
UNIVERSITÉ DE MONTRÉAL

ON RUN-TIME CONFIGURATION ENGINEERING

MOHAMMED SAYAGH
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
JUILLET 2018

c© Mohammed Sayagh, 2018.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

ON RUN-TIME CONFIGURATION ENGINEERING

présentée par : SAYAGH Mohammed
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. MULLINS John, Ph. D., président
M. ADAMS Bram, Ph. D., membre et directeur de recherche
M. KHOMH Foutse, Ph. D., membre
M. KÄSTNER Christian, Doktor-Ingenieur, membre externe

iii

DEDICATION

To my mother, father, wife, and whole family

iv

ACKNOWLEDGEMENTS

I would like to first express my sincere thanks to my supervisor Dr. Bram Adams for his
exceptional support of my Ph.D and for his motivation and valuable feedbacks.

Special thanks to all my co-authors for their help and contributions: Dr. Noureddine Kerzazi,
Dr. Fabio Petrillo, Dr. Artur Andrzejak, Dr. Zhen Dong, and Khalil Bennani.

I would like to thank my thesis committee Dr. John Mullins, Dr. Christian Kästner, and Dr.
Foutse Khomh for accepting my invitation to be jury members, Dr. Jason Robert Tavares
to be representative of my defense.

Last but not least, I also would like to thank all my labmates who created such a positive
working atmosphere: Ruben, Fabio, Mohab, Rodrigo, Amine, Armstrong, Azadeh, Mbarka,
Aminata, and Le. Thanks also for your constructive and inspiring talks in the lab.

v

RÉSUMÉ

De nos jours, les utilisateurs changent le comportement de leur logiciel et l’adaptent à dif-
férentes situations et contexts, sans avoir besoin d’aucune modifications du code source ou
recompilation du logiciel. En effet, les utilisateurs utilisent le mécanisme de configuration
qui offre un ensemble d’options modifiables par les utilisateurs.

D’après plusieurs études, des mauvaises valeurs des options de configuration causent des
erreurs difficiles à déboguer. Plusieurs compagnies importantes, comme Facebook, Google et
Amazon ont rencontré des pannes et erreurs sérieuses à cause de la configuration et qui sont
considérées parmi les plus pires pannes dans ces compagnies. En plus, plusieurs études ont
trouvé que le mécanisme de configuration augmente la complexité des logiciels et les rend
plus difficile à utiliser. Ces problèmes ont un sérieux impact sur plusieurs facteurs de qualité,
comme la sécurité, l’exactitude, la disponibilité, la compréhensibilité, la maintenabilité, et la
performance des logiciels.

Plusieurs études ont été élaborées dans des aspects spécifiques dans l’ingénierie des config-
urations, dont la majorité se concentrent sur le débogage des défaillances de configuration
et les tests de la configuration des logiciels, tandis que peu de recherches traitent les autres
aspects de l’ingénierie des configurations de logiciel, comme la création et la maintenance des
options de configuration. Par contre, nous pensons que la configuration des logiciels n’a pas
seulement un impact sur l’exactitude d’un logiciel, mais peut avoir un impact sur d’autres
métriques de qualité comme la compréhensibilité et la maintenabilité.

Dans cette thèse, nous faisons d’abord un pas en arrière pour mieux comprendre les activités
principales liées du processus de l’ingénierie des configurations, avant d’évaluer l’impact d’un
catalogue de bonnes pratiques sur l’exactitude et la performance du processus de la config-
uration des logiciels. Pour ces raisons, nous avons conduit un ensemble d’études empiriques
qualitatives et quantitatives sur des grands projets libres. On a conduit une étude qualitative
en premier lieu, dans laquelle nous avons essayé de comprendre le processus de l’ingénierie
de configuration, les enjeux et problèmes que les développeurs rencontrent durant ce proces-
sus, et qu’est ce que les développeurs et chercheurs proposent pour aider les développeurs
à améliorer la qualité de l’ingénierie de la configuration logiciel. En réalisant 14 entrevues
semi structurées, un sondage et une revue systématique de littérature, nous avons défini un
processus de l’ingénierie de configuration invoquant 9 activités, un ensemble de 22 challenges
rencontrés en pratique et 24 recommandations des experts.

vi

Pour mieux comprendre comment les développeurs gèrent leurs configurations dans le code
source, on a élaboré une étude quantitative en deuxième étape pour mieux comprendre
l’utilisation des cadriciels dédiés à la configuration. Étonnamment, on a trouvé que malgré
l’existence de cadriciels de configuration très sophistiqués, 47% des projets que nous avons
analysés ne les utilisent pas, et suivent simplement une approache ad-hoc, tandis que les
cadriciels les plus basiques sont les plus populaires. Pour aider les développeurs à choisir un
bon cadriciel, on a élaboré une taxonomie de fonctionnalités à considérer, et on a construit
un modèle explicatif pour prioriser les fonctionnalités les plus importantes qui peuvent avoir
un impact sur les efforts nécessaires pour maintenir la configuration d’un logiciel.

Pour mieux comprendre quelles fonctionnalités un cadriciel devrait avoir pour bien gérer
les enjeux importants identifiés dans le processus d’ingénierie de configuration, et ainsi aug-
menter la probabilité d’adoption par les développeurs, nous avons évalué 4 principes de
bonnes pratiques d’ingénierie de configuration que nous avons identifiées dans nos entrevues
dans une étude d’utilisateur. Ces principes tournent autour de l’idée de traiter les options de
configuration comme du code, en tant qu’utiliser les principes de l’ingénierie logicielle tel que
l’encapsulation. Nous avons prototypé ces 4 principes dans un cadriciel appelé Config2Code,
que nous avons ainsi comparé avec le cadriciel populaire Preferences à travers une étude
utilisateur qui couvre 11 tâches de configuration typiques, avec 55 participants incluant 17
experts en développement de logiciels. Ces principes ont été capables d’améliorer 72% des
tâches de configurations.

Malgré que plusieurs efforts de recherche ont été conduite pour l’activité de débogage des
défaillances de configuration et trouver quelles options il faut changer pour résoudre une dé-
faillance, ces recherches se concentrent juste sur les erreurs dans des applications uniques. En
effet, ces approches ignorent les défaillances de configuration dont la cause vient d’une couche
plus profonde de la pile de l’application, par exemple, une défaillance dans une extension de
WordPress causée par une valeur incorrecte de la configuration du serveur web. Déboguer de
telles erreurs de configuration multi-couches est difficile, parce que chacune de ces couches
est un composant séparé qui est développé avec un langage de programmation différent, et
qui consomme des services des autres couches. Un exemple connu de cette architecture est
la pile LAMP, qui est une pile populaire pour les applications web utilisée pour implémenter
plus que 80% de tous les sites web qui existent.

Cependant, dans notre analyse du potentiel d’avoir des erreurs de configuration dans la pile
LAMP, nous avons trouvé que jusqu’à 85.16% des options de Wordpress sont utilisées par
une couche supérieure, ce qui indique que la modification d’une seule option de WordPress
peut avoir un impact sur les autres couches. Une analyse de 1,042 erreurs de configuration

vii

d’une seule couche et de multiples couches démontre que les erreurs de configuration à travers
plusieurs couches sont sévères, vu qu’elles arrivent dans des environnements de production
et demandent beaucoup d’efforts pour les résoudre.

Finalement, nous avons proposé une approche modulaire pour aider les utilisateurs à déboguer
les erreurs de configuration qui arrivent dans les architectures multi-couches. Notre approche
combine des techniques d’analyse du code existantes pour trouver les options qui sont mal-
configurées. Nous avons évalué notre approche sur 36 erreurs de configuration réelles, et
trouvé que notre approche est capable de trouver les options mal-configurées dans quelques
minutes, ce qui rend notre approche pratiquement utilisable.

Notre thèse confirme que les développeurs rencontrent un nombre considérable d’enjeux dans
plusieurs activités d’ingénierie, et l’application des bonnes pratiques du code à l’ingénierie de
configuration aussi améliore la qualité de l’ingénierie des configuration, comme la mainten-
abilité, compréhensibilité, utilisabilité, disponibilité et l’exactitude. Nous avons aussi trouvé
dans notre thèse que les erreures de configuration à travers multicouches sont sévères et diffi-
ciles à déboguer, et une approche modulaire qui combine des techniques de l’analyse du code
source aide pour débogger de telles défaillances.

viii

ABSTRACT

Modern software applications allow users to change the behavior of a software application and
adapt it to different situations and contexts, without requiring any source code modifications
or recompilations. To this end, applications leverage a wide range of mechanisms of software
configuration that provide a set of options that can be changed by users.

According to several studies, incorrect values of software configuration options cause severe
errors that are hard-to-debug. Major companies such as Facebook, Google, and Amazon
faced serious outages and failures due to configuration, which are considered as some of the
worst outages in these companies. In addition, several studies found that the mechanism of
software configuration increases the complexity of a software system and makes it hard to use.
Such problems have a serious impact on different quality factors, such as security, correctness,
availability, comprehensibility, maintainability, and performance of software systems.

Several studies have been conducted on specific aspects of configuration engineering, with
most of them focusing on debugging configuration failures and testing software configurations,
while only few research efforts focused on other aspects of configuration engineering, such
as the creation and maintenance of configuration options. However, we think that software
configuration can not only have a negative impact on the correctness of a software system,
but also on other quality metrics, such as its comprehensibility and maintainability.

In this thesis, we first take a step back to better understand the main activities involved in
the process of run-time configuration engineering, before evaluating the impact of a catalog
of best practices on the correctness and performance of the configuration engineering process.
For these purposes, we conducted several qualitative and quantitative empirical studies on
large repositories and open source projects. We first conducted a qualitative study, in which
we tried to understand the configuration engineering process, the challenges and problems
developers face during this process, and what practitioners and researchers recommend to
help developers to improve their software configuration engineering quality. By conducting
14 semi-structured interviews, a large survey, and a systematic literature review, we identified
a process of configuration engineering involving 9 activities, a set of 22 challenges faced in
practice, and a set of 24 recommendations by experts.

To better understand how developers manage their software configuration in the source code,
in a second study, we conducted a quantitative analysis to understand the usage of existing
frameworks that are dedicated to software configuration options. Surprisingly, we found that
despite the existence of very sophisticated configuration frameworks, 47% of our studied

ix

projects do not use them, and follow just an ad-hoc approach, while we found that the most
popular frameworks that are used in practice are only basic frameworks. To help practitioners
to select a suitable configuration framework, we derived a taxonomy of features to consider,
and build an explanatory model to prioritize the most important features that could have an
impact on the effort required to maintain software configuration options.

To better understand why existing frameworks might not be adopted, we performed a large
user study to evaluate 4 principles of good configuration engineering that we identified from
our interviews. The principles center around the idea of treating run-time configuration as
code, which allows to benefit from software engineering staples like encapsulation. We imple-
mented these four principles in a framework called Config2Code, which we then compared to
the popular Preferences framework via a user study that covers 11 typical configuration tasks,
and has 55 participants including 17 software development experts, suggesting that config-
uration frameworks have the potential to help practitioners, once adopted. The principles
were able to improve 72% of configuration engineering tasks.

We then focused on one of the major configuration activities, i.e., debugging software config-
uration failures, since we observed how despite a large volume of existing work most of the
existing approaches focus only on errors in single applications. As such, these approaches
ignore configuration failures whose cause is buried in a deeper layer of the application’s run-
time stack, for example, a failure of a WordPress plugin due to an incorrect configuration
value within the web server’s configuration. Debugging such cross-stack configuration failures
is challenging because each of these layers is a separate component that is developed in a
different programming language, and consumes services of other layers. A popular example
of such an architecture is the LAMP stack, which is a popular stack of web applications used
to implement more than 80% of all existing websites.

Therefore, we empirically analyzed the potential to have configuration errors in the LAMP
stack. We found that up to 85.16% of WordPress configuration options are used by another
higher layer, which indicates that the modification of a given option’s value in WordPress
potentially can have a substantial impact on other layers. Furthermore, analysis of 1,042 real
single layer and cross-stack configuration errors learns that cross-stack configuration errors
are severe, as they occur in production environments and need a lot of effort to be fixed.

Finally, we proposed a modular approach to help users debug cross-stack configuration errors.
Our approach composes existing source code analysis techniques to find culprit options.
We evaluated our approach on 36 real cross-stack configuration errors, and found that our
approach is able to find the misconfigured options within only few minutes, which makes our
approach practically useful.

x

Our thesis confirmed practitioners face a considerable amount of challenges on different en-
gineering activities, and applying source code best practices to configuration engineering
can improve configuration engineering quality, such as software maintainability, comprehen-
sibility, usability, availability, and correctness. We also found in our thesis that cross-stack
configuration failures are severe and hard-to-debug, and we propose a modular approach that
combines existing source code techniques to debug such failures.

xi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . viii

TABLE OF CONTENTS . xi

LIST OF TABLES . xvii

LIST OF FIGURES . xix

LIST OF ANNEXES . xxii

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Hypothesis . 3
1.2 Thesis Contributions . 4

1.2.1 Qualitative Study to Understand the Configuration Engineering Pro-
cess, Challenges, and Recommendations 4

1.2.2 Using Mining Software Repositories to Understand the Usage of Soft-
ware Configuration Frameworks . 5

1.2.3 Four Principles to Improve Software Configuration Engineering Quality 6
1.2.4 Cross-stack Configuration Errors . 7

CHAPTER 2 LITERATURE REVIEW . 9
2.1 Empirical Studies on Software Configuration 9
2.2 Debugging Configuration Errors . 10
2.3 Testing Software Configuration . 11
2.4 Finding Optimal Configuration Values . 12
2.5 Software Product Lines and Non Run-time Configuration 13

CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE THESIS . 15
3.1 Software Configuration Engineering Process 15

xii

3.1.1 Investigating the Process of Configuration Engineering, its Challenges,
and Expert Recommendations . 16

3.1.2 Investigating the Usage of Frameworks Dedicated to Software Config-
uration . 16

3.2 Analyzing the Impact of Best Practices on the Quality of Software Configuration 17
3.3 Cross-stack Configuration Errors . 18

3.3.1 Understanding the Impact of an Option on other Layers 19
3.3.2 Understanding Real Cases of Cross-stack Configuration Errors, and

Proposing an Approach to Debug such Errors 19

CHAPTER 4 ARTICLE 1: SOFTWARE CONFIGURATION ENGINEERING IN PRAC-
TICE-
INTERVIEWS, SURVEY, AND SYSTEMATIC LITERATURE REVIEW 21
4.1 Introduction . 22
4.2 Background on Software Configuration . 24

4.2.1 Software Configuration Options . 24
4.2.2 Roles Involved in Software Configuration 25
4.2.3 Configuration vs. Binding Time . 25
4.2.4 Run-time Configuration Options . 27
4.2.5 Configuration Failures and Faults . 28
4.2.6 Software Configuration Engineering 28

4.3 Study Methodology . 28
4.3.1 Semi-structured Interviews . 29
4.3.2 Card Sort Analysis of Interview Data 30
4.3.3 Survey . 31
4.3.4 Card Sort Analysis of Survey Data 32
4.3.5 Systematic Literature Review . 32
4.3.6 Card Sort Analysis of the Systematic Literature Review Data 33

4.4 Configuration Engineering Process . 34
4.5 Configuration Challenges . 39

4.5.1 Creation of Configuration Options . 39
4.5.2 Managing Storage Medium . 42
4.5.3 Managing Option Data Format . 43
4.5.4 Configuration Access in Source Code 44
4.5.5 Comprehension of Options . 45
4.5.6 Maintenance of Options . 46

xiii

4.5.7 Resolving Configuration Failures . 47
4.5.8 Configuration Knowledge Sharing . 48
4.5.9 Quality Assurance . 51

4.6 Expert Recommendations . 53
4.6.1 Creation of Configuration Options . 54
4.6.2 Managing Storage Medium . 56
4.6.3 Managing Option Data Format . 57
4.6.4 Configuration Access in Source Code 59
4.6.5 Comprehension of Options . 60
4.6.6 Maintenance of Options . 61
4.6.7 Resolving Configuration Failures . 61
4.6.8 Configuration Knowledge Sharing . 65
4.6.9 Quality Assurance . 67

4.7 Implications . 71
4.7.1 Implications for Practitioners . 72
4.7.2 Implications for Researchers . 73

4.8 Threats to Validity . 74
4.9 Conclusion . 76

CHAPTER 5 ARTICLE 2: DOES THE CHOICE OF CONFIGURATION FRAME-
WORK MATTER FOR DEVELOPERS? . 78
5.1 Introduction . 78
5.2 Background and Related Work . 80

5.2.1 Software Configuration Frameworks 80
5.2.2 Related Work . 80

5.3 Taxonomy of Configuration Frameworks . 82
5.3.1 Configuration Frameworks . 82
5.3.2 Taxonomy . 82

5.4 Collected Data . 85
5.4.1 Data Set 1: Popularity . 85
5.4.2 Data Set 2: Maintenance Overhead 86

5.5 Popularity of Configuration Frameworks . 86
5.6 Maintenance Overhead of Frameworks . 90

5.6.1 Case Study Setup . 91
5.6.2 Discussion . 95

5.7 Threats to Validity . 96

xiv

5.8 Conclusions . 96

CHAPTER 6 ARTICLE 3: RUN-TIME CONFIGURATION-AS-CODE 102
6.1 Introduction . 102
6.2 Background and Related Work . 104

6.2.1 Software Configuration . 104
6.2.2 Related Work . 104

6.3 What is Problematic with Run-time Software Configuration? 106
6.4 Run-time Configuration-as-Code . 108

6.4.1 Configuration-as-Code . 109
6.4.2 Encapsulation of Configuration Access 110
6.4.3 Generation of Configuration Media 111
6.4.4 Automatic Validation . 111

6.5 Design of User Study . 112
6.5.1 Research Questions . 112
6.5.2 Config2Code . 113
6.5.3 Study Object . 113
6.5.4 Task Design . 114
6.5.5 Participants . 114
6.5.6 Experimental Protocol . 115

6.6 Quantitative Results . 117
6.7 Qualitative Discussion . 119
6.8 Threats to Validity . 122
6.9 Conclusion . 123

CHAPTER 7 ARTICLE 4: MULTI-LAYER SOFTWARE CONFIGURATION - EM-
PIRICAL STUDY ON WORDPRESS . 127
7.1 Introduction . 127
7.2 Background and Related Work . 129

7.2.1 Software Configuration . 129
7.2.2 WP Ecosystem . 131
7.2.3 WP Configuration Mechanisms . 132

7.3 Approach . 133
7.3.1 Data Selection . 133
7.3.2 Identification of Configuration Options and Their Usage 135
7.3.3 Measuring The Proportion of Usage of Each Configuration Mechanism

(RQ1/RQ2) . 135

xv

7.3.4 Measuring Direct Usage of Configuration Options (RQ3/RQ4) 136
7.3.5 Measuring Indirect Usage of Configuration Options (RQ3/RQ4) . . . 136
7.3.6 Measuring Configuration Options’ Occurrences in Discussion Fora (RQ3/

RQ4) . 137
7.4 Results . 137
7.5 Threats to Validity . 150
7.6 Conclusion . 150

CHAPTER 8 ARTICLE 5: ON CROSS-STACK CONFIGURATION ERRORS . . 152
8.1 Introduction . 152
8.2 Background and Related Work . 154

8.2.1 Software Stacks . 154
8.2.2 Single-layer Configuration Errors . 155
8.2.3 Cross-stack Configuration Errors . 156

8.3 Qualitative Analysis . 158
8.3.1 Methodology . 158
8.3.2 Impact of Cross-stack Configuration Errors 159
8.3.3 Effort to Solve Cross-stack Configuration Errors 161
8.3.4 Complexity of Cross-Stack Configuration Resolution 162

8.4 Methodology for Identifying Cause of CsCE 163
8.4.1 Backward Slicing . 163
8.4.2 Cross-stack Slice Dependency Graph 164
8.4.3 CsCE Root Cause Recommendation 165

8.5 Empirical Evaluation . 167
8.5.1 Setup of Empirical Evaluation . 167

8.6 Threats to Validity . 173
8.6.1 Qualitative Analysis . 173
8.6.2 Empirical Evaluation . 174

8.7 Conclusion . 174

CHAPTER 9 GENERAL DISCUSSION . 179
9.1 Software Configuration Challenges . 179

9.1.1 Need for Approaches to Help Developers in Configuration Engineering
Activities . 179

9.1.2 Usage and Popularity of Configuration Frameworks 179
9.2 Development of Best Practices to Improve the Quality of Software Configura-

tion Engineering . 180

xvi

9.3 Cross-stack Configuration Errors . 181

CHAPTER 10 CONCLUSION . 183
10.1 Configuration Challenges and Recommendations 183
10.2 Usage of Configuration Frameworks . 184
10.3 Principles to Address Configuration Challenges 185
10.4 Potential of Cross-stack Configuration Errors 185
10.5 Relevance and Debugging of Cross-stack Configuration Errors 186
10.6 Future Work . 186

10.6.1 Considering other Types of Software Configuration 186
10.6.2 Resolving Additional Practical Configuration Challenges 187
10.6.3 Evaluating other Best Practices on Configuration Quality 187
10.6.4 Extending our Work on Debugging Cross-stack Configuration Errors . 187

REFERENCES . 189

ANNEXES . 209

xvii

LIST OF TABLES

Table 4.1 Interviewed subjects’ experience and role. 30
Table 4.2 Mapping of each survey question (in the Appendix) to the activity it

addresses. 35
Table 4.3 Mapping the challenges (C1.1 to C9.2) to the recommendations (R1.1

to R9.5). The symbols + and - respectively indicate positive and nega-
tive impact of a recommendation on a given challenge (i.e, recommen-
dation R1.1 positively addresses the challenges C1.1, C1.2, C5.2, and
C6.1). 53

Table 5.1 The studied configuration frameworks and their signatures. 83
Table 5.2 Taxonomy of the 11 studied configuration frameworks (numbered ac-

cording to Table 5.1). 98
Table 5.3 Popularity of configuration frameworks in Dataset 1. Columns "#/ %

Projects" report the number/percentage of projects using a given frame-
work (projects may use multiple frameworks), while column "# 1 CF"
shows the number of projects using only the given framework. 99

Table 5.4 #Projects in Dataset 2. 99
Table 5.5 Auxiliary, dependent and project-related (control) variables considered

in the maintainability models. 100
Table 5.6 Model for RQ3 (AIC: 355.63, Prec.: 77.41%, Recall: 72.72%). 101
Table 5.7 Model for RQ4 (AIC: 331.87, Prec.: 74.5%, Recall: 90.30%). 101
Table 5.8 Model for RQ5 (AIC: 388.69, Prec. : 64.64%, Recall: 70.90%). 101
Table 6.1 Overview of challenges related to configuration activities [121], which

are either (M)anagement, (I)nherent or (T)echnical. Here, we focus on
the challenges in bold. 107

Table 6.2 Mapping the principles to the bold challenges of Table 6.1. 109
Table 6.3 The 11 tasks administered in the user study. 125
Table 6.4 Decomposition of the user study subjects. 126
Table 6.5 Summary of the RQ1 correctness and RQ2 time results. NaN indi-

cates that experts and novices of Config2Code obtained exactly the
same results, while the median improvement values are relative to the
Preferences results. 126

xviii

Table 6.6 Percentage of participants forgetting to add constraints, comments, us-
age sites and default values during the creation of configuration options
(T1). 126

Table 7.1 WP and plugins of the Small Data Set used in RQ1 and RQ2. 134
Table 7.2 Categories of database options. 139
Table 7.3 Categories of WP configurable constants with examples by wpengi-

neer.com 111211. 140
Table 7.4 Correlation between number of configuration options and number of

lines of code of WP and the analyzed plugins. 144
Table 7.5 The correlation between the number of plugins using an option and the

number of conversations mentioning it. 149
Table 8.1 Qualitative data source statistics. 159
Table 8.2 Overview of the five layers and three data sources analyzed for the qual-

itative study. ’SO’ stands for StackOverflow, ’STE’ for StackExchange
and ’SF’ for ServerFault. 159

Table 8.3 The subject systems used in our evaluation. 168
Table 8.4 The evaluated CsCEs. 177
Table 8.5 Comparison to evaluation in related work. 178

xix

LIST OF FIGURES

Figure 4.1 The process of software configuration engineering. 35
Figure 4.2 Popularity of configuration storage media (based on survey question 5). 36
Figure 4.3 The identified configuration-related challenges, ordered by the number

of survey responses mentioning them (open-ended survey question 29). 40
Figure 4.4 Who is Responsible for Option Creation (survey question 9)? 43
Figure 4.5 Approaches to Understand Configuration Options (survey question 20). 46
Figure 4.6 How often configuration options are maintained by engineers (survey

question 21). 47
Figure 4.7 Artefacts used to debug configuration failures (survey question 17). . 49
Figure 4.8 How developers document configuration failures and their resolutions

(survey question 18). 49
Figure 4.9 Quality of documentation, rated from 1 (low) to 5 (high), based on

survey question 23. 50
Figure 4.10 Quality of configuration file comments, rated from 1 (low) to 5 (high),

based on survey question 24. 50
Figure 4.11 Mechanisms used to communicate new options (based on survey ques-

tion 13). 51
Figure 4.12 Quality assurance techniques used by respondents (survey question 27). 52
Figure 5.1 Heatmap of co-occurrence of configuration frameworks in the projects

using a configuration framework. 90
Figure 5.2 Bean plots of the number of files (y-axis) within projects, grouped by

the number of configuration frameworks used by projects (x-axis). . . 90
Figure 6.1 Example configuration system with one option. 104
Figure 6.2 Illustration of principle 1 (Configuration-as-Code), using the syntax of

Config2Code. 110
Figure 6.3 Illustration of principle 4 (Automatic Validation), showing checkstyle

rules encoding programming conventions for configuration options, for
the example in Figure 6.2. 112

Figure 7.1 The layers of a typical WP installation. We focus on the configuration
options of the top three layers. 132

Figure 7.2 Two examples of configurable constants that can be redefined in wp-
config.php . 133

xx

Figure 7.3 Distribution of the number of configurable constants and database op-
tions for WP and the 15 analyzed WP plugins. 138
WP . 142
Plugin: updraftplus . 142
Plugin: Google XML Sitemaps . 142
Plugin: Redirection . 142

Figure 7.5 Evolution of the number of configuration options for both mechanisms
across WP and the studied WP plugins versions, i.e., database (red)
and configurable constants (blue), Our full results are online151515. . 142
Database options . 144
Configurable constants . 144

Figure 7.7 The number of WP options read by plugins. 144
Reading . 146
Writing . 146

Figure 7.9 The number of PHP options used by plugins. 146
direct . 147
indirect . 147

Figure 7.11 The number of plugins (Y axis) using a given configurable constant
(ordered on the X axis). 147
direct . 148
indirect . 148

Figure 7.13 The number of plugins (Y-axis) sharing the same database configura-
tion option (ordered on the X axis). 148
direct . 148
indirect . 148

Figure 7.15 The number of plugins using the same PHP configuration option (or-
dered on the X axis). 148

Figure 8.1 Architecture of a LAMP stack. 154
Figure 8.2 Difference between the number of single-layer errors and CsCEs for

each case study. 160
Figure 8.3 Impact of single-layer errors vs. CsCEs. 161
Figure 8.4 When do single-layer and CsCEs occur? 162

Original code. 164
Static backward slice. 164
Dynamic backward slice. 164

Figure 8.6 Static vs. dynamic slicing for the criterion (line 11, “higher”). 164

xxi

Figure 8.8 Example of a 3-layer LAMP stack. 175
Figure 8.9 Cross-stack slice dependency graph for Figure 8.8. Solid lines indicate

slice dependencies, dashed lines physical links and dotted lines slice
dependencies derived from the physical links. The black node is the
start node, while the white nodes could be ignored for optimization. . . 176

xxii

LIST OF ANNEXES

SURVEY QUESTIONNAIRE . 209

1

CHAPTER 1 INTRODUCTION

Users often need to change the behaviour of their software systems or adapt them to different
situations and contexts. As a basic example, a user might need to enable or disable a software
feature, like enabling the feature that saves the navigation history of Firefox. Users might also
need to customize more specific behaviours of their software system like changing the expiry
date of browser cookies. Software systems are not only adapted by their final customers,
they can be adapted by administrators and sysadmins as well. For example, sysadmins can
allow only a specific category of users to add new pages to a WordPress based website, or
configure the file size limit of attachments to WordPress posts. In addition to these security
modifications, administrators can tweak the performance of a software system. For example,
they can allow only a certain number of simultaneous connections to a MySQL database.

To achieve such objectives, end users and sysadmins can rely on the mechanism of software
configuration, which allows users or operators to customize their software system by just
changing the value of configuration options. For example, one only needs to change the value
of option max_execution_time in the configuration file php.ini to limit the maximum time
allowed to run a PHP script, or change the option max_connections in MySQL configuration
file my.cnf to limit the number of simultaneous connections to a database, and hence reduce
its data load and improve its performance. While these configuration options are run-time
options, which do not require users to re-compile the software system, other types of con-
figuration options exist, for example, options whose value is determined during compilation
time. In contrast to run-time configuration options, compile-time configuration options are
used by developers to make fundamental feature-related decisions within the shipped prod-
uct, and can also be used to adapt a project to a certain platform. Note that this thesis
focuses on run-time configuration options, i.e., options whose value can still be changed after
deployment.

While run-time options add significant flexibility for users, they also increase a software
system’s complexity, which makes it more complicated to configure, understand, maintain,
and develop. For example, Firefox has over 2,000 configuration options that allow customizing
a large variety of features, while the MySQL database and Apache web server in turn have
hundreds of options that sysadmins need to configure and check. For a web app, a sysadmin
has to configure not only the MySQL and Apache layers, but also a scripting language,
such as the PHP interpreter, the operating system on top of which all of these layers are
installed, and the web application itself. Furthermore, this web application can be extended

2

by installing and configuring plugins. In the end, a sysadmin needs to configure a huge
amount of options, each of which belonging to a separate layer of the web application’s stack,
such as the LAMP (Linux, Apache, MySQL, and PHP) stack. One misconfigured option
in one layer can cause serious damages, whose symptoms are only visible in another layer,
which we refer to as cross-stack configuration errors.

Having a large number of configuration options might negatively impact a variety of other
quality factors, such as software correctness, comprehensibility, maintainability, testability,
and performance. Yin et al. [215] found that the largest category of severe problems that
are reported by customers are caused by configuration errors. Hence, it comes as no surprise
that such configuration errors are also reported by major companies, where they have a
serious impact. Recently, in 2017, a simple misconfigured option in an Amazon storage
service exposed confidential information of millions of customers to unauthorized people.
This exposed information did not only include these customers’ personal information such
as their names or email addresses, but also their financial information like the last four
digits of their credit card numbers [1]. Within the same year, personal data of millions of
American voters were exposed due to a similar misconfiguration in an Amazon service [2,3].
Similarly, due to a misconfiguration error, millions of Facebook users were not able to access
the website [96] for around 2.5 hours, which is considered in Facebook as one of the worst
outages. A well known Google engineer cited that most production errors are caused by
configuration errors rather than source code bugs [14], and described software configuration
as “configuration hell”.

While configuration errors could cause serious damage, testing all possible configurations
for a software program is not a feasible solution. Indeed, a typical configurable software
system with only one hundred boolean options needs to generate and execute 2100 tests,
which require practically enormous execution resources. More options and complicated option
types, such as hierarchical nested options, require for sure much more tests to write and
execute. This is why a large body of research literature proposed approaches to help debug
and fix configuration errors [44, 46, 47, 68, 69, 147, 217–219], while a second large category of
research efforts have been conducted on software configuration testability [38,60,89,105,115,
131,142,143,143,144,173,175,176,209].

Unfortunately, software configuration options do not only have a negative impact on the
correctness and testability of a software system, they can also impact other quality factors,
such as software understandability. A highly configurable software system ideally requires
users to understand each single option, and which correct and optimal values that option
requires. Hence, understanding hundreds of options is not straightforward. While users can

3

rely on a software system’s documentation, such documentation might not always be up-to-
date or contain sufficiently clear explanations. Therefore, software configuration might have
a negative impact on software usability and comprehensibility as well.

Since adding more configuration options increases a software system’s complexity, we need
to better understand how developers create new configuration options and why developers
keep adding new options although that might have a negative impact. It is also required to
understand why developers do not remove software configuration options although users do
not consume all existing options [212], and how developers maintain their software config-
uration options. As such, debugging and testing software configuration errors are just two
activities out of the, as yet poorly studied, overall process of configuration engineering that
can have a negative impact on the quality of a software system, such as an application’s
software usability, understandability, and maintainability. It is also necessary to better un-
derstand what practices and techniques can improve the process of creating and maintaining
a software system’s configuration options.

1.1 Thesis Hypothesis

While configuration options offer flexibility to users, they potentially make a software system
complex and can cause errors that are common, severe, and hard to debug. Therefore,
it is essential to obtain a better understanding of the engineering process of creating and
maintaining configuration options, as well as the challenges that are faced at each activity of
that process. Hence, we formulate our research hypothesis as follow:

'

&

$

%

We hypothesize that (1) configuration engineering is con-
stituted by a wide range of activities for which developers
today face a variety of challenges. However, several of the
technical challenges can be addressed by a careful selec-
tion of (2) source code best practices. For the specific
activity of configuration debugging, (3) cross-stack con-
figuration errors are more difficult to debug than single-
layer configuration errors, however, they can be debugged
effectively by a composition of source code analysis tech-
niques.

To validate this hypothesis, (1) we first took a step backward to understand the process of
configuration engineering, the challenges that are faced by practitioners during that process,

4

and recommendations from practitioners and research literature to improve software configu-
ration engineering quality. We then quantitatively studied the usage of frameworks dedicated
to software configuration in open source projects. After this first main study, we took two
additional main research directions, in which (2) we evaluated existing source code best prac-
tices to address a large set of the technical challenges of software configuration engineering.
These practices are based on four principles that were derived iteratively during interviews
with practitioners. (3) For the specific configuration activity of configuration debugging, we
then evaluated how a modular composition of existing source code analysis techniques is
able to debug software configuration errors that span several layers of a stack. The following
section details our contributions.

1.2 Thesis Contributions

1.2.1 Qualitative Study to Understand the Configuration Engineering Process,
Challenges, and Recommendations

Configuration errors are one of the most common problems in software engineering. To better
understand what leads to such problems, and why software configuration can have such a
negative impact on software quality, we conducted a qualitative study in which we addressed
our first thesis hypothesis. In this qualitative study, we identified engineering practices and
challenges related to software configuration.

To achieve this goal, we conducted 14 semi-structured interviews with software engineering
experts, having different roles in their context, followed by a large survey with 229 responses,
and a systematic literature review.

Following a card sort technique at the end of each of these three steps, we enumerated 9
activities that form the process of software configuration engineering. That process starts
by the creation of a new configuration option, deciding which data format new options
should have, where they should be defined (in a file, a database, or in any other existing
storage mechanism) and how new options should be documented, up to the maintenance of
configuration options.

For each of these 9 activities, we enumerated a set of challenges that we identified during our
qualitative analysis. Most surprisingly, we found that developers do not plan configuration
options, configuration options are added ad hoc. We also found that developers ignore to
review newly created options, which lets low quality configuration options slip through to
production, in the form of options, such as options with unclear names, wrong default values,
or completely undocumented options. Furthermore, we found that developers are not able

5

to refactor configuration options, even for options that are not used anymore by customers
or within the software source code.

For each of these 9 activities, we also enumerated a set of recommendations to improve
software configuration quality. For example, one of these recommendations is to allow only
few experts to manage software configurations, by allowing which option can be added, and
by also managing the refactoring of options.

Our systematic literature review revealed that most research conducted on software configu-
ration focuses on debugging configuration errors and testing software configuration, leaving
large opportunities for future work to cover other configuration engineering activities. Our
research literature survey guides practitioners on existing techniques and researchers on less
covered research directions.

1.2.2 Using Mining Software Repositories to Understand the Usage of Software
Configuration Frameworks

To understand challenges faced during software configuration engineering (our first thesis
hypothesis), we also quantitatively analyzed the usage of frameworks dedicated to software
configuration in the source code. The goal of this contribution is to better understand the
way in which configuration-related code is handled in the source code of open source projects,
and guide developers to choose good configuration frameworks.

Therefore, we quantitatively studied the popularity and usage of 11 configuration frame-
works in around 2000 open source projects. We found that basic configuration frameworks
(i.e., provided by the JDK) are the most popular ones, and often complemented by other
configuration frameworks that propose more sophisticated features.

We proposed a taxonomy of features to help developers choose a suitable configuration frame-
work. Examples of these features are the quality of documentation, how actively these frame-
works are maintained by their developers, and the maturity of these frameworks.

With the same goal of helping developers choose a suitable configuration framework and by
quantitatively analyzing the history of open source projects, we studied the impact of each
taxonomy feature on the effort required to maintain software configuration options. We found
that young and very active configuration frameworks, which have detailed documentation and
support hierarchical configuration formats, are the frameworks requiring more maintenance
effort.

6

1.2.3 Four Principles to Improve Software Configuration Engineering Quality

During our qualitative study, we identified that developers typically do not apply good source
code practices such as code review to configuration. This is because practitioners consider
configuration as an external artifact.

Inspired by our first qualitative study and to validate our second thesis hypothesis, we iter-
atively developed and evaluated 4 main principles that help developers to consider run-time
configuration as code and hence improve the quality of software configuration engineering,
in terms of maintainability, understandability, and correctness. These 4 principles are:

• Run-time configuration-as-Code: This principle consists of bringing the declaration of
configuration options inside the source code, which allows to explicitly define configu-
ration option access within source code.

• Encapsulation of configuration access: Instead of reading configuration options from
different source code locations, this principle consists of focusing the reading points of
configuration options within a single reader class, and allowing other client classes to
use options only via that reader class.

• Generation of configuration media: Keeping source code and configuration files synchro-
nized is not trivial, and this leads developers to leave dead options in their configuration
files. This principle consists of automatically generating the configuration file from code
of a software system, and hence automatically removing dead options.

• Automatic validation: The goal of this principle is to automatically validate users’
configuration choices, and automatically validate that configuration options respect a
set of rules and naming conventions. This guarantees the correctness of a software
system and comprehension of configuration options.

We prototyped these principles in a Java framework called Config2Code. Then, we eval-
uated the impact of these principles via a user study, in which we compared the usage of
Config2Code against Preferences, i.e., a popular Java configuration framework that does not
implement these principles.

55 subjects participated in our user study, in which we evaluated the correctness and time
required to achieve different configuration engineering tasks. Our participants performed 11
tasks, from the creation, maintenance, comprehension, and code review of options, to the
debugging of configuration failures.

7

We found that our approach is able to significantly improve the correctness and time re-
quired to achieve 8 out of 11 configuration tasks, while no statistically significant difference
is observed in the 3 remaining tasks.

While these principles can help prevent configuration errors to some extent, the next section
considers an approach to debug more complex configuration errors where prevention has not
worked.

1.2.4 Cross-stack Configuration Errors

While the previous contributions aim at helping developers improve software configuration
usability, correctness, comprehensibility, and maintainability, this contribution aims at help-
ing users to debug cross-stack configuration errors. This is an advanced form of configuration
error whose symptoms occur in one layer of the architecture, while the root cause of the error
occurred in another layer. For example, a WordPress user is not able to upload a file because
the PHP configuration option memory_limit is mis-configured.

To address our third hypothesis, we first need to understand the extent to which such cross-
stack configuration errors exist, then propose an approach to debug them. We addressed
these problems and this research hypothesis via the following two contributions:

Analyzing the Potential of Cross-stack Configuration Errors

To better understand the impact of a software system’s configuration options on other layers,
we empirically studied the configuration of 15 WordPress plugins, WordPress, and PHP-
interpreter configuration options, which together represent the top 3 layers of the LAMP
stack.

In this study, we investigated the occurrence of the configuration options in the top two layers
of the LAMP stack, then analyzed configuration options evolution across history. We found
that WordPress and its 15 studied plugins have an average of 76 configuration options, which
are stored in two different storage mediums (database and configuration files). This number
is increasing across the history of WordPress and its plugins.

We also studied the impact of WordPress configuration options on its plugins, and the impact
of PHP interpreter options on WordPress and its plugins. While WordPress plugins use 1.49%
to 9.49% and 1.38% to 15.18% of all options stored respectively in the database and files,
78.88% and 85.16% of database and configuration file options are shared between at least
two WordPress plugins. Hence, assigning a wrong value to one WordPress configuration

8

option could not only impact WordPress, but also its installed plugins. These findings warn
practitioners and researchers about the potential impact of cross-stack configuration errors.

We also analyzed the prevalence of cross-stack configuration errors in real cases, by quali-
tatively and quantitatively analyzing 1,048 StackExchange configuration problems. Via this
analysis, we found that cross-stack configuration errors are severe problems, as they often
occur in production. We complement the research literature, which found that single layer
configuration errors require substantial effort to be fixed, by finding that cross-stack configu-
ration errors require similar amounts of effort. While we found that cross-stack configuration
errors require fixing less options than single layer configuration errors, those options are
spread across several layers, going as deep as the operating system! Therefore, cross-stack
configuration errors require researchers to propose and evaluate approaches to debug such
errors.

Extending Source Code Analysis Techniques to Debug Cross-stack Configuration
Errors

We then proposed an approach based on source code analysis that takes as input a configu-
ration error symptom, and recommends as output a set of options that are most likely to be
misconfigured.

Our approach is modular as it composes existing source code analysis techniques, such as
static and dynamic slicing. Our approach separately executes a source code analysis technique
on each layer of the LAMP stack, then connect the results via a set of physical links. These
physical links represent how each layer is connected to its lower layer. For example, to upload
a file, WordPress uses the PHP function “move_uploaded_file”, whose implementation is
within the PHP-interpreter source code (file “ext/standard/basic_function.h”). In this case,
our physical links connect the PHP call to “move_uploaded_file” to its implementation in
the PHP interpreter source code.

We evaluated this approach on a set of 36 real cross-stack misconfigurations, and found that
our approach is able to accurately find misconfigured options, within an acceptable execution
time of few minutes.

9

CHAPTER 2 LITERATURE REVIEW

A large body of research has focused on software configuration. However, most of these
research efforts focused on debugging configuration errors or testing software configurations,
while none of them focused on the full range of software configuration engineering activi-
ties. Since challenges faced during these activities can have a negative impact on the quality
of software configuration, we studied configuration challenges that are faced by practition-
ers, with the aim of deeply understanding the process of creating and maintaining software
configuration options.

Software configuration is the mechanism that allows users to adapt a software system to
different situations and contexts, by changing the values of a set of available configuration
options. A configuration option consists of a key and a value in which the key represents a
configuration name, and the value represents the choice of the user for that option. While
the representation of an option as a key-value pair is used within all existing storage mech-
anisms (files, databases, etc.), more complex representations are used as well. For example,
often related options are grouped within a category, yielding a hierarchical structure between
options and categories. The Apache web server configuration is a well known example of
such types of options, in which sysadmins can define a set of rules and permissions (via the
options Allow and Deny) for each user or resource.

Developers can decide to store their configuration options in any storage medium. They
can use text, json, xml, or any other file formats, while they can even store their options
in a dedicated database for software configuration or a specific table within a database.
Developers can also just pass the value of configuration options as command line arguments.

In this Chapter, we will introduce the most popular research directions on software configura-
tion and how the existing work is different from our study. An in-depth systematic literature
review on software configuration is provided in Chapter 4.

2.1 Empirical Studies on Software Configuration

Many research efforts have been conducted to better understand software configuration, its
complexity and errors. Yin et al. [215] analyzed 546 configuration errors in four open source
and one commercial project. They found that 27% of customer errors are caused by software
configuration and 31% of highly severe errors are caused by software configuration, which
represents the largest category of errors marked with a high severity.

10

Yin et al. [215] also describe different characteristics related to configuration errors, which can
help practitioners and researchers better understand configuration errors and their impact.
For example, a large percentage of configuration errors cause hard-to-debug problems, such as
crashes, hangs, or performance degradations, and between 12.2% and 29.7% of configuration
errors are due to inconsistencies between the values of different configuration options.

Arshad et al. [43] empirically studied 281 configuration errors in Java EE servers, and found
that more than one third of the reported problems are caused by configuration errors. They
also studied these errors and classified them in three categories: parameter errors, compati-
bility issues, and missing components.

Jin et al. [95] studied three large software systems, and found that there is a need for de-
bugging approaches that consider software developed with multiple programming languages,
and approaches to track when a configuration option’s value is modified or used in the source
code. They found that an option could be modified by a component, and used by a com-
pletely different component, which recommends for tools that debug configuration errors in
software systems developed with multiple programming languages.

Xu et al. [185] reported on the state-of-the-art on existing debugging configuration errors
techniques. They report the lack of approaches that debug errors on multi-component and
multi-layer architectures.

While the previous studies focus on analyzing characteristics of configuration errors, Xu
et al. [212] empirically studied the usage of configuration options. They found that many
configuration options are not used by end users and hence can be removed by developers to
reduce software complexity, where many other options can be simplified by changing their
types from string to boolean options as an example.

None of these studies focused on the process of configuration engineering as a whole. They
instead focus mostly on studying characteristics of configuration errors, and configuration
complexity from the users’ side. In addition to the process of creating and maintaining
options (which includes debugging configuration errors), we qualitatively studied challenges
that are faced by practitioners in each activity of the software configuration engineering
process.

2.2 Debugging Configuration Errors

Starting from a bug report, different models have been built to predict if a bug report
is related to a configuration error [53, 200, 208] and also to predict which option can be
misconfigured [200].

11

Once developers identify that a bug is caused by a configuration error, several approaches have
been proposed to help find which option is misconfigured. A first category of approaches [136,
204] searches when a software went from a working to non-working state, and looks at which
options were changed during that transition and are likely to be misconfigured.

Other approaches rely on the users’ feedback. Wang et al. [192] proposed to find a fix
for configuration failure based on previous user experiences for the same failure. Similarly,
AutoBash [178] records how users fix a configuration failure, and uses it to propose fixes for
configuration failures.

Another category of work on debugging configuration failures relies on source code analy-
sis [44, 46, 47, 68, 69, 147, 217–219]. These approaches consist of automatically analyzing the
source code to recommend which option should be changed. For example, Dong et al. [69]
used backward slicing starting from the error line, and forward slicing starting from the con-
figuration reading points, then report options that are in the intersection between these two
slices as options that are likely to be misconfigured.

While these approaches help users find which configuration option is misconfigured, other
approaches recommend correct values for these misconfigured options. Swanson et al. [181]
used Firefox configuration constraints and a sampling algorithm to propose fixes, where Xiong
et al. [210,211] proposed an approach that generates a range of correct values from software
configuration constraints, defined as a set of rules that each option should respect.

While the previous approaches help debuggers find which options are misconfigured and what
are their correct values, other existing work helps developers to prevent configuration errors.
Zhang et al. [221] proposed an approach that injects configuration faults to check how the
software system reacts to these faults.

The research literature provided on debugging software configuration focuses only on single-
layer applications, while there is a need for approaches that consider multi-components and
layers [185], such as the LAMP stack. In our research, we studied the prevalence of cross-stack
configuration errors, and evaluated an approach to help developers to debug such failures.

This subsection introduced related work on debugging configuration errors, but we refer to
Chapter 4 for more detailed discussion of this related work.

2.3 Testing Software Configuration

Because testing all possible configurations of a highly configurable software system require
a lot of execution resources, many research efforts have been conducted to help developers
optimize their tests.

12

A first category of research efforts focused on sampling algorithms [38, 60, 89, 115, 142–144,
173,209] that optimize the number of tests to run. For example, Cohen et al. [60] used Com-
binatorial Interaction Testing algorithm. Other approaches [105,131,143,175,176] introduced
source code analysis techniques to reduce the number of options to test. For example, Kim
et al. [105] identify which options were used by a test and hence which a developer should
focus on.

Apart from approaches that minimize the number of tests, Meinicke et al. [118] and Reisner
et al. [153] found that the interaction between configuration options is low, which indicates
that the number of options sharing the same source code area is low, and hence there is no
need to test all possible combinations of configuration options.

To better understand the impact of a configuration option in order to better maintain options
in the source code, easily debug configuration errors, test configuration options, and easily
document software configuration, existing approaches [67, 148, 224, 224] have been proposed
to map each configuration option to its usage in the source code. Lillack et al. [113, 114]
proposed an approach that finds under which configuration option a code fragement can be
executed.

Apart from testing software configurations, few strategies were evaluated to prevent config-
uration problems and improve a software configuration engineering quality. In our work,
we evaluated the impact of different best practices on the quality of software configuration
engineering, including its usability, correctness, comprehensibility, and maintainability.

2.4 Finding Optimal Configuration Values

A fourth research direction covered by the literature is finding an optimal configuration that
guarantees a certain level of software performance. Different strategies were proposed to
sample the configuration space for optimal software configurations [58,66,70,81,109,134,135,
156,170,171,183,207,223], which are discussed in details in Chapter 4.

While it is important for end users to find an optimal configuration value that respects their
performances requirements, this category of research focuses on helping users to correctly
configure their software system. This direction can also be used by developers to decide
good default values for their software configuration options at creation time. However, we
found that deciding about default or optimal configuration values is only one configuration
engineering activity among other ones that can have an impact on software configuration
engineering quality.

13

2.5 Software Product Lines and Non Run-time Configuration

Closely related to the field of software configuration, a large volume of work exists on product
lines. A product line, also called product family, is a set of tools, practices, and techniques
used to create a set of different products from a single software system [42,141,190]. Typically,
the architecture of a product line is based on a central platform modeling the common
functionalities across products, together with a configurable extension facility able to model
variability across products. The engineering process of a product line comprises two steps, i.e.,
domain engineering and application engineering. Domain engineering comprises the analysis
and modeling of common and variable functionality within the domain of the resulting system,
for example the domain of operating systems (Linux kernel) or the domain of mobile phones
(Android vendor). Application engineering then comprises all activities needed to configure,
build and manage concrete products on top of the common platform. For example, the Linux
operating system product line allows concrete kernels to be built for desktop systems, gaming
consoles, smart devices or even cars!

To model and configure variability in product lines, a wide variety of implementation tech-
nologies can be used, from condition compilation to aspect or feature oriented programming,
to even elaborate domain-specific languages. The most studied product line technology in
academic literature is the C preprocessor. Developers can use the C directive #define to de-
clare a configuration option and check if an option is defined or its value respects a constraint
via the directives #ifdef and #if.

