board of each vehicle add
knowledge and improve the performance. Nonetheless, BP still outperforms DAT by ap-
proximately 3.25% less false alarms in the incident, weather, work-zone and specialevent
scenarios.

To investigate the situation further, we specifically present in Fig. 5.12 the detailed monitoring
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Figure 5.10 Comparative estimation accuracy of vehicles when congestion is due to recurrent
traffic
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Figure 5.11 Percentage of false alarms of the BF, VP, BP and DAT methods

of the incident scenario for the VP and BP experiment. We observe that in both VP and
BP, false alarms happen earlier in the simulation and dissipate as congestion installs. In fact,
in a dense environment, where vehicles inform rapidly about events, the percentage of false
alarms is higher at the early stage of the experienced congestion. The percentage decreases
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after a certain period and tends to zero as simulation time advances.

We make use of this information and adapt the DAT method with an addition of a time
factor, β. We call this method the β-DAT where we force the vehicles to wait for a certain
time period, β, before cooperating for the evaluation of the cause of congestion. We found
that the value of β has a direct impact on the percentage of false alarms and detection time
and that it has no impact on the estimation accuracy. If the value of β is high, vehicles take
as much time as BP to detect congestion and the percentage of false alarms tends to zero.
With an upper bound for β being the duration of four consecutive LJT (Link Journey Time)
as in [10], we conducted experiments and found that half of that duration is enough to attain
the expected performance.

We present in Fig. 5.13 the performance of the β-DAT method in terms of estimation accuracy
and detection time for the scenario of congestion occurring on a road segment due to recurrent
traffic. We notice that, similar to the DAT method, β-DAT improved estimation accuracy
by approximately 70% compared to the BP method. Also, detection time of β-DAT is 7.09%
lower than that of the BP method, informing of the congestion cause earlier. It’s 2.36% higher
than the DAT method, a slight increase of approximately 120 seconds. The consequence of
adding a time factor to the DAT method on the detection time is insignificant compared to
the benefit the duration added to the percentage of false alarms. In Fig. 5.14 we compare the
methods with the percentage of false alarms in five different scenarios. We see that β-DAT
has the lowest percentage of false alarms in all scenarios. In fact, compared to the DAT
method, β-DAT decreases the percentage of false alarms by approximately 3.6%. Also, β-
DAT outperforms BP by approximately 1.25% less false alarms triggered by the network on
the road segment. This shows that adapting the duration in combination with cooperation
between CVs and knowledge on board of each vehicle improves overall performance for the
accurate estimation of the cause of congestion.

5.4.3 Penetration rate of CVs

In this section, we present the results of the market penetration rate on the performance of
the methods. Specifically, we show the impact of the percentage of vehicles equipped with
VANET technology on the estimation accuracy and detection time. We vary the number
of participating vehicles in the incident scenario and calculate the percentage of vehicles
accurately estimating the cause of congestion as a function of time. We report the results in
Fig. 5.15.

A low penetration rate implies that few vehicles are equipped with transceivers and this
leads to network fragmentation in the context of ad hoc networks. As a consequence, in
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Figure 5.12 Monitoring of false alarms in the incident scenario

the BP method vehicles have to wait to be in the communication range of each other for
the algorithm to conclude on the cause of congestion. As there is no other exchange of
traffic information, its performance strongly depends on the penetration rate of participating
vehicles. In the figure, the estimation accuracy of BP is very low and detection time is very
high for penetration rates of 10%, 50% and 75%. On the other hand, in the VP, BF, DAT
and β-DAT, they need not to be in the communication range of each other to conclude on the
cause of congestion but rather to collect the evaluation done by each other. Fragmentations in
these methods have a lower impact on the performance because the methods do not depend
on network connectivity to resolve. This is shown in the figure by the percentage of vehicles
being very close to that of a penetration rate of 100%. We only present the performance
of the VP because the other methods present the same tendency. We notice that for a
penetration rate of 10% and 50% in the VP method at 5460s and 5340s respectively, the
percentage of vehicles accurately estimating the cause of congestion is even slightly better
that of a penetration rate of 100%. This is due to the fact that in this particular scenario,
if few vehicles are equipped with transceivers and they vote accurately about the cause of
congestion, the ratio is at times better than that of more vehicles equipped with transceivers
voting inaccurately about the cause of congestion. Overall, in other scenarios of incidents,
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Figure 5.13 Performance of β-DAT for a scenario of congestion due to recurrent traffic
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Figure 5.14 Percentage of false alarms in different methods

the trend is the same and estimation accuracy follow the curve of 100% penetration rate.
However, we see from the figure that a low penetration rate affects detection time more than
estimation accuracy. In fact, at 10% and 50% penetration rate, vehicles detect that congestion
is due to an incident only at 5460s and 5040s respectively. The question that arises in such a
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Figure 5.15 Impact of penetration rate on the performance of the methods in the incident
scenario

case is what percentage of penetration is enough to obtain the full benefits of the methods.
To study the necessary market penetration of V2V communications technologies to reach
in order to get the best performance in terms of estimation accuracy and detection time,
we conclude from the figure that at 75% of penetration rate, detection time and estimation
accuracy show the best performance and constitute an upper bound. The methods showed
the same performance in other scenarios of congestion due to a work-zone, special event and
recurrent congestion. Penetration rates of 75% showed the best performance in all scenarios.
On average, approximately 63% of penetration rate was acceptable in all scenarios except
when the cause of congestion is a weather condition.

In case of congestion caused by inclement weather, a very high percentage of CVs is required
in order to achieve good performance. To study the situation further, we note the effect of
weather on mobility. Firstly, Fig. 5.16 illustrates g(t), the gap, the empty space after the
leading vehicle along a vehicle’s trajectory in the urban network in normal conditions. The
following distance mainly depends on the speed of the following vehicle which is adapted
to the speed of the leading vehicle. The desired following distance between two consecutive
vehicles is highlighted in Fig. 5.16 and corresponds to the minimum safe gap attained by
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the vehicle. Our analysis starts with the collection of desired gaps in a scenario of inclement
weather, creation of cumulative gap distribution and calculation of the 85th percentile gap
observed. In Fig. 5.17, we show the 85th percentile gap measures collected by vehicles in the
normal scenario and the weather scenario. Incident, work-zone, special event and bottleneck
scenarios showed values that are similar to the normal scenarios, thus, they are not presented.
From the figure, we see that in inclement weather, most vehicles augment their following
distance in comparison to normal weather conditions.

We conclude that the lower performance is not only due to the fact that very few vehicles
are equipped with transceivers, but also that in inclement weather the gap between vehicles
is increased, and this leads to more network fragmentation than in other scenarios.

5.5 Conclusion

Given that traffic involves multifaceted complex interactions, exploring the cause of conges-
tion at a vehicle level is a partial limited solution because currently, each vehicle classifies
individually the cause of congestion based on its personal trajectory. The assessment and
classification are done locally on a vehicle level and in the event of a false alarm, in terms of
security, spreading uncertainty among vehicles or false information causes more congestion,
disrupts the proper network operation and presents a serious challenge. We proposed me-
thods to obtain deeper insight on the cause of traffic congestion using cooperation between
CVs since information is a subject of interest to vehicles in a given geographical area. Besides
cooperation, we proposed that an evaluation process has to take place after data sensing
and before data fusion and aggregation. We added this layer to address the vulnerability of
fusion algorithms and also to lower the side effects of false alarms because their impact is
comparable to security threats to the network. Finally, we explored the collected data for
learning purposes by building a dataset and extracting relationships and knowledge via data
mining techniques to elaborate a decision collectively. We also studied the impact of the
market penetration rate of CVs on the performance of our methods.

We have considered a realistic map configuration of the city of Cologne in the evaluation
of our methods. We tested and compared the methods using a microscopic urban mobility
simulator, SUMO and a network simulator, ns-2, for the simulation of communication between
CVs. Compared to the backpropagation (BP) technique proposed in the literature, we have
obtained an enhanced estimation accuracy of 48% for the voting procedure (VP), 58% for
the belief functions (BF), 71% for the data association technique (DAT) and 70% for the
adapted data association technique (β-DAT). The methods also enhance the detection time
by 10.3% for VP, 9.40% for BF, 9.45 for DAT and 7.09% for β-DAT. We monitored the
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methods with the percentage of false alarms and β-DAT outperforms BP by approximately
1.25% less false alarms triggered by the network. This shows that adapting the duration in
combination with cooperation between CVs and knowledge on board of each vehicle improves
overall performance for the accurate estimation of the cause of congestion.

Finally, our work has shown that our methods require approximately 63% penetration rate to
ensure satisfactory performance and obtain the full benefits of V2V communications techno-
logy for accurate estimation of the cause of congestion. We understand that traffic efficiency
applications do not require such a high market penetration level of CV technology as is the
case for safety-related applications. Based on the simulation results, automatic traffic control-
ling systems may use the methods to prevent traffic jams and introduce countermeasures as
soon as the cause of congestion is detected. In the future, since scalability will profoundly
impact the system performances, scalable schemes based on hierarchy or cluster should be
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creatively elaborated because the proposed methods for congestion detection and classifi-
cation are not scalable in a large scale. Also, robustness has to be considered because it
makes vehicles aware of the overall congestion level on a particular road segment, despite the
short-term changes in vehicle’s mobility. Finally, these systems cannot be deployed in the
near future, as one has to wait until the necessary market penetration of V2V communica-
tions technologies has been reached. Since our methods are based on an infrastructure-less
approach, it could be interesting to investigate how much of a lower penetration rate can be
achieved if the same methods were adapted to an infrastructure-based approach. The draw-
back of infrastructure-based is that service charges will most probably apply. However, they
can be deployed in the near future.

The evaluation phase, cooperation process and rules generated by our scheme make our
approach generalizable and portable to other cities and networks. However, it could be inter-
esting to validate our scheme with data of connected vehicles in real-world conditions. Unlike
the synthetic dataset in our work, it will provide real world training dataset in occurrence of
different non-recurrent congestion scenarios and then the results of the data mining technique
can be compared to our work.
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Abstract

Urban traffic congestion is growing at an alarming rate. We propose a Short-term Traffic
flow Prediction (STP) framework so that traffic managers take early actions to control the
flow and prevent the congestion state. We anticipate flow at future time frames on a target
road segment based on historical flow data and innovative features such as real time feeds
and trajectory data provided by Connected Vehicles (CVs) technology. To cope with the
fact that existing approaches do not adapt to varying traffic situations, we show how this
novel approach in this domain allows advanced modelling by integrating the impact of the
various events that CVs realistically encountered on segments along their trajectory into the
forecasting of flow. We solve the STP problem with a Deep Neural Networks (DNN), and
tackle the problem by learning the target DNN in a MultiTask Learning technique (MTL).
The results show our approach outperforms state-of-the-art ARIMA time series and baseline
classifiers, with an average Root-Mean-Square Error (RMSE) of 0.05. Compared to single
task learning with Artificial Neural Network (ANN), ANN had a lower performance, 0.113
for RMSE, than MTL. Because a transportation system is a highly correlated network, with
characteristics such as large amounts of data and high dimensions of features, DNN learned
historical similarities between road segments, in contrast to using direct historical trends
in the measure itself, since sometimes trends may not exist in the measure but do in the
similarities.

