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RÉSUMÉ

Les surfaces portantes. telles que des pâles, ailes, et hydrofoil sont sujets à des instabilités
comme la divergence, le battement et la résonnance qui peuvent provoquer la fatigue de la
structure et réduire sa tenue en service. Par conséquent, il est important de comprendre et
de prédire avec précision la réponse et la stabilité de telles structures afin d’en assurer la
sécurité, et de faciliter la conception et optimisation de concepts nouveaux et existants.

L’interaction entre un écoulement et une structure, nommée interaction fluide-structure
(IFS), doit être prise en compte lors de l’étude la réponse élastique et des instabilités de
surfaces portantes. Pour de telles applications, l’écoulement et la structure sont couplés au
travers de la charge qui s’exerce sur la structure par le fluide, et la déformation qui en découle.
Pour certaines applications IFS, le fluide et le solide peuvent être couplés par un transfert
uni-directionnel de la charge. Dans ce cas, un champ donné peut fortement affecter l’autre
sans l’être lui même. Cependant, pour certaines applications en ingénierie, où il y a une
relation forte et potentielement nonlinéaire entre ces champs, un couplage uni-directionnel
n’est pas adéquat. Alors, les déplacements de la structure causés par l’écoulement accentuent
les forces du fluide de telle sorte que le fuide et la structure intéragissent en boucle de facon
complexe. Donc, une analyse bi-directionnelle doit être entreprise.

Les structure légères et flexibles sont courament utilisées grâce aux avancées récentes dans les
technologies des matériaux afin d’améliorer les caractéristiques hydrodynamiques et struc-
turelles par rapport aux matériaux lourds et rigides. Dans cette thèse, on cherche une
meilleure compréhension de la phénomènologie hydroélastique d’hydrofoils hautement flex-
ibles, qui subissent de grandes déformations sous de fortes charges. Ceci milite en faveur
d’une méthodologie IFS bi-directionnelle fortement couplée, en plus de l’incorporation de
techniques numériques avancées pour la modélisation de la déformation de maillages adap-
tés.

Pour des nombres de Reynolds moyens à élevés, le dévelopement d’un écoulement turbu-
lent autour de l’hydrofoil provoque un transfert du mouvement perpendiculaire à la paroi et
permet à l’écoulement de se re-attacher, et ainsi former une bulle laminaire de séparation
( Laminar Separation Bubble, LSB). Le décrochage de l’écoulement, la formation de tour-
billons dans le sillage, la localisation et le mouvement de la bulle laminaire sont tous des
phénomènes qui affectent les charges hydrodynamiques et les vibrations de la structure. Par
conséquent, une méthodologie numérique avancée, avec une précision spatiale suffisamenent
élevée a été incorporée dans ce travail pour capturer finement ces phénomènes à l’interface
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fluide-structure, tels que l’apparition et l’étendue de la zone de séparation.

L’interaction entre la surface portante et l’écoulement environnant implique d’importantes
caractéristiques tri-dimensionnelles qui ne seront pas négligées dans cette thèse. Par ex-
emple, les effets visqueux, la séparation, le sillage et le décrochage de tourbillons dont les
effets directs ont été démontrés pour établir les charges hydrodymaniques, sont à l’origine
de tels effets tri-dimensionnels qui doivent être pris en compte pour améliorer la précision
de la modélisation d’écoulements turbulents. À cause de la déformation due au flèchisse-
ment et à la torsion de la surface, la charge hydrodynamique n’est pas uniforme dans la
direction de l’envergure. En particulier, pour une surface portante flexible soumise à des
écoulements à grandes vitesses et incidences élevées, la déformation élastique est importante,
et par conséquent, ces caractéristiques tri-dimensionnelles ne peuvent plus être négligées.

Dans cette thèse, on propose une méthodologie avancée d’interaction fluide-structure bi-
directionnelle fortement couplée pour étudier la réponse hydro-élastique de surfaces portantes
légères et flexibles, et tri-dimensionnelles, dans des écoulements visqueux à des nombres de
Reynolds moyens à élevés. Le problème de l’interaction fluide-structure est résolu par un
logiciel de résolution numérique par volumes finis pour la partie fluide, CFX, et un code
d’éléments finis, ANSYS, pour la partie solide du domaine. Au cours des simulations forte-
ment couplées, les résoluteurs fluide et solide exécutent une suite d’étapes multi-champs,
chacune comprenant un ou plusieurs couplages itératifs.

Le résoluteur fluide visqueux et le résoluteur IFS couplé sont tous deux validés par des com-
paraisons avec des résultats numériques et des mesures expérimentales. Pour quantifier les
effets IFS, l’étude porte sur des hydrofoils rigides (en acier inoxydable) et flexibles (Polyac-
etate POM) avec la même géométrie non-déformée. La déformation due à l’écoulement ainsi
que la réponse élastique de ces structures sous plusieurs conditions (vitesses amont, angles
d’incidence) pour des nombres de Reynolds moyens à élevés, sont étudiées.
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ABSTRACT

Lifting bodies, such as blades, wings, and hydrofoils, may be subject to instabilities, such as
divergence, flutter, and resonance, which can fatigue the structure and reduce its operational
longevity. Therefore, it is important to understand and accurately predict the response and
stability of such structures to ensure their structural safety and facilitate the design and
optimization of new and existing concepts.

The interaction between fluid and structure, known as Fluid-Structure Interaction (FSI),
should be taken into account in the study of elastic response and instabilities of flexible
lifting bodies. In such applications, the fluid flow and structure are coupled through the
loads exerted on the structure by the fluid, which results in the the structural deformation.
In some FSI applications, fluid and solid can be coupled by one-way (unidirectional) load
transfer. In this case, a given field may strongly affect, but not be affected significantly by the
other field. However, for some practical engineering applications, in which there is a strong
and potentially nonlinear relationship between the fields, one-way coupling is not adequate.
In such cases, the structural displacement caused by the flow further enhances the fluid forces
in such a way that both fluid and structure are interacting in a complex feedback fashion.
Hence, two-way FSI analysis needs to be undertaken.

Light-weight, flexible structures are widely used through recent advances in material tech-
nologies to improve hydrodynamic and structural performance compared to heavy and stiff
materials. This project seeks to gain greater insight into the hydroelastic response of highly
flexible hydrofoils, which undergo large deformation when subjected to high hydrodynamic
loadings. This increases the necessity of incorporating strongly-coupled two-way FSI method-
ology in addition to the numerical challenges in mesh deformation modelling.

At moderate to high Reynolds numbers, the development of turbulent flow around a hydrofoil
causes a momentum transfer normal to the wall and allows the flow to re-attach, and form
a Laminar Separation Bubble (LSB). Flow separation, formation of trailing edge vortices,
location and movement of the LSB affect the hydrodynamic loading and structural vibration.
Hence, an advanced numerical technique with sufficiently high spatial accuracy is incorpo-
rated in the present study to precisely capture these local interface phenomena, such as the
onset and the amount of flow separation.

The interaction between the foil and surrounding flow involve significant three-dimensional
features that will not be neglected in the present study. For instance, the viscous effects,
separation, wakes and vortex shedding, which have been shown to have immediate effects
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in determination of hydrodynamic loads on hydofoils, have significant 3D features that have
to be accounted for to improve the accuracy of turbulent modelling. Due to the bending
and twist deformation of the foil, the hydrodynamic loading is not uniform along the span-
wise direction. Particularly, for a flexible foil subjected to high flow velocities at hich angles
of attacks, the elastic deformation is significant and hence, these 3D features cannot be
neglected.

This PhD project proposes an advanced strongly-coupled two-way fluid-structure interaction
methodology to investigate hydroelastic response of three-dimensional lightweight flexible
hydrofoils in viscous flow at moderate to high Reynolds number. The fluid-structure problem
is solved with a finite volume-based code for the fluid domain, CFX, and a finite element-
based code, ANSYS, for the structural domain. During the strongly-coupled simulations,
the fluid and structural solvers execute the simulation through a sequence of multifield steps,
each of which consists of one or more coupling iterations.

The viscous fluid solver and the coupled FSI solver are both validated by comparing the
numerical results with measured experimental data. To quantify the FSI effects, rigid (stain-
less steel) and flexible (POM Polyacetate) hydrofoils with the same undeformed geometry
are simulated and compared. The flow-induced deformation and elastic response of those
structures at various operating conditions, i.e. inlet velocities and angles of attack, subjected
to moderate to high Reynolds number flows will be studied.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

Aeroelastic/hydroelastic behaviour of flexible lifting bodies, such as propulsors, blades and
wings, is a very active area of research in the fields of aero/hydrodynamics, structural dynam-
ics, and acoustics. From the fluid dynamics point of view, the dynamic loading on a blade,
for instance, is affected by the motion of the blade, as given in classic texts such as aeroelastic
theory by Theodorsen (Theodorsen, 1935). This unsteady loading causes time-dependent lift
and drag forces that can lead to instabilities if not carefully controlled (Chae et al., 2013;
Liaghat et al., 2014; Ducoin and Young, 2013). Structurally, these uncontrolled static or
dynamic instabilities can lead to vibration, noise issues, excessive deformation, accelerated
fatigue, and even catastrophic structural failures (Coutu et al., 2004, 2005, 2007; Seeley et al.,
2012; Thapa et al., 2012; Liaghat et al., 2014). Structural vibration causes acoustic wave
propagation in the fluid domain that can travel into the far-field and cause structural dam-
age given enough energy (Reese, 2010). An important step towards the prediction of such
structural damage consists in studying and precisely predicting material response to ensure
the structural safety and to facilitate the design/optimization of new/existing structures.

In the majority of earlier studies on the interaction between flexible lifting bodies and the
surrounding flows, the focus has been on aerospace or wind energy applications, in which
fluid damping and inertia have a limited effect on the solid. However, in the interaction
between fluid and hydraulic turbines or marine propeller blades for instance, the influence of
fluid inertia and fluid damping can be much more important. In those cases, the fluid viscous
effects can significantly affect and interact with the dynamic response of the structures and
must be taken into account in the analysis and design of such equipments.

Hydroelasticity

Hydroelasticity is the term used to denote the field of study concerned with the interaction
between the change in shape of a deformable structure subjected to a fluid flow and the
resulting hydrodynamic forces.

The interdisciplinary nature of the field is illustrated in Fig. 1.1 which represents the rela-
tionships between the three disciplines of hydrodynamics, dynamics and elasticity, i.e. each
circle represents a field of study related to hydroelasticity. The classical hydrodynamic theo-
ries, adapted from aerodynamics (Hodges and Pierce, 2004; Harwood et al., 2016), provide a
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prediction of the forces acting on a structure of a given shape. Elasticity provides a prediction
of the shape of a deformable structure under a given load. Dynamics describes the effects of
inertial forces.

hydroelasticity
dynamic

hydroelasticity
staticflight

mechanics

structural
dynamics

hydrodynamics

dynamics elasticity

Figure 1.1 Schematic of the field of hydroelasticity (from (Hodges and Pierce, 2004) adapted
to hydroelasticity)

The areas where these circles overlap represent the interaction between the relevent domains
of study (Hutchison, 2012). Overlap between:

• elasticity and dynamics subfields represents structural dynamics;

• fluid dynamics and dynamics represents flight mechanics;

• fluid dynamics and elasticity represents static hydroelasticity, in which the inertial
forces have little effect; and,

• all the three subfields represents dynamic hydroelasticity, in which the inertial forces
become more significant and phenomena such as flutter can occur.

It is not always easy to distinguish between static and dynamic hydroelasticity as the change
can be dictated by the point at which the inertial interaction becomes significant, and may
cause instability in the system dynamics (Hutchison, 2012). Hydroelasticity can be considered
as the analysis of time-dependent interaction of hydrodynamic and elastic structural forces.
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Fluid-Structure Interaction

Fluid–Structure Interaction (FSI) is a broad term spanning many engineering applications,
but generally denotes the bidirectional energy transfer in a domain consisting of both fluid
and structure (Liaghat et al., 2014). From both theoretical and practical points of view,
the complex interaction between flow and structure, known as fluid–structure interaction,
must be taken into account in the study of the elastic response and instabilities of flexible
lifting bodies. In such applications, the fluid flow and structure are coupled through the force
exerted on the structure by the fluid, which results in the structure deformation leading to a
change of its orientation to the flow. The orientation and velocity of the structure relative to
the fluid flow determines the fluid forces that will be exerted on the structure in a feedback
system.

At the boundary between fluid and structure, known as the fluid-structure interface, infor-
mation for the solution is shared between the fluid and structural solvers. The information
exchanged is dependent on the coupling method. In a one-way coupling, it is assumed that
one domain is driven by the other, with the driven domain having no feedback effect on the
driving domain. This method, however, is not always adequate for practical engineering ap-
plications, in which the structural displacement caused by the flow further enhances the fluid
forces in such a way that both fluid and structure are interacting in a complex feedback fash-
ion. In such cases, two-way FSI analysis needs to be undertaken. Numerically, weak coupling
methods are explicit and hence, suffer from possible instabilities. Strong coupling methods,
in which equilibrium is satisfied jointly between fluid and structure in each time step, provide
better fidelity. To the best of our knowledge, most of the numerical studies on flow over hy-
drofoils thus far have focused primarily on problems with weak FSI. In the present study, a
strongly coupled two-way FSI methodology will be presented to tackle the large flow-induced
deformation and accurately simulate the subsequent complex flow phenomena.

Through recent advances in material technologies, it is possible to take advantage of lightweight,
flexible hydrofoils to improve hydrodynamic and structural performance. Physical material
properties of the structure (density, Young’s modulus and Poisson’s ratio) are important fac-
tors in determination of the elastic deformation and, hence, have immediate effect on how
strongly the fluid and structure are coupled in the FSI simulation. Physically, under a spec-
ified hydrodynamic loading, a more flexible structure undergoes larger deformation. Such a
large deformation requires a two-way coupling method, which leads to additional challenges
in mesh deformation modelling. To the best of our knowledge, most of the former studies on
the dynamic response of hydrofoils thus far involved hydrofoils made of relatively heavy and
stiff materials, such as lead, stainless steel and aluminium. In the present study, a highly
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flexible hydrofoil will be studied.

The interaction between the hydrofoil and the surrounding flow involves significant three-
dimensional features, such as separation, wakes and vortex shedding, that have been shown
to have immediate effects in the determination of hydrodynamic loads on hydofoils. Due
to the bending and twist deformation of the foil, the hydrodynamic loading is not uniform
along the span-wise direction. Particularly, for a flexible foil subjected to high flow velocities
at high angles of attacks, the elastic deformation is significant and hence, these 3D features
cannot be neglected. Most of the previous studies on the hydroelastic response of hydrofoils
have focused mainly on 2D simulations, where the 3D features are neglected. In the present
study, we will emphasize these 3D features.

1.2 Research goal

Even though several numerical techniques have been developed to simulate fluid-structure
interaction of hydrofoils and provide precise prediction of their hydroelastic response, there
still remain some issues that require further investigation. Special care must be taken for
the multiphysics nature of the problem which requires implementation of proper numerical
techniques for capturing both the global hydroelastic response, and also very local phenomena
at the interface, such as development and movement of Laminar Separation Bubble (LSB)
that has been shown to have immediate effects on the hydroelastic response of the structure.

The goal of this research is to develop an advanced strongly-coupled two-way fluid-structure
interaction methodology with sufficiently high spatial accuracy to investigate hydroelastic
response of a three-dimensional lightweight flexible hydrofoil in viscous flows. The flow-
induced deformation and elastic response of those structures at various operating conditions,
i.e. inlet velocities and angles of attack, subjected to moderate to high Reynolds number
flows will be studied.

1.3 Thesis overview and organization

Following the present introduction, Chapter 2 provides a literature review on FSI response
and stability of hydrofoils. This chapter will provide the context for additional research in the
field of hydroelasticty at high Reynolds number flows and presents the different numerical
methods to study fluid-structure interaction along with their advantages and drawbacks
according to the literature. Furthermore, this chapter will illustrate the lack of an adequate
account of three-dimensional features in this field. In Chapter 3, the fundamental concepts
of fluid and solid mechanics as a necessary background for the fluid-structure analysis are
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reviewed. This chapter includes a brief theoretical description of numerical modelling of FSI
and the governing equations for the fluid and the structural domain. The test cases used
for validation of the proposed methodology will be described in Chapter 4. The numerical
modeling, including the fluid and solid models, meshes and boundary conditions are described
in this chapter. In chapter 5, the proposed methodology will be presented. Chapter 6
provides a general discussion about the results. Finally, Chapter 7 presents the conclusion
and contributions of the thesis followed by recommendations for future studies.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, we aim to provide a literature review to situate our research topic in relation
to previous studies and present the current state of the art, upon which our study will build.

First, the instability modes of a structure subjected to different fluid flows will be presented.
The effects of fluid viscosity along with the limitation of previous studies in the field of
hydroelasticity will also be explained to situate the contribution of this work, which is the
study of hydroelasticity at high Reynolds number flows. Fluid-structure interaction, the
relevant previous studies as well as the different solution methods will next be presented.
The advantages and drawbacks of those methods will also be discussed to highlight that the
two-way coupling method used in this study is better suited for the FSI analysis of flexible
hydrofoils. Furthermore, the necessity of performing 3D analysis, which is the contribution of
the present study, rather than previous 2D studies will be highlighted. Finally, the objectives
of the present study will be outlined.

It should be noted that we will focus on the numerical techniques that are especially useful
for FSI problems with very small length and time scales, for which it is diffcult to perform
high resolution experimental studies in detail.

2.1 Physical instability modes

Flexible lifting bodies, such as blades, wings, and hydrofoils, may be subject to instabilities
such as divergence, flutter, resonance, etc. (Ducoin and Young, 2013; Chae et al., 2013), which
are almost always undesireable. These instabilities can fatigue the structure and reduce its
operational longevity and, hence, have to be studied and precisely predicted.