Liebig et al. [111] analyzed 40 software product lines to understand the usage of the C
preprocessor to implement software product line variability, and how it can impact software
comprehension and refactoring. They found that on average 23% of the source code of the
projects they analyzed is variable.

Hubaux et al. [87] conducted a survey among Linux and eCos users to understand challenges
faced by these users during the configuration of Linux and eCos. They found that there is a
lack of documentation and guidance provided by these software systems’ configurators.

To help users correctly configure their product line, Nadi et al. [124, 125] proposed a static
analysis approach to extract software configuration constraints from C code. Their approach
uses lines that throw errors (via the #error macro) and determines under which configurations
these error lines are developed and can be executed. They evaluated their approach on four
highly configurable software systems, and found that their approach is highly accurate.

Kenner et al. [102] proposed an approach to help developers detect type errors in a product
line’s variants. Their approach starts by simplifying the source code, which is then parsed to

14

an abstract syntax tree, from which their approach builds a set of constraints under which
types need to be checked. These constraints are then solved to find which variant has a type
error.

Medeiros et al. [117] compared 10 sampling algorithms used to test product line variability,
such as pair-wise algorithms (testing a default configuration, then changing a pair of options
together for each additional test), and one enabled (testing a baseline configuration, then
enabling one option at a time for each additional test until all options have been enabled).
Their evaluation consists of finding a tradeoff between the effort in terms of number of samples
required to test a highly configurable software and the number of faults an algorithm is able
to detect. While algorithms with larger sample sizes are able to detect more errors, many
algorithms were found that provide a good balance between sample size and amount of
detected errors.

To help developers fix their product line configuration errors, Xiong et al. [210,211] proposed
and evaluated an approach that generates fixes to configuration errors. These fixes do not
only propose which options are misconfigured, they also propose a range of possible and
correct values that these options should respect. Their approach relies on existing software
configuration constraints.

Since this thesis focuses on run-time, i.e., non compile-time configuration options, our findings
could not be generalized to conditional compilation-based configuration options, as they
are managed by two different categories of customers. While compile-time configurations
options are generally modified by developers, run-time configuration options are managed
by operators, sysadmins, and end-users, i.e., a combination of technical or non-technical
users. However, we think that it will be interesting to replicate the approaches evaluated for
compile-time configuration options on run-time configuration options, and vice-versa. For
example, one can evaluate the 10 sampling algorithms discussed by Medeiros et al. [117] on
run-time configuration options.

15

CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE
THESIS

We present in this Chapter our research methodology and the structure of this dissertation.
The goal of this thesis is to improve the quality of configurable software systems, which is
why we first need to define and understand the process of engineering configuration options,
and which related challenges developers face. As a second step, we then propose and evaluate
approaches to address major technical challenges encountered during typical configuration
engineering activities, and to help debug a complex type of configuration errors. As presented
in our research hypothesis, this thesis has three main parts:

• The first part of our thesis consists of understanding how developers manage software
configuration, which configuration challenges they deal with, and what practitioners
and researchers can propose as recommendations to guarantee a good software config-
uration quality. This part is addressed by Chapter 4 and 5.

• The second part of our thesis consists of empirically evaluating the impact of source
code best practices on the quality of software configurations. With the aim of addressing
major technical challenges identified in Chapter 4, Chapter 6 addresses this part of our
thesis.

• The third part of our thesis consists of evaluating the impact of source code analy-
sis techniques on debugging configuration errors in the specific context of multi-layer
architectures, which is discussed in Chapter 7 and 8.

3.1 Software Configuration Engineering Process

While configuration options introduce significant flexibility to a software system, supporting
a large number of configuration options on the other hand makes a software system more
complex to customize, handle, and understand. That, in turn, has a negative impact on the
correctness of a software system. Failures induced by configuration errors represent one of
the most challenging and prevalent problems in software engineering [215].

To address the challenges that are caused by software configuration, many studies have been
conducted in the research literature, yet most of them focus on debugging configuration
failures, testing configuration options, or finding an optimal configuration. However, many
other activities might exist and be performed by practitioners, together forming a process of

16

configuration engineering. Practitioners might also face different challenges on each of these
activities, while experts can have a set of recommendations to suggest based on their own
experiences.

3.1.1 Investigating the Process of Configuration Engineering, its Challenges,
and Expert Recommendations

To identify the activities that practitioners follow on the process of configuration engineer-
ing, understand which challenges practitioners face on each of these activities, and what
suggestions experts can recommend in order to improve the quality of software configuration
options, we conducted a qualitative study in Chapter 4 in which we address the first part of
our research hypothesis.

We started our qualitative study by conducting 14 semi-structured interviews to better un-
derstand the process of creation and maintenance of configuration options. We recorded and
analyzed these interviews via a card sort technique, via which we identified an initial set of
activities, challenges, and recommendations on software configuration engineering. We then
enhanced this set via a survey of 25 closed and 5 opened questions. At the end of this survey,
we received 229 responses that we analyzed quantitatively and qualitatively.

Our interviews and survey were followed up by a systematic literature review, with the aim
of finding which activities of the configuration engineering process are less covered in the
literature, and what guidelines, techniques, and approaches researchers are recommending
to practitioners. We classified the 106 papers related to configuration options that we found
using a card sort technique.

In the end, we found that the process of configuration engineering constituted 9 activities, in
which practitioners face 22 different challenges, while experts and our systematic literature
review come up with 24 recommendations. These challenges can have a negative impact on
the quality of a software system in terms of maintainability, usability, understandability, and
correctness. Our study also showed that multiple configuration engineering activities are not
covered well in the literature. In fact, this opens new research opportunities for future work.

3.1.2 Investigating the Usage of Frameworks Dedicated to Software Configura-
tion

One of the things that we learned in Chapter 4 is that practitioners mostly use basic IO
libraries to read configuration options from configuration files, while many sophisticated
frameworks dedicated to configuration options exist in practice. On the other hand, read-

17

ing options via a simple IO library makes configuration options harder to comprehend and
maintain. Hence, it is necessary to study the popularity and usage of existing configura-
tion frameworks in open source projects to provide guidelines on how to select a suitable
configuration framework.

To achieve these objectives, Chapter 5 conducts an empirical study in which we considered
11 configuration frameworks and their usage in around 2,000 Java projects. Through our
analysis of the 11 configuration frameworks, we proposed a taxonomy of features one can
consider to select a suitable configuration framework, while via our study of their prevalence
in open source projects, we surprisingly found that the most basic configuration frameworks
are the most popular.

We also studied which of the taxonomy features are the most relevant by quantitatively
analyzing their impact on the effort required to maintain software configuration options.
For this goal, we built a logistic regression model that gives indications on which metrics
are relevant indicators of maintenance effort. Examples of these metrics are the quality of
documentation, the maturity, and stability of a framework.

3.2 Analyzing the Impact of Best Practices on the Quality of Software Config-
uration

Chapter 6 addresses major technical challenges that we identified in Chapter 4, in the context
of our second research hypothesis. We learned in our initial interviews (Chapter 4) that one
should consider configuration as code, and consequently apply source code best practices to
configuration options as well. We iteratively prototyped these ideas in a concrete framework
that defines the metadata of configuration options inside the source code, then automati-
cally generates configuration files. During each of the following interviews, we received new
feedback about the prototype and its underlying ideas, which we then refined. The resulting
framework, which is called Config2Code, incorporates the following principles:

• The first principle consists of considering run-time configuration as source code, allow-
ing developers to benefit from source code best practices for their software’s configura-
tion as well.

• The second principle consists of using the principle of encapsulation on configuration
option access.

18

• The third principle consists of automating the generation of configuration files to syn-
chronize configuration files with those options that are actually being used in the source
code.

• The last principle consists of automatically validating that options and their values
respect predefined constraints.

We evaluated these principles via a user study, whose goal is to compare the ability of
these principles to address the technical challenges of configuration engineering identified
in Chapter 4. We compared Config2Code against the configuration framework Preferences,
which is a popular Java framework that is not respecting the 4 principles.

To perform our user study, we prepared two versions of the open source project JabRef, which
is a highly configurable open source application. Since the existing version is implemented
with Preferences, we modified the source code of JabRef to use Config2Code.

The study incorporated 11 tasks based on the 9 configuration engineering activities that we
found in our first qualitative study (Chapter 4). These tasks range from the creation of new
options and maintenance of options to the debugging of configuration failures and reviewing
of a patch that introduces a new option. During the user study, 55 participants had to answer
questions on paper, while we recorded their tasks and activities on screen. They also filled
out at a survey, in which they express their observations and comments.

We analyzed this data by focusing on the tasks’ correctness and time required for each
participant to finish each task. We found that the four principles help practitioners ensure
correctness or minimize the time to achieve 72% of our user study tasks.

3.3 Cross-stack Configuration Errors

Many approaches were proposed to help practitioners debug configuration failures (one of the
major configuration engineering activities identified in Chapter 4), yet none of them focused
on cross-stack configuration failures. These are errors that occur due to a misconfigured
option in one or multiple layers of a stack, e.g. the LAMP stack, in which each layer is
consuming services from lower ones, possibly developed in a different programming language.

To address our third hypothesis, we started by studying the extent to which cross-stack
configuration errors exist, by analyzing the impact of a configuration option of one layer
on another layer. Then, we studied the prevalence and impact of cross-stack configuration
errors in real cases, before proposing and evaluating an approach on debugging this type of
configuration errors.

19

3.3.1 Understanding the Impact of an Option on other Layers

In Chapter 7, we studied the potential of cross-stack configuration errors. The goal of this
study is to understand how likely one can get a cross-stack configuration error. In this study,
we analyzed configuration options of the top three layers of the LAMP stack, which are the
PHP-interpreter, web-app platform such as Wordpress, and that platform’s plugins.

In this study, we focused on Wordpress and its plugins as a case study of the web-app platform
and its plugins layer. Before studying the impact of one layer’s options on other layers, we
first need to understand how Wordpress and its plugins use configuration. This is why we
analyzed the source code of Wordpress and 15 of its plugins, and found which mechanisms
they are using to manage their software configuration.

The increasing number of configuration options can also be a good indicator about the
potential of cross-stack configuration errors. That is why we also analyzed the evolution of
WordPress and 15 of its plugin configuration options across different versions.

We then quantitatively analyzed the source code of 484 Wordpress plugins to find how many
Wordpress and PHP-interpreter options each plugin is using, and we analyzed the WordPress
source code to find how many PHP-interpreter options it is using. More lower layer options
used by a given layer indicates a large potential for cross-stack configuration errors.

Finally, we analyzed the whole set of 484 plugins to find, for each option, how many plugins
are using it at the same time. That indicates the impact of changing one single option on
the set of installed plugins.

3.3.2 Understanding Real Cases of Cross-stack Configuration Errors, and Propos-
ing an Approach to Debug such Errors

In Chapter 8, we aim at (1) studying real cases of cross-stack configuration errors, and
comparing them to single-layer ones, and (2) proposing and evaluating an approach that is
based on source code analysis techniques. The goal of this study is to address the third
hypothesis, in which we hypothesize that source code analysis techniques can help debug
configuration errors, not only within one single layer as confirmed by the research literature,
but also across a stack of layers.

To achieve the first objective of this study, we conducted a qualitative analysis of 1,042
StackExchange discussions related to software configuration. Via a card sort approach, we
analyzed different characteristics of these errors, such as their impact, in which environment
they occur, and how many options need to be changed to fix each error. We also collected
some quantitative metrics like the time required to fix such errors and the number of people

20

involved in this discussion, which can be an indicator about the difficulties of fixing cross-
stack configuration errors.

After confirming the severe impact of cross-stack configuration errors, we proposed a modular
approach to debug such errors. It recommends a set of configuration options that are most
likely to be misconfigured. This approach is modular, as it allows to use and compose existing
source code analysis techniques to find which option is misconfigured.

We evaluated the impact of this approach on 36 real configuration errors, which we found in
our initial analysis of stackexchange conversations. This evaluation of our approach considers
the accuracy of its recommended options, and time required to find the culprit options.

21

CHAPTER 4 ARTICLE 1: SOFTWARE CONFIGURATION
ENGINEERING IN PRACTICE -

INTERVIEWS, SURVEY, AND SYSTEMATIC LITERATURE REVIEW

Mohammed Sayagh, Noureddine Kerzazi, Bram Adams, and Fabio Petrillo
Submitted to the IEEE Transactions on Software Engineering (TSE)

Abstract: Modern software applications are adapted to different situations (e.g., memory
limits, enabling/disabling features, database credentials) by changing the values of config-
uration options, without any source code modifications. According to several studies, this
flexibility is expensive as configuration failures represent one of the most common types of
software failures. They are also hard to debug and resolve as they require a lot of effort to
detect which options are misconfigured among a large number of configuration options and
values, while comprehension of the code also is hampered by sprinkling conditional checks of
the values of configuration options. Although researchers have proposed various approaches
to help debug or prevent configuration failures, especially from the end users’ perspective,
this paper takes a step back to understand the process required by practitioners to engineer
the run-time configuration options in their source code, the challenges they experience as
well as best practices that they have or could adopt.

By interviewing 14 software engineering experts, followed by a large survey on 229 Java
software engineers, we identified 9 major activities related to configuration engineering, 22
challenges faced by developers, and 24 expert recommendations to improve software config-
uration quality. We complemented this study by a systematic literature review to enrich the
experts’ recommendations, and to identify possible solutions discussed and evaluated by the
research community for the developers’ problems and challenges. We find that developers
face a variety of challenges for all nine configuration engineering activities, starting from the
creation of options, which generally is not planned beforehand and increases the complexity
of a software system, to the non-trivial comprehension and debugging of configurations, and
ending with the risky maintenance of configuration options, since developers avoid touching
and changing configuration options in a mature system. We also find that researchers thus
far focus primarily on testing and debugging configuration failures, leaving a large range of
opportunities for future work.

22

4.1 Introduction

In September 2010, Facebook users experienced the following severe outage [96]:

“Early today Facebook was down or unreachable for many of you for ap-
proximately 2.5 hours. This is the worst outage we’ve had in over four years.
The key flaw that caused this outage to be so severe was an unfortunate handling
of an error condition. An automated system for verifying configuration
values ended up causing much more damage than it fixed.
...
We’re exploring new designs for this configuration system following de-
sign patterns of other systems at Facebook that deal more gracefully with feed-
back loops and transient spikes.”

The above issue was not (directly) caused by a bug in the source code, but rather by the
complexities of dealing with configuration in a software system. Instead of hardcoding the
values of deployment-dependent constants such as URLs, or the choice of algorithm or feature
that needs to be used, software systems extract such values into configuration options, which
can then be modified by operators without having to re-compile the source code. As such,
software systems can easily be ported to a different environment or user base simply by
reconfiguring the options. In the above example, Facebook used a database for storing these
values.

While configuration options provide substantial flexibility to developers and users, they cre-
ate a huge space of variability that can be hard to maintain [95, 185, 215, 219]. Configurable
software systems can have hundreds of configuration options [212], which gives an effectively
inexhaustible number of variants (2100 variants for a software system with 100 boolean op-
tions). Since it is impossible to test all variants before release, and options are not necessarily
limited to only 2 values (they could be arbitrary strings!), certain configurations could lead
to invalid behaviour of a software system or even an inability to boot up. Such situations
are referred to as “configuration failures”.

Configuration failures not only have a huge impact on availability, but they are expensive and
common in both open source and commercial software systems [215]. Yin et al. [215] showed
that configuration failures can account for 27% of all customer-support cases in industrial
contexts, while a well-known Google engineer [199] highlighted them as one of the most
important future research directions. In addition, other researchers [43, 95, 185] focused on
preventing configuration failures, where a second string of efforts, including [45–47, 68, 69,

23

136, 147, 192, 204, 217–219, 224], have been conducted to help users troubleshoot such kinds
of problems.

Despite all this research on dealing with configuration failures, especially from the end users’
perspective, there is hardly any work on understanding the effort involved in “configuration
engineering” required from practitioners, i.e., the development activities that make up the
process to establish and maintain configuration options throughout the lifetime of a software
project. In general, there is a lack of understanding of the challenges practitioners experi-
ence with configuration engineering as well as best practices that are recommended. Such an
understanding would not only open up new research directions (other than targeting config-
uration failures), but also document a catalogue of configuration engineering challenges and
workarounds. The latter catalogue is essential to developers1, since it is hard for them to
determine this knowledge only from their own system’s context.

Hence, this paper investigates the state of the practice and challenges of configuration en-
gineering in the trenches by conducting a set of interviews, a large Java practitioner survey
and a systematic literature survey. These allow us to make the following contributions:

• Deriving the typical process of configuration engineering, comprising 9 essential activi-
ties carried out by developers to create and maintain configuration options in a software
system. This process starts by the creation of new configuration options, followed by
the management of storage medium and data format (type) of these options and the
design of how to access these options in the source code. The process also includes
the comprehension and maintenance of options, sharing of knowledge about them, and
both prevention and resolution of configuration failures.

• Identifying the configuration engineering challenges faced by practitioners related to
the 9 activities. For instance, we found that development teams typically do not plan
the design of potential configuration options nor do they have an adequate process for
reviewing code changes involving options, which might have a negative impact on the
quality, understandability and maintainability of software products. Similarly, perhaps
surprisingly, developers are afraid of removing options from their code base in order
not to break existing functionality.

• Collecting a set of recommendations, both from practitioners and researchers, to ad-
dress the challenges. The recommendations include basic guidelines on how to organize
options, when developers should decide adding a new option, what should be in config-
uration documentation, and where developers should define it. They also include a set

1This was mentioned a number of times in our developer survey.

24

of guidelines on how to access configuration in the source code, and how to debug and
resolve configuration failures. A common thread within the guidelines is for developers
to consider configuration options as code. Similar to source code, they should review
new options, define and respect a clear naming convention, encapsulate access to con-
figuration options within dedicated helper classes, and log used configuration values to
help debug configuration failures. In turn, the resolution of these failures should be
documented.

• A public dataset of our analysis to the interviews [19], and survey responses [31].

Given the large scope of software configurability, we focus explicitly on software configuration
options that do not require re-compilation nor re-deployment to take into account new values,
i.e., options whose value can still be changed at run-time. In other words, we focus on post-
deployment configurability, and leave other forms of configuration engineering as future work.

The remainder of the paper is organized as follows: Section 4.2 presents the background about
software configuration. Section 4.3 presents our study methodology. Section 4.4 presents the
9 identified configuration engineering activities, while Section 4.5 presents the challenges that
we identified from qualitative and quantitative analysis of the 14 interviews and the 229 survey
responses. Section 4.6 provides the recommendations identified during our interviews, survey
and systematic literature review. Section 4.8 discusses threats to validity, while Section 8.7
concludes with insights and future work.

4.2 Background on Software Configuration

This section defines the notion of software configuration used by this paper and discusses
different types of configuration.

4.2.1 Software Configuration Options

Configuring a software system consists of customizing and adapting an application as well
as its execution environment [88] to different users’ requirements and contexts [172]. Con-
ceptually, a configuration option of a software application corresponds to a key-value pair,
for example to quickly enable or disable features and algorithms. A key represents a con-
figuration option’s name, whereas its value represents the choice by a practitioner or user
regarding that option for a specific instance of the system. For example, to disable file
uploads in a Wordpress installation, one can just switch off the PHP configuration option

25

“file_uploads”, without the need to change the actual PHP source code. “file_uploads” and
“Off” are respectively the key and value of the corresponding configuration option.

One of the most common storage media for configuration options are ordinary files, which
we refer to by “configuration files”. Developers typically can choose to store their software
system’s options in different textual file formats, such as “txt”, “ini”, “xml”, or “json”, or even
to use or design a configuration domain-specific language (DSL) [51] for their software system.
Apart from configuration files, developers could also store their configuration options in a
relational database, which can be accessed via a user interface, or even directly modified by
end users. More recently, distributed key-value stores like Apache ZooKeeper [7] have become
widely used for managing configuration options in distributed environments. Alternative
means of storing configuration options would be as conditional compilation constants or even
as command line arguments passed to an application.

4.2.2 Roles Involved in Software Configuration

Many roles are involved in the creation and usage of software configuration, which we can
classify in two main categories: (1) the creators and (2) the consumers of a software config-
uration. The creator category consists of a variety of engineering roles, including architects,
designers, developers, and testers. All of these are technically minded, and have access or
influence on the resulting source code of a software system.

On the other hand, the consumer category comprises both technical and non-technical con-
figuration users. Technical users include the same engineering roles as the creator category,
but also roles responsible for software operations, such as deployers, integrators, and oper-
ators. These users usually manipulate technical configuration options related to both the
execution environment and application, such as resource paths, accounts or options to tweak
the security and performance of an application.

In contrast, non-technical users are the final consumers of a software application and do not
necessarily have a technical background. They mostly change configuration options to help
them achieve their objectives, such as information about their account, preferred algorithms
or features, or GUI configuration.

4.2.3 Configuration vs. Binding Time

Given that configuration options could target different roles, who have different types of
access to the source code and/or deployed version of a software system, software configuration
typically is performed during three different phases. These phases determine the “binding

26

time” of configuration options [116], i.e., the moment on which the options are assigned their
values: before deployment, during deployment or after deployment.

Pre-deployment options typically are implemented using compile-time configuration options,
which decide whether particular code snippets will be compiled in by the build system.
For instance, in C/C++, a code snippet occurring between “#ifdef Config_Option” and
“#endif” delimiters will be observed and hence compiled by a compiler. This happens only
if the “Config_Option” option has been defined in a source code file or as a command-
line parameter for the compiler (typically specified within a build script), otherwise the
corresponding code simply is unavailable to end users in the resulting executable. Changes
to compile-time options require recompilation of the source code.

An alternative means to implement pre-deployment binding of configuration options is to
use build scripts such as Makefiles, which can select the set of source code files that should
be compiled, or even the set of 3rd party libraries (and their specific versions) that should
be linked to the compiled application code. This is common in large systems such as the
Linux kernel, where a kernel should be as streamlined as possible and hence only contain the
drivers expected on the target platform.

Next, during deployment (sometimes called “installation”), modern web apps use domain-
specific languages (DSLs) such as Puppet, Chef, or Ansible to install and configure the
environment of an application, i.e., the virtual machines, containers, or servers on which the
application will run, with the required operating system, database, web server, selection of 3rd
party libraries, network connections, etc. Such DSLs are not used for desktop or mobile apps,
where instead an installer performs any environment-related configuration. Configuration
scripts written in one of these DSLs or bundled within an installer basically auto-detect values
for environment-related options, use those values to fill out (bind) template configuration files
(e.g., of a web server or even the application), then move the instantiated templates to the
right location in a virtual machine, container or computer.

In contrast to pre-deployment binding, however, options bound during deployment can still
be tweaked after deployment. This is because each component in the environment of an
application A is itself a software application, with its own collection of pre-deployment,
deployment-time and post-deployment options. The main difference, from A’s perspective,
is that most of its environment’s options will be bound during deployment, while most of A’s
options will be bound afterwards, because the latter are expected to be handled by the end
user.

Finally, after deployment, two different binding times are possible, i.e., load-time and execution-
time. Load-time configuration options are read by the source code when a software system

27

boots up. Upon boot, the software system reads all the options that are defined in its con-
figuration storage medium. Changes to these options just require restarting the application.
Execution-time configuration options are the most flexible form of configuration options,
since they do not depend on recompilation nor rebooting of the whole application. Instead,
user modifications can be taken into consideration immediately after changing, provided the
method responsible for configuration access is re-executed.

4.2.4 Run-time Configuration Options

This study focuses on the process followed and challenges experienced by developers when
building in software configuration aimed at end users, sysadmins and operators. These roles
have access to a system during and/or after deployment, hence at first sight our focus is
on options bound during those two phases, i.e., options that are propagated via and can
impact data and control flows in the source code. Pre-deployment options fall outside our
scope, since such options typically only filter out unnecessary parts of the source code, then
“disappear” during compilation.

However, the distinction between the binding times presented in the previous section is
not always as strict, hence defining the scope of our study in terms of them introduces
ambiguity. For example, during compilation a configuration tool like autoconf might have
bound a system-specific value (e.g., the maximum integer size) to a C variable representing a
configuration option, while this variable might be re-bound to a different value by end users
at run-time. Similarly, most of the configuration options bound to an auto-detected value
during deployment can still be overridden at run-time. For example, during installation
an installer could detect 4 GB RAM on a laptop, yet after upgrading the memory to 8
GB RAM, a laptop owner should not need to reinstall (redeploy) the application, but just
manually change 4 to 8 in the application’s configuration file. In these (and other) cases, the
exact type of binding is unclear.

To deal with this ambiguity, we instead define the scope of our study in terms “run-time
configuration options”, i.e., configuration options whose value can still be changed
by the end user, without having to re-deploy. This is an approximation that roughly
coincides with deployment-time and post-deployment options, while still including edge cases
like the examples of maximum integer size and RAM amount. On the other hand, most of the
pre-deployment options (in particular conditional compilation-based options) are excluded.
Due to their different target audience, we believe that they likely face different challenges
than run-time options, and hence different workarounds and best practices. Future work
should replicate our study on pre-deployment configuration options.

28

4.2.5 Configuration Failures and Faults

Assigning an incorrect value to a configuration option can lead the software to behave incor-
rectly, which is referred to by the term “configuration failure”. Such failures can have different
manifestations, including error messages, performance degradations, hidden and silent exe-
cution failures, or even crashes or refusal to boot up. If they occur in production, they can
incur serious financial losses [4, 12].

Typical causes for configuration failures, i.e., configuration faults, include typos (e.g., “mem-
ory_limit = 64” instead of “memory_limit = 64M”) as well as unrealistic or plain wrong
values. A second type of configuration faults correspond to options whose value is syntacti-
cally correct, but does not match with the execution requirements, (e.g., “max_execution =
60” when a time-consuming script that requires more than 60 seconds is executed). For other
types of configuration faults, including inconsistencies between configuration option values,
we refer elsewhere [215].

4.2.6 Software Configuration Engineering

We define software configuration engineering as the discipline that encompasses activities
involved in the creation, integration, and maintenance of run-time configuration options in
a software application. For example, adding a new option to an existing code base, and
managing configuration failures are two common configuration engineering activities. Other
engineering activities also apply to software configuration including documentation and code
review. While there exist substantial work on several activities related to software configura-
tion engineering, many others are not covered at all by literature. Furthermore, there is no
study that focuses on the full lifecycle of software configuration options. In fact, until now
no official name existed for the overarching discipline of software configuration engineering.
Hence, the next section discusses the methodology of our exploratory study on the different
configuration engineering activities (as well as their challenges and recommendations).

4.3 Study Methodology

In order to understand the activities making up the discipline of software configuration en-
gineering, the challenges involved with those and best practices that exist, we used a mixed-
methods approach involving semi-structured interviews, a survey with open source stakehold-
ers and a systematic literature survey. The 14 interviews with experts allowed to define 9
essential configuration engineering activities as well as to identify an initial list of challenges
of these activities. The activities and challenges were used as inspiration for the open-ended

29

and closed questions of our survey. The 229 survey responses allowed to validate the activ-
ities and challenges, as well as to identify best practices used to deal with these challenges.
Finally, to put our findings into perspective, we performed a systematic literature survey
focused on the 9 activities. The rest of this section provides more details about our study
methodology.

4.3.1 Semi-structured Interviews

Since we aim to understand activities, challenges and best practices used in practice, and
no explicit configuration engineering process could be used as reference, we opted to start
with semi-structured interviews of experts. Then, to put the experts’ input into context,
we performed a larger-scale survey building on the experts’ answers. To conduct the semi-
structured interviews, we first had to define the base set of open questions to discuss with
experts, which only requires high-level guiding questions to explore concrete experiences and
insights of the interviews. These open questions were obtained through brainstorming of the
paper’s authors around the central theme “How do practitioners design, develop and maintain
the configuration system of their application?” To avoid confusion during the interviews (and
later survey), we clearly defined the focus of our study in terms of run-time configuration
options.

Throughout the brainstorming, we leveraged the extensive industrial experience with config-
uration of two of the authors, as well as the results of our earlier work on software config-
urations [162–164]. To mitigate the risk of missing major questions or themes, we chose a
semi-structured format for the interviews. Such a format helped us complete the base themes
and questions by allowing interviewees to change the direction of the interview if interesting
new topics are being covered. Such topics could then be integrated in our base interview
guide for future interviews. The final interview guide is available online [27].

The 14 interviewees were recruited from different companies and have different software
engineering roles, ranging from developers to software architects and managers, including
one infrastructure (i.e., environment) architect. Each of these interviewees belongs to a
different company, except for two interviewed experts who did work in the same company,
but under different roles (manager and integrator). The 13 companies also cover a wide
range of domains, from governments to banking systems and online retailers. As presented in
Table 4.1, the 14 interviewees had between 5 and 28 years of software engineering experience,
with only four people having less than 10 years of experience.

Each interview was performed by two of the authors, one of which was the interviewer and
one of which the scribe taking notes. The interview would start from an open question,

30

Table 4.1 Interviewed subjects’ experience and role.

Subject Experience Role
(#years)

P1 28 Developer and Manager
P2 27 Researcher
P3 21 Developer
P4 15 Manager
P5 14 Developer and Industrial Researcher
P6 14 Infrastructure Architect
P7 13 Manager
P8 12 Developer and Architect
P9 10 Developer and Architect
P10 10 Developer
P11 8 Integrator
P12 7 Developer
P13 6 Developer
P14 5 Developer, Architect, and Manager

then the interviewee’s answers would help select the next question to move to. Although we
made sure that a typical interview could be finished within one hour, the semi-structured
interviews eventually had a length of one to three hours.

4.3.2 Card Sort Analysis of Interview Data

In the second step, two human raters (authors) qualitatively analyzed the interview results
by following a card sort approach [155]. Card sorting is a categorization technique that
is widely used in information processing to derive taxonomies from input data [155]. In
our case, the two raters printed the interview transcripts and notes, then cut those up in
snippets containing relevant information. These snippets were then classified collaboratively
into clusters that represent a common topic, for example “testing configuration options”.
Once finished, the raters archived the classified snippets for two days before doing a second
iteration of classification in which topics related to the same high-level configuration-related
activity (e.g., “quality assurance”) were clustered together.

The resulting clusters enabled us to identify 9 configuration-related activities, together with
challenges and anecdotal evidence related to the activities. The other two authors then
validated these results. The final results of the card sort are available online [19].

31

4.3.3 Survey

In order to extend our understanding of the configuration-related activities and challenges
identified via the interviews, and to identify how representative they are, we conducted a large
20 minute survey containing 25 closed and 5 open-ended questions. To arrive at this final list
of questions, we first identified 56 questions from the individual topics (card sort clusters)
within the 9 obtained configuration activities. Two of the authors discussed and reduced this
list to 46 questions, after which the two other authors took the survey to evaluate its clarity,
duration and relevance to our study. After addressing the identified issues, we sent the survey
to personal contacts (including a number of open source developers). The 9 answers that
we received were then used to validate and improve our questionnaire. We re-organized the
order of questions into 4 pages (instead of 12), revised two unclear questions and could further
reduce the number of questions to 30. Our survey questionnaire is available online [32].

We then sent out 2,000 personalized emails inviting open source project developers to partic-
ipate in our survey. These developers were selected from the 1,000 Java projects on GitHub
with the most commits, as obtained from the GHTorrent [78] database. This selection strat-
egy allowed us to focus on mature and active projects, ignoring Github repositories that
are not software projects (e.g., repositories for courses or student exercises). We focused on
Java projects to control for the impact of programming language on configuration options,
and since it is the most popular programming language on the TIOBE index at the time
of performing this study. For each selected repository, we selected a sample of contributors,
whose email address we obtained via the Github API [18]. We manually checked our targeted
developers before sending emails.

Eventually, we received 229 responses, yielding a response ratio of 11.5%, which is a reason-
able percentage compared to surveys in other domains [29]. Note that our invitation email
explicitly asked the surveyees to answer the survey from the point of view of the specific
project for which we had contacted them. Furthermore, the 229 responses do not include the
9 responses used for validation of our questionnaire.

The work experience of the 229 survey participants varied from a minimum of 1 year to a
maximum of 45 years, with a median of 11 years and average of 13.35 years. The majority of
these participants are developers (184), while 82 are architects, 27 managers and 19 academics
(students, professors or lecturers). Note that some participants had more than one role at
their organization. 3% of the participants have contributed to projects with a huge number
of configuration options (between 1,000 and 10,000), 20% to projects with a large number of
configuration options (between 100 and 1,000), and 51% to projects with a median number
of options (between 10 and 100). Only 26% of the participants had contributed to projects

32

with less than 10 options, indicating that the majority of survey participants are indeed
practitioners who have been exposed to software configuration and hence can offer a large
variety of perspectives.

4.3.4 Card Sort Analysis of Survey Data

Closed survey questions were analyzed quantitatively, while open-ended questions were again
analyzed using card sort analysis, similar to the interview data. Given the scale of the
obtained survey data, we performed its card sort electronically, eventually obtaining clus-
ters representing configuration-related challenges and clusters representing best practices to
address challenges, each with a variety of sub-challenges or -practices, and anecdotal evi-
dence [8, 9].

4.3.5 Systematic Literature Review

Finally, to identify which best practices in configuration engineering are not yet covered
by earlier research as well as to guide practitioners to published approaches and solutions,
we performed a “systematic literature review”. The objective of our literature review
is to explore the research literature that focuses on software configuration, then classify it
based on the 9 configuration activities, and the challenges and practices identified during
the interviews and survey. We follow the systematic literature survey process prescribed by
Kitchenham et al. [100].

The approach used in our literature survey consists of obtaining papers studying run-time
software configuration from the online Compendex, Inspec, ScienceDirect, and Web of Science
databases. We obtained a set of 632 papers, which we obtained by using the following search
criteria and queries:

• Criterion 1: In order to select papers that discuss configuration, we focused on those
in which the title and abstract contain the keyword “config*”, “misconfig*”, or “mis-
config*”.

• Criterion 2: To eliminate papers that are not related to software engineering, we only
retained papers whose venue title contains the keyword “Software” (like International
Conference of Software Engineering).

• Criterion 3: To reduce the amount of papers to classify in the first iteration, we
initially focused on papers published in the last 10 years (From 2007 to 2017). Later
on, we used snowballing (see below) to cover papers earlier than 2007.

33

• Criterion 4: Papers should be written in English.

Inclusion and exclusion criteria, we manually studied these 632 papers by classifying
them into two categories: (1) papers focusing on run-time software configuration, and (2)
papers that are out of scope for our research (e.g., on compile-time software configuration or
software product families). For this initial classification, we read each paper’s title, abstract,
introduction, and conclusion.

At the end of this iteration, we obtained 69 papers that are related to run-time software
configuration. Afterwards, 6 more papers were eliminated as out of scope based on peer-
review and discussion between authors, resulting in 63 papers.

We then added 7 extra papers that we already knew (bringing our tally to 70), but were
missed by the criteria above. 5 out of these 7 were published in venues that do not con-
tain the keyword “Software”, while two papers were not in the databases that we selected
(Compendex, Inspec, ScienceDirect, and Web of Science).

To cover a larger search space, we then performed “snowballing”, i.e., the identification of
additional papers from the references of the 70 papers selected in the previous steps, repeated
recursively from each of the newly selected papers’ references. At the end of this iteration, 36
new papers were added to our dataset, yielding 106 papers related to software configurations.

4.3.6 Card Sort Analysis of the Systematic Literature Review Data

To complement the practitioners’ recommendations with the state of the art discussed in
academic literature, we classified the final set of 106 papers according to the 9 configuration
activities that we identified via the interviews and survey. Each paper could cover more
than 1 such activity. The goal of this classification across activities is to lead practitioners to
approaches for their specific context, to confirm practitioners’ recommendations with existing
researchers’ validations, and to identify configuration research areas that have been covered
less in detail and hence should likely be the focus of future work.

In order to conduct the card sort analysis, we followed these steps:

1. Each author focused on a subset of the 106 papers that we obtained at the end of the
snowballing activity.

2. Each author read each of his papers to deeply understand its focus and contributions.

34

3. Each of the papers was then classified according to one or more of the 9 activities
identified during the interviews and survey. At the end of this step, each paper was
either classified into zero, one or more categories based on its contributions.

4. After the classification, each of the authors reviewed the papers of another author to
verify the classification. If two people disagreed about a classification, they together
discussed it to arrive at a final decision.

5. Within each activity, we then matched papers with the corresponding challenges that
they are addressing.

The next three sections present the card sort results regarding configuration engineering
activities, challenges and best practices, each supported by quantitative and qualitative evi-
dence.

4.4 Configuration Engineering Process

The first goal of this study is to identify the configuration engineering process used in a
typical software project. This process basically consists of a set of activities performed
routinely by different software engineering actors, including developers, architects, and man-
agers. These activities were identified from the card sort analysis of the interviews, and were
later confirmed by the survey (and implicitly by the literature survey). The resulting list
of 9 activities (visualized in Figure 4.1) should be taken into account by any new developer
or software project when estimating development or maintenance effort. We also hope that
these activities will become the focus of future research by our community to help address
the challenges presented in the next section.

Table 4.2 shows the mapping between the 9 activities to the survey questions that covered
them. Note that the last two survey questions were open-ended, allowing the surveyed
developers to express challenges and recommendations on any configuration activity.

A1.Design and Creation of Configuration Options The most obvious activity, which
92% of survey participants performed at least once, is to add a new configuration option to
a software system. This involves choosing a name, a type (e.g., boolean or string), a default
value, the physical location (storage medium) to store the option’s value, and providing
comments or other documentation. Most of the participants create a new option to either
configure technical aspects (like the memory usage or database credentials) of an application
or to configure the actual functionality of the application.

35

A9. Quality
Assurance

A1. Design and Creation
of Configuration Options

A2. Managing
Storage Medium

A3. Managing Option
Data Format

A5. Comprehension
of Options and

Values

A6. Maintenance of
Options

A8. Configuration
Knowledge Sharing

A7. Resolving
Configuration

Failures

A4. Configuration
Access in Source

Code

Implies
Implies

Optionally

Optionally

Permits

Optionally

Facilitates

Implies

Facilitates

Facilitates

Facilitates

Facilitates

Implies

Facilitates

Figure 4.1 The process of software configuration engineering.

These options can be specified in the user requirements or architecture document, or can be
“invented” by an architect or developer, for example to “externalize” a source code constant
into a configurable option. Such externalization refers to the act of allowing the value of an
option to be changed from outside the source code, hence avoiding recompilation.

A2.Managing Storage Medium The storage medium for configuration options, i.e., the
physical location where options and their values are stored (and can be changed), is mostly
determined by personal preference as well as by the intended “binding time” of an option. The

Table 4.2 Mapping of each survey question (in the Appendix) to the activity it addresses.

Activity Question
A1 9, 10, 11, 12
A2 5
A3 12
A4 6, 7, 8
A5 19, 20, 23, 24, 25
A6 21, 22
A7 15, 16, 17, 18
A8 13
A9 14, 26, 27, 28

36

0 20 40 60 80 100 120 140 160

.properties file
Environment variables (e.g., Bash)

.xml file
.json file

Application main arguments
In a table within the database used for the application

.ini files
In a table within a database dedicated to configuration

Yaml file
Other

LDAP or another directory service (e.g., Zookeeper)
Source code

Specific
Hocon file

Figure 4.2 Popularity of configuration storage media (based on survey question 5).

binding time is the moment at which a configuration option gets its value assigned (bound)
to it, as discussed in Section 4.2.3. For example, options stored as conditional compilation
macros or as hard-coded source code variables are bound at compile-time (outside the scope
of this study), while most configuration files and program arguments are bound at load-time.
To obtain execution-time binding, options are typically stored in databases or (less often)
in files. Sometimes more esoteric mechanisms are used, such as checking for the presence of
a file to set a boolean option to true. Such a mechanism enables file system permissions to
restrict access to an option.

Execution-time binding is used for options whose value could change dynamically (typically
functional options), while load-time options are used for options that do not need to change
after starting up an application, but do need to be changed by the end-user, like the amount of
memory allocated to an application or the credentials for accessing a database. We found that
98% of the surveyed participants use load-time configuration options and 35% use execution-
time options. Given the scope of our study (and our focus on Java projects for the survey),
no compile-time option usage was recorded.

As shown in Figure 4.2 (based on question 5 of the survey), the top three most popular
configuration storage media in our survey are “properties” files, “environment variables”, and
“XML” files, respectively enticing 62% (143/229), 47%, and 45% of the surveyed participants.

The reason for listing the management of configuration storage medium of a software appli-
cation as a separate activity is that it is not just a choice made during creation of an option
(A1), but also involves maintaining or even changing the medium over time, for example
by splitting up or merging configuration files, renaming them or even moving from files to
databases.

37

A3.Managing Option Data Format A configuration system’s data format (or schema)
corresponds to the types of values allowed for each option, together with any constraints
enforced on these values. Option types can range from pure strings (even to represent numbers
or more complex structured data), to simple types distinguishing between string and numeric
types, or complex types allowing more advanced, custom data formats.

A popular form of complex configuration format are hierarchical options, which use a nested
data structure to store configuration values. Instead of having 5 separate options related to
the same feature spread cross the configuration files, nested data structures allow to aggregate
these options in a single, composite configuration option. In the survey, we noticed a more
recent evolution from purely hierarchical option values towards graph-based structures.

Although the choice of data format is somewhat influenced by the choice of storage medium
(a properties file cannot easily model hierarchical values), most storage media can handle any
data format, to some degree. One of the main differences is the ability of a storage medium
to automatically enforce constraints on the values. For example, XML schemas are able to
check that an XML configuration file is valid, while properties files do not have such built-in
support.

Similar to managing the configuration storage medium, managing the configuration data
format covers more than just the initial choice of format, such as refactoring to another format
as an application’s features evolve, as well as refinement of configuration data constraints.

A4.Configuration Access in Source Code Once an option has been added, developers
should access its value from within the source code in order to enable/disable features, to
create connections or to perform specific calculations. To enable such access to the configura-
tion options stored in the storage media, we identified three sets of approaches in use: using
a third party configuration API (frameworks such as Java Preferences or Apache Commons),
developing a custom API, or a hybrid approach with a custom API leveraging a third party
API.

A5.Comprehension of Options and Values To use, manipulate, or maintain an option
in the source code, end users and developers first need to understand the goal of that option
and its possible values. The surveyed participants use a variety of artefacts to understand
an option, ranging from comments in a configuration file, documentation of the source code,
external documents, to readme files and manuals. Developers also rely on informal approaches
to understand configuration by asking and discussing with their colleagues.

A6.Maintenance of Options Once an option is created, accessed and used in the source
code, developers need to monitor its usage and usefulness over time, basically maintaining the

38

option and the code that is using it. Maintenance activities can vary from renaming options
and refactoring the code regions accessing them to removing redundant options. Although
our interviewed and surveyed participants agree that maintenance of configuration options
is important, they unanimously confirmed that it is not an easy task, as we discuss later. In
fact, they consider configuration option maintenance to be the major area where tool support
is lacking.

A7.Resolving Configuration Failures A major activity impacting developers and users
of an application is to resolve failures that are caused by misconfigured options, i.e., options
that were assigned an incorrect (default) value. This involves reproducing the failure to
confirm that it is caused by a misconfiguration (and not a code-related fault), debugging the
reproduced failure to identify the faulty configuration option and identifying the right value
to fix the misconfiguration.

A8.Configuration Knowledge Sharing Sharing development knowledge between team
members is a common activity in software engineering. As part of this knowledge, developers
also need to share amongst each other important information regarding configuration options.
This information ranges from data on newly added options to illustrations showing the impact
of an option on source code regions, or metadata about common configuration failures and
faults for tricky options. While activity A5 considers the understanding of an option from
a configuration option user’s perspective, activity A8 considers such understanding from the
developers’ perspective (e.g., for evolution and maintenance purposes).

A9.Quality Assurance Finally, similar to regular code development, quality assurance is
a major activity for assuring the correctness and integrity of a project’s configuration, with
the goal of improving software configuration comprehension, improving the resilience of an
application to configuration failures, reducing the software configuration’s complexity, and
improving its maintainability. For example, some projects developed static analysis tools to
check the semantic constraints on the values of a configuration option (on top of the basic
type checks of the configuration data format) or to test a system in the context of a given
configuration. Traditional quality assurance activities like code review or tests equally apply
to configuration options, their values and their access within the code.

Relations between Configuration Engineering Activities As shown in Figure 4.1,
the configuration engineering process obviously starts by the creation of new configuration
options (A1). Creating a new option also implies deciding on a storage medium (A2) and on
a data format (A3). These two last activities are separated from the creation of configuration
(A1), as they are also impacted by the maintain of configuration options (A6). For exanple,

39

developers can decide to change an option type from a string to a boolean, or to change the
storage medium from a simple file to a more powerful database.

Once an option has been created, developers can start accessing it within the source code
(A4). It is also important for the people who added the option to document and communi-
cate the intent and constraints of the option to other developers (A8). This is for example
important to facilitate the comprehension of options and future changes (A5).

On the other hand, effective quality assurance practices (A9), such as configuration-aware
code review or the specification of naming conventions, can improve and facilitate the cre-
ation, maintenance and comprehension of an application’s configuration system. The com-
prehension of options and their values (A5) is of fundamental importance for the maintenance
of software configuration options (A6) and for debugging of their failures (A7).

The above relationships were derived during card sorting, in parallel with the identified
activities. Most of these relations are rather trivial, while some of them require further
scientific validations. For example, it is trivial that creating an option implies managing
the option’s storage medium. However, it is less clear that quality assurance (A9) facilitates
comprehension of options (A5). The survey did not require respondents to evaluate the
relationships.

4.5 Configuration Challenges

This section presents the challenges that we identified from card sort analysis of the 14
interviews and the 229 survey responses for each of the 9 activities. Figure 4.3 summarizes
these challenges, ordered by the number of survey participants who mentioned them.

Although the interviews and survey address two different population categories (which are
respectively industrial and open source Java engineers), we did not observe any inconsistent
results between both categories (except C9.1). Therefore, we merged the results and discus-
sions of both categories in the remainder of the paper. However, it might be worth to explore
more deeply the differences between industrial and open source developers by replicating the
survey in an industrial context.

4.5.1 Creation of Configuration Options

C1.1 Options are not Planned During the interviews, we learnt that in most of the cases
there are no plans or guidelines on which options to add in the source code and where to
add them, leading developers to mostly use their own judgement. Our survey (question 11)

40

0 5 10 15 20 25 30

C8.1	Lack	of	Option	Documentation
C9.2	Lack	of	Automatic	Validation

C1.2	Adding	Options	Increases	Complexity
C1.1	Options	are	not	Planned

C3.1	Identifying	Optimal	Data	Format
C5.3	Meaningless	Option	Names

C2.1	Mixing	Media	Increases	Complexity
C3.2	Supporting	 Env./Platf./Variants

C2.2	Storage	Media	Impact	Performance
C5.2	Configuration	is	Hard	to	Understand

C1.3	Choosing	Right	Default	Value
C6.2	Traceability	Loss	during	Evolution
C4.1	Scattering	Increases	Complexity

C5.1	Isolated	Knowledge	of	Option	Impact
C6.1	Option	Removal	is	Risky

C4.2	Adoption	 of	Dedicated	Frameworks
C7.1	Debugging	Configuration	is	Hard
C8.2	Lack	of	Internal	Communication

C1.4	Configuration	Ownership
C9.1	Code	Review	Ignores	Configuration

C7.2	Lack	of	Debugging	Tools

Figure 4.3 The identified configuration-related challenges, ordered by the number of survey
responses mentioning them (open-ended survey question 29).

41

confirmed that 60% of the surveyees add options without any planning, while 40% specify
options in the architecture specifications and 24% in the requirements (people could choose
multiple answers). In 24% of the cases, new configuration options were meant to externalize
a string constant from the source code, since developers typically “hard code first and exter-
nalize later”. Although our survey is sent to open source contributors, we observed a large
number of participants mentioning architecture and specification documents. We think that
this is due to the large projects we focused on, in which relying on such documents is a com-
mon practice. Furthermore, in practice open source developers, especially in larger projects,
often do so in the context of a company who is paying them to represent their company’s
interests in a project’s development.

Although six survey respondents in question 29 mentioned that careless addition of options
can “create [a] maintenance burden in the long term” and “They don’t presume that others
might need them”, the lack of option planning is not necessarily due to wrong developer
intentions. For example, 7 respondents explained how it is difficult to decide what function-
ality should be made optional due to the lack of direct access to users or due to the users
not knowing it either: “The most important problem is knowing what options our users want
and how to tailor those options to that audience. Often times we can’t communicate with
all of our users and that creates a very big gap of understanding between developers and our
userbase.” In the worst case (two survey responses) this can lead to the wrong data format
being chosen for options: “We should have anticipated nested configurations, but the config
system sort of grew organically at first. Later we had to step back and redesign it.”

C1.2 Adding Options Increases Complexity The interviewed experts and 14 survey
respondents (in question 29) unanimously confirmed that a large number of options makes
software configuration a more complicated task: “There is no fun to create new options.
Options are increasing the complexity”. Apart from complicating the configuration of a
software system, it makes the meaning of options harder to understand and hence to maintain:
“I have bad experience with "configuration bloat" which means that sometimes there is a
plethora of config option and you don’t really need 99% for almost all usecases. In effect
this means someone getting acquainted with the software will miss important config options
because most of them can be safely ignored.”

The risk of increasing complexity is even larger in practice as not only the number of configu-
ration options in a file is growing, but “[the number of] configuration files grows organically”
as well (5 respondents to question 29). In other words, the options are being spread out
across more files, largely because developers (especially novices) “do not immediately see the

42

complexity they are adding by creating new options” or configuration files, and because adding
new options is largely an ad hoc decision that is not planned ahead of time (see above).

C1.3 Choosing the “Right” Default Value Even though options are added to enable end
users to customize an application to their needs, 12 respondents stressed (in their responses
to question 29) that it is essential to pick the right default values for each option. For
6 respondents the term “right” corresponds to enabling out-of-the-box functionality of the
application for the majority of the end users: “Many users never configure the program, and
so choosing the best possible defaults for configuration options is important.” For 4 others,
the default values are even essential to avoid breaking the system: “Graylog may destroy all
your logs if the log retention module’s configuration can not be loaded properly, because the
default in the code is to have a very short retention period”. Unfortunately, all 99 people
responding to question 12, and 12 respondents to question 29 concluded that finding the
right default value is a largely ad hoc process.

C1.4 Configuration Ownership Figure 4.4 (question 9) shows how 47% of the survey
respondents allow any developer to add new configuration options, while in 53% of the cases
this is restricted to a group of experts, i.e., a group of developers (24%), architects (5%) or
a mixture of developers and architects (24%). Especially in sensitive contexts like banking
applications, architects are the main responsible party for configuration creation.