6.1 Introduction

Road traffic congestion is a particular state of mobility where travel times increase and more
and more time is spent in vehicles. Apart from being a quite stressful experience for drivers,
congestion also has a negative impact on the environment and the economy. In this context,
there is pressure on the authorities to take decisive actions to improve the network traffic
flow. By improving network flow, congestion is reduced and the total travel time of vehicles
is decreased. To this end, predictive techniques are needed by infrastructure operators to
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allow advanced modelling. The fast prediction of traffic flow on a road segment allows the
traffic managers to take early actions to control the traffic load and prevent the congestion
state [11]. Particularly, short-term prediction, STP, enables road authorities to make more
informed decisions about how to best reroute traffic, change lane priorities and modify traffic
light sequences. It may also assist in better planning of road network expansion, as well as
optimal road sign placement and speed limit setting.

In the context of short-term traffic flow prediction, many studies have been devoted to high-
ways rather than highly congested urban regions [47], [87], [88]. In a highway scenario, the
road section can be modeled as a network flow model that require flow conservation on all
segment. The amount of flow entering an arc equals the amount of flow leaving the arc. In
an urban scenario, on the other hand, each arc of the underlying graph has an associated
positive gain or loss factor. Flow passing through the arc is magnified or diminished by a
factor. In fact, the problems faced in urban traffic are not easy to solve because they depend
on multiple dynamic aspects that are difficult to describe and to model in detail. They are
intricate, complex networks and far more likely to be monitored by the traffic authorities.
Therefore, the design of accurate and scalable traffic flow prediction for urban road networks
is required.

On another hand, several unresolved problems exist for the short-term traffic flow prediction
on urban networks. A traffic management system must firstly ensure efficient monitoring of
the urban network. Currently, traffic state cannot be directly measured everywhere on the
traffic road network because infrastructure operators are strained to monitor traffic while
using the least possible resources [89]. Current collection methods rely on dedicated tradi-
tional heterogeneous sensor and backbone networks and hardware/software solutions [90].
Operators interpolate information from incomplete, noisy and local traffic data because de-
ploying highly sophisticated equipment to ensure the accurate estimation of traffic flows and
timely detection of events everywhere on the road network is not the ideal solution due to the
limitation in financial resources to support dense deployment and the maintenance of such
equipment, in addition to their lack of flexibility. Due to the high complexity and uncertainty
of contemporary transportation systems, these methods fail to capture in detail and in real
time all the dynamics, they are not capable of evolving over time and do not scale to lar-
ger cities. Therefore, alternative cost-effective and flexible solutions are needed to guarantee
better monitoring of road traffic.

A typical measurement that interest system developers for prediction is the flow rate on a
target road segment, which is the number of vehicles that pass through a segment per time
period. However, in addition to traditional traffic sensors that collect flow values on target
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segments of the road network, a variety of data sources, such as lidar, radar, and video from
surveillance cameras have emerged in traffic flow prediction research [91]. In fact, to increase
prediction accuracy, scientists now recognize that the problem is that traffic flow prediction
heavily depends not only on historical flow values on a segment but also on real-time traffic
data. Those real-time feeds are presently collected from various sensor sources, including
inductive loops, radars, cameras, mobile Global Positioning System, crowd sourcing, social
media, and incorporated in the prediction of flow [13]. As the data originate from different
sources, their conversion is the most important step. In this process, the first obstacle is the
amount of data collected which is increasing exponentially, and the second is its complexity.
This makes data conversion difficult and highly time and resource consuming. The next steps
are relevant data extraction and cleaning, as well as data reduction. Each of these tasks has
its own challenges, including defining what is relevant and what is noise, identifying one or
the other, and extracting the useful data, given certain accuracy expectations. In sum, data
aggregation poses many challenges when a variety of data sources are required in the process
of data collection. advanced monitoring techniques should be deployed and must be capable
of aggregating traffic data feeds from various levels and at various levels of granularity.

Also, the problem with current traffic flow prediction models is their inadaptability of de-
tecting and tracking the traffic patterns changes [29]. There is a new pattern every time a
non recurrent congestion occurs in the traffic flow and in this case, the model is not able
to predict as accurately as when there is recurrent congestion. Existing approaches to traf-
fic flow prediction do not adapt to the varying traffic situations because their distribution
are memoryless, and they need a structure that will characterize the system at each step,
not independently from the prior stage. To improve the flow prediction accuracy, a model
should update from its normal path and track the changed traffic pattern, generating fore-
casts according to the new traffic pattern. Furthermore, at this time, operators necessitate
extensive data sources to guarantee the accurate evaluation of the traffic state in real time
because current traffic data collection systems do not incorporate the ability of registring
detailed information on the altering events happening on the road, such as vehicle crashes,
adverse weather, etc. Operators require external data sources to retireve this information in
real time [71]. Besides, well-tailored data sources may not always be available for a particular
area of the traffic network. Future systems should enable continuous monitoring of the traffic
condition along all roads of the traffic network based on real-time information. Mainly, the
problem is that most existing works ignore the context information when proposing models
in their study of traffic flow prediction [92]. While using all context dimensions will provide
the most refined information and thus lead to the best performance, it is equally important to
investigate which feature or set of features is the most informative for the task of traffic flow
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prediction on a segment. The benefits of revealing the most relevant context dimension in-
clude reduced cost due to context information retrieval and transmission, reduced algorithmic
and computation complexity and targeted active traffic control.

With the advances in computers, which are more distributed, open, large, heterogeneous,
and the progress in communication technologies such as cellular, satellite positioning and
Connected Vehicles (CVs) technology enabling Vehicle-to-Infrastructure (V2I) and Vehicle-
to-Vehicle (V2V) communications, transportation management is no more uniquely a civil
engineering problem. In fact, connected vehicles evolve in a data-rich environment where
they consistently generate and receive a variety of data [93]. In this article we show how
integrating the transportation system with real-time information from connected vehicles to
predict flows on target road segment results in a powerful tool for transportation analysis
and evaluation. The ultimate goal is to build an intelligent transportation systems based on
real-time information and for traffic management, the future will be in cooperative systems
as they can benefit from the information collected from the vehicular ad hoc networks created
by the connected vehicles. Self-organization is essentially a distinctive characteristic of CVs
and represents a new approach in this domain as it is a new way of seeing transportation
and their planning. Because traffic is essentially unstable, chaotic, far-from-equilibrium, and
unpredictable, we propose a new data collection method in this domain with connected
vehicles being the communication architecture for seamless exchange of information between
the cooperative vehicles. A more precise view of traffic flows over the road network will be
assessed so that traffic engineers can better layout a city’s vehicular infrastructure.

Many commuters have an overall sense for the status of traffic and the overall times until
congestion at bottlenecks will likely start and end, based on their long-term experiences.
People may be familiar with typical traffic patterns, some situations whether traffic states
of interest would be viewed as surprising. Current methods do not incorporate this overall
sense, this experience, although, one of the hot topics in intelligent transportation systems
(ITSs) is the development of distributed traffic information systems (TISs) [94]. Such dis-
tributed systems monitor and collect data from many sources. These data provide enough
comprehensive information in order to better characterize the events detected. Current tech-
niques fail to process the knowledge acquired from the data. With the widespread traditional
traffic sensors and new emerging traffic sensor technologies, traffic data are exploding, and
we have entered the era of big data transportation. In the big data era, techniques should be
implemented to make use of the acquired information. Furthermore, at the current stage, the
ITS is partially efficient since the vehicle as an entity is not fully contributing to the system.
In fact, presently, vehicles are uninformative as they are not engaged in the process of traffic
flow prediction. However, equipped with a communication technology, vehicles can exchange
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information and cooperate collectively so as to provide their input to the system because of
the unpredictable nature of traffic and because of the myriad factors that affect traffic flows
such as weather conditions, the behaviour of other drivers, traffic issues, and other events.

This study presents a novel framework for the real-time distributed prediction of traffic flow in
an urban network using connected vehicles technology. We foresee that an accurate prediction
necessitates a mix of centralized and distributed system architectures through leveraging
vehicular communication. Via this next generation sensing technology, we are interested in
identifying road traffic events on the basis of exchanging traffic flow data between vehicles.
If connected vehicles can detect congestion and cooperatively attribute a possible cause to
it, we believe that they can then transfer this knowledge in real time to a central entity
able to accurately predict flow on a road segment. Because the flow fluctuates from one
time to another, it’s better for a road side unit (RSU) to monitor the parameters for a
period of time. Since some prediction techniques impose some constraints on the quality,
type, and format of the used data feeds in order to ensure high level of accuracy, we see
that the level of granularity given by connected vehicles will address this issue. We also
focus on how the context information can be obtained from the exchange between vehicles
while existing works ignore the context information. The basis of the prediction model lies in
the fact that we integrate the impact of various events into the forecasting. Using historical
flows and well engineered features, such as real-time reports from connected vehicles and
travel time along a trajectory for accurate forecasting of flow in an urban network, the model
learns a representation that takes into account the various events that vehicles realistically
encounter on the segments along their trajectory. They may come across incidents, workzone,
inclement weather, special events or recurrent congestion. All these situations are assessed
by the connected vehicles and are represented by creative features to be fed to the model for
the sake of learning to predict traffic flow.

We propose a Deep Neural Network (DNN), and tackle the problem by learning the tar-
get DNN in a multitask learning technique. DNNs have successfully been applied to traffic
flow prediction, [67], [95]. One of the most important reasons for explaining their success
in achieving state-of-the-art performance is their capacity to embody the characteristics of
transportation systems, such as the large amounts of data and the high dimensions of fea-
tures. Traffic data are exploding, and we have entered the era of big data in transportation
and based on the fact that few things are very common but most things are quite rare, gene-
ralizing from relatively small sample sizes is still very relevant even in the big data era. This
makes deep learning a promising method for transportation research.

Particularly, it was shown that it is possible to jointly train a model for solving different tasks
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simultaneously, it is called multitask learning, MTL [62]. In machine learning, we normally
break a complex problem down into tractable sub-problems, and learn to solve one problem
at a time. This potentially ignores rich sources of information found in the training signals of
other tasks. MTL is an inductive transfer between tasks. We conjecture that when the tasks
involved in MTL are semantically connected, a larger improvement in predication accuracy
can be obtained. More specifically, MTL can be more effective when we can encode the ins-
tances from different tasks using the same representation layer expressing similar semantics.
Particularly, we show how traffic flow prediction falls into one domain of multitask learning.
One domain is using the past and the future to predict the present. Often valuable features
become available after predictions must be made. These features cannot be used as inputs
because they will not be available at run time. If learning is done offline, however, they can
be collected for the training set and used as extra MTL tasks. The predictions the learner
makes for these extra tasks are ignored when the system is used ; their main function is to
provide extra information to the learner during training. The valuable information contained
in those future flow measurements help bias the model towards a hidden layer representation
that better support flow prediction from the features that would be available at run time.