Divergence is one of the most common physical instability modes that cause a system to
fail due to excessive deformation and/or material failure. Both static and dynamic diver-
gence may be observed. Static divergence occurs when the deflection induced by the fluid
load increases with time without oscillations. It is caused by the loss of the effective tor-
sional stiffness, which occurs when the fluid disturbing moment exceeds the structure’s twist
capacity (Ducoin and Young, 2013). In dynamic divergence, the mean deformation also in-
creases with time. However, it has an oscillation frequency, which decays with increasing
deformation (Chae et al., 2013). In the studies of Bendiksen (Bendiksen, 1992, 2002) it was
shown how dynamic divergence can lead to accelerated fatigue and structural failure. Chae
et al. (Chae et al., 2013) showed that dynamic divergence cannot be predicted with linear
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frequency domain methods because it is a nonlinear instability mode where the oscillation
frequency changes with time.

Airfoils/hydrofoils at high angles of attack experience the well-known phenomenon of stall.
This occurs when the critical angle of attack of the foil is exceeded, where separated flow
is so dominant that additional increases in angle of attack produce less lift and more drag
(Clancy, 1975). This phenomenon can occur in the form of a light or massive stall. In the
case of a light stall, the vortex developed from the foil’s trailing edge moves toward the foil’s
leading edge (Fig. 2.1), which reduces the slope of the lift curve, dCL/dα (where CL is the
lift coefficient and α is the effective angle of attack), and also increases the drag (Rhie and
Chow, 1983; Clancy, 1975). When massive stall occurs, periodic shedding of a leading edge
vortex may be observed, which creates large load fluctuations, significant lift decrease such
that the slope of the lift curve becomes negative (Lee and Gerontakos, 2004), and significant
increase in drag. The periodic shedding of the vortices induced by stall may also lead to
flutter or resonance (Ducoin and Young, 2013).

Figure 2.1 Flow separating from a foil and stall at high angles of attack (Wikipedia, 2018)

Flutter is defined as a dynamic self-excited aeroelastic/hydroelastic instability of a structure
in steady, uniform inflow (i.e. flow that is steady in absence of the structure) (Ducoin and
Young, 2013). In this case, the flow-induced deformations oscillate with a fixed frequency.
Poirel et al. (Poirel et al., 2008) and Poirel and Yuan (Poirel and Yuan, 2010) showed that
flutter can be caused by unsteady bursting of a laminar separation bubble and/or unsteady
vortex shedding.

Resonance is an externally-excited dynamic instability caused by an externally applied load or
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by spatially/temporally varying inflow (Ducoin and Young, 2013). It accounts for unexpected
vibrations with large amplitudes that can accelerate fatigue and lead to detrimental failure
(Visbal et al., 2009; Young and Savander, 2011).

2.2 Viscous effects

Although the above-mentioned instability modes have received much attention in recent
years, most of the analytical and numerical studies thus far have focused on inviscid flows
due to interest driven by aerospace or wind turbine applications. Nevertheless, these physical
instabilities can also occur in hydraulic turbines or marine propeller blades in which the
effects of loads exerted from dense fluids such as water are significant on flexible structures.
Due to the lower operating speed, the Reynolds number associated with such structures
is typically lower than occuring in aerospace systems, leading to enhanced viscous effects.
The enhanced fluid inertial and viscous effects associated with flow separations and vorticity
in hydroelasticity might result in nonlinear FSI responses and can significantly modify the
hydroelastic stability boundaries (Chae et al., 2013, 2017; Ward et al., 2018).

As previously mentioned, in most of the earlier works on elastic response of flexible bodies,
the effects of fluid inertia or damping forces are often ignored. In the studies of Theodorsen
(Theodorsen, 1935), Sears(Sears, 1941), and Garrick(Garrick, 1946) linear potential theory
was used to obtain analytical expressions for the aerodynamic lift and moment of 2-D thin
airfoils undergoing small amplitude oscillations in uniform inflow. Theodorsen’s (Theodorsen,
1935) approach assumed that: 1) the total lift force acts at the aerodynamic center (a quarter-
chord downstream from the foil’s leading-edge; and 2) the wake behind the foil consists of
shed vortices from the trailing-edge that convect downstream in a direction parallel to the
inflow without any dissipation, at a fixed frequency. However, the real wake patterns shown
in the studies of Anderson et al. (Anderson et al., 1998) and Munch et al.(Munch et al.,
2010) are typically more complex than the wake patterns assumed in linear potential theory.
The former author experimentally studied the wake patterns of a NACA0012 foil in a water
tank for different flow regimes and observed a wavy wake without distinct vortices and with
a very weak leading-edge vortex. Munch et al. (Munch et al., 2010) conducted numerical and
experimental studies on a NACA0009 hydrofoil and showed that the pattern and strength of
the wakes depend on the the reduced frequency of the oscillation motion, as depicted in Fig.
2.2.

Linear potential flow theory has been shown to be inadequate for modeling FSI problems
with strong viscous effects. Connell and Yue (Connell and Yue, 2007) and Akcabay and
Young (Akcabay and Young, 2012) numerically studied the dynamic response and stability
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Figure 2.2 The wake pattern of a NACA0009 hydrofoil for four values of the reduced fre-
quency, κ, (Munch et al., 2010)

of cantilever beams in viscous and axial flows. The latter authors validated their numerical
results with several experimental data and showed that viscous effects are more significant
for light beams in dense fluids due to the increased relative contribution of the fluid forces.
They also found that fluid viscosity affects flutter of the structure, reduces the vibration
amplitude, and changes the oscillation modes. More recently, Akcabay and Young (Akcabay
and Young, 2014) compared their viscous simulation results with the predictions from the
quasi-steady inviscid linear potential flow based theory. They concluded that the observed
differences between results could be attributed to viscous effects, e.g. thickening of boundary
layers, formation of trailing edge vortices, and flow separation. Considering the viscous
effects, Ducoin and Young (Ducoin and Young, 2013) calculated the static divergence speed
of a spanwise flexible cantilevered hydrofoil and showed that viscous effects help suppress or
delay divergence.

The fluid damping and disturbing forces also depend on the flow velocity (Theodorsen, 1935;
Sears, 1941; Liaghat, 2014). Reese (Reese, 2010) showed that the resonance frequencies and
total loss factors of flexible hydrofoils depend on the flow velocity. This study involved
hydrofoils made of relatively heavy and stiff materials for a limited range of flow velocity,
and hence showed only a small dependence on the flow velocity.

In addition to the effects of velocity on the structural response, which is intuitively apparent,
Reynolds number and angle of attack are also expected to affect the oscillations. Huang and
Lin (Huang and Lin, 1995) and Jung and Park (Jung and Park, 2005) studied the unsteady
characteristics of vortex shedding in the near wake of an oscillating foil for low Reynold
numbers, Re ≤ 2.7 × 104, and showed that the vortex shedding frequency varies with the
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angle of incidence.

Boundary layer flows can be transitional around a lifting body at moderate Reynolds num-
bers. The development of turbulent flow, which causes a momentum transfer normal to
the wall, allows the flow to re-attach, and form a Laminar Separation Bubble (LSB). Flow
separation, formation of trailing edge vortices, location and movement of the LSB affect the
hydrodynamic loading and vibration of a flexible hydrofoil, which is the topic problem studied
in this thesis. Hence, the precise prediction of the onset and the amount of flow separation
plays a key role in the determination of the hydrodynamic loads on hydrofoils. Ducoin et
al. (Ducoin et al., 2012a) experimentally investigated fluid structure interaction on a flexible
hydrofoil in various flow regimes and concluded that the structural vibrations are induced
by the laminar to turbulent boundary layer transition and depend on the vortex shedding
frequency. Ducoin et al. (Ducoin et al., 2009a) showed that the LSB first appears near the
trailing edge for low to moderate angles of attack, and as this is increased, it moves towards
the leading edge. It was shown in the studies of Poirel et al. (Poirel et al., 2008) and Ducoin
et al. (Ducoin et al., 2012b) that this movement of the LSB affects the hydrodynamic loading
and vibration of a flexible hydrofoil. Poirel and Yuan (Poirel and Yuan, 2010) studied the
laminar separation at transitional Reynolds numbers, 5.0×104 ≤ Re ≤ 1.3×105 and showed
that the laminar separation can lead to flutter.

Summary

To recapitulate, the viscous effects, such as flow separation and vortices, have immediate effect
on the hydrodynamic loads and response of hydrofoils. Furthermore, in the determination of
hydroelastic response of flexible hydrofoils, it is crucial to precisely predict the onset and the
amount of flow separation. This is particularly the case for high Reynolds number flows, in
which the change of the wake pattern and vortex shedding frequency is substancially more
noticeable. However, very limited studies are available for flexible hydrofoils at high Reynolds
number flows.

In the present study, the hydroelastic response of hydrofoils subjected to moderate to high
Reynolds number flows will be investigated.

2.3 Fluid-structure interaction

Fluid-structure interaction is a multiphysics phenomenon where the interaction between fluid
flow and structural mechanics is taken into account. FSI is characterized by interactions,
which can be stable or oscillatory, between a moving or deformable solid structure and a
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surrounding or internal fluid flow. These effects cannot be neglected when evaluating the
elastic response of lightweight flexible bodies due to the strong interplay between the body
deformations and load distributions (Ward et al., 2018). This is a consequence of the high
hydrodynamic load, which is proportional to the density of fluid. For instance, the density
of water is approximately three orders of magnitude greater than that of air. Hence, a lifting
body operating in water will experience much higher loads and resulting amplified FSI effects
than a geometrically identical body in air at the same operating conditions (Harwood et al.,
2016; Ward et al., 2018).

As evidenced from these studies, FSI problems play prominent roles in many engineering
and scientific applications, yet, due to their strong nonlinearity and multidisciplinary nature,
a comprehensive study of such problems remains a challenge (Hou et al., 2012). Different
methods for the investigation of fluid–structure coupling have been extensively investigated
(Tran et al., 2005; Dowell and Hall, 2001).

The FSI analyses can be generally categorized into two approaches; monolithic and parti-
tioned methods. In monolithic approaches, both sub-fields (fluid and solid) are combined
as one single problem. The non-linear, discrete system of equations resulting from the dis-
cretization of the governing equations are solved as a whole (Barker and Cai, 2010; Gee,
2011). Ryzhakov et al. (Ryzhakov et al., 2010) presented a monolithic method for the
simulation of the interaction between flexible structures and free surface flows and showed
that their method was robust. However, this method leads to ill-conditioned system due to
the different scaling of variables in the multi-field problem (velocity, displacement, pressure)
(Ryzhakov et al., 2010) and might be very challenging to implement (Wu et al., 2015) and
computationally expensive (Raja, 2012).

In contrast, the computational fluid dynamics (CFD) and computational structure dynamics
(CSD) solvers can be coupled in a partitioned way. In this approach, which will be in-
corporated in this study, the fluid and solid parts are solved using their distinct numerical
methods. Interaction takes place regularly between the fluid and structure solvers via the
coupling scheme which is based on successive solutions produced by the two solvers (Wu
et al., 2015; Lefrançois, 2017). In an industrial context, the most important advantage that
a partitioned approach offsets over a monolithic coupling approach (with a single solver) is
the modularity of the coupling method, which makes the different solvers much easier to
implement (Ryzhakov et al., 2010) and allows distributed computation (Lefrançois, 2017).

Partitioned approaches can be categorized into two types: the loose coupling approach and
the strong coupling approach. In a loosely coupled approach, only one single computation
per time step is performed for each field (Lefrançois, 2017; Akcabay et al., 2017). Hence,
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the coupling conditions at the interface may not be satisfied accurately (Sotiropoulos and
Yang, 2014). Furthermore, loosely coupled (LC) partitioned FSI solvers suffer from numerical
instabilities (Sotiropoulos and Yang, 2014), as each of the solid and fluid solvers can only use
the other’s solution explicitly. This time-delay in the exchange of the boundary conditions
(surface tractions and displacements) between the fluid and solid solvers can lead to errors,
specially for FSI problems with lightweight structures in dense, incompressible flow (such as
water); i.e. problems with low solid-to-fluid density ratios (Akcabay et al., 2017).

In order to avoid this numerical instability, strongly coupled partitioned algorithms with an
iterative procedure are developed to improve the accuracy of the satisfaction of coupling
conditions (Sotiropoulos and Yang, 2014; Lefrançois, 2017).

Two of the most common terms used when referring to the type of FSI analyses are one-
way (unidirectional) and two-way (bidirectional). These terms reflect how the loads and
displacements are transferred between the two domains. When fluid and solid are coupled by
unidirectional load transfer, a given field may strongly affect, but not be affected significantly
by the other field (Reference: ANSYS User Guide). When solving a one-way FSI problem,
flow and structure are modeled within separate domains. The resultant loads from the
flow field are then used to calculate the structural deflection (Liaghat et al., 2014), or the
displacement of the structure can be used to update the boundary conditions and solve the
flow field. In some Fluid-Structure Interaction simulations, however, there is a strong and
potentially nonlinear relationship between the fields that are coupled. This is often the case
in situations where the structure undergoes large amplitude deflections (Liaghat et al., 2014).
Under these conditions, which is the case in many engineering applications, two-way FSI is
required. Benra et al. (Benra et al., 2011) compared the one-way and two-way coupling
methods for numerical analysis of fluid-structure interactions and showed that the results
of two-way coupling methods were more accurate, especially for larger deflections where the
fluid field is strongly influenced by structural deformation. They showed that a one-way
coupling algorithm gives plausible results only for specific values in some cases, and does not
guarantee energy conservation at the interface (Benra et al., 2011).

Matthies and Steindorf (Matthies and Steindorf, 2003) found that the weak coupling methods
are explicit and hence, suffer from possible instabilities. They proposed a partitioned method
to compute the transient response and showed that their method was faster, both in the
number of iterations and in the overall numerical effort. In addition, it was shown to have
superior convergence characteristics, and they concluded that strong coupling methods, where
equilibrium is satisfied jointly between fluid and structure at each time step, are better suited.

The hydroelastic coupling method of Young and Kinnas (Young and Kinnas, 2003a,b) as-
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sumed small blade deformations. Applying Bernoulli’s equation, the total pressure was ex-
pressed in terms of the rigid and elastic blade components, with the change in load stiffness
and damping matrices. Coupling of the hydrodynamics with a structural analysis model
to include the effect of blade vibration is described in (Young and Kinnas, 2004). Young
(Young, 2007, 2008) analyzed time-dependent FSI of a propeller using a one-way approach
by developing a 3-D potential-based boundary element method coupled with a 3-D finite el-
ement method. Their predicted blade tip deflections, cavitation inception coefficient values,
as well as cavitation patterns agreed well with experimental measurements.

Carstens et al. (Carstens et al., 2003) developed a coupled fluid-structure interaction algo-
rithm to study the aeroelastic behaviour of vibrating blade assemblies. In their study, the
motion of fluid and structure were integrated in time by separate time integration meth-
ods while their interaction was accounted for through a coupling algorithm. However, to
reduce the immense computational effort of a full-scale calculation, simplified structural and
aerodynamic models were taken for the computations.

Moffatt and He (Moffatt and He, 2005) performed an evaluation on the use of coupled and
decoupled methods for various turbomachinery applications. They predicted the resonant
forced response of turbomachinery blades using a fully coupled approach and expected that,
by combining the aerodynamic forcing and damping calculations in a single analysis, a higher
computational efficiency would result compared to a classical uncoupled approach. Blade
vibration in their coupled approach was modelled with a single degree-of-freedom (DoF)
modal equation on the CFD mesh and solved simultaneously with the flow equations. The
modal equation was solved and directly coupled with the flow equations at each solution step.

Ducoin et al. (Ducoin et al., 2009b) incorporated a numerical one-way approach to analyze
a deformable hydrofoil with transient pitching motion with a CFD finite volume code (CFX)
for the fluid and a CSD finite element code (ANSYS) for the structure. Although there
was good agreement with the experiments for the maximum displacement of the hydrofoil
at low pitching velocities, for the highest pitching velocity, the simulation showed a stronger
hysteresis effect than the experiment.

In the study of Munch et al. (Munch et al., 2010) a model was proposed to predict
fluid–structure coupling by linearizing the hydrodynamic load acting on a rigid, oscillat-
ing NACA0009 hydrofoil subjected to a turbulent, incompressible flow. The hydrofoil was
modeled with forced and free pitching motions and the unsteady simulations of the flow
were performed in ANSYS CFX and validated experimentally. Their proposed model could
predict fluid–structure coupling with good precision when the response of the system was
linearized. Their method was validated for limited values of the motion amplitude.
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Ducoin and Young (Ducoin and Young, 2013) and Akcabay et al. (Akcabay et al., 2014)
studied the hydroelastic response of two-dimensional flexible hydrofoils in viscous flows. Their
numerical approach was based on a simple 2-DOF system (mass-spring-damper) to simulate
the chordwise rigid hydrofoil which undergoes bend and twist deformations only, as shown
in Fig. 2.3. In their study, the fluid and structure solvers were coupled using the Loose
Hybrid Coupled (LHC) method presented in (Chae et al., 2013) and (Young et al., 2012).
The LHC method is a partitioned FSI method, as it couples the solutions of the two separate
fluid and structure solvers. The 2-DOF solid model in Refs. (Ducoin and Young, 2013) and
(Akcabay et al., 2014) was used to calculate the hydrofoil motion at each time step. The fluid
forces were extracted and applied on the 2-DOF model and solved for the new position of
the hydrofoil within each time step. Ducoin and Young (Ducoin and Young, 2013) compared
the predicted and measured lift coefficient and tip section displacement. Some discrepancies
between experimental and numerical results were observed, which might be partly due to
the 2-D flow assumption in their research, which ignored 3-D effects such as boundary layer
effects, induced drag, and the use of a generalized 3-D structural model in their numerical
framework. In their studies, LHC approach does not iterate within each time step and that
is why the coupling between fluid and structure is loose in their simulations.

Figure 2.3 Dynamics of a 2D hydrofoil cross section with two DOF (Ducoin and Young, 2013)

Sotiropoulos and Yang (Sotiropoulos and Yang, 2014) presented an immersed boundary
method to simulate complex fluid–structure interaction problems in engineering and biology.
This method has emerged as a powerful numerical approach due to its inherent ability to han-
dle arbitrarily complex domains with arbitrarily complex deformable immersed boundaries
without the need for expensive and cumbersome dynamic re-meshing strategies or construct
grids that conform to and deform with solid boundaries. However, a major disadvantage
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of this method is the limitation in its ability to selectively cluster grid nodes in the vicin-
ity of solid boundaries, which results in difficulties in simulations of high Reynolds number
turbulent flows.