Allowing anyone to add options has several side effects. First, a configuration file can be filled
with redundant configuration options configuring the same thing. Second, conflicts between
a new option and existing ones generally do not pop up in a developer’s individual workspace,
but only during integration of the developer’s changes with other developers’ work: “[they]
had to merge all [modified] configuration files, and hence they got for some cases, more than
one option that configure the same thing. This was complicated to fix and consider”. This is
mostly because developers in general don’t “have a broad vision on different components and
a long-lived experience on the system” and because a configuration file is an external artefact
that could be “shared between different components and/or different applications”.

4.5.2 Managing Storage Medium

C2.1 Mixing Storage Media Increases Complexity Having many different storage
media in one software system increases the complexity of configuration options, and hence
makes them harder to find, use, understand and maintain. One interviewed expert even
considers software configuration as a “neural network”, because a potentially large number
of options and configuration files is distributed across a variety of different storage formats,
yet for the outside (i.e., end users and developers), they should look as one coherent set of

43

47%

24%

24%

5%

Any Developer (47%)

Architects and Developers (24%)

Certain Expert Developers (24%)

Only Architects (5%)

Figure 4.4 Who is Responsible for Option Creation (survey question 9)?

options. Apart from confusion, other negative consequences include difficulties integrating
the options from different storage media as well as updating the options in the right location.

Unfortunately, mixing storage media is quite common-place if different options should have
different binding time. Six respondents (question 29) also explained how a physical distinction
needs to be made between confidential configuration data, such as passwords and secrets, and
public configuration data. Hence, at least two storage media are required to achieve such a
distinction. Similarly, in larger distributed systems different nodes might require their own
configuration storage.

C2.2 Storage Media Impact Performance Surprisingly, there are also performance im-
plications related to the choice of storage medium (and binding time). Seven respondents
(question 29) mentioned how the choice of a storage medium with load-time binding time
requires reloading the whole application just to refresh one option’s value. Five respondents
experienced heavy load when using a configuration database with execution-time binding, as
their system accessed the database too frequently to check for updated option values, to the
point that any down-time of that database would cripple the system’s behaviour. Finally,
one respondent experienced race conditions, where an application would accidentally read an
option’s value right before changes would be made, hence missing the updated value.

4.5.3 Managing Option Data Format

C3.1 Identifying Optimal Data Format Identifying the right data format is a major
configuration-related challenge, with 10 respondents (question 29) experiencing slowdown
due to too weak option type systems, wrong types chosen for an option (e.g., string option
not supporting special characters), inability to group related options or lack of support for
adding comments to options and their possible values. Three respondents were unable to
easily express hierarchical configuration data (i.e., configuration options that are composed
of other sub-options), while four were unable to deal with graph or struct option values.

44

Finally, two people pointed out (question 29) the lack of reuse mechanism in existing data
formats. Even though several configuration files could share common lines (“Consider a
configuration file that supplies values suitable for X region and Y environment, and another
configuration file that supplies values suitable for Y environment and Z data center”), one
needs to duplicate those lines across all files. An ad hoc “include” mechanism seems a
possibility, but is not straightforward to enable and maintain.

C3.2 Supporting Multiple Environment/Platforms/Variants As suggested by one
of the respondents in the previous challenge, an application often needs to be deployed
in multiple environments (development, test and production; 6 respondents), on multiple
operating systems or on mobile platforms (3 respondents). Furthermore, different variants of
a given application might need to be built, such as a cheap, light version vs. a more expensive,
full-featured one (2 respondents). Having to provide a whole folder of configuration files, one
per environment, platform and variant is to be avoided due to combinatorial explosion and
because “If you have different config files for each, you can hit problems when you release
due to the production config being untested”. Finding a sufficiently expressive data format
(and storage medium) avoiding such explosion, or at least making it more manageable, is a
common challenge experienced by the surveyed participants.

4.5.4 Configuration Access in Source Code

C4.1 Scattered Access Increases Complexity 7 survey respondents claim (in question
29) that “from the application perspective the location of the configuration values should not be
visible or make a difference”, urging to build code abstractions to hide configuration storage
media. If not, understanding configuration use, its maintenance and debugging become more
difficult, while any changes in data format or storage mechanism risk propagating across the
code base.

Despite 60% of the surveyed developers accessing configuration options from within a single
class or module, 40% still read configuration options from multiple storage media in different
places of the software system’s code (question 8).

C4.2 Adoption of Dedicated Frameworks Similar to Sayagh et al. [163], the interviews
and survey showed how developers typically do not tend to use existing configuration frame-
works, or only opt for the most basic ones (e.g., the preferences API in the standard Java
SDK). Yet, a large number of sophisticated frameworks exists to make accessing options
cleaner, scale to large configuration spaces, improve type-safety or reduce memory footprint.
It was suggested by one respondent that this is because “developers are lazy to learn and try
new configuration frameworks, they like to use the easiest method”.

45

In any case, 66% of the surveyed developers created their own classes and functions to read
and manipulate configuration options from configuration files, while only half (49%) of the
surveyed developers had used an existing configuration framework in some project. The latter
percentage is basically the same (48%) as that of developers using just a basic I/O library
(instead of a dedicated configuration library) for reading configuration files (question 6).

4.5.5 Comprehension of Options

C5.1 Isolated Knowledge of Impact of Options Despite some of the interviewed projects
using a dedicated configuration expert, no single expert was said to know the goal and im-
pact of all the configuration options of her software system. “Only the developer knows the
meaning of options he created. Configuration file is like a black box for deployers (which are
the configuration users)”. The survey confirmed this (question 19): only 31% of developers
know the impact of all configuration options, whereas 46% know the impact of the majority
of configuration options, and 23% have only a limited knowledge about the impact of con-
figuration options. The latter people know the impact of only a few options (12%), only the
options used in the source code they worked on (8%), or do not know at all the impact of any
configuration option (3%). As mentioned by a surveyed participant in question 29, isolated
knowledge is a risk: “The one [who] created that option has quit the team and that option [is]
invoked in too many places of the code and hard to guess what it does”.

We also studied the relation between knowledge of options and the number of configuration
options. Of the surveyed participants who had indicated that they understand all configu-
ration options in their system, only 11% worked on a system with in between 100 and 1,000
options. The majority (41%) worked on a system with less than 10 options. Hence, the com-
plexity of having more options (C1.2) plays a major role in terms of configuration knowledge.
Future work needs to investigate on this direction to find the impact of different factors such
as projects size and engineering roles on this challenge.

C5.2 Configuration is Hard to UnderstandWe found that surveyed participants use dif-
ferent techniques to understand configuration options (Figure 4.5). Based on survey question
20, we found that 74% and 52% of developers use documentation or configuration file com-
ments, respectively, to understand the role of a configuration option. Since documentation
and comments are not always up-to-date or clear for everybody, 59% and 2% of developers
have to use the source code or debugging tools, respectively, to understand configuration
options. Code search often is complicated because the option names do not appear as string
literals or the option names are dynamically constructed via string concatenation. Instead,
we found that 40% of developers ask a colleague for clarification about the goal of a configura-

46

0 50 100 150 200

Documentation
I understand configuration options from the source code

Configuration name is clear enough to be understood
Configuration option comments

Ask a colleague
I Google configuration names

Debugging

Figure 4.5 Approaches to Understand Configuration Options (survey question 20).

tion option and 12% of developers search online. Only 55% of developers rely on configuration
names to understand the objective of a configuration option. Note that this survey question
allowed respondents to choose multiple answers.

Despite all these sources, comprehension challenges remain an issue when trying to under-
stand the options of third party libraries (3 respondents for question 29), the changes to
options beween different versions of a library, or the interplay between different configuration
options. For example, “Having a stack of configurations, each one overriding parts of the
previous ones. One needs to be very clear on the order of evaluation up front and remember
to log the resolving.” Options can depend on each other, override each other or interfere in
other ways, all of which render configuration more complicated, especially as the number of
options keeps on growing (C1.2).

C5.3 Meaningless Option Names 16 survey respondents highlighted (in their responses
to question 29) the difficulty of finding meaningful names for options, where meaningful
implies being short, descriptive and easy-to-search in the code base. In many projects, “Many
config options were added early on without any consistency”, but even to “come up with an
overall workable naming convention for all configuration options” is not straightforward.
Based on question 14, we found that only 54% of developers follow a naming convention for
configuration options. Of the other developers, 23% have a naming convention but do not
respect it, while 22% do not have a configuration naming convention at all.

4.5.6 Maintenance of Options

C6.1 Option Removal is Risky As shown in Figure 4.6 (and based on question 21), only
1% of the surveyed developers frequently change configuration options during maintainance,
while 29% of the developers sporadically do so. On the other hand, 62% almost never make
such changes and 8% never. As one interviewee put it (with 7 survey respondents making

47

62%
8%

29%

1% No, they are almost stable
(62%)

No, they never change. Once,
they are created, they do not
change anymore (8%)
Yes, they change but not
frequently (29%)

Yes. They change frequently
(1%)

Figure 4.6 How often configuration options are maintained by engineers (survey question 21).

similar claims): “Cleaning configuration options! Oh no way. No one can take such a risk,
we don’t clean the configuration files, because we don’t know when and where the system can
crash. Dead options are kept in the configuration files forever.”

Furthermore, for two interviewees, developers were not allowed to touch a configuration op-
tion due to the fact that these options were included in the official requirements specification,
which corresponds to a contract with the client. As such, dead configuration options had to
be left in the configuration file and/or in the user configuration UI. For most of the other
interviewees, removal of dead options would only happen for options visible to the end user,
while developer-only options typically are not a priority for removal.

C6.2 Traceability Loss during Option Evolution Based on question 22, we found that
58% of the survey respondents do not store removed configuration options anywhere, they
just remove them from the configuration files. Only 4% use a version control system to track
removed configuration options, while 3% store removed options in a database and 12% just
comment out unused options in the configuration file.

A related challenge is the need for keeping new options backwards compatible with older
ones (4 respondents to question 29): “how to deal with introducing or removing configuration
options in new software releases, considering that the release may have to be rolled back in
case of a faulty release. If users have already started using new configuration options, the old
release will not recognize them and error out”.

4.5.7 Resolving Configuration Failures

C7.1 Debugging Configuration Failures is Hard Via the interviews, we found that
debugging configuration failures can be difficult, especially in multi-component systems, or
software systems that depend on other software components or services. For example, one of

48

the interviewees lost considerable time trying to change an option hosted in another system,
managed by another company. Unclear information about the values of configuration options
further complicates debugging: “error messages are horrible, they don’t reflect anything about
configurations”. 7 respondents (question 29) complained about execution logs not providing
sufficiently detailed information to even determine if a failure is configuration-related or not:
“Configuration options for things like timeouts retries or other connection options are quite
useless without good monitoring”.

C7.2 Lack of Debugging Tools The interviewed experts are debugging configuration
failures with the same tools as they are using for debugging ordinary bugs. As shown in
Figure 4.7 (and based on question 17), the most popular artefacts used to debug a misconfig-
uration are the failure message (76%), log files (74%), stack trace and the source code (62%).
Only 5% of respondents use an automated tool to resolve misconfigured options. Generally,
interviewees and survey respondents were not familiar with the many research tools for de-
bugging configuration failures proposed in the literature [44, 46, 47, 68, 69, 104, 120, 136, 147,
164, 169, 178, 192, 193, 193, 195, 195, 204, 216–219]. One respondent summarized the current
state-of-the-practice as “Dig deep and hack till it works”.

C7.3 No Strategies to Avoid Regressions As highlighted by Figure 4.8 (and based
on question 18), the most popular artefacts in which developers record information about
configuration failures and the workarounds used to resolve them are the commit message
(44%), bug reports (33%), and wiki (24%). In addition, we found that 22% do not document
configuration failures nor their solutions at all.

On the other hand, in the case of projects who do document configuration errors and their
resolution, surprisingly few people use that information. Most interviewees reported about
developers losing precious time resolving the same configuration failures over and over again,
without realizing that documentation was available about them. In other words, no clear
process was in place supporting developers when resolving configuration failures.

4.5.8 Configuration Knowledge Sharing

C8.1 Lack of Option Documentation The interviewed experts mentioned that “documen-
tation and comments [(in the configuration file)] are rarely made for configuration options”,
largely because of limited (time) budget and because developers do not like to spend addi-
tional effort on this. To confirm this, we asked survey respondents (questions 23, 24 and 25)
to rate the quality of their option documentation and of the comments in their configuration
files. As shown in Figure 4.9 and 4.10, 39% of respondents gave a rating of 3/5 for the doc-

49

0 50 100 150 200

Error message

Log file

Debug the code

Stack Trace

Documentation

Google the error

Automatic tool

Other

Figure 4.7 Artefacts used to debug configuration failures (survey question 17).

0 20 40 60 80 100 120

In the commit message

In a Bug report

In a Wiki

In the configuration file

Nowhere

In text document

Other

Figure 4.8 How developers document configuration failures and their resolutions (survey
question 18).

umentation of configuration options, compared to 31% giving a rating of 3/5 for the quality
of comments in their configuration file.

Hence, although developers know the impact of good documentation and comments on con-
figuration, this documentation often either is missing or is incomplete. For example, the
presence of good documentation often depends on “the writer context. The writing style of a
documenter can influence the quality of the documentation”. 8 of the respondents provided
examples of missing information, such as the goal and impact of an option, its links to user
requirements, an explanation of its potential values, pointers to training/FAQ documentation
or even an explicit domain model of the options.

C8.2 Lack of Internal Communication Finally, we also found that internal configuration-
related communication amongst a development team is rather limited. As shown in Fig-
ure 4.11 (and based on question 13), 55% of respondents communicate newly created options
via textual documentation, whereas 36% of respondents use the pull request as a way to

50

0

20

40

60

80

100

1 2 3 4 5

Figure 4.9 Quality of documentation, rated from 1 (low) to 5 (high), based on survey question
23.

0
10
20
30
40
50
60
70
80

1 2 3 4 5

Figure 4.10 Quality of configuration file comments, rated from 1 (low) to 5 (high), based on
survey question 24.

communicate configuration options and 32% communicate new options via a wiki or a web
platform. On the other hand, 25% of the respondents communicate new options only orally.

Such limited communication has as side effect that developers are not aware of existing
options that could apply to their situation (5 respondents to question 29), leading them to
add duplicate options: “sometimes new people don’t know that a feature already exists and can
be deployed using just a configuration”. Furthermore (2 respondents to the same question),
“In addition to lack of discipline, it is often lack of knowledge in the first place. Chapters
on Configuration management from books like Continuous Delivery would help and should be
mandatory reading, I believe.” Such books indeed provide techniques and practices to deal
with secure vs. non-secure configuration data (either environment- or application-related),
or to communicate between developers and operations (devops).

51

0 20 40 60 80 100 120 140

Textual documentation
Pull Request

Via Wiki or a web platform
Chat support (like Slack or Hangout)

Orally
By mail

Read the code
From the code

Bug report

Figure 4.11 Mechanisms used to communicate new options (based on survey question 13).

4.5.9 Quality Assurance

C9.1 Code Review Ignores Configuration The interviewed experts review configuration-
related changes only in cases in which a configuration option will be manipulated by end-users,
and ignore configuration that are changed by technical engineers like deployers or administra-
tors. According to most of the interviewees, reviewers did not consider configuration options
at all, as they either consider options as an external artefact or do not have enough knowl-
edge about them: “And we have all the routes in a configuration file, the problem was the
configuration file was not being reviewed, so some developers were testing and changing the
routes and pushing the changes without knowing.”

Based on question 26, 36% of the survey respondents do not review all the configuration
options: 15% review only their application’s source code and completely ignore configuration
options in their review, 8% do not follow any review process, they do not review neither their
software source code nor the configuration options, 5% review only functional options, and
8% review only technical options. We found that 64% review both technical options and
functional configuration options. This relatively large percentage seems largely due to the
pull request mechanism provided by GitHub (since all survey respondents were identified via
GitHub).

C9.2 Lack of Automated Validation Apart from code review, we asked the survey re-
spondents (via question 27) which configuration quality assurance techniques in general they
are using. As shown in Figure 4.12, 82% of developers mainly use tests, 19% have tools
to validate the correctness of configuration values, while 17% use containers (like Docker)
to configure the environment and application once then share the resulting container with
other roles, avoiding costly (and error-prone) reconfiguration by everyone. In addition, 14%
of respondents use a database to persist the entire history of configuration values and to

52

0 50 100 150 200

Tests

We have tools to check correctness of the values

Using containers

Default values are backed-up in a database to easily roll back

We have a static analysis tool inspired by checkstyle to
enforce configuration conventions

none

Other

code review

Figure 4.12 Quality assurance techniques used by respondents (survey question 27).

have potential backups, while 5% do not follow any practice to assure the quality of their
configuration options.

Offline, load-time and run-time validation tools generally are missing. For example, 10
respondents (question 29) mentioned the need for offline validation tools able to spot simple
syntax or punctuation issues, and that could be integrated in the pre-commit hook of their
Git repository. 2 respondents (same question) needed load-time validation of the semantics
of the option values, while 6 mentioned similar run-time validation tools. The latter should
be paired with adequate run-time handling of configuration errors, such as “extensive bounds
checking for configuration options, and storing a default and known-working configuration file
inside the application, so that if values are missing, they can be replaced with the defaults.
Some error output, letting the user know that they messed something up in the configuration
file is helpful as well. Sometimes I’ve gone so far as to point out exactly where (down to the
very character) a configuration error was found.”

Finally, 12 respondents (question 29) mentioned the lack of testing tools of options, in partic-
ular tools allowing to test a code change across all relevant configurations instead of just for
one option (value) at a time: “The existence of options implies an additional testing burden,
and even when it is possible in principle to test a given option (it does not require any special
operating system, for example), often it is not tested, or not all combinations of interacting
options are tested.”

53

Table 4.3 Mapping the challenges (C1.1 to C9.2) to the recommendations (R1.1 to R9.5). The
symbols + and - respectively indicate positive and negative impact of a recommendation on
a given challenge (i.e, recommendation R1.1 positively addresses the challenges C1.1, C1.2,
C5.2, and C6.1).

R1.1 R1.2 R1.3 R1.4 R2.1 R2.2 R3.1 R3.2 R4.1 R4.2 R5.1 R5.2 R6.1 R6.2 R7.1 R7.2 R7.3 R8.1 R8.2 R9.1 R9.2 R9.3 R9.4 R9.5
C1.1 + + +
C1.2 + + + + + +
C1.3 + + + +
C1.4 + +
C2.1 + + -+ + +
C2.2 + +
C3.1 + + + +
C3.2 + + + + + + +
C4.1 + + + + +
C4.2 + +
C5.1 - + + + + + + + +
C5.2 + + + + + -+ + + + + + + + + +
C5.3 + + + + + + + +
C6.1 + + + + + + + + + + + + +
C6.2 + + + + + +
C7.1 + + + + + + + + + + + +
C7.2 + + + +
C7.3 + +
C8.1 + + + + + +
C8.2 + + + +
C9.1 + + + + +
C9.2 + + + + + +

4.6 Expert Recommendations

While the previous section discusses configuration challenges faced by practitioners, this
section provides recommendations by both open source and academic experts to address
these challenges. They are obtained firstly from the interviewed and surveyed practitioners.
In the two open questions 29 and 30, surveyed developers were invited to talk about a major
configuration-related problem they faced in their experience and how they fixed it. They
were also invited to recommend three good practices to follow and three bad practices to
avoid when working with run-time software configuration in general. We enriched these
practitioners’ recommendations by academic approaches and findings identified during our
systematic literature review (see Section 4.3).

A first goal of this section is to inform practitioners not only about how their colleagues have
dealt with certain configuration challenges, but also about the state-of-the-art in academic
literature. The second goal of this section (and the mapping in Table 4.3) is to emphasize
areas that are not covered enough by literature, opening up avenues for validation of prac-
titioners’ recommendations along with new topics of research on promising technologies and
methodologies to resolve important configuration challenges.

54

4.6.1 Creation of Configuration Options

R1.1 Treating Options as Scarce Resource In order to avoid having “configuration files
filled with useless information”, 66 survey respondents recommend to limit “the number of
options to an absolute minimum”. This is also discussed in the literature by Xu et al. [212],
who found that end users change just a small portion of a software system’s available config-
uration options, and hence developers should improve the design of their software system’s
configuration by presenting end users a minimal set of options to configure.

Developers should try to avoid adding new options, especially if they can “determine the
proper value by calculation”. Options should only be added if “a major use case is unrealizable
without one”. A second surveyed developer confirmed that one should use a planned and
defined strategy to create new options: “every configuration option has to be supported by
a use case. Even [then,] if you do not have [an explicit] planning, if you can not think of a
valid use case that the configuration option will [fix] that can not be [fixed better] by another
solution, do not add it”. One should “plan in advance the structure of the configuration,
discuss it with colleagues, listing pro and [cons] of each approach and compare; ponder on
what is gained with the new configuration; agree on what configurations will be needed in
architectural/design phase”.

Reducing the number of configuration options is also important from the end users’ point of
view: “Think about who is going to use the software, how they will want to use it, and how
many ways it will be deployed. Does it need to just be for advanced users that know what they
are doing? If so, it should be flexible with lots of configuration with sensible defaults with
excellent documentation of the options. Will it be a consumer product that should work in
most cases? In that case, think much more carefully about what you make configurable because
you’ll have to support misconfigured deployments and you don’t want to confuse customers”.

R1.2 Assigning Option Ownership Apart from reducing the complexity of software con-
figuration by limiting the number of configuration options and files, two of the interviewees
stressed that they also limited the number of developers allowed to touch configuration op-
tions and files, even to only one developer in some cases. Any other developer willing to add,
modify, or remove a configuration option should get the responsible developer’s approbation.
This could, for example, improve the names chosen for options, positively impacting challenge
C5.3, as well as reduce the number of redundant and unnecessary options (challenge C6.1).
Limiting the number of people allowed to manage configuration options is also suggested by
5 surveyed developers (question 30).

55

At the flipside, if one of the few responsibles leaves or would not formally document his
or her options (cf. challenge C5.1), the recommended practice of clear ownership backfires.
This is why Table 4.3 shows a negative impact of R1.2 on the C5.1 challenge. Therefore, it
is important to trust the right developers for this task. One mitigation strategy presented
by an interviewed expert is to follow a “pair programming” practice, where configuration
changes are always made by two developers. Apart from increasing quality assurance, this
practice automatically ensures that whenever one of the developers leaves, at least the second
developer is still around to take over (and start pair programming with a third developer).

R1.3 Making Configuration Cohesive 8 survey respondents suggest that developers
should “make each configuration option responsible for one single thing, do not reuse the
same option for different cases”. In addition, they should never “create multiple options that
have the same role. [This problem is] not likely to happen in a small/new project but it could
be the case in big projects”. Therefore, a project team needs to “keep all the configurations
in check”.

As potential side effects, it will be easier to define an explicit name for an option that has
only one precise and explicit purpose. This is why we mapped R1.3 as a recommendation
for C5.3 in Table 4.3. Furthermore, when an option is made for one explicit goal, its impact
on the source code is minimized, which simplifies the removal of an option (challenge C6.1).

R1.4 Selecting Out-of-the-box Default Values 18 surveyed developers agree that one
should choose “proper default values”, which makes a software system work correctly from
the first run: developers should never “expect users to modify configuration for a first run”.
This is mainly because “a lot of [...] users will not change options and all of them will expect
your software to work well with the defaults”. Furthermore, it might require quite some effort
for them to find the optimal configuration for their deployment.

While these practitioner suggestions are not as concrete, researchers have explored this topic
in far more detail. A large body of work tries to model the configuration of an application,
then use this model to suggest an optimal configuration, for example using non-linear regres-
sion [81], Markov decision processes [58] or Plackett & Burman’s statistical approach [63].
Other work [109, 171, 207] formulates the selection of configuration values as an optimiza-
tion problem for which iterative search [109], multi-objective optimization [171] or smart hill
climbing [207] can be used. While the above models all are offline models, Dia et al. [66] pro-
posed an agent that automatically adjusts configuration option values of a generic application
at run-time to guarantee CPU and memory usage objectives.

To improve the scalability of the above models and optimization algorithms, a lot of work
has explored how to reduce the search space of configuration values. While a boolean con-

56

figuration option by itself only has 2 possible values, a combination of 5 such options leads
to 32 different combinations, which only gets worse when options have an integer or even
string type. Thonangi et al. [183] proposed an adaptive search algorithm to minimize the
space of configurations to explore in order to find an optimal configuration, while Siegmund
et al. [170] use a threshold-based approach, which consists of detecting interacting options
that significantly improve an application’s performance.

A more common technique for reducing the search space are sampling algorithms, which select
a reasonable subset of configurations, either to build a model or as a more targeted starting
point for optimization. Osogami et al. have proposed different sampling heuristics [134,135],
while Sarkar et al. [156] used progressive and projective sampling. Progressive samping
starts with a small sample set of configurations and each of their associated measurements
for building a prediction model, then progressively increases its size until reaching an optimal
sample size and prediction performance. Projective sampling starts by generating a set of
initial points in the prediction learning curve from which it projects the optimal sample size to
build an accurate optimal configuration prediction model. Two heuristics were proposed by
Sarkar et al. [156] to improve the projective sampling, i.e., t-way feature coverage (changing
t option values at a time for each test) and feature frequencies (each feature should be
selected at least once in the initial sample). Duan et al. [70] used an Adaptive Sampling
algorithm that selects experiments to run in order to find an optimal configuration. Zheng et
al. [223] proposed MassConf, which collects a software user’s configuration and environment
information, then uses it to propose an optimal configuration for that user.

Only one research paper provides explicit guidance on selecting configuration values. How-
ever, its guidelines are specific to the configuration of garbage collectors in programming
languages. Gousios et al. [79] found that such garbage collector configurations have a sub-
stantial impact on the performance of server applications. One of their recommendations
is to calculate an application’s memory allocation rate and its object sizes to adequately
configure the Java garbage collector.

4.6.2 Managing Storage Medium

R2.1 Minimizing the Number of Storage Media In addition to reducing the number
of configuration options, 31 surveyed developers believe that it is also important to minimize
the number of configuration files and mechanisms. Developers should indeed “consolidate
configuration options in as few files as possible” and should avoid having “too many floating
configuration files”. Several surveyed participants recommend to create “a central file with
all default options”.

57

Minimization is especially important when considering that projects typically have different
variants of their configuration file, one per environment (e.g., production, test or staging).
The less configuration files, the less variants of these files there will be, hence minimization
favourably impacts challenge C3.2 in Table 4.3. Similarly, a minimal number of storage media
makes traceability of those media and their values easier (challenge C6.2).

On the other hand, one interviewed expert mentioned that there is no best choice for config-
uration storage medium. He suggested that a team should carefully discuss which medium
should be adopted in advance. This is not only by considering the developers’ preferences,
but also by considering the existing technologies for reading and manipulating options.

R2.2 Organizing Configuration Options 20 surveyed developers suggested to clearly or-
ganize configuration options according to a uniform abstraction. One should “avoid mixing
3rd party configuration values with application specific configuration” in the same configura-
tion file. However, organizations should not overdo it. They should avoid using “a domain
specific language for configuration [...], don’t make your user learn another language just to
configure your application”, just “use a standard [file] format”. This is indeed a popular topic
discussed by practitioners on Stack Overflow [13].

To abstract away from the specific storage medium (and data format) used, several software
systems provide configurators, which are tools that help users easily configure their software
system. However, such configurators typically are built ad hoc and suffer from a low quality.
Therefore, Perrouin et al. [139], Abbasi et al. [36], and Boucher et al. [52] proposed approaches
to reverse-engineer these configurators into a model of the configuration’s data format (i.e.,
the configuration options with their types and constraints), then generate more consistent
configurators from that model. Behrang et al. [50] presented an approach to find inconsis-
tencies between user interface configurators and source code via static analysis. Evaluation
of their approach on Mozilla Core and Firefox was able to find 40 real inconsistencies.

4.6.3 Managing Option Data Format

R3.1 Using Simple Option Types 9 developers recommend to simplify the types of con-
figuration options as much as possible in order to improve the understandability of these
options (challenge C4.1). Boolean configuration options are indeed much easier to config-
ure compared to string configuration values. Based on empirical analysis, Xu et al. [212]
recommend developers to simplify their configuration option types by explicitly identifying
the configuration values used the most by their users. Similarly, developers should improve
the error messages generated upon “typing errors”, since it is “not always clear if values are

58

integers/floats/strings and can result in problems”. In addition to defining simple data types,
developers should “be prepared for weird configuration values from users”.

Configuration option types are not limited to generic types like boolean and integer, but
typically include more specific types like IP addresses or file system paths. Identifying such
types is important to easily configure a software system and prevent errors, but this is not
straightforward. One approach to identify such types is proposed by Xu et al. [214] based
on a classification tree and a keyword-based method. The latter method exploits the naming
convention used by configuration mechanisms to deduce the semantics of an option. Xu et
al.’s keyword dictionary has been built by manually analyzing 1,000 options of real open
source projects.

R3.2 Identifying Sensitive Configuration Data While one should select good default
values to enable key-in-hand software deployment, one should not ignore the security aspects
of a configuration. As suggested by 4 surveyed developers, sensitive configuration data should
be secured: one should “not store passwords and other sensitive parts of configuration in
VCS” (Version Control System). In addition, developers should find a way to “mask sensitive
data and securing it in production”. While using separate storage media enables more secure,
encrypted storage of sensitive configuration options, it does increase the number of media
to look at in order to understand a system’s configuration. This is why we mapped R3.2 to
C2.1 in Table 4.3 as “-+”.

To enforce the security aspect of sensitive configuration data, Sun et al. [179] proposed to
automatically generate access control configuration based on access control requirements. In
other words, this approach goes from a specification that indicates which role could perform
which operation and under which conditions, and then generates access control configuration
of J2EE applications. In addition, Wang et al. [194] proposed an approach to identify and
reverse engineer access control configuration options, which allow or deny users from accessing
a resource, e.g., a file, folder, or URL. Their approach consists of analyzing configuration files
to extract configuration options, and uses taint analysis on the source code to understand
how it interprets configuration options, and in which order it verifies the value of each these
options. The goal of these analyses then is to generate a set of rules that define the relation
between users, permissions, and resources. These rules can then be used to detect security
policies defined in a configuration file.

59

4.6.4 Configuration Access in Source Code

Once developers decide to create a new configuration option and add it to a storage medium
(e.g., a configuration file), they need to use this new option in the source code. Below, we
provide a set of recommendations about how to use options in the source code.

R4.1 Encapsulation of Configuration Access in Single API 27 surveyed developers
discussed how to use and access configuration options in the source code. The major rec-
ommendation from these discussions is to “prevent reading of options from too many places
in the code” and hence to avoid accessing directly the configuration options from all over
the code base. In addition, surveyed developers suggest to “use a single strategy [a]cross the
application” to read options, and hence not to mix-and-match different APIs for doing so.

In particular, surveyed developers suggest to “try to centralize the configuration in an API”,
which should not be “too verbose (e.g. Config.getInstance(getValue(Config.KeyType.X, Con-
figKey.ValueType.STRING, default_value) because it’s a pain to read”. Developers should
“make sure the configuration API is well understood”. Apart from making it easier for de-
velopers to access configuration values, a specific API also limits the number of methods in
which load- and run-time validation of configuration options can be put (challenge C9.2 in
Table 4.3).

R4.2 Adopt Existing Configuration Frameworks 13 developers suggest to use an ex-
isting configuration framework or library instead of reinventing the wheel by making a new
framework or API. A good framework can help developers abstract away from low-level con-
figuration option access, in the sense that the framework can automatically identify where
an option is defined and stored (challenge C2.1). Furthermore, a framework that is easy to
use can help developers in navigating the source code and hence understand the impact of
an option in the source code (challenge C5.2). For this reason, some developers specifically
suggest to use a framework leveraging annotations and configuration value injection, which
reads configuration option values then injects them in the right source code variables and
attributes. Various developers explicitly stressed that developers should take the time to
“familiarize themselves with the mechanisms made available by the framework so that they
are able to select the most appropriate mechanism”.

While configuration frameworks are recommended by practitioners, the choice of a specific
framework is not straightforward, since there are dozens of (open source) frameworks on
the market. Denisov et al. [65] compared three major Java configuration frameworks, while
Sayagh et al. [163] analyzed the popularity of 11 Java configuration frameworks and the
important factors to consider in choosing a suitable configuration framework. These studies

60

identify a (potentially large) set of configuration framework characteristics to consider in
choosing a suitable configuration framework, including how actively a configuration frame-
work is maintained by its developers and how well it is documented.

4.6.5 Comprehension of Options

R5.1 Explicit Option Naming Convention 67 developers think that having a good con-
figuration name is essential to improve the quality of a software configuration. An option
name should be sufficiently “clear and descriptive” to be understood by end users. In addi-
tion, configuration options should be “structured [...] from the start, probably split them by
responsibility/modules/plugins/etc - whatever fit[s] your project best”.

Explicit naming convention could also include an indication about the environment used
for that option (challenge C3.2). For example, one can distinguish between the environ-
ment of two options from their names like “development.database.username” and “produc-
tion.database.username”, where the first option is for the development environment and the
second one concerns the production environment. Similarly, the configuration name can
provide an indication of the plugin or component it covers, making it easier for developers
to identify where an option can be used and for what feature (challenge C5.1), but also to
remove an option entirely from the code base once it is no longer deemed useful (challenge
C6.1).

R5.2 Comprehension from Code For challenge C5.2 in Section 4.5.5, we found that 52%
of developers try to understand the meaning of configuration options by perusing the source
code. Without automation, such code analysis is considered to be a tedious job. For this
reason, several techniques are proposed in the literature to automatically map configuration
options to the source code that they impact. Lillack et al. [114] used taint analysis to track
under which Android configuration option(s) a code fragment could be executed. The authors
found that their approach works especially well for options related to network and storage,
since those options rarely interact with each other. Identifying which options control a source
code area can help developers identify options that are rarely accessed in the source code, in
order to perform cleaning and refactoring (C6.1). In addition, one could use the approach
of Siegmund et al. [169] or Zhang et al. [222] to identify which options have what impact on
software performance, which can help on debugging performance configuration errors (C7.1).

61

4.6.6 Maintenance of Options

R6.1 Pro-active Dead Option Detection 26 surveyed developers believe that one should
“clean out obsolete configuration immediately otherwise it hangs around after everyone has
forgotten what it was for in the first place”. In effect, dead configuration options are considered
as a form of technical debt in a code base, similar to the observations made by Rahman et
al. [150] about feature toggle maintenance in Google Chrome. Those are options that are
used during development to enable new features on demand for testing and release, and that
should be removed from the code base once the features are stable (making them permanently
on).

Note that, apart from dead options, unused options are undesirable as well and should be
actively maintained. The latter options are options that are being used (as opposed to dead
options), but whose value is not changed often by users. Hence, such options should be
“internalized” again, i.e., be turned into a constant value.

R6.2 Limit and Trace Configuration ChangesWhile cleaning and refactoring options is
highly recommended, developers should do so with care, as configuration options are sensitive
elements of a code base that are hard to test. Developers indeed should not “change the name
of a configuration key unless what it does is changing”, and especially “between two major
versions”. As suggested by one developer, it is important to “not change configuration without
understanding what it does and ever ask an experienced programmer what to do”.

If there is no other choice, and an invasive change needs to be made that risks to break com-
patibility, developers should explicitly manage the traceability of the configuration options
involved. As suggested by 9 surveyed participants, developers should “Keep track of what
[they] did” and “keep working versions for rollback”.

4.6.7 Resolving Configuration Failures

R7.1 Right Granularity of Execution Logs 11 surveyed developers suggest to log con-
figuration information and generate meaningful error log messages in case of configuration
failures. Developers should “log when/from where a configuration file is used”. In case of
configuration failures, a software system should fail appropriately “if a configuration is done
wrong, or a configuration value is [missing]”. In particular, a software system should not
“silently fail or give an ambiguous error message about the bad configuration. The more de-
tails the user can be given, the better”. A suggestion for an error message could be: “this
failed because setting X was bad. Change the setting X in file Y to value Z to make it work
again”.

62

Zhang et al. [221] proposed ConfDiagDetector, which injects configuration faults in a software
system to analyze (using natural language processing) the quality of how the resulting failures
are being reported or logged. This can be used to help practitioners evaluate the granularity
and quality of their logs. Better error logs also help build more powerful configuration
debugging tools (challenge C7.2).

R7.2 Document Configuration Failures and Resolutions To avoid regression of con-
figuration failures (i.e., the same configuration failure re-occurring), 4 interviewed experts
mentioned that documenting a configuration error and the way it was resolved previously
is mandatory. Such documentation does not necessarily need to be formal, since several
developers recommended to document configuration failures and their fixes in a project’s
wiki.

Documenting configuration failures is also important to build up a sufficiently rich data set
for building models that can predict whether a bug report is related to configuration. Such
models can reduce debugging effort by focusing on configuration options only instead of on the
entire source code. Examples of such models are proposed and evaluated by Xia et al. [208]
and Bowen et al. [53], which focus on predicting if a bug report is related to configuration. In
addition to predicting if a bug report is related to configuration, Wen et al. [200] also predict
which option is misconfigured.

R7.3 Automated Configuration Failure Debugging A wealth of research results are
available on techniques (highlighted in bold) for various aspects of automated configura-
tion failure debugging. In other words, this is by far the most researched configuration
challenge/activity. Despite this, most of these approaches are not known or used in practice
according to the interviewed and surveyed engineers. Here, we discuss the papers that are the
most closely related to the configuration activities and challenges. We refer elsewhere [185]
for a more detailed and technical survey on such debugging approaches.

Whitaker et al. [204] proposed one of the first approaches to debug configuration failures,
which aims to identify the moment on which a software system changes from a
working to a non-working state. Once this transition is identified, the approach checks
all modifications made to the initial (working) state to find the culprit option. Similarly,
Otsuka et al. [136] compare each configuration value with its past (in)correct values by
differencing configuration values before and after a failure. Siegmund et al. [169] build models
that describe the impact of a configuration option on software performance. Such models
can be used to narrow down the scope of options to debug in case of performance bugs.

Other research efforts use static or dynamic source code analysis to identify the root
cause of a misconfiguration. Dong et al. [68,69] use a backward slicing technique that starts

63

from a failing line in the source code and a forward slicing that starts from the lines reading
configuration options. When both slicing techniques meet, the overlapping code paths are
analyzed for configuration options. Rabkin et al. [147] use static data flow analysis to map
each source code line to the configuration options that may impact it.

Attariyan et al. [46, 47] use dynamic control and data flow analysis to identify the
root cause of configuration failures. In other work [44], they assign a performance cost to
each source code block, then use (dynamic) taint tracking to detect configuration causes of
performance failures. Zhang et al. [217, 218] instead profile the misconfigured system, then
compare the execution trace with a set of profiles of correct execution runs. Zhang et al. [219]
use dynamic profiling to instrument two software versions and execute both, then statically
compare the two execution traces to find the culprit option. Attariyan et al. [45] proposed
an approach to detect configuration failures by using a healthy execution environment (no
configuration failure) as an oracle of correct execution.

Instead of analyzing only the source code, Wang et al. [192] proposed an approach that relies
on user feedback. The approach takes a failure as input, proposes a fix to that failure
from an initial set of sorted options obtained from an existing approach (i.e, those discussed
previously), gets feedback from the user to understand whether that fix actually resolved the
failure, then adjusts that fix’s priority based on the user’s feedback. Su et al.’s AutoBash [178]
also relies on existing user experience to fix configuration failures. It observes the actions
followed by a user to fix a configuration failure, including the actions made to fix a failure
and the tests executed to verify that fix’s effectiveness. AutoBash then saves a collection of
solutions (actions and tests) from different users, and tries them one by one until successful.

While reliable configuration failure data (e.g., logs) are essential to debug configuration fail-
ures, having too much data actually complicates the debugging process. To easily
debug configuration failures in the presence of huge amounts of trace data, i.e., execution
traces of system files, registry, and process operations collected from different users of a sys-
tem, Mickens et al. [120] proposed an approach that relies on decision trees. From a trace
of configuration actions (reading or writing files and registry entries on a Windows system),
the authors train a decision tree in which each node represents a file or registry key and the
edges (or the decisions) decide to read or not a particular option. The leafs of the decision
tree represent software exit codes, allowing the user to understand the circumstances leading
to a specific failure message.

Debugging of registry configuration failures of Windows applications is another
popular research topic. Kiciman et al. [104] proposed an approach to use existing snapshots
of correct registry configurations to automatically recover (correct) constraints between reg-

64

istry configuration keys. Violations of the recovered constraints then indicate the presence
of configuration failures. Yuan et al. [216] instead generate a database of rules from the suc-
cessive events in traces from registry access, which can be used to detect inconsistent events
and violations that can identify the cause of a configuration failure. Wang et al. [193, 195]
instrument a Windows application to find which registry key it is using, then compares those
against a database of existing configuration snapshots. Finally, Strider and PeerPressure fol-
low a trial-and-error approach to identify (and fix) a misconfigured option. While Strider [195]
requires manual identification of incorrectly configured (“sick”) machines, PeerPressure [193]
relies on Bayesian estimation to identify sick machines and snapshots.

While most of the above work considers configuration failures in a specific component or
layer of a software deployment, or considers the whole system as a black box, a more recent
area of configuration failure debugging research started focusing on failures that cross the
boundaries of software components and stack layers [95, 162,164,197]. Jin et al. [95]
found that modern software systems are developed with multiple programming languages and
hence need configuration tools that help debug configuration across those languages. Chen
et al. [197] found that to resolve cross-component configuration failures, researchers should
understand how different components communicate with each other and which configuration
options of different components configure the same aspect and hence can cause interferences.
For example, both the PHP configuration option mysql.max_persistent and the MySQL
option max_connections configure the amount of allowed connections to a MySQL database,
yet it is hard to debug the configuration of both systems to find the culprit of a global
configuration failure.

Sayagh et al. [162] analyzed the relation between different layers of the WordPress application
stack, and found that an option in one layer could have a substantial impact on other lay-
ers. For example, up to 85.16% of WordPress configuration options are used by at least two
different WordPress plugins (layer on top of WordPress layer), which can cause serious incon-
sistencies between different plugins when such “shared” options are changed in incompatible
ways. The authors also found that 45% of cross-stack configuration failures are responsible
for crashes in production and that debugging such failures requires at least as much effort
as single-layer configuration failures. They proposed a modular source code analysis to help
debug such failures [164], which basically fuses slicing graphs of individual layers by mapping
function bodies to their corresponding calls from higher layers.

To complement the above automated debugging analyses, a number of researchers performed
qualitative analysis on configuration failures to extract recommendations for develop-
ers and users to avoid such failures in the first place. Yin et al. [215] conducted a

65

comprehensive study on the characteristics of configuration failures including their causes,
types, impacts, and how software systems react facing a configuration failure. For example,
they found that up to 53.7% of configuration failures are caused by options that violate a
predefined format, motivating the development of configuration checkers that verify how well
configuration options respect such formats. Similarly, Arshad et al. [43] studied configura-
tion failures in the GlassFish and JBoss Java EE servers, their types, when they occur, and
their manifestation (silent vs. non-silent failures). They found that 89% of configuration
failures manifest silently and 91% of these failures require a source code modification. They
also proposed “ConfInject”, an approach and tool to inject configuration faults in a software
system to evaluate how resilient it is. They used “ConfInject” to compare the resilience of
GlassFish and JBoss web servers, and found that JBoss performs better than GlassFish. Han
et al. [83] found that 59% of 193 analyzed performance bugs are caused by configurations
faults. They recommend to identify configuration options that are more likely to cause a
performance degradation and prioritize them during performance tests, to test software in
a system closely similar to the production environment, and to rely on profiling to debug
performance configuration failures.

Finally, once an option has been found to have an incorrect value, a number of approaches
have been proposed to suggest a correct option value. Swanson et al. [181] try to
propose a correct option value relatively close to the current (buggy) configuration using
Firefox’ configuration constraints (feature model) and a sampling algorithm (e.g., the n-
hop algorithm [77], random sampling or covering array sampling). Xiong et al. [210, 211]
proposed an algorithm that automatically generates range fixes for a violated constraint.
Such fixes correspond to a range of correct values for one or multiple misconfigured options,
from which a user can choose correct option values that respect his or her software system’s
configuration constraints. The approach starts from a misconfigured configuration and the
software system’s configuration constraints, then generates a range of possible values that
each configuration option should have. Evaluation on Linux and eCos showed that the
approach could find the range of fixes within a second.

4.6.8 Configuration Knowledge Sharing

R8.1 Communication between Developers and Users 8 developers highlight the im-
portance of communication to define better configuration options. First, developers have to
discuss configuration options before starting to code, defining their defaults, ranges and re-
strictions. Further, one developer proposes to “let everyone discuss about the configurability
needs”, then “work with the client to understand what they will need to change”.

66

5 surveyed participants mentioned the importance of sharing configuration modifications.
Developers should “make sure all team members are updated about configuration changes”,
not only developers that should be notified by the new changes, but also the software users.
This comprises newly created options, modification of option names and their default values,
and also “how it affects them”. Such openness of knowledge makes it much easier to find the
best “owner” of a configuration option (challenge C1.4 in Table 4.3).

R8.2 Pragmatic Usage Documentation The most popular theme in our survey, discussed
by 87 developers, is related to documentation. In short, it is “extremely important [...] that
users are not going out of their way to find out what an option does”.

One should “have a proper documentation above each configuration option in the config file
to know what that option does and how does it work in details”. One should document why
an option is defined and why it should be added, because “some users may not be using
the software as you are so that the use cases/workflows that make sense to you, may not
fit them”. Default values should be detailed in the documentation, with concrete exam-
ples. Furthermore, interactions between configuration options should also be specified in the
documentation.

Some developers recommend to indicate explicitly the locations where configuration docu-
mentation should be added. In addition to the comments added in the configuration file, it
is recommended to document options in the project’s README file, in the official project
documentation, and also in the source code, in order to help developers easily identify where
an option is used. One surveyed developer also suggested to automatically generate docu-
mentation based on the configuration information in the code base. Only in two interviewed
cases, an architect mentioned that the developers have an explicit guideline that forces them
to document configuration options. One of these two interviewees’ company has an entire
team focusing on documentation, including configuration-related documentation.

While we did not find any paper mentioning how configuration options should be docu-
mented, Murakami et al. [123] propose an approach that helps manual creators to create
documentation. By exploiting the commit logs, which provide the line(s) changed in a con-
figuration file, and a pre-prepared explanation of that modification, the approach generates
an HTML manual that can then be edited manually.

A second approach that could be used to help developers understand options and hence
create documentation, is the approach of Zhou et al. [224]. It tries to recover the mapping
between a configuration option and its associated variable in the source code, which then
allows the mining of the option’s potential values and constraints. To maintain the mapping
between configuration options in the source code and their associated documentation, Dong et

67

al. [67], Rabkin et al. [148] and Zhou et al. [224] propose static analysis that helps developers
automatically identify where each configuration option is used in the source code.

4.6.9 Quality Assurance

Finally, surveyed developers and our systematic literature review propose a set of recommen-
dations to improve the quality of configuration options.

R9.1 Validation of Specific Configuration 25 surveyed developers discussed how to
assure the quality of a software configuration by validating the correctness of configuration
values. The proposed recommendations differ in terms of the time at which validation is
performed.

Many surveyed developers recommended the use of offline configuration validators: “having
an open key/value configuration system is flexible but some of the most difficult configuration
errors are of the typo variety (numReceivers vs numRecievers - typo difficult to catch). Would
ideally have validators that would warn on unexpected configurations”. This recommendation
is aligned with the work of Jha et al. [91] on “ManifestInspector”. It identifies errors in an
Android manifest configuration file by statically parsing a manifest and validating it against
a set of rules stored in a database. Such rules are basically a set of possible XML tags with
a set of possible attribute values. They were able to identify 59,547 errors in 11,110 of the
13,483 analyzed Android apps. Eshete et al. [72] build a model that checks the correctness of
configuration options in web applications against a “Gold Standard” of configuration values
that they built from online discussions, documentation, and expert opinions. Similarly, Zhang
et al. [93] detect configuration errors based on a sample of configurations that are enriched
with environment configurations.

Several developers recommended validation of configuration values at application boot-time.
For example, developers should “avoid making applications un-bootable in the absence of non-
default configuration”. In addition, a surveyed developer suggest to “do not check logic at run-
time to avoid performance penalty, but do check simple value at loading/parsing/importing
setting to configuration, accept only valid value”. Configuration value validators provide quick
feedback of bad configurations (challenge C1.3) and also support reviewers in identifying
incorrect option values (challenge C9.1).

No approaches were suggested or identified for run-time configuration validation. Instead, the
most important feature of run-time configuration options that was discussed is the challenge
of changing an option value without restarting the software system. A bug could lead to
using the old values of these changed options and hence to miss the users’ configuration

68

updates. To fix such problems, Toman et al. [186] proposed an approach based on dynamic
taint analysis. It consists of tracking both the usage of a configuration via data propagations
and the modification of configuration options in the source code, then checking which version
of an option is used in each statement that uses that option. Comparison of the version used
by that statement with the last updated version then allows to find inconsistently updated
options.

R9.2 Configuration-aware Testing In addition to validation of configuration values, de-
velopers also suggest to implement automated testing for configurations. Developers should
“not rely on manual testing of selected few configurations”. Apart from being able to sup-
port development of new configuration options, such tests also help to detect configuration
regression bugs (challenges C7.1/2).

10 surveyed developers further suggest to adopt explicit testing strategies on configuration
options. They basically propose to consider configuration options in integration tests or unit
test suites. In addition, one developer proposes “to have a clear configuration modules for
integration testing with the appropriate mock framework, and integrating by using [CI] tools
like Jenkins”. In one interviewed expert’s context, developers use mutation testing [132] for
configuration options.

Configuration-aware testing is the second most popular configuration activity in research
(right after configuration failure debugging). Gao et al. [76] proposed a guideline to help
developers test their software system in the presence of a configuration subsystem. They
represent the configurability of the system as a semantic tree, which can then be used by
developers to manually determine the conditions under which to test their software.