The results show our approach significantly outperforms the performance of the state-of-the-
art ARIMA time series and baseline classifiers such as Random Forest (RF) and Artificial
Neural Net (ANN). When compared with ARIMA and Random Forest, MTL presents an
average performance in terms of root-mean-square error (RMSE) equal to 0.05. Compared
to single task learning with ANN, our experiments with the data show that ANN have a
lower performance (0.113 for RMSE) than MTL, but higher performances than ARIMA.
This shows that when the tasks involved in multitask are semantically connected a larger
improvement in accuracy of prediction can be obtained.

The contributions of this paper are summarised as follows :

— Monitoring of microscopic and macroscopic traffic variables via connected vehicles for
the extraction of relevant contextual traffic features in order to summarise valuable
knowledge in an efficient way.

— Forecasting of short term traffic flow on a target road segment with a Deep Neural
Network trained to predict multi tasks with input from connected vehicles.

— Evaluation and validation of the proposed framework and inference method is made
relying on simulation generated scenarios extended from a realistic data set of urban
city vehicular motion traces.

This paper is organized as follows. After introducing the related work in Section 6.2, we
describe our proposed framework in Section 6.3. In Section 6.4, we present the STP model.
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In Section 6.5, we describe the simulation based on real vehicular mobility traces and provide
analysis and discussion of the results. We conclude the paper in Section 6.6.

6.2 RELATED WORK

The traffic flow prediction problem aims at evaluating anticipated traffic flow at future time
frames on a target road segment. One of the factors that affect prediction accuracy is data
resolution which is highly dependent on the chosen forecasting horizon and step. The Highway
Capacity manual [96], as well as some studies in the literature, have suggested 15 min as the
most appropriate horizon value for short-term traffic flow prediction. For the step value, the
most used value is a 5-min interval due to the high variability of the traffic flow. In general,
traffic flow prediction techniques can be mainly classified in three categories : 1) parametric
approach ; 2) nonparametric approach ; and 3) hybrid approach. In this section, we present
the literature related to the prediction of traffic flow. We review it from two perspectives :
the type of traffic data source used to collect the data and the technique used to model traffic
as they are factors that affect the forecasting accuracy.

6.2.1 Parametric approach

The main techniques used in this category are time-series models, AutoRegressive Integra-
ted Moving Average (ARIMA)-based models [46] and Kalman filtering [47]. In [48], they
applied an ARIMA model for traffic volume prediction in urban arterial roads. Many va-
riants of ARIMA were proposed to improve prediction accuracy, such as Kohonen-ARIMA
(KARIMA) [49], ARIMA with explanatory variables (ARIMAX) [50], vector autoregressive
moving average (ARMA) and space–time ARIMA [51], and seasonal ARIMA (SARIMA)
[52]. Other types of time-series models were also used for traffic flow prediction such as the
statistical models. They make the assumption of stationarity of the underlying process. This
assumption is often violated as observable traffic conditions can evolve differently at different
times. Also, the linearity of the time series approach presents an inconvenience for traffic
prediction. Traffic flow has stochastic and nonlinear nature, unfortunately, even an enhanced
ARIMA cannot accurately predict flow in the presence of accidents. ARIMA, due to its de-
layed reaction, is not an ideal method to use in the case of events which cause sudden changes
in the time series data. If we know per say, from police event streams, that there is an acci-
dent (say, 30 minutes) ahead of us, we may be able to predict its delays and account for it.
On the other hand, historical data can be used to identify similar accidents, i.e., with similar
severity, similar location and during the similar time, so that we can use their impact on ave-
rage speed changes and backlog to predict the behaviour of the accident in front of us. For
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example, an accident that may happen between 4 :00PM and 8 :00PM on a particular road
segment might cause 5.5 miles of average backlog ahead of the accident location. If the same
accident happens between 8 :00PM and midnight the backlog will be 2.5 miles. In addition,
these techniques predict traffic flow on each road segment separately. Since transportation
networks are complex and much correlated, it is crucial to predict traffic flow from a network
perspective. Moreover, while time-series analysis models are probabilistic, they are ignorant
of the underlying process that generates the data. Thus, time-series-based approaches are
more prone to large errors in traffic flow forecasting.

6.2.2 Nonparametric approach

Nonparametric regression [53] is a widely used technique. In [54], an online boosting regression
technique that ensures traffic prediction under abnormal traffic conditions was proposed.
Otherwise, boosting is disabled. In [55], a support vector regression was used to establish
the prediction model, whereas particle swarm optimization was used to optimize the model’s
parameters. Among all of these techniques, neural-network-based forecasting had the best
performance in terms of prediction accuracy and are considered to be relatively effective
methods because of their well established models.

6.2.2.1 Neural Networks

A panoply of artificial neural networks (ANNs) were proposed to predict traffic flow [56].
Typical computational intelligence-based forecasting methods mainly include the back pro-
pagation (BP) neural network [53], radial basis function (RBF) neural network [57], recurrent
neural network [58], time-delayed neural network [59], and resource allocated networks [60].
Particularly, deep learning is a neural network of more than one hidden layer. This technique
has attracted researchers from various domains as it considers complex correlations between
features and outputs. Besides the factors of scope, data resolution and technique used to
model the traffic, we will compare the works in this approach with regards to the features
used to train the models and the type of traffic data source used to collect the data.

In [61], they propose a stacked auto-encoder model to learn generic traffic flow features by
considering the spatial and temporal correlations. The model is trained in a greedy layer-wise
fashion. The traffic data are collected every 30s from over 15 000 individual detectors, which
are deployed state wide in freeway systems across California. Their input features consists
of traffic flow data at previous time intervals, on the target road segment. The target road
segment is the link of interest in the road network where the model wants to predict flow on.
Considering the temporal relationship of traffic, to predict the traffic flow at time interval
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t, they use the traffic flow data at previous time intervals. In this study, their simulations
indicate that four past time intervals of 15 minutes are enough to get good performance.

On another hand, recent work has shown that it is possible to jointly train a general system
for solving different tasks simultaneously [62], MultiTask Learning (MTL). If the tasks can
share what they learn, the learner may find it is easier to learn them together than in isolation.
MTL is one way of achieving inductive transfer between tasks. The goal of inductive transfer
is to leverage additional sources of information to improve the performance of learning on
the main task. In [63] and [62], they train a MTL model to predict flows on links. Unlike
traditional traffic flow forecasting that predicts a future flow of a certain link only using
the historical data on the same link, which is also called single-link traffic flow forecasting,
the authors propose multilink forecasting models, which take the relations between adjacent
links into account. Single-link forecasting approaches ignore the relationships between the
measured link and its adjacent links. In fact, each link is closely related to other links in
the whole transportation system. The multilink model predicts traffic flows using historical
traffic flow data from all of the adjacent links. The features in [63] are flow data collected
from sensors on the road. In [64], they propose a combination of multitask learning and an
ensemble learning method bagging, for traffic flow forecasting. In [62], they propose a deep
architecture that consists of two parts, i.e., a deep belief network (DBN) at the bottom and a
multitask regression layer at the top. In a transportation system, all roads and entrance–exit
stations are connected to each other. There is a lot of shared information among these roads
and stations. The data are collected from inductive loops continuously collecting data in
real time for more than 8100 freeway locations throughout the State of California. In [65],
they proposed approaches showing significant improvements in prediction accuracy when
compared to baseline predictors but their focus lies on highways that are one-directional
road segments, whereby usually in the inner cities the impact of traffic is a multi-dimensional
problem, evolving in a 2D, more complex route network.

Current research on traffic flow prediction mainly focuses on data traffic history and neglects
other conditions affecting traffic. In [66], they investigate and quantify the impact of weather
on traffic prediction in a freeway scenario. They admit that transportation systems might
be heavily affected by factors such as accidents and weather. But they just considered the
weather factor. They claim that inclement weather conditions may have a drastic impact
on travel time and traffic flow. Their MTL architecture incorporate deep belief networks for
traffic and weather prediction and decision-level data fusion scheme to enhance prediction
accuracy using weather conditions. The traffic flow predictions provided by their approach
use past values of the traffic flow and the current weather data is fused to provide future
traffic flow prediction. They state that their scheme avoids compounding prediction errors
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that may ensue had weather data been predicted rather than been used as real information.
Traffic flow is measured every 30 s using inductive loop sensors deployed throughout the
freeways.

6.2.3 Hybrid approach

Some studies have investigated hybrid approaches [67]. To obtain adaptive models, some
works explore hybrid methods by combining several techniques. Although the aforementioned
hybrid models are flexible, they do not fully take profit from spatial information collected
from the whole road network. Moreover, these studies rely only on information collected by
sensors such as the Global Positioning System, loop detectors, and smart-phones. In traffic
event analysis, the effect of events on traffic prediction has also been studied in the fields of
data mining and transportation engineering. The majority of these studies focused on real
time event/outlier detection using probabilistic or rule-based approaches (e.g.,[68], [69], [?]).
There are also several studies that mainly concern the cause of the events, aiming at how to
design the network or re-direct the traffic flows to avoid the delay of events [35]. However,
none of these studies incorporate events into traffic flow prediction techniques, and hence fail
to provide realistic forecasting in the presence of events.

In sum, the majority of the techniques focus on predicting traffic in typical scenarios (e.g.,
morning rush hours), and more recently in the presence of accidents or a weather condi-
tion. Existing techniques are only applicable to predict one of the scenarios. ARIMA pre-
diction model is more effective in predicting the speed in normal conditions and not at the
edges of the rush-hour time (i.e., the beginning and the end of rush hour). This becomes
even more challenging when considering different causes for congestion, e.g., recurring (e.g.,
daily rush hours), occasional(e.g., weather conditions), unpredictable (e.g., accidents), and
temporarily—for short-term (e.g., a basketball game) or long-term (e.g., road construction)
congestions. These approaches consider traffic flow as a simple time-series data and ignore
phenomenons that particularly happen to traffic data, the observations made in the imme-
diate past are an indication of the short-term future. The statistical approaches, by their
very nature the mathematics of collecting, organizing, and interpreting numerical data, can
provide more insights on the mechanisms creating and processing the data. However, the
statistical approaches frequently fail when dealing with complex and highly nonlinear data.
Finally abnormal traffic patterns caused by non recurrent congestion or incidents may dete-
riorate the performance of these models [97]. Nevertheless, under most situations, extreme
values are of primary interest in forecasting the change in traffic conditions. It is difficult
to say that one approach is clearly superior over other approaches in any situation. One
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reason for this is that the proposed techniques are developed with a small amount of sepa-
rate specific traffic data, and the accuracy of traffic flow prediction methods is dependent
on the traffic flow features embedded in the collected spatiotemporal traffic data. In general,
literature shows promising results when using neural networks models as they are used as
benchmarking methods for short-term traffic prediction [35].