The major drawback of the classical partitioned FSI coupling scheme, according to (Lefrançois
et al., 2016; Lefrançois, 2017), is that where the structure is surrounded by high density fluid
there will be strong effects of added mass. Under this condition, convergence is not always
guaranteed, or may be slow. Divergence will generally be observed, regardless of the chosen
time step (Lefrançois, 2017). In 2016, Lefrançois et al. (Lefrançois et al., 2016) presented a
numerical model for fluid-structure interactions in the context of sloshing effects in movable,
partially filled tanks. The purpose of this model was to counteract the penalizing impact of
the added mass effect on classical partitioned FSI coupling schemes. Results show that the
corrected version systematically ensures convergence in cases where the classical FSI scheme
fails to converge. In the rare cases where convergence was already obtained, the corrected
version was shown to significantly reduce the number of required iterations.

In 2017, Lefrançois (Lefrançois, 2017) presented a modified version of a partitioned FSI
scheme for studying the dynamics of a NACA2412 foil flexibly attached and immersed in a
heavy fluid. This work was based on an added mass corrected version of the classical strongly
coupled partitioned scheme presented in (Song et al., 2013). The mathematical model for
the structure in his study was limitted to the dynamics of a 2D foil that encountered only
plunging and pitching motions (ω(t) and θ(t)), as shown in Fig. 2.4. Whereas the classical
scheme encountered an acceptable (no numerical oscillation) convergence limit for fluid with
certain density values, the corrected scheme in the study of Lefrançois (Lefrançois, 2017) was
not dependent on fluid density.

Figure 2.4 A two-degrees-of-freedom model representing plunging and pitching (ω(t) and
θ(t)) of a 2D hydrofoil (Lefrançois, 2017)

Chae et al. (Chae et al., 2017) studied the influence of the flow-induced bend–twist coupling
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of hydrofoils by comparing the inviscid and viscous fluid–structure interaction simulation of
cantilevered NACA0015 hydrofoils in water. They studied hydrofoils made of stainless steel,
aluminium and polyacetate (POM) under attached flow conditions in fully turbulent regimes
at low angles of attack, and incorporated the LHC method presented in the studies of Young
et al. (Young et al., 2012), Chae et al. (Chae et al., 2013), and Akcabay et al. (Akcabay
et al., 2014). The 3D effects were neglected in their FSI method and it was recently applied
by Wu et al. (Wu et al., 2018) to investigate transient characteristics of cavitating flow over
a flexible 2D hydrofoil via combined experimental and numerical studies. The hydrofoil in
theses studies was presented with a chord-wise rigid, two degree of freedom model and the
pitching and plunging motion of the tip section was considered as the corresponding twisting
and bending deformation of the hydrofoil.

Akcabay et al. (Akcabay et al., 2017) examined the numerical stability behavior of the LHC
method, incorporated in (Young et al., 2012; Chae et al., 2013; Akcabay et al., 2014), to solve
partitioned fluid and solid solvers for FSI problems. They showed that the LHC method is
capable of stable solution to FSI problems, even for the difficult cases with small solid-to-fluid
density ratios.

To the best of our knowledge, most of the former studies on the dynamic response of hydrofoils
involved hydrofoils made of relatively heavy and stiff materials (Seeley et al., 2012; Liaghat
et al., 2014; Yao et al., 2014; Liaghat, 2014). Hutchison (Hutchison, 2012) studied FSI for
hydrofoils made of stainless steel (E=193 GPa, ρ=7750 kg/m3) and aluminium (E=71 GPa,
ρ=2770 kg/m3). The flexible hydrofoil in the study of Liaghat et al. (Liaghat et al., 2014;
Liaghat, 2014) had a Young’s modulus of E=193 GPa and a density of ρ=8000 kg/m3.
The increasing interest in the use of lightweight materials in the applications in which the
solid-to-fluid density ratio is typically in the range of 1 and 2 (Chae et al., 2016), points to
a better understanding of the elastic response and stability of lightweight lifting structures.
These were investigated in Refs. (Ducoin and Young, 2013; Chae et al., 2013, 2016; Akcabay
et al., 2014; Akcabay and Young, 2014).

Summary

Different methods for the solution of fluid-structure coupling have been extensively investi-
gated in the literature. To study the hydroeastic behaviour of flexible hydrofoils, particularly
at high hydrodynamic loadings, fluid and structure fields have strong and potentially nonlin-
ear effects on each other. Hence, the solution method should be capable of strongly coupling
and jointly satisfaction of equilibrium between fluid and structure. The two-way coupling
method, which will be incorporated in the present study, is clearly required to tackle the large



17

structural deformations and subsequent effects on the flow fields, such as flow separation and
instabilities. However, this method has not been recently used in this field. Recent increases
in computer power coupled with advances in numerical methods, enable coupled two-way
analyses of FSI in a reasonable time frame at an acceptable computational cost.

In addition, most of the hydrofoils studied in this field, have been made of relatively heavy and
stiff materials. The present study will focus on highly flexible hydrofoils that undergo large
deformation. As a consequence, the two-way FSI coupling is more challenging, particularly
in the flow mesh deformation modelling.

2.4 Reasons for 3D simulation

In this dissertation, a two-way fluid-structure interaction (FSI) methodology is presented to
study the hydroelastic response and stability of flexible hydrofoils with emphasis on three-
dimensional features. This approach is validated by comparing the numerical results with
measured experimental data by Akcabay et al. (Akcabay et al., 2014). To the best of our
knowledge, despite the fact that the physics of the stated problem is 3D (as will be explained
in what follows), most of the the previous studies on the hydroelastic response of hydrofoils
have been restricted mainly to 2D simulations.

Experimentally and numerically, Chae et al. (Chae et al., 2016) investigated the natural
flow-induced vibrations of flexible NACA0015 hydrofoils. The cantelivered hydrofoil in their
study was clamped to the back wall of the test tunnel (foil root) and free to move on the other
end of the test section wall (foil tip), as shown in Fig. 2.5. This set-up clearly illustrates
the importance of 3D effects; i.e. the spanwise tip bending and twisting deformations of the
flexible hydrofoil in their experiments. Due to these deformations, the hydrodynamic loading
is not uniform in the spanwise direction. However, in their numerical simulation the flow was
assumed to be two-dimesional.

The above mentioned cantilevered configuration of flexible hydrofoils have been studied in
Refs. (Akcabay et al., 2014), (Akcabay and Young, 2014), (Ducoin and Young, 2013), (Wu
et al., 2015), and (Chae et al., 2013). The hydrodynamic loading was assumed to be uniform
over the spanwise direction in these studies. Despite the fact that the spanwise deformation
will change the pressure distribution along that direction, they assumed that its effect on
the foil deformation response is limited because of the small elastic deformation. However,
for a flexible hydrofoil subjected to high flow velocities at high angles of attack, the elastic
deformation is significant and cannot be neglected.

Due to the flow-induced deformations of the flexible hydroils along the spanwise direction,
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Figure 2.5 NACA0015 POM hydrofoil inside the tunnel (Chae et al., 2016)

such as bend and twist (as depicted in Fig. 2.5), the hydrodynamic loading is not uniform
in the spanwise direction. For this reason, the interaction between hydrofoil and the sur-
rounding flow has significant three-dimensional features that clearly should not be neglected.
Furthermore, the flow is turbulent in the present study. It has been discussed in the previous
sections that the flow separation and enhanced momentum exchange accompanied by the
vortices induced by flow turbulence have a significant effect on the structural hydrodynamic
response. Hence, the precise prediction of turbulence plays a key role in this area of research.

It is widely accepted that turbulence is a three-dimensional phenomenon (Nichols, 2010).
Turbulent disturbances can be considered as a series of three-dimensional eddies of different
sizes that are in interaction with each other (Nichols, 2010). One important phenomenon in
turbulent flows is vortex stretching. This is the lengthening of vortices in the flow, associ-
ated with a corresponding increase of the component of vorticity in the stretching direction
(Tennekes and Lumley, 1972). Vortex stretching is associated with a particular term in the
vorticity dynamics equation:

D~ω

Dt
= (~ω · ~∇)~v + ν∇2ω (2.1)

where D/Dt is the material derivative, ~v is the velocity vector, ν is the fluid kinematic
viscosity and ∇2 is the Laplace operator. The first term on the right hand side describes the
stretching or tilting of vorticity due to the flow velocity gradients. It amplifies the vorticity,
~ω, when the velocity diverges in the direction parallel to ~ω. This term has been shown to be
zero in 2D formulation, and hence, 3D simulations are necessary to capture this important
feature of turbulence.
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Summary

The hydroelastic deformation of hydrofoil has significant 3D features that will be accounted
for in the present study. Particularly, in the case of highly flexible hydrofoils which undergo
large deformation, the 3D effects should not be neglected for the accurate prediction of the
hydrodynamic loading. Furthermore, for proper investigation of turbulent flows and the 3D
turbulence structures, which have immediate effects on the response of flexible hydrofoils,
3D simulation is a necessity. However, most of the the previous studies on the hydroelastic
response of hydrofoils have focused mainly on 2D simulations.

2.5 Objectives

This project seeks to gain greater insight into the hydroelastic response of a 3D highly
flexible hydrofoil, incorporating a strongly-coupled two-way fluid-structure interaction. The
fluid-structure problem in the present study is solved with a finite volume technique using
the CFD code CFX, for the fluid, and a finite element code using the CSD code ANSYS, for
the structure.

As discussed in the preceeding literature review, the elastic response and stability of lifting
bodies have been studied extensively in the literature. However, to the best of our knowledge,
most of the studies are limited to no or small viscous effects, low Reynolds number flows, and
low structural deformation due to the low material flexibility. Furthermore, in the numerical
studies of hydrofoils, most of the analyses have focused on 2D problems with weak or no FSI.

Accordingly, the objectives of the project are outlined as follows:

• To develop an advanced methodology to investigate the strongly-coupled two-way FSI
of a 3D flexible hydrofoil with a focus on the in-water response,

• To improve the accuracy of the available numerical results for the lift and drag coeffi-
cients in comparison with the available experimental data,

• To investigate and quantify the foil flexibility effects by studying the differences in struc-
tural response as well as hydrodynamic loading (fluid response) between a lightweight,
highly flexible hydrofoil and a rigid hydrofoil,

• To investigate the hydrodynamic response of a hydrofoil subject to different flow regimes
at moderate to high Reynolds numbers.
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CHAPTER 3 THEORETICAL BACKGROUND

The solution of FSI problems involves the simulation of the fluid and solid domains and their
interaction. In the present study, we will focus on the interaction between an incompressible
flow and a flexible hydrofoil. This area inherits all the difficulties of the 3D turbulent flow
simulation in hydrodynamics, and complements them with the ones related to the strong
FSI coupling, such as moving boundaries and large mesh deformation. There are various
numerical techniques to tackle this kind of problems, some of which will be elaborated on in
this chapter. In the study of FSI, which is a complex combination of CFD and CSD, it is
essential to understand the basic physical principles and governing equations of these fields.
These will be addressed in the present chapter.

3.1 Numerical modeling of Fluid-structure interaction

FSI modeling consists in performing a structural analysis coupled to a corresponding fluid
flow analysis. There are two different approaches for solving such problems, the monolithic
approach and the partitioned approach, which are described below.

3.1.1 Monolithic approach

In monolithic approaches a single, non-linear, discrete system of equations is considered
taking into account both the fluid and the structure domains simultaneously, as described
in (Barker and Cai, 2010; Gee, 2011). Figure 3.1 represents the solution process of such an
approach in which Sf and Ss denote the fluid and structure solutions, respectively. tn and
tn+1 represent the nth and n+ 1th time steps.

Figure 3.1 Monolithic approach (Raja, 2012)

The interaction between fluid and structure at the interface is treated synchronously in this
approach. This leads to the conservation of properties at the interface, which increases
the stability of the solution. However, as explained in the previous chapter, this expensive
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approach is complicated to implement and leads to ill-conditioned systems due to the different
scaling of variables in the multi-field problem (velocity, displacement, pressure).

3.1.2 Partitioned approach

In the partitioned methods, the equations governing the flow field and the structure are solved
alternatingly in time with two distinct solvers. The intermediate flow solution is prescribed as
a boundary condition to update the structure and vice versa, and the iterations continue until
a convergence criterion is satisfied. Figure 3.2 illustrates the solution process in a partitioned
approach. The exchange of information occurs at the fluid-structure interface based on the
type of coupling technique applied; i.e. one-way or two-way coupling methods that will be
described in the following sections.

Figure 3.2 Partitioned approach (Raja, 2012)

One-way coupling

In a one-way FSI analysis, the CFD results are transferred and applied as loads to the me-
chanical model, but the subsequently calculated displacements from the mechanical analysis
are not transferred back to the CFD analysis. The other way around is also possible, i.e. the
deformation of structure influences the flow field but the reaction of the fluid upon the solid
object is negligible.

As illustrated in Fig. 3.3, in a one-way coupling method, initially, the fluid flow calculation
is performed until convergence is reached. Then, the resulting forces at the interface from
the fluid calculations are interpolated onto the solid computational domain. Next, the struc-
tural dynamic calculations are performed until the convergence criterion is reached. This is
repeated until the final time of the simulation is reached.
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Figure 3.3 One-way coupling

Two-way coupling

The work flow of the strongly-coupled two-way algorithm is depicted in Fig. 3.4. After
the first time step, the converged solution of the flow simulation provides the hydrodynamic
forces that are applied on the solid body as loads. The loads are then interpolated to the
structural mesh. As a consequence, the mesh is deformed according to the displacements of
the structure. These displacements are interpolated back to the fluid mesh which results in
a deformation of the fluid domain. This process is repeated within each time-step until both
forces and displacements are converged to the desired values, which constitutes a strongly-
coupled two-way approach used in the present study.

3.1.3 FSI modeling in ANSYS

Recently, many commercial softwares have been developed to simulate FSI problems. Com-
panies like ANSYS provide efficient multi-physics softwares with versatile features. ANSYS
supports both one-way and two-way modeling of fluid-structure interaction problems. Re-
gardless of whether one-way or two-way coupling methods are used, the simulations are based
on a partitioned method where separate simulation set-ups are required for each physical field.

The FSI problem in the present study is solved with a finite volume technique using the CFD
code CFX, for the fluid domain, and a finite element code ANSYS, for the structural domain.
The available coupling capability enables CFX to work with the ANSYS Mechanical solver
within an ANSYS Multi-field simulation. During coupled simulations, the ANSYS CFX and
Mechanical solvers execute the simulation through a sequence of multi-field steps, each of
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Figure 3.4 Two-way coupling

which consists of one or more coupling iterations (Reference: ANSYS User Guide). The
coupling capability available in ANSYS enables CFX to communicate data with the ANSYS
Mechanical solver within an ANSYS Multi-field simulation.

Coupled simulations begin with the execution of the Mechanical application and CFX field
solvers. The Mechanical application solver is considered as a coupling master process to
which the CFX solver connects. Once the connection is established, the solution proceeds
through a sequence of six pre-defined synchronization points (SPs), as illustrated in Fig. 3.5.

As mentioned before, multifield simulation set-up requires separate creation of the fluid and
structure models in CFX-Pre and the Mechanical application user interfaces, respectively,
and the specification of coupling data transfers and controls.

The first three SPs are used to prepare the solvers for the calculation intensive solution
process, which takes place during the last three SPs. The last three SPs define a sequence of
coupling steps, each of which consists of stagger iterations. During every stagger iteration,
each field solver (CFX and ANSYS Mechanical) gathers the required data from the other
solver, and solves its field governing equations for the current coupling step. The stagger
iterations are repeated until a maximum number of iterations is reached or until convergence
is achieved for the data transferred between solvers and all field equations.
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Figure 3.5 Sequence of synchronization points in ANSYS multifield solver (Reference: ANSYS
User Guide)
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3.2 Governing equations

For the two-way coupling method incorporated in this study, two sets of equations are solved
separately for the fluid and solid domains. In addition, mesh deformation is an important
component for solving problems with moving boundaries such as FSI. In this section, the
governing equations for both the fluid and structure domains are presented.

3.2.1 Fluid domain

The incompressible fluid flow is described with the mass and momentum conservation equa-
tions for a Newtonian viscous fluid without body forces and heat transfer.

∂vj
∂xj

= 0 (3.1)

∂(ρfvi)
∂t

+ ∂(ρfvivj)
∂xj

= − ∂p

∂xi
+ µf

∂2vi
∂xj∂xj

(3.2)

where vj, ρf , p and µf denote the fluid velocity, density and pressure, and dynamic viscosity,
respectively.

Reynolds Averaged Navier-Stokes (RANS) Equations

In principle, the Navier-Stokes equations describe both laminar and turbulent flows without
the need for additional information. However, the time and space scales of a turbulent motion,
characterized by random variations of physical quantities, could be so small that the Direct
Numerical Simulation (DNS) of these flows would require an unacceptably large amount
of computer resources. Turbulence models have been specifically developed to account for
the effects of turbulence without recourse to a prohibitively fine mesh and direct numerical
simulation, such as Reynolds-averaged Navier-Stokes (RANS) models, large eddy simulation
(LES) and detached-eddy simulation (DES) models.

Simulation of the Reynolds Averaged Navier-Stokes (RANS) equations greatly reduces the
computational effort compared to a Direct Numerical Simulation (DNS) and is generally
adopted for practical engineering calculations. In this approach, a modified set of transport
equations are solved by introducing averaged and fluctuating components. For example, a
velocity, V , may be divided into an average component, V̄ , and a time varying component,
V ′:

V = V̄ + V ′ (3.3)
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The averaged component is given by:

V̄ = 1
2∆t

∫ t+∆t

t−∆t
V dt (3.4)

where ∆t is a time scale that is much smaller than the time scale to which the equations are
solved, but large relative to the turbulent fluctuations.