Most of the studies, however, focus on reducing the number of tests to run in highly
configurable software systems, since ideally all possible combinations of all options should
be tested. Most of the sampling algorithms discussed for R1.4 could be applied here as well.
Bestoun et al [38] use the Cuckoo search algorithm to optimize the number of configurations
to test by sampling the most relevant inputs and configurations. Qu et al. [142, 144, 209]
propose an approach based on “combinatorial interaction testing techniques”. Such tech-
niques sample a set of configurations to test from all possible combinations of configuration
values, yet are not feasible for configuration-aware testing due to the large number of possible
configurations. Hence, Qu et al. select a specific subset of configuration options to test be-
tween two versions. Huning et al. [89] propose a fuzzing technique to test a software system
against vulnerabilities that occur only under certain configurations. Marijan et al. [115] built
TITAN, which optimizes a test suite for highly configurable software systems using combina-
torial interaction, a constraint-based approach to minimize tests, and test prioritization for

69

regression tests. Fouche et al. [74] used the coverage arrays approach to select a subset of
configuration options to test, which can be dynamically increased in size, depending on the
available testing resources.

Qu et al. [143] instead use static slicing to determine if, given a configuration, a test needs to
be executed under additional configurations. Nguyen et al. [131] dynamically identify which
configurations (combinations of configuration values) cover a source code location in order
to identify the minimum configurations necessary to cover the highest number of locations
using the existing unit tests. Kim et al.’s SPLat [105] requires running a test, then testing
all possible combinations of values of the options that were used in that single test, without
focusing on other options. Souto et al. [176] extended this approach by considering sampling
heuristics like one-disabled and most-enabled-disabled approaches. One-disabled approach
consists of testing an application by disabling one option at a time, where most-enabled-
disabled consists of testing an application with all its options enabled in a first run and
all of them disabled in a second test. Souto et al.’s EvoSPLat [175] focuses on regression
testing. EvoSPLat starts by a lightweight analysis that reports under which configuration
options a source code modification could be executed, fixes that configuration option’s values
to guarantee that the modified source code will be covered, then tests the other configuration
options’ values based on the previously discussed SPLat approach [105].

While most of the work above assumes that the search space of possible configurations
is huge, and hence needs to be filtered, a separate line of work focuses on validating
this assumption. Meinicke et al. [118] (using dynamic analysis) and Reisner et al. [153]
(using symbolic execution) both found that the interaction between options, i.e., “a partial
setting of configuration options such that specific line, block, edge, or condition coverage is
guaranteed to occur under that setting, but is not guaranteed by any of its subsets” [153],
is surprisingly low. Such low interaction substantially reduces the possible configuration
space, and hence makes testing of all relevant configurations easier. To find those relevant
configurations, Song et al. [173] proposed an algorithm that uses a low strength covering array,
run-time instrumentation, and machine learning to build an interaction tree that represents
interactions between options. They extended this approach [174] by considering heuristics
related to the interaction between configuration options, which they observed in two open
source projects (vsftpd and ngIRCd). Again, they found that interactions (i.e., in terms of
code controlled by a combination of options having specific values and without which such
code is not reached) are rare.

In contrast to the above work, Keller et al. [101] evaluate how resilient a software system
is to configuration errors by injecting faults into its configuration files. Xu et al. [213]

70

extract configuration option constraints from source code in order to report error-prone and
inconsistent constraints.

Another direction of testing highly configurable software systems is proposed by Robinson et
al. [154], who aims to reduce the number of tests to generate and run by generating tests only
for the options changed by a customer compared to the base configuration. Their approach
consists of identifying the options modified by the user, finding the impacted area of the
source code via control flow and data flow analysis, then selecting or generating tests that
cover those source code locations.

Cohen et al. [60] developed a family of greedy Combinatorial Interaction Testing (CIT)
sample generation algorithms that aim to reduce the number of tests to run by generating
samples that satisfy the software configuration constraints. Comparative evaluation of the
cost-effectiveness of these algorithms on four real-world highly-configurable software systems
and on a population of synthetic examples shows that their techniques reduce the cost of CIT
in the presence of constraints to 30% of the cost of widely-used unconstrained CIT methods,
without sacrificing the quality of the solutions.

R9.3 Configuration-aware Reviewing 14 surveyed developers recommend reviewing changes
to configuration options. Developers should “carefully review any pull request that impacts
configurations, reviewers must be not only developers but documentation writers and UI ex-
perts to make sure that [not only will the changes] just work, but it is clear how to use it
and well documented”. This is less obvious than it sounds, since patches impacted by con-
figuration options typically do not show the conditional checks (which are higher up in the
code) nor the default option values (which are in separate files or other media). Only if
the patch itself manipulates an option, reviewers receive an explicit hint that the patch is
impacted by some option(s). Still, they need to manually check if the newly added/removed
configuration-related code impacts other code that is not part of the patch. Because of this
“hidden” nature of configuration-related code and data, one surveyed expert went as far as
proposing to send “configuration options as a separate patch”. The presence of detailed doc-
umentation or comments about configuration options (C5.2) might have a positive impact
on configuration-aware reviewing.

R9.4 Fail-safe Cross-Environment Configuration 3 developers believe that configura-
tion options should be easy to adapt to different environments (e.g., testing, staging and
production), ideally in an automated fashion. Furthermore, the deployment of the software
configuration storage media with the chosen values of configuration options should be defined
as a workflow. Following one of the developers, “nothing is more frustrating than having to

71

figure out how to put an environment specific configuration on release day. A CI job which
you can just trigger is ideal for deployment”.

R9.5 Approaches to Help Users Configure their Software In contrast to R1.4, the
techniques discussed here aim to help users customize the default configuration options to
their context (instead of finding generic default values that work for as many end users as
possible). One of the first approaches to help J2EE developers choose an optimal configu-
ration value is proposed by Raghavachari et al. [149]. It allows to select a range of possible
configuration values for each option, select a random value from that range, deploy the web
application with that configuration and measure its performance, then choose a second value
in order to compare its performance until finding a better configuration. Note that the ap-
proaches discussed for value generation in R1.4 also apply to R9.5 [58,66,70,79,81,109,134,
135,156,170,171,183,207,223], but applied by end users instead of developers.

Configuration complexity can be reduced by using Hamidi et al.’s [82] approach to reduce the
number of decisions a user has to make in order to configure her software. Their approach
models software configuration as a set of options that have relations between them, for
example to express that whenever a user decides to assign a value v1 to an option X, she
assigns a value v2 to another option Y. Such patterns can be used to automatically change
configuration values based on few user decisions.

Huang et al. [86,167] support developers configuring Java frameworks by recommending XML
configuration snippets collected from open source repositories. Chen et al. [196] automatically
detect correlated configuration options in multi-component/layer architectures by using a
database of configuration choices obtained from online fora and websites. Ramachandran et
al. [152] instead analyze the names and values of options, complemented by configuration
data made available for analysis by software vendors or available online (e.g., fora). Finally,
Jin et al. [94] proposed an approach to help users find which options they need to change the
value for in a given situation, instead of asking around in an online forum.

While the above approaches for R9.5 seem promising, we did not record any usage of such
automated techniques in our interviews or survey.

4.7 Implications

This section discusses potential implications of our findings for both practitioners and re-
searchers.

72

4.7.1 Implications for Practitioners

While many configuration engineering activities are not covered by academic literature, many
challenges related to creation of configuration option, configuration knowledge sharing and
quality assurance have been studied. In particular, a substantial amount of work focuses
on default value generation (R1.4), configuration failure debugging (R7.3), documentation
generation for end users (R8.2), configuration validation (R9.1), configuration-aware testing
(R9.2) and optimization of option values for end users (R9.5). While this work is of course
not complete, practitioners should look into these techniques, provided they have access to
the corresponding academic pulications.

Even if the other configuration engineering activities and challenges saw substantially less
academic interest, practitioners can still build on their experience with programming best
practices, since many of those still apply in the context of configuration options. In fact, one of
the interviewees literally quoted that “Configuration is code too”. Known programming tenets
like the KISS principle (R1.1 and R2.1), option cohesion (R1.3), option granularity (R3.1),
encapsulation of sensitive option data (R3.2), good naming conventions (R5.1), choosing the
right abstraction for storage media (R2.2) and API for configuration access (R4.1), reuse of
third party configuration libraries (R4.2), generation of clear logs (R7.1) and consistently
documenting failures and resolutions (R7.2), all still apply to the context of configuration
engineering. While standard methodologies and tool support might not exist, organizations
could create their own based on these general principles.

In addition to these technical principles, we also identified some organizational recommenda-
tions for which academic support is missing. A team should not allow any developer to add
or manipulate configurations, but should rely on expert developers with a broad vision of the
software system, its architecture and its configuration options (R1.2). Similarly, the organi-
zation should establish guidelines to force developers to maintain configuration compatibility
(or at least ensure traceability) between different versions of the application (R6.2). Finally,
option developers need to know how to effectively communicate with other stakeholders the
rationale and constraints of new or changed options (R8.1). For the moment, less guidance
exists for these organization-level challenges.

Finally, the main challenges for practitioners in terms of configuration engineering support re-
late to comprehension of options and values, maintenance of options and quality assurance.
In particular, tool and methodological support is needed for configuration understanding
(R5.2), option maintenance (R6.1) and configuration-aware reviewing (R9.3). While iden-
tified as major challenges that impact the quality and maintainability of an application,

73

surprisingly little research has been performed on them. At the same time, no general prin-
ciples exist that could guide practitioners in the short-term.

4.7.2 Implications for Researchers

The first implication that we would mention is for researchers to advertise or publish their
work in venues where developers can find them, for example industry conferences or even
just simple blog posts. This follows from repeated comments of interviewed and surveyed
practitioners about either not being aware of academic results or not having access to them.
In particular, the wide variety of approaches related to debugging configuration failures saw
only little adoption. While the adoption problem of course applies to any research domain,
it especially matters in the domain of configuration engineering, which is at the same time
specialized and general-purpose.

As discussed in the previous section, apart from the existing work on recommendations
R1.4, R7.3, R8.2, R9.1, R9.2 and R9.5, most of the other recommendations, challenges and
activities have been covered substantially less or sometimes not at all. This opens up a wide
range of new research opportunities. Here, we point out some obvious opportunities, but
many more exist. Basically, any cell in Table 4.3 could be potential avenue for future work.

First of all, it would be interesting to empirically study the impact of the programming
best practices discussed earlier in the context of configuration engineering. For example,
do naming conventions, reuse of third party configuration libraries and pair-programming
improve the quality of software configuration in general? Related to this, many configuration
formats exist, including key-value pairs, hierarchical configuration options, or even complete
DSLs for configuration. Further guidelines are required to help practitioners decide what
format to use for which configuration goal and for which kind of users (technical engineers
vs. regular end users).

We found that developers do not plan the evolution of their configuration options, while
they fear thorough maintenance of options (i.e., option refactoring and removal). Therefore,
developers require approaches to help them detect and remove dead options, or perform
option refactoring in general. In practice, developers also need automated approaches to keep
the configuration storage media in sync with the options used in the source code, in order
to propagate any code changes (e.g., renaming) made to the options. This is a challenging
problem, since we found that option names often are not literally mentioned in the source
code. This same problem renders the understanding of software configuration in general
complex. There are some existing approaches that locate configuration accesses in the source

74

code, but even they still need to be improved to deal with string concatenation in the name
of configuration options.

In general, the existing work on configuration activities, challenges and recommendations
typically focuses on individual applications, without considering interactions with the execu-
tion environment or other layers of a software stack [162,164,197]. Apart from exploring the
previously unexplored configuration activities, future work should also revisit existing analy-
ses and methodologies from a system perspective instead of the application perspective. This
will allow to develop frameworks and libraries for system-level configuration engineering, in-
cluding system-level validation, debugging, etc.

4.8 Threats to Validity

Despite the effort spent on our qualitative study design, and gathering and clustering data
from three different sources (expert interviews, a large survey, and a systematic literature
review), we identified a number of threats to validity.

Internal Validity As first internal threat to validity, our results can miss challenges that
are not faced by our interviewees. To mitigate this risk, we invited and interviewed experts
that play different roles in different domains. Our 14 interviewed industry experts range from
managers to developers and freelancers. They belong to different companies (located in four
different countries) and work on different technologies and platforms.

The second threat to validity is related to the data collection during our interviews, as it is
possible to misunderstand a challenge or recommendation discussed with interviewed experts.
To mitigate this risk, we conducted all our interviews in face-to-face meetings (except one
via a skype call), and all interviews were attended by two authors of the paper to avoid any
confusing interpretation or misunderstanding. One author led the interview, while the other
took notes. At the end of each interview, a debriefing was held to validate and complete the
notes.

A third internal threat to validity is related to the data collection in our survey. Surveyed
participants might have answered questions incorrectly due to different factors, such as mis-
understanding of a question, lack of experience or lack of interest. To mitigate this risk,
two authors carefully prepared the questionnaire, while the two other authors reviewed it.
During this prepration, we avoided using any research-specific terms. In addition, we per-
formed a pilot study with 9 respondents that allowed us to validate and improve the survey
before sending it out to GitHub developers. In particular, the pilot study allowed to refor-
mulate unclear questions or descriptions, restructure the questionnaire to make it easier to

75

follow, shortening the list of questions by merging related questions, and incorporating other
comments.

Furthermore, based on our selection criteria, the invited open source developers all are serious
contributors to top Java projects on GitHub, and they were promised that responses would
be treated anonymously. Only two unprofessional responses had to be filtered out. Our
decision to focus on the top 1,000 most active Java projects allowed to filter out projects
that are not software engineering-related or that are too small to actually need configuration
options, since their developers would not be knowledgeable about configuration options. Our
demographic results for the number of options in the survey respondents’ projects confirm
that the number of commits was a good proxy for configuration expertise. If one would know
the concrete configuration access API used by each GitHub project, one could perform a
more accurate sampling based on actual configuration API usage.

The fifth internal threat to validity is related to the difference between interviewed and
surveyed participants’ contexts (industrial vs. open source projects), and due to which we
might miss some challenges or recommendations specific to either context. As is clear from
the discussion of our results in sections 4.5 and 4.6, both types of participants agreed on the
majority of challenges and recommendations, except for C9.1. For the latter challenge, open
source projects rely on GitHub’s pull request mechanism to review configuration as well as
code changes, while the pull request mechanism could be less adopted in industrial contexts.
Furthermore, no additional configuration activities were identified from the survey responses’
open questions.

The sixth internal threat to validity concerns our three card sort analyses, which respectively
concern the analysis of the interviews, open survey questions, and the classification of the
papers obtained from our systematic literature review. Such card sort analyses could lead to
subjective results, which could influence our results and findings. To mitigate this risk, all
our card sort analyses initially were conducted by two authors for the interviews, and by one
author for the survey and systematic literature review. Then, each of these card sort analysis
results were reviewed by the other authors. In case of conflicts, the card sort classifier and
the reviewing authors together discussed the conflicts to reach a final decision. Finally, the
consistent results across all analyses provide further confidence in our findings.

Our seventh internal threat to validity concerns the four SLR selection criteria, since they
shaped to a large extent the final selection of papers. In particular, we used criterion 2 to
reduce noise in our first iteration caused by systems research on execution environment con-
figuration or tweaking of system performance. The latter domain uses configuration options
as a means rather than a goal, and focuses especially on the performance of middleware

76

and environments. While the results of our first iteration based on the selection criteria
might make us miss relevant papers, the recursive snowballing iteration allowed us to recover
missing papers and their relevant references, helping us complete a stable set of papers.

External Validity As with all qualitative studies, there is an inherent risk to generalize
our findings for all organizations. While the 14 interviewees and 229 respondents cover a
wide range of projects and application domains, and provided consistent results across the
discussed challenges and recommendations, future work should consider additional organiza-
tions and developers. Furthermore, we only considered Java projects in the interviews and
survey because (1) it is one of the most popular programming languages and (2) the Java
ecosystem has a wealth of configuration frameworks [65, 163]. Other languages like C++,
Python or Javascript might experience different configuration challenges and recommenda-
tions. Hence, future work should consider such languages. The results of our systematic
literature survey are not language-specific.

Despite these limitations, we noticed that the major challenges and recommendations that
came out of our study were saturated, in the sense that the progressive card sort analyses
on the three data sources confirmed earlier activities and challenges, without suggesting new
ones. R7.3 and R9.5 only popped up in the systematic literature review. Further studies on
different domains and participants are required to verify our results and make our findings
more general.

4.9 Conclusion

This paper aims to improve the general understanding of the software configuration engineer-
ing process, its challenges and existing practices (both from practice and academia). Through
a series of 14 semi-structured interviews, a survey with 229 GitHub developers, and a sys-
tematic literature survey, we found how configuration engineering comprises 9 activities, and
is impacted by 22 open challenges. Finally, we discussed 24 recommendations to overcome
or avoid the challenges, derived from practitioners’ experience and academic literature. The
data of our studies is available online [15].

Our interviews identified an initial set of activities, challenges, and recommendations, which
were then enriched and confirmed via the survey. The survey also provided insights about
the popularity of the challenges from a larger set of participants. On the other hand, our
systematic literature review revealed various recommendations that are not fully covered, or
not covered at all, by the literature (R1.2, R1.3, R2.1, R4.1, R5.1, R6.1, R6.2, R8.1, R9.3

77

and R9.4), and two additional recommendations for which we did not record any usage in
the practice (R7.3 and R9.5).

These contributions have a number of major implications for practitioners and researchers.
First of all, they consolidate the state of the art and state of the practice in configuration
engineering, providing both practitioners and researchers a clear overview of this domain,
its challenges and best practices. Second, our findings reveal activities and recommenda-
tions without substantial research effort thus far, in particular the choice of configuration
framework (R4.2), comprehension of configuration options (name, meaning, etc.) (R5.1),
dead option detection (R6.1) and configuration-aware reviewing (R9.3). While the other
challenges and practices of course have value, these in particular could need more attention.

Finally, our study could be extended outside the scope of run-time configuration options, in
particular to pre-deployment configuration engineering (e.g., using conditional compilation),
as well as to other roles and software domains.

78

CHAPTER 5 ARTICLE 2: DOES THE CHOICE OF CONFIGURATION
FRAMEWORK MATTER FOR DEVELOPERS?

Mohammed Sayagh, Zhen Dong, Artur Andrzejak, and Bram Adams
Published in the 17th IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM)

Abstract: Configuration frameworks are routinely used in software systems to change appli-
cation behavior without recompilation. Selecting a suitable configuration framework among
the vast variety of existing choices is a crucial decision for developers, as it can impact
project reliability and its maintenance profile. In this paper, we analyze almost 2,000 Java
projects on GitHub to investigate the features and properties of 11 major Java configuration
frameworks. We analyze the popularity of the frameworks and try to identify links between
the maintenance effort involved with the usage of these frameworks and the frameworks’
properties. More basic frameworks turn out to be the most popular, but in half of the
cases are complemented by more complex frameworks. Furthermore, younger, more active
frameworks with more detailed documentation, support for hierarchical configuration models
and/or more data formats seem to require more maintenance by client developers.

5.1 Introduction

Modern software systems are expected to be highly configurable to satisfy the personal re-
quirements and preferences of their users. For instance, the distributed storage and comput-
ing framework Apache Hadoop 2.7.1. has more than 800 configuration options, where the
web browser Mozilla Firefox 43.0 has over 2,000 configuration options available to users! The
impact of these options ranges from controlling active features, to adjusting the performance,
storing GUI preferences or integrating a software product with its run-time environment (e.g.,
URL of database or web server). Users typically are able to change the value of configuration
options via dedicated configuration files, command line parameters or even at run-time. For
example, Firefox has a dedicated “about:config” configuration page to change its configura-
tion on-the-fly.

Since the configuration of a software system is not trivial, but has to support different storage
formats, offline/online manipulation, etc., developers are not required to develop their own
framework, but have access to a wide range of general-purpose, open source configuration
frameworks for their programming language of choice. Quick searches for “configuration” in

79

Google or StackOverflow yield dozens of hits for each programming language, varying from
tiny one-man configuration frameworks (e.g., Raihan’s jconfig [151]1), frameworks included
in the standard library of a language (e.g., Java property files) to large, established con-
figuration frameworks (e.g., Typesafe configuration framework [188]). In addition to this,
large communities such as Mozilla Foundation or Apache Foundation developed their own
configuration frameworks that have become popular outside as well [41].

This paper analyzes whether the choice of configuration framework actually matters from
the point of view of developers. Indeed, various studies [80, 127, 133, 146, 213] have shown
how software configuration errors are one of the major causes of today’s system failures,
with sometimes up to 27% of reported issues labeled as configuration-related [215]. A sig-
nificant part of such configuration errors are caused by improper design and implementation
of configuration-related code and configuration options, such as lack of explicit log messages
for configuration errors or lack of type checking of configuration values [213], or the constant
need for maintaining too strongly coupled configuration-related source code. Such errors
could be avoided by choosing the right configuration framework for a project. Furthermore,
depending on how a configuration framework is integrated into a project (modular access
vs. high coupling), and the rate of new releases of the framework, developers might need to
spend substantial effort maintaining their use of the configuration framework.

Hence, this paper performs an empirical study of the characteristics, popularity and main-
tenance overhead related to the use of 11 general-purpose Java configuration frameworks by
analyzing 1,938 GitHub-based Java projects. The contributions of our work are the following:

• Using manual analysis, we build a taxonomy of the major features of configuration
frameworks. This taxonomy helps understand the wide range of features and differences
amongst the frameworks.

• We study the popularity of the 11 frameworks by analyzing 1,938 projects sampled
from GitHub, and which frameworks are typically used together in a project.

• We build classification models to understand the project and framework characteristics
impacting the maintenance effort for using a configuration framework.

The results of this paper will help to understand the amount of attention necessary to select
a configuration framework for a client project.

1Not to be confused with the jConfig framework studied in this paper [90].

80

5.2 Background and Related Work

This section provides background and related work on software configuration and configura-
tion frameworks.

5.2.1 Software Configuration Frameworks

Software configuration is the mechanism used to adapt a software system to different contexts,
simply by changing the value of certain configuration options. As such changes can be
performed by end users, no recompilation is required. For example, a user can change the
database used by a software system only by changing the URL, username and password in
the associated configuration option.

Such options can be stored in different storage formats and can use different configuration
models. Common storage formats are JSON or XML files, SQL databases or (more advanced)
distributed configuration databases such as ZooKeeper. Configuration models can range from
basic key-value pairs to more elaborate hierarchical structures used for example by the Linux
kernel or the Windows Registry, where related low-level options are combined into groups
that can be combined recursively with other option groups.

Many configuration frameworks have been proposed to manage configuration options, storage
formats, models, and other configuration-related functionality. Such frameworks provide
an API for developers to read an option’s value within a project’s source code, such that
software developers do not need to implement their own framework. For each programming
language, dozens of open-source configuration frameworks are available, each with its own
focus and feature set. For example, one of the simplest Java configuration frameworks is Java
Properties, which allow to read key-value configuration pairs from textual files. However,
many other, 3rd party frameworks exist. In this paper we study their differences and impact
on software maintenance.

5.2.2 Related Work

As configuration issues contribute 17% of the total cost of ownership of today’s software,
troubleshooting misconfigurations is a large part of technical support [99]. Given the role
of configuration frameworks in avoiding configuration errors, it is important to understand
the impact of configuration framework choice for a software project. Several researchers have
focused on analyzing and comparing configuration frameworks, although without considering
the impact on developers. Moreover, a large body of research exists on configuration errors
and debugging.

81

Configuration Frameworks. Rabkin et al. analyze configuration frameworks in 7 large-
scale Java software projects and find that all 7 projects used a standard key-value configu-
ration model to organize configuration data. They also made a taxonomy of configuration
options, concluding that most configuration options fall into a small number of data types.
Differently, our work focuses on the taxonomy of existing configuration frameworks and their
properties when used in the application development.

Other research groups studied projects that use a hierarchical configuration model, in which
options are organized into a tree instead of a flat key-value model [50,95]. Such hierarchical
configuration data is widely used [95]. Tresch investigated common configuration frameworks
for Java, briefly summarizing the application scenarios and configuration data formats for
each framework [187], while Denisov summarized the features of three major configuration
frameworks (java.util.prefs.Preferences, java.util.Properties and Apache Common Configura-
tion) [65]. Instead of focusing on a handful of configuration frameworks and some of their
features, we performed a detailed analysis on 11 configuration frameworks for Java.

Configuration Errors. Xu et el. [212] study 620 user-reported configuration errors from
4 software projects, i.e., Apache HTTP server, MySQL database, Apache Hadoop and a
commercial storage system. All these projects have the over-designed configuration prob-
lem, i.e., they offer hundreds of configurations that are unused, but may impact behavior
of the system in unforeseen ways if touched incorrectly. For instance, 51.9% options can be
removed without impacting the usage of the system. Yin et al. [215] also study 546 mis-
configurations from four widely used open source systems (CentOS, MySQL, Apache Http
Server, and OpenLDAP). Of these, 70% to 85.5% are due to mistakes in choosing the value
of configuration options, while another significant number of misconfigurations are due to
compatibility issues between different components or modules. Those misconfigurations can
be reduced by adopting a well-designed configuration mechanism in software development.

Arshad et al. [43] study 281 bug reports related to configuration for the GlassFish and JBoss
Java EE application servers. They find that a significant part of configuration errors are due
to mistakes by the developers and require code modifications to fix the problem. Sayagh et
al. [162,164] studied configuration errors that span across different layers of a software stack
such as LAMP. One of the causes of such errors is the diversity of configuration frameworks
and models used across layers. Other research [68, 69, 147, 218] has studied the impact of
configuration models such as key-value pairs on software misconfiguration. All this work
indicates that configuration frameworks play an important role in configuration errors and
maintenance, and hence requires careful selection. This paper analyzes this role.

82

5.3 Taxonomy of Configuration Frameworks

In this section, we introduce the 11 Java configuration frameworks that we are studying, as
well as the taxonomy of their features and properties that we derived.

5.3.1 Configuration Frameworks

This paper focuses on general-purpose configuration frameworks, i.e., configuration frame-
works that can be used in a variety of software systems, from desktop applications to mobile
apps or enterprise software. As such, our analysis is relevant to a wide range of systems.
Furthermore, given Java’s 20+ years of history and the many (open source) configuration
frameworks available for it, we focused exclusively on general-purpose Java configuration
frameworks. Other programming languages left for future work.

To obtain the catalog of Java configuration frameworks used in this paper, the first two
authors performed search queries using different keywords and phrases such as “Java config-
uration frameworks” and “Java configuration tools”, then read a large amount of technical
fora and blogs. They quickly converged on a set of 14 frameworks covering a wide range of
mature and young frameworks, which are shown in Table 5.1, ordered based on the date of
their first release.

Before considering the properties of these frameworks in more detail, it is important to
note that some configuration frameworks were not included in the paper. Play [140] is a
web application framework whose configuration framework basically is a modified version
of the Typesafe framework. Furthermore, neither Carbon [55], nor Raihan’s jconfig [151]
had any GitHub project as user, hence we excluded these frameworks as well. Android’s
SharedPreferences framework [165] was excluded, since it only applies to Android apps, and
not to desktop or enterprise applications. Finally, we did include Spring and Deltaspike,
since they support desktop and enterprise applications, although they do not support mobile
apps. The resulting set of 11 frameworks is used in the remainder of this paper.

5.3.2 Taxonomy

In order to understand the differences between configuration frameworks in terms of features
and properties, and later relate those to the popularity and maintenance effort involved
with the usage of these frameworks, we built a taxonomy of configuration frameworks, then
classified each framework according to the taxonomy.

83

Table 5.1 The studied configuration frameworks and their signatures.

Framework Released Signature
1 Properties 01.1996 import java.util.Properties
2 System 01.1996 System.getProperty
3 jConfig [90] 10.2001 import org.jconfig.*
4 Preferences 07.2003 import java.util.prefs.*
5 Spring [177] 06.2003 import org.springframework.*
6 Commons [41] 11.2005 import

org.apache.commons.configuration.*
7 Constretto [61] 05.2010 import org.constretto.*
8 Typesafe [188] 12.2011 import com.typesafe.config.*
9 Deltaspike [64] 10.2012 import org.apache.deltaspike.*
10 Owner [137] 12.2012 import org.aeonbits.owner.*
11 CFG4J [57] 07.2015 import org.cfg4j.*

To determine the taxonomy’s properties, for each framework at least two of the authors
manually studied the public documentation and browsed forums and blog posts associated
with each framework. Any relevant property recurring within the analyzed framework was
tagged. Then, once all frameworks were analyzed, we compared the tagged properties across
all frameworks to arrive at a final list of 17 framework properties, grouped into 3 dimensions.
The resulting taxonomy, as well as each framework’s classification, is shown in Table 5.2.
Note that each framework’s tagged properties were checked by two authors, while the full set
of properties was obtained by all authors together.

The first taxonomy dimension, i.e., General Properties, contains basic information about the
configuration frameworks. Universal indicates whether a configuration framework is fully
general-purpose, or does not support mobile apps. JDK-Standard indicates if a framework
is integrated into the Java SDK libraries. Age is low if a framework was created after 2010,
high if before 2000, med if in between 2010 and 2000. If there is no documentation for a
framework, we consider its Quality of Documentation as low. If the documentation is not very
comprehensive and/or written in a non-rigorous manner, the quality is considered as med.
Finally, for comprehensive and concrete documentation, we consider the quality as high. To
mitigate subjectivity of assessing quality of documentation, for each framework, two persons
separately looked for related documents such as JavaDoc and tutorial documents, and had a
discussion to decide its value. Actively Maintained indicates whether there has been at least
one commit to the configuration framework’s code repository in 2016.

The second dimension, i.e., Feature Richness, measures how powerful the framework is. Mul-
tiple Storage Formats measures the number of data formats (such as XML, properties files
or JSON) a framework supports: low (1∼2 formats), med (3∼4 formats) and high (≥5 for-

84

mats). Hierarchical Configuration Structure indicates if a framework supports hierarchically
organized configuration data (e.g., tree structured) or just flat key-value pairs. Hierarchical
Overriding means that the value of an option configured in a lower priority layer can be
overridden by a higher priority layer. Multiple Data Source indicates that a framework is
able to load configuration data from multiple sources instead of just from one file. Variable
Substitution specifies whether the user can define and use variables in the configuration file
instead of having to copy repetitive configuration values throughout. #API methods is the
number of public methods within public classes of each configuration framework. Similarly,
#Annotations is the number of public Java annotations proposed by each of the studied con-
figuration frameworks. The last two metrics are basically obtained by using the JavaParser
tool. Note that for all these frameworks, methods that are within test classes are ignored.
In addition, since Deltaspike and Spring contain more than just configuration functionality,
we consider for these two frameworks only the classes whose own name or package name
contains the keyword config.

The final dimension, Programming Support, contains properties supporting programmers
when integrating the configuration framework in their source code. Dependencies measures
how many dependent libraries need to be imported before using a configuration framework:
none (0), med (0∼10), and high (≥10). Distributed Environment Support indicates if a frame-
work can be used in a distributed setting, for example through the use of a configuration
database. Type-safety indicates that a framework checks whether the value of a configuration
option has the right type (e.g., double vs. integer) when read. Notification Mechanisms speci-
fies that a system will get a notification from the configuration framework when configuration
data has been changed by the user. Finally, Configuration Injection allows configuration to
be fully defined in external files, with the corresponding configuration values automatically
injected in the source code.

Apart from the three frameworks included in the SDK (Properties, System and Preferences),
all frameworks cover a wide range of features, which confirms the need for a study like this
paper! Only Type-safety is shared amongst all non-SDK frameworks, but no other clear
pattern of feature usage can be found. The most rare features are Distributed Environment
Support and Notification Mechanisms, with jConfig, Spring and Commons supporting both
of these. The latter two frameworks are the most fully featured, followed by Owner and
jConfig.

85

5.4 Collected Data

Now that we understand the different features of the configuration frameworks, we aim
to study the popularity of each framework (Section 5.5) as well as any relation between
framework or project features and the amount of maintenance effort required in projects
using those frameworks (Section 5.6). Each of these analyses uses a different data set of
GitHub projects, which we will refer to as “Data Set 1” (popularity) and “Data Set 2”
(maintenance effort).

5.4.1 Data Set 1: Popularity

Sampling. We first used GHTorrent to create a list of all non-fork Java projects on GitHub
with at least 50 commits. The latter constraint is important to eliminate as many toy
projects as possible, or repositories that are just mirrors (and hence only have few GitHub
commits) [98]. Then, we randomly sampled and cloned 10,000 projects from the list. To
verify the diversity of this sample, we used the approach of Nagappan et al. [126] to compute
a diversity score. Our diversity score considered the following metrics related to project
maturity: number of commits, number of authors, number of committers, and active age
(time span between first and last commit). The overall diversity score of 1.00 indicates that
our sample is sufficiently diverse.

Despite the high diversity score, the sample still contained many repositories not used for de-
veloping software projects [98], such as experimental repositories and repositories containing
example code snippets, demos, personal test code, and so forth. Since those repositories are
not used to develop software projects, we tried to exclude them from the sample, by selecting
only repositories that have at least 3 stars. This yielded Data Set 1, which contains 1,938
repositories (Table 5.3). Note that the number of stars was not available from the GHTorrent
database, and hence could only be obtained by scraping the projects’ GitHub repositories
(using Christophe et al.’s crawler [59]).

Mapping projects to configuration frameworks. To learn which configuration framework(s)
is/are used by a project, we automatically scan the projects’ source code for framework sig-
natures. These are statements indicating that the particular configuration framework is used
in the code, see Table 5.1. For most frameworks, the signature is a set of import statements
that we manually extracted from the javadoc documentation of the corresponding framework.
Only for System Properties the signature is not an import statement (since no import is nec-
essary to use this framework), but instead we search directly for the System.getProperty()

86

calls. After scanning the projects of Data Set 1 for these signatures, for each project we end
up with zero or more corresponding frameworks being used in the latest snapshot.

5.4.2 Data Set 2: Maintenance Overhead

To study maintenance overhead involved with configuration framework usage, we cannot
use Data Set 1, since due to the sampling used we might not have sufficient projects for
each configuration framework. Instead of random sampling, for Data Set 2 we used the
frameworks’ signatures to search for projects using each framework in turn.

Querying. To select Java projects that use at least one of the 11 Java configuration frame-
works, we used the GitHub search function with a configuration framework signature as a
search keyword, for one framework at a time. Since GitHub’s web search is limited to 100
pages of search results, each containing 10 files, for each framework we obtained a maximum
of 1,000 pages matching the framework’s signature. To increase this number, we performed
each search three times, since GitHub offers three different ranking algorithms for its search
results ("Best Match, Recently indexed, and Least recently indexed"). Only Constretto and
CFG4J yielded less matches than the maximum number of search results.

Using the GitHub search webscraper of Christophe et al. [59], we obtained the GitHub project
names mentioned on the 100 pages of search results, and after removing projects that are
forks, we obtained the projects summarized in Table 5.4. We scraped their GitHub pages
for repository-related meta-data (like number of releases and stars), and also cloned them to
analyze their code change history.

Mapping projects to configuration frameworks. We used the same approach as for Data Set
1 to identify the configuration frameworks used by each project in Data Set 2.

5.5 Popularity of Configuration Frameworks

In this section, we study the popularity of configuration frameworks in Github Java projects
by addressing two research questions.

RQ1: How Popular are Individual Configuration Frameworks?

Motivation. Although Table 5.2 contains a wide variety of publicly available configura-
tion frameworks, many of them have comparable features, for example support for multiple
formats of persistent storage, variable substitution, or type safety. Consequently, select-
ing a configuration framework suitable for a specific Java project typically requires a time-

87

consuming evaluation of alternatives. By assuming that popularity of a framework might be
an indication of its maturity and quality, a study of configuration framework popularity can
provide hints for developers about which configuration frameworks (and hence features) to
prefer.

Approach. For each project in Dataset 1, we identify which configuration framework (or
frameworks) it was using at the time of writing this paper. From this information, we compute
the popularity statistics of Table 5.3. In particular, we calculate two metrics to measure the
popularity of each framework: the number of projects using this configuration framework,
and the number of projects only using this configuration framework at the time of writing
this paper.

Results. Out of the 1,938 projects of Dataset 1, 1,034 projects use one or more configuration
frameworks. The popularity of each framework is shown in Table 5.3.

Finding 1: System Properties and (java.util) Properties are the most widely
used frameworks. There are 821 projects in the popularity dataset that use the System
Properties framework. Similarly, the Properties framework is widely used as well, namely by
600 projects. This result of course comes as no surprise, since these configuration frameworks
are integrated in the Java SDK and hence can be directly used without importing any external
libraries. However, as we could see in Table 5.2, these are also the weakest frameworks in
terms of features.

Finding 2: Third-party configuration frameworks are not that commonly used.
Table 5.3 shows that the top three third-party frameworks are Spring, Commons, and Type-
safe with 91, 37 and 14 projects using them, respectively (Preferences is also included in the
Java SDK). Given that Dataset 1 comprises 1,938 projects, the proportion of projects using
third-party configuration frameworks is surprisingly low, below 5%. In fact, for some of the
third-party frameworks we did not find any project using it in Dataset 1 (which is why we
are using the framework-specific Dataset 2 later in this paper). This is partly due to the
younger age of those frameworks.

Finding 3: Among the 904 projects without a configuration framework, 362
projects are Android projects. We found that within the considered 904 projects with-
out a framework there are 362 (40.1%) Android projects. Since the Android platform provides
a SharedPreferences framework for storing key-value pairs as well as other mechanisms such
as support for SQLite databases and XML files, 209 out of 362 Android projects use the
SharedPreferences framework, refraining from using a general-purpose configuration frame-
work. The latter statement is confirmed by the fact that among all 470 Android projects in

88

the whole sample (of 1,938 projects), only 108 or 23% use one of the studied configuration
frameworks

Of the remaining 542, i.e., non-Android, projects without a configuration framework, we
randomly sampled 53 projects (10%) for manual analysis. We found that 26 projects in
this sample do not use any configuration mechanism. Among these, there were 7 projects
containing code examples (e.g., for interviews or exercises), 6 libraries, 4 plugins, 4 small
games, and 4 simple applications. Another 27 projects in the sample use either an ad hoc
configuration mechanism (mostly XML files), or are plugins for other applications having their
own configuration mechanism. Only 17% of these 27 projects are stand-alone applications.

Finding 4: Developers prefer easy-to-use and simple configuration frameworks
with good documentation, especially Spring, Typesafe, Commons and Properties.
We contacted Java developers via 2 Reddit and 4 Facebook groups with a small survey [180]
to better understand the criteria considered by developers to choose a suitable configuration
framework (RQ1).

From the 10 replies that we received, we learnt that ease-of-use is the developers’ primary
criterion for framework selection (4 votes), followed by the simplicity (2 votes), quality of
documentation (2 votes) and capability of hierarchical overrides (2 votes). In terms of frame-
work recommendations, Spring was rated highest (4 votes), followed by Typesafe, Commons,
and Properties (3 votes each). This explains why standard frameworks like Properties are
popular, a finding that was confirmed even more by the following quote: "Think of building
software as digging a hole, and the JDK is your shovel. If you are just digging a hole to plant
a tree, your shovel will do fine. If you are digging a swimming pool, then you will want to
bring in some heavy machinery (aka 3rd party libraries)".

RQ2: How Often are Configuration Frameworks Used Together?

Motivation. We found that some projects are using multiple configuration frameworks at
the same time. Given the different focus of frameworks in terms of features (see Table 5.2),
this could suggest that some frameworks are complementary and serve different purposes.
This RQ aims to understand how common such co-occurrences are as well as which frame-
works co-occur often.

Approach. Using Dataset 1, we count how many projects use k configuration frameworks
in their most recent Git snapshot), for k = 1, . . . , 5. We also investigate whether there is a
relationship between project maturity and the number of configuration frameworks a project
uses, since older projects might be larger and hence have heavier demands for configuration

89

frameworks. We measure maturity in terms of different metrics, such as age of the project,
number of authors, number of commits, number of committers and number of source code
files.

Finding 5: 47.5% of the projects using a configuration framework (491 out of
1,034) combines multiple frameworks. 52.5% (543 out of 1,034) of the projects use one
framework, with 38.5% (389 out of 1,034) using two configuration frameworks. There are
substantially less projects with 3 or more configuration frameworks: 8.3% (86 out of 1,034)
with 3 frameworks, and less than 0.6% with 4 or 5 frameworks (6 and 1 projects, respectively).

Finding 6: System and Properties co-occur the most with other frameworks. The
co-occurrence heatmap in Figure 5.1 confirms that combinations of System with other frame-
works dominate the co-occurrence relations, followed by Properties and (at some distance)
Spring, Preferences and Commons. This ranking matches with the popularity numbers in
Table 5.3, where more popular frameworks co-occur more often with other frameworks.

As mentioned before, System and Properties only provide a limited data set, specializing
respectively in access to shell environment variables and to flat files with key-value pairs. For
System, no explicit imports are needed and option values can be set via the Java command
line, lowering the barrier for using it. This positions both configuration frameworks as an
easy-to-use complementary configuration mechanism.

Finding 7: More mature projects tend to use multiple configuration frameworks.
The beanplots2 in Figure 5.2 show that the number of frameworks used by a project is higher
for larger projects (there are only few projects with 4 or more configuration frameworks, so
these beans are not significant). Other metrics such as active project age confirmed this
finding, which confirms our earlier hypothesis about older projects. We could not find any
more complex pattern explaining co-occurrence of configuration frameworks.

Finding 8: The surveyed developers use multiple configuration frameworks in
the same project because their library dependencies needed them, or because
of complementary features provided by configuration frameworks. Only 4 of the
developers in the survey were familiar with projects using multiple configuration frameworks.
One of the main explanations for co-occurrence of configuration frameworks was dependence
on library or component, for example, one developer would add an additional configuration
framework"only if required by a library/framework". Another common reason was to exploit
the different functionalities of each configuration framework, prompting people to just add a
new configuration framework that offers the required features, "No need to reinvent the wheel
for all things. Just add what is missing on top".

2A beanplot is a boxplot that also shows the density of the data instead of just a rectangle.

90

C
F

G
4J

C
om

m
on

s

C
on

st
re

tto

D
el

ta
sp

ik
e

P
re

fe
re

nc
es

P
ro

pe
rt

ie
s

S
pr

in
g

S
ys

te
m

Ty
pe

sa
fe

System

Deltaspike

CFG4J

Constretto

Typesafe

Commons

Preferences

Spring

Properties

1 29 1 3 49 442 40 9

3 3

1 1

1 1 1 1

2 5 1 9

22 5 29 2

1 37 3 49

5 1 3 46 40 1

1 22 1 3 37 46 442 5

Figure 5.1 Heatmap of co-occurrence of configuration frameworks in the projects using a
configuration framework.

1

100

10000

0 1 2 3 4 5

P

ro
je

ct
 F

ile
s

Figure 5.2 Bean plots of the number of files (y-axis) within projects, grouped by the number
of configuration frameworks used by projects (x-axis).

5.6 Maintenance Overhead of Frameworks

In previous sections, we compared different Java configuration frameworks in terms of fea-
tures and studied their popularity across large and popular Github Java projects. We also
qualitatively found that people tend to choose easy-to-use and simple configuration frame-
works. In this section, we identify the taxonomy and software project-related properties that
define such simplicity, in terms of effort required by client developers to maintain a config-
uration framework.Those properties are the ones a client developer should consider in order
to choose a suitable configuration framework. Our findings could also help configuration
framework developers to improve their frameworks by focusing on more critical attributes
from a maintenance point of view.

We address the following research questions:

RQ3 Which factors impact the percentage of configuration-related commits?

91

RQ4 Which factors impact the percentage of configuration-related source files?

RQ5 Which factors impact the percentage of developers touching configuration code?

5.6.1 Case Study Setup

The goal of RQ3 to RQ5 is to compare configuration frameworks (in terms of their features)
based on the effort required by a developer to maintain them. Maintenance here refers to
any changes involving the configuration framework API that a developer needs to do while
evolving his or her own software project, for example to update the code to a new version of
the framework or to spread configuration data throughout the application.

To perform our analysis, we build classification models explaining one of three effort measures
in terms of configuration framework (Table 5.2) and project-related properties. First, we
discuss the dependent and independent variables of the models, before discussing how we
built and evaluated the models.

Dependent Variables. Table 5.5 shows the three dependent variables (CFCommits, CFAu-
thors and CFFiles), together with three auxiliary variables they are based on. Each dependent
variable measures some facet of maintenance effort. As we are building classification models,
the percentages of CFCommits, CFAuthors and CFFiles are discretized into a binary value,
using the median as threshold. So, all projects whose percentage of configuration framework-
related commits is higher than the median of that percentage across all studied projects are
considered as having a “high” value, while others have a “low” value.

To determine when a configuration framework is added (CFAddedIn) and removed (CFRe-
movedIn), we identified the commits that add or remove signature instances of a configuration
framework throughout a project’s git repository. By counting the number of “live” signature
instances (+1 for each added instance, -1 for each removed one), we can determine the full
removal of a framework if the count hits zero.

However, finding all configuration-related commits, i.e., not just those adding or removing
the signature (import) of a framework, is less straightforward. One way to find these commits
is to analyse each modified line of a commit for calls to one of the methods of a configuration
framework API. However, this approach is not accurate, because the number of methods of a
configuration framework can be very large, while configuration framework API methods do
not always have unique names.

Therefore, we used a technique similar to the approach used by Zhang et al. [220], which
consists of selecting as “configuration commits” those that contain in their commit mes-
sage one of the following keywords related to configuration: config, property, properti, pref,

92

option, and setting. Hence, for each file containing an import (signature) statement of a
configuration framework, we consider its “configuration commits” as the commits related to
that configuration framework that we need to analyze. We can then calculate the variable
CFCommits, while the number of unique configuration framework authors is used for the
CFAuthors variable.

From the same historical data set, we know all the files that contained code calling the
configuration framework, across the whole history of each repository. This enabled us to
calculate the total number of these source files across time as the variable CFFiles.

Project-related Variables. A first set of independent variables is formed by project-related
variables, i.e., variables that control for the activity and state of a source code project as a
whole. They are shown at the bottom of Table 5.5. We obtained the set of metrics Watch,
Star, Branch, Releases by scraping each Github project’s web page, then used the git reposi-
tory’s logs to extract the metrics related to the number of files, authors, and commits, which
are respectively NbreFiles, NbreAuthors, and NbreCommits.

Configuration Framework Variables. These variables are the 17 configuration frame-
work properties of Table 5.2. Note that all projects using the same framework share the
same value for these properties, only their project-related variables and dependent variables
differ. Conversely, projects that at the time of writing this paper use multiple configura-
tion frameworks, were included once for each configuration framework, in which case these
data instances had overlapping project-related metrics, but different configuration framework
properties.

Building the logistic regression models. To build our logistic regression models [97],
our initial training set consists of all projects in Dataset 2 (Table 5.4). However, since the
values of the configuration framework properties are repeated across all projects using a given
framework, this might introduce bias towards the most common configuration frameworks,
yielding models that are overfitted on System and Properties. To counter this, we resampled
the training set to obtain the same number of instances for each configuration framework.
Based on the number of non-fork projects in Dataset 2, we chose 30 projects per framework,
which required us to resample jConfig, Constretto and CFG4J with replacement (i.e., dupli-
cating some of their rows) to obtain 30 data points. The resulting resampled data set forms
our training set.

We used VIF (Variance Inflation Factor) analysis to remove highly correlated variables (VIF
> 5 [97]), then built an initial baseline model only containing the project-related variables as
independent variables. We then incrementally add the three configuration framework dimen-
sions of the taxonomy to evaluate the degree to which each dimension adds new information

93

related to the maintenance effort-related dependent variable (we build separate models for
each of the three maintenance effort measures). We use ANOVA tests and AIC score to eval-
uate how significantly a new model differs to an earlier model. We then calculate precision,
recall and AUC values (via 10-fold cross-validation) to evaluate how well the models fit the
data in terms of lack of false alarms, ability to find all known high maintenance projects and
performance improvement compared to a random model, respectively. We also build a final
model with only the statistically significant variables.

Finally, to understand which variables have the highest impact on the dependent variable
as well as the direction (increasing/decreasing) of this impact, we used the effect size score
of Shihab et al. [168]. It requires evaluating a classification model using the median value
of each variable as input, then, one at a time, adding one standard deviation to the median
value of a variable (while keeping the other attributes at their median value). For example, if
the model output is 50% when all independent variables are at their median value, while the
output after adding a standard deviation to the first independent variable is 100%, we say
that the latter independent variable has an effect score of 100%−50%

50% = 1, indicating a 100%
increase in probability compared to the baseline effect size. Whereas one cannot directly
compare the coefficients of the logistic regression models, as not all variables use the same
unit [97], the effect sizes of each variable can be directly compared to each other.

For boolean variables, we used “false” as the reference value for the effect size, and used
the value “true” instead of the “median value + standard deviation”. Hence, the effect size
expresses the effect of moving from “false” to “true”.

RQ3. Which factors impact the percentage of configuration-related commits?

Finding 9: The taxonomy variables have a higher impact on maintenance effort
in terms of number of commits.

Table 5.6 shows the significant variables in the logistic regression model, split up in project-
related and configuration framework-related. In both groups, variables are ordered based on
the absolute value of the effect size, from highest effect (either positive or negative) to lowest.
It is easy to see how the three project-related variables have only a tiny effect size, close to
zero, while the taxonomy-related variables have an effect size of at least 69.1% (negative;
QualDocMed).

We find that the more active the developers of the configuration framework are
(ActMaint), less choice of storage formats for configuration files (PersisVariety-
Low), or younger configuration frameworks (AgeLow), the more maintenance

94

effort the client developers of the framework seem to perform. On the other hand, a lower
quality of documentation (medium as opposed to high; QualDocMed) seem to
be linked to lower effort.

Surprisingly, we found that the higher the quality of a configuration framework’s documen-
tation, the more commits the configuration framework requires. This could be explained by
the fact that frameworks with more comprehensive documentation might be more feature-
rich, or that developers look for easy-to-use configuration frameworks (Section 5.5), which
tend to have concise documentation. More research is needed to evaluate the needs for good
configuration framework documentation.

RQ4. Which factors impact the percentage of configuration-related source files?

Finding 10: Taxonomy variables again have the strongest link with maintenance
effort.

We obtain similar findings as for RQ3 (see Table 5.7), with ActMaint, AgeMed (replacing
AgeLow) and QualDocMed again figuring amongst the most highly impacting variables,
although the sign of the effect size has changed. Furthermore, ScopeUniv and HierStruct are
additional impactful variables.

We find that younger (AgeMed, as compared to AgeHigh) and actively maintained
(ActMaint) configuration frameworks, with less documentation (QualDocMed)
and a universal scope (ScopeUniv), are spread across less files in a given source
project. Frameworks that support hierarchical configuration models (HierStruct) are
spread across more files, although this effect size is close to zero.

The finding for AgeMed is as expected, since older frameworks have been used longer by
projects, leading to tighter integration. Moreover, this finding can give an indication that
developers progressively add configuration frameworks in different source code files, which
leads to stronger coupling to the configuration framework.