The focus of our study is to integrate the impact of various events into forecasting models. The
impact of events on traffic flow varies based on space and time. For example, the consequence
of an accident occurring during rush hour is usually more severe. Similarly, an accident at
an inter-state street has a different impact than that of a surface street. In this study, we
consider such spatiotemporal characteristics of traffic in training our models because no
studies have tackled the problem of analyzing the tight correlation between traffic data and
external factors in an urban traffic network. It should be noted that the prediction of traffic
flow under atypical conditions is evidently more challenging than doing so under typical
conditions and, hence, much desired by operational agencies.

6.2.4 Design principle

A recent survey reported that the design principle of a prediction algorithm is to use a
combination of historical data, real-time feeds, traffic modeling and simulation to predict
how the traffic flow will evolve in the near future [1]. These steps will leverage properties
of the road network such as the spatiotemporal correlation for faster inference. A prediction
algorithm will use real-time traffic feeds i.e., traffic flow, travel time on a road segment or
speed and apply an advanced modeling approach combined with historical data to predict
the future traffic flow on a segment.

Historical data can be obtained from surveys, fixed monitoring equipments or real mobility
traces, like GPS traces from floating car data for example, taxis as vehicular devices to collect
GPS information. Taxi traces does not accurately represent origin and destination intentions
of most travelers as they represent only one type of on road motor vehicle. Also, traces
extracted from surveys or floating car data are not sufficient to record the statistical features
of mobility in a large environment [11]. In contrast to these works, we use a realistic real-time
motion simulation dataset to validate our work. We use a dataset that is representative in
proportion to the city’s vehicular mobility to extract historical data.

Real-time monitoring of traffic should be done at short intervals to provide good quality
because stale data is useless in dynamic environments. In all the proposed methods in the
literature, data is collected from fixed monitoring equipments, such as sensors and CCTV
cameras, or using mobile data sources such as floating GPS data and SMS, social data feeds
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[98]. The type of traffic data source is a very important factor as the heterogeneity of data
sources and the variety of their format and level of granularity may add extra constraints
on the designed prediction algorithm and may also affect its efficiency and accuracy. Even
if Induction Loop Detectors (ILDs) are the most prevalent data collection technique and
generally have the highest accuracy ; they can collect all of the fundamental traffic data
except travel times. Some prediction techniques impose some constraints on the quality,
type, and format of the used data feeds in order to ensure high level of accuracy. To the best
of our knowledge, we are the first study to consider the connected vehicles technology for the
collection of real-time feeds for the problem of traffic flow prediction on a road segment. We
see that a much more efficient system would result if the vehicles of the connected vehicles
themselves collect real time feeds because computation would aggregate a quality of data at
a vehicle level instead of a quantity of data. Data are exchanged between connected vehicles
every 0.1 seconds and technology on board of the vehicle will take both the macroscopic and
microscopic level mobility parameters together into consideration in order to provide a robust
framework.

Also, in all the proposed methods in the literature, the traffic data cannot be directly measu-
red everywhere, but needs to be interpolated from incomplete, noisy and local traffic data at
the specific location of the detectors, sensors or cameras. We want to maximize the coverage
of the traffic. Connected vehicles are key players because they provide real-time traffic infor-
mation along each step of their trajectory, hence allowing a reactive and dynamic traffic data
estimation. This will help deduce more accurate traffic data especially over longer distances.
Real-time urban monitoring through connected vehicles is proposed to obtain a global vision
of the traffic in the network. Also, a significant challenge in terms of information gathering is
related to the number of entities which collect traffic-based data, from road traffic operators
such as public transport companies, private taxi companies, etc., and public traffic manage-
ment authorities, to health and environment monitoring institutions, such as health boards,
environmental protection agencies, etc., and private companies and individuals. All these
data-gathering entities use independent measuring methods which acquire various data with
different characteristics and using diverse methodologies and save it in their own databases.
The most important consequence of this lack of a common format is the difficult synchro-
nization of the information gathered by various sources, which makes the almost impossible
coherent usage of information and cross correlation of events [89]. In the planning of our
model, we make the most of the connected vehicles technology to collect both traffic and
event data. We utilize whitin the same gathering entity, connected vehicles that is, optimal
strategies for the monitoring of data and collection in order to enhance the efficiency and
thus the performance of the system. A portion of our model is built offline by using the
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historical data to assess the mean traffic variables of a road segment, we then use it online
for short-term traffic flow prediction. In real-time using the current reports from connected
vehicles as input to predict flows. Also, traffic events are assessed in real-time again by the
connected vehicles and are given to the predictor online for better traffic flow prediction.

We present in the next section our framework. We focused on defining real-time forward
looking analysis techniques that use historical traffic data and real-time traffic feeds more
fitting precisely a more complex urban road network than the freeway network to predict
how traffic flow will evolve on a target road segment.

6.3 FRAMEWORK

The framework proposed in this study is semi-centralized. On one hand, connected vehicles
collect and propagate data via the ad hoc networks formed between them along a route.
On another hand, a road side unit (RSU) is installed on a target road segment and collects
data for a period of time to get a clearer picture about the traffic on the road. This spatio-
temporal collection of traffic information by both entities leads to a more scalable structure
and is described in the following sections.

6.3.1 Data collection by CVs

Using vehicle-to-vehicle communications, a connected vehicle can continuously collect traffic
characteristics representing the evolution of traffic over time on the road network. Conse-
quently, a huge amount of traffic data can be archived at a vehicle level. We propose the
collection of real-time traffic data from connected vehicles because to a large extent, the qua-
lity of observed traffic data will affect the accuracy of prediction. Vehicles use broadcasting
as a data forwarding, allowing data to move faster than the speed of traffic. In our design,
it is not required for vehicular networks to remain continuously connected (the network can
temporarily split). In fact, a vehicle should be able to enter story-carry-forward mode if there
are no vehicles in his vicinity. For example a vehicle can take 200ms to deliver a message
4 km away under normal traffic conditions. It may take less than 200ms under high traffic
congestion. It may also take 60s to deliver a message 4km away in a story-carry-forward way.

Upon investigation of data on board of the vehicle, each vehicle computes travel time on
each segment of its trajectory. Travel time is the key data in this study. Travel time is the
main factor to affect traffic flow, almost all other factors are closely related with the travel
time, and it has the same trend to rise and fall. Induction loop detectors are the most
prevalent, generally have the highest accuracy, when collecting all of the fundamental traffic
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data (density, time mean speed, space mean speed, etc.) except for travel times. Although
with connected vehicles, it’s not easy to collect density because this metric is affected by low
message reception rate in case of network disconnectivity or low penetration rates, connected
vehicles can straightforwardly collect travel times along each segment of their trajectory. They
can also collect those of others by cooperation between them. Then, each vehicle recurrently
confronts its local network view with the other views so as to update it. The vehicle then
broadcasts to its surrounding its traffic data. The vehicle collects assessments from others in
a table. This propagation process is shown in Fig. 6.1.

Each time a vehicle receives travel time information broadcasted by another vehicle, it up-
dates its stored data accordingly, and the vehicle has to pass on the travel time data sent
by the neighbours to other neighbours in its coverage area. To do so without flooding the
network, each vehicle firstly computes a TravelTime Index of their own and secondly they
average travel time of others. The index is representative of the observed travel time trajec-
tory of the vehicle compared to historical travel time values along the trajectory. It is the sum
of the weighted average of the difference in travel time on a link, for all previous segments
of the trajectory. The weights in the index around the current segment increase so to better
capture current local view. The equation is as follows :

TTindex =
∑10

i=1(1− exp− i
10 ( T T i−T T h

T T h
)

10 (6.1)

After computing the TravelTime Index of their own, vehicles have to average travel time of
others. In order to reduce randomness, the average method is taken to calculate the travel
time and considering the impact of the travel times of all vehicles within the scope, the
formula is set as follows :

v = (1− α) ∗ vs+ (α) ∗ vr (6.2)

where vs is selected as the travel time index of the vehicle, vr is a mean value of the vehicular
travel time indexes in the wireless coverage of the vehicle and α is a weighting factor which
means the different degrees of importance. After experimentation we fixed α to be 0.65.

Also, connected vehicles support delivery of vehicle-to-vehicle messages that are sent every
0.1 seconds. Therefore, networked cars can be extremely fast in warning their surroundings
regarding a blocked road, accident, a special event, etc. The local recognition of this type
of road traffic information is equivalent to the investigation of real time outlier in the traf-
fic flow series. Outliers represent potentially extraordinary patterns in traffic flow series. It



129

Figure 6.1 Propagation process of the connected vehicles to collect data

was recently proved that if the outliers can be detected, then they should be assimilated
into the forecasting system for adaptively responding to the changing traffic patterns. In
fact, connected vehicles can detect extraordinary patterns and hence supply more insight for
the short-term traffic flow forecasting system. The architecture incorporates the ability of
registring in vehicle detailed information on the transient altering events along a vehicle’s
trajectory, such as vehicle crashes, adverse weather, etc.

To do so, we firstly implement on board of each vehicle the algorithm for the detection of
congestion via connected vehicles presented in [19]. A congested segment is a piece of road
network where the difference between expected and actual travel time is bigger than a certain
threshold. The expected travel time on a given segment can be obtained from a number of
historical observations. In this way it is possible to learn the typical traffic behaviour for a
given road segment on a certain day of the week, at a given time. If a segment is congested,
it takes more time to pass by it. Understanding the correlation between traffic indicators
and road traffic events is crucial. A rigorous analysis was done in [83] and proved that
connected vehicles are able to collect traffic data (travel time, gap, speed, problematic spots)
and estimate the event on the segment when excessive congestion is experienced. Excessive
congestion considers the additional time taken to pass through a road segment in comparison
to a threshold. Thus, we also implement on board of each vehicle the algorithm in [83] that
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permits vehicles not only to detect congestion but also classify the cause of congestion.

In fact, traffic bottlenecks are disruption of traffic and are of two general types stationary
and moving bottlenecks. Stationary bottlenecks are those that arise due to a disturbance
that occurs due to a stationary situation like narrowing of a roadway, an accident. Moving
bottlenecks on the other hand are those vehicles or vehicle behaviour that causes the disrup-
tion in the vehicles which are upstream of the vehicle. Moving bottlenecks are caused due
to slow moving vehicles that cause disruption in traffic. Moving bottlenecks can be active or
inactive bottlenecks. If the reduced capacity caused due to a moving bottleneck is greater
than the actual capacity downstream of the vehicle, then this bottleneck is said to be an
active bottleneck. Bottlenecks are important considerations because they impact the flow in
traffic. Suppose that, at time t, a truck on a road segment slows from free-flow to v. A queue
builds behind the truck. Within the region of the truck, vehicles drive slower and a queue
will back up behind the truck and eventually crowd out the street. The real-time monitoring
done by the connected vehicles is local and self-organized and the results of the locally ob-
served traffic situation are disseminated reactively. The model adaptability of detecting and
tracking the traffic patterns changes by integrating the real-time feeds results will learn to
differentiate between temporary induced traffic pattern change that is mitigated in a short
period vs permanent pattern change in order to ensure a robust forecasting system.