Substituting the averaged quantities into the original transport equations results in the
Reynolds averaged equations:

∂ρf
∂t

+ ∂

∂xj
(ρf v̄j) = 0 (3.5)

∂ρf v̄i
∂t

+ ∂

∂xj
(ρf v̄iv̄j) = − ∂p

∂xi
+ ∂

∂xj
(τij − ρfv′iv′j) (3.6)

where τ is the molecular stress tensor (including both normal and shear components of the
stress).

Eq. 3.6 shows that the averaging procedure in this approach introduces additional unknown
terms containing products of the fluctuating quantities, which act like additional stresses
in the fluid. These terms, called "turbulent" or "Reynolds" stresses, must be determined
as further unknowns. The method used to solve the system defines the type of turbulence
model.

Turbulence Modeling

Turbulence consists of various sizes eddies that form and dissipate continuously, and in which
the Reynolds stresses are assumed to be proportional to mean velocity gradients. This defines
eddy viscosity turbulence models. In this approach, the Reynolds stresses can be related to
the mean velocity gradients and turbulent viscosity by a gradient diffusion hypothesis similar
to the relationship between the stress and strain tensors in laminar flow:

− ρfv′iv′j = µt

(
∂v̄i
∂xj

+ ∂v̄j
∂xi

)
− 2

3δij
(
µt
∂v̄k
∂xk

+ ρfk

)
(3.7)

where µt is the eddy viscosity or turbulent viscosity.

Eddy viscosity models cover several methods with different levels of complexity and accuracy
such as algebraic (zero equation) models, one-equation models and two-equation models.
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Two-equation turbulence models are very widely used, as they offer a good compromise be-
tween numerical accuracy and computational effort. In two-equation models, the turbulence
velocity scale is computed from the turbulent kinetic energy, k, which is computed as the
solution of a transport equation. The turbulent length scale is estimated from two properties
of the turbulence field, for instance the turbulent kinetic energy and its dissipation rate.

One of the main challenges in turbulence modeling is the accurate prediction of flow separa-
tion from a surface. Standard two-equation turbulence models are often unable to predict the
onset of the flow separation under adverse pressure gradient conditions. This is an important
phenomenon in many technical applications, particularly for aero/hydrodynamics because
the stall characteristics of a foil are controlled by the flow separation from the surface (Refer-
ence: ANSYS User Guide). Currently, the most prominent two-equation models in this area
are the k − ω based models.

The current simulation uses the k−ω Shear Stress Transport (SST) turbulence model (Menter
and Egorov, 2005) which has been shown to be an accurate model for boundary layer detach-
ment prediction and turbulence behaviors of flexible foils at high Reynolds numbers (Ducoin
and Young, 2013). The superior performance of this model has been demonstrated in a large
number of validation studies (Menter et al., 2003; Haase et al., 2006). Further, this model
has widely been used in various studies similar to the focus of the current dissertation, such
as Refs. (Munch et al., 2010; Hutchison, 2012; Ducoin and Young, 2013; Chae et al., 2013;
Akcabay et al., 2014; Akcabay and Young, 2014; Wu et al., 2015; Chae et al., 2016; Akcabay
et al., 2017; Wu et al., 2018).

The SST turbulence model combines the advantages of the k − ε model away from the wall
and the k − ω model near the wall. It solves two transport equations, one for the turbulent
kinetic energy, k, and one for the turbulent frequency, ω.

∂

∂t
(ρfk) + ∂

∂xj

[
ρfvjk − (µ+ σ∗µt)

∂k

∂xj

]
= −ρfP − β∗ρfkω (3.8)

∂

∂t
(ρfω) + ∂

∂xj

[
ρfujω − (µ+ σµt)

∂ω

∂xj

]
= γ

νt
ρfP − βρfω2 + 2(1− F1)ρfσω

ω

∂k

∂xi

∂ω

∂xi
(3.9)

The proper transport behavior in SST turbulence model can be obtained by a limiter to the
formulation of the eddy-viscosity:
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νt = k/ω

max
(
1, ΩF2

a1ω

) (3.10)

where
Ω =

√
2ΩijΩij and Ωij = 1

2

(
∂vi
∂xj
− ∂vi
∂xj

)
(3.11)

F1 is the function that allows the use of the k − ε model away from the wall and the k − ω
model near the wall.

F1 = tanh(ζ4) where ζ = min

[
max

( √
k

0.09ωy ,
500ν
y2ω

)
; 4ρσω2k

Dωy2

]

and Dω = max

(
ρσω2

ω

∂k

∂xj

∂ω

∂xj
; 10−20

) (3.12)

The F2 function is defined as:

F2 = tanh(ι2) where ι = max

(
2
√
k

0.09ωy ; 500ν
y2ω

)
(3.13)

where y is the distance from the wall.

The constants in this turbulence models are defined based on the index value of 1 for the
k − ω and 2 for the k − ε standard models. For a constant φ, we have:

φ = F1φ1 + (1− F1)φ2 (3.14)

and:

σ1
∗ = 0.5 ; σ1 = 0.55 ; β1 = 0.0755 ; σω1 = 0

σ2
∗ = 0.8 ; σ2 = 0.856 ; β2 = 0.0828 ; σω2 = 0.856

k = 0.41 ; a1 =
√
β∗ = 0.3 ; γi = βi

β∗ − σi k2√
β∗

for i = 1, 2

Transition modeling

In order to accurately capture the major transition effects in the case of separation-induced
transition, the turbulence model could be coupled with a laminar-to-turbulent transition
model. The effects of incorporating the laminar-to-turbulent transition modeling has been
demonstrated in previous literature (Smith et al., 2004). Shelton et al. (Shelton et al.,
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2005) incorporated a transition model in their study and showed that the hydrodynamic
coefficients match better with the experiments compared to fully turbulent computations.
They also showed that the transition models can be important for stall prediction. The
experimental and numerical study of Ducoin et al. (Ducoin et al., 2008) has also highlighted
the importance of accounting for the transition in the hydrodynamic loading predictions.
Based on their conclusion, they coupled the turbulence model in their later studies on the
transient flows over hydrofoils (Ducoin et al., 2009a,b).

The SST turbulence model in this study is coupled with the ‘Gamma Theta’ transition model,
which is based on two transport equations, one for the intermittency and one for the transition
onset criteria in terms of momentum thickness Reynolds number. CFX uses new empirical
correlations based on the studies of (Menter et al., 2004) that has been extensively validated
together with the SST turbulence model for a wide range of applications with transitional
flows. This will be reviewd in this section (Reference: ANSYS User Guide).

The first transport equation is for the intermittency, γ, which triggers the transition process:

∂

∂t
(ρfγ) + ∂

∂xj
(ρfUjγ) = Pγ1 − Eγ1 + Pγ2 − Eγ2 + ∂

∂xj

[
(µf + µt

σγ
) ∂γ
∂xj

]
(3.15)

The transition sources are defined as follows:

Pγ1 = 2FlengthρfS(γFonset)cγ3 (3.16a)

Eγ1 = Pγ1γ (3.16b)

where S is the magnitude of strain rate. Flength is an empirical correlation that controls the
length of the transition region.

The destruction/relaminarization sources are defined as follows:

Pγ2 = (2cγ1)ρfΩγFturb (3.17a)

Eγ2 = cγ2Pγ2γ (3.17b)

where Ω is the magnitude of vorticity rate. The transition onset is controlled by the following
functions:

Reν = ρfy
2S

µf
and RT = ρfk

µfω
(3.18)



30

Fonset1 = Reν
2.193.Reθc

(3.19)

Fonset2 = min[max(Fonset1, F 4
onset1), 2.0] (3.20)

Fonset3 = max(1− (RT

2.5)3, 0)

Fonset = max(Fonset2 − Fonset3, 0)

Fturb = e−(RT4 )4

Reθc is the critical Reynolds number where the intermittency first starts to increase in the
boundary layer. This occurs upstream of the transition Reynolds number, R̃eθt , and the
difference between the two must be calculated from an empirical correlation. Flength and
Reθc correlations are both functions of R̃eθt .

The constants for the intermittency equation are:

Cy1 = 0.03; Cy2 = 50; Cy3 = 0.5; σy = 1.0 (3.21)

The modification for separation-induced transition is:

γsep = min

(
2.max[( Reν

3.235Reθc
)− 1.0]Freattach, 2

)
Fθt (3.22)

Freattach = e−(RT20 )4 (3.23)

γeff = max(γ, γsep) (3.24)

The transport equation for the transition momentum thickness Reynolds number, R̃eθt , reads:

∂
(
ρR̃eθt

)
∂t

+
∂
(
ρUjR̃eθt

)
∂t

= Pθt + ∂

∂xj

[
σθt

(
(µ+ µt)

∂R̃eθt
∂xj

)]
(3.25)

The source term is defined as follows:

Pθt = cθt
ρ

t
(Reθt − R̃eθt)(1.0− Fθt); t = 500µ

ρU2 (3.26)
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Fθt = min

max
Fwake · e−( yδ )

4

, 1.0−
(
γ − 1/50

1.0− 1/50

)2
 , 1.0

 (3.27)

θBL = R̃eθtµ

ρU
; δBL = 15

2 θBL; δ = 50Ωy
U
· δBL (3.28)

Reω = ρωy2

µ
; Fwake = e

−
(

Reω
1×105

)2

(3.29)

The model constants for the R̃eθt equation are:

cθt = 0.03; σθt = 2.0 (3.30)

The model contains three empirical correlations; Reθt which is the transition onset as observed
in experiments and goes in Eq. 3.26, Flength is the length of the transition zone and is used
in Eq. 3.16), and Reθc is the point where the model is activated in order to match both Reθt
and Flength and goes into Eq. 3.19.

The transition model interacts with the SST turbulence model, as follows:

∂

∂t
(ρfk) + ∂

∂xj
(ρfujk) = P̃k − D̃k + ∂

∂xj

(
(µf + σkµt)

∂k

∂xj

)
(3.31)

P̃k = γeffPk; D̃k = min(max(γeff , 0.1), 1.0)Dk (3.32)

Ry = ρfy
√
k

µ
; F3 = e−( Ry120 )8 ;F1 = max(F1orig, F3) (3.33)

where Pk and Dk are the original production and destruction terms for the SST model and
F1orig is the original SST blending function.

The reader is referred to Ref. (Menter et al., 2004) for more details on the above model
formulation.

Modeling Flow Near the Wall

The structure of any flow field is noticeably influenced by the presence of solid walls where
mean and fluctuation velocities become zero due to the no-slip conditions. There are strong
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gradients in the dependent variables near a no-slip wall and viscous effects on the transport
processes are also large.

It is illustrated in Fig. 3.6 that the near-wall region can be subdivided into two layers
(Reference: ANSYS User Guide). The viscous sublayer is the innermost layer, where the
flow is almost laminar-like, and the viscosity plays a dominant role in momentum. Further
away from the wall, in the logarithmic layer, turbulence dominates the mixing process. There
is also a buffer layer between the viscous sublayer and the logarithmic layer, where the effects
of viscosity and turbulence are of equal importance .

Figure 3.6 Subdivisions of the near-wall region (Reference: ANSYS User Guide)

The differential Reynolds stress and standard turbulence models, are applicable only to the
full turbulent regions, outside the so called viscous layers, where the flow is considered to be
only controlled by the turbulent stresses. However, an appropriate turbulence model closure
is required in the near-wall region in order to correctly predict the behavior of the flow.

To model the flow in the near-wall region in ANSYS CFX, two approaches are commonly
used (Reference: ANSYS User Guide) which will be reviewed in the following sections.

Scalable wall functions

Assuming that the logarithmic profile reasonably approximates the velocity distribution near
the wall, it provides a means to numerically compute the fluid shear stress as a function of
the velocity at a given distance from the wall. This is known as a "wall function".

The wall function method uses empirical formulas that impose suitable conditions near the
wall without resolving the boundary layer. Hence, the major advantage of the wall function
approach is that the high gradient shear layers near walls can be modeled with relatively
coarse meshes, yielding substantial savings in computational resources.
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The logarithmic relation for the near wall velocity in this approach is given by:

u+ = Ut
uτ

= 1
κ
ln(Y +) + C (3.34)

where u+ is the near wall velocity, uτ =
√
τw/ρf denotes the friction velocity, Ut is the known

velocity tangent to the wall at a distance of ∆y from the wall, κ denotes the von Karman
constant (≈ 0.41), and C is a constant depending on the wall roughness. τw denotes the wall
shear stress and Y + is the non-dimensional wall distance, defined as:

Y + = ρfuτ∆y
µf

(3.35)

Equation 3.34 has the problem that it becomes singular at separation points where the near
wall velocity approaches zero. An alternative velocity scale, u∗, is used instead of uτ in the
logarithmic region.

u∗ = Cµ
1/4k1/2 (3.36)

The following explicit equation is obtained to compute uτ based on the above definition:

uτ = Ut
1
k
ln(Y ∗) + C

(3.37)

The absolute value of the wall shear stress τw, is then obtained from the following equation:

τw = ρfu
∗uτ (3.38)

where:

Y ∗ = ρfu
∗∆y
µf

(3.39)

One of the main disadvantages of the wall function formulation is that the computations
depend on the location of the first node away from the wall and are sensitive to the near-
wall meshing. If the value of Y + is too large, then the wall function will impose wall type
conditions further from the wall than would normally be appropriate. The use of the "scalable
wall function" formulation in ANSYS CFX has removed issues associated with the lower valid
limit for Y +.
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The incentive for the formulation of the scalable wall function is to limit the Y ∗ value used
in the logarithmic formulation by introducing a limiter in the Y ∗ calculations such that:

Ỹ ∗ = max(Y ∗, Y ∗limit) (3.40)

Y ∗limit = 11.06 is the value of Y ∗ at the intersection between the logarithmic and the linear
near wall profile. The use of Eq. 3.40 in the context of the scalable wall functions concept
is straightforward, that is, the Y ∗ formulation used for any standard wall function formula
is replaced by Ỹ ∗. All mesh points are thus outside the viscous sublayer and all fine mesh
inconsistencies are prevented.

The following relation, which is valid in the logarithmic region, yields the boundary condition
for the dissipation rate, ε:

ε = ρfu
∗

Ỹ ∗µ

Cµ
3/4

k
k3/2 (3.41)

Automatic near-wall treatment

The wall functions presented above, which enable a consistent mesh refinement, are based
on problematic physical assumptions, particularly in flows at lower Reynolds numbers (Re <
105), since the sublayer part of the boundary layer is not considered in the mass and momen-
tum balance. This can cause an error in the displacement thickness of up to 25% for flows
at low Reynolds numbers.

Ideally, we would want a formulation which would automatically switch from wall functions
to a low-Re near wall formulation as the mesh is refined. The k − ω model has the benefit
of providing an analytical expression for ω in the viscous sublayer, which can be used in
order to reach this goal. The aim of the current formulation is to blend the wall value for ω
between the logarithmic and the near wall formulation.

The automatic wall treatment, which is used in the present study, allows a consistent Y +

insensitive mesh refinement from coarse grids, which do not resolve the viscous sublayer,
to fine grids placing mesh points inside the viscous sublayer. It has to be mentioned that
for highly accurate simulations, like the present study, a fine grid with Y + around 1 is
recommended.

The flux for the k−equation is artificially kept at zero; Fk = 0. The flux in the momentum
equation, FU , is computed from the velocity profile:
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FU = −ρfuτu∗ (3.42)

with:

u∗ = 4

√√√√√√√√√µf
ρf
| ∆U

∆y |
4

+
(√

a1k
)4

(3.43)

uτ = 4

√
(uvisτ )4 +

(
ulogτ

)4
(3.44)

where:

uvisτ =

√√√√µf
ρf
| ∆U

∆y | (3.45)

and
ulogτ = U

1/klog(Y +) + C
(3.46)

An algebraic expression is specified in the ω-equation instead of an added flux. It is a
blend between the analytical expression for ω in the logarithmic region (Eq. 3.47) and the
corresponding expression in the sublayer (Eq. 3.48).

ωl = u∗

a1ky
= 1
a1kν

u∗2

Y + (3.47)

ωs = 6ν
β(∆y)2 (3.48)

∆y represents the distance between the first and the second mesh points. The following for-
mulation is opted for to achieve a smooth blending and to avoid cyclic convergence behavior:

ωω = ωs

√
1 +

(
ωl
ωs

)2
(3.49)

Mesh Deformation

Mesh deformation is an important component for solving problems with moving boundaries.
In a two-way FSI, mesh motion is an implicit part of the coupled simulation. At every time-
step, once the new solid position is computed from the structural solver, the fluid mesh has
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to be deformed to conform to the new solid position.

The mesh deformation model utilised in ANSYS CFX is "Displacement Diffusion". In this
approach, the mesh is treated as an elastic solid and it is constrained to conform to the
moving structure geometry, as well as the other domain boundaries. With this model, the
displacements applied on domain boundaries or in domains are diffused to other mesh points
by solving the following equation (Reference: ANSYS User Guide):

∇.(Γdisp∇δ) = 0 (3.50)

where δ is the displacement relative to the previous mesh locations and Γdisp is the mesh
stiffness, which determines the degree to which regions of nodes move together.

With a constant mesh stiffness applied in the simulation, displacements are homogeneously
diffused throughout the mesh. When a variable stiffness is specified for the mesh throughout
the domain, there is little relative motion and nodes in regions of high stiffness move together.
Variable mesh stiffness is particularly useful to preserve the mesh quality and limit mesh
distortion issues near fine geometrical features (such as the hydrofoil trailing edge) and/or
boundary layer elements. The mesh stiffness should increase in regions where mesh distortion
is most likely to occur. There are two available options for variable mesh stiffness in CFX;
increase stiffness near boundaries and increase stiffness near small volumes.

Increase stiffness near boundaries

By increasing the stiffness near certain boundaries in the domain, such as walls, the interior
mesh (that is, away from those boundaries) absorbs more mesh motion. This option does not
depend upon the control volume size distribution in the original mesh and it treats regions
near all wall, interface, inlet, outlet, and opening boundaries identically. Γdisp, applied in the
displacement diffusion equation is determined from the following relationship:

Γdisp = (Lref
d

)Cstiff (3.51)

This relationship provides an exponential increase in the mesh stiffness as the distance from
the nearest boundary, d, decreases. The stiffness model exponent, Cstiff , determines how
quickly this increase occurs. For example, large values will yield a much more abrupt stiffness
variation.