The scope of configuration frameworks is the third most important factor, indicating that
less general-purpose frameworks like Spring have a stronger coupling to a software
system, likely because they come with more heavy configuration (and other) machinery. The
HierStruct finding seems to suggest that hierarchical configuration models have a stronger
coupling with source code projects, i.e., require more complicated interactions in a project.

95

RQ5. Which factors impact the percentage of developers touching configuration
code?

Finding 11: Taxonomy variables have the highest impact.

Since RQ5 yields similar results as RQ3 (Table 5.8), we only discuss the differences.
The age of the configuration frameworks does not play a major role, and is replaced by the
variables JDKStandard and HierStruct. In particular, Java SDK frameworks have less
developers making changes to configuration-related code (likely due to their simplicity),
while the use of hierarchical configuration models sees less developers do changes
(in more files, see RQ4).

5.6.2 Discussion

Based on the three explanatory models, we conclude that configuration framework taxon-
omy metrics have important relations with the effort required to maintain configuration
frameworks in a given software project. Surprisingly, none of the significant configuration
framework variables belongs to the Programming Support dimension (Table 5.2), while all
5 General Properties and 2 out of 7 Feature Richness properties were significant in at least
one model.

One of the two most commonly impactful General Properties is the degree of active devel-
opment of a configuration framework. The more active, the more commits and developers
need to be involved to maintain a client project, although slightly less files in the project
actually use the framework. This basically empirically confirms the common knowledge that
code reuse implies staying on the lookout for updates.

The other commonly impactful General Property is the quality of documentation. Higher
quality involves more maintenance commits by more developers across more files. This was
the most surprising finding. We believe that a correct interpretation of this finding is that
documentation should be "simple but not simplistic". It should emphasize concise examples
about how to integrate a configuration framework, as developers generally have a lack of time
to deeply learn a configuration framework.

Older, stable frameworks require less maintenance commits (likely because the framework
is less active), but their usage typically is spread across more files in a project. Finally,
hierarchical configuration models were associated with less developers making commits, but
those commits touched more files of a project.

96

5.7 Threats to Validity

Regarding threats to external validity, we only considered general-purpose configuration
frameworks for Java projects. However, according to Nagappan et al.’s diversity measures [126]
(value close to 1), our sample of repositories is representative for the population of Java
projects in GitHub. In future work, we plan to investigate other programming languages, as
well as domain-specific configuration frameworks like SharedPreferences.

Regarding construct validity, we use the percentage of changes, files or authors touching
configuration framework usage as proxies for maintenance effort. Although these are typical
approximations for maintenance effort case studies [206], they are still proxies. Although we
studied three different proxies, using other metrics should be considered in future work. Note
that we did not distinguish bug fix commits from commits adding new features or using new
framework APIs, as those would require additional heuristics for analyzing our data on top
of the ones we use to identify configuration commits. However, our models do control for the
total activity in a project, hence we believe this threat is addressed in a reasonable manner.

Finally, regarding internal validity, we conducted a short survey for which we received 10
answers. We plan to conduct a larger survey to investigate configuration frameworks and
their impact on configuration errors and maintenance effort.

5.8 Conclusions

We conducted an empirical study on 11 major Java configuration frameworks in almost 2,000
GitHub projects. A proposed taxonomy of framework features provides evidence of the wide
variety of features offered by configuration frameworks. It also supports practitioners in
selecting frameworks whose features are most suitable to the projects.

We found that SDK frameworks are the most commonly used frameworks, in half of the cases
complemented by more powerful frameworks. Simple frameworks are typically preferred.
Also, the choice of configuration framework explains to a large degree the maintenance effort
required for configuration, whereas project-specific characteristics play less of a role. More
active frameworks with higher quality documentation that have more flexible configuration
storage formats have a higher tendency towards more configuration-related changes by more
developers. On the other hand, older, less active configuration frameworks with high docu-
mentation tend to be used across more files in a software project.

Our findings empirically confirm common assumptions about configuration frameworks (e.g.,
reuse requires more maintenance if reused framework is active). However, they also raise

97

new questions about the role of configuration framework documentation or the perils of
hierarchical configuration models (stronger coupling), which should be addressed in future
work.

98

Table 5.2 Taxonomy of the 11 studied configuration frameworks (numbered according to
Table 5.1).

D
im

en
sio

ns
Pr

op
er
tie

s
1

2
3

4
5

6
7

8
9

10
11

G
en
er
al

Pr
op

er
tie

s

U
ni
ve
rs
al

X
X

X
X

X
X

X
X

X
Pa

rt
of

SD
K

X
X

X
A
ge

hi
gh

hi
gh

m
ed

m
ed

m
ed

m
ed

lo
w

lo
w

lo
w

lo
w

lo
w

Q
ua

lit
y
of

D
oc
um

en
ta
tio

n
hi
gh

hi
gh

lo
w

hi
gh

hi
gh

hi
gh

m
ed

hi
gh

m
ed

hi
gh

m
ed

A
ct
iv
el
y
M
ai
nt
ai
ne
d

X
X

X
X

X
X

X
X

X

Fe
at
ur
e

R
ich

ne
ss

M
ul
tip

le
St
or
ag
e
Fo

rm
at
s

lo
w

lo
w

m
ed

m
ed

m
ed

hi
gh

hi
gh

m
ed

m
ed

lo
w

m
ed

H
ie
ra
rc
hi
ca
lC

on
fig

ur
at
io
n
St
ru
ct
.

X
X

X
X

X
X

X
H
ie
ra
rc
hi
ca
lO

ve
rr
id
in
g

X
X

X
X

X
X

X
M
ul
tip

le
D
at
a
So

ur
ce
s

X
X

X
X

X
X

Va
ria

bl
e
Su

bs
tit

ut
io
n

X
X

X
X

X
#
A
PI

m
et
ho

ds
15

5
27
3

39
1,
68
1

1,
02
2

19
1

10
9

44
37

57
#
A
nn

ot
at
io
ns

0
0

0
0

24
2

0
6

1
16

12
0

Pr
og
ra
m
m
in
g

Su
pp

or
t

D
ep

en
de
nc
ie
s

no
ne

no
ne

m
ed

no
ne

hi
gh

hi
gh

m
ed

no
ne

no
ne

no
ne

m
ed

D
ist

rib
ut
ed

En
vi
ro
nm

en
t
Su

pp
or
t

X
X

X
X

Ty
pe

-s
af
et
y

X
X

X
X

X
X

X
X

X
N
ot
ifi
ca
tio

n
M
ec
ha

ni
sm

s
X

X
X

X
C
on

fig
ur
at
io
n
In
je
ct
io
n

X
X

X
X

X

99

Table 5.3 Popularity of configuration frameworks in Dataset 1. Columns "#/ % Projects"
report the number/percentage of projects using a given framework (projects may use multiple
frameworks), while column "# 1 CF" shows the number of projects using only the given
framework.

Framework # Projects % Projects # 1 CF
System 821 42.36 347
Properties 600 30.96 142
Spring 91 4.70 38
Preferences 57 2.94 6
Commons 37 1.91 5
Typesafe 14 0.72 4
Deltaspike 3 0.15 0
CFG4J 1 0.05 0
Constretto 1 0.05 0
jConfig 0 0 0
Owner 0 0 0
Any Framework 1,034 - 542

Table 5.4 #Projects in Dataset 2.

CF # Repositories # Non-fork
System 889 338
Commons 836 442
Spring 754 291
Properties 744 399
Preferences 662 408
Typesafe 659 383
Deltaspike 232 157
Owner 144 82
jConfig 53 17
Constretto 37 24
CFG4J 13 7
Total 5,216 2,575

100

Table 5.5 Auxiliary, dependent and project-related (control) variables considered in the main-
tainability models.

C
at
eg
or
y

M
et
ric

s
D
es
cr
ip
tio

n

A
ux

ili
ar
y
Va

ria
bl
es

C
FA

dd
ed
In

D
at
e
w
he
n

a
co
nfi

gu
ra
tio

n
fra

m
ew

or
k

is
ad

de
d

in
a

pr
oj
ec
t.

C
FR

em
ov
ed
In

D
at
e
w
he
n
a
co
nfi

gu
ra
tio

n
fra

m
ew

or
k
is

re
m
ov
ed

fro
m

a
pr
oj
ec
t.

To
ta
lC
om

m
its

In
C
FP

er
io
d

#
C
om

m
its

be
tw

ee
n
th
e
ad

op
tio

n
an

d
re
m
ov
al

da
te

of
a

fra
m
ew

or
k
in

a
gi
ve
n
pr
oj
ec
t.

D
ep

en
de
nt

Va
ria

bl
es

C
FC

om
m
its

Pe
rc
en
ta
ge

of
co
m
m
its

to
uc
hi
ng

fil
es

th
at

ac
ce
ss

a
gi
ve
n

co
nfi

gu
ra
tio

n
fra

m
ew

or
k.

C
FA

ut
ho

rs
Pe

rc
en
ta
ge

of
au

th
or
s
th
at

ch
an

ge
fil
es

th
at

ac
ce
ss

a
gi
ve
n
co
nfi

gu
ra
tio

n
fra

m
ew

or
k.

C
FF

ile
s

Pe
rc
en
ta
ge

of
so
ur
ce

co
de

fil
es

of
a
pr
oj
ec
tt

ha
ta

cc
es
sa

co
nfi

gu
ra
tio

n
fra

m
ew

or
k.

Pr
oj
ec
t-
re
la
te
d
(c
on

tr
ol
)

W
at
ch

N
um

be
r
of

wa
tc
he
s
of

a
G
ith

ub
pr
oj
ec
t.

St
ar

N
um

be
r
of

st
ar
s
of

a
G
ith

ub
pr
oj
ec
t.

Br
an

ch
N
um

be
r
of

br
an

ch
es

of
a
G
itH

ub
pr
oj
ec
t.

R
el
ea
se
s

N
um

be
r
of

re
le
as
es

of
a
G
ith

ub
pr
oj
ec
t.

N
br
eF

ile
s

N
um

be
r
of

fil
es

w
ith

in
a
G
itH

ub
pr
oj
ec
t.

N
br
eA

ut
ho

rs
N
um

be
r
of

au
th
or
s
of

a
G
itH

ub
pr
oj
ec
t.

N
br
eC

om
m
its

To
ta
ln

um
be

r
of

co
m
m
its

in
a
G
itH

ub
pr
oj
ec
t.

101

Table 5.6 Model for RQ3 (AIC: 355.63, Prec.: 77.41%, Recall: 72.72%).

Attribute Coefficient Std. Error Signif. code Effect size
NbreAuthors 0.009478 0.002097 *** 1.72494E-05
Releases 0.001029 0.0002324 *** 2.07543E-07
NbreCommits -0.0002525 0.00005047 *** -1.10599E-08
ActMaint 1.679 0.3764 *** 2.400912759
PersisVarietyLow 1.214 0.34 *** 1.564812448
AgeLow 1.167 0.3019 *** 1.485730827
QualDocMed -1.277 0.506 * -0.691757625

Table 5.7 Model for RQ4 (AIC: 331.87, Prec.: 74.5%, Recall: 90.30%).

Attribute Coefficient Std. Error Signif. code Effect size
Releases -0.003724 0.002345 -2.90491E-08
NbreFiles -0.0006832 0.0001462 *** -3.32257E-10
NbreCommits 0.00007836 0.00003293 * 8.5836E-12
ScopeUniv -3.797 0.7478 *** -0.12657923
QualDocMed -2.841 0.8845 ** -0.050931693
AgeMed -2.203 0.489 *** -0.026086136
ActMaint -1.825 0.4438 *** -0.017012309
HierStruct 0.8339 0.367 * 0.001885136

Table 5.8 Model for RQ5 (AIC: 388.69, Prec. : 64.64%, Recall: 70.90%).

Attribute Coefficient Std. Error Signif. code Effect size
Branch -0.005857 0.004467 -1.71518E-05
PersisVarietyLow 2.235964 0.468840 *** 1.412526089
ActMaint 1.473443 0.374606 *** 1.021655129
JDKStandard -1.896858 0.449827 *** -0.78785475
QualDocMed -1.599531 0.514350 ** -0.721445889
HierStruct -0.784968 0.322907 * -0.438725736

102

CHAPTER 6 ARTICLE 3: RUN-TIME CONFIGURATION-AS-CODE

Mohammed Sayagh, Noureddine Kerzazi, Fabio Petrillo, Khalil Bennani, and Bram Adams
Submitted to Empirical Software Engineering (EMSE)

Abstract: Maintaining software configuration options is a challenging task from the devel-
opers’ point of view. While medium-to-large projects typically have a dedicated configuration
engineering process consisting of a subset of 9 major activities, prior work has identified 22
challenges associated with these activities. While existing work has focused on individual
challenges such debugging of configuration failures or determining the optimal default value
of options, we instead discuss and empirical evaluate 4 basic principles for configuration en-
gineering that show potential for addressing a large subset of the challenges. A large-scale
user study with 55 participants and 11 tasks shows that the principles indeed significantly
improve correctness and speed for 8 out of the 11 tasks, while obtaining a draw for the other
tasks. These results are promising, especially since the improvements are independent from
developer experience.

6.1 Introduction

Successful software applications and middleware are portable across platforms and adaptible
to different environments and usage scenarios [172]. A major component shared by such ap-
plications is an elaborate software configuration system. Basically, each decision that depends
on the user’s platform, environment or usage scenario is postponed until actual deployment
or even execution of the system (without recompiling), simply by replacing hardcoded num-
bers or string literals in the source code by so-called configuration options. Such decisions
could include the selection of features that should be enabled, the definition of host names,
or calibration of tuning parameters. Each option consists of a name, a type, default value,
documentation and constraint (i.e., set of allowed values) determined by developers, and a
final value determined by the end user (or for example DevOps administrator). An API
allows developers to assign the value of an option to a variable, then to use this variable
across the code instead of hardcoded values.

Real-life configuration systems are huge! For example, Sayagh et al. [163] report that Apache
Hadoop 2.7.1 has 800 configuration options, while Mozilla Firefox 43.0 has more than 2,000!
This scale brings substantial challenges because a configuration system does not come for free:
configuration options at all times need to remain synchronized with the source code [125]

103

to avoid unconfigurable features or configuration choices without effect. To manage this
traceability, software projects implement a configuration engineering process [121], consisting
of 9 configuration-related activities, from the creation of a configuration option, choice of
storage medium (e.g., configuration file or database) and option data type, to managing
access of options in the code, comprehension and internal knowledge sharing of options,
maintenance, debugging of configuration errors and quality assurance.

While configuration activities like debugging of configuration errors [185, 212, 215], choice
of default values (part of option creation) [103, 219] and configuration-aware testing (part
of quality assurance) [50, 95, 157] have been studied in depth, the other activities are not.
In particular, in an earlier study [121] (currently under review) we identified 22 challenges
(Table 6.1) related to the 9 configuration activities, based on 14 interviews and 229 survey
responses. A systematic literature survey showed how most of these challenges are not yet
addressed in practice.

Various interviewees and surveyees suspected that managing traceability between configura-
tion options and the source code is the key to dealing with many of the challenges. Surpris-
ingly, several of them formulated the same, simple principles that center around the concept
of “run-time configuration as code”. In other words, the definition of a configuration op-
tion (e.g., its name and type) should be integrated inside the source code instead of being
physically separated, then configuration files for end users could be automatically generated,
always in sync with the option definitions in the code. Similar to Infrastructure-as-Code [88],
these principles allow known best practices, tool support and analyses for source code to be
applied to configuration, such as automated testing, code review, refactoring support and
smell detection.

This paper aims to present the 4 principles, then to empirically evaluate their impact on a
user study involving 8 typical configuration engineering activities, evaluated across 11 user
study tasks and 55 participants spread across industry and academia on two continents. Our
main contributions are:

• Presentation of 4 principles of configuration engineering aimed at enforcing consistency
between configuration options and source code.
• Large user study with 55 participants (industry/academia) and empirical analysis of

the impact of the 4 principles on 11 typical configuration tasks.
• A prototype implementation of a configuration framework (“Config2Code”) that im-

plements the 4 principles.
• 41 screencasts (of up to 4h) of participants solving real configuration engineering

tasks [161].

104

6.2 Background and Related Work

6.2.1 Software Configuration

Software configuration allows to postpone a decision in a software system until the required
information is available, typically at installation or run-time [172]. These decisions can be
made explicit in the user requirements [145], emerge during development to anticipate use
cases of advanced users, be related to testing (enabling/disabling features on the fly), or pop
up during the evolution of the code base. For example, agile developers often focus on getting
the logic right for a specific case without being disturbed about generalization (“You Ain’t
Gonna Need It” principle). Later on, during refactoring, the functionality can be generalized
by “externalizing” hard coded numbers and string literals into variables (“configuration op-
tions”), whose value is loaded from some kind of configuration storage medium, typically a
file, database or the application’s program arguments. Options can range from host names
to tuning parameters, debugging options and feature toggles [88].

Figure 6.1 shows a .ini configuration file that assigns value root to configuration option
database.connection.username. This file (storage medium) is managed by the end user. For
this option (and its value) to take effect, an application typically needs to access the storage
medium within a certain location of the code base (ProviderClass), then distribute the
option’s value to any other location in the code depending on it (ConsumerClassX). Dedi-
cated libraries exist to help developers implement ProviderClasses and to provide APIs for
accessing options within ConsumerClasses, but 46% of projects still roll their own coding
support [163].

6.2.2 Related Work

The concept of Run-time Configuration-as-Code (RCaC) discussed and evaluated in this
paper is tightly related to the popular concept of Infrastructure-as-Code (IaC) [88]. Both
infrastructure and software development teams build and manage infrastructure using au-

ConsumerClass2

ProviderClass

ConsumerClass1

USES

USES

<property>

 <name>dfs.namenode.replication.work.multiplier.per.iteration</name>

 <value>2</value>

 <description>

 Note: Advanced property. Change with caution.

 This determines the total amount of block transfers to begin in

 parallel at a DN, for replication, when such a command list is being

 sent over a DN heartbeat by the NN.

 </description>

</property>

hdfs-default.xml (storage medium)

user

developer…

int getMultiplier(){

 …

}

int m=getMultiplier();

ConsumerClass2; Database username

; constraint : ``^[a-zA-Z0-9]{3,14}$’’

database.connection.username = root

config.ini (storage medium)

user

developer

…
ProviderClass

String getUserName(){

 …

}

ConsumerClass1

String u=getUserName();

USES USES

Figure 6.1 Example configuration system with one option.

105

tomated “Infrastructure as Code” (IaC) tools [122]. The infrastructure team is responsible
for, amongst others, automatically building the environment1 in which an application should
be deployed [88]. In contrast, the development team traditionally has been responsible for
developing highly-configurable software systems [172]. The research and practices related to
both teams, while evolving separately for a long time, currently are converging under the
influence of DevOps [48]. This is an extension of agile development that focuses on bringing
developers and operators together in order to synchronize development and production.

This synergy between code and infrastructure has led to massive adoption by modern software
organizations of IaC, in the form of declarative specifications in a domain-specific language
like Puppet [108] and Ansible [40]. These specifications effectively are a form of source code,
whose “compilation” in this case generates the desired environment (e.g., virtual machine).
Researchers have indeed identified several source code phenomena in IaC code. Jiang et
al. [92] studied the co-evolution of Puppet and Chef configuration files with source code,
tests, and builds, and found a tight coupling of IaC file changes with test files. Sharma et
al. [166] empirically studied a catalog of 13 implementation and 11 design configuration smells.
The design configuration smells were shown to have 9% higher average co-occurrence among
themselves than the implementation configuration smells, suggesting that the developers
should pay more attention to the former. In contrast to the work on IaC, we focus on the
synergy between the run-time configuration options of a software system and its code base.

Another line of related work primarily focuses on dealing with run-time configuration options
and their related problems. We provide a systematic literature survey elsewhere [121], and
instead focus here on the most closely related work. Zhang et al. [219] addressed the concern
of finding the right option to be changed in order to obtain the software’s desired behavior.
They introduced a technique based on dynamic profiling and static analysis, supported by
a tool called ConfSuggester to help debug configuration errors. Related to this, Huang et
al. proposed ConfValley [85], a declarative language to express and check configuration
specifications. Li et al. presented a tool called ConfTest [110] to prevent misconfiguration,
and evaluated it against injected misconfigurations. Dong et al. proposed an approach
called ORPLocator [67] to support detection of inconsistencies between source code and
documentation via static analysis. They identify for each configuration option the source
code locations reading it, then compare the results against the option names listed in the
documentation. Similarly, Jin et al. presented PrefFinder [94], an NLP framework that
navigates scarce, distributed documentation to find inconsistencies.

1An environment is the server, virtual machine or for example container on which an application will be
deployed, providing the required operating system, 3rd party libraries and network connections [48].

106

Our study is fundamentally different from the above work on software configuration. Instead
of focusing specifically on debugging of configuration errors or finding the best default value
of an option, we study 4 principles of configuration engineering able to address a wide range
of configuration challenges outlined in Table 6.1. The next section discusses these challenges
in detail.

6.3 What is Problematic with Run-time Software Configuration?

While run-time configuration has been an ongoing concern in software development for
decades [172], practitioners still suffer from a wide range of challenges involved with it.
In particular, in order to provide and maintain a typical configuration system as shown in
Figure 6.1, an organization needs to implement a configuration engineering process, i.e., a
“discipline of activities involved in the integration and maintenance of configuration options
in a software application” [121, 148, 185, 189]. For example, when a certain functionality
should become configurable, one needs to add a new configuration option, pick a good name
for it, then access the option’s value within the code to decide when the configurable code
should be enabled, or to tweak the code’s behaviour in some other way.

In earlier work [121], we performed interviews with 14 experts, a large survey with 229
software engineers and a systematic literature review to recover and understand the typical
configuration engineering process followed in practice, as well as to identify challenges and
potential solutions. We distilled 9 major configuration activities and 22 related challenges, as
summarized in Table 6.1. For each challenge, the table also indicates whether it is related to
(M)anagement choices, (I)nherent difficulties of software configuration or (T)echnical details
(e.g., addressable with tool support or implementation guidelines).

The (M)anagement-related challenges require explicit planning of options (e.g., based on re-
quirements), clear assignment of an “owner” to each options to coordinate changes, evaluation
and adoption of the right framework (library) to use to manage and access configuration op-
tions in the application at hand, a strategy to avoid configuration failures to regress (e.g., by
documenting incorrect option values in a wiki), enforced guidelines for documenting options
for end users and clear communication between developers regarding the goal and impact
of options. Most of these challenges require process-level changes and follow-up, while some
(such as the lack of option documentation [213]) could also benefit from better technical
support.

In contrast, the challenges (I)nherent to software configuration cannot be avoided through
better organization or tooling. For example, any added option enlarges the list of options

107

Table 6.1 Overview of challenges related to configuration activities [121], which are either
(M)anagement, (I)nherent or (T)echnical. Here, we focus on the challenges in bold.

activity challenge
ad hoc planning of options (M)

1. creation adding options increases complexity (I)
of options choosing widely applicable default value (I)

unclear configuration ownership (M)
2. managing mixing media increases complexity (T)
storage media choice of media impacts performance (T)
3. managing choice of option type (T)
option type configuration variants across environments (T)
4. configuration coupling between ProviderClass and Con-

sumerClass (T)
access in code adoption of dedicated frameworks (M)
5. comprehen- unknown impact of option (change) (T)
sion of options lack of option comprehension tools (T)

meaningless option names (T)
6. maintenance option removal is risky (T)
of options traceability between options and code (T)
7. resolving debugging config. failures is hard (T)
configuration lack of configuration debugging tools (T)
failures no strategy for avoiding config. regression (M)
8. knowledge lack of option documentation (M)
sharing no internal communication about options (M)
9. quality code review ignores configuration (I)
assurance lack of automatic config. validation (T)

to read and understand [219], possibly frightening or at least puzzling potential users [212].
Similarly, the default value of an option has to be chosen as to enable plug-and-play func-
tionality for most of the end users, which is surprisingly hard to achieve. The unclear link
between configuration options and the source code impacted by it [147], as well as the focus
of code review on changed lines only, make code review of configuration-related changes a
challenge.

Finally, the (T)echnical challenges refer to more implementation-related challenges. They
require more than just the selection and adoption of a dedicated configuration framework
(which in itself is a challenge as well [163]). For example, the impact of an option on different
parts of the code base [50], the need to choose meaningful option names (enabling easy
understanding) and lack of automatic validation of constraints on the value of configuration
options need substantial technical support [95].

108

Instead of focusing on one particular challenge, this paper explores and empirically evaluates
four basic principles inspired by our earlier interviews and questionnaire [121] that have the
potential of resolving most of the technical challenges as well as some of the management-
related ones. The next section presents these principles, after which we report on a user
study in which these principles are evaluated.

6.4 Run-time Configuration-as-Code

The major insight behind the 4 configuration engineering principles studied in this paper
can be summed up by a quote from one of our industrial interviewees [121]: “Configuration
is Code Too”. As explained in subsection 6.2.2, this is certainly not a new principle as it
also forms the backbone of Infrastructure-as-Code (IaC) [88]. While our interviewees were
implying something similar for the run-time configuration (instead of the environment) of
an application, according to them the solution used for IaC, i.e., a domain-specific language
separate from the source code, would not suffice.

Indeed, while the environment of an application of course needs to be consistent with the
source code of an application (e.g., by providing the specific API version of a third party
library used by the code), this is even more so for the run-time configuration of said ap-
plication. This run-time configuration needs to be able to turn on/off fine-grained features
implemented by the source code, to initialize those features and even to define the values of
constants assigned to variables in the code. This tighter coupling between run-time configu-
ration and code (compared to environment and code) requires more attention to traceability
and consistency between the run-time configuration and source code. Physically separating
both is bound to lead to inconsistency issues, hence the term “run-time configuration-as-code”
really implies physically attaching configuration options to the code they apply to.

We initially prototyped this idea and then presented it to experts during the next interviews
in order to to get further feedback. We additional improved our prototype by incorporating
more features after each of these interviews to end up with a set of 4 basic principles of
configuration engineering that theoretically enable “run-time configuration-as-code” and as
such have the potential to address a wide range of challenges in Table 6.1 (the bold ones).
For each such challenge, Table 6.2 indicates which of the principles it is being impacted by,
and we explain the conceptual reasons for this impact. In later sections, we relate on a user
study in which these principles are empirically evaluated regarding their ability to address
the challenges.

109

Table 6.2 Mapping the principles to the bold challenges of Table 6.1.
Task Configuration- Encapsulation of Generation of Automatic

as-Code Configuration Access Configuration Media Validation
clear configuration ownership +
mixing media increases complexity +
choice of option type T1 +
coupling between ProviderClass and ConsumerClass T1 & T4 +
unknown impact of option (change) T4 + +
lack of option comprehension tools T5 + + + +
meaningless option names T7 +
option removal is risky T4 + + +
traceability between options and code T1, T2, T3 & T4 + +
debugging configuration failures is hard T6 +
lack of configuration debugging tools T6 +
lack of option documentation T1 + +
code review ignores configuration T8 + +
lack of automatic configuration validation T7 +

6.4.1 Configuration-as-Code

The first principle physically moves the definition of a configuration option and its related
metadata (type, default value, description and constraints) from a user-space storage medium
such as a configuration file to the developer-space ProviderClass (see Figure 6.1). This
allows developers to remain inside the source code to create a new configuration option.
Furthermore, by adopting a specific syntax or idiom to specify options, it is straightforward
for tools or manual search queries to identify all options of an application or to serve as
starting point for refactoring [56].

Figure 6.2 illustrates this on a Java application, using the syntax of our Config2Code proto-
type of the 4 principles. Here, a developer decided to make the database user name config-
urable by end-users by annotating the class attribute “username”. The type of the option is
determined by the type of the attribute (String), while the annotation “@Config” specifies a
namespace for the option, a default value, constraint and the desired type of storage medium
(“support”).

Apart from reducing the need for context switches and improving traceability, this first
principle also has other benefits. For example, ownership of an option is now determined
through code ownership of the code file it is defined in. Furthermore, determining the impact
of an option is now possible by using regular code analyses and tools used to determine the
impact of a variable (forward direction), to determine the (configuration) variables impacting
the code location of a configuration failure [143] or to safely remove a configuration option
from the code without causing undesirable code paths to become active. Finally, given that
the definition of configuration options is now part of the code, any changes to such a definition
are now captured in the version control system as regular code commits. Since these are the

110

pub l i c c l a s s He l l o {
@Config (name = ‘ ‘ username ’ ’ ,

namespace = ‘ ‘ database . connect ion ’ ’ ,
comment = ‘ ‘ Database username ’ ’ ,
de fau l tVa lue = ‘ ‘ root ’ ’ ,
c on s t r a i n t = ‘ ‘ ^ [a−zA−Z0−9]{3 ,14}$ ’ ’ ,
support = Config . FILE // Config .ARGS or Config . SYS
)

p r i va t e St r ing username ;
}

Figure 6.2 Illustration of principle 1 (Configuration-as-Code), using the syntax of Con-
fig2Code.

commits considered by code review, run-time configuration changes can become an integral
part of the review process instead of a special case.

6.4.2 Encapsulation of Configuration Access

Bringing the definition of configuration options inside the ProviderClass is only one step. The
second principle focuses on the manner in which the values of these options can be accessed
by the rest of the code, in particular the ConsumerClasses. Based on common software
engineering sense [172], it is no surprise that the principle requests a well-encapsulated API
for accessing configuration values, reducing coupling and duplication within the application.
Note that it does not suffice to just adopt a third-party configuration framework like jConfig
or Preferences, since scattered usage of such a framework’s API throughout an application
leads to strong coupling and complicates later migration to another framework.

Apart from reducing coupling between configuration and the application, encapsulated access
results in a uniform API throughout the application, again making it easier to determine the
impact of a given option and whether an option can be safely removed. While principle 1
has made the definition of configuration options explicit in code changes, the usage of these
options across the code base now is also made explicit through an API, further encouraging
systematic code review of configuration option-related changes.

111

6.4.3 Generation of Configuration Media

While principle 1 brought the definition of configuration options into the code and principle
2 distributes the value of these options in a disciplined way, principle 3 closes the loop by
automatically generating an appropriate storage medium for the end user (e.g., a .ini file
in Figure 6.1). This medium contains the current set of configuration options and their
metadata (including a default value) and is always synchronized with the options that are
currently used (defined) in the code by the developers, both in terms of option name, type,
documentation and constraints. This generation also allows end users (or operators) to easily
compare the previous version of the medium (containing the user’s custom values assigned
to options) to the new version in order to detect new options, removed options, changed
constraints or option types, etc.

This principle also allows the type of storage medium to be easily changed, and different
types of media could be mixed for different subsets of the options (a configuration file for
some options, while command line arguments for others). Furthermore, the principle also
achieves full and automated traceability between options and code, and helps to address the
challenge of missing option documentation, especially when combined with principle 4.

6.4.4 Automatic Validation

Principle 4 requires automatic validation of the values assigned to configuration options as
well as of the options’ definitions:

• Managers or technical leads can specify norms for configuration options that should be
respected by developers, for example a specific naming convention.
• Each option should only accept values of a certain type, for example an IP address (4

numbers from 0 to 255) vs. a hostname (textual string).
• Options could be subject to specific business rules that cannot simply be expressed in

terms of a variable type, for example “the random number seed should have < 3 digits”.

Furthermore, this validation should be performed automatically, either during a build of a
new version of the source code (developers) or during program start-up (end users). If a
violation of a constraint is detected, the system should either halt or fall back to option
values that are known to be good.

As an example, Figure 6.3 shows a static checkstyle rule for option names specified by the
team lead of the example in Figure 6.2. The rule encodes that the name of an option is
mandatory and should consist of 3 to 12 letters (upper- or lowercase), and it specifies an
error message (not just a warning) in case of a violation. Furthermore, during compilation

112

<conf igChecker>
<module name="name">
<property name="mandatory " va lue ="1" />
<property name="format " va lue ="^[A−Za−z]{3 ,12} $ " />
<property name="type " va lue=" e r r o r " />
<property name="message " va lue=" I n c o r r e c t name format " />

</module>
</conf igChecker>
Figure 6.3 Illustration of principle 4 (Automatic Validation), showing checkstyle rules encod-
ing programming conventions for configuration options, for the example in Figure 6.2.

the type of the option will be enforced (since it corresponds to the type of a class attribute).
At run-time, when the value assigned to an option is read from the storage medium , the
constraint specified on line 6 of Figure 6.2 furthermore will check that the password will
consist of 3 to 14 alphanumeric characters.

Automatic constraint validation improves comprehension, and enforces naming conventions
and the presence of documentation.

6.5 Design of User Study

The purpose of this paper is to empirically evaluate how well the 4 configuration engineering
principles of the previous section are able to support developers with typical configuration
engineering tasks.To this end, we carried out a controlled experiment [205]. Controlled ex-
periments have been widely used in human-computer interaction to perform user evaluation,
and more recently in software engineering as well [62, 202]. The design of our user study
carefully follows the 5-step methodology described in [119].

6.5.1 Research Questions

Our controlled experiment compares a configuration engineering framework implementing
the 4 principles to a base framework in order to address the following two research questions
across a wide range of configuration engineering tasks:

• RQ1: Do the principles increase the correctness of configuration engineering tasks?
• RQ2: Do the principles reduce the time needed to complete configuration tasks?

We analyze the results of these questions both quantitatively and qualitatively, and also
consider the impact of participant experience (confounding factor). The remainder of this

113

section first presents our Config2Code prototype of the 4 principles, and the study object,
then discusses the design of the experimental tasks, followed by the choice and composition
of subject groups, and finally our experimental protocol.

6.5.2 Config2Code

To evaluate our approach, we built a Java framework called Config2Code that implements the
4 principles. We have already seen its syntax in Figure 6.2, and it comes with a Java builder
plugin that can be used within Eclipse within Maven builds. The plugin basically parses the
“@config” annotations, then uses Javassist to inject the value of configuration options into
the annotated class attribute at the bytecode level. Furthermore, the annotation metadata
is used to automatically generate the right configuration storage medium.

For automatic validation, the current version of Config2Code only allows for regular expression-
based constraints that are expressed in terms of characters. Both the regular expression con-
straints and manually written checkstyle rules are used to automatically validate constraints
on the values of options. Integrating more powerful Z3 constraints is future work.

6.5.3 Study Object

As study object, we looked for an open-source GUI application with a non-trivial number of
configuration options and that is not following the 4 principles to manage its configuration
engineering concerns. We focused on a GUI application such that configuration changes would
easily be visible to study participants. Furthermore, the source code of the application should
be large enough to be challenging, but should be structured well enough so as not to overly
divert the participants’ attention from the configuration.

Eventually, we selected JabRef [21], which is an open source tool dedicated to managing
BibTeX references. Two of the authors are familiar with this software project from a previous
study. Version 4.0 of the application consists of 171,233 lines of code, 1,421 classes and 177
options. Hence, considering the size of the application, the number of configuration options
is substantial. By default, JabRef uses the Preferences configuration framework. This is a
basic framework that comes bundled with the Java SDK since Java 4. It reads configuration
options from a configuration file, and allow developers to use options via an API, whose
methods allow to read different types of configuration options (String, int, double, ...). These
methods take as argument a configuration name and a default value, which is returned in
case the accessed option is not declared in the configuration file. Preferences is one of the
most popular existing Java configuration frameworks [163].

114

The Preferences framework as used by JabRef was not implementing the 4 principles:

1. Options are specified in textual configuration files.
2. JabRef is strongly coupled to Preferences, as it calls Preferences methods API (getInt,

getString, ...) throughout the code with the requested option as String argument.
3. The textual configuration files are maintained manually.
4. No validation is performed of option values.

In order to use JabRef for our study, we made two important changes. First, we removed
the configuration GUI from the menu and code base in order to allow subjects to focus only
on the source code and the external (Preferences) configuration file. Second, we prepared a
Config2Code version of JabRef by entirely removing the use of Preferences and replacing it
with Config2Code (i.e., all the 177 Preference options were replaced by Config2Code).

6.5.4 Task Design

The design of our experimental Tasks was driven by the 14 bold challenges of Table 6.1.
Hence, our initial goal was to formulate one study task per challenge, yet some challenges
are related and we also wanted to reduce the typical time to finish all tasks to a reasonable
number of about 1h30. This is why we ended up with 11 tasks spread across 8 configuration
engineering activities. Table 6.3 provides descriptions of the 11 resulting tasks. The handouts
we gave to participants are available online [10,11].

6.5.5 Participants

We initially designed our experiment to consider four categories of subjects, across two di-
mensions: {Industry, Academic} and {Novice, Expert} (Table 6.4). Novice industrial par-
ticipants are subjects working in industry with less than 3 year of experience, while industry
experts have more than 3 years of experience. Novice academic participants are undergrad
engineering students, whereas expert academic participants are students pursuing a master
or Ph.D.

One of the main barriers for controlled experiments of software engineering tools is participant
recruitment [54], especially due to software professionals being busy [106]. To complement
the 2 industry participants that we contacted based on personal contacts, we also contacted
5 remote freelance developers on Freelancer.com. We controlled for several well-known issues
involving remote participants [106]. First, since developers tend to inflate their level of ex-
perience, we interviewed all candidates via chat and we asked them to perform a warm-up
task via which we measured and evaluated all skills requested from the developers. Only

115

participants who correctly completed the warm-up participated in the experiment. Second,
to deal with developers who may temporarily suspend a task or would not follow the instruc-
tions correctly, we asked all participants to record a video screen cast during their working
session. We excluded participants that did not record the video. Third, high payments could
attract participants that are excessively motivated by money, which may lead to unrealistic
behaviour [106]. To mitigate this, we paid Freelancer.com’s median flat sum of CAD$35 per
experiment (in line with Ko et al.’s US$30 [106]) after the work was completed and we were
100% satisfied with its quality.

All of the academic participants were volunteers, which we invited to participate in exchange
for a bonus in their courses and a certificate acknowledging their participation. The students
were recruited at one North American and one North African university during the Summer of
2017 andWinter of 2018. None of them had prior experience with Preferences or Config2Code.
In addition, we also had 7 student and one expert participants who participated in pilot runs
of the study in order to refine the questions and study protocol. They are not included in
Table 6.4, nor in the results section.

While our study design targeted the impact of both the {Industry, Academic} and {Novice,
Expert} factors, we eventually dropped the former. First of all, we had an unbalance between
industry and academic participants, with a ratio of 13 to 42. While this problem was not un-
surmountable, we noticed that many students, even novices, had prior experience developing
software. In some cases, students had more experience than (novice) freelancers. In one case,
an academic expert (PhD student) had only 1.5 years of Java experience compared to an aca-
demic novice with 5 years of Java experience. In order not to derive wrong conclusions, we
elided the {Industry,Academic} factor and only consider {Novice,Expert} in our discussion.
This is why we eventually only consider the number of years of Java experience as a metric
for experience, i.e., a participant with 3 or more years of Java experience is considered as an
expert, whereas participants with less than 3 years are novices. This decomposition is shown
in the “All” column of Table 6.4.

6.5.6 Experimental Protocol

Participants were randomly assigned to either the experimental group (using Config2Code) or
the control group (using Preferences). We used stratified sampling based on the {Industrial
, Academic} and {Novice,Expert} factors, resulting in the composition of Table 6.4.

The experiment was performed using two types of virtual machines (VMs): (1) VMs hosted
on Google Cloud for non-local participants, and (2) a similar environment on VirtualBox
installed on our lab machines for local subjects. Each VM was set up with Eclipse and either

116

Config2Code or Preferences. To analyze the subjects’ results, the screen of the VMs were
recorded via the Cattura Google plugin or by configuring Virtual Box to capture the screen
of VMs.

Before performing the 11 tasks, both the experimental and control groups received an in-
troduction about configuration options in general, the specific framework they were going
to use, and the three steps of the experiment (warm-up, experiment, and exit survey). We
did not divulge our intent to compare Preferences and Config2Code. The participants then
started with a warm-up exercise on a toy project, in which they could learn that taught them
how to use the framework they were assigned to. The results of this exercise were just used
to filter out participants that were unfit for the study. These are not included in the numbers
of Table 6.4.

Once finished with the warm-up exercise, the participants would enable screen recording of
the VM and start the 11 tasks. We warned them that it might typically take 1h30 to finish
all tasks, yet they were free to stop at any time. All sessions of experiments were supervised
by one of the authors to enable clarification questions, if needed. 6 of the 11 tasks required a
written answer in a separate response file saved in the desktop of each virtual machine. Once
finished (or when quitting), the screen recording would be stopped, and the participants had
to fill out an exit survey in which they express their impression about the experiment in
general, and about the advantages and challenges they faced during the experiment and that
are related to the framework they used.

Finally, in order to address the research questions, we marked the modified source code and
the answers in the response files of the 11 tasks to determine correctness. We defined a
check-list to mark each task. For example, for T1.1 and T1.2, participants should (1) define
the new options, (2) comment them, (3) define their constraints, and (4) use them within
the source code.

In order to determine the time needed to perform the individual tasks, we scrolled through
each participant’s video to record the moments on which they switched to the next task. A
task starts when a subject finishes reading its requirements and finishes when she completed
the code or answered the exercise on the responses file. The challenges we encountered were
the length of the videos (up to 4 hours) as well as the fact that some participants answered
some questions in more than one shot. They would start a given exercise and come back to
finish it later on or even at the end of the experiment, hence we had to analyze the entire
video to be sure.

117

6.6 Quantitative Results

This section discusses our empirical evaluation of the impact of the 4 principles on the
ability of developers to perform typical configuration engineering tasks. The next section
then discusses those results for each individual task.

RQ1: Do the principles increase the correctness of configuration engineering
tasks?
Motivation: The 4 principles discussed in section 6.4 are conjectured to enable developers
to perform configuration engineering tasks more correctly compared to not following them.
Therefore, we define our null hypothesis as:

H0: There is no significant difference in task correctness between Config2Code and Prefer-
ences participants.

Approach: Based on the textual answers to each task and the modified source code of each
participant [161], we assigned, for each task, a mark to the participant. Since subjects were
free to leave at any point or skip any question, we ignore the tasks that they did not perform
(instead of giving a zero score for those). For this reason, we analyze the marks of each
individual task rather than calculate a global score, and we count the number of wins, losses
and draws for Config2Code compared to Preferences. Similary to Wettel et al. [201], wins,
losses and draws were determined using the (non-parametric) Mann-Whitney-Wilcoxon test,
with a confidence level of α = 0.05.

In a second step, we evaluated the impact of participants’ experience on the results (i.e.,
experts vs novices). For this, we compared the results of Config2Code experts against Con-
fig2Code novices on the one hand, and Preferences experts against Preferences novices on the
other hand. This comparison again is at task-level and based on Mann-Whitney-Wilcoxon
tests with α = 0.05.

Results: Config2Code wins in 8 tasks (T1.1, T1.2, T2, T3, T4, T5.1, T5.2,
and T7.1), and draws in the other 3 tasks (T6, T7.2 and T8). Table 6.5 indeed
shows how we can reject the null hypothesis (p < 0.05) for 8 out of the 11 tasks, while we
were unable to for the other tasks. As shown by the median scores, there was no task for
which the Preferences subjects performed more correctly than Config2Code subjects. Indeed,
Config2Code increased median correctness with up to 300% compared to the corresponding
Preferences scores for task (T5.2), in which participants had to find possible option values
online. For T8, more than half of Preferences were unable to perform the task correctly,
leading to a median score of 0, compared to 1 for Config2Code.

118

As highlighted in Table 6.5, we found that overall the results are not impacted by the experi-
ence level of participants (p ≥ 0.05), except in the case of T1.2 and T5.2 for Preferences. The
difference between T1.1 and T1.2 is to check the correctness of the new option via a regular
expression constraint, which was not easy for novice developers. T5.2 was also not easy for
novice developers, which were not able to find possible values of a configuration option. From
our observation to the task T1.2, we found that Preferences participants had hard time to
identify where they should check the constraint within a large project size, and how to check
a regular expression constraint in Java. This is why many Preferences novice participants
had to check online how to use a regular expression. Similarly, for T5.2 novice participants
did not have any concrete strategy to find possible values of a configuration option, they rely
just on searching for that option’s key on internet.

RQ2: Do the principles reduce the time needed to complete configuration tasks?

Motivation: The goal of this research question is to evaluate if Config2Code helps de-
velopers performing configuration tasks faster than Preferences. Therefore, we define our
null hypothesis as:

H0: There is no significant difference in time required between Config2Code and Preferences
participants.

Approach: For each task, we measured the time required by each participant, filtering
out participants who did not successfully complete a given task. We defined “successful”
completion as obtaining at least half of the marks for that task, i.e., a score ≥ 0.5. Note that
this also led to filtering out participants who forgot to start or prematurely ended screencast
recording, since no timing information was available for them. Finally, we also analyzed the
impact of subjects’ experience on the required time to solve a task.

We observed in the videos that participants solve both tasks T1.1 and T1.2 in parallel.
They add both configuration options either in the configuration file for Preferences or as two
annotations for Config2Code, then change the source code to use both configuration options.
Therefore, we report a single time measurement for both.

Results: Config2Code wins on 6 tasks (T1.1, T1.2, T2, T5.1, T5.2 and T7.1),
draws for the other 4 tasks (T3, T6, T7.2 and T8), and loose in only one task
(T4). As shown in Table 6.5, we again did not find any cases for which Preferences developers
performed significantly faster than Config2Code. In fact, Config2Code helps to save up to
94.62% (in task T5.2) of development time compared to Preferences. Task T4, however, does

119

lead to a low p-value of 0.02, with a median slowdown of 90% compared to Preferences, even
though the results for Config2Code in RQ1 were more correct for this task.

In the other cases, the results for RQ1 and RQ2 match each other. For example, Config2Code
developers can immediately understand a configuration option, with a reduction of 94.62%
and 79.67% of time (T5.2 and T5.1). Config2Code developers are also able to save 20.18% of
time to change an option name (T3), while for T1 they require a median of 1,559.5 seconds
(25.99 minutes) to add an option with Config2Code instead of 3,034 seconds (50.95 minutes)
. Finally, the RQ2 results are not impacted at all by the experience of developers.

6.7 Qualitative Discussion

This section qualitatively discusses RQ1 and RQ2 for each task.

T1: Creation of Configuration Options: As shown in Table 6.6, 73.07% of Preferences
participants did not add configuration constraints that check the correctness of the value of an
option, compared to only 3.44% of Config2Code subjects. In addition, 53.84% of Preferences
subjects forgot to comment their configuration options. Because JabRef defines a map data
structure of default option values within its source code, the Preferences participants had
to define the default values not only in the configuration file, but also in that defaults map.
This is why 7.69% of Preferences participants forgot to define default values in both places.

Therefore, principle 1 (i.e., putting all option-related information inside the source code in
one location) has had a positive impact on the correctness of adding a configuration option
as well as on the time required (see Table 6.2). On the other hand, using a configuration
option requires writing additional code in each ConsumerClass for both Config2Code as well
as Preferences participants, which is why similar percentages of participants (30% and 33%,
respectively) forgot usage sites of the new configuration options.

From the videos, we observed that both groups of developers liberally used copy-paste of
existing option definitions. While Config2Code participants could just copy and modify
annotations in one source code area (that they first had to find), while the Preferences
subjects had to perform many more steps across different code areas. We observed that they
initially created the options in the configuration file, added the new option names as two
global constants, then added the default values to the right map, in order to then use the
options in the right files. Given the complexity of all these steps, we noticed substantial
trial-and-error for this group. One Preferences participant confirmed: P35: “Seems to have
a lot of needless steps between getting a config value and using it”, while one Config2Code
participant found: P33: “It’s easy to add a config variable and assign it in the config.ini file”.

120

The difference in percentage of developers adding constraints, together with the large number
of erroneous options added by the Preferences group, show how principle 4 helps developers
to ensure correctness of new options. The exit survey confirmed: P33: “It’s also easy to give
extra constraints on the different fields of config variables once you have a working example”.
Finally, principle 3 helped participants by automatically regenerating configuration files after
each modification.

T2: Changing Default Value: Changing the default value with Config2Code requires only
changing the attribute “defaultValue” within the ProviderClass for Config2Code subjects,
while it requires changing the default map within the source code and the configuration
file for the Preferences subjects. Forgetting to change the default value in both places is
error-prone, since JabRef seemingly would be using a different value than the one specified
in the configuration file (i.e., the one listed in the map data structure). Due to the context
switches between the configuration file and the source code, 90% (19/21) of Preferences
developers modified just the configuration file or just the defaults map, while this task was
straightforward for 76% (20/26) of Config2Code participants due to principle 1.

T3: Changing a Configuration Name: JabRef stores its option names as string literals
in global constants within the class JabRefPreferences.java, which is by its turn used to get
access to the configuration file via the framework Preferences. Refactoring an option’s name
then requires developers to change that name within the class JabRefPreferences.java and
also in the configuration file. Changing only one of these two artifacts can introduce an in-
consistency between configuration files and the source code, and then JabRefPreferences.java
can read an option that does not exist in the configuration file. Because Preferences does not
help to automatically synchronize source code with configuration file (i.e, principle 3), Pref-
erences’ participants have to change both artifacts comparing to Config2Code subjects that
have to change only the annotation Config. The reason for which we obtained a statistically
significant difference in the correctness of task T3 between Config2Code and Preferences.
Therefore, principle 3 has a positive impact on refactoring option names.

T4: Removing Configuration Options: Participants had to replace 5 configuration
options (O1...5) by another one (O6). An additional complexity (for both groups) was the
fact that these options were accessed by reflection. The difference in correctness (and to some
degree time) between both groups for this task was due to principle 2. While Preferences
accesses these configuration options from the ConsumerClass without any encapsulation,
Config2Code uses the ProviderClass accessors, either directly or via a reflective call from a
ConsumerClass.

121

Therefore, due to the lack of such encapsulation, Preferences users faced the problem of
having to search the code for all usage sites (Consumer classes) of these 5 options, as well
as to remove them from both the configuration file, the default value map, and their names
from the global constants (as discussed in T3). In contrast, Config2Code developers just
had to modify the ProviderClass accessors to use O6 internally, and physically remove the
annotation “@Config” to avoid synchronizing the source code with the configuration file.
One Preferences participant said: P37: “some code refactoring tasks need to analyze the code
deeply”.

That said, we did observe in the videos that some Config2Code participants initially removed
the “@Config” annotation, and the (previously configurable) class attributes and its accessors.
However, this yielded exceptions due to the hidden reflective call. These Config2Code partic-
ipants first tried to fix that unexpected bug, before realizing the simpler solution (modifying
the ProviderClass accessors instead of removing). That explains the substantial slowdown
compared to the Preferences group.