6.3.2 Data collection by RSU

On the target road segment where traffic flow prediction is required, an RSU is installed and
continuously computes and stores current flows on the segment. It also collects specific data
from vehicles passing by. Fig. 6.2 shows the deployment of an RSU on a target road segment.

An RSU can have more complete knowledge of its realm, assuming it can receive and hold
information originating from anywhere on the map. When the RSU launches a request for
prediction, all vehicles on the segment are involved in the process. In this manner, the data
they transmit to the RSU is no longer a local static segment traffic flow data because it is
not limited to the vehicle’s assessment but to that of all the vehicles each vehicle encountered
along its trajectory. To limit the analysis to a specific geographical area, because flow on a
road segment is correlated to its surrounding and on average a node has an area of interest
of 2Km, we impose the vehicles compute data from the last 10 segments of their trajectory.
Also, the collect would also have to be restricted in terms of duration since values may change
and new vehicles may appear in the area and contribute to the collect with new values. The
maximal duration used by each vehicle is given by the successive values in its table for no
more than 15 minutes. The RSU collects from CVs, TTindex, flows and events on other
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Figure 6.2 Deployment of a RSU on the target segment

segments and does the mapping between all influenced road segments. Around the target
segment, the influenced road segments are those whose flow readings show an anomalous
decline compared with the historical average flow when an event occurs in the surrounding.
The idea is that real-time data (time, currents flows/events on adjacent segments and travel
time experience around the target segment) and past traffic flows on the target segment are
explanatory variables for prediction of traffic flow on a segment. The purpose is to use these
information to predict traffic flow by means of a deep learning technique that learned from
an adequate dataset to automatically infer from the correlations between these variables.
The predictor takes input of the features sent to the RSU, and output the predicted flow
in the predetermined future on the target segment. The predictor is the STP model and is
presented in the next section.

6.4 STP Model

The traffic flow prediction problem can be stated as follows. Let Xi(t) denote the observed
traffic flow quantity during the tth time interval at the ith observation location in a trans-
portation network. Given a sequence of observed traffic flow data, i = 1, 2, . . . , m, and t
= 1, 2, . . . , T , the problem is to predict the traffic flow at time interval (t+∆) for some
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prediction horizon ∆. This is the short-term traffic flow prediction problem, STP. Some other
works focus on predicting the traffic flow of the next several time intervals from T + ∆ + m
to T + n as well, it is called the long-term traffic prediction. In our work, we consider the
short-term traffic flow prediction problem.

On the other hand, most models in the literature predict flow Xi (t+∆) at time (t+∆) based
on the traffic flow sequence X = {Xi, t|i ε O, t = 1, 2, . . . , T } in the past, where O is the
full set of observation points (roads and stations). The problem becomes, given the feature
X and task Y pairs obtained from history traffic flow {(X1, Y1), (X2, Y2), . . . , (Xn,
Yn)}, learn the best parameters for a predicting model that minimizes a loss function. This
is supervised learning because each input can be tagged with the flow Y corresponding to the
next value in the time series obtained offline. However, in our work, we consider that traffic
flow prediction not only depends on historical flow data but heavily depends on real-time
traffic data. To do so, we incorporate to the input feature X, not only previous traffic flows
observed on the target road segment but knowledge acquired from related roads. The model is
fed well engineered features, such as real-time reports from connected vehicles and travel time
along a trajectory in order to learn a representation that takes into account the various events
that vehicles realistically encounter on the segments along their trajectory. As with most data
mining problems, when modeling real-world physical systems, having good features is critical.
In this study, the features are : current time of day, observed travel time trajectory of vehicles
around the target segment (TTindex), past successive flow values on the target segment, flows
on links around the segment and the presence of any traffic event on surrounding segments,
such as incident, weather, special event, workzone or recurrent traffic. In order to store and
exchange traffic characteristics, each vehicle creates information structures and stores them
in vehicle. The structures consists of the vehicle’s own measurements and measurements
obtained from others. Each structure consists of the following fields :

— Timestamp : time of the measurement’s creation to ensure freshness of measurements
and to prioritize most recent ones.

— TravelTime Index : the observed travel time trajectory of vehicles around the target
segment.

— Historical flow table : Past four flow values on the target segment.
— Adjacency flow table : flows on each of the eight neighboring segments.
— Adjacency event table : any traffic event on the eight segments around the target

segment.

Particularly, in this study, the problem of predicting short-term flow is handled as a clas-
sification task. In fact, we propose that the target variable Y represent multiple classes of
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discrete interval of flows and the task is for the classifier to predict the range of flow that the
current traffic situation will generate at a near future time.

Moreover, we propose that the classifier learns to solve multiple tasks at the same time. In
machine learning, we normally break a complex problem down into tractable sub-problems,
and learn to solve one problem at a time. This potentially ignores rich sources of information
found in the training signals of other tasks. It is possible to jointly train a general model for
solving different tasks simultaneously. The classifier will prefer hypotheses that explain more
than one task, improving generalisation. In [78], they proposed multitask learning (MTL) as
a means of inductive transfer between tasks. The update is done with error signals of other
tasks. Precisely, to use MTL for time series prediction, we use a single model with multiple
outputs, each output corresponding to the same task at a different time. If output k referred
to the prediction for the time series task at time Tk, the model makes predictions for the
same task at three different times. The output used for short-term flow prediction would
be the middle one so that there are tasks earlier and later that the model trained on. In
particular, we propose that given a fresh new road network traffic situation at time t, Xt,
the first task consists in determining what flow c ε Y is a suitable flow prediction at t+5.
The second task is to find what flow c ε Y is a suitable short-term flow prediction at t+15
based on the similar road network traffic situation and on the relevant prediction of the first
task and the third task is to find the flow at t+20. Fig. 6.3 presents a road network traffic
situation at different time periods. In the figure, the traffic is monitored on segments 1-8.
The target segment is number 8. There is an accident on segment 7 at time t. The flow on
segments one to eight is monitored at t+5, t+15 and t+20. At time t, the first task is to
predict flow on segment 8 at time t+5, the second task is to predict flow at t+15 and the
last task is to predict flow at t+20.

Given a fresh new traffic situation on a target road segment, we propose a feedforward neural
network or Multi-Layer Perceptron (MLP), that solves the three tasks. The MLP is a series
of logistic regression models stacked on top of each other, with the final layer being another
logistic regression because we are solving a classification problem. The purpose of the hidden
units is to learn non-linear combinations of the original inputs. Also, a transportation system
is a highly correlated network. The characteristics of transportation systems, such as the
large amounts of data and the high dimensions of features, makes deep learning a promising
method for transportation research.

We extend the MLP to a Deep Neural Network (DNN), and tackle the problem by learning
the target DNN in a multitask learning technique. We can easily extend the model to predict
multiple outputs in order to do multitask learning. We conjecture that when the tasks invol-
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Figure 6.3 Monitoring of traffic on segments 1-8 at time a)t, b) t+5, c) t+15 and, d) t+20

ved in MTL are semantically connected, a larger improvement in predication accuracy can
be obtained. More specifically, MTL can be more effective when we can encode the instances
from different tasks using the same representation layer expressing similar semantics. Using
historical flows and well engineered features, such as real-time reports from connected ve-
hicles and travel time along a trajectory for accurate forecasting of flow in an urban network,
the model learns a representation that takes into account the various events that vehicles rea-
listically encounter on the segments along their trajectory. They may come across incidents,
workzone, inclement weather, special events or recurrent congestion. All these situations are
assessed by the connected vehicles and are modeled by creative features to be fed to the
DDN for the sake of learning to predict traffic flow. The supervised multi-task learning DNN
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model is presented in Fig. 6.4.

The input of dimension 62 in our joint learning architecture feeds three hidden layers. The
supervised classifier has 20, 40 and 20 hidden units in the different layers. Three outputs are
fully connected to the hidden layer that they share. Each output of the network contains four
neurons representing the class label. Thus, the multi-task model is trained for classification
on labeled examples. If we add mutual inhibition arcs between the output units, ensuring
that only one of them turns on, we can enforce a sum-to-one constraint, which can be used for
multi-class classification. Multi-classification means that target variable represents whether
a traffic situation will generate one of four ranges of flow. Each output node estimates a
conditioned class posterior probability given an input feature vector. The output is passed
to three independent softmax to produce the scores for the individual tasks. By assigning a
softmax activation function, a generalization of the logistic function, on the output layer of
the neural network, the outputs can be interpreted as posterior probabilities. This is very
useful in classification as it gives a certainty measure on classifications. The softmax activation
function is :

yi = exi∑c
j=1 e

xj

Given the strong connection between the objective functions of the DNN, training is perfor-
med equally for all tasks using backpropagation. The function to be optimized is the mean
squared error between network outputs and targets. The model learns the best parameters
for predicting Ŷ that minimizes the loss function, i.e.,

L(Y, Ŷ ) = 1
2(Y − Ŷ )2

Models require the availability of a dataset of training and ground-truth annotations for
classification. The model’s accuracy strongly depends on the amount of training data and
the variation within it. We present in the next section the simulation outline that help create
the synthetic dataset and we provide results.

6.5 SIMULATION AND RESULTS

Economic issues, lack of large scale deployment and technology limitations make theoretical
analysis and simulation the main choices in the validation of VANET. The realism of the
simulation is thus a paramount aspect. Our experiments utilize a validated real-world traffic
dataset of the City of Cologne, Travel and Activity PAtterns Simulation (TAPAS) Cologne
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Figure 6.4 Multi-task learning DNN

scenario, assumed to be one of the largest traffic simulation data set [45].

6.5.1 Simulation outline

TAPAS covers the main road network within the inner city of Cologne. In the scenario, traces
for the 6-8am peak hours are provided. We create extended scenarios mounted on top of the
base scenario to model atypical traffic conditions such as weather, incident, workzone, special
event and recurrent congestion. Our experiments are then built on the extended scenarios.
Evaluation of our framework using complex real-world scenarios allow determining whether
the proposed models can handle the real life’s complexity. We use SUMO, a microscopic traffic
simulator for the simulation of urban mobility [72]. Our investigations need the microscopic
view for different reasons. Fine microscopic simulations model each vehicle explicitly and
compute the traffic flow’s progression by modelling each vehicle’s speed and lane choice,
mostly using discrete time steps of one second, calculating different traffic specific values like
the amount of vehicle in a specific point and so on. Also, simulating a large area is necessary
in each scenario because trajectory data along a vehicles’ trip needs to be collected. Finally,
SUMO enables generation of trace files that are necessary for the simulation of communication
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in a VANET in the network simulator ns-2 [76].