Lref is the reference length, which can be automatically computed (as a global length scale)
or directly specified. The reference length should be representative of a typical length within
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the model (Reference: ANSYS User Guide).

Increase stiffness near small volumes

By increasing the stiffness near small mesh volumes, mesh quality will benefit from having
larger control volumes absorb more mesh motion. Applying this option in the simulation and
its behavior does depend on the initial mesh distribution, for instance, having a fine mesh in
regions where the motion is likely to be more significant.

The following equation is used to determine the mesh stiffness, Γdisp, applied in the displace-
ment diffusion equation:

Γdisp = (∀ref
∀

)Cstiff (3.52)

According to this relationship, the mesh stiffness increases exponentially, as the control vol-
ume size (∀) decreases. ∀ref is the reference volume, which can be automatically computed
(as a mean control volume) in the domain or directly specified. The reference volume should
be representative of a typical control volume within the domain. Cstiff is the stiffness model
exponent that determines how quickly the exponential increase in the mesh stiffness occurs.
For instance, large values will yield a much more abrupt stiffness variation (Reference: AN-
SYS User Guide).

In the present study, in which interactions take place between two different domains, care has
to be taken to generate very fine meshes at the interface. Furthermore, in order to reproduce
flow phenomena like laminar separation bubble and transition, which have immediate effect
on the foil response and hydrodynamic loading, boundary layer elements have to be generated.
Mesh refinements have also to be performed near the foil leading edge, trailing edge and in the
wake region in order to accurately capture the turbulence features over the foil. Therefore,
to mitigate the mesh distortion close to the small volume elements, the mesh stiffness is
specified to be inversely proportional to the volumes of elements in this study.

3.2.2 Structural model

The structure behavior is described in the frame of linear elasticity, using the following
displacement formulation (Ducoin et al., 2009b; Lai et al., 2010; Mortazavinia et al., 2012):

σij + ρsfi = ρsv̇i (3.53)
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where ρs is the solid density, σij and fi are the components of the stress tensor and body
force in the solid domain, respectively and vi represent the components of the velocity field.

σij can be obtained from the constitutive equation of the material. For a Hookean elastic
solid, it is:

σij = λekkδij + 2µLeij (3.54)

where λ and µL are Lame’s constants and δij is the Kronecker delta. eij are the components
of the strain tensor and can be expressed as:

eij = 1
2( ∂di
∂xj

+ ∂dj
∂xi
− ∂dk
∂xi

∂dk
∂xj

) (3.55)

It has to be mentioned that in the present study, due to the high hydrodynamic loading from
the flow, the structure undergoes large deformation. Hence, the geometrical nonlinearities
have to be considered and the nonlinear form of equations has to be taken into account.

Lame’s constants are related to Young’s modulus E, and Poisson’s ratio ν, by the following
equations Lai et al. (2010); Mortazavinia et al. (2012):

λ = νE

(1 + ν)(1− 2ν) (3.56)

µL = E

2(1 + ν) (3.57)

By combining the above equations, the Navier’s equation of motion is obtained which can be
written as:

(λ+ µL)∇(∇.d) + µL∇2d + ρsf = ρsv̇ (3.58)

The technique which is used to determine the dynamic response of a structure under the
action of any type of time-varying loads is a transient dynamic analysis. The basic equation
of motion solved by a transient dynamic analysis is:

Md̈+ Cḋ+Kd = F (t) (3.59)

where:
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M = mass matrix
C = damping matrix
K = stiffness matrix
d̈ = nodal acceleration vector
ḋ = nodal velocity vector
d = nodal displacement vector
F (t) = load vector

This type of analysis is used in ANSYS to determine the time-dependent displacements,
strains, stresses, and forces in a structure as it responds to any transient loads (Reference:
ANSYS User Guide).
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CHAPTER 4 DESCRIPTION OF THE TEST CASE

This thesis numerically models a 3D hydrofoil subjected to water flow. The aim is to study
the hydroelastic behavior of flexible hydrofoils. To investigate and quantify the effects of
hydrofoil flexibility, a solid understanding of the rigid foil dynamics is required. This will be
undertaken by comparing the performance of rigid and flexible hydrofoils. In addition, the
hydroelastic response and stability of rigid and flexible hydrofoils will be studied at various
operating condition; i.e. different inlet velocities and angles of attack.

In our study, a two-way strongly-coupled FSI approach is used to study the interaction
between the hydrofoil and water flow. As explained in the previous chapters, the fluid
part and the solid part are solved separately, using their own numerical methods and the
interaction takes place regularly between the two solvers via the available coupling scheme
in ANSYS.

In this chapter, the study test case will be described. The geometry details and both of the
fluid and solid domains will be presented along with the appropriate boundary conditions.

4.1 Geometry selection

The selected foil to study in this project is a cambered foil of the NACA66 series. This foil is
chosen because there are several studies available in the literature that have numerically or
experimentally investigated the flow over this type of hydrofoil, such as (Leroux et al., 2004;
Ducoin et al., 2009b,a, 2012b; Ducoin and Young, 2013; Akcabay et al., 2014; Akcabay and
Young, 2014; Wu et al., 2015; Tran et al., 2015; Wu et al., 2018). The experimental study of
Akcabay et al. (Akcabay et al., 2014) on the NACA66 hydrofoils will be our main reference
to validate our numerical FSI results. The experimental set-up for the flexible hydrofoil is
shown in Fig.4.1.

The 3D NACA66 hydrofoils have a 12% maximum thickness-to-chord ratio, a 0.8 camber
distribution, a maximum camber-to-chord length ratio of 2%, a constant chord length c =0.15
m, and span length b=0.191 m, for which the theoretical coordinates are given in appendix
A (Ref. (Leroux et al., 2004)).
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Figure 4.1 The experimental set-up for NACA66 flexible hydrofoil in Ref. (Akcabay et al.,
2014)

4.2 Fluid domain

The 3D domain of the CFD solver, shown in Fig. 4.2, is 2.25 m long and 0.192 m tall with
a width equal to the foil span length, which matches the dimensions of the experimental
facility in the study of (Akcabay et al., 2014). The set-up involves a cantilevered hydrofoil
with a uniform cross-section that is mounted horizontally at mid-height of the test section.
The foil is clamped to the side wall of the tunnel section (foil root) and free to move on the
other side of the test section wall (foil tip). In the experimental studies of Akcabay et al.
(Akcabay et al., 2014) and Ducoin and Young (Ducoin and Young, 2013) there was a 1 mm
clearance (0.5% of the foil span) between the free tip of the hydrofoil and the other end of
the test section wall. However, according to both experimental and numerical simulations
in the study of (Ducoin and Young, 2013), the foil tip is located in the boundary layer of
the tunnel wall which limits the effects of tip vortices in the gap region. Hence, this gap is
neglected in the present study.

The fluid domain is 15c long, the foil leading edge is at 4.5c from the inlet, and the foil
trailing edge is at 9.5c from the outlet.

The density and dynamic viscosity of the fluid are ρf = 997kg/m3 and µf = 8.9×10−4kg/(ms),
respectively, which correspond to pure water at 25◦c, as specified in the experiments of (Ak-
cabay et al., 2014).
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Figure 4.2 3D domain of the computational fluid dynamics solver

4.3 Structural domain

The structural domain is shown in Fig. 4.3. As explained in the previous sections, to
investigate the effects of material flexibility on the hydroelastic response of hydrofoils, both
rigid and the flexible hydrofoils will be studied in this dissertation. A rigid hydrofoil, made of
stainless steel, and a flexible hydrofoil, made of POM Polyacetate, are in the same operating
conditions, both with identical initial undeformed geometries. The specific properties of the
materials are given in Table 4.1.

Table 4.1 Material properties of the rigid and flexible hydrofoils

Modulus of Density Poisson

elasticity E (GPa) ρ (kg/m3) ratio ν

Stainless steel (rigid) 210 7800 0.30

POM Polyacetate (flexible) 3 1480 0.35
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Figure 4.3 Solid domain

4.4 Boundary conditions

The hydrofoil in the experimental study of Akcabay et al. (Akcabay et al., 2014) was sub-
jected to an inlet flow velocity of u0= 5m/s. Hence, u0= 5m/s is the nominal free stream
velocity in the X-direction used in the validation part of our study. However, higher values
of u0= 10m/s, 15m/s, 20m/s and 25m/s are also applied as nominal free stream velocities
in subsequent study cases to investigate the hydroelastic response of hydrofoils at higher Re
number flows. The inlet velocities of u0= 5m/s to u0= 25m/s yield a moderate to high
Reynolds number of Re = 0.75× 106 to Re = 3.75× 106. A constant turbulent intensity of
2.95%, which is equal to the experimentally measured turbulent intensity in Ref. (Akcabay
et al., 2014), is set at the inlet boundary.

The outlet pressure is set to a zero average, and no-slip and no-penetration conditions are
applied on the hydrofoil surface. A no-slip wall boundary condition is also imposed on the
back wall of the tunnel, to which the foil is clamped.

As indicated in Ref. (Akcabay et al., 2014), the hydrofoil free tip is located within the
boundary layer of the wall and this minimizes the tip vortices. Therefore, in this study,
the 1 mm gap between the free tip of the hydrofoil and the other end of the test section
wall is neglected. Under this assumption, a free-slip wall condition is imposed on the other
side plane of the test section that allows the free tip to move and enables the water-induced
deformation of the hydrofoil.
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Symmetrical conditions are applied at the top and bottom walls of the computational domain,
as opposed to a wall boundary condition, which would require much finer elements near the
top and bottom walls. This reasonable boundary condition is used in many studies available
in the literature (Ducoin and Young, 2013; Akcabay et al., 2014; Akcabay and Young, 2014;
Chae et al., 2013; Wu et al., 2015). Because the blockage ratio, defined as the ratio between
the maximum thickness of the profile and the height of the tunnel test section, is less than
7% and, thus, the effect of blockage is negligible (Munch et al., 2010).

Transient structural analysis is used, and the total force computed from the CFD transient
simulation is interpolated at the fluid structure interface. The foil surface is specified as the
fluid-solid interface in both fluid and solid domains. The fixation system of the hydrofoil
is rigid. Hence, it is not considered in the computations and a clamped condition (fixed
support) is set on the root section, whereas the foil is free to move at the tip. The structural
constraints on the foil are shown in Fig. 4.3.
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CHAPTER 5 METHODOLOGY

A 3D strongly-coupled two-way fluid-structure interaction methodology with sufficiently high
spatial accuracy will be incorporated to study the hydroelastic response of flexible hydrofoils.

In this chapter:

• Some of the important aspects of the fluid and structural modelling and numerical
set-ups, including the mesh deformation modeling, will be presented.

• The viscous fluid solver, described in the previous chapters, will be validated by com-
paring the numerical results for a NACA0012 airfoil with measured experimental data
for a range of Reynolds numbers and angles of attack.

• Mesh convergence study will be conducted for the case corresponding to a rigid NACA66
hydrofoil at an angle of attack of α=8◦.

• The two-way FSI coupling method in our study will be validated by comparing the
numerical results with the available experimental data for rigid and flexible NACA66
hydrofoils.

• One-way and two-way FSI coupling methods will be compared for the analysis of the
flexible hydrofoils.

• Effects of transition modelling on laminar to turbulent flow transition over the foils will
be investigated.

The proposed methodology will be used in the next chapter to investigate the hydrodynamic
response of the hydrofoils subjected to different flow regimes including higher Reynolds num-
ber flows. It will be shown that the proposed methodology is able to accurately predict the
local phenomena at the interface, such as development and movement of LSB that has been
shown to have immediate effects on the hydroelastic response of the structure.

5.1 Numerical set-up: fluid domain

The fluid domain shown in Fig. 4.2 and Fig. 5.1.(a) has boundaries that match the experi-
mental test section of the NACA66 hydrofoil measurements and is used in this study for the
sake of validation of the results. However, to avoid confinement effects caused by large elastic
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foil deformations, particularly in the case of flexible hydrofoil at highly loaded conditions;
i.e. high angles of attack or high Re number flows, the infinite-like boundary fluid domain
shown in Fig. 5.1.(b) is used. As depicted in this figure, the top and bottom walls of the
domain are moved far enough to avoid blockage effects.

Both domains are 15c long, the foil leading edge is at 4.5c from the inlet, and the foil trailing
edge is at 9.5c from the outlet. Domain 2 differs from domain 1 with a much greater distance
between the foil and the top and bottom boundaries.

(a)

(b)

Figure 5.1 (a) Domain 1 corresponds to experimental facility for use in the validation of the
results; (b) The infinite-like boundary domain (Domain 2)
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5.1.1 Inlet velocity

As the fluid flows over the hydrofoil, the latter initially oscillates and then damps to a
steady-state position. The present study focuses only on static response of the hydrofoil, and
therefore only steady-state results will be presented.

The transient coupled FSI simulations are initialized with steady-state calculations. This
initialization is suitable for cases in which the initial fluid force on the FSI interface will not
cause a sudden deformation of the structure at the start of the transient simulation, causing
the solvers to fail. However, for highly flexible hydrofoils subjected to high Re number flows,
there exist an issue regarding the sudden deformation of the foil. As the high-turbulence
incoming flow reaches the flexible hydrofoil, it suddenly causes high deformation in the foil
and as a consequence, the simulation stops after the first few iterations due to the highly
distorted elements in the domain. In this case, the deformation can be applied gradually, to
reduce the likelihood of mesh folding.

In the present study, mesh folding is avoided by slowly ramping up the velocity inlet boundary
condition from an initial value of uinitial to the desired value of u0, as shown in Fig. 5.2. It
is shown that for instance, for a study test case of flow with u0= 15m/s, the fluid flow
starts with an inlet velocity of uinitial=2m/s over the foil and slowly reaches u0=15m/s in
t1=0.5sec. For the test case with u0=20m/s, the inlet velocity ramps up with the same
slope and reaches its maximum value in t1=0.69sec. T is the final time when the simulation
becomes steady-state. It has to be mentioned that the slope of the velocity ramp-up, uinitial
and t1 are chosen based on the numerical experiment during this study.

Figure 5.2 Inlet velocity
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5.1.2 Undeformed (initial) mesh

To limit mesh distortion issues in the moving boundary problem at hand, care was taken to
ensure that the initial mesh is fine enough. Furthermore, in the study of hydroelasticity, the
mesh resolution should be high enough particularly at the interface between fluid and solid
domains where interaction takes place between a highly flexible stucture and a viscous flow.
It is only with the use of a fine mesh that we will be able to reproduce flow phenomena like
laminar separation bubble and transition, which have immediate effect on the foil response
and hydrodynamic loading and might lead to vibration of flexible hydrofoils.

The mesh convergence study, which will be presented in Section 5.4, shows the effects of
mesh refinement on the flow parameters such as pressure coefficient distribution along the
hydrofoil surface and the hydrodynamic lift coefficient. It suffices to mention in this section
that the mesh used for the CFD analysis is constructed with 2,660,000 elements in ANSYS
ICEM CFD. A close-up view of the fluid mesh is shown in Fig. 5.3 for the confined case
(domain 1), which will be used for the sake of mesh convergence study and validation of the
results with experiments in Chapter 6. Care was taken to generate boundary layer elements
that ensure Y + ≈1, as will be explained in the next chapter. As depicted in Fig. 5.3, mesh
refinements are performed in the regions with high gradients of the flow parameters, such as
high curvature region near the foil leading edge, the trailing edge and wake regions.

5.1.3 Mesh deformation

Using a mesh of adequate geometric quality is an important part of controlling discretization
error, particularly in problems with moving boundaries. It has to be mentioned that in
the transient moving boundary problem at hand, each operating condition, i.e. each angle
of attack and inlet velocity, requires a specific setting of the mesh deformation parameters
depending on the magnitude of the mesh displacement. It is not feasible to propose a unique
methodology for all test cases with different operating conditions and consequently, different
hydroelastic deformations. In the test cases with high deformations, each initial mesh setting
leads to its own specific solution and because, to the best of our knowledge, there is no
available experimental data for high Re number flows, the results cannot be validated. Thus,
our methodology in the case of flow with u0=5m/s is based on validating the results with
the experimental data in Ref. (Akcabay et al., 2014), as will be explained in Chapter 6.
However, for the test cases with higher inlet velocities, we will:

1. generate an initial mesh with acceptable quality and run the simulation,

2. post process the results and verify if the deformed mesh has acceptable quality so that
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Figure 5.3 Fluid mesh details

the obtained results are reliable,

3. identify the proper settings and adjustments to reach the desireable mesh quality, on
which the final computations will be performed.

Variable mesh stiffness

The mesh deformation is determined by the variable mesh stiffness which should increase
in regions where mesh distortion is most likely to occur. In the present study, the mesh
stiffness is specified to be inversely proportional to the volumes of elements to mitigate the
mesh distortion close to the small volume elements, such as high aspect ratio boundary layer
elements, and the small elements near the leading and trailing edges of the foil. Since the
mesh elements are finer near the hydrofoil, they are stiff enough to move with the hydrofoil
without much of distortion. However, the relatively larger mesh elements far away from the
hydrofoil in the domain might get distorted, because the mesh at the flow inlet and outlet
is assumed to be stationary, while the mesh could stretch or compress towards the bottom
and top boundaries in the domain. Hence, care must be taken to ensure that the mesh size
is fine enough to limit mesh distortion issues after each structural displacement.

In this section, we will study the effect of mesh stifness and identify the mesh quality for a test
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case corresponding to the flexible hydrofoil at α= 8◦. For this purpose, the stiffness model
exponent in Eq. 3.52, Cstiff , will be studied which determines how quickly the exponential
increase in the mesh stiffness occurs.