T5: Comprehension of Configuration Options: As shown in Table 6.5, there is a signif-
icant difference in correctness between Config2Code subjects (who were able to find exactly
the possible values within the “@Config” constraint, i.e., principle 1) and the Preferences
subjects, who had to search where that option is used within the source code or even to use
online documentation. This especially was clear for T5.2. While some participants found
some values online, their responses were inaccurate, as many values are simply ignored by
JabRef. This would only be clear by exploring the source code, which is time-consuming.
Due to the automatic synchronisation of option information (principle 3), Config2Code
participants always found the up-to-date set of option values.

T6: Fixing a Configuration Error: This task saw draws for both correctness and time.
The videos showed how participants would usually start out by guessing a likely incorrect
candidate option (in terms of its value) related to the bug symptoms that they faced. In this
case, because the bug was related to the auto-complete functionality, most of the subjects
started by searching configuration options that have the keyword “autocomplete” in their
names, then manually inspect their values. Principle 1, which is the only principle ad-
dressing the challenges “debugging configuration failures is hard” and “lack of configuration
debugging tools” in Table 6.2, clearly does not suffice in this context.

A special characteristic of the configuration error addressed in T6 is that it was a functional
error without any exception or error message, only showing a graphical effect. In future
work, we plan to investigate configuration errors with an explicit error message as well as

122

performance-related configuration errors, both of which would allow source code inspection
techniques to be used.

T7: Configuration Quality: This task showed a significant speedup and correctness for
Config2Code (T7.1), but draws for both correctness and time of T7.2. An initial qualitative
analysis of the videos showed that some Preferences subjects manually inspected each con-
figuration option, whereas other participants copy and paste the whole configuration file in
online regular expression checkers to solve this task. This is time-consuming compared to
Config2Code, where developers could declare the regular expression within a checkstyle rule
(cf. Figure 6.3; principle 4). Only in one Preferences case, a developer wrote a script to
identify the number of options that do not respect the proposed naming convention.

Due to the large number of configuration options that do not respect the configuration
naming convention that we proposed in this task, it was not difficult (in terms of correctness
and time) for both groups to identify a set of examples in T7.2, explaining the draws for
correctness and time.

T8: Configuration Review: Finally, we also did not observe any differences for the patch
reviewing task. We believe that this is due to the limited size of the patch that we studied,
making it an easier task for both groups. Furthermore, since the patch merely adds a new
configuration option, all the information regarding the option’s definition is included in the
patch. A patch that would impact code that depends on an option (a fact probably not
obvious from the commit’s diff alone) likely would not change other data of the option and
hence might be harder to review.

6.8 Threats to Validity

Threats to internal validity concern alternative factors that could have influenced our find-
ings. One threat is the degree of competence of our subjects. To mitigate this threat, we
ensured that participants are comfortable with Java having carried out at least one medium
project with it. Second, we used randomization to fairly assign participants to treatment
groups. For each group, we presented the purpose of the study and provided a warm-up
exercise to be sure they have a good knowledge of the application domain. Furthermore,
participants from both controlled and experimental groups could ask questions during the
experiments. Third, the subjects may not have been correctly motivated. This thread was
mitigated by the fact that all participated on a voluntary basis and received certain incentives
(subsection 6.5.5).

123

We also recognize a threat related to the design of the experimental tasks, which may have
been biased to the advantage of either of the two groups [205]. To alleviate this threat, we
aligned the design of tasks with the configuration engineering tasks and challenges identified
in earlier work [121]. Two of the authors were part of a pilot study that assessed the perceived
task difficulty and time pressure, then to validate that we are measuring the right metrics.

Threats to external validity concern the generalization of our findings. Future work should
consider other activities and tasks than those studied here, covering configuration engineering
activities and challenges not covered by the current study. Furthermore, other object sys-
tems should be used, leveraging other standard configuration frameworks than Preferences.
Finally, other participants should be recruited, involving more industry practitioners.

A second external threat to validity concerns the impact of other implementations factors
instead of our four principles on our findings. To mitigate this risk, we conducted a qualitative
analysis of the video records and discussed with our subjects after finishing their tasks.

Threats to construct validity consider agreement between a theoretical concept and a specific
measuring procedure. One threat considers the experimenter effect: since we are both the
authors and experimenters, this may have influenced any subjective aspect of the experiment.
Although we are aware that we cannot exclude all the possible impacts of these threats, we
did try to mitigate them by designing a checklist and a model of the answers with a grading
scheme. Moreover, two of the authors performed the grading.

Finally, future iterations of this study should provide an automated way for participants to
have the video started and stopped when starting or ending a task. This would avoid having
to filter out participants without timing information.

6.9 Conclusion

This paper presents and empirically evaluates 4 configuration engineering principles via a user
study with 55 participants and 11 tasks (spanning 8 configuration activities). Our findings
show how the principles are able to improve correctness, speed, or both of them for 8 out
of 11 tasks compared to a baseline configuration framework, while no statistically significant
differences are observed for the other tasks. Especially for debugging tasks the principles
did not show a real improvement. Furthermore, the improvements in correctness and speed
were observed independent from participant experience, i.e., even novice developers benefited
from the 4 principles.

While we prototyped the 4 principles in the Config2Code framework, they are in fact inde-
pendent. For example, any software project could address principle 2 simply by designing an

124

explicit ProviderClass with a clear API, which would positively impact 5 of the configuration
engineering challenges. Similarly, any framework using annotations might be a good candi-
date for implementing principle 1. On the other hand, principles 3 and 4 are less common in
today’s frameworks and our results suggest that it is worth investing effort in them.

125

Table 6.3 The 11 tasks administered in the user study.

Task Description
T1. Creation
of configuration
options

Participants should create two new configuration options (one boolean
(T1.1) and one integer (T1.2) option) based on requirements about
the name of these options, their comments, default values, constraints
for user choices, and the code area that should be modified to use the
new created options.

T2. Refactoring
- Changing a de-
fault value

Participants should change the default value of a configuration option.
While this requires Config2Code users to change only an attribute of
the @Config annotation, Preferences users need to change the code
in two different places for this (the configuration file and a map data
structure with default values).

T3. Refactoring
- Changing op-
tion name

Participants need to change an unclear configuration name. While a
simple change for Config2Code participants, Preferences participants
need to change both the code where this option is used and the con-
figuration file.

T4. Refactoring
- Removing
configuration
options

Participants need to remove 5 similar options and replace them by one
unique option. Config2Code participants can just remove the “@Con-
fig” annotation, and change the corresponding class attributes’ acces-
sors to instead use the proposed option. Preferences participants need
to remove the option from the configuration file, then search the code
to find where each option is used to replace it by the proposed op-
tion. This task is not trivial, as some of the option accesses use Java
reflection.

T5. Compre-
hension of op-
tions

Participants had to identify the range of possible values of two config-
uration options. The first option (T5.1) is a JabRef specific config-
uration option that is related to the auto-completion of textual fields
in the GUI, whose allowed values are specified inside the JabRef code
base. The second option (T5.2) is related to the possible font styles
that can be used. The latter option’s values can be found online,
yet not all of those are actually used by JabRef. Hence, participants
should only report the used ones.

T6. Fixing a
configuration er-
ror

Participants need to identify which option is responsible for a configu-
ration error (incorrect value), then to fix the error (and prevent future
errors of this option). This fix requires adding a “@Config” constraint
for Config2Code or adding an if-check for Preferences.

T7. Configura-
tion quality

The goal of this task is to check which options do not respect a prede-
fined naming convention (T7.1) and to propose 5 examples of these
options (T7.2)

T8. Configura-
tion review

This task requires participants to review a patch of a newly created op-
tion, whose definition contains two problems: the option did not have
any constraint attached (despite the commit message clearly mention-
ing the constraint), and the default value did not respect the constraint
of the commit message.

126

Table 6.4 Decomposition of the user study subjects.

Industrial Academia All Total
Novice Expert Novice Expert Novice Expert

C2C. 4 3 17 5 20 9 29
Pref. 3 3 16 4 18 8 26
Total 7 6 33 9 38 17 55

Table 6.5 Summary of the RQ1 correctness and RQ2 time results. NaN indicates that experts
and novices of Config2Code obtained exactly the same results, while the median improvement
values are relative to the Preferences results.

T1.1 T1.2 T2 T3 T4 T5.1 T5.2 T6 T7.1 T7.2 T8

C
or
re
ct
ne

ss

Wilcoxon p-value 1.96e-05 8.53e-06 9.84e-07 0.037 3.95e-07 8.25e-06 6.99e-08 0.35 0.042 0.83 0.15
Median Config2Code Score 1 1 1 1 1 1 1 1 0.75 1 1
Median Preferences Score 0.625 0.75 0.5 1 0.5 0.5 0.25 1 0.5 1 0
Median Improvement +60 % +33.33 % +100 % 0 % +100 % +100 % +300 % 0 % +50 % 0 % Inf %
p-value Experience (Config2Code) 0.83 0.83 0.72 NaN 0.40 0.56 0.54 0.51 NaN 0.54 0.27
p-value Experience (Preferences) 0.035 0.00059 0.18 0.13 0.29 0.10 0.025 1 0.56 0.35 0.64
#Config2Code Participants 29 29 26 27 27 29 28 24 15 24 22
#Preferences Participants 26 26 21 19 19 21 21 11 12 17 17

T
im

e

Wilcoxon p-value 4.50e-07 0.0041 0.95 0.020 0.0014 0.0025 1 0.0061 0.23 0.44
Median Config2Code Time (s) 1,559.5 40 267 408.5 37 24 312.5 171.5 57 564
Median Preferences Time (s) 3,034 132 334.5 215 182 446 191 379 94 424
Median Improvement -48.60 % -69.70 % -20.18 % +90 % -79.67 % -94.62 % +63.61 % -54.75 % -39.36 % +33.02 %
p-value Experience (Config2Code) 0.21 0.89 0.17 0.35 0.86 0.097 0.15 0.34 0.49 0.89
p-value Experience (Preferences) 0.66 0.68 0.64 0.90 0.69 1 1 1 0.32 0.4
#Config2Code Participants 24 23 23 20 22 22 14 12 16 9
#Preferences Participants 17 15 12 9 8 4 7 5 11 5

Table 6.6 Percentage of participants forgetting to add constraints, comments, usage sites and
default values during the creation of configuration options (T1).

%Constraint %Comment %Usage %Default
Config2Code 3.44 3.44 27.58 0
Preferences 73.07 53.84 26.92 7.69

127

CHAPTER 7 ARTICLE 4: MULTI-LAYER SOFTWARE
CONFIGURATION - EMPIRICAL STUDY ON

WORDPRESS

Mohammed Sayagh and Bram Adams
Published in the 15th IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM)

Abstract: Software can be adapted to different situations and platforms by changing its
configuration. However, incorrect configurations can lead to configuration errors that are
hard to resolve or understand, especially in the case of multi-layer architectures, where con-
figuration options in each layer might contradict each other or be hard to trace to each other.
Hence, this paper performs an empirical study on the occurrence of multi-layer configuration
options across Wordpress (WP) plugins, WP, and the PHP engine. Our analyses show that
WP and its plugins use on average 76 configuration options, a number that increases across
time. We also find that each plugin uses on average 1.49% to 9.49% of all WP database
options, and 1.38% to 15.18% of all WP configurable constants. 85.16% of all WP database
options, 78.88% of all WP configurable constants, and 52 PHP configuration options are used
by at least two plugins at the same time. Finally, we show how the latter options have a
larger potential for questions and confusion amongst users.

7.1 Introduction

Configuration is the means to adapt a software application to different contexts and envi-
ronments. For example, the Linux kernel can be customized to different users by selecting
only the features that are of interest. Similarly, the kernel can be customized to a specific
hardware platform by providing the details of processor, hard disk, and other devices. Each
software system has its own mechanism for configuration, ranging from hardcoded constants
to global variables, property files or dedicated databases, typically with a graphical user
interface to hide the underlying storage mechanism.

An incorrect value of a configuration option could result in incorrect behavior of a system,
which we refer to as configuration errors. Such errors occur often, typically are severe in
nature, hard to debug, but they are actionable [219]. Such bugs are severe because they
can have a catastrophic impact. For example, due to a misconfiguration, Facebook was left
inaccessible for about two hours1, depriving more than 500 million users from access to the

1https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919

128

Facebook website. Configuration errors are also hard to debug, since they need expertise
in the failing application. However, if one is able to track down the cause of such an error,
then the error is actionable since a maintainer just needs to update the configuration, usually
without recompiling.

The major challenge for resolving software configuration errors is to find the violating con-
figuration options, a challenge that is aggravated in multi-layer systems. Multi-layer systems
consist of multiple layers, each of which hides the complexity of a lower layer, and has its own
objects and configuration mechanisms. Since the behaviour of the system as a whole requires
neighbouring layers to collaborate, one needs to understand each layer’s configuration as well
as how configuration options in each layer interfere with each other.

Let’s consider the case of WP (Figure 8.1), which is currently the most popular content
management system, and a typical example of a multi-layer system consisting of a LAMP
stack (Linux, Apache, MySQL and PHP), the WP PHP application and a myriad of WP
plugins. One example of a cross-layer configuration error was the inability of WP plugins to
send emails, due to a misconfiguration in lower layers related to the PHP configuration option
sendmail_path2. A second example was the case where the NextGen plugin was no longer
able to upload images3 until someone pointed out that the script downloading the images
was blocked by a configuration option in the PHP layer (memory_limit). In both examples,
configuration options in lower layers impacted the behaviour of the top layer plugins.

Whereas existing work focuses on software configuration and configuration errors within
a single layer of a software system, this paper represents a first empirical study towards
understanding the configuration options used by and shared between different layers in the
WP multi-layer system, as well as potential links with comprehension problems of users.
The results can then be used in a follow-up study on multi-layer configuration errors. In
particular, we address two preliminary research questions to understand the evolution of
configuration options across time, and two questions analyzing the usage of options across
the studied layers:

RQ1: What is the proportion of usage of each configuration mechanism in each
layer?
WP uses configurable constants and database configuration options equally, while WP
plugins prefer (87%) configuration options stored in the database.

2https://wordpress.org/support/topic/plugin-contact-form-7-wont-connect-to-smtp-server
3https://wordpress.org/support/topic/plugin-nextgen-gallery-error-exceed-memory-limit

129

RQ2: How does configuration mechanism usage evolve across time in each layer?
Generally, the number of configuration options grows across time, especially when new
features are added in a layer. Configuration options that are not used anymore are
removed after a while.

RQ3: How many configuration options defined in lower layers are used by WP
plugins?
On average, 1.49% to 9.49% of all WP database configuration options and 1.38% to
15.18% of all WP configurable constants are used by the plugins. Furthermore, 1.30
PHP configuration options are used by plugins, but only 0.40 ones are modified. These
large numbers are confirmed by the StackOverflow and WP Exchange fora, where
12.19% of all plugin conversations and 9.49% of all WP conversations related to con-
figuration mention multi-layer configuration options.

RQ4: How many plugins share the same configuration options of lower layers?
78.88% of all WP configurable constants and 85.16% of all WP database options are
used by at least two plugins. For PHP, 52 PHP configuration options are used by at
least two plugins. We found a strong correlation of up to 0.55 between the number of
plugins using a configuration option and the number of fora conversations mentioning
it.

The paper is organized as follows: section 8.2 presents the background and related work, and
section 7.3 presents our methodology. Section 7.4 provides the results of our study, while
section 8.6 discusses the threats to validity. Finally, section 8.7 concludes the paper and
presents future work.

7.2 Background and Related Work

In this section, we provide background information about software configuration, multi-layer
systems, and the WP ecosystem, and we discuss related work.

7.2.1 Software Configuration

Configuration is a mechanism to adapt software systems to a context or an infrastructure
and is used to customize a system’s behaviors. A configuration option is a pair consisting
of an option name and its value, where the value has a specific type (typically boolean or
categorical, but sometimes numeric or even a string). For example, a PHP configuration

130

option file_uploads, which is used to allow file upload or not, could have a value of either On
or Off, while an option like error_log could have any string as its value.

Different configuration mechanisms exist, which typically differ in binding time and storage
mechanisms. Values could be bound to configuration variables at compile-time, load-time
(virtual machines) or run-time, while the values could be stored in the source code (macro
constant or global variable), database, property files or in other supports.

A configuration error then is a set of configuration options that lead to unexpected behaviour,
typically causing errors, even though the source code itself is correct. Yin et al. [215] provide
an empirical study of a commercial storage system and four open source systems on config-
uration errors, and were able to classify 546 configuration errors into five major categories.
Arshad et al. [43] provide a characterization of configuration problems for two Java EE ap-
plication servers, GlassFish and JBoss, by analyzing 281 bugs-reports. Hubaux et al. [87]
conduct two surveys respectively among Linux and eCos users to understand configuration
challenges. Jin et al. [95] analyze two open source applications and one industrial application
to quantify the challenges that configurability creates for software testing and debugging.
Other studies focus on predicting configuration bugs. Using textual information in bug re-
ports, Xia et al. [208] built a model to predict whether a bug is a configuration error or
not.

Many studies have been conducted to resolve configuration errors. Keller et al. [101] proposed
the tool ConfErr that aims at quantifying the resilience of a software system to configuration
errors caused by spelling mistakes, structural errors, and semantic errors. Zhang et al. [217]
built a tool to identify the root cause of a configuration error in Java programs. Zhang et
al. [219] provide the tool ConfSuggester, which suggests the configuration option responsible
for introducing a bug in a new version. The suggestion is generated based upon the control
flow of a system. Elsner et al. [71] propose a framework to detect configuration inconsistencies.
It allows a user to specify the possible inconsistencies in a software application, which will be
combined with a model built from the configuration files to find the inconsistencies. Attariyan
et al. [46] built the tool ConfAid, which aims at pointing out the root cause of configuration
errors, again by analyzing the control flow. Tartler et al. [182] propose an approach to
resolve the inconsistencies between the configuration model and its implementation in the
Linux source code.

While the above research provides a set of configuration options that should be changed
in order to fix a bug, Wang et al. [192] present an ordered set of configuration options to
change in order to fix a configuration error, based on user feedback. Similarly, Xiong et
al. [210] propose an approach that yields the configuration options to change and a range

131

of possible values. Lillack et al. [114] evaluate the tool Lotrack, which explains for each
code fragment which load-time configuration options should be active for it to be executed.
Nadi et al. [125] propose a static approach to extract and validate configuration constraints
from C code, which would be hard for non-experts of a system to do manually. They also
evaluate the approach’s accuracy on four highly configurable open source systems. Rabkin
et al. [147] use logs and traces to map each program point to the configuration options that
could introduce an error. Jin et al. [94] built PrefFinder, using an NLP engine to provide
the possible values of a configuration option. However, none of these related papers study
multi-layer configurations.

While we do not study multi-layer configuration errors, we do a preliminary study of the
prevalence of multi-layer configuration options. High prevalence would suggest that corre-
sponding errors are likely and hence should be studied.

7.2.2 WP Ecosystem

Similar to Drupal and Joomla, WP is one of the most popular and powerful [138] Content
Management Systems (CMS) for creating blogs. It powers more than 60 million websites,
i.e., 61% of all websites created by a CMS4, and 23.3% of all websites in existence5. One
of the most important factors in WP’ success is its variety of plugins. WP plugins (such as
NextGen, and Contact Form) allow users to add to their websites any functionality that they
can imagine, since a plugin basically consists of PHP scripts that can access any of the lower
layers of the WP architecture. WP has thousands of plugins, together downloaded more than
748 million times6.

WP typically runs on top of a multi-layer LAMP stack (Figure 8.1), consisting of a Linux
operating system, Apache web server, MySQL relational database and PHP scripting lan-
guage7. The vertical layout of Figure 8.1 shows how the different layers communicate with
each other. The plugin layer communicates with the Web framework layer, which relies on
the lower layer Scripting language that is used to connect to the database and web server.
These elements in turn rely on the operation system, which hides the hardware complexity.

Some studies have focused on multi-language or multi-layer web applications. As PHP is a
dynamic language used to create web pages, Nguyen et al. [130] propose a static analysis to
find undefined variables and functions in all web pages generated by any HTML, JS, PHP,

4http://w3techs.com/technologies/overview/content_management/all/
5http://w3techs.com/technologies/details/cm-wordpress/all/all
6https://wordpress.org
7http://searchenterpriselinux.techtarget.com/definition/LAMP

132

Figure 7.1 The layers of a typical WP installation. We focus on the configuration options of
the top three layers.

or SQL script. Eshkevari et al. [73] study the problem of interference (conflicting entity
names, hooks, database code, variables, and risky includes) between WP and 10 plugins,
and propose an approach to resolve it. Nguyen et al. [128] elaborated a prototype PHP
interpreter to detect WP plugin conflicts out of the large number of possible combinations
(250) of activated WP plugins. They found that among all plugin combinations, 29% of
WP statements and 89% of WP variables’ values are shared. None of these papers study
configuration options.

7.2.3 WP Configuration Mechanisms

WP and its plugins use two mechanisms for configuration. The first one consists of storing
the configuration options in a database, while the second one consists of overriding PHP
constants in the WP source code. We respectively refer to them by "database options" and
"configurable constants".

Database options are stored in the table wp_options, while configurable constants are PHP
constants that can be overridden by a user in a central configuration file wp-config.php. Every
usage of the latter constants in the source code is preceded by an if-check (as shown in Figure
7.2) that checks whether the constant has been defined already. If not, it defines the constant
with a default value. Since the wp-config.php file is loaded first by WP, any constant defined
in that file by the user will have precedence over the default value.

133

if (! defined(’FTP_FORCE’)) define (’FTP_FORCE’, true);
————————————————————-

$method = defined(’FS_METHOD’) ? FS_METHOD : false;

Figure 7.2 Two examples of configurable constants that can be redefined in wp-config.php

7.3 Approach

This section presents the methodology used to answer the research questions of the introduc-
tion.

7.3.1 Data Selection

Since RQ1 and RQ2 require manual analysis to complement the quantitative findings, we
used a more focused data set for it ("Small Data Set"). For RQ3 and RQ4, we rely less on
qualitative analysis and are able to study a larger-scale data set ("Large Data Set").

Small Data Set (RQ1 and RQ2)

For RQ1 and RQ2, we analyzed the source code of the WP layer (in the remainder of the
text, we refer to "WP") and 15 WP plugins. The selection of plugins is based on the following
two criteria:

• Criterion 1: Plugins should have a dedicated set of methods to extract configuration
options from the database.

• Criterion 2: To avoid the need for intra- or inter-procedural data flow analysis, the
parameter of the methods used to extract a plugin’s configuration options should be
specified as a literal.

While all plugins use the same methods to access the database options of the WP layer, each
plugin can have its own methods to access its own configuration options. Since these methods
are not known a priori (basically requires manual analysis), and these methods could change
across time, the manual validation of criteria 1 and (especially) 2 took a substantial amount
of time.

Based on these criteria, we randomly selected plugins for analysis from the popular plugins
listed in the "add plugins" administrator page of a WP website, and obtained 15 plugins
that satisfied the criteria (see Table 7.1). Although these plugins do not cover the top 15

134

Table 7.1 WP and plugins of the Small Data Set used in RQ1 and RQ2.

WP/Plugin Versions (#) # Downloads Popularity
Rank of
Last Version

WP (platform itself) 1.5 - 4.0 (26)
all-in-one-seo-pack 0.6.2.6 - 2.2.4.1 (232) 21.23M 2
updraftplus 0.7.4 - 1.9.5 (175) 1.70M 11
Google XML Sitemaps 2.5 - 4.0.8 (46) 16.20M 12
NextScripts 1.6.1 - 3.2.3 (11) 1.44M 15
wp-pagenavi 1 - 2.87 (23) 5.28M 27
Page Builder by SiteOrigin 1.2.10 - 2.0.3 (32) 1.15M 29
MailPoet 2.5.2 - 2.6.9 (26) 3.29M 33
Redirection 2.1.29 - 2.3.11 (19) 2.09M 34
The Events Calendar 1.5 - 3.9.1 (44) 1.35M 48
BBPress 2 - 2.5.4 (37) 1.66M 57
Download Manager 2.1.3 - 2.7.5 (7) 0.92M 58
broken-link-checker 0.1 - 1.10.4 (118) 3.14M 72
Captcha 2.12 - 4.0.7 (87) 2.42M 77
Flyzoo 1.4.2 - 1.4.5 (4) 0.32M 117
WP-Members 2.1.0 - 2.9.7 (49) 0.64M 132

most popular plugins, we can see that all plugins have at least 320,000 downloads, with a
maximum of 21.23 million downloads for all-in-one-seo-pack. The plugins have between 4
and 232 versions.

Large Data Set (RQ3 and RQ4)

To analyze the interaction between different layers in the third and the fourth research
questions, we use the last version of WP at the time of writing (4.0) and the 484 most popular
plugins. This list of plugins can be obtained by any WP user from the administrator pages of
a WP website. As we obtained in the first and second research questions the names of all WP
configuration options, we just have to check the usage of those names in the plugins’ source
code. Furthermore, we found that for the methods used to access WP database options, the
WP option name is passed as a literal argument in 98% of all the method calls. Therefore,
we were able to use the 484 most popular plugins without limitations or specific criteria.

135

7.3.2 Identification of Configuration Options and Their Usage

Data Sources

We obtained the versions of WP and each plugin selected for the Small Data Set from the
corresponding Subversion (SVN) repositories. In those repositories, WP and its plugins make
all their versions accessible via SVN tags.

To obtain the 484 most popular plugins, we selected and installed the top 484 popular plugins
(at the time of writing the paper) in our WP administrator environment.

Manual Identification of Access Methods:

Each plugin can have its own method to access the configuration options from the database.
To understand these methods, we installed and activated each plugin, then looked at the
database options added by the plugins of the Small Data Set, as well as how these config-
uration options are accessed in the source code of the plugin. Some plugins use the same
methods as WP to access their own database configuration options, while others have their
own methods. The number of methods differs from one plugin to another, and ranges from
one to five.

As the plugins could change their methods across versions, we analysed the last version of
each plugin, computed the number of configuration options for all plugins, then we checked
manually for the previous versions if there was a big difference in the number of configuration
options between two versions, which could be due to the modification of the methods to access
database options. If so, we took the change in access methods into account.

7.3.3 Measuring The Proportion of Usage of Each Configuration Mechanism
(RQ1/RQ2)

To obtain the configuration options used in the WP layer and the plugins layer, we performed
the following two steps. First, to get the configurable constants of the plugins and WP, we
scanned the source code for constants for which there is an if-check, as shown in Figure 7.2.
For WP itself, we also scanned any constant already defined in wp-config-sample.php.

Second, to get the database configuration options of the plugins, we scanned the source code
to find method calls to the methods that we know are being used by the plugin to access
options (from our manual analysis in the previous section).

136

7.3.4 Measuring Direct Usage of Configuration Options (RQ3/RQ4)

To find the WP configuration options used by the plugins, and the PHP configuration options
used by WP and the plugins, we used two approaches. The first approach measures direct
usage of configuration options, i.e., textual occurrences of any of the known WP configurable
constants (based on the list that we obtained in the two previous research questions) or
explicit calls from a plugin or WP to obtain the value of a specific database option. This
analysis uses regular expressions. The second approach (discussed in the next subsection)
measures options accessed indirectly via nested method calls (e.g., a plugin calls a method
of WP that accesses a configuration option).

To find accesses to PHP configuration options, we check the source code of WP and each
plugin for calls to the methods ini_get or ini_set.

7.3.5 Measuring Indirect Usage of Configuration Options (RQ3/RQ4)

Given the gap in layers between the definition and usage of an option, RQ3 and RQ4 also
need to deal with indirect usage of options. For example, instead of accessing a configuration
option inside the source code of a plugin, the plugin might call a function of another plugin
or maybe WP that accesses the configuration option.

We use the open source PHP-Parser8 to build control flow graphs of all methods inside WP
and each plugin, then perform a filtering of the control flow graphs. The filtering retains only
statements that read or write configurable constants and database options of any of the three
layers. Methods that are called but do not manipulate configuration options themselves are
filtered out as well.

At the end of this filtering, the graphs contain all the data about configuration options and
indirect access via method calls that we need. For each method, we can transitively follow
the graph’s edges to find all WP and PHP options that it reads or writes. For example, if
the function x calls y and z, and y calls w, then by using the graph generated in this step,
we return all the configuration options used in x, y, w, and z.

Note that direct usage of configuration options represents a lower bound of option usage for a
given plugin or WP, with indirect usage corresponding to the worst case of additional options
that could be accessed. We expect real usage to be closer to the lower bound, but included
both bounds for completeness.

8https://github.com/cwi-swat/PHP-Parser

137

7.3.6 Measuring Configuration Options’ Occurrences in Discussion Fora (RQ3/
RQ4)

To understand the actual impact of the findings of RQ3 (usage of options of deeper layers)
and RQ4 (multiple plugins using the same options), we analyzed the StackOverflow and WP
Exchange9 fora respectively from July 2008 and November 2011 to March 2015, amounting
to 7,259,572 and 46,509 conversations in total. We got the data of these fora in the form of
xml files from the StackExchange archives10.

We used StackOverflow and WP Exchange fora, because StackOverflow is one of the most
popular fora for developers across all programming languages, while WP Exchange is a
popular forum with WP developers. We did not analyze the WP support forum11, because
we could not distinguish conversations related to WP from those related to WP plugins.

For RQ3, we analyzed whether multi-layer configuration represents a real problem in prac-
tice, by measuring the percentage of conversations related to multi-layer configuration issues.
For this, we searched for the names of WP and PHP configuration options inside forum con-
versations on plugins. We used the conversations’ tags to distinguish between conversations
related to WP and conversations related to plugins. A conversation related to WP plugins
typically contains the keyword "plugin" like "Wordpress-plugin".

For RQ4, we analyzed the same fora to find if there is a correlation between the number
of plugins using a configuration option and the number of conversations about the option,
which could give an indication about the existence of multi-layer configuration problems or
confusion by users.

7.4 Results

In this section, we present for each research question the motivation, the approach used, and
the results.

(RQ1) What is the proportion of usage of each configuration mechanism in each layer?

Motivation. We analyze in this research question the use of each configuration mechanism,
with the goal of understanding which one is the most popular and hence needs closer analysis.

Approach. We used the approach of Section 7.3.3.
9http://wordpress.stackexchange.com

10https://archive.org/download/stackexchange
11https://wordpress.org/support/view/all-topics

138

161	

5	
5	 1	 11	

1	 1	 3	
3	

15	

2	

38	

0	
1	

0	
7	

155	

21	
50	 26	 79	

51	 14	 44	
9	

22	

349	

57	

15	
6	

13	
51	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Wo
rdp
res
s	

Ma
ilP
oe
t	

BB
Pre
ss	

Do
wn
loa
d	 M

an
ag
er	

all
-‐in
-‐on
e-‐s
eo
-‐pa
ck	

Go
og
le	
XM
L	 S
ite
ma
ps
	

wp
-‐pa
ge
na
vi	

bro
ke
n-‐l
ink
-‐ch
ec
ke
r	

Pa
ge
	 Bu
ild
er	
by
	 Si
teO

rig
in	

WP
-‐M
em
be
rs	

Ne
xtS
cri
pts
	

up
dra
Op
lus
	

Ca
ptc
ha
	

Fly
zo
o	

Re
dir
ec
To
n	

Th
e	 E
ve
nts
	 Ca
len
da
r	

Database	

Constants	

Figure 7.3 Distribution of the number of configurable constants and database options for WP
and the 15 analyzed WP plugins.

Results. The average number of configuration options across all plugins and WP
is 76. FlyZoo and Page Builder have the lowest number of options (less than 10), followed
by Redirection and Captcha. NextScripts and WP have more than 300 options, followed by
updraftplus and all-in-one-seo-pack.

On average 87% of a plugin’s configuration options are stored in the database.
Figure 7.3 shows the distribution of the number of configuration options across both mech-
anisms, for each plugin. It shows that WP uses 161 configurable constants as configuration
option, and stores 155 configuration options in its database. In contrast, all WP plugins
mostly use the database as a configuration mechanism, with an average of 87%, compared
to 13% for configurable constants.

While the plugins use database options more than constants to configure their behavior,
the percentage of usage of each mechanism differs from one plugin to another. There are
some plugins where the configurable constants present 40% of all configuration options, such
as WP-Members and updraftplus. Other plugins use the constants mechanism to configure
around 20% and 25% of their configuration options, like MailPoet and Page Builder by
SiteOrigin. The plugin Flyzoo uses constants as configuration mechanism for 14% of its
configuration options, approximately the same as the plugin The Events Calendar. Finally, we
have nine plugins where the configurable constants represent less than 10% of all configuration

139

options. The plugins Captcha and Redirection do not use configurable constants at all, they
use only the database as a mechanism to store configuration options.

Discussion. To understand the dominance of database configuration options, we manually
analyzed the documentation of the plugins and categorized the database options among
different use case categories. We used the existing categorization of WPengineer.com12 for
configurable constants (Table 7.3), as inspiration for our categorization of database options.

Overall, the database configuration options are those that are shown in a plugin’s public
web interface, i.e., they are meant to be changed and customized by plugin users via the
administrator pages. For example, we found a commit that removed a configuration option
from the database13, because it didn’t have any UI anymore to change it. On the other hand,
the constants, by definition, require changes to the code. While those constants conveniently
can be overridden in the wp-config.php file, they require manual exploration of the source
code to be detected and to understand the default value.

As presented in Table 7.2, we identified six database option categories. The first category
represents the "general configuration options", which refer to configurations used all over a
website, such as the blogname or siteurl. The second category corresponds to "writing" options
used to write the website pages and posts, such as the option use_smilies, which is a boolean
variable used to display emoticons as graphic icons. The third category is "reading", which
presents all options related to displaying the posts, such as the number of posts per page
(option posts_per_page). The fourth category corresponds to "discussion" options for the
articles published on the website, such as comment_registration, which is a boolean variable
used to decide whether commenters need to be registered. The fifth category corresponds
to "media" options, i.e., the allowed dimensions of images. The last category corresponds to
"permalinks", which allows to customize the URL structure of blog posts and archives.

12http://wpengineer.com/2382/wordpress-constants-overview/
13https://core.trac.wordpress.org/changeset/27916

Table 7.2 Categories of database options.

Categories Examples
General siteurl, blogname, admin_email
Writing use_smilies, mailserver_url
Reading posts_per_page
Discussion show_avatars, comment_registration
Media thumbnail_size_w, large_size_h
Permalinks permalink_structure, category_base

140

Table 7.3 Categories of WP configurable constants with examples by wpengineer.com 12.

Categories Examples
General AUTOSAVE_INTERVAL, WPLANG
Status APP_REQUEST, DOING_AJAX
Path, dirs, and links WP_LANG_DIR, ABSPATH
Database DB_HOST, DB_USER
Multisite MULTISITE, DOMAIN_CURRENT_SITE
Cache and script compressing COMPRESS_SCRIPTS, ENFORCE_GZIP
Filesystem and connections FTP_HOST, WP_PROXY_PORT
Themes HEADER_IMAGE, TEMPLATEPATH
Debug SCRIPT_DEBUG, WP_DEBUG
Security and cookies COOKIE_DOMAIN, NONCE_KEY

On the other hand, if we compare to the categorization by WPengineer.com for configurable
constants in WP (Table 7.3), configurable constants instead tend to manage more technical
behavior, or correspond to configuration options that do not change regularly. For example,
the general category contains technical options such as DOING_AUTOSAVE, which is used
to specify whether "WordPress is doing an autosave for posts"12. There are other configurable
constants that refer to development tasks, such as a category for debug mode, security, paths,
directories, and links.

(RQ2) How does configuration mechanism usage evolve across time in each layer?

Motivation. The goal of this research question is to understand whether WP layers change
the mechanism used to specify configuration options, or whether new options tend to prefer
one mechanism or the other. It also sheds light on whether the number of configuration
options plateaus early on, or whether the number keeps on increasing. The latter case would
not only result into more options, but also potentially into more interactions between options,
which could introduce more configuration errors.

Approach. For both configuration mechanisms, we use the same approach as in RQ1 for
each plugin’s version.

To analyze the results, we performed a number of activities. First, we used SLOCcount [203]
to compute the number of lines of code of WP and its plugins to find if the increased number
of options is related to large amounts of code (and hence features) being added. We also
analyzed the names of the configuration options added in those versions with the goal of
understanding whether or not the configuration options are related to new features. Finally,

141

we also used the tool DiffMerge14 to compare the source code of a version introducing many
configuration options with its predecessor.

Results. For 60% of the plugins, the number of configuration options grows across
time for both mechanisms. As presented in Figure 7.5 (the full plots for all plugins can be
found online15), the number of database options in the last version of a plugin is higher than
in the first version, except for the plugin Redirection where the number remained the same.
Similar observations hold for the configurable constants, except for those of the six following
plugins (not shown): MailPoet, BBPress, NextScripts, Captcha, Flyzoo, and Redirection.

As we saw for RQ1, the number of configuration options stored in the database is higher
than the number of configurable constants, and Figure 7.5 shows that this number remains
higher across all versions of the plugins, except for WP, where the number of database options
eventually dropped below the number of configurable constants.

Each plugin, except for Redirection, sees growth in its usage of at least one of the two con-
figuration mechanisms. For WP, the number of options grows rapidly for both mechanisms,
similar to the plugin updraftplus and WP-Members. For the other plugins, the number of
configuration options stored in the database grows more rapidly than the number of con-
figurable constants. The Redirection plugin sees no growth, and temporarily even lost one
database configuration option between version 2.3.2 and version 2.3.5.

For some versions, we can observe that the number of configuration options has an important
decrease. For example, the number of configuration options decreases between versions 3.4.1
and 4 of the plugin Google XML Sitemaps for database configuration options. The same
happens between versions 1.1 and 1.2.2 of the plugin broken-link-checker.

Discussion. To understand the above findings better, we studied the Spearman correlation
between the evolution of the number of configuration options and the size (i.e., number of
source code lines) of WP and plugins versions. Table 7.4 shows that the correlation results
are strong for WP and all plugins cases, except for MailPoet (moderate) and Redirection
(moderate and negative). In the latter case, the number of configuration options is stable
across all versions except two, one of which shows a decrease. We also plotted the number
of options per line of code16, which showed us that nine plugins have a decreasing trend,
i.e., the size of these plugins increases more rapidly than their number of options. On the
other hand, Download Manager, NextScripts, Page Builder by SiteOrigin, and WP-Members

14http://www.diffmerge.net
15http://mcis.polymtl.ca/∼msayagh/Paper/SCAM15/Figures/
16http://mcis.polymtl.ca/∼msayagh/Paper/SCAM15/LOC_vs_Options/

142

● ● ● ● ● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

1.5 1.5.2 2.3 2.8 3.2 3.6 4

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

● ● ● ● ● ●

●

●

●

●

●

●

● ● ●
● ●

● ●

●

● ● ● ● ● ●

WP

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●●●●●●

●●●●●

●

●

●●●

●●
●●

●●●

●●●●
●●●●

●●●●
●●●●●●●

●●●●●●●

0.7.4 1.1.0 1.2.25 1.3.24 1.7.0 1.9.45

0

5

10

15

20

25

30

35

40

45

50

55

●●

●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●

●●●●●

●

●●●●

●
●●●●●●

●●
●●●●●●

●●

●

●●
●●●

●●●●●●●●●●

Plugin: updraftplus

● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
● ● ● ●

2.5 3.0.3 3.1.3 3.2 3.2.7 4 4.0.6

0

5

10

15

20

25

30

35

40

45

50

55

60

●

● ● ●

●

●

● ●
● ● ● ● ● ●

●
● ● ●

● ●
●

● ● ● ● ● ● ●
●

● ●
● ● ● ● ●

●
● ● ● ●

●
● ● ● ●

Plugin: Google XML Sitemaps

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

2.1.29 2.2.9 2.2.13 2.3.4 2.3.9

0

1

2

3

4

5

6

7

8

9

10

11

12

13 ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ●

Plugin: Redirection

Figure 7.5 Evolution of the number of configuration options for both mechanisms across WP
and the studied WP plugins versions, i.e., database (red) and configurable constants (blue),
Our full results are online15.

143

proportionally add more options than they increase in size and features, while Flyzoo and
Redirection more or less retain a constant proportion.

As examples of these strong correlations, we found that between versions 2.0.3 and 2.1
of the plugin BBPress, its developers added 11 configuration options, since many features
were added, represented by 7738 new lines of code. Just the addition of the component
bbConverter17 to the plugin introduced seven configuration options. In the plugin all-in-one-
seo-pack, its developers added the following components: Sitemap and Social Meta module.
Furthermore, some information was made configurable in the plugins WP-Members and The
Events Calendar. For example, instead of hardcoding the different parts of an email like the
body, or the mail footer, these now became configurable.

The growth of the number of configurable constants is due to making additional constants
configurable or adding new components (containing configurable constants). By analyzing
the difference between versions 2.8.10 (2 configurable constants) and 2.9.0 (16 configurable
constants), we found that version 2.9.0 makes certain PHP constants of version 2.8.10 con-
figurable, by testing if they are defined before their existing definitions (cf. Fig. 7.2). For the
updraftplus plugin, we found that newly added components have 16 configurable constants.

There is one important case of decrease of configuration options between versions 3.4.1 and
4 of the plugin Google XML Sitemaps. Analysis of the source code showed the following
comment: "restores some default options which were not needed anymore in v4.".

(RQ3) How many configuration options defined in lower layers are used by WP plugins?

Motivation. Now that we better understand the scale and evolution of configuration option
usage within layers, RQ3 analyzes the usage across different layers (see Figure 8.1). Such
usage potentially can be error-prone, since configuration options of lower layers need to be
defined in a different location than the plugins’ options, and a change to the value of a lower
layer option could impact multiple plugins at once. This RQ focuses on the plugins’ usage of
lower layer options, whereas RQ4 measures the amount of lower layer options used by more
than one WP plugin.

Approach. We calculate the plugins’ direct and indirect usage of WP and PHP options
using the approach of Section 7.3.4 and 7.3.5. For database options of WP and for PHP
options, we split up "usage" of an option into reading and writing (based on the names
of access methods), whereas for constants we only consider reading (since by definition a
constant can only be defined once). Note that for RQ3 and RQ4 we use the Large Data Set.

17https://wordpress.org/plugins/bbconverter/

144

Table 7.4 Correlation between number of configuration options and number of lines of code
of WP and the analyzed plugins.

WP/Plugin Correlation
Flyzoo 0.9933902
The Events Calendar 0.9884512
NextScripts 0.9860491
Download Manager 0.9814041
broken-link-checker 0.9762101
WP 0.9643059
updraftplus 0.9582439
BBPress 0.9447637
Captcha 0.937967
WP-Members 0.9121678
Google XML Sitemaps 0.8971884
all-in-one-seo-pack 0.8252223
Page Builder by SiteOrigin 0.728631
wp-pagenavi 0.7014725
MailPoet 0.491287
Redirection -0.3714881

●
●
●
●
●

●

●
●●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

Direct Indirect

0
2

0
4

0
6

0

Database options

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●

●

●

direct indirect

0
1

0
2

0
3

0
4

0
5

0

Configurable constants

Figure 7.7 The number of WP options read by plugins.

145

Results. Each plugin reads on average 1.49% to 9.49% of all WP database options,
and 1.38% to 15.18% of all WP configurable constants. While WP plugins read on
average 2.32 WP database options directly, they read 13.73 options indirectly, corresponding
respectively to 1.49% and 9.49% of the WP database options. Similarly, they read on average
2.41 WP configurable constants directly and 22.22 ones indirectly (i.e., 1.38% and 15.18%).
Figure 7.7 confirms that the plugins read more configuration options indirectly than directly
(both database options and constants). Note that the set of direct reads is not a subset of
the set of indirect reads (although overlap is possible), since options in the latter category
need to be read at least once in an indirect way to be considered as indirectly read.

The maximum number of WP database options read directly by one plugin is 59 (JetPack
plugin), whereas for the indirectly read ones it is 57 (Worker plugin). The maximum number
of WP configurable constants read directly by one plugin is 31 for BuddyPress. The plugin
JetPack indirectly reads 70 configurable constants, which represents the highest number of
configurable constants read indirectly.

Each plugin directly writes on overage 0.11 WP database configuration options,
and indirectly on average 0.32. While 441 plugins out of 484 do not directly write any
configuration option, 35 plugins directly write one WP database option, five plugins write
two WP database options, two plugins write three, and only one plugin writes five.

89 plugins (18% of all the plugins analyzed) indirectly write one or more WP database
configuration options, where the maximum number of written WP configuration options is
nine.

The plugins also read on average 1.30 PHP configuration options, and write 0.40
options, whereas WP reads 20 PHP options, and writes 8 options. Figure 7.9 shows
that the plugins read the PHP options more indirectly than directly. It also shows that the
number of writes is low (median of 0).

Discussion. Database options and configurable constants are mostly being read by their
own plugins. This can be seen by the fact that the plugins use just 1.42% of the WP
database options directly, and just 1.49% of the configurable constants. Moreover, few PHP
configuration options are read by plugins, just 1.30 on average, and few of them (0.40) are
modified. The use of PHP configuration options by WP is also negligable.

Although this seems good news, the number of configuration options used indirectly is sig-
nificantly higher than the number of options used directly. Hence, the modification of one
configuration option could impact the behavior of many plugins at once, possibly without
developers being aware (since the dependencies are indirect). Figure 7.7 also shows that con-

146

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●●●

●●●

●●●

●●●●

●●●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●●

direct indirect

0
5

1
0

1
5

2
0

Reading

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

● ●●●●●●●●●●●●●●●●●

direct indirect

0
2

4
6

8
1

0

Writing

Figure 7.9 The number of PHP options used by plugins.

figurable constants are used more indirectly than database options. We study this in more
detail in the next RQ.

To better understand the degree to which cross-layer configuration option usage could cause
problems to users in terms of understanding and maybe errors, we analyzed the StackOver-
flow and WP Exchange fora. Out of 60,502 StackOverflow conversations related to only
WP (not plugins), 5,907 (9%) are related to configuration issues, and 816 of these 5,907
conversations (13%) are related to PHP configuration options. Stackoverflow also contains
8,417 conversations related to WP plugins, where 679 conversations (8%) contain at least one
WP or PHP configuration option, i.e., are related to multi-layer configuration issues. The
WP Exchange forum9 contains 9,756 conversations related to WP configuration issues out
of 46,509 (21%), where 504 (5%) are related to PHP configuration options. From the 8,426
conversations related to plugins in the WP Exchange forum9, 1,375 conversations (16%) are
related to WP or PHP configuration.

Although the percentages of plugin conversations related to multi-layer configuration (8%
and 5%) seem low, it is important to keep in mind that we do not know the number of
plugin conversations talking about configuration in general (as the plugins’ options follow
different naming conventions). Since this number will be much lower than 8,417 or 8,426,
the percentage of *configuration* discussions that consider options across layers will be much
higher than 8% or 5%.

147

Therefore, an important percentage of conversations in both fora is related to multi-layer
configuration issues, which suggests that it is an important issue for WP users.

(RQ4) How many plugins share the same configuration options of lower layers?

Motivation. In this research question, we analyze interference between plugins caused
by dependency on a common configuration option of WP or PHP. Such interference could
indicate risky configuration options of lower layers that might impact many plugins at once.

Approach. Similar to the previous research question, we measure both direct and indirect
configuration option usage. Since here we are interested in any usage of configuration options
by one or more plugins, we do not distinguish between reading and modification of options,
but merge both into "usage". For our study of Spearman correlations of forum conversations,
we merged the data of both fora into one.

Results. 78.88% of all WP configurable constants and 85.16% of all WP database
options are used by at least two plugins. In Figure 7.11, 25 out of 161 WP configurable
constants are used directly by more than 10 plugins, while 75 configurable constants are used
indirectly by more than 16 plugins (29 even by more than 104 plugins). The highest number
that we found were the 231 different plugins that directly use the configurable constant
ABSPATH. For indirect usage, WP_DEBUG is used by 447 different plugins out of the
484 plugins in the Large Data Set, and the VHOST, MULTISITE, and SUNRISE options
are used by 445 different plugins. At the other extreme, 21 configurable constants are used
directly by just two different plugins, and five are used indirectly by two different plugins.

Turning now to WP database options, Figure 7.13 shows how 24 out of 155 database options
are used directly by more than 10 plugins, whereas 59 are used indirectly by more than 10
plugins. The option used directly by the highest number of plugins is active_plugins, which is

0	

50	

100	

150	

200	

250	

1	 7	 13	 19	 25	 31	 37	 43	 49	 55	 61	 67	 73	 79	 85	 91	 97	

direct

0	

100	

200	

300	

400	

500	

1	 5	 9	 13	 17	 21	 25	 29	 33	 37	 41	 45	 49	 53	 57	 61	 65	 69	 73	 77	 81	

indirect

Figure 7.11 The number of plugins (Y axis) using a given configurable constant (ordered on
the X axis).

148

0	

20	

40	

60	

80	

100	

120	

1	 7	 13	 19	 25	 31	 37	 43	 49	 55	 61	 67	 73	 79	 85	 91	 97	

direct

0	

100	

200	

300	

400	

500	

1	 7	 13
	

19
	

25
	

31
	

37
	

43
	

49
	

55
	

61
	

67
	

73
	

79
	

85
	

91
	

97
	

10
3	

indirect

Figure 7.13 The number of plugins (Y-axis) sharing the same database configuration option
(ordered on the X axis).

used by 97 different plugins out of 484 plugins, and the second most important configuration
option is siteurl (used by 78 plugins). The option blog_charset is used indirectly by the
highest number of plugins (458 different plugins). At the other extreme, 28 WP database
configuration options are used directly and seven ones are used indirectly by only two different
plugins.

52 PHP configuration options are used by at least two different plugins. In Figure
7.15, 13 PHP configuration options are used directly by more than 10 plugins, while five PHP
configuration options are used indirectly (across WP functions) by more than 28 different
plugins. The PHP configuration memory_limit is used directly by 75 different plugins,
safe_mode is used by 71 plugins. However, the most used options are arg_separator.output
and mbstring.func_overload, which are used respectively by 300 and 297 different plugins.

0	

20	

40	

60	

80	

1	 4	 7	 10	 13	 16	 19	 22	 25	 28	 31	 34	 37	 40	 43	 46	 49	

direct

0	
50	
100	
150	
200	
250	
300	
350	

1	 2	 3	 4	 5	 6	 7	 8	 9	

indirect

Figure 7.15 The number of plugins using the same PHP configuration option (ordered on the
X axis).