In a simulation, atypical traffic conditions are not direct model parameters but must be
converted into ones. We describe below the extended scenarios of atypical traffic conditions
simulated using SUMO :

1. Extended Scenario of an incident : On the base scenario, we stop two or three vehicles,
for a specific amount of time, on a lane to simulate incidents. We simulate incidents
at the beginning, middle and end of a lane. We also simulate incidents on different
lanes, for a long or short duration as well as inside or outside of an impact region of
a special event.

2. Extended Scenario of a workzone : Similar to the above extended scenario, we stop
vehicles on an edge to simulate a workzone. We vary the position on the edge and the
duration.

3. Extended Scenario of bad weather : We convert the base scenario into an extended
scenario of bad weather, snow for example. Snow might lead to slippery roads and
reduced sight, leading to decreases in the vehicles’ velocities and a more careful and
defensive driver behaviour. Such behavioural changes would be reflected in simulation
parameters, such as the driver’s preferred velocities. Parameters of the car-following
model are affected by the weather.

4. Extended Scenario of a special event : To generate trips to a particular destination edge
where there is a special event, we have to generate random departures and random
routes. We use a Poisson process to generate random timings for trips. Departures will
occur individually, stochastically independent to all the others in the road network,
at random moments. The rate parameter λ is the demand per second from different
sources in the network, and can be seen as the flow. To generate random routes, given
trips are assigned to respective fastest routes according to their departure times and
a given travel-time updating interval by SUMO’s traffic assignment model.

We then perform experiments on these extended scenarios based on real-world traffic. We
assume that vehicles are equipped with a Global Positioning System (GPS) device for po-
sitioning and a detailed enriched digital road map for route guidance including the length
of each road, number of lanes per road, the coordinates of the markers on the road and
historical threshold values of travel time and flows for each road derived offline using past
historical data. Also, vehicles are equipped with a transceiver for communication using De-
dicated Short-Range Communications (DSRC) IEEE 802.11p. We use well-known neighbor
discovery, geographical routing, and message forwarding techniques to pass tasks and infor-
mation through the connecte vehicles. When vehicles on the congested segment experiencing
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congestion detect that the observed travel time is excessive, the observable trajectory cha-
racteristics and the results of the local traffic evaluation are collected. We generate urban
mobility traces from the extended scenarios for usage in ns-2, the discreet-event network
simulator, in order to carry on the cooperative process [76]. Data of independent vehicles
passing on the target road segment are collected. Characteristics are extracted from several
scenarios, experiments and vehicles respectively and put into supervised feature vectors. We
construct a synthetic training dataset. Synthetic datasets are designed to obtain information
while still maintaining statistical properties of the original data.

On the target road segment, traffic flow is measured every second but is aggregated into
5-min duration. All inputs of the prediction model are real numbers except for the traffic
events happening on the segments. Traffic events consist of one of the six causes :

〈
accident,

workzone, weather condition, recurrent, special event or no events
〉
. This order of the causes

is important because the values representing events are given to the model via an encoding
rather than as simple continuous inputs. The encoding we use is a one-hot vector of six values
either being 0 or 1 in the presence of the event in the previous order. For instance, in presence
of an accident on a segment, the one-hot vector is

〈
100000

〉
and in presence of a workzone,

the vector is
〈
010000

〉
.

Once we have obtained the features, we map the prediction variables to classes or bins. There
are many ways to construct bins, we experimented with many of these approaches and chose
to do manual binning. This allows us to divide the range of values into sub-ranges. Once
we have constructed the feature vector and mapped the continuous prediction variables to
discrete classes, we train the STP model. The model will learn historical similarities between
road segments. In contrast to using direct historical trends in the measure itself, this is more
powerful since sometimes trends may not exist in the measure but do in the similarities.

6.5.2 Results

Fig. 6.5 shows the structure of demand data over 24 hour period in the whole region. This
shows normal behaviour of mobility where peak hours like 6-9am, 4-6pm during which the
number of trips are usually high. In our study, flows from 6 :00 am to 8 :00 am are collected
on a target road segment under different scenarios. In our study, for a period of five minutes,
for every 4-period window, a feature is created by incorporating the 5th, 6th and 7th data
points as tasks 1, 2 and 3 on a target road segment. The next feature includes the 5th data
point as input and task 3 becomes the 8th data point. This process continues until the last
observation of flow at 8 :00 am.

For illustration purposes, we plot in Fig. 6.6 the profile of traffic flow values for a signalised
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Figure 6.5 Demand data over a 24 hour period

road segment in the urban network. From this figure, we can sense that vehicles stop at the
light and then another wave starts periodically. This behaviour of traffic flow is different from
that occurring on a freeway. In the figure, no congestion and no events are present on the
road segment. In Fig. 6.7 however, we show the profile of traffic flow values in the advent of
an incident occurring on the urban road segment. We notice as congestion installs, how the
flow values stay very low because density is high. We demonstrate how our model accurately
predicts future flows in presence of any cause of congestion.

To make the proposed framework tractable, we compare the performance of our MTL model
with various prediction models. Firstly, since our multitask learning model is built on MLP
network, it is worth to compare and investigate how much improvement we could achieve
beyond the baseline MLP network classifier. In Fig. 6.8, Fig. 6.9 and Fig. 6.10, we present
three net architectures. In Fig. 6.8, MLPa is a standard net that learns the task of short term
traffic flow prediction 15 minutes later. In Fig. 6.9, MTLa is a net that learns two tasks of
prediction of traffic flow with the first task being prediction of flow 5 minutes later, that is
before the target time and the second task is the main task of prediction of short term traffic
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Figure 6.6 Profile of traffic flow on a signalised road segment

Figure 6.7 Profile of traffic flow on a signalised road segment in advent on an incident

flow 15 minutes ahead. In Fig. 6.10, MTLb is a net that learns two tasks of prediction of
traffic flow with the first task being the main task of prediction of short term traffic flow 15
minutes later and the second task is prediction of flow 20 minutes later.

Also, to measure the predictive power of the proposed MTL model, we compared it with the
performance of the state-of-the-art ARIMA time series approach and with a baseline classifier,
Random Forest (RF), implemented in Weka. MTL and MLP models are implemented using
Torch 5 package. Specifically, when evaluating the performance of our model, we use root-
mean-square error, MSE. We use it to measure the linear score that averages the error with
the same weight and to measure the residuals by assigning larger weights to larger errors.
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Figure 6.8 MLPa is a standard net that learn STP.
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Figure 6.9 MTLa learns STP and flow at t+5.
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Figure 6.10 MTLb learns STP and flow at t+20.

We feed ARIMA the original traffic flow data. We implement ARIMA starting with stationary
verification, followed by the iterations of 1 to 10 for Auto Regressive model and 1 to 10 for
Moving Average model to reach the best combination under Bayesian information criteria.
We use the trained model for one-step forecasting. We iterate the prediction procedure four
times by using predicted value as previously observed value. For RF and the neural networks
however, the data is not only traffic flows but also the other features proposed in this paper.
In fact, the data for the above-mentioned tasks contains 6938 traffic situations related to
five different scenarios. The dataset is then divided in training, validation and test sets. For
the one-hidden-layer MLPa, we set the number of hidden units and epochs through cross-
validation on the training data. The hidden units are varied between [5, 150] in steps of 5.
Moreover, the number of epochs is varied between [25, 250] in steps of 25. We added dropout
between all the layers of the network to improve generalization and avoid co-adaptation of
features. We tested different dropout rates (0.2, 0.4) for the input and (0.3, 0.5, 0.7) the hidden
layers obtaining better results with highest values, i.e., 0.4 and 0.7. The best architecture for
MLPa is one hidden layer with 90 hidden units, and the number of epochs is equal to 150.

On the other hand, for the deep architectures, there are more parameters that we have to
define, such as the nodes in each layer, the layer size and the epochs. These parameters are
also determined through cross validation only on the training set to ensure fairness when
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comparing with other approaches. The experimental evaluation is based on five folds cross-
validation (CV) with 20 randomly repeated CV runs to obtain average performance scores
for comparisons. Backpropagation is done on all outputs. To avoid overfitting, we did not try
very deep MLP architecture. In the case of MTL, MTLa and MTLb we choose the layer size
from two to five layers. The number of nodes in each layer is chosen from [5, 150] in the steps
of 5. The number of epochs is crucial to the learning phase. Therefore, we vary the epochs’
range from 50 to 300 in the steps of 50. We first randomly choose each parameter from the
possible set, and then, we choose the best configuration from the random runs. The best
architecture for MTL consists of three hidden layers with 20, 40, and 20 hidden units in the
first, second, and third hidden layers, respectively. The best number of epochs of the MTL
training is found to be 100 epochs. Since we only employ the synthetic dataset for training,
models with very complex structures would be underfitted. More nodes in each layer would
cause unnecessary burdens for model training and compromise the performance.

Table 6.1 shows the results of our MTL model in comparison with the time series, baselines
and MTLa and MTLb using MSE. The scores are averaged from 20 randomly repeated 5-
folds CV runs. MLP model makes comparable performance to the state-of-the-art RF model.
But RF and MLP achieve better performance than the ARIMA time series, with error values
of 0.122 and 0.113 respectively. This is expected because of the added features in the input
vector. Also, deep networks perform better than baseline MLP because deep networks learn
sub-features in the different layers to better characterise the output flow. Consequently, in all
scenarios of traffic congestion due to different event, deep networks track better the sudden
flow changes and their pattern. Particularly, results indicate that multi-tasking improve the
performance compared to single task learning with MLP. Task 2 in MTLa and task 1 in
MTLb try to capture the information contained in the training signals of other tasks drawn
from the same domain. The tasks in these models exploit the joint input. If the tasks can
share what they learn, the model performs better when it learns them together than in
isolation. The difference between MTLa and MTLb is in the training phase. Because of the
joint representation, MTLa is 0.04 better than MLP on the test set result and MTLb is about
0.028 better than MLP.

We analyze the contribution of MTL to the prediction problem. We notice that some hidden
units of MTLa and MTLb became specialized for just one or a few tasks. Task 2 in MTLa
and Task 1 in MTLb need to compute the same subfeatures. If Task1 from MTLa and Task 3
from MTLb are used as extra outputs in MTL, this signify that they must be learned ; it will
bias the shared hidden layer to learn the input features better, and this will help the MTL
net better learn to predict outputs. This confirms the importance of having highly related
tasks and our idea of using MTL to improve the target Task 2. MTL provides the best MSE,
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Table 6.1 Performance comparison of MTL with the time series, baselines (RF, MLP) and
MTLa and MTLb using MSE.