Mesh quality

Mesh orthogonality angle and mesh expansion factor are the two measures of mesh quality
which are most relevant to the CFX-Solver and will be investigated in this study. Readers
could refer to the ANSYS User Guide for more details and the explanation of mesh quality
measures. However, it suffices to mention that the concept of mesh expansion relates to
the rate of change in the magnitude of adjacent element face areas or volumes. The mesh
expansion factor is the ratio of largest to smallest sector volumes for each control volume. The
concept of mesh orthogonality relates to how close the angles between adjacent element faces
or adjacent element edges are to some optimal angle (90◦ for quadrilateral faced elements
in our study). The acceptable ranges for these two measures are presented in Table. 5.1.
Values outside of the suggested acceptable range will increase the discretization error. Poor
convergence and divergence can be expected under these conditions (Reference: ANSYS User
Guide).

Table 5.1 Acceptable ranges of mesh quality measures in CFX

Mesh quality measure Acceptable range

Orthogonality angle > 20◦

Expansion factor < 20

(a) Mesh expansion factor

Figure 5.4 shows the undeformed mesh and the corresponding contour of the mesh expansion
factor, used to study the flow over a flexible hydrofoil with u0= 15m/s. The mesh expansion
factors for the deformed mesh with different stiffness model exponents are shown in Fig. 5.5.

It can be observed that the expansion factor of the initial mesh is almost 1 everywhere
through the domain. After the deformation of the hydrofoil, the expansion factor range does
not change noticeably. This may be explained by the fact that care was taken to generate
the initial mesh with an acceptable range for the expansion factor. As will be investigated
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(a) Undeformed mesh

(b) Expansion factor

Figure 5.4 Undeformed mesh and the expansion factor, u0= 15m/s

in Chapter 6, the most noticeable DOFs for this hydrofoil set-up are the span-wise upward
bending and the clockwise twisting deformation which physically, do not significantly change
the expansion factor of the initial undeformed mesh. For this reason, the mesh expansion
factor cannot be considered as a determining measure for the mesh quality in the present
study and hence, we will investigate the mesh orthogonality angle in the following section
which seems to be more important, particularly to determine the mesh quality after the twist
deformation of the foil.

(b) Mesh orthogonality angle

The initial and deformed mesh and the corresponding orthogonality angles will be studied
for three different test cases of flexible hydrofoils subjected to flow with u0= 5m/s, 15m/s
and 20m/s.
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(a) Cstiff=0.5

(b) Cstiff=2

(c) Cstiff=10

(d) Cstiff=20

Figure 5.5 Effects of the stiffness model exponent, Cstiff , on the expansion factor of the
deformed mesh for flows with u0= 15m/s
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test case (1): u0= 5m/s

Figure 5.6 shows the undeformed mesh and the corresponding orthogonality angle contour,
used to study the flow over flexible hydrofoils with u0= 5m/s. It is observed that the initial
mesh has been generated with an acceptable orthogonality angle range of above ≈70◦. Figure

(a) Undeformed mesh (b) Orthogonality angle

Figure 5.6 Undeformed mesh and the orthogonality angle, u0= 5m/s

5.7 shows the deformed mesh and the orthogonality angle for the flexible hydrofoil subjected
to flow with u0= 5m/s, using the default value of the stiffness model exponent in CFX,
Cstiff = 2.0. It is shown in Fig. 5.7 that the configuration of the deformed mesh and

(a) Deformed mesh (b) Orthogonality angle, Cstiff = 2

Figure 5.7 Deformed mesh and the orthogonality angle, increasing the stiffness near small
volumes with Cstiff = 2, u0= 5m/s

the orthogonality angle range for the test case with u0= 5m/s is very similar to that of
the undeformed mesh in Fig. 5.6, because of the low flow-induced deformations due to low
hydrodynamic loading in this operating condition. The only noticeable difference is in the
region near the trailing edge, where a decrease in the orthogonality angle is observed. As
the comparison of the undeformed and deformed mesh near the sharp trailing edge in Fig.
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5.8 shows, the elements in the wake region are unable to follow the upward movement of
the hydrofoil and interfacial elements. The elements near the trailing edge should be stiffer
so that the nodes in regions of high stiffness move together (that is, there is little relative
motion).

(a) Undeformed mesh (b) Deformed mesh, Cstiff = 2

Figure 5.8 Comparison of the undeformed and deformed mesh near the trailing edge, Cstiff =
2, u0= 5m/s

It is shown in Figs. 5.9 and 5.10 that increasing the stiffness model exponent to Cstiff = 10
retains the mesh quality after the deformation. The nodes in the trailing edge region with
high stiffness move together and there is little relative motion.

(a) Deformed mesh (b) Orthogonality angle, Cstiff = 10

Figure 5.9 Deformed mesh and the orthogonality angle, increasing the stiffness near small
volumes with Cstiff = 10, u0= 5m/s

In conclusion, a variable mesh stiffness with the stiffness model exponent of Cstiff = 10 is
used in the test case of a flexible foil at α= 8◦ subjected to flow with u0= 5m/s. This mesh
is used for the sake of validation of the results and shows very good agreement with the
experimental data, as will be discussed in the next chapter.

It has to be mentioned that, as discussed earlier, an acceptable initial mesh with its specific
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(a) Undeformed mesh (b) Deformed mesh, Cstiff = 10

Figure 5.10 Comparison of the undeformed and deformed mesh near the trailing edge, Cstiff =
10, u0= 5m/s

mesh deformation settings for a specific test case, might not be appropriate for another test
case with different operating conditions.

test case (2): u0= 15m/s

In this section, we will use the initial mesh, shown in Fig. 5.6, to investigate the mesh quality
in the test case with u0= 15m/s. Obviously, the higher hydrodynamic loading in this case
leads to higher flow-induced deformations compared to the test case (1).

Figure. 5.11 shows the deformed mesh and the orthogonality angle for the test case (2) with
Cstiff = 2.0, which is the default value in CFX, as well as the contours of the orthogonality
angle for this case. The minimum orthogonality angle of the mesh in the regions near trailing
edge is ≈2◦ which indicates that the quality of mesh is not acceptable.

(a) Deformed mesh (b) Orthogonality angle, Cstiff = 2

Figure 5.11 Deformed mesh and the orthogonality angle, increasing the stiffness near small
volumes with Cstiff = 2, u0= 15m/s



56

By decreasing the stiffness model exponent to Cstiff=1, negative volume elements appear
near the foil trailing edge, as shown in Fig. 5.12, the simulation crashes and hence, the
results are not reliable. The contours of the orthogonality angle in Fig. 5.12 show the poor
mesh quality in this case. The configuration of the deformed mesh for both cases above,

(a) Deformed mesh (b) Orthogonality angle, Cstiff = 1

Figure 5.12 Deformed mesh and the orthogonality angle, increasing the stiffness near small
volumes with Cstiff = 1, u0= 15m/s

Cstiff = 1 and 2, shows that the elements in the wake region are unable to follow the upward
movement of the hydrofoil and interfacial elements, as for the test case (1).

Figure 5.13 shows that by increasing the stiffness model exponent to Cstiff = 10, the orthog-
onality angle ranges between ≈50◦ and 90◦. This figure illustrates that higher mesh stiffness
is particularly useful to preserve the mesh distribution (and quality) near the sharp trailing
edge.

(a) Deformed mesh (b) Orthogonality angle, Cstiff = 10

Figure 5.13 Deformed mesh and the orthogonality angle, increasing the stiffness near small
volumes with Cstiff = 10, u0= 15m/s

Figure 5.14 shows that further increase in the stiffness model exponent to Cstiff = 20, leads
to low orthogonality angles of ≈16◦ near the leading edge, which is less than the acceptable
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range of 20◦. By setting the stiffness model exponent to Cstiff = 30, negative volume
elements appear near the leading edge and as a consequence, the simulation crashes after a
few iterations.

Figure 5.14 Deformed mesh and the orthogonality angle, increasing the stiffness near small
volumes with Cstiff = 20, u0= 15m/s

In conclusion, the optimum stiffness model exponent of Cstiff = 10 is chosen for the simula-
tion of flexible foil at α= 8◦ subjected to flow with u0= 15m/s, which mitigates the distortion
of small volume elements near the leading edge and in the wake region.

For higher values of inlet velocities, the flexible hydrofoil undergoes higher deformation and
as a consequence, different settings might be needed to avoid highly distorted elements. This
will be verified in the following section.

test case (3): u0= 20m/s

Based on the conclusion of the test case (2), we will use the initial mesh shown in Fig. 5.6
with a stiffness model exponent of Cstiff = 10 to investigate the quality of the deformed mesh
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for test case (3) with u0= 20m/s. Figure 5.15 shows the deformed mesh and the orthogonality
angle for this test case with Cstiff = 10. It is shown that due to higher hydrodynamic loading
and higher twist deformation of the foil in this case, the minimum orthogonality angle near
the leading edge is less compared to the test cases (1) and (2). However, it is still within the
acceptable range and hence, this mesh can also be used for the investigations of flow with
u0= 20m/s.

(a) Deformed mesh (b) Orthogonality angle, Cstiff = 10

Figure 5.15 Deformed mesh and the orthogonality angle, increasing the stiffness near small
volumes with Cstiff = 10, u0= 20m/s

5.1.4 Time step setting

According to the physics of the problem at the mentioned operating conditions, the hydrofoil
initially oscillates as water flows and finally damps to a steady-state position. The present
study uses a coupled transient structural and CFD model.

The selection of an appropriate time step size is essential in order to obtain good convergence
rates for the simulation and to accurately resolve transient details and capture the important
features. The time step size ∆t has to be fine enough to ensure a mean CFL number u0∆t/∆x
around 1.0, where ∆x is the average cell size in the chord-wise direction. Therefore, the time
step size in this study is chosen to be between ∆t = 1 × 10−4 and ∆t = 1 × 10−5, for flows
over rigid hydrofoils with u0 = 5m/s to u0 = 25m/s, respectively.

For the test cases of flow over flexible hydrofoils, the above time step sizes lead to transient
start-up convergence problems and solver failure. This is because the hydrofoil made of highly
flexible material undergoes large deformations. Our strongly-coupled FSI approach, iterates
within each time-step. At each time-step, once the new solid position is obtained from the
structural calculations, the fluid flow and the corresponding mesh has to be deformed to
conform to the new solid position. If the time step is too small, for a given deformation in
each time step, the fluid does not have enough time to respond and the mesh does not have
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enough time to conform to the updated structural position. Hence, more time is required for
the fluid flow to evolve between the subsequent structural positions. For this reason, a larger
time step size of ∆t = 1×10−3 is chosen in the case of flexible hydrofoils. The results obtained
from the simulations with this time step show very good agreement with the experimental
data, as will be discussed in Section 5.5. Furthermore, from a physical standpoint at the given
operating conditions, the problem at hand does not exhibit noticeable transient features, such
as large amplitude vibrations and unsteady wake patterns. That is why the choice of larger
time step size in the simulation of flow over flexible hydrofoil at the operating conditions in
the present study does not affect the accuray of the results.

5.1.5 Solver controls

In all the fluid computations, second order schemes are used to calculate the spatial deriva-
tives in the finite volume discretization. The Second Order Backward Euler scheme is used for
the time integration which is an implicit time-stepping scheme. This scheme is second-order
accurate and is generally recommended for most transient applications in ANSYS CFX.

5.2 Validation of the viscous fluid solver

The viscous fluid solver is validated by comparing the present numerical results with previous
experimental measurements for a NACA0012 airfoil. Two sets of experimental data are used
in this section:

• Pressure coefficients for airfoils at incidence angles of α= 0◦, 10◦ and 15◦ with a
Reynolds number of Re = 2.88 × 106 taken from Ref. (Gregory and O’Reilly, 1970),
and

• Lift and drag coefficients for airfoils at various incidence angles with Reynolds numbers
of Re = 2× 106, Re = 4× 106 and Re = 6× 106 taken from Ref. (Ladson, 1988).

Figure 5.16 shows the comparison between the computed and measured pressure coefficient,
Cp = (p − p0)/(0.5ρfu2

0), on the airfoil surfaces at Re = 2.88 × 106 for incidence angles of
α= 0◦, 10◦ and 15◦, where p0 is the absolute tunnel pressure. In this figure, x/c=0 is the
hydrofoil leading edge (LE) position and x/c=1 is the trailing edge (TE) position. Good
agreement is observed in all the cases and it is shown that the present viscous fluid solver is
able to resolve the leading edge upper surface pressure peak.

Numerical and experimental lift and drag coefficients at various angles of attack are compared
in Fig. 5.17 and 5.18 for Re = 2× 106, Re = 4× 106 and Re = 6× 106.
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(a) α=0◦

(b) α=10◦

(c) α=15◦

Figure 5.16 Comparison of experimental (Gregory and O’Reilly, 1970) and numerical pressure
coefficient, Cp, on a NACA0012 foil for Reynolds number of Re = 2.88× 106



61

(a) Re = 2× 106 (b) Re = 4× 106

(c) Re = 6× 106

Figure 5.17 Comparison of experimental (Ladson, 1988) and numerical lift coefficients, CL,
on a NACA0012 foil for different Reynolds numbers as a function of the angle of attack, α

It is shown that the present viscous fluid solver is able to correctly predict the lift and drag
coefficients. The observed difference between the measured and predicted results at high
angles of attack, corresponds to the cases where the flow becomes fully detatch and stall
occurs. Due to the flow seperation during stall, the lift coefficient decreases significantly
such that the slope of the lift curve becomes negative. Furthermore, a dramatic increase is
observed for the drag coefficient, as shown in Fig. 5.18. In this case, the results are no doubt
very far from being steady-state any more, and hence, the mean lift and drag coefficients are
shown in the diagrams above. It is also shown that for lower Re number of Re = 2 × 106,
stall occurs at the critical angle of attack of α= 14◦ while at higher Re numbers, it occurs at
α= 16◦.
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(a) Re = 2× 106 (b) Re = 4× 106

(c) Re = 6× 106

Figure 5.18 Comparison of experimental (Ladson, 1988) and numerical drag coefficients, CD,
on a NACA0012 foil for different Reynolds numbers as a function of the angle of attack, α

5.3 Numerical set-up: structural domain

The ANSYS mesh generator was used to construct the mesh for the solid domain. The solid
mesh is composed of 160,000 elements with 400 nodes on the hydrofoil profile and 40 elements
in the span-wise direction.

ANSYS has a large library of element types, each of which has a set of degrees of freedom
which determines the discipline for which the element is applicable: structural, thermal,
electric, etc. The element’s degrees of freedom constitute the primary nodal unknowns to be
determined by the finite element analysis. The derived results, such as stresses, are computed
from these degrees of freedom and hence, the choice of element type is an important step in
any ANSYS analysis. The element type should be chosen such that the degrees of freedom are
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Figure 5.19 The structural mesh used for CSD simulation

sufficient to predict the model’s response. Including unnecessary degrees of freedom increases
the memory requirements and run time. Similarly, selecting element types with unnecessary
features, such as using an element type with plastic capability in an elastic simulation, also
unnecessarily increases the running time.

The characteristics of the element types are described in the ANSYS user guide. However, it
suffices to mention that in the present study, SOLID185 is used to perform transient structural
analysis. This element type is an hexahedral element defined by eight nodes which has
plasticity, stress stiffening, large deflection, and large strain capabilities (Reference: ANSYS
User Guide).

In ANSYS, the transient structural analysis is used to determine the time-dependent dis-
placements, strains, stresses, and forces in the structure as it responds to the total forces
received from the CFD simulation.

5.4 Mesh convergence study

Proper grid refinement is crucial for accurate prediction of turbulent features in the study
of hydroelastic response and stability of hydrofoils, particularly in regions where laminar
separation occurs, in order to properly capture the rapid transition due to the separation
bubble.

Mesh convergence studies are conducted for the case corresponding to a rigid NACA66 hy-
drofoil at an angle of attack of α=8◦ in steady flow with u0= 5m/s; the relevant experimental
data is taken from Ref. (Akcabay et al., 2014). The mesh convergence study is performed
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considering three different parameters; Y + near the hydrofoil surface, the number of nodes
on the hydrofoil profile in the stream-wise direction Nfoil, and the number of elements on
the hydrofoil in the span-wise direction nspan. In all the convergence results shown in this
subsection, the time step is chosen to be ∆t = 1× 10−4.

Figure 5.20 shows the effect of boundary layer resolution, Y +, on the pressure coefficient,
Cp = (p− p0)/(0.5ρfu2

0), along the free tip of the hydrofoil.

Figure 5.20 Pressure coefficient, Cp, along the hydrofoil surface for the rigid foil at α=8◦ for
different values of Y +. (Nfoil=400 and nspan=40 )

The high pressure gradient near the foil leading edge results in the formation of a laminar
separation bubble near the foil leading edge which has an immediate effect on the hydroelastic
response of the foil. This figure illustrates how the onset and the amount of flow separation
depends on the value of the boundary layer resolution, Y +. Therefore, Y +=1 is chosen in
the present study in order to fully resolve the boundary layer. It should be noted that the
number of nodes on the hydrofoil profile in the stream-wise direction, Nfoil, is set to 400 and
there are 40 elements in the span-wise direction.

The influence of number of nodes on the NACA66 profile, Nfoil, is depicted in Fig. 5.21. The
figure shows that in order to capture the high pressure gradient near the foil leading edge, a
sufficient number of nodes is needed in this region.

The computed lift coefficient convergence according to Nfoil is summarized in Table 5.2. It
is shown that CL converges to its experimental value of CL=1.065 with an error of less than
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Figure 5.21 Pressure coefficient, Cp, along the foil surface for the rigid hydrofoil at α= 8◦ for
different values of Nfoil. (Y +=1 and nspan=40 )

1% for Nfoil=400 and above.

The effects of the different numbers of elements on the hydrofoil in the span-wise direction
(nspan) are also studied and the convergence is shown in Table 5.3. The variation of the
hydrodynamic lift coefficient in the span-wise direction confirms the 3D nature of the problem.

It is worth mentioning that different boundary layer resolutions near the channel wall are
also studied and Y + ≈1 is chosen.