149

There are also three PHP configuration options used by just three different plugins, and nine
PHP configuration options that are used indirectly from the WP source code.

Discussion. As 101 (62%) out of 161 of WP configurable constants are used directly and 81
(50%) are used indirectly by at least two different plugins, the modification of a configurable
constant inside the WP layer might impact many other plugins indirectly. For example,
the configurable constant ABSPATH is used directly by 47% of the plugins studied, and
indirectly by 78%. If its value would become corrupt, it could impact the behavior of at least
78% of the plugins.

Similarly, there are some WP configuration options stored in the database that are used by
many plugins, which means that their modification could impact the plugins’ behavior as
well. For example, blog_charset is used indirectly by 94% of the plugins studied. An error
with this option could impact what the plugins display on the screen. The above of course
holds for the PHP configuration options as well, which come from an even deeper layer.

We found that there is a weak to moderate correlation (between 0.22 and 0.55) between
the number of times a WP configuration option is being used directly by plugins and the
number of conversations discussing the option, as shown in Table 7.5. The correlation results
for indirect usage of WP configurable constants and WP database options are weaker. All
correlations are positive, hence the more plugins use an option of a deeper layer, the more
discussions there are about the option, hence the more information people require about it.
This suggests that the reuse of configuration options of deeper layers can pose problems for
WP users and hence requires more research.

Table 7.5 The correlation between the number of plugins using an option and the number of
conversations mentioning it.

Configuration options of Case Correlation
WP configurable constants Direct use 0.5533475
WP configurable constants indirect use 0.2268492
WP Database options Direct use 0.3643119
WP Database options indirect use 0.2795615
PHP configuration options Direct use 0.5593974
PHP configuration options Indirect use 0.4427347

150

7.5 Threats to Validity

Regarding threats to external validity, since we analyzed only the WP ecosystem, and within
this ecosystem only a limited amount of plugins, we cannot generalize the results to other
systems. However, our results provide a first large analysis of the use of configuration options
in multi-layer systems, since in total we considered 484 plugins, 15 of which were manually
analyzed across time. In future work, we plan to analyze other multi-layer systems, in the
same as well as other domains.

Regarding threats to internal validity, we analyzed only 15 plugins for the first and the
second research question due to the manual analysis required, especially due to the criterion
for literals in the method calls used to access the plugins’ database options for RQ1 and RQ2,
and the need to manually find these methods. However, these plugins are all popular plugins
from a variety of organizations and domains.

7.6 Conclusion

Multi-layer systems like WP have a potential for configuration errors due to interference
between configuration options in different layers. As a first step towards analyzing such
errors, this paper performed an empirical study on the prevalence of multi-layer configuration
options in WP, WP plugins and the PHP system. We found that except for WP itself, WP
plugins prefer storing configuration options in a database, in order to make them easily
available to the end user for configuration. Furthermore, configuration options and usage
evolve across time, especially when new features are added. Across layers, we found that
each plugin uses on average 1.30 PHP configuration options and modifies 0.40 options, while
it uses on average 1.49% to 9.49% of all WP database options and more than 1.38% to 15.18%
of all WP configurable constants. Furthermore, 78.88% of all WP configurable constants and
85.16% of all WP database options are used by at least two plugins at the same time, which
can be between two and 447 plugins for configurable constants, two and 458 plugins for
WP database configuration options, and between two and 300 plugins for PHP configuration
options.

Finally, there is more indirect use of configuration options than direct use, which could
make the detection and fixing of configuration errors more difficult. We indeed found initial
evidence of this potential through the relatively high percentage of conversations in Stack-
overflow and WP Exchange fora talking about options of deeper layers. Hence, we would
suggest Wordpress to provide a mechanism to warn plugin developers or users for the impact

151

of cross-layer configuration modifications. Future work needs to build on these results to help
users detect and fix configuration problems across multiple layers.

152

CHAPTER 8 ARTICLE 5: ON CROSS-STACK CONFIGURATION
ERRORS

Mohammed Sayagh, Noureddine Kerzazi, Bram Adams
Published in the 39th International Conference on Software Engineering (ICSE)

Abstract: Today’s web applications are deployed on powerful software stacks such as MEAN
(JavaScript) or LAMP (PHP), which consist of multiple layers such as an operating system,
web server, database, execution engine and application framework, each of which provide re-
sources to the layer just above it. These powerful software stacks unfortunately are plagued
by so-called cross-stack configuration errors (CsCEs), where a higher layer in the stack sud-
denly starts to behave incorrectly or even crash due to incorrect configuration choices in
lower layers. Due to differences in programming languages and lack of explicit links between
configuration options of different layers, sysadmins and developers have a hard time identify-
ing the cause of a CsCE, which is why this paper (1) performs a qualitative analysis of 1,082
configuration errors to understand the impact, effort and complexity of dealing with CsCEs,
then (2) proposes a modular approach that plugs existing source code analysis (slicing) tech-
niques, in order to recommend the culprit configuration option. Empirical evaluation of this
approach on 36 real CsCEs of the top 3 LAMP stack layers shows that our approach reports
the misconfigured option with an average rank of 2.18 for 32 of the CsCEs, and takes only
few minutes, making it practically useful.

8.1 Introduction

Every web app requires a so-called “software stack” to provide the computation and storage
resources that it needs. For example, a web app would not be accessible without a web server.
Moreover, a web app requires a database to store its state, and some kind of execution
engine within which computations can be run. Hence, a web app requires a large set of
services, each of which is served by a separate layer, together forming a stack of services
consuming each other’s resources. One popular software stack is the so-called LAMP stack
(Figure 8.1) [22], consisting of Linux (operating system; OS) [23], Apache (web server) [6],
MySQL (database) [26] and PHP (execution engine) [28] layers for deploying web apps such
as Wordpress [33] (WP) or Drupal [16] (DR). Other common stacks are the J2EE [20] and
MEAN stacks [25].

153

Once a web app is deployed, the behaviour of the stack can further be adapted to a particular
platform by changing the layers’ configuration options. Such options are basically a set of
<key,value> pairs, in which the key represents an option name and the value a user’s desired
choice for that option. These pairs typically are stored in dedicated configuration stores
(files, databases, ...), and can change the behaviour of a system without re-compilation. For
example, one can configure the database server to limit the number of connections by using
the database option “max_connections”, while one can also configure the PHP-interpreter
to limit the execution time of a script by the option “max_execution_time”.

Despite this flexibility, assigning a wrong value to a configuration option could lead the
configured stack to behave incorrectly or even to crash. Although, technically, one only
needs to change the value of a configuration option to fix it, finding the correct option(s) to
change and the correct value is the topic of ongoing research [71, 113, 125, 182, 192, 211, 217,
219]. Moreover, configuration errors have a severe impact. Studies [215] have shown that
configuration-related errors can account for 27% of all customer-support cases in industrial
contexts, while a well-known Google engineer prioritized them as one of the top directions
for future research major problems.

While resolving misconfiguration errors related to a single layer of a software stack is difficult,
such errors can span across multiple stack layers, which could make them even harder to
troubleshoot and resolve [185]. Indeed, each stack layer has its own configuration options and
programming language [95], and some features could be managed by different options. For
example, the memory size a script is able to use can be changed in the WP layer by changing
the option “WP_MEMORY_LIMIT”, in the PHP interpreter layer by “memory_limit”,
and in the web server layer by “php_value memory_limit”. Such configuration choices could
contradict each other and hence confuse end users. In the context of the WP LAMP stack, a
notorious example of a Cross-stack Configuration Error (CsCE) was the inability of users of
the NextGEN Gallery plugin to upload an image due to a memory misconfiguration in the
lower PHP interpreter layer.

This paper empirically studies the characteristics of CsCEs, then proposes and empirically
evaluates a novel modular algorithm that leverages existing code slicing approaches. The
algorithm analyzes configuration options and their code dependencies across multiple layers
of a stack to recommend the configuration option most likely causing a CsCE. We make the
following contributions:

• A large, qualitative study on 1,082 configuration errors obtained from 3 online discus-
sion forums to understand the impact of CsCEs, the effort required to resolve such
errors, and the complexity of CsCE fixes.

154

Web framework
(Wordpress, Joomla, Drupal, …)

Framework Plugins
(NextGen, Contact Form, ….)

Scripting language
(PHP, Perl, Java,…)

Database
(MySql, PostgreSQL, …)

Web Server
(Apache, IIS, …)

Operating system
(Linux, Windows, …)

Figure 8.1 Architecture of a LAMP stack.

• A modular algorithm that allows to plug in existing code slicing techniques to recom-
mend the configuration options that are most likely responsible for a CsCE.

• A large empirical evaluation of the algorithm on 36 real CsCEs in WP, DR, and 7 WP
plugins, showing that our approach reports the culprit option within few minutes with
a rank average of 2.18 for 32 out of the 36 cases.

• A public dataset of 36 evaluated CsCEs [160].

8.2 Background and Related Work

This section presents background and related work about software stacks, configuration er-
rors, and CsCEs.

8.2.1 Software Stacks

Definition. We define a software stack as an acyclic graph where nodes represent layers and
an edge connects a layer to another layer whose resources it requires. Figure 8.1 shows the
LAMP stack and mentions different components possibly existing within each layer. Here,
WP plugins extend the functionality of the WP framework, which needs resources from PHP
for computation (e.g., standard library), which relies on MySQL and Apache for database

155

and web access, etc. Note that stack dependencies model resource usage, not the order in
which an HTTP request is being served by a web server.

LAMP Stack. Even though the problem of CsCEs and our approach apply to any software
stack that fits our definition (e.g., MEAN or J2EE), this paper uses the LAMP stack as ex-
ample, in particular with the WP and DR web apps. WP and DR are two of the world’s most
successful Content Management Systems. WP 4.6 had 5.3 million downloads, 29 thousand
plugins and serves 74.6 million web sites, while DR 5.x–8.x together have around 1.2 million
downloads, 35.2 thousand plugins and serve over 1 million websites. This success is largely
due to the variety of themes and plugins, which are PHP scripts that access the WP/DR
layers (PHP) to extend basic functionalities, for example easier image uploads, extra widgets
or interfacing with other web apps.

Existing Work. Many research efforts focus on WP as case study. In prior work [162], we
found that each WP plugin is using up to 15.18% of the WP layer’s configuration options,
while 82% of all WP options are used by at least two different WP plugins, suggesting a large
risk of CsCEs. Nguyen et al. [128] verify plugin conflicts by testing all possible combinations
of enabled WP plugins at once. They also [130] proposed an approach to detect undefined
variables and functions across all possible instances of a web page. Eshkevari et al. [73]
proposed an approach to detect interference problems like conflicts between entity names, or
between generated client codes between WP and its plugins.

8.2.2 Single-layer Configuration Errors

Definition. A configuration error is an incorrect system behavior due to a bad value assigned
to an option. It typically has as symptom an error message generated by the source code. A
single-layer configuration error is a configuration error in a software stack where the symptom
and misconfigured option are known to belong to the same stack layer.

Existing work. Many researchers focused on understanding configuration errors. Yin
et al. [215] classified 546 misconfiguration errors from four open source systems and one
commercial software system into different categories to understand the different causes of
such errors. Jin et al. [95] conducted an empirical study to understand the challenges that
configuration introduces for testing and debugging. Hubaux et al. [87] conducted an empirical
study to find the challenges of configuration across Linux and eCos users, and found that
better configuration support is required. Arshad et al. [43] analyzed 281 bugs of two Java
EE application servers, in order to characterize configuration errors. Together with our prior
work [162], these papers found that configuration errors are an important problem and are
hard to debug. However, as reported by Xu et al. [185], none of these papers focus on CsCEs.

156

Two major strategies have been used to analyze or test the configurations of a system.
Sampling algorithms [117] try to select the most representative configurations for analy-
sis or testing using conventional analysis/test techniques. Conversely, variability-aware ap-
proaches [112, 184] aim to analyze all configurations at once, by making analysis or testing
tools configuration-aware (e.g., aware that a particular line is only executed for a specific
option value).

Several debugging approaches for single-layer configuration errors exist. Zhang et al. [217]
resolved misconfiguration errors in Java programs by comparing erroneous program execu-
tions with a pre-built database of correct execution profiles. Later [219], they used historical
information to identify which configuration option is introducing a bug in a new version.
Dong et al. [68] instead used static slicing, while Attariyan et al. [46] use control flow anal-
ysis. Wang et al. [192] rank the reported culprit options based on user feedback. Xiong et
al. [211] used constraint models to not only identify misconfigured configuration errors, but
also propose a correct value.

8.2.3 Cross-stack Configuration Errors

Definition. In the most narrow sense, a CsCE is a configuration error whose symptoms are
reported in a stack layer without any direct link (access) to the culprit option. For example,
a permission problem in an option of the PHP interpreter in Figure 8.1 could yield a “file
cannot be uploaded” error in the WP layer, without any read or write of the culprit option
in the latter layer. The definition of CsCE could be broadened to cases where the layer with
the error symptom (a) reads the misconfigured option, but the option and the incorrect value
assignment still belong to a different layer; or (b) both reads and assigns the misconfigured
option, but the user is misled to think that the symptom is generated by a different layer.
The latter case is very common, as web or database error messages often are returned as is
by the top stack layer. Although we target the narrow definition of CsCE, our approach can
also help with the two broad interpretations.

Existing work. To the best of our knowledge, no existing approach resolves CsCEs [185].
One alternative could be to use the single-layer approaches discussed in the previous section.

Even though sampling-based approaches cannot guarantee to detect all errors [117], they
could be used to prevent certain CsCEs, complementing debugging techniques. Yet, thus far,
they have not been evaluated on run-time configuration [112,117], using preprocessor macros
and conditions to store/check option values instead of regular variables and if-conditions.
Furthermore, each stack layer brings its own options, of string type (not just boolean), and
can be implemented using different technologies (e.g., MySQL vs. PostgreSQL), yielding

157

a significantly larger search space to sample from. Variability-aware approaches are not
immune to this search space explosion either, as they require customization to the specific
configuration (variability) mechanisms and layers used.

Many approaches for debugging single-layer configuration errors require additional input that
is hard to obtain in a software stack. For example, several [71,182,211] require configuration
constraint models as input, i.e., the allowed combinations of option values. Approaches to
generate such models have only been applied on single-layer systems using the C preproces-
sor [125] or other configuration conventions [71,182,213]. Similarly, other approaches require
data of a correct version of the system [217, 219]. This is more difficult to obtain in a soft-
ware stack context, as it requires to have access to all configuration data for an identical
stack setup (same layer technologies and versions), which also increases the volume of data
to process. Our approach does not require any oracle or model and, hence, is able to scale
to CsCEs.

The single-layer approach closest to our work is the static slicing-based one of Dong et
al. [68]. Our modular algorithm can plug in a single-layer slicing-based technique such as
this to make it layer dependency-aware (and combine it with similar techniques for different
layers). Finally, Attariyan et al. [46] do not use slicing, but dynamically explore and replay
condition branches to avoid the error and hence find the culprit option. Replaying a large
number of branches can be costly in terms of time, and this only aggravates for multi-layer
systems, which have significantly more branches and options.

Recently, research has started focusing on understanding software systems that contain mul-
tiple programming languages, of which software stacks form a subset. For example, Kochhar
et al. [107] found a correlation between the number of programming languages in a system
and the system’s overall quality. One such quality issue, studied by Nguyen et al. [129], is
consistency between variables shared between different languages (in particular JS, HTML
and SQL). They developed a custom slicer for PHP web apps that combines traditional pro-
gram analysis with symbolic execution and abstract interpretation in order to handle JS,
HTML and SQL code embedded in PHP code. While they did not address nor evaluate
their approach for configuration problems, a restricted version of the slicer (focusing only on
configuration variables) could be integrated into our generic approach to handle other stack
layers and technologies than those it was built for.

158

8.3 Qualitative Analysis

To gain an in-depth understanding of the impact of CsCEs, the effort required to fix them
and the complexity of the obtained fixes, this section presents the results of a qualitative
study on 2,387 forum threads from 3 online Q&A platforms.

8.3.1 Methodology

Data sources. Given the vast variety of software stacks, we focused our qualitative analysis
on the popular LAMP software stack (Figure 8.1), in particular on configuration errors in the
Apache, MySQL, PHP and Wordpress (WP)/Drupal (DR) application layers. Due to time
limitations, we did not consider Linux-related errors, nor errors related to WP/DR plugins.

Basically, we conducted a “top-down” and a “bottom-up” analysis of cross-stack and single-
layer errors. The top-down study analyzes both kinds of errors in the WP/DR layers, in the
context of a LAMP stack. The bottom-up approach instead focuses on configuration errors
caused by the PHP, Apache, or MySQL layer, regardless of which layers are running on top
of them (i.e., not necessarily a LAMP stack). We used the study design outlined in Table 8.2
on the data sources of Table 8.1, with columns 2 and 3 of Table 8.2 corresponding to the
top-down analysis, and 4 to 6 to the bottom-up analysis.

Amongst the studied data sources, StackOverflow is a general Q&A site covering a wide
range of topics for the general public, users and developers. We selected only those ques-
tions that were marked as solved and tagged with “wordpress” or “drupal”, then filtered
the resulting questions by searching for discussion comments (not code blocks) mentioning
the names of configuration options of Wordpress/Drupal (single-layer candidate errors; SO)
or PHP/MySQL/Apache (cross-stack candidate errors; SO-PHP/MySQL/Apache). We ob-
tained those names from the documentation of the corresponding layers. For Apache, we
only retained discussions mentioning the filename “httpd.conf” to reduce false positives.

StackExchange has subcommunities dedicated to Wordpress and Drupal users and develop-
ers. We used the same approach as above, yielding the single-layer (STE) and cross-stack
configuration error candidates (STE-PHP/MySQL/Apache) for the analyzed layers. Finally,
ServerFault is a Q&A site targeted by system administrators. We searched for questions
mentioning options of PHP, MySQL or Apache. As mentioned earlier, ServerFault is not
limited to LAMP, hence our bottom-up analysis is able to find options causing CsCEs in any
stack.

Approach. Two human raters (first two authors) independently analyzed the selected ques-
tions and their discussions on the three Q&A sites to determine the values of 5 numeric, 3

159

Table 8.1 Qualitative data source statistics.

Q&A platform Time Period #Threads #Config. Errors
Stack Overflow Aug ’09-Jun ’16 997 359
Stack Exchange Sep ’10-Feb ’16 605 211
Server Fault May ’09-Feb ’16 756 483

Table 8.2 Overview of the five layers and three data sources analyzed for the qualitative study.
’SO’ stands for StackOverflow, ’STE’ for StackExchange and ’SF’ for ServerFault.

WP Drupal PHP Apache MySQL
single SO/STE SO/STE SF SF SF
cross SO/STE-PHP/. . . SO/STE-PHP/. . . SF SF SF

MySQL/Apache MySQL/Apache

boolean and 7 textual characteristics. For the textual characteristics, each rater could assign
arbitrary tags such as “production environment” or “conflicting option”. Since this resulted
in a large set of tags for these characteristics, and in order to resolve disagreement between
raters, they performed card sorting [155] for each textual characteristic. This allowed to
cluster tags into either fewer or broader categories, effectively turning these textual charac-
teristics into nominal data. They then revisited the discussions, replacing their initial tags
by the corresponding nominal cluster names.

Of the 2,387 studied discussions, 44.7% (1,082) were related to configuration errors (Ta-
ble 8.1). Figure 8.2 shows for each of the 5 studied layers of Table 8.2 a comparison between
the number of analyzed configuration errors that are single-layer versus those that are cross-
stack. Note that this figure does not allow comparison between layers. For Drupal and PHP,
we found substantially more CsCEs than single-layer errors, while for Apache we found the
opposite. Given the imbalanced data for Drupal, PHP and Apache, we decided to aggregate
the data of the five layers, obtaining 539 single layer and 543 CsCEs.

8.3.2 Impact of Cross-stack Configuration Errors

We found a statistically significant difference in the distribution of impact for single-
layer and CsCEs (χ2 test; p-value < 2.2e−16 with α = 0.01). As shown in Figure 8.3, CsCEs
are more severe compared to single-layer errors in terms of the percentage of crashes occurring
(47% of all CsCEs compared to 29%), while they have approximately the same percentage
of hangs (23% vs. 20%). Our card sort analysis shows that cross-stack configuration crashes

160

Figure 8.2 Difference between the number of single-layer errors and CsCEs for each case
study.

typically are related to lower-layer options that control the stack’s capacity, like the mem-
ory size (“memory_limit”) or execution time (“max_execution_time”) allowed for a script.
Surpassing these limits ends up with a crash. On the other hand, single-layer errors are
more related to user access permissions than CsCEs, but such errors do not tend to crash
the system.

Since errors in the production environment are more severe, and at least half of the
single-layer and CsCEs occurred in production, we refined the results of Figure 8.3
to production errors only. We found that CsCEs exhibit a more severe impact compared to
single-layer errors, even in production (χ2; p-value of 1.106e−11). Again, the vast majority
of CsCEs were crashes (45%), a percentage that is much higher compared to single-layer
errors (24%).

The reason for this, besides the mistake of using different environments for testing and
production, is the lack of testing at scale before production. For example, in one case [24]
the “max_input_vars” option caused a CsCE where adding more than 90 menu items to a
WP site crashed the system. The site had never been tested with more than a handful menu
items. Single-layer production crashes are more related to misconfigured URLs and paths to
lower layers, which break when for example another database or web layer is installed.

Figure 8.4 shows that users face the majority of single-layer configuration errors just after
setting up their stack (31%), or during application maintenance (26%), for example when a
new plugin is installed or theme is changed. These problems have a relatively low impact as
they can be resolved before release or while the system is undergoing maintenance. However,
CsCEs frequently occur during DevOps activities (26% vs. 14%) such as running

161

Figure 8.3 Impact of single-layer errors vs. CsCEs.

scripts or backups when operating the web application. For the same reasons as above, when
restricting the analysis to production errors, the DevOps CsCEs grow to 44% compared to
26% for single-layer.

Conclusion: Cross-stack configuration errors have a severe impact compared to single layer
errors, due to the high percentage of crashes they are responsible for, especially in the produc-
tion environment. Due to this severe impact, sysadmins need automated support to debug
and resolve CsCEs.

8.3.3 Effort to Solve Cross-stack Configuration Errors

In terms of effort to understand or fix configuration error, we did not find any statistically
significant difference between single-layer and CsCEs for the number of comments on a ques-
tion (Wilcoxon; p-value of 0.041), of proposed answers (p-value of 0.0274), of hours until a
question took to be answered (p-value of 0.1297), of options discussed before finding the real
culprit (median of 2, with a p-value of 0.3703), nor of comments on the provided answers
(p-value of 0.430).

We hypothesize that the number of comments and answers are related to how well people
expressed their problem and the forum members’ experience. For example, we found that
25% of the questions was answered by the original poster, typically after a very long time.
This could explain the difference in median time to answer a CsCE question of 2.33 hours for
CsCEs compared to 1.7 hours for single-layer errors (mean of 485.1 and 253.9 hours, resp.).

Conclusion: While the literature reports that finding a single-layer misconfigured option is
a hard and time-consuming task [95,185,215], we found that CsCEs are at least as hard

162

Figure 8.4 When do single-layer and CsCEs occur?

and time-consuming to resolve. This time could be reduced with automated support for
resolving CsCEs.

8.3.4 Complexity of Cross-Stack Configuration Resolution

Whereas we found that single-layer errors have a relatively less severe impact than CsCEs,
they seem to require significantly more options (p-value of 4.847e−05) to be changed
to fix them than CsCEs (median of 2 vs. 1). Manual analysis showed that around 20
WP single-layer options always need to be changed together. Common cases are the options
“WP_HOME” and “WP_SITEURL” [34] for WP, or options managing URL redirections
and permissions for Apache (like “RewriteRule” and “RewriteCond” [5]).

While PHP interpreter errors were the most common (56%), 5% of the WP and
DR CsCEs were caused by options assigned all the way inside the OS layer. We
also found a non-negligible percentage of errors coming from the other layers, i.e., the web
server (27%) and the database server (12%). The decreasing percentage from top to bottom
layers is typical for a layered architecture, where layers mostly talk with their neighbours
only. Furthermore, the 5% of CsCEs originating from the OS is a lower bound, as this study
only considers CsCEs related to file system-related OS options, e.g. [17]). In future work, we
plan to consider other OS options as well.

In 15% of the cases the user did not have access to one or more faulty configu-
ration files, and hence had to override the misconfigured options by modifying them within
the source code of the web application. Such overrides are risky, potentially causing addi-
tional conflicts. One example we found [35] showed a user modifying the “memory_limit”

163

option in the PHP-interpreter configuration file, but his modification did not work because
the same option is overridden by the WP source code via the function “ini_set()”.

Conclusion: CsCEs require to change options not only in the top layer of a stack, but also
in deeper ones (all the way down to the OS), not all of which are open for change by the
user.

8.4 Methodology for Identifying Cause of CsCE

This section presents our modular algorithm to recommend the configuration option respon-
sible for a CsCE. We first discuss the slicing program analysis technique at the core of the
algorithm, followed by important preliminary concepts.

8.4.1 Backward Slicing

Backward slicing is a program analysis technique used to find the statements that affect a
given variable (“seed”) used on a particular line of a program [198]. The line of code and seed
together form the so-called “slicing criterion”. Backward slicing is typically used to analyze,
debug, and understand a program, since it reduces the scope of the program to only those
statements impacting a targeted seed. Since its introduction by Weiser et al. [198], slicing
techniques have seen applications in many domains [75]. Here, we use both static [198] and
dynamic [37] slicing techniques.

To illustrate static slicing, let’s consider the example code in subsection 8.5a and the resulting
backward slice for the criterion (line 11, “higher”) in subsection 8.5b. As shown, backward
slicing starts from the targeted line, then goes backwards through the code to find all lines
on which the seed variable “higher” is modified, and recursively repeats this for all variables
and function calls whose value is used to calculate “higher”. The resulting static slice is a
compilable part of the original program that contains all statements required to calculate
(i.e., that impact) the value of “higher” in line 11.

Dynamic slicing (subsection 8.5c) only analyzes the statements that were executed during
a specific execution of the system, ignoring all other statements. For example, for an if-
condition, it only analyzes the executed branch of an if-condition, ignoring the second branch.
Dynamic slicing is better suited than static slicing to deal with reflective function calls, event
handlers and dynamic file includes [84]. Furthermore, it reduces the size of the slice and
hence the amount of source code to be analyzed, scaling better to larger systems. On the
other hand, it requires invasive instrumentation to obtain the necessary dynamic data and
concrete scenarios to run.

164

1 int HigherValue (int a , int b) {
2 	String higher = "Result : ";
3 	int result = 0;
4 	if (a > b) {
5 		result = a;
6 		higher += "'a' is higher than 'b'";
7 	} else {
8 		result = b;
9 		higher += "'b' is higher than 'a'";
10 	}
11 	write (higher);
12 	return result;
13 }

Original code.

1 int HigherValue (int a , int b) {
2 	String higher = "Result : ";
3
4 	if (a > b) {
5
6 		higher += "'a' is higher than 'b'";
7 	} else {
8
9 		higher += "'b' is higher than 'a'";
10 	}
11 	write (higher);
12
13 }

Static backward slice.

1 int HigherValue (int a , int b) {
2 	String higher = "Result : ";
3
4 	if (a > b) {
5
6 		higher += "'a' is higher than 'b'";
7 	} 	
8
9
10
11 	write (higher);
12
13 }

Dynamic backward slice.

Figure 8.6 Static vs. dynamic slicing for the criterion (line 11, “higher”).

8.4.2 Cross-stack Slice Dependency Graph

In subsection 8.2.1, we defined a stack as an acyclic graph in which edges represent dependen-
cies between adjacent layers. In practice, such dependencies correspond to “physical links”,
i.e., some kind of mapping between resources used (e.g., function called, variables accessed
or files read) in a layer and the definition of those resources (e.g., function definition, vari-
able name or file name) in the layer below. Such physical links can be based on naming
conventions, configuration files or could simply be hardcoded.

For example, in the LAMP stack, a Wordpress plugin would call functions in Wordpress using
regular PHP function calls, while PHP primitives, global variables or standard library func-
tions would be called from Wordpress using a PHP-to-C naming convention (e.g., function
“is_uploaded_file” in Wordpress could map to “is_uploaded_file” in the PHP interpreter).
MySQL could be called from the PHP interpreter via its official C API or via SQL queries.

In each layer, we can summarize the results of either dynamic or static slicing in the form
of “slice dependency graphs”. For each expression occurring in the slicing results, there is a

165

corresponding node in the layer’s slice dependency graph that will have dependencies (edges)
to the previous expression in the layer’s slice. If the expression is preceded by if/else or
switch/case conditions, it will depend on each condition, see the solid edges for the PHP
layer in Figure 8.9.

Furthermore, as is typical for slicing techniques, if the expression is a function call, it will
depend on all return statements of the called function, while the function definition will
depend on all function calls to it. In case of access to a global variable, the node will depend
on the last statement modifying that variable. Recursion typically is eliminated [75].

Finally, to integrate the slicing results across all layers of a given stack S, we introduce
the notion of a “cross-stack slice dependency graph” G =< N,E >, where < N,E >=⋃

i,l < N l
i , E

l
i > ∪ < φ,Ephys >, where < N l

i , E
l
i > is the slice dependency graph of a given

component i of some layer l. A layer can have more than one slice dependency graph if it
contains parts (e.g., components) that are independent from each other, for example different
Wordpress plugins or MySQL stored procedures.

The key enabler for G is Ephys, which is the set of edges derived from the physical links that
map an expression (node) in a graph of a given layer to an expression (node) in a graph of an
adjacent, lower layer. Ephys maps a function definition in a layer to its calls in other layers,
function calls to the return node(s) of the called function defined in another layer1, and a
variable access to its last modification in other layers.

In other words, using the physical links of the stack, a cross-stack slice dependency graph
stitches together the individual slice dependency graphs of each layer into one giant graph,
as illustrated in Figure 8.9.

8.4.3 CsCE Root Cause Recommendation

Our modular CsCE root cause recommendation algorithm ranks configuration options from
most likely cause of a CsCE to least likely. Its main contribution is that it integrates existing
static or dynamic slicing techniques applied on different layers or even individual components
of a layer, instead of requiring a customized slicer per stack. Indeed, given the huge variety
in programming languages and technologies in the layers of a stack, and the even larger
flexibility in dependencies between them, a custom approach simply would not be feasible.
Instead, our approach uses the existing slicing techniques in each layer to generate the slice
dependency graphs, stitches them together in a cross-stack slice dependency graph, then
traverses that graph to recommend options.

1In case of dynamic slicing, we know exactly which return node was used, but for static slicing we need
to map to all possible return nodes.

166

1 culpritOptions: string[];
2 nodesProcessed: set;
3 errLine=findErrorMsgLine(errorMsg);
4 crossStackDepGraph=sliceAndCreateGraph(errLine);
5 errNode=graphNode(errLine,crossStackDepGraph);
6 for n: node in breadth-first traversal of crossStackDepGraph starting from errNode do
7 if n /∈ nodesProcessed then
8 nodesProcessed.add(n);
9 for o: configuration_option used by n do

10 culpritOptions.append(o);
11 end
12 end

Algorithm 1: CsCE root cause recommendation algorithm.

The main algorithm of our approach is presented in algorithm 1, taking as input an error
message generated by a given software stack. First (line 3), it will try to find the line of code
printing the error message using regular expressions. If this cannot be automated, or if no
explicit error message is provided for a CsCE, almost always some symptom of the CsCE can
be identified manually (for example an infinite loop, failing connection or a particular GUI
element involved in the CsCE). In such cases, one could substitute errLine on line 3 by the
manually identified line, which can then be used on line 4 to perform slicing on each layer,
generate the layers’ individual slice dependency graphs, then construct the unified cross-stack
slice dependency graph.

The essence of the algorithm is a breadth-first traversal of the cross-stack slice dependency
graph starting from the error message node errNode (line 6). Starting from errNode, we
navigate the node’s backward slice in breadth-first fashion along the node’s edges in the
dependency graph, and check each such dependent node for manipulation of a configuration
option. If so, we add it to culpritOptions. To avoid visiting the same subgraph more than
once, we use a cache to mark the visited nodes (line 7). Finally, when following an edge
from a function definition to a call, the breadth-first iteration on line 6 of the algorithm will
ignore the edge from the call to the function’s return node. For example, after going from
the php_bar() definition to the php_bar() call (white node), the algorithm will not return
back to return 0.

We use breadth-first traversal for the graph navigation, since this will bring us first to the
configuration options closest to the error message. Those are the options traditionally [46]
considered to have the highest likelihood of being the cause of a configuration error. Options
at the same distance from the error message node will be returned in a random order. Since

167

the unified cross-stack slice dependency graph spans across all layers, the algorithm traverses
both lower and higher layers to find the cause of a CsCE.

Some optimizations are possible. For example, when performing the slicing and creation of
slice dependency graphs on line 4, the slicing results of a given layer Li could be used to limit
the code that should be sliced in the next layer below Li+1. Indeed, using a call graph, one
could filter out the functions from Li+1 that could never be reached from Li via the physical
links between the layers. This works both for dynamic and static slicing. In Figure 8.9, the
white nodes could be ignored by the algorithm, as they are not reachable from the definition of
php_bar(), which was called from the top layer. A second optimization would be to stop the
traversal on line 6 as soon as enough unique options have been appended to culpritOptions.

8.5 Empirical Evaluation

8.5.1 Setup of Empirical Evaluation

We evaluate algorithm 1 on 36 real CsCEs that we reproduced in a local LAMP environment
to addresses the following research questions:

RQ1 How accurate is our approach?

RQ2 How fast is our approach?

Data Selection

Our evaluation considers a LAMP stack with the top three layers of Figure 8.1, i.e., the
plugins layer, web app (Wordpress/Drupal) and the PHP-interpreter. The 36 evaluated
CsCEs belong to three data sets (Table 8.4):

• WP Set: CsCEs occurring when using Wordpress that are due to a misconfigured
option in the PHP interpreter.

• DR Set: The same, but when using Drupal.

• Plugins Set: CsCEs that occur during the use of a Wordpress plugin, and that are
due to a misconfigured option in Wordpress or in the PHP interpreter.

To obtain the WP and DR Sets, we used three iterations:

168

Table 8.3 The subject systems used in our evaluation.

Subject Versions #LOC #options
1 WP 3 89,136 307
2 WP 4 131,044 316
3 DR 7.x-3.38 311,935 222
4 DR 7.5 112,961 153
5 DR 4.1.0 3,105 4
6 Woocommerce 2.4.8 57,725 132
7 Hyper Cache 3.2.3 1,098 32
8 UpdraftPlus 1.11.15 92,616 120
9 WP Super Cache 1.4.6 5,437 20
10 WP Photo Album+ 6.3.10 43,587 739
11 NextGEN Gallery 1.6.1 8,599 73
12 Sitemap XML 1.5.0 202 9
13 PHP-interpreter 5.3.29 661,943 639

#preprocessed LOC 5,057,274

• First, during our qualitative analysis of section 8.3, we analyzed the 201 CsCEs that are
due to a misconfigured option in the PHP-interpreter and occurred while using Word-
press or Drupal, in order to identify those that could be reproduced locally with the
available configuration information. We also added two additional CsCEs encountered
during our previous experiments [162]. We ended up with 92 configuration errors that,
in theory, should be reproducible. This step was part of our qualitative study.

• The second iteration was the most tedious and time-consuming, as we tried to repro-
duce each of the 92 CsCEs on our local LAMP setup. It soon became clear that often
crucial information required to reproduce an error was missing from a forum conversa-
tion. The major challenges of CsCEs, in particular the need to understand each layer’s
configuration options and their interactions, as well as missing version numbers of some
of the layers, made this iteration quite painful and tedious. In the end, after substantial
trial-and-error, we were able to reproduce 43 of the 92 configuration errors.

• In the third iteration, we filtered out CsCEs with similar symptoms and caused by the
same configuration option, ending up with 29 distinct CsCEs.

To obtain the Plugins Set, we randomly selected errors from the official Wordpress forum
and StackOverflow, using the configuration options of Wordpress and the PHP interpreter
as keywords, then manually identifed whether the problem is related to a Wordpress plugin.
By following steps 2 and 3 above, we obtained 7 new reproducible errors out of 23.

169

As shown in Table 8.3, our evaluation eventually considers 13 layer instances: WP (2 ver-
sions), DR (3 versions), 7 WP plugins, and the PHP interpreter (1 version). The number
of configuration options in these instances ranges from 4 to 739, and each instance has a
medium code size, ranging up to 661,943 SLOC [203]. When analyzing a full stack consist-
ing of one WP/DR instance, one or more WP plugins and the PHP-Interpreter, the total
number of options considered in the evaluation of a CsCE is the sum of options of all layers.
The evaluated plugins are amongst the top 50 most popular WP plugins, with two of them
amongst the top 5.

Implementation of Approach

As described in section 8.4, our approach combines existing static or dynamic slicing tools
inside each layer. To deal with the complexities of the dynamic PHP language [84], we
performed dynamic slicing on PHP-based layers (plugins and WP/DR layer), while we used
a static slicing approach on the C-based PHP-interpreter. Our prototype implementation
respectively uses our dynamic PHPSlicer [159] and static C BackSlicer [158] tools. Nguyen
et al. [129]’s static slicer for PHP could be an alternative for PHPSlicer, yet it does not
consider all dynamic PHP features (like dynamic includes, variable of variables, ...).

To build the database of physical links between layers, we manually analyzed the WP, DR
and PHP interpreter source code and found two main kinds of physical links:

• Function call to a function implemented in the PHP interpreter. For example, the basic
PHP function “move_uploaded_file” implemented in “ext/standard/basic_functions.c”
of the PHP-interpreter can be called from any higher PHP layer by the same name
“move_uploaded_file”. The PHP interpreter offers more than 2,000 such functions to
web apps [28].

• Superglobal variables, i.e., variables modified in the PHP interpreter that can be used
from any web app. For example, the superglobal variable “$_REQUEST”, when used
in a web app, actually calls the function “php_auto_globals_create_request” in the
file “main/php_variables.c”. 9 such variables exist [30].

We implemented algorithm 1 in Java, exploiting the physical links above, and calling out
to PHPSlicer and BackSlicer for the actual slicing. We optimized the execution time and
accuracy of the static C slicing using the dynamic slicing results of the PHP-based layers, as
explained in subsection 8.4.3. This improvement was essential to make the C slicing scale to
the preprocessed version of the PHP-interpreter code base.

170

Evaluation of Performance

To evaluate the performance of our approach, we used two main metrics. For RQ1, we
considered the rank of the reported misconfigured option in the output of algorithm 1. The
lower this rank, the better, since this indicates that a user needs to try out less options before
finding the root cause option.

For RQ2, we measure the total execution time of our algorithm. Again, the lower this metric,
the better. We did not count the time to (1) instrument the web application for dynamic
slicing purposes, and to (2) re-run the system to reproduce the error on the instrumented
version, since (1) is done only once and (2) never surpassed 60 seconds. Table 8.4 summarizes
our answers to the two research questions.

RQ1: How accurate is our approach?

Answer: Our approach has a high accuracy for ranking the misconfigured options,
ranking 32 configuration errors with an average rank of 2.18 and a median of 1,
with only 4 errors unable to be ranked.

From the 32 configuration errors for which we are able to find the cause, in 28 cases we
report the culprit option with a good ranking (1st or 2nd suggestion), and in one case with
an acceptable ranking (5th position), while in only three cases a low ranking of 10 or 12 was
obtained. However, we think that even if that ranking is not ideal, it is still much better
compared to manual debugging.

Based on the distance-based ranking criterion of our algorithm (algorithm 1), we are able
to report the misconfigured option as the first suggestion even if the distance between the
print statement generating the error message and an access to the culprit option is large.
For example, for the 3rd and 24th CsCEs we are able to find the misconfigured option as the
first suggestion, even though the distance between the C-slicing criterion and the access is a
distance of 13 slicing graph edges apart.

The case with a ranking of 5 corresponds to the 10th CsCE, where the distance is 9 slicing
graph edges. Such a ranking is still acceptable in practice, since manually finding these
options would be hard due to the median distance and the complexity of the PHP-interpreter
source code.

In three cases, we were only able to report the culprit option as the 10th and 12th suggestion,
due to the large number of configuration options used in the sliced source code, and the high
slicing graph distance of 30 and 32 edges. Considering additional strategies for traversing the

171

cross-stack slice dependency graph or ranking the culpritOptions (e.g., [192]) in algorithm 1
could further improve the results.

Deeper analysis of our results showed that the 32 successful CsCEs could be divided into
three groups. The “Narrow” group corresponds to the narrow definition of a software stack
(subsection 8.2.2), where the code line printing the error message and the line with the culprit
option belonged to different layers of the stack. The “Broad 1” group contains examples of the
first broader interpretation of CsCEs, where the WP/DR layer generates the CsCE symptom
and reads the value of the offending PHP interpreter option (via the function “ini_get()”).
Finally, the “Broad 2” group contains examples of the second broader interpretation, where
symptoms, misconfigured option, and access to the option’s value really happened within the
same (PHP interpreter) layer, yet (due to the “error_reporting” option being “on”) the PHP
interpreter’s error messages showed up on the user-visible Wordpress web page, not just in
the execution logs, causing confusion.

In total, out of the 32 CsCEs, 8 belonged to the “Narrow” group, 14 to “Broad 1” and
11 to “Broad 2”. Note that narrow errors are impossible to detect by existing single layer
approaches (see Section 8.2.3). The broad categories may be found by existing approaches,
but only for higher layers, in which most of the functions (slice dependency graphs) tend to be
connected by a call graph. The deeper one goes, the more functions (slice dependency graphs)
are disconnected, since lower layers are called by higher ones to provide a specific service,
then return. For example, the two subgraphs within the MySQL layer in Figure 8.9 are not
connected directly. However, they are connected via the PHP layer graph. Without this
cross-layer context, it is impossible to navigate between functions and hence apply existing
single-layer approaches. Of course, even if all functions in all layers would be connected to
each other, it is still impossible to predict ahead of time whether the culprit option of a
configuration error really belongs to the same layer as the error symptom. Hence, even for
“Broad 2”, our generic approach is the most pragmatic.

Finally, we also analyzed the four cases for which we were not able to rank the misconfigured
option at all. The first reason our approach failed is when there was no concrete starting
point for the slicing (14th, 35th, and 36th CsCEs). For the first two of these errors, the
culprit configuration option disabled the execution of plugin PHP code altogether (option
“short_open_tag” was set to “off”). For the 36th case, the user is redirected to the login page
after trying to access the admin panel, without any error message. In general, unexecuted
code or lack of symptom is a problem for all approaches.

The second reason, preventing us from ranking the 13th error case, is that the error message
was shown in the browser by JavaScript code after an Ajax call. Since our work currently

172

does not consider JavaScript and its asynchronous calls, we plan to combine our approach
with existing work [39,129] that analyzes client source code (HTML, JS).

Note that, similar to related work on debugging configuration errors, we also assume that
an error is already classified as being a configuration issue. Our technique can be comple-
mented by the approach of Wen et al. [200] to first classify an error as configuration or
non-configuration error.

RQ2: How fast is our approach?

Answer: The errors are reported within minutes, which makes our approach
practically useful for users.

Dynamic slicing requires an execution trace, which can be generated by instrumenting an
application and executing it. The instrumentation took 3.57 seconds in the best case, and
21.62 minutes in the worse case, with this time typically related to the size of the instrumented
layer (in SLOC). Even when the instrumentation takes around 21 minutes, this needs to be
done only once, after which the instrumented version of the system can be deployed and made
available by customer service to all troubleshooting users, for example by manipulating the
DNS server or load balancer [49].

To generate the execution trace from the instrumented version, a user needs to reproduce
the error on the instrumented version of their web app. Although the instrumentation makes
the web app slower, from our evaluation the error reproduction did not require more than 60
seconds on the evaluated errors.

After the error reproduction, one has to execute our algorithm, which takes between 35.77s
and 553.18s (median of 230.10s) to perform the slicing and find the misconfigured option.
Note that without the optimization that reduces the scope of slicing for lower layers based
on the slicing results of higher layers, the C slicer sometimes would not finish, hence we
considered this optimization crucial to make the approach compatible with static slicing of
large layers. Hence, even if some steps can still be improved in future work, our approach is
not only accurate but also fast enough for practical usage.

Since, to the best of our knowledge, we are the first to propose a generic approach to debug
CsCEs, we compared our approach to a manual search in an online forum like StackOverflow,
ServerFault or StackExchange, based on the qualitative study of Section 8.3. Without con-
sidering the time required to test a proposed answer and to discuss it via comments, one has
to wait a median of 2.433 hours to get the correct answer for misconfigured PHP-interpreter
options, assuming the question was answered and the accepted answer also applies to other

173

people. Although we do not have precise numbers on unresolved forum errors, we did find
that 35% of PHP-interpreter CsCE threads are answered by the original poster. This sug-
gests that (a) asking a question online does not guarantee an answer and that (b) in cases
where the original poster had to find the answer on her own, she took the effort to follow up
on her own question. Instead, our approach is more likely to propose a relevant answer, and
does this in a median of only 0.06 hours (current prototype).

8.6 Threats to Validity

8.6.1 Qualitative Analysis

Despite the effort spent on our qualitative study design, gathering and clustering data from
Q&A forums, we identified several threats to validity. First, extracting data from StackEx-
change and its sub forums is subject to construct validity, since we used the configuration
options as keywords retrieve discussion threads. Relevant discussions not mentioning explicit
option names may have been missed.

Moreover, the data extracted is subject to potential threats to reliability due to the gam-
ification characteristics of StackExchange [191]. Q&A participants compete for reputation
points and badges, which could encourage them to guess which configuration option might
be the root cause of a CsCE, introducing bias into our metrics (such as the number of options
or layers discussed). Fortunately, questions and answers are voted upon by the community,
filtering out guesswork.

Furthermore, we manually analyzed the discussions’ text to cluster threads in categories,
which could introduce subjectivity in the analysis. To counter this, we used two raters and
a multi-iteration approach for card sorting, and we also analyzed a large data set of 2,387
threads.

Finally, regarding threats to external validity, we only considered LAMP-related discussions,
and we combined the single-layer and CsCE data of the five analyzed layers to deal with data
imbalance. Given its popularity in the field, we believe LAMP to be highly representative.
Furthermore, the large number of single-layer and CsCE data analyzed, as well as the variety
of observations that we made, provide us confidence about our results. Studies on other
stacks and other LAMP web apps should be performed in the future.

174

8.6.2 Empirical Evaluation

Regarding the threats to external validity of our evaluation, we only analyzed Wordpress
(plugins), Drupal and the PHP interpreter, hence we cannot generalize the results to other
stacks, nor to lower layers such as Apache and operating systems. However, our outcomes
show promising results, encouraging us to evaluate the approach as well on other stacks such
as MEAN.

Regarding threats to internal validity, the number of analyzed and evaluated configuration
errors is high compared to related work (Table 8.5), with the number of analyzed configuration
errors twice the number of Yin et al.’s study [215], and the number of real evaluated error
50% higher than Dong et al. [68]. In future work, we aim to evaluate even more real CsCEs,
although reproducing such errors is time-consuming.

Another threat to internal validity could be the fact that we did not evaluate our approach
in cases where more than one option was misconfigured. However, we think that in such
cases, users can fix an initial option using our tool, then re-execute their scenario to find the
second misconfigured option, and so on. For future work, we aim at exploring such cases.

Finally, we only focus on errors that cause a system to crash or write out an error message. We
are not focusing on misconfiguration errors that have an impact on the system’s performance
only. However, in section 8.3, we found that the majority of configuration errors exhibit a
Crash or a Hang. For future work, we plan to consider other kinds of errors.

8.7 Conclusion

This paper empirically studied the impact, effort and fix complexity of cross-stack configura-
tion errors (CsCEs) for 1,082 online configuration errors, showing that CsCEs are common
and have a severe impact, even in production. We then proposed the concept of cross-stack
slice dependency graph and an accompanying modular algorithm to recommend the culprit
option of a CsCE by integrating the results of existing slicing algorithms. Empirical evalua-
tion on 36 real CsCEs in a LAMP stack showed that the approach provides a good ranking in
a minimal amount of time, and could be integrated into the workflow of online stack hosting.
Future work should evaluate our approach on other stacks and additional, deeper layers.

175

1 //Wordpress [PHP]
2 i f (Option5) {
3 bar () ;
4 }
5
6 //MySQL [C]
7 bool mysql_foo () {
8 re turn opt ion3 ;
9 }
10
11 bool mysql_bar () {
12 re turn opt ion4 ;
13 }

1 //PHP i n t e r p r e t e r [C]
2 i n t php_foo () {
3 i f (opt ion1 == 10
4 && ! mysql_foo ()) {
5 php_bar () ;
6 }
7 }
8
9 i n t php_bar () {
10 i f (opt ion2
11 && mysql_bar ()) {
12 p r i n t (e r r o r) ; / /SYMPTOM
13 }
14 re turn 0 ;
15 }

Figure 8.8 Example of a 3-layer LAMP stack.

176

bar()

option 1
==10

mysql_foo()
==FALSE

php_bar()

option 2
==TRUE

mysql_bar()
==TRUE

print(error)

return
option3

return
option4

Wordpress layer

PHP layer

MySQL layer

php_foo() php_bar()

mysql_foo() mysql_bar()

return 0

option 5

Figure 8.9 Cross-stack slice dependency graph for Figure 8.8. Solid lines indicate slice de-
pendencies, dashed lines physical links and dotted lines slice dependencies derived from the
physical links. The black node is the start node, while the white nodes could be ignored for
optimization.

177

Table 8.4 The evaluated CsCEs.