Task ARIMA RF MLP MTLa MTLb MTL

5-min Traffic Flow prediction - - - 0.042 - 0.056

15-min Traffic Flow prediction 0.255 0.122 0.113 0.073 0.085 0.052

20-min Traffic Flow prediction - - - - 0.094 0.108

improving MTLa and MTLb by 0.021 and 0.033, respectively. Indeed, Tasks 1 and 3 help
solving it. Generalization in neural nets improved because the net learned to better represent
underlying regularities of the domain. Extra outputs inject rule hints into networks about
what they should learn. This is MTL where the extra tasks are carefully engineered to coerce
the net to learn specific internal representations. The extra error terms constrain what is
learned to satisfy desired properties of the other task. MTL provides a benefit with time
series data because predictions at different time scales often partially depend on different
processes. When learning a task with a short time scale, the learner may find it difficult
to recognize the longer-term processes, and vice-versa. Training both scales on a single net
improves the chances that both short- and long-term processes will be learned and combined
to make predictions.

On another hand, the data resolution provided by the connected vehicles technology is ano-
ther reason behind the high performance of our model . For instance, if the objective is to
forecast traffic in 5-min periods into the future, then the best data resolution to be used
is 5-min. Therefore, aggregation of high-resolution raw data into lower resolution levels is
a common practice in short-term traffic forecasting studies. Many studies aggregate raw
loop-detector data into 15-min, 10-min, and 5-min periods before the forecasting models are
applied. In our case, since data are exchanged between connected vehicles every 0.1 seconds,
we face the opposite case where we aggregate into high-resolution. We believe that in our
case we don’t loose accuracy as there is no extrapolation done.

Finally, we carefully analysed the instances where the MTL model made mistakes. We found
that mistakes were made mostly from incident and workzone scenarios. In fact, two traffic
situations can be represented by the same input features, but the output label of one of the
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tasks can be different. For example, in traffic situation 1, the label at t+15 can be the same
as the label t+15 in the traffic situation 2 but the label t+20 is different in both situations
although they have the same input. In fact, we monitor the same network region at same
time in the traffic situation 1 and if there is an incident on road segment 1 at the top of the
street at time t1, we collect flows F1-F8 on all segments and establish the one-hot vector of
S1 as being 1 0 0 0 0 0 and all others S2-S8 as being 000000. We construct the input feature
vector of this situation. In another scenario at the same time t1, for the same network region,
in traffic situation 2, there is an incident again on road segment 1 but this time at the bottom
of the street. We collect flows F1-F8 on all segments. We find that they are the same as those
in traffic scenario1 at the same time. We establish the one-hot vector of S1 as being again 1
0 0 0 0 0 and all others S2-S8 as being 000000. This results in the same input feature vector
as previously. We have to label each feature vector with future flows. We see that flows at
t1+15 for both scenarios are similar but flows for t1+20 are different. In this context, the
incident happening on the street had the same effect on flow in a short period but later on it
cleared better. The position of the incident on the road segment had an impact on flow later
on in time because maybe meanwhile, the incident cleared better. We analysed the situation
and found lots of vectors in the dataset that behave like this in the incident and workzone
scenarios only. One way to solve this problem might be by changing the network architecture.
In fact, the MTL net presented in this article use fully connected hidden layer shared equally
by all tasks. Sometimes, more complex net architectures work better. For example, sometimes
it is beneficial to have a small private hidden layer for the main task, and a larger hidden
layer shared by both the main task and extra tasks. But too many private hidden layers
(e.g., a private hidden layer for each task) reduce sharing and the benefits of MTL. We do
not currently have principled ways to determine what architecture is best for each problem.
Fortunately, simple architectures often work well, even if not optimally.

6.6 CONCLUSION

We proposed a Short-term Traffic flow Prediction (STP) framework for urban road networks
so that traffic managers take early actions to control the flow and prevent the congestion
state. The framework is semi-centralized because on one hand, connected vehicles collect and
propagate data via the ad hoc networks they form between each other along a route. And
on another hand, a road side unit (RSU) is installed on a target road segment and collects
data for a period of time to get a clearer picture about the traffic on the road. To cope with
the fact that current research on traffic prediction mainly focuses on data traffic history and
neglects other conditions affecting traffic, in this paper, we showed how connected vehicles
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technology allow advanced modelling by integrating the impact of the various events that
CVs realistically encountered on segments along their trajectory into the forecasting of flow.
We have studied how these critical events will affect the future traffic flow prediction and
we solved the STP problem with a neural network. For a complex urban transportation
system, one single hidden layer does not provide enough accuracy as it does not describe
in detail the complicated relations between inputs and outputs. A deep architecture showed
its advantage in dealing with these complicated relations. Supervised learning methods have
been proposed in the literature for the task of STP however we showed how the design of
our reactive approach by tackling the problem by learning the target Deep Neural Networks
(DNN) in a multitask learning technique (MTL) improved prediction accuracy. In fact, the
full detail of what is being learned for all tasks is available to all tasks because all tasks are
being learned at the same time. Our shared semantic representation provides an important
advantage over previous MTL applications, whose subtasks share a less consistent semantic
representation. Our experiments on synthetic dataset show that the results of our approach
significantly outperforms state-of-the-art ARIMA time series and baseline classifiers, with
an average root-mean-square error (RMSE) of 0.05. Compared to single task learning with
Artificial Neural Network (ANN), ANN had a lower performance (0.113 for RMSE) than
MTL. In addition to improved performance, the proposed framework provides a flexible
solution for general vehicular prediction tasks.

One limitation of the proposed machine learning prediction model include the fact that it
is possible to increase the number of tasks in MTL and this hurts performance instead of
helping it. MTL is a source of inductive bias. Some inductive biases help. Some inductive
biases hurt. It depends on the problem. MTL is a tool that must be tested on each problem.
Between mediocre performance on all tasks and optimal performance on one task, we optimi-
zed performance on one task, and allowed performance on the extra tasks to degrade. Also,
real-world scenarios are much more irregular and noisier than synthetic scenarios. Scenarios
used within the development of methods similar to the ones we developed could be publicly
made available to show the benefits or limits of the new methods. It may also be noted
that real-world scenarios are usually found to be more appealing and to convince a viewing
person more than synthetic scenarios, especially in the transportation domain.The proposed
methods in this article will require a 100% market penetration rate of the connected vehicles
technology to obtain the full benefits of the connected vehicles technology and ensure sa-
tisfactory performance. This is actually more of a challenge to the success of our proposed
solutions than a limitation.

As a future direction, to improve generalization performance, the framework could be easily
extended to incorporate more features pertaining to the topology, contextual data about
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seasonality such as day of week, whether a holiday is in progress. Also, in terms of security,
at its current stage, the proposed framework represents a single point of failure as a faulty
RSU means no prediction can be made on an entire target road segment. A prediction model
should be able to give good predictions even in case of attacks of denial of service (DoS) on
RSUs. Finally, the ultimate forecasting model takes into account the intention of travel of the
individual as it is what is behind the behaviors of individual mobility. In fact, vehicles transit
from one origin to a destination according to an intention of travel. A hybrid methodology
that merges origin-destination matrices with combination of inter-vehicle communications
feedback for data collection can better capture the real-time traffic state. Connected vehicles
can capture the itinerary from each origin location to the intended destination in real time.
The fast evolution of inter-vehicle communications, hence the potential of using connected
vehicles with highly distributed algorithms are expected to provide near-optimal global so-
lutions.
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CHAPTER 7 GENERAL DISCUSSION

In this chapter, we first recall the research objectives that we declared at the beginning of
the thesis and evaluate the extent to which they were achieved. Then, we take a critical look
at the overall results of our work to better understand the scope and impacts of our research
through the presented contributions. Finally, we discuss the limitations of our work.

7.1 Objectives achievement

The main objective of this thesis was to optimize the traffic flow in the transportation system
in order to mitigate congestion. More specifically, the following objectives were attained :

— Collect measurable traffic features extracted by an advanced monitoring
technology capable of aggregating microscopic and macroscopic traffic va-
riables at various levels of granularity. In the first phase of our work in this
thesis was emphasized how the duration, timing and location of non-recurrent conges-
tion (NRC) in an urban network varies a lot making it difficult to monitor traffic in
real time with conventional mechanisms. To this end, firstly, a thorough analysis of
a set of unique traffic features representative of each type of NRC was undertaken.
Specifically, incidents and workzones were essentially characterized by the presence
of problematic spots on the traffic road segment on which the vehicle is travelling.
The vehicle’s variation in trajectory travel time, speed and gap was found to be re-
presentative of inclement weather. And special events were mainly characterised by
their impact region and demand surge. Afterwards, in order to extract those traffic
features, distributed monitoring was undertaken which refers to the process by which
macroscopic and microscopic traffic variables were collected by the vehicles themselves.
Connected vehicles were used as a next generation sensing technology, and allowed for
distributed advanced monitoring. Due to real-time constraints, they were the informa-
tion extraction technique needed to extract the transport-relevant parameters. This
paved the way for the monitoring of trajectory data and enabled to scale to larger
areas.

— Propose classification models based on the traffic features collected for in-
ference on the cause of congestion. While existing methods only quantify the
spatial and temporal impact of the detected NRC, we anticipated that understanding
the cause of urban congestion is a prerequisite for deriving policies and management
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plans so that appropriate proactive strategies can be set in place in order to return
traffic state back to normality. To estimate the cause of congestion, we proposed a clas-
sification problem where each vehicle experiencing excessive congestion infers whether
it is due to a weather condition, incident, workzone, recurrent or a special event. Be-
cause of the traffic features they collected via the connected vehicles technology, the
vehicles in our framework were context aware and able to consider multiple adequate
explanatory sources of information, particularly in dynamic urban environment. To
solve the classification problem, machine learning models were designed and aimed
at identifying the specific type of NRC based on the set of unique features experien-
ced by a vehicle. The monitoring of traffic via connected vehicles was a cost-effective
flexible solution and provided crucial help to increase the estimation accuracy of the
classifiers we proposed. The classifiers were trained on synthetic data extended from
the real case study of the Cologne scenario and their performance in terms of accuracy
of classification demonstrated the robustness of our scheme.

— Design an algorithm for the real-time assessment and evaluation of road
traffic condition. In the last part of the first phase of our thesis, we sought to
further make use of the data collected by the vehicles to guarantee better monitoring
of road traffic on heterogeneous networks. We enabled vehicles to not only detect
excessive congestion and identify its cause but to also propagate the cause of NRC
detected in its surrounding via connected vehicles. To this end, not only distributed
advanced monitoring was employed but continuous advanced monitoring of the traffic
condition along all roads of the traffic network was enabled since duration and timing
of traffic events varies a lot. The purpose was to assess if the temporary induced
traffic change related to an event can be mitigated in a short period or does the
event represent a permanent change representing an NRC. The resulting algorithm
highlighted the monitoring, aggregating, analysis and dissemination procedures done
on board of each vehicle and proved that vehicles can evaluate collectively the cause
of congestion experienced.