Table 5.2 Lift coefficient convergence as a function of number of nodes on the hydrofoil profile
in the stream-wise direction (Nfoil)

Nfoil CL difference with
experiment %

100 1.152 8.1
200 1.085 1.9
400 1.073 0.8
600 1.072 0.7

Experiment 1.065 -
(Akcabay et al., 2014)
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Table 5.3 Lift coefficient convergence as a function of number of elements in the span-wise
direction (nspan)

nspan CL difference with
experiment %

20 1.114 4.6
30 1.079 1.3
40 1.073 0.8
50 1.071 0.6

Experiment 1.065 -
(Akcabay et al., 2014)

5.5 Validation of the two-way FSI solver

The FSI simulations are validated through comparison with experimental data measured for
flow over both rigid and flexible NACA66 hydrofoils at 8◦ angle of attack in a water tunnel
facility at the French Naval Academy by Akcabay et al. (Akcabay et al., 2014). u0= 5m/s is
the nominal free stream velocity that yields a moderate Reynolds number of Re = 0.75×106

in this part of our study.

Figure 5.22 shows a good agreement between the computed and measured (Akcabay et al.,
2014) pressure coefficients along the rigid hydrofoil surface at α=8◦. However, there were no
available experimental data for the leading edge upper surface pressure peak.

The experimentally measured hydrodynamic load coefficients (CL and CD) for the rigid hy-
drofoil and the tip section vertical displacement (δy) measured at the leading edge of the
flexible hydrofoil are compared with computational values in Table 5.4. These comparisons
show that the present numerical results yield a better agreement with the experimental mea-
surements than those obtained by Akcabay et al. (Akcabay et al., 2014) and (Wu et al.,
2015). This might be partly due to the 2D flow assumption in these studies, which ignored
3D effects, such as the contributions from the induced drag due to the finite aspect ratio
(s/c = 1.27) and the boundary layer effects at the foil root, whereas these are accounted
for in the present study. The 2D hydrofoil assumption in Ref. (Akcabay et al., 2014) and
neglecting the effects of the fixed root leads to noticeable discrepancies in the magnitudes of
the hydrofoil displacement (error of 58% between the experimental and numerical values),
while in the present study the difference between the experimental and numerical results for
δy is ≈ 4%. Considering all the structural DOFs, the solution of the complete set of struc-
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tural equations and incorporating a two-way FSI coupling method in the current study also
provides more accurate results than the loosely coupled method in the studies of Akcabay et
al. (Akcabay et al., 2014) and (Wu et al., 2015) who used a simple 2-DOF model to simulate
only the tip section bend and twist deformations for the solid domain. Furthermore, although
the SST turbulence model has been used in the studies of Akcabay et al. (Akcabay et al.,
2014) and (Wu et al., 2015), in the present study this model is coupled with a transition
model, whereas no transition modelling has been used in these two references. As mentioned
in the previous literature and will be investigated in Section 5.7, the incorporation of transi-
tion modeling is highly effective in the accurate prediction of the flow separation, which has
immediate effect on the hydrodynamic response of the hydrofoils.

Figure 5.22 Comparison of the experimental (Akcabay et al., 2014) and computational pres-
sure coefficient, Cp, along the free tip of the rigid hydrofoil surface at α=8◦

CL is primarily affected by pressure changes, while CD is affected by 3D effects such as energy
dissipation through the gap and tip vortices. The influence of tip gap flow is neglected in
the present study. This could be the reason why there is only a small difference between
the measured and computed CL, while the measured CD is much higher than the numerical
values.

The proposed advanced 3D methodology in the present strongly-coupled two-way FSI simula-
tions, results in more accurate hydrodynamic lift and drag coefficients in comparison with the
available numerical results in the above-mentioned references. It has to be mentioned that
this comparison, which shows the improvement of the numerical results, has been performed
for low-loaded conditions; i.e. u0=5 m/s, which was the test case in the studies of Akcabay
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Table 5.4 Comparison of the experimental (Akcabay et al., 2014) and computational lift and
drag coefficients and the tip section displacement for the rigid and flexible hydrofoils at α=8◦

CL CD δy(mm)

Rigid

Experiment (Akcabay et al., 2014) 1.065 0.048 -

Present study 1.073 0.036 -

Computation Ref. (Akcabay et al., 2014) 1.19 0.022 -

Computation Ref. (Wu et al., 2015) 1.15 - -

Flexible

Experiment (Akcabay et al., 2014) - - 3.6

Present study 1.16 0.029 3.45

Computation Ref. (Akcabay et al., 2014) 1.22 0.022 1.5

Computation Ref. (Wu et al., 2015) 1.2 - 2

et al. (Akcabay et al., 2014) and (Wu et al., 2015). However, at highly loaded conditions
(u0= 15 to 25 m/s), where the flow is fully turbulent and the flow detachment and insta-
bilities might occur, the 3D assumption becomes a necessity. In this case, the flow-induced
deformation of the flexible hydrofoil becomes high enough to reach instabilities and hence,
the accuracy of results becomes more dependent on how strongly the fluid and solid domains
are coupled. Therefore, our proposed methodology is clearly able to predict accurate results
at highly loaded operating conditions.

Based on these good agreement with experiment, from now on, the analysis will be based
on numerical simulations which are assumed to correctly reproduce the experimental data.
The model will be used to study the hydroelastic response of the hydrofoil subjected to flows
with higher Reynolds numbers in the next chapter.

5.6 Comparison of one-way and two-way coupling methods for FSI analysis of
the flexible hydrofoils

In this section, one-way and two-way coupling methods are compared for FSI analysis of the
hydrofoil. For one-way coupling calculations, once the flow field is computed, only the fluid
pressure acting on the structure is transferred to the structural solver. For two-way-coupling
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calculations, the displacement of the structure is also transferred back to the fluid solver.

To better understand the difference between the two methods, only the flexible hydrofoil at
a high angle of attack, α= 8◦, will be studied. The hydrofoil is subjected to flows with u0=
5m/s, 10m/s, 15m/s, 20m/s and 25m/s.

The total displacements of the hydrofoil, computed with one-way and two-way coupling
methods, are compared in Fig. 5.23. Figure 5.24 shows the comparison between the vertical
tip section displacement, δy, measured at the leading edge of the flexible hydrofoil at α=
8◦, subjected to flows with u0= 5m/s, 10m/s, 15m/s, 20m/s and 25m/s, for one-way and
two-way coupling methods. It is shown that higher Re number flows lead to higher deforma-
tion in the foil due to higher hydrodynamic loading. Comparison between the displacements
obtained from the one-way and two-way coupling methods shows that at lower loaded con-
ditions, such as u0= 5m/s and 10m/s, the structural deformations are small and hence, the
result of both coupling methods are almost similar. However, a larger difference is observed
at higher loading conditions where the structure undergoes larger deformations. Under these
conditions, there is a strong relationship between the two fields that are coupled, and hence,
two-way FSI needs to be undertaken.

The velocity contours are also compared for one-way and two-way coupling methods in Fig.
5.25. At low loading conditions, the flow pattern computed with both one-way and two-way
coupling methods are almost similar, except that the flow velocity near the leading edge is
higher in the two-way approach due to the foil higher deformation. As mentioned before, the
difference is significantly more noticeable at high loading conditions, in which the structural
deformation is significant and strongly affects the flow field. As shown in Fig. 5.25(h), for a
flexible hydrofoil subjected to flow with a velocity of u0= 20m/s, high hydrodynamic loading
leads to high deformation of the foil, and as a result, the flow becomes fully detached and
stall occurs. This will be discussed in the next chapter in more detail. It is clearly observed
that stall is not captured by the one-way coupling method.

The lift and drag coefficients are also computed with both one-way and two-way coupling
methods and compared in Fig. 5.26. It is shown that for one-way coupling method, the dif-
ference in the hydrodynamic coefficients caused by different Re numbers is much lower than
the two-way coupling method. It is also shown that at high loading conditions, the hydrody-
namic coefficients obtained from the two-way simulations are higher than those from one-way
simulations due to the higher deformation. As shown in this figure and will be discussed in
the next chapter, when stall occurs in the two-way FSI simulations of a flexible foil subjected
to a flow with u0= 20m/s, a dramatic increase is observed for the drag coefficient due to the
fully detached flow over the foil. In this case, the lift coefficient decreases significantly.
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(a) one-way, u0= 5m/s (b) two-way, u0= 5m/s

(c) one-way, u0= 10m/s (d) two-way, u0= 10m/s

(e) one-way, u0= 15m/s (f) two-way, u0= 15m/s

(g) one-way, u0= 20m/s (h) two-way, u0= 20m/s

(i) one-way, u0= 25m/s (j) two-way, u0= 25m/s

Figure 5.23 Comparison of the total displacement for the flexible hydrofoil at α = 8◦ with
one-way (left column) and two-way (right column) coupling methods
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Figure 5.24 Comparison of the vertical tip section displacement, δy, for the flexible hydrofoil
at α = 8◦ with one-way and two-way coupling methods

For moderate to high Re number flows, high hydrodynamic loading conditions result in large
structural deformations that strongly affects the flow field. In other words, the structural
analysis produces results that, when applied as loads in the fluid analysis, significantly af-
fects the flow solution. It can be concluded that two-way FSI needs to be incorporated to
accurately capture and analyze the deformation-dependant phenomena in the flow, such as
separation and stall.

The fluid-structure problem is solved with a finite volume technique using the CFD code
CFX, for the fluid, and a finite element code using the CSD code ANSYS, for the structure.
The available coupling capability enables CFX to work with the ANSYS Mechanical solver
within an ANSYS Multi-field simulation. During coupled simulations, the ANSYS CFX and
Mechanical solvers execute the simulation through a sequence of multi-field steps, each of
which consists of one or more coupling iterations. In the proposed strongly-coupled FSI
algorithm, the results of the CFD model are transferred to the structural part whereas
the subsequently calculated displacements at the interface are transferred back to the CFD
analysis through mesh deformation.

5.7 Transition modelling: effects on laminar to turbulent transition

It has been discussed earlier that the hydroelastic response of a flexible hydrofoil is highly
affected by the turbulence predictions and boundary layer detachment at high Reynolds
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(a) one-way, u0= 5m/s (b) two-way, u0= 5m/s

(c) one-way, u0= 10m/s (d) two-way, u0= 10m/s

(e) one-way, u0= 15m/s (f) two-way, u0= 15m/s

(g) one-way, u0= 20m/s (h) two-way, u0= 20m/s

(i) one-way, u0= 25m/s (j) two-way, u0= 25m/s

Figure 5.25 Comparison of the velocity contours for the flexible hydrofoil at α = 8◦ with
one-way (left column) and two-way (right column) coupling methods
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(a) (b)

Figure 5.26 Comparison of (a) lift coefficient (b) drag coefficient of flexible hydrofoils at
α = 8◦ with one-way and two-way coupling methods

numbers. The current simulations use the SST turbulence model which has been shown to
be accurate for boundary layer detachment prediction and turbulence behaviour of flexible
foils at high Reynolds numbers. To accurately capture the major transition effects in our
study, the SST turbulence model is coupled with the "Gamma Theta" transition model.
Incorporation of transition modeling has been shown to be highly effective in the prediction
of the onset of the flow separation under adverse pressure gradient conditions.

The aim of this section is to investigate the effects of transition modelling on laminar to
turbulent transition over the hydrofoil. For this purpose, we will compare the results for a
case of separation-induced transition, with and without using the transition model.

To better understand the effect of transition modelling, the laminar to turbulent transition
point is analyzed. The transition point can be approximated as the point where the skin
friction coefficient is equal to zero (Menter et al., 2006; Ducoin and Young, 2013).

Figures 5.27 and 5.28 show the distribution of the skin friction coefficient, Cf , on the suction
side of the flexible hydrofoil at α=6◦ subjected to flows with velocities of u0= 20m/s and
25m/s. The distribution of Cf is compared in these figures for the simulations with and
without incorporating the transition modeling coupled to the turbulent modeling.

Figure 5.27 shows that the flow separation near the trailing edge has been captured with
and without using the transition model at x/c≈0.85, where the skin friction coefficient is
equal to zero. With the use of transition modeling, the laminar saparation bubble near the
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leading edge is also captured at x/c≈0.01. However, without using the transition modeling,
the laminar saparation bubble near the leading edge is not captured.

Furthermore, the distribution of Cf shown in Fig. 5.28 and the comparison of the velocity
countours shown in Fig. 5.29 show that the incorporation of transition modeling in the case
of flow with u0= 25m/s, forces globally turbulent flow on the suction side of the flexible
hydrofoil, the flow becomes fully detached and the hydrofoil experiences the well-known
phenomenon of stall. However, the SST model without the transition model can only capture
the transition point near the trailing edge (x/c≈0.78).

(a) the full-extend of the Cf distribution (b) a close-up near the foil leading edge

Figure 5.27 Skin friction coefficient along the hydrofoil upper surface for the flexible hydrofoil
at α=6◦ with u0= 20m/s

The effect of laminar-to-turbulent transition modelling was investigated for a case of separation-
induced transition corresponds to a flexible hydrofoil at high hydrodynamic loading condition,
for which no experimental data is available. Hence, although a significant different was ob-
served between the cases with and without transition modelling, the reliability of the results
may not be justified. Therefore, the investigation of laminar-to-turbulent transition modeling
will be performed for a separation-induced transition case with available experimental data.
We will choose a case corresponds to the flow over a NACA0012 airfoil at an incidence angle
of α=18◦ with a Reynolds number of Re = 4 × 106 taken from Ref. (Ladson, 1988). This
test case has already been validated in Section 5.2.

The lift and drag coefficients are compared for the simulations with and without transition
modeling in Table. 5.5. It is shown that the results obtained with the incorporation of tran-
sition modeling match the experiments better in comparison to fully turbulent computations.

It is shown in Fig. 5.30(a) that a leading edge vortex develops along the entire foil, which
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Figure 5.28 Skin friction coefficient along the hydrofoil upper surface for the flexible hydrofoil
at α=6◦ with u0= 25m/s

Table 5.5 Comparison of the lift and drag coefficients for NACA0012 airfoil at α=18◦ and
Re = 4× 106, with and without transition modeling

with transition modeling without transition modeling experiment

CL 0.95 0.68 0.99

CD 0.27 0.19 0.25

sheds partially into the wake and leads to an unsteady flow. The interaction between the
clock-wise leading edge vortex with the counter clock-wise trailing edge vortex is observed in
this figure. However, the streamlines depicted in Fig. 5.30(b) show that the fully turbulent
simulation is not able to accurately predict the flow separation on the foil, which consequently
leads to discrepancies in the lift and drag coefficients, as presented in Table. 5.5.

To recapitulate, the SST turbulence model coupled with the "Gamma Theta" transition
model in the proposed methodology was shown to be an accurate model for flow separation
prediction and turbulence behaviors over the foils.
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(a) with transition model (b) without transition model

Figure 5.29 Comparison of the velocity contours at the free tip of the flexible hydrofoil at
α=6◦ with u0= 25m/s with and without transition modeling

(a) with transition model (b) without transition model

Figure 5.30 Comparison of the streamlines for a NACA0012 airfoil at α=18◦ and Re = 4×106,
with and without transition modeling
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CHAPTER 6 RESULTS

In this chapter, the hydroelastic response of 3D hydrofoils will be studied at various operating
conditions; i.e. different angles of attack and inlet velocities.

To investigate and quantify the effects of hydrofoil flexibility, a solid understanding of the
rigid foil dynamics is required. This will be undertaken by comparing the performance of
rigid and flexible hydrofoils. For comparison, both rigid and flexible hydrofoils are considered
in the same operating conditions and identical initial undeformed geometries.

As discussed in chapter 5, to avoid confinement effects caused by large elastic foil deformations
at highly hydrodynamic loaded conditions, the infinite-like boundary fluid domain shown in
Fig. 5.1.(b) is used in this chapter.

6.1 Flow-induced deformation of the flexible hydrofoil

The flow-induced displacement of the flexible hydrofoil at α=8◦ subjected to flow at Re =
0.75 × 106 is depicted in Fig. 6.1, which is scaled to enhance legibility. The 3D feature of
the foil deformation (fixed at the root and free at the tip) is clearly shown in this figure.
It is also shown that the deformation of the hydrofoil near the leading edge is higher than
the corresponding value near the trailing edge. This confirms that, as indicated by Ducoin
and Young Ducoin and Young (2013), the flexible hydrofoil undergoes a clockwise twist
deformation, which increases the effective angle of attack. Furthermore, although the solid
equations considering all the DOFs of the domain are fully solved in this study, the span-wise
upward bending and the clockwise twisting deformation of the hydrofoil seem to be the most
noticeable DOFs for this hydrofoil set-up, as depicted in Fig. 6.2 for the flexible hydrofoil
subjected to flow with u0= 20m/s. Bending and twist deformation of the hydrofoil are the
only DOFs that were considered in Refs. Ducoin and Young (2013); Akcabay and Young
(2014); Akcabay et al. (2014); Chae et al. (2013); Wu et al. (2015); Chae et al. (2016).

The variation of vertical tip section displacement, δy, measured at the leading edge of the
flexible hydrofoil is given in Fig. 6.3 as a function of the initial angle of attack, α. It shows
that high loaded conditions, i.e. high angles of attack or high Re number flows, lead to higher
displacements of the foil. For instance, the flexible hydofoil initially placed at the angles of
incidence of α = 4◦ and higher, experiences a vertical displacement of more than one half of
its chord length when u0= 25m/s.
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Figure 6.1 Total mesh displacement contour for the flexible hydrofoil at α=8◦ with u0= 5m/s

Figure 6.2 Total mesh displacement contour for the flexible hydrofoil at α=8◦ with u0=
20m/s

6.2 Pressure coefficient distribution at the hydrofoil tip

The pressure coefficients along the hydrofoil surface (at the hydrofoil free tip) are compared
for rigid and flexible hydrofoils at various α subjected to flow with u0= 10m/s and 15m/s
in Fig. 6.4 and 6.5, respectively. Comparison between the rigid and flexible hydrofoils in all
cases reveals that the deformation of the flexible hydrofoil leads to increases in net pressure
loading as well as higher pressure gradient near the foil leading edge.

Table 6.1 shows a comparison between the minimum pressure coefficients for rigid and flexible
hydrofoils subjected to flows with u0= 10m/s and 15m/s. For instance, for flows with u0=
10m/s the minimum pressure coefficient drops from Cp=-4.2 for the rigid hydrofoil to Cp=-
4.8 for the flexible hydrofoil at α=8◦ and from Cp=-2.6 for the rigid hydrofoil to Cp=-3 for
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Figure 6.3 The vertical tip section displacement, δy, for the flexible hydrofoil at various angles
of attack

the flexible hydrofoil at α=6◦.