Data Error System used Misconfigured option CsCE group Rank trace size Time

W
P

Se
t

1 The maximum execution time allowed is ex-
ceeded

WP max_execution_time (PHP) Broad 2 1 1.1 MB 108.13s

2 The folder’s path used to save session data is
incorrect

WP session.save_path (PHP) Broad 2 1 11.3 MB 553.18s

3 The allowed memory size WP is requiring has
been exceeded

WP memory_limit (PHP) Broad 2 1 3 KB 72.56s

4 Unable to send mails WP sendmail_path (PHP) Narrow 1 4.4MB 274.35s
5 Web page inaccessible as its source code is

outside the allowed path
WP open_basedir (PHP) Broad 2 1 - 57.79s

6 upload_file_size has no effect on maximum
file size to upload

WP post_max_size (PHP) Broad 1 2 9.3 MB 288.75s

7 No additional database connections available
to WP

WP mysql.max_links (PHP) Narrow 2 301 KB 54.46s

8 File upload disabled WP file_uploads (PHP) Narrow 2 8.2MB 58.98s
9 Not able to upload a file WP max_file_uploads (PHP) Narrow 2 9.9 MB 60.31s
10 Incorrectly specified WP source code include

path
WP include_path (PHP) Broad 2 5 811 bytes 67.54s

11 The maximum number of form inputs a user
can send is exceeded

WP max_input_vars (PHP) Broad 2 10 6.8 MB 369.91s

12 Not able to upload a file WP post_max_size (PHP) Narrow 10 6.5 MB 58.27s
13 No results for Ajax query that exceeded the

alotted time
WP max_execution_time (PHP) Narrow - 7.3 MB -

14 Web app does not execute PHP code WP short_open_tag (PHP) No symptom - - -

Pl
ug

in
s
Se

t

15 The plugin warns user from a lack of memory Woocommerce WP_MEMORY_LIMIT (WP) Broad 1 1 24.7 MB 243.04s
16 Not able to use caching features as it is dis-

abled in WP
Hyper Cache WP_CACHE (WP) Broad 1 1 11.3 MB 234.64s

17 Not able to use backup features in the plugin UpdraftPlus DISABLE_WP_CRON (WP) Broad 1 1 14.9MB 238.42s
18 Plugin disabled due to a WP option WP Super Cache permalink_structure (WP) Broad 1 1 19.5MB 237.07s
19 Not able to upload a file due to its large size WP Photo Album+ upload_max_filesize (PHP) Broad 1 1 13.1MB 236.01s
20 Fail to upload a file due to a lack of memory NextGEN Gallery memory_limit (PHP) Broad 1 1 12MB 235.73s
21 Plugin reports error when compression is en-

abled in PHP-interpreter
WP Super Cache zlib.output_compression (PHP) Broad 1 1 11.7MB 235.24s

D
R

Se
t

22 DR reports that the option’s value is very
low

DR max_execution_time (PHP) Broad 1 1 87.9 MB 262.35s

23 Idem to the last case DR memory_limit (PHP) Broad 1 1 87.8 MB 256.65s
24 DR crashes as the allowed memory limit is

exceed
DR memory_limit (PHP) Broad 2 1 33 KB 73.90s

25 Not able to load PHP extensions DR extension_dir (PHP) Broad 2 1 43 KB 254.26s
26 DR warns that option’s value is incorrect DR magic_quotes_gpc (PHP) Broad 1 1 228 KB 229.50s
27 DR crashes due to a limit of execution time DR max_execution_time (PHP) Broad 2 1 379 KB 78.10s
28 Not able to upload a file as its size is not

allowed
DR upload_max_filesize (PHP) Broad 1 1 6 MB 231.12s

29 DR is reporting an error, while the value of
that option is incorrect

DR register_globals (PHP) Broad 1 1 228 KB 230.34s

30 The number of form inputs is limited DR max_input_vars (PHP) Broad 2 1 13.5 MB 101.69s
31 Restriction of files that can be used DR open_basedir (PHP) Broad 2 1 - 35.77s
32 Not able to enable a DR module due to a

missed PHP extension
DR extension (PHP) Narrow 1 106.6 MB 63.90s

33 upload_max_filesize has no effect on maxi-
mum file size to upload

DR post_max_size (PHP) Broad 1 2 1.3 MB 229.78s

34 Not able to upload a file DR upload_tmp_dir (PHP) Narrow 12 5.8 MB 56.44s
35 DR shows its source code instead of execut-

ing it
DR short_open_tag (PHP) No symptom - - -

36 The user is redirected to the login page, with-
out error message

DR max_input_vars (PHP) No symptom - 4.7 MB -

178

Table 8.5 Comparison to evaluation in related work.

Paper #errors #real errors #random cross- #
studied evaluated evaluated stack systems

Our work 1,082 36 0 yes 10
Zhang et al. [219] 394 8 0 no 6
Yin et al. [215] 546 0 0 no 5
Arshad et al. [43] 281 0 0 no 2
Dong et al. [68] 0 21 8 no 4
Attariyan et al. [46] 0 18 60 no 3
Zhang et al. [217] 0 14 0 no 5

179

CHAPTER 9 GENERAL DISCUSSION

We conducted in this thesis a set of empirical studies to better understand the process of
configuration engineering as well as the challenges that are faced by practitioners. This
allowed us to identify and evaluate a set of best practices to improve the quality of software
configuration engineering. We discuss in this section our main findings and results of this
thesis.

9.1 Software Configuration Challenges

9.1.1 Need for Approaches to Help Developers in Configuration Engineering
Activities

While existing research literature points out that configuration errors are common, severe,
and hard-to-debug problems, we took a step back to understand what can lead to such low
quality, by reporting on problems that occur during the development cycle and that are faced
by developers, which can have an impact on the software configuration engineering quality.
For example, Xu et al. [212] found that users change only a few configuration options, which
indicates that developers can simplify their software configuration by removing options that
are not used by a software system’s customers. However, as we found in our qualitative study,
removing configuration options is challenging, because developers do not have a complete view
about the impact of each configuration option in the source code, and hence removing one
option can cause serious errors in the production.

In our qualitative study (Chapter 4), we identified 24 recommendations to help developers
ensure a good configuration engineering quality, while many of these activities and recom-
mendations are less covered by the research literature and requires further investigations.

9.1.2 Usage and Popularity of Configuration Frameworks

In the above study (Chapter 4), we used a qualitative approach to understand different
challenges that practitioners face by interviewing developers and conducting a survey, and
found that developers do not use existing configuration frameworks, and only 49% of surveyed
developers use an existing configuration framework. Via a quantitative analysis of a large
number of open source projects, Chapter 5 quantitatively confirmed this finding. We found
that almost half of the projects that we analyzed does not use a configuration framework at
all.

180

To better understand which frameworks developers tend to use, we conducted a quantitative
analysis in which we studied the popularity of 11 different configuration frameworks, and
found that developers tend to use simple and basic configuration frameworks, such as Java
Properties and Preferences, although many more sophisticated and open source frameworks
exist. That was also observed in our interviews (Chapter 4) and via our initial survey in
Chapter 5.

9.2 Development of Best Practices to Improve the Quality of Software Config-
uration Engineering

In Chapter 4, one of the initial interviewed experts explained how his company reduces
configuration problems by applying source code best practices to software configuration,
while many other interviewed experts and surveyed participants who consider configuration
as an external artifact do not apply such good practices on configuration options at all.
This was also confirmed in our survey, in which we found that most surveyed participants
just use tests as a quality assurance technique, 46% of participants do not use or respect a
configuration naming convention, and 36% of them do not review configuration options at
all.

Based on the principle of considering configuration as code, we derived a set of four principles
inspired by our interviews that were prototyped in a framework called Config2Code. This
study confirmed that using these principles, and considering configuration as code helps
practitioners and developers improve their software configuration quality, with less effort
(time required to achieve a typical configuration engineering task).

These four principles help users to add new options, refactor existing options by changing their
names, their default values, and to remove options. These principles also help practitioners
easily understand configuration options and find all their possible values.

However, the four principles did not help our 55 participants to debug configuration errors.
We observed that our participants used a simple and basic approach to find which option is
misconfigured. They just searched for options that might be related to the feature that is not
correctly working, randomly changing their values, then test if the failure is fixed. Further
analysis is required with different kinds of configuration errors (with and without an explicit
symptom, performance, and security configuration errors) to observe how developers debug
their configuration errors.

181

Furthermore, the Config2Code principles did not improve the reviewing of configuration
patches. We think that this might be related to the patch that was reviewed by our user
study participants, which just adds a new configuration option.

To the best of our knowledge, none of the existing configuration frameworks provides all
four principles, although some of these principles are already implemented individually. For
example, the configuration framework Constretto uses the mechanism of annotations, which
enables configuration-as-code (our first principles), while it does not support the other 3
principles. Furthermore, no study empirically evaluated the principles, neither individually,
nor together, on typical configuration engineering activities.

9.3 Cross-stack Configuration Errors

While Chapter 6 studies the potential of cross-stack configuration errors, Chapter 7 starts
by studying the prevalence of such errors in real cases. We found in Chapter 6 that there
is a significant potential of cross-stack configuration errors, as many configuration options
are used not only by these options’ layer but also by other layers. Chapter 7 confirmed the
potential of cross-stack configuration errors, and how such errors are prevalent, severe, and
hard-to-debug by analyzing real configuration errors in StackExchange fora.

We then proposed an approach (in chapter 7) to help debug cross-stack configuration errors.
Our approach is modular and consists of composing different source code analysis techniques,
each of which is applied to one layer. For example, one can apply a dynamic analysis technique
on a PHP based web application and static source code analysis on the PHP-interpreter layer,
and compose the results of both techniques via predefined physical links.

We conjecture that this approach can also be applied to cloud- and micro-services-based
architectures, in which each web-service is consuming services of another web-service via a
predefined protocol, such as SOAP or REST. One can apply a source code analysis technique
to each web-service, then compose the results of the analysis of each web-service with the
other ones.

We evaluated our approach by combining dynamic and static slicing techniques on the source
code of the top 3 layers of the LAMP stack. While, in many cases, developers could not have
access to the source code of one or multiple layers, we think that our approach can also
accurately perform on a software system’s byte-code, which we plan to evaluate in future
work.

We were not able to find the culprit configuration for 4 cross-stack configuration errors,
because we were not able to identify a starting point (an explicit error message) for these

182

options, as source code analysis techniques require a starting point. Using more advanced
source code analysis techniques could resolve this limitation. For example, one can combine
our approach with the approach of Lillack et al. [113,114] to build configuration constraints
for the whole LAMP stack, i.e., constraints between options that belong to different layers,
then use the approach of Xiong et al. [210] to find which option does not respect these
constraints and hence it is misconfigured. Such an approach would not require any source
code starting point (explicit configuration failure symptom).

Our approach can also be combined with the approach of Attariyan et al. [44] to debug cross-
stack performance configuration errors. According to such errors, one can have a performance
degradation on a WordPress website due to an incorrect configuration in the web server or
database, for example via the option max_connections that controls the number of allowed
simultaneous connections.

183

CHAPTER 10 CONCLUSION

In this thesis, we conducted a set of studies to understand the process of engineering software
configuration. We also studied and evaluated different strategies to improve software config-
uration engineering quality and address technical challenges that are faced by practitioners.
Our research hypothesis stated:

'

&

$

%

We hypothesize that (1) configuration engineering is con-
stituted by a wide range of activities for which developers
today face a variety of challenges. However, several of the
technical challenges can be addressed by a careful selec-
tion of (2) source code best practices. For the specific
activity of configuration debugging, (3) cross-stack con-
figuration errors are more difficult to debug than single-
layer configuration errors, however, they can be debugged
effectively by a composition of source code analysis tech-
niques.

Based on our results, we can confirm our research hypothesis. In particular, we found that
practitioners face an important number of challenges at each level of the configuration en-
gineering process and that a set of principles inspired from source code best practices can
help address a set of important technical challenges related to the process activities. Then,
in the context of the activity of configuration error debugging, we also found that cross-stack
configuration errors are severe problems that require further investigation, and for which we
proposed and evaluated an approach to debug cross-stack configuration errors.

10.1 Configuration Challenges and Recommendations

We studied software configuration from a practitioners’ perspective and identified 9 activities
that together form the process of configuration engineering, which starts from the creation of
a new configuration option, how developers decide to create a new option, and which roles are
involved in that creation. Another major configuration engineering activity is related to the
maintenance of software configuration, which includes cleaning dead configuration options
and changing an option’s name or default value. An additional important activity is related
to the access and uses of configuration options in the source code.

184

Related to these 9 activities, practitioners face 22 different software configuration challenges
and problems. We found for example that practitioners do not plan the addition of new
options, which are indeed added ad hoc and without any restrictions on who is responsible for
adding new options. Since any developer can add new options, this can negatively impact the
quality of software configuration engineering by having redundant and unclear configuration
options. We also found that developers do not consider configuration options as regular
source code, and hence do not apply best source code practices. An example of such ignored
best practices is code review: many interviewed experts and surveyed participants ignore
software configuration-related changes in their reviews, which obviously lets many problems
slip through to the production environment.

Interviewed and surveyed participants provided 24 recommendations based on their own
experience, with the goal of improving the quality of software configuration engineering ad-
dressing or minimizing the impact of the previously discussed 22 challenges. An example of
these recommendations consists of delegating the creation and maintenance of software con-
figuration to a few responsibles in an organization. This approach allowed the organization
of one of the interviewed experts to reduce the complexity of software configuration in their
code base, and minimize the number of redundant and unclear options. As for recommenda-
tions, we also discussed what should be included in the documentation of a software project,
and how to organize options in the configuration file to make them easier to manipulate and
understand.

Finally, we conducted a systematic literature review on run-time software configuration and
found that most papers focus on debugging configuration errors and testing software config-
urations, which leave large interesting opportunities for future work. One important research
direction that we identified is related to refactoring software configuration, which is consid-
ered risky, as developers generally do not recognize the impact of their software configuration
options, and hence removing one option can have a negative impact that can propagate to
production.

10.2 Usage of Configuration Frameworks

While it is highly recommended by practitioners to use configuration frameworks, we found
in the previous study that developers do not adopt such frameworks. Therefore, we quan-
titatively studied the usage of these frameworks on Github open source projects and indeed
confirmed our initial findings. We found that only 53% of analyzed projects use a configura-
tion framework, where the most popular frameworks are the basic ones, i.e., Preferences and
Java Properties, which are respectively used by 42% and 30% of the studied projects.

185

In addition to using basic frameworks, we found that 47.5% of projects using a configuration
framework complement it with one to six additional configuration frameworks. This can have
a negative impact on the maintenance of software configuration options.

Finally, we also analyzed the history of configuration framework usage in open source projects
and analyzed the impact of these frameworks’ features on the effort required by developers
to maintain their software configuration. This can help practitioners choose a suitable frame-
work for their own cases, by taking into consideration the most relevant factors.

10.3 Principles to Address Configuration Challenges

Developing good software configuration options does not only require testing different config-
urations of that software system but also preventing configuration problems from the devel-
opment phases. The research literature mostly focuses on testing software configurations to
avoid configuration errors, but many other aspects and practices can help improve software
configuration engineering quality.

This is confirmed in our user study in Chapter 6, in which we proposed and evaluated the
four principles discussed earlier and found that they are able to improve the correctness
and time for 8 out of 11 typical configuration engineering tasks, including the creation and
maintenance of software configuration options. We also found that these 4 principles do not
have any negative impact on configuration engineering tasks.

10.4 Potential of Cross-stack Configuration Errors

While debugging configuration failures is an essential activity of the configuration engineering
process, the research literature merely concentrates on single-layer and ignores cross-stack
configuration errors. However, these errors might be prevalent and more difficult to fix. To
confirm this end, we studied the potential prevalence of cross-stack configuration errors, by
analyzing the top three layers of the LAMP stack. We found that WordPress plugins use
1.49% to 9.49% of WordPress database configuration options, while they are using 1.38% to
15.18% of all WordPress configurable constants, which are options stored in a configuration
file.

Most surprisingly, we found that 78.88% and 85.16% of WordPress database and constant
options are used by at least two different plugins. This indicates that almost all WordPress
options are susceptible to introduce a cross-stack configuration error, as almost each Word-
Press option is used by at least two popular plugins, and also the modification of one option

186

could have an impact on multiple installed plugins at the same time. That can introduce
hard-to-debug configuration errors, and increase the potential of cross-stack configuration
errors.

10.5 Relevance and Debugging of Cross-stack Configuration Errors

While Chapter 7 confirmed an important potential of cross-stack configuration failures, Chap-
ter 8 addresses their prevalence in real cases and compare their impacts to single-layer config-
uration errors. To this end, we studied 1,082 real configuration errors discussed in StackEx-
change fora. We found that cross-stack configuration errors have a severe impact compared
to single layer configuration errors, as they mostly occur in production environments. We
also found that cross-stack configuration errors require as much effort and time to be fixed
as single layer configuration errors.

Then, we proposed a modular approach to debug such errors. This approach consists of using
existing source code analysis techniques, such as dynamic or static slicing, in each layer, then
to composes the results of each slicing analysis using physical links. These physical links
can be built by relying on source code naming conventions. Our approach takes as input a
symptom such as an error message and reports a set of options sorted from the most to the
least likely to be misconfigured.

Finally, we evaluated our approach on 36 real configuration errors that occur in the top 3
layers of the LAMP stack. Our evaluation confirms that source code analysis techniques
can help debug not only single layer configuration errors but also cross-stack configuration
errors. We were indeed able to find the misconfigured option for 32 over 36 cases, in only a
few minutes.

10.6 Future Work

Our research contributions open a wide range of opportunities for future work. The following
sections discuss some of them.

10.6.1 Considering other Types of Software Configuration

Our research focuses on run-time configuration options, which are options whose value can
be changed without recompiling or redeploying the software system. While there is an es-
tablished volume of work on non-runtime configuration and variability, we believe that repli-
cating our first study (Chapter 4) on this type of configuration can reveal interesting and

187

particular challenges and recommendations to that context. While our interviews (Chapter
4) cover a wide range of programming languages, we focused our survey only on Java run-
time configuration options to avoid the bias of programming languages on our results. Thus,
replicating our survey on other programming languages could reveal additional challenges
and recommendations on software configuration engineering.

10.6.2 Resolving Additional Practical Configuration Challenges

As discussed in Chapter 4, our systematic literature review revealed that many research
directions lack coverage by the literature. For example, we found that developers are not able
to clean their software configuration options because they do not have a broad vision about
option usage in the source code, and hence they are afraid of the side effects of configuration
refactoring. We think that helping practitioners in this direction can reduce the complexity of
software configuration options, as it will become easier for practitioners to find which options
are not used anymore and hence need to be removed.

10.6.3 Evaluating other Best Practices on Configuration Quality

Chapter 6 proposes 4 principles that can fix many of the technical challenges identified in
Chapter 4, such as helping practitioners remove dead options or preventing configuration
errors by automatic validation of option values via checking of constraints. There is still a
need to resolve organizational challenges, like the lack of communication between developers,
for example. There is also a need to evaluate the impact of organizational best practices,
such as pair-programming, on the quality of software configuration options.

10.6.4 Extending our Work on Debugging Cross-stack Configuration Errors

Our work on cross-stack configuration errors can be extended to different research directions.

Considering more Layers

We evaluated our modular approach only on the top three layers of the LAMP stack. We
plan for our future work to extend our approach to consider other lower layers, such as the
web server, database, and also the operating system layers.

188

Considering Other Stacks

We studied the LAMP stack for our evaluation of cross-stack configuration errors. In future
work, we plan to extend and replicate our study on other types of stack architectures, such
as the MEAN (MongoDB, Express.js, Angular.js, and Node.js) stack.

Evaluating our Approach on Cloud Applications

We believe that our modular approach not only applies to a stack architecture but can also
help resolve configuration errors caused by multiple interacting web services. In this context,
a user could get an error in her application, not due to a misconfiguration in that application,
but due to a misconfigured option in a web service that it is using. Therefore, in future work,
we plan to investigate such cloud application configuration errors.

Finding Correct Option Values

Our approach consists of debugging configuration errors and finding which options are mis-
configured. However, one then needs to follow up using other strategies to find the correct
values for these options. Xiong et al. [210] proposed an approach to find correct values for
misconfigured options, however their approach relies on existing configuration constraints,
which typically are not documented. One could recover such constraints using the approach
of Lillack et al. [113,114], which originally was proposed for single layer applications. Future
work can rely on these approaches to build a constraint model across a stack of layers, and
hence help find correct configuration values.

189

REFERENCES

[1] “Amazon configuration error,” http://techgenix.com/aws-configuration-error-dow-
jones/.

[2] “Amazon configuration error,” https://www.esecurityplanet.com/network-security/
configuration-error-exposes-almost-all-american-voters-personal-data.html.

[3] “Amazon configuration error,” https://awsinsider.net/articles/2017/08/18/latest-
amazon-s3-error.aspx.

[4] “Amazon misconfiguration,” https://www.pcworld.com/article/226033/thanks_
amazon_for_making_possible_much_of_the_internet.html.

[5] “Apache configuration error,” http://serverfault.com/questions/557138/apache-
dynamic-alias-based-on-sub-domain.

[6] “Apache web server.” [Online]. Available: https://httpd.apache.org/

[7] “Apache zookeeper,” http://zookeeper.apache.org.

[8] “Card sort of surveyed experts challenges,” http://mcis.polymtl.ca/publications/2018/
TSE/survey/ChallengesCardSort.html.

[9] “Card sort of surveyed experts recommendations,” http://mcis.polymtl.ca/
publications/2018//TSE/survey/BestPracticesCardSort.html.

[10] “Config2code exercise,” https://www.dropbox.com/s/8nfpnzhny46t9gc/ex_
config2code.pdf?dl=0.

[11] “Config2code exercise,” https://www.dropbox.com/s/y88dneqqhsttkku/ex_
preferences.pdf?dl=0.

[12] “Configuration error,” https://dougseven.com/2014/04/17/ knightmare-a-devops-
cautionary-tale/.

[13] “Configuration file,” https://stackoverflow.com/questions/ 648246/at-what-point-
does-a-config-file-become-a-programming-language.

[14] “Configuration problems in google,” http://matt-welsh.blogspot.ca/2013/05/what-i-
wish-systems-researchers-would.html.

http://techgenix.com/aws-configuration-error-dow-jones/
http://techgenix.com/aws-configuration-error-dow-jones/
https://www.esecurityplanet.com/network-security/configuration-error-exposes-almost-all-american-voters-personal-data.html
https://www.esecurityplanet.com/network-security/configuration-error-exposes-almost-all-american-voters-personal-data.html
https://awsinsider.net/articles/2017/08/18/latest-amazon-s3-error.aspx
https://awsinsider.net/articles/2017/08/18/latest-amazon-s3-error.aspx
https://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
https://www.pcworld.com/article/226033/thanks_amazon_for_making_possible_much_of_the_internet.html
http://serverfault.com/questions/557138/apache-dynamic-alias-based-on-sub-domain
http://serverfault.com/questions/557138/apache-dynamic-alias-based-on-sub-domain
https://httpd.apache.org/
http://mcis.polymtl.ca/publications/2018/TSE/survey/ChallengesCardSort.html
http://mcis.polymtl.ca/publications/2018/TSE/survey/ChallengesCardSort.html
http://mcis.polymtl.ca/publications/2018//TSE/survey/BestPracticesCardSort.html
http://mcis.polymtl.ca/publications/2018//TSE/survey/BestPracticesCardSort.html
https://www.dropbox.com/s/8nfpnzhny46t9gc/ex_config2code.pdf?dl=0
https://www.dropbox.com/s/8nfpnzhny46t9gc/ex_config2code.pdf?dl=0
https://www.dropbox.com/s/y88dneqqhsttkku/ex_preferences.pdf?dl=0
https://www.dropbox.com/s/y88dneqqhsttkku/ex_preferences.pdf?dl=0
https://dougseven.com/2014/04/17/ knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/ knightmare-a-devops-cautionary-tale/
http://matt-welsh.blogspot.ca/2013/05/what-i-wish-systems-researchers-would.html
http://matt-welsh.blogspot.ca/2013/05/what-i-wish-systems-researchers-would.html

190

[15] “Data:,” http://mcis.polymtl.ca/publications/2018//TSE/.

[16] “Drupal.” [Online]. Available: https://www.drupal.org/

[17] “Example of a system file permission error,” http://stackoverflow.com/questions/
28843695/wp-cli-error-installing-plugins-themes-could-not-create-directory-
permission.

[18] “Github api,” https://developer.github.com/v3/.

[19] “Interview card sort,” http://mcis.polymtl.ca/publications/2018//TSE/CardSort/.

[20] “J2ee.” [Online]. Available: http://docs.oracle.com/javaee/7/index.html

[21] “Jabref,” http://www.jabref.org/.

[22] “Lamp stack.” [Online]. Available: https://en.wikipedia.org/wiki/LAMP_(software_
bundle)

[23] “Linux.” [Online]. Available: https://www.kernel.org/

[24] “Max input vars error,” http://stackoverflow.com/questions/21792891/wordpress-
removes-my-menu-items-if-above-the-limit-of-90-menu-items.

[25] “Mean.” [Online]. Available: http://mean.io/#!/

[26] “mysql,” https://www.mysql.com/.

[27] “Original questions ideas of the interview,” http://mcis.polymtl.ca/publications/2018/
/TSE/Interviews/.

[28] “Php-interpreter.” [Online]. Available: http://php.net/

[29] “Study about surveys,” https://www.checkmarket.com/blog/survey-invitations-best-
time-send/.

[30] “Superglobal variables.” [Online]. Available: http://php.net/manual/en/language.
variables.superglobals.php

[31] “Survey answers,” http://mcis.polymtl.ca/publications/2018//TSE/survey/.

[32] “Survey questionnaire,” https://goo.gl/forms/cR7CkPgxcXxaddC12.

[33] “Wordpress.” [Online]. Available: https://wordpress.org/

http://mcis.polymtl.ca/publications/2018//TSE/
https://www.drupal.org/
http://stackoverflow.com/questions/28843695/wp-cli-error-installing-plugins-themes-could-not-create-directory-permission
http://stackoverflow.com/questions/28843695/wp-cli-error-installing-plugins-themes-could-not-create-directory-permission
http://stackoverflow.com/questions/28843695/wp-cli-error-installing-plugins-themes-could-not-create-directory-permission
http://mcis.polymtl.ca/publications/2018//TSE/CardSort/
http://docs.oracle.com/javaee/7/index.html
http://www.jabref.org/
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://www.kernel.org/
http://stackoverflow.com/questions/21792891/wordpress-removes-my-menu-items-if-above-the-limit-of-90-menu-items
http://stackoverflow.com/questions/21792891/wordpress-removes-my-menu-items-if-above-the-limit-of-90-menu-items
http://mean.io/#!/
http://mcis.polymtl.ca/publications/2018//TSE/Interviews/
http://mcis.polymtl.ca/publications/2018//TSE/Interviews/
http://php.net/
https://www.checkmarket.com/blog/survey-invitations-best-time-send/
https://www.checkmarket.com/blog/survey-invitations-best-time-send/
http://php.net/manual/en/language.variables.superglobals.php
http://php.net/manual/en/language.variables.superglobals.php
http://mcis.polymtl.ca/publications/2018//TSE/survey/
https://goo.gl/forms/cR7CkPgxcXxaddC12
https://wordpress.org/

191

[34] “Wp configuration error,” http://stackoverflow.com/questions/17181148/wordpress-
gets-404-not-found-error-when-entering-address.

[35] “Wp override problem,” http://stackoverflow.com/questions/21680244/fatal-error-
allowed-memory-size-of-268435456-bytes-exhausted-tried-to-allocate.

[36] E. K. Abbasi, M. Acher, P. Heymans, and A. Cleve, “Reverse engineering web con-
figurators,” in Proceedings of the Conference on Software Maintenance, Reengineering,
and Reverse Engineering, ser. CSMR-WCRE’14, 2014, pp. 264–273.

[37] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” SIGPLAN Not., vol. 25,
no. 6, pp. 246–256, 1990.

[38] B. S. Ahmed, T. S. Abdulsamad, and M. Y. Potrus, “Achievement of minimized combi-
natorial test suite for configuration-aware software functional testing using the cuckoo
search algorithm,” Information and Software Technology, vol. 66, pp. 13–29, 2015.

[39] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Understanding asynchronous
interactions in full-stack javascript,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY, USA: ACM,
2016, pp. 1169–1180. [Online]. Available: http://doi.acm.org/10.1145/2884781.2884864

[40] Ansible, “Core java preferences api,” http://www.ansible.com/, Accessed March 08,
2018.

[41] “Apache commons configuration,” https://commons.apache.org/proper/ commons-
configuration/.

[42] S. Apel, D. Batory, C. Kästner, and G. Saake, “Feature-oriented software product
lines: Concepts and implementation, berlin/heidelberg, 2013, 308 pages,” ISBN 978-3-
642-37520-0. URL http://www. springer. com/computer/swe/book/978-3-642-37520-0,
Tech. Rep.

[43] F. A. Arshad, R. J. Krause, and S. Bagchi, “Characterizing configuration problems in
java ee application servers: An empirical study with glassfish and jboss,” in Proceedings
of the 24th International Symposium on Software Reliability Engineering, 2013, pp.
198–207.

[44] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause diagnosis of
performance anomalies in production software,” in Proceedings of the 10th Usenix Sym-
posium on Operating Systems Design and Implementation (OSDI), 2012, pp. 307–320.

http://stackoverflow.com/questions/17181148/wordpress-gets-404-not-found-error-when-entering-address
http://stackoverflow.com/questions/17181148/wordpress-gets-404-not-found-error-when-entering-address
http://stackoverflow.com/questions/21680244/fatal-error-allowed-memory-size-of-268435456-bytes-exhausted-tried-to-allocate
http://stackoverflow.com/questions/21680244/fatal-error-allowed-memory-size-of-268435456-bytes-exhausted-tried-to-allocate
http://doi.acm.org/10.1145/2884781.2884864
http://www.ansible.com/

192

[45] M. Attariyan and J. Flinn, “Using causality to diagnose configuration bugs,” in
USENIX Annual Technical Conference, Conference Proceedings, pp. 281–286.

[46] ——, “Automating configuration troubleshooting with dynamic information flow anal-
ysis,” in Proceedings of the 9th Usenix Symposium on Operating Systems Design and
Implementation (OSDI), 2010, pp. 1–14.

[47] ——, “Automating configuration troubleshooting with confaid,” USENIX; login,
vol. 36, no. 1, pp. 27–36, 2011.

[48] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective, 1st ed.
Addison-Wesley Professional, 2015.

[49] ——, DevOps: A Software Architect’s Perspective. Addison-Wesley Professional, 2015.

[50] F. Behrang, M. B. Cohen, and A. Orso, “Users beware: Preference inconsistencies
ahead,” in Proceedings of the 10th Joint Meeting on Foundations of Software Engineer-
ing, 2015, pp. 295–306.

[51] T. Berger, S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki, “Variability modeling
in the real: A perspective from the operating systems domain,” in Proceedings of the
International Conference on Automated Software Engineering, 2010, pp. 73–82.

[52] Q. Boucher, E. K. Abbasi, A. Hubaux, G. Perrouin, M. Acher, and P. Heymans, “To-
wards more reliable configurators: A re-engineering perspective,” in Proceedings of the
3rd International Workshop on Product Line Approaches in Software Engineering, 2012,
pp. 29–32.

[53] X. Bowen, D. Lo, X. Xin, A. Sureka, and L. Shanping, “Efspredictor: Predicting
configuration bugs with ensemble feature selection,” in Proceedings of the Asia-Pacific
Software Engineering Conference (APSEC), pp. 206–213.

[54] R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers of user evaluation
in software engineering research,” in Proceedings of the International Conference on
Object Oriented Programming Systems Languages and Applications, ser. OOPSLA’11,
2011, pp. 643–656.

[55] “Carbon,” http://carbon.sourceforge.net/WhatIsCarbon.html.

[56] J. Cassoli, Web Application with Spring Annotation-Driven Configuration: Rapidly
develop lightweight Java web applications using Spring with annotations, 1st ed. The
address: CreateSpace Independent Publishing Platform, 10 2016.

193

[57] “Cfg4j,” http://www.cfg4j.org/.

[58] H. Chen, G. Jiang, H. Zhang, and K. Yoshihira, “Boosting the performance of com-
puting systems through adaptive configuration tuning,” in Proceedings of the ACM
symposium on Applied Computing, 2009, pp. 1045–1049.

[59] L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter, “Prevalence and mainte-
nance of automated functional tests for web applications,” in Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on, Sept 2014, pp. 141–150.

[60] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach,” IEEE Trans-
actions on Software Engineering, vol. 34, no. 5, pp. 633–650, 2008.

[61] “Constretto,” http://constretto.org/.

[62] B. Cornelissen, A. Zaidman, and A. Deursen, “A controlled experiment for program
comprehension through trace visualization,” IEEE Transactions on Software Engineer-
ing, vol. 37, no. 3, pp. 341–355, 2011.

[63] B. K. Debnath, D. J. Lilja, and M. F. Mokbel, “Sard: A statistical approach for ranking
database tuning parameters,” in procedings of the 24th International Conference on
Data Engineering Workshop, 2008, pp. 11–18.

[64] “Deltaspike,” https://deltaspike.apache.org/.

[65] V. Denisov, “Overview of java application configuration frameworks,” International
Journal of Open Information Technologies, vol. 1, no. 6, pp. 5–9, 2013.

[66] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus, “Managing web server per-
formance with autotune agents,” IBM Systems Journal, vol. 42, no. 1, pp. 136–149,
2003.

[67] Z. Dong, A. Andrzejak, D. Lo, and D. Costa, “Orplocator: Identifying read points
of configuration options via static analysis,” in Proceedings of the 27th International
Symposium on Software Reliability Engineering, 2016, pp. 185–195.

[68] Z. Dong, A. Andrzejak, and K. Shao, “Practical and accurate pinpointing of configu-
ration errors using static analysis,” in Proceedings of the 31st International Conference
on Software Maintenance and Evolution, ser. ICSME’15, 2015, pp. 171–180.

194

[69] Z. Dong, M. Ghanavati, and A. Andrzejak, “Automated diagnosis of software miscon-
figurations based on static analysis,” in Proceedings of the International Symposium on
Software Reliability Engineering Workshops, 2013, pp. 162–168.

[70] S. Duan, V. Thummala, and S. Babu, “Tuning database configuration parameters with
ituned,” Proc. VLDB Endow., vol. 2, no. 1, pp. 1246–1257, 2009.

[71] C. Elsner, D. Lohmann, and W. Schroder-Preikschat, “Fixing configuration
inconsistencies across file type boundaries,” in 37th EUROMICRO Conference
on Software Engineering and Advanced Applications, SEAA 2011, August 30,
2011 - September 2, 2011, ser. Proceedings - 37th EUROMICRO Conference
on Software Engineering and Advanced Applications, SEAA 2011. IEEE
Computer Society, Conference Proceedings, pp. 116–123. [Online]. Available: http:
//dx.doi.org/10.1109/SEAA.2011.26 http://ieeexplore.ieee.org/document/6068333/

[72] B. Eshete, A. Villafiorita, K. Weldemariam, and M. Zulkernine, “Confeagle: Automated
analysis of configuration vulnerabilities in web applications,” in Proceedings of the 7th
International Conference on Software Security and Reliability (SERE’13), 2013, pp.
188–197.

[73] L. Eshkevari, G. Antoniol, J. R. Cordy, and M. Di Penta, “Identifying and locating
interference issues in php applications: The case of wordpress,” in Proc. of the 22nd
ICPC, 2014, pp. 157–167.

[74] S. Fouche, M. B. Cohen, and A. Porter, “Incremental covering array failure char-
acterization in large configuration spaces,” in Proceedings of the 18th International
Symposium on Software Testing and Analysis, ISSTA 2009, pp. 177–187.

[75] K. Gallagher and D. Binkley, “Program slicing,” in Frontiers of Software Maintenance,
2008. FoSM 2008., Sept 2008, pp. 58–67.

[76] J. Gao, J. Guan, A. Ma, C. Tao, X. Bai, and D. C. Kung, “Testing configurable
component-based software - configuration test modeling and complexity analysis,” in
Proceedings of the 23rd International Conference on Software Engineering and Knowl-
edge Engineering, 2011, pp. 495–502.

[77] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Using feature locality: can we leverage
history to avoid failures during reconfiguration?” in Proceedings of the 8th workshop
on Assurances for self-adaptive systems, 2011, pp. 24–33.

http://dx.doi.org/10.1109/SEAA.2011.26 http://ieeexplore.ieee.org/document/6068333/
http://dx.doi.org/10.1109/SEAA.2011.26 http://ieeexplore.ieee.org/document/6068333/

195

[78] G. Gousios, “The ghtorrent dataset and tool suite,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 233–236.

[79] G. Gousios, V. Karakoidas, and D. Spinellis, “Tuning java’s memory manager for high
performance server applications,” in Proceedings of the 5th International System Ad-
ministration and Network Engineering Conference SANE, pp. 69–83.

[80] J. Gray, “Why do computers stop and what can be done about it?” in Symposium
on reliability in distributed software and database systems. Los Angeles, CA, USA,
Conference Proceedings, pp. 3–12.

[81] J. Guo, K. Czarnecki, S. Apely, N. Siegmundy, and A. Wasowski, “Variability-aware
performance prediction: A statistical learning approach,” in Proceedings of the 28th
International Conference on Automated Software Engineering, pp. 301–311.

[82] S. Hamidi, P. Andritsos, and S. Liaskos, “Constructing adaptive configuration dialogs
using crowd data,” in Proceedings of the 29th International Conference on Automated
Software Engineering, 2014, pp. 485–490.

[83] X. Han and T. Yu, “An empirical study on performance bugs for highly configurable
software systems,” in Proceedings of the 10th International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM’16, 2016.

[84] M. Hills, P. Klint, and J. Vinju, “An empirical study of php feature usage: A static
analysis perspective,” in Proc. of the 2013 Int’l Symposium on Software Testing and
Analysis, 2013, pp. 325–335.

[85] P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou, “Confvalley: A systematic configu-
ration validation framework for cloud services,” in Proceedings of the Tenth European
Conference on Computer Systems, ser. EuroSys ’15, NY, USA, 2015, pp. 1–16.

[86] S. Huang, Y. Q. Lu, Y. Xiao, and W. Wang, “Mining application repository to recom-
mend xml configuration snippets,” in Proceedings of the 34th International Conference
on Software Engineering, ICSE’12, pp. 1451–1452.

[87] A. Hubaux, Y. Xiong, and K. Czarnecki, “A user survey of configuration challenges in
linux and ecos,” in Proc. of the 6th Int’l Workshop on Variability Modeling of Software-
Intensive Systems, 2012, pp. 149–155.

[88] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st ed. Addison-Wesley Professional, 2010.

196

[89] D. Huning, C. Murphy, and G. Kaiser, “Confu: Configuration fuzzing testing frame-
work for software vulnerability detection,” International Journal of Secure Software
Engineering, vol. 1, no. 3, pp. 41–55, 2010.

[90] “jconfig,” https://sourceforge.net/projects/jconfig/.

[91] A. K. Jha, L. Sunghee, and L. Woo Jin, “Developer mistakes in writing android man-
ifests: An empirical study of configuration errors,” in Procedings of the 14th Interna-
tional Conference on Mining Software Repositories (MSR’17), 2017, pp. 25–36.

[92] Y. Jiang and B. Adams, “Co-evolution of infrastructure and source code: An empirical
study,” in Proceedings of the 12th Conference on Mining Software Repositories, ser.
MSR’15, 2015, pp. 45–55.

[93] Z. Jiaqi, L. Renganarayana, Z. Xiaolan, G. Niyu, V. Bala, X. Tianyin, and Z. Yuanyuan,
“Encore: exploiting system environment and correlation information for misconfigura-
tion detection,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 687–700, 2014.

[94] D. Jin, M. B. Cohen, X. Qu, and B. Robinson, “Preffinder: Getting the right preference
in configurable software systems,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE 2014, pp. 151–162.

[95] D. Jin, X. Qu, M. B. Cohen, and B. Robinson, “Configurations everywhere: Implica-
tions for testing and debugging in practice,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE’14, pp. 215–224.

[96] R. Johnson, “More details on today’s outage,” MathWorld–A Wolfram Web
Resource, September 2010, https://www.facebook.com/notes/facebook-engineering/
more-details-on-todays-outage/431441338919/.

[97] R. Kabacoff, R in Action: Data Analysis and Graphics with R. Greenwich, CT, USA:
Manning Publications Co., 2015.

[98] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian,
“The promises and perils of mining github,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR 2014, 2014, pp. 92–101.
[Online]. Available: http://doi.acm.org/10.1145/2597073.2597074

[99] A. Kapoor, “Web-to-host: Reducing total cost of ownership,” Technical Report 200503,
The Tolly Group, Tech. Rep., May 2000.

https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919/
https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919/
http://doi.acm.org/10.1145/2597073.2597074

197

[100] S. Keele et al., “Guidelines for performing systematic literature reviews in software
engineering,” in Technical report, Ver. 2.3 EBSE Technical Report. EBSE. sn, 2007.

[101] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: a tool for assessing resilience to
human configuration errors.” IEEE, Conference Proceedings, pp. 157–66.

[102] A. Kenner, C. Kästner, S. Haase, and T. Leich, “Typechef: Toward type checking
#ifdef variability in c,” in Proceedings of the 2Nd International Workshop on
Feature-Oriented Software Development, ser. FOSD ’10. New York, NY, USA: ACM,
2010, pp. 25–32. [Online]. Available: http://doi.acm.org/10.1145/1868688.1868693

[103] M. Khan, Z. Huang, M. Li, G. A. Taylor, and M. Khan, “Optimizing hadoop parameter
settings with gene expression programming guided pso,” Concurrency and Computa-
tion: Practice and Experience, vol. 29, no. 3, pp. 186–197, 2017.

[104] E. Kiciman and Y.-M. Wang, “Discovering correctness constraints for self-management
of system configuration,” in Autonomic Computing, 2004. Proceedings. International
Conference on. IEEE, 2004, pp. 28–35.

[105] C. H. P. Kim, D. Marinov, S. K. D. Batory, S. Souto, P. Barros, and M. D’Amorim,
“Splat: Lightweight dynamic analysis for reducing combinatorics in testing configurable
systems,” in Proceedings of the 9th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE’13, 2013, pp. 257–267.

[106] A. J. Ko, T. LaToza, and M. Burnett, “A practical guide to controlled experiments of
software engineering tools with human participants,” Empirical Software Engineering,
vol. 20, no. 1, pp. 110–141, Feb 2015.

[107] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple programming
languages and code quality,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 1, March 2016, pp. 563–573.

[108] S. Krum, W. Van.Hevelingen, B. Kero, J. Turnbull, and J. McCune, Pro Puppet, 2nd ed.
Apress; 2nd ed. edition, 07 2013.

[109] P. Lengauer and H. Mössenböck, “The taming of the shrew: increasing performance
by automatic parameter tuning for java garbage collectors,” in Proceedings of the 5th
international conference on Performance engineering, pp. 111–122.

http://doi.acm.org/10.1145/1868688.1868693

198

[110] W. Li, S. Li, X. Liao, X. Xu, S. Zhou, and Z. Jia, “Conftest: Generating comprehensive
misconfiguration for system reaction ability evaluation,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engineering, ser.
EASE’17, NY, USA, 2017, pp. 88–97.

[111] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis of the
variability in forty preprocessor-based software product lines,” in 2010 ACM/IEEE
32nd International Conference on Software Engineering, vol. 1, May 2010, pp. 105–
114.

[112] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer, “Scalable
analysis of variable software,” in Proc. of the 9th Joint Meeting on Foundations of Soft.
Eng., ser. ESEC/FSE 2013, 2013, pp. 81–91.

[113] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time configuration options,”
IEEE Transactions on Software Engineering, pp. 1–1, 2017.

[114] M. Lillack, C. Kastner, and E. Bodden, “Tracking load-time configuration options,” in
Proceedings of the 29th International Conference on Automated Software Engineering
(ASE’14), 2014, pp. 445–456.

[115] D. Marijan, M. Liaaen, A. Gotlieb, S. Sen, and C. Ieva, “Titan: Test suite optimization
for highly configurable software,” in Proceedings of the 10th International Conference
on Software Testing, Verification and Validation, 2017, pp. 524–531.

[116] S. McConnell, Code Complete, ser. DV-Professional. Microsoft Press, 2009. [Online].
Available: https://books.google.ca/books?id=3JfE7TGUwvgC

[117] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A comparison of 10
sampling algorithms for configurable systems,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York, NY, USA: ACM,
2016, pp. 643–654. [Online]. Available: http://doi.acm.org/10.1145/2884781.2884793

[118] J. Meinicke, W. Chu-Pan, C. Kastner, T. Thum, and G. Saake, “On essential configura-
tion complexity: Measuring interactions in highly-configurable systems,” in Proceedings
of the 31st International Conference on Automated Software Engineering (ASE’16),
2016, pp. 483–494.

[119] X. Meng, P. S. Foong, S. Perrault, and S. Zhao, “5-step approach to designing controlled
experiments,” in Proceedings of the International Working Conference on Advanced
Visual Interfaces, 2016, pp. 358–359.

https://books.google.ca/books?id=3JfE7TGUwvgC
http://doi.acm.org/10.1145/2884781.2884793

199

[120] J. Mickens, M. Szummer, and D. Narayanan, “Snitch: Interactive decision trees for
troubleshooting misconfigurations,” in In Proceedings of the 2007 Workshop on Tackling
Computer Systems Problems with Machine Learning Techniques, 2007.

[121] B. A. Mohammed Sayagh, Noureddine Kerzazi and F. Petrillo, “Software configuration
engineering in practice interviews, survey, and systematic literature review,” Submitted
to Transactions on Software Engineering (TSE), 2018.

[122] K. Morris, Infrastructure as Code: Managing Servers in the Cloud, 1st ed. The address:
O’Reilly Media; 1 edition, 07 2016.

[123] Y. Murakami, E. Kagawa, and N. Funabiki, “Automatic generation of configuration
manuals for open-source software,” in Proceedings of the 5th International Conference
on Complex, Intelligent and Software Intensive Systems, 2011, pp. 653–658.

[124] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Where do configuration constraints
stem from? an extraction approach and an empirical study,” IEEE Transactions on
Software Engineering, vol. 41, no. 8, pp. 820–841, Aug 2015.

[125] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining configuration constraints:
Static analyses and empirical results,” in Proc. of the 36th ICSE, 2014, pp. 140–151.

[126] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity in Software Engineering
Research,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 466–476.
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491415

[127] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen,
“Understanding and dealing with operator mistakes in internet services,” in OSDI’04,
Berkeley, CA, USA, 2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1251254.1251259

[128] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Exploring variability-aware execution
for testing plugin-based web applications,” in Proc. of the 36th ICSE, 2014, pp. 907–
918.

[129] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Cross-language program slicing for
dynamic web applications,” in Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering. ACM, 2015, pp. 369–380.

http://doi.acm.org/10.1145/2491411.2491415
http://dl.acm.org/citation.cfm?id=1251254.1251259
http://dl.acm.org/citation.cfm?id=1251254.1251259

200

[130] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, A. T. Nguyen, and T. Nguyen, “Dangling
references in multi-configuration and dynamic php-based web applications,” in Proc.
of the 28th Int’l Conf. ASE, 2013, pp. 399–409.

[131] T. V. Nguyen, U. Koc, J. Cheng, J. S. Foster, and A. A. Porter, “Igen: Dynamic
interaction inference for configurable software,” in Proceedings of the 24th International
Symposium on Foundations of Software Engineering (FSE’16), 2016, pp. 655–665.

[132] A. J. Offutt and R. H. Untch, Mutation 2000: Uniting the Orthogonal. Boston, MA:
Springer US, 2001, pp. 34–44.

[133] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet services fail,
and what can be done about it?” in Proceedings of the 4th Conference on USENIX
Symposium on Internet Technologies and Systems - Volume 4, ser. USITS’03, 2003.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251460.1251461

[134] T. Osogami and T. Itoko, “Finding probably better system configurations quickly,”
Performance Evaluation Review, vol. 34, no. 1, pp. 264–75.

[135] T. Osogami and S. Kato, “Optimizing system configurations quickly by guessing at the
performance,” in Proceedings of the International Conference of Performance Evalua-
tion Review, 2007, pp. 145–156.

[136] H. Otsuka, Y. Watanabe, and Y. Matsumoto, “Learning from before and after recovery
to detect latent misconfiguration,” in Proceedings of the 39th International Conference
of Computer Software and Applications, 2015, pp. 141–148.

[137] “Owner,” http://owner.aeonbits.org/.

[138] S. K. Patel, V. Rathod, and J. B. Prajapati, “Performance analysis of content man-
agement systems-joomla, drupal and wordpress,” International Journal of Computer
Applications, vol. 21, no. 4, pp. 39–43, 2011.

[139] G. Perrouin, M. Acher, J. M. Davril, A. Legay, and P. Heymans, “A complexity tale:
Web configurators,” in Proceedings of the 1st International Workshop on Variability
and Complexity in Software Design, 2016, pp. 28–31.

[140] “Play framework,” https://www.playframework.com/.

[141] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques. Springer Berlin Heidelberg, 2005. [Online].
Available: https://books.google.ca/books?id=lsX8_O_TRkEC

http://dl.acm.org/citation.cfm?id=1251460.1251461
https://books.google.ca/books?id=lsX8_O_TRkEC

201

[142] X. Qu, “Configuration aware prioritization techniques in regression testing,” in Pro-
ceedings of the 31st International Conference on Software Engineering (ICSE’09), 2009,
pp. 375–378.

[143] X. Qu, M. Acharya, and B. Robinson, “Impact analysis of configuration changes for
test case selection,” in Proceedings of the 22nd International Symposium on Software
Reliability Engineering, 2011, pp. 140–149.

[144] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression testing: An
empirical study of sampling and prioritization,” in Proceedings of the 2008 International
Symposium on Software Testing and Analysis, 2008, pp. 75–85.

[145] R. Rabiser and D. Dhungana, “Integrated support for product configuration and
requirements engineering in product derivation,” ser. EUROMICRO’07, Piscataway,
USA, 2007, pp. 193–200.

[146] A. Rabkin and R. Katz, “How hadoop clusters break,” Software, IEEE, vol. 30, no. 4,
pp. 88–94, July 2013.

[147] ——, “Precomputing possible configuration error diagnoses,” in Proceedings of the 26th
International Conference on Automated Software Engineering, 2011, pp. 193–202.

[148] ——, “Static extraction of program configuration options,” in Proceedings of the 33rd
International Conference on Software Engineering (ICSE’11), 2011, pp. 131–140.

[149] M. Raghavachari, D. Reimer, and R. D. Johnson, “The deployer’s problem: config-
uring application servers for performance and reliability,” in Proceedings of the 25th
international conference on Software engineering, 2003, pp. 484–489.

[150] M. T. Rahman, L.-P. Querel, P. C. Rigby, and B. Adams, “Feature toggles: A case
study and survey,” in Proceedings of the 13th IEEE Working Conference on Mining
Software Repositories (MSR), Austin, TX, May 2016, pp. 201–211.

[151] “Raihan’s jconfig,” https://github.com/prshreshtha/jconfig.

[152] V. Ramachandran, M. Gupta, M. Sethi, and S. R. Chowdhury, “Determining config-
uration parameter dependencies via analysis of configuration data from multi-tiered