— Simulate scenarios extended from a realistic urban city vehicular motion
traces in order to build a synthetic dataset to feed the models for learning
purposes. In the second phase of our work, we stressed how economic issues, lack of
large scale deployment and technology limitations made simulation the main choice
in the validation of models based on vehicular ad hoc networks. Our work was the
first of its kind to use both a microscopic urban mobility simulator, and a network
simulator for the simulation of communication between CVs to generate a dataset
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for learning. The real-world traffic of the Travel and Activity PAtterns Simulation
(TAPAS) Cologne scenario [45], which is considered a ’complex network’ that mimics
the real-life context of vehicle mobility, was implemented in the microscopic simulator
and was considered the base scenario. The mobility simulator needed two inputs : The
Road Network of the city of Cologne is imported from the OpenStreetMap (OSM)
database and the Traffic Demand which is the car trips of the base scenario. By
calibrating the inputs of the mobility simulator, we were able to create extended
scenarios mounted on top of the base scenario to model atypical traffic conditions
such as weather, incident, workzone and special event. The output was the movement
of vehicular nodes in a large urban network and data such as the acceleration, density,
flows, gap between vehicles and other microscopic parameters at a vehicle level. From
the simulation data collected by each vehicle, we extracted features constituting an
instance of the train dataset called synthetic, in order to eventually feed the machine
learning models.

— Implement a cooperation process to increase estimation accuracy because
traffic is multifaceted and to conceal the fact that individually, vehicles
have partial knowledge about the road condition. When congestion occurs, the
vehicle tries to estimate the cause based on its experience. In the second phase of our
work, we exposed the consequences of an assessment and classification done locally at a
vehicle level. If one vehicle sends a false alarms, it spreads uncertainty among vehicles
and this in turn causes more congestion. We tried to solve the problem of false alarms
because the side effects of false alarms on the congestion level are a serious challenge
and sending false information disrupts the proper network operation. We proposed
methods to obtain deeper insight on the cause of traffic congestion using cooperation
between CVs. Besides cooperation, we proposed that an evaluation process has to take
place after data sensing and before data fusion and aggregation. We added this layer
to address the vulnerability of fusion algorithms and also to lower the side effects
of false alarms. The result was a voting procedure and the use of belief functions to
increase accuracy of estimation. Finally, we explored the collected data for learning
purposes by building a dataset and extracting relationships and knowledge via data
mining techniques to elaborate a decision collectively. The performance evaluation
showed that the mining technique enhanced estimation accuracy and detection time.
It also decreased false alarms.

— Propose a traffic flow prediction framework taking into account historical
flows as well as innovative features, such as real-time reports from connec-
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ted vehicles and travel time along a trajectory for accurate forecasting of
flow in an urban network. In the last phase of our work, we anticipated that kno-
wing the flow of traffic heading toward a destination will give more insights about the
expected demands in the near future. And this in return will allow traffic managers to
take early actions to control the traffic flow and prevent the congestion state. Current
models that address this traffic flow prediction problem needed to be improved so as
to allow fast and more accurate prediction. In addition to the fact that they are based
on data collected from a variety of traditional traffic sensors such as lidar, radar, and
video from surveillance cameras. As the data originate from different sources, their
conversion poses a problem. Besides, another obstacle is the amount of data collec-
ted which is increasing exponentially, and the complexity of the data. In sum, data
aggregation poses many challenges when a variety of data sources are required in the
process of data collection. We solved this traffic flow prediction problem by taking
into account historical flows as well as innovative features, such as real-time reports
from connected vehicles technology and travel time along a trajectory in the process
of data collection. Also, another problem with current traffic flow prediction models
is their inadaptability of detecting and tracking the traffic patterns changes. There is
a new pattern every time a non recurrent congestion occurs in the traffic flow and in
this case, the model is not able to predict as accurately as when there is recurrent
congestion. Existing approaches do not adapt to the varying traffic situations because
their distribution are memoryless, and they need a structure that will characterize
the system at each step, not independently from the prior stage. We proposed a Deep
Neural Networks (DNNs), and tackled the problem by learning the target DNN in a
multitask learning technique. The model learns a representation that takes into ac-
count the various events that vehicles realistically encounter on the segments along
their trajectory. The proposed model updates from its normal path and tracks the
changed traffic pattern, generating forecasts according to the new traffic pattern.

7.2 Results analysis

A quick analysis of all the results obtained shows that they are more than satisfactory. One
of the first contributions is the definition of a set of qualitative and quantitative features that
describe the real-time traffic state experienced by any vehicle along its trajectory via the
connected vehicles technology. In fact, when experiments were done anywhere on the road
traffic network, the connected vehicles were able to detect the events and thus proved to be
scalable. Also, they were able to report it quickly and this timely detection of events attested
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the efficiency of this real time advanced monitoring technology.

This complex approach to traffic monitoring, although carried out by each vehicle by a
very simple algorithm, lays the bases for a much more precise evaluation of the road traffic
condition. In fact, when the traffic features extracted by the connected vehicles were fed to
the machine learning methods we proposed for the inference on the cause of congestion, the
results of the classifiers showed estimation accuracy ranging from 87.63% up to 89.51%. This
contribution can assist transportation agencies in reducing urban congestion by developing
effective congestion mitigation strategies knowing the root causes of congestion that are
affecting their facilities.

However, since the best classifier had 89.51% of correctly classified instances, we carefully
analysed the instances where the classifier made mistakes. We found a pattern and we sought
to further improve the estimation accuracy. Another of our major contributions was the
implementation of a cooperation process to increase estimation accuracy. The results showed
that by adding an evaluation layer before fusion can take place on board of each vehicle
not only increased accuracy but also lowered false alarms that are comparable to security
threats on the traffic network. In fact, the distributed data mining techniques via connected
vehicles to elaborate collectively a decision concerning the cause of traffic congestion on a
road network improved the level of knowledge from exchanged messages and helped obtain
deeper insight on traffic condition.

Finally, we make use of the contributions above, mainly, from the fact that vehicles can clas-
sify cooperatively the cause of any congestion encountered along their trajectory, to solve a
traffic flow prediction task on any target road segment. The results of our proposed traffic
flow prediction framework showed that taking into account historical flows as well as inno-
vative features, such as real-time reports from connected vehicles and travel time along a
trajectory for accurate forecasting of flow in an urban network improves prediction accuracy
when compared to state-of-the-art time series approach or baseline classifiers. This is due to
the fact that tasks in our proposed model benefit each other mutually, something a linear
sequence cannot capture and thus ignores a potentially rich source of information available,
the information contained in the training signals of other tasks drawn from the same domain.
If the tasks can share what they learn, the learner may find it is easier to learn them together
than in isolation. In fact, we found that generalization in artificial neural nets improved be-
cause the nets learned to better represent underlying regularities of the road traffic network.
Extra outputs inject rule hints into the model about what they should learn. This is MTL
where the extra tasks are carefully engineered to coerce the net to learn specific internal
representations.
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7.3 Limitations

The proposed methods in this thesis will require a market penetration rate of the connected
vehicles technology between 63% and 75% to obtain the full benefits of V2V communications
and ensure satisfactory performance. A low penetration rate implies that few vehicles are
equipped with transceivers and this leads to network fragmentation in the context of ad hoc
networks. As a consequence, vehicles have to wait to be in the communication range of each
other for the methods to be effective. The performance strongly depends on the penetration
rate of participating vehicles. This is actually more of a challenge to the success of our
proposed solutions than a limitation.

Also, real-world scenarios are much more irregular and noisier than synthetic scenarios. They
may also include some peculiarities specific for the area, often dictated by a chosen long-term
traffic management strategy. Also, scenarios used within the development of methods similar
to the ones we developed could be publicly made available to show the benefits or limits of
the new methods. It may also be noted that real-world scenarios are usually found to be
more appealing and to convince a viewing person more than synthetic scenarios, especially
in the transportation domain.

Finally, limitations of the proposed machine learning prediction model include :

— It yields worst-case bounds that are too loose to insure extra tasks will help. For
example, it is possible to increase the number of tasks and this hurts performance
instead of helping it. MTL does not always improve performance. MTL is a source of
inductive bias. Some inductive biases help. Some inductive biases hurt. It depends on
the problem. MTL is a tool that must be tested on each problem.

— Where tradeoffs can be made between mediocre performance on all tasks and optimal
performance on any one task, usually it is best to optimize performance on tasks one
at a time, and allow performance on the extra tasks to degrade.

— It still is a blackblox approach, it lacks a well-defined notion of task relatedness. Also,
we usually find that optimal performance requires increasing the number of units in the
shared hidden layer as the number of tasks increases. This conflicts with assumptions
made by the theory that the hidden layer size remain constant as the number of tasks
increases.
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CHAPTER 8 CONCLUSION

With the increasing number of vehicles and limited road network expansion, the urban traffic
congestion is growing at an alarming rate. In this thesis, we proposed to optimize the traffic
flow in the transportation system in order to mitigate congestion. We proceeded to a road
traffic congestion analysis via connected vehicles. The main originality of this thesis lies in
the use of the next generation sensing technology of connected vehicles to identify road traffic
events on the basis of exchanging traffic flow data between vehicles. This novel approach in
this domain allowed the real-time distributed detection and classification of the components
of congestion in urban traffic. Moreover, if connected vehicles can detect congestion and co-
operatively attribute a possible cause to it, we showed that they can transfer this knowledge
in real time to an entity able to accurately predict flow on a road segment. The traffic flow
prediction framework we introduced aimed at evaluating anticipated traffic flow at future
time frames on a target road segment based on real time feeds provided by connected ve-
hicles and historical data. Traffic flow prediction allows advanced modelling because knowing
the volume of traffic heading toward a destination will give more insights about the expected
demands in the near future. The proposed models and framework will help infrastructure
authorities improve the network traffic flow and thus reduce traffic congestion.

As a future direction, more features pertaining to the topology, contextual data about sea-
sonality such as day of week, whether a holiday is in progress, can be incorporated into the
models and can be informative about traffic flows in order to improve accuracy. Moreover,
the ultimate forecasting model takes into account the intention of travel of the individual as
it is what is behind the behaviours of individual mobility. Recently, a conceptual framework
of artificial transportation systems focused on behaviour or intention of travel, to model and
simulate artificial societies on a participative basis [99]. This framework can be used to imple-
ment a hybrid methodology that merges inter-vehicle communications with the intention of
travellers to enhance the estimation of road traffic and to increase the accuracy of information
retrieval. The main idea behind the framework is to integrate various transportation models
into "artificial" transportation systems and convert computers into experimental "fields" for
transportation analysis and decision making and evaluations. The keys to successful appli-
cations of such artificial transportations are the availability of agent-based programming
and modeling, large scale distributed computing techniques, and new concepts and methods
developed in complex systems, such as, artificial societies, computational experiments, and
parallel systems.
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