For flows with higher inlet velocities and hydrofoils at higher angles of incidence, the difference
between pressure coefficient for the rigid and flexible hydrofoils becomes more noticeable
because of the higher hydrodynamic loading, as depicted in Fig. 6.6 and 6.7 which compare
the pressure coefficients for the rigid and the flexible hydrofoils with u0= 20m/s and 25m/s,
respectively.

6.3 Flow patterns

It has been discussed earlier that the structural behavior is affected by the transition from
laminar to turbulent flow. The streamline pattern, depicted in Fig. 6.8, shows the laminar
to turbulent transition by Laminar Separation Bubble (LSB) for α=0◦ and α=8◦ when u0=
5m/s. It is shown that at small angles of attack, α=0◦, the onset of flow separation occurs
around the trailing edge while attached flow over the wing remains dominant. As the angle of
attack increases, the separated region on the top of the wing increases in size in the vacinity
of the trailing edge, and as depicted in Fig. 6.8(b), and a second LSB is induced near the
foil leading edge at α=8◦, due to the high pressure gradient.

To quantify the effect of foil flexibility, the velocity contours for both the rigid and flexible
hydrofoils at various angles of attack are compared in Fig. 6.9, 6.10 and 6.11 for u0= 15m/s,
20m/s and 25m/s, respectively. For lower Reynolds number flows, as shown in Fig. 6.9 for
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(a) α=2◦ (b) α=4◦

(c) α=6◦ (d) α=8◦

Figure 6.4 Pressure coefficient, Cp, for the rigid and flexible hydrofoils subjected to flow with
u0= 10m/s at: (a) α=2◦, (b) α=4◦, (c) α=6◦ and (d)α=8◦

the flow velocity of u0= 15m/s, the velocity contours for both the rigid and flexible hydrofoils
are almost similar, except that the flow velocity near the leading edge of the flexible hydrofoil
is higher than the rigid one. This is due to the foil deformation and the increase in the effective
angle of attack. For flow velocities of u0= 20m/s and 25m/s, a more noticeable difference
is observed between the flow patterns over the rigid and flexible hydrofoils in figs. 6.10 and
6.11, because of the higher hydrodynamic loading. For both rigid and flexible hydrofoils at
low angles of attack, the boundary layer experiences a laminar to turbulent transition near
the trailing edge. As the angle of attack increases, the transition point moves toward the
leading edge. The clockwise twist deformation of the flexible hydrofoil increases the effective
angle of attack, which leads to an earlier transition to turbulence. The higher difference
occurs at higher angle of attack as a result of higher hydrodynamic loading.

The flexible hydrofoil at α = 8◦, which is subjected to higher inlet velocity of u0= 20m/s,
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(a) α=2◦ (b) α=4◦

(c) α=6◦ (d) α=8◦

Figure 6.5 Pressure coefficient, Cp, for the rigid and flexible hydrofoils subjected to flow with
u0= 15m/s at: (a) α=2◦, (b) α=4◦, (c) α=6◦ and (d)α=8◦

undergoes high flow-induced deformation and as a consequence, as shown in Fig. 6.10(h),
the vortex developed from the foil’s trailing edge moves toward the foil’s leading edge, the
flow becomes fully detached and stall occurs.

As shown in Fig. 6.11(f), for the flexible hydrofoil subjected to flow velocity of u0= 25m/s,
stall occurs at the angle of attack of α = 6◦.

6.4 Lift and drag coefficients

In Figs. 6.12 and 6.13, the lift and drag coefficients of the rigid hydrofoil at various angles of
attack are shown together with the corresponding values for the flexible hydrofoil to illustrate
the effects of flexibility on hydrodynamic coefficients. In general, the lift coefficient of the
flexible hydrofoil is higher than the rigid hydrofoil. The higher lift coefficient of the flexible
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Table 6.1 Comparison of the minimum pressure coefficient for the rigid and flexible hydrofoils

Cpmin , Rigid Cpmin , Flexible

u0= 10m/s

α=2◦ 0.59 0.64

α=4◦ 1.39 1.6

α=6◦ 2.6 3.0

α=8◦ 4.2 4.8

u0= 15m/s

α=2◦ 0.6 0.74

α=4◦ 1.43 1.9

α=6◦ 2.64 3.7

α=8◦ 4.4 5.7

hydrofoil is due to the deformation and higher effective angle of attack caused by the clockwise
twist deformation, as discussed before. The higher difference is observed at higher angles of
attack, due to the higher hydrodynamic loading. In addition to increases in CL, the increase
in effective angle of incidence also increases the drag coefficient, as shown in Fig. 6.13.

To illustrate the effects of Reynolds number on the hydrodynamic performance of the hy-
drofoils, the lift and drag coefficients of the rigid and flexible hydrofoils at various angles
of attack are shown in figs. 6.14 and 6.15 for different values of inlet velocities. For rigid
hydrofoils, the differences in the results due to Reynolds number effects is almost negligible,
as evident from these results.

It has been discussed earlier that at highly loaded conditions, the flow-induced twist defor-
mation of the flexible hydrofoil becomes high enough to reach stall.

It is shown in Fig. 6.14(b) and 6.15(b) that when stall occurs, at the critical angle of attack
of α=6◦, the slope of the lift curve (dCL/dα) decreases and the drag coefficient increases. For
flows with inlet velocity of u0= 25m/s, massive stall occurs at the critical angle of attack of
α=6◦, in which a dramatic increase is observed for the drag coefficient while the lift coefficient
decreases significantly such that the slope of the lift curve becomes negative.

The direct correspondance between the CL values in Fig. 6.14 and the foil tip displacement in
Fig. 6.3 shows that the linear hydroelastic response of the flexible hydrofoil is a consequence
of hydrodynamic loading only, i.e. no hysteresis or other nonlinear structural response.
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(a) α=2◦ (b) α=4◦

(c) α=6◦

Figure 6.6 Pressure coefficient, Cp, for the rigid and flexible hydrofoils subjected to flow with
u0= 20m/s at: (a) α=2◦, (b) α=4◦ and (c) α=6◦

6.5 Pressure coefficient distribution along the span-wise direction

The pressure distribution along the hydrofoil surface at different sections in the span-direction
is depicted in Fig. 6.16 and 6.17 for flexible hydrofoils at α=6◦ and α=8◦, respectively.
Considering the section, z/b = 0, as the fixed root of the hydrofoil, and z/b = 1 as the
hydrofoil free tip, three-dimensional effects are clearly shown in this figure (z represents the
span-wise direction and b is the foil span).

At lower hydrodynamic loading condition, it is shown that except for a small region near the
foil root (z/b = 0 to 0.25), the pressure distribution is similar for the sections along the span.
However, the difference between the pressure distribution at different sections along the span
becomes much more noticeable at higher loading conditions.

It is shown in Fig. 6.17(d) that the stalled hydrofoil (at the angle of incidence of α=8◦
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(a) α=2◦ (b) α=4◦

(c) α=6◦

Figure 6.7 Pressure coefficient, Cp, for the rigid and flexible hydrofoils subjected to flow with
u0= 25m/s at: (a) α=2◦, (b) α=4◦ and (c) α=6◦

subjected to flow with u0= 20m/s) experiences fully detatched flow over more than half of
its span length. This 3D feature of the flow justifies why at this operating condition, the value
of CL ≈1.3 in the 2D study of (Ducoin and Young, 2013) is higher than the corresponding
value of CL=1.1 in the present study. In Fig. 6.17(d), dx represents the displacement of the
foil in the stream-wise direction at the leading edge which is due to the twist deformation of
the foil.

The better agreement between the results of the present 3-D simulations with the experi-
mental data than most of the recent 2-D simulations of Akcabay et al. (2014), confirms that
considering the 3-D effects is fully justified.
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(a) α=0◦

(b) α=8◦

Figure 6.8 Laminar to turbulent transition and the laminar separation bubble for u0= 5m/s
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(a) rigid, α = 2◦ (b) flexible, α = 2◦

(c) rigid, α = 4◦ (d) flexible, α = 4◦

(e) rigid, α = 6◦ (f) flexible, α = 6◦

(g) rigid, α = 8◦ (h) flexible, α = 8◦

Figure 6.9 Comparison of the velocity contours at the free tip of the rigid (left column) and
flexible (right column) hydrofoils at various angles of attack, α, for flow with u0= 15m/s
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(a) rigid, α = 2◦ (b) flexible, α = 2◦

(c) rigid, α = 4◦ (d) flexible, α = 4◦

(e) rigid, α = 6◦ (f) flexible, α = 6◦

(g) rigid, α = 8◦ (h) flexible, α = 8◦

Figure 6.10 Comparison of the velocity contours at the free tip of the rigid (left column) and
flexible (right column) hydrofoils at various angles of attack, α, for flow with u0= 20m/s
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(a) rigid, α = 2◦ (b) flexible, α = 2◦

(c) rigid, α = 4◦ (d) flexible, α = 4◦

(e) rigid, α = 6◦ (f) flexible, α = 6◦

(g) rigid, α = 8◦ (h) flexible, α = 8◦

Figure 6.11 Comparison of the velocity contours at the free tip of the rigid (left column) and
flexible (right column) hydrofoils at various angles of attack, α, for flow with u0= 25m/s
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(a) u0= 10m/s (b) u0= 15m/s

Figure 6.12 Lift coefficient for rigid and flexible hydrofoils as a function of the angle of attack

(a) u0= 10m/s (b) u0= 15m/s

Figure 6.13 Drag coefficient for rigid and flexible hydrofoils as a function of the angle of
attack
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(a) rigid (b) flexible

Figure 6.14 Lift coefficient for rigid and flexible hydrofoils as a function of the angle of attack
for different values of inlet velocities

(a) rigid (b) flexible

Figure 6.15 Drag coefficient for rigid and flexible hydrofoils as a function of the angle of
attack for different values of inlet velocities
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(a) u0= 5m/s

(b) u0= 10m/s

(c) u0= 15m/s

(d) u0= 20m/s

Figure 6.16 Pressure distribution along the hydrofoil surface at four sections in the span-wise
direction for the flexible hydrofoil at α=6◦
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(a) u0= 5m/s

(b) u0= 10m/s

(c) u0= 15m/s

(d) u0= 20m/s

Figure 6.17 Pressure distribution along the hydrofoil surface at four sections in the span-wise
direction for flexible hydrofoil at α=8◦
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CHAPTER 7 CONCLUSION

7.1 Summary

An advanced strongly-coupled two-way fluid-structure interaction methodology was proposed
to investigate hydroelastic response of three-dimensional lightweight flexible hydrofoils in vis-
cous flow at moderate to high Reynolds number. The fluid-structure problem was solved with
a finite volume-based CFD code, CFX, for the fluid, which was coupled to a finite element-
based CSD code ANSYS, for the structural domain. The two-way coupling capability enables
CFX to work with the ANSYS Mechanical solver within an ANSYS multi-field simulation.

To investigate and quantify the FSI effects, rigid (stainless steel) and flexible (POM Polyac-
etate) hydrofoils were simulated and compared. The flow-induced deformation and hydroe-
lastic response of those structures subjected to moderate to high Reynolds number flows were
studied.

For the operating flow conditions of the study, numerical results revealed that the flow expe-
riences complex boundary layer events such as laminar to turbulent transition, leading edge
and trailing edge laminar separation bubbles, and flow detachment at stall. Hence, proper
grid refinement was crucial for accurate prediction of these features, which have significant
effects on the hydrodynamic loadings and structural response. Furthermore, to limit mesh
distortion issues in the transient moving boundary problem at hand with large deformation,
care was taken to ensure that the initial mesh is fine enough. In our proposed methodology,
high spatial accuracy is required particularly at the interface where interaction takes place
between a highly flexible stucture and a viscous flow.

Mesh convergence studies were performed and the viscous fluid solver and the coupled FSI
solver were both validated by comparing the numerical results with experimental measure-
ments. In general, very good agreement was observed; the differences were less than 1% for
the lift coefficient and ≈ 4% for the value of vertical displacement measured at the leading
edge of the flexible foil. Comparisons showed that the present methodology has been able to
improve the accuracy of the available numerical results for the lift and drag coefficients. This
might be partly due to the 2D flow assumption in the previous studies, which ignored 3D
effects, such as the contributions from the induced drag due to the finite aspect ratio and the
boundary layer effects at the foil root, whereas these are accounted for in the present study.
The 2D hydrofoil assumption in the previous numerical studies and neglecting the effects of
the fixed root lead to noticeable discrepancies in the magnitudes of the hydrofoil displace-



94

ment (error of 58% between the experimental and numerical values in the study of (Akcabay
et al., 2014)), while in the present study the difference between the experimental and nu-
merical results is ≈ 4%. Considering all the structural DOFs, the solution of the complete
set of structural equations and incorporating a two-way FSI coupling method in the current
study also provides more accurate results than other FSI methods in the previous numerical
studies. Furthermore, in the present study the SST turbulence model was coupled with a
transition model, whereas no transition modelling has been used in the studies of Akcabay
et al. (Akcabay et al., 2014) and (Wu et al., 2015). It was shown that the incorporation
of transition modeling plays a major role in the accurate prediction of the flow separation,
which has immidiate effect on the hydrodynamic response of the hydrofoils.

7.2 Limitations and future work

Regarding the proposed methodology for modeling 3D flexible hydrofoils, there are some
numerical limitations and hence, the following subjects are suggested for future works:

• The current FSI methodology is limited to steady-state assumptions. Additional studies
are needed to analyze the dynamic FSI effects and investigate the transient vibration
characteristics due to transition and load fluctuations associated with large scale vortex
shedding, as well as buffeting, resonance, and flutter instabilities.

• Additional studies are needed to investigate flexible hydrofoils at higher angles of attack
and higher inflow velocities; i.e. at post-stall condition, where the unsteady vortex
shedding frequency may lock in to one of the foil natural frequencies.

• Although the 3D flow effects caused by foil spanwise/chordwise bending and twist
deformations are accounted for in the present study, gap flow and the effects of tip
vortices are neglected. Further investigation is needed to study these features.

• Due to the limitations in the mesh deformation technique, higher structural deformation
as a result of higher hydrodynamic loading lead to mesh distortion issues in the present
study. This requires further investigation and more suitable numerical techniques, such
as variable mesh stiffness model exponent, are needed to overcome this issue.

• Although the flow was relatively complex, the unsteady 3D simulation times for one-way
coupling were reasonable. However, for the two-way coupling analyses, the simulations
were super long. Therefore, two-way analysis should only be undertaken when abso-
lutely necessary.



95

• More numerical simulations with different flexible materials, are needed to improve our
understanding of flow-induced vibrations and the resulting effects on the performance
and stability of lifting bodies. For instance, with the increased interest in the use of
composites as alternate materials for marine propellers, more investigations need to be
undertaken to understand how the use of such materials can offer the potential benefits
of reduced corrosion and cavitation damage, improved fatigue performance, lower noise,
improved material damping properties, and reduced lifetime maintenance cost.

• The small time-step sizes for the test cases of flow over flexible hydrofoils, lead to
transient start-up convergence problems and solver failure. Although the choice of
larger time-steps in the present study with negligible transient features is justified, this
issue needs further investigations for the study of dynamic FSI effects and investigation
of the transient load fluctuations and structural instabilities.
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APPENDIX A COORDINATES OF THE NACA66 HYDROFOIL

x/c y/c x/c x/c
0.0 0.0 0.0 0.0
-0.000173 0.002046 0.000123 -0.000530
0.000246 0.004647 0.001125 -0.002977
0.001346 0.00711 0.002705 -0.005255
0.003148 0.009593 0.004941 -0.007456
0.005551 0.012035 0.007885 -0.009478
0.008995 0.014762 0.012011 -0.011509
0.013509 0.017653 0.017255 -0.013475
0.019545 0.020864 0.024086 -0.015482
0.02707 0.024273 0.03244 -0.017467
0.036197 0.027872 0.042411 -0.019444
0.046867 0.031575 0.053931 -0.021377
0.059025 0.035312 0.06693 -0.023242
0.072601 0.039049 0.081336 -0.025035
0.087531 0.042754 0.09708 -0.026756
0.10375 0.046389 0.114097 -0.028391
0.121195 0.049922 0.132317 -0.029933
0.139799 0.053343 0.151675 -0.031393
0.159495 0.056643 0.172102 -0.032772
0.180221 0.059786 0.193536 -0.034041
0.201918 0.062725 0.215911 -0.035169
0.224521 0.065435 0.23916 -0.036161
0.247963 0.067921 0.263218 -0.037034
0.272179 0.070179 0.288017 -0.037790
0.297102 0.072199 0.313493 -0.038414
0.322671 0.073961 0.339581 -0.038910
0.348822 0.075431 0.366214 -0.039267
0.375488 0.076615 0.393327 -0.039470
0.402604 0.077522 0.420855 -0.039540
0.430107 0.078104 0.448731 -0.039410
0.457932 0.0783 0.47689 -0.039042
0.48601 0.078085 0.505264 -0.038453
0.514276 0.077477 0.533788 -0.037652
0.542662 0.076471 0.562395 -0.036640
0.571101 0.075059 0.591019 -0.035423
0.599524 0.073243 0.619594 -0.034009
0.627866 0.071022 0.648054 -0.032405
0.656057 0.06839 0.676334 -0.030630
0.68403 0.065358 0.704371 -0.028722
0.711719 0.061944 0.7321 -0.026703
0.739054 0.058133 0.759457 -0.024586
0.765966 0.053929 0.786385 -0.022480
0.792374 0.049272 0.812828 -0.020500
0.8182 0.044138 0.838712 -0.018533
0.843402 0.038681 0.863964 -0.016484
0.867937 0.033027 0.888517 -0.014315
0.891756 0.02725 0.9123 -0.012005
0.914812 0.021431 0.935248 -0.009564
0.93706 0.015648 0.957425 -0.006953
0.958581 0.009949 0.978894 -0.004146
0.979449 0.004342 1.0 -0.001178
1.0 -0.001178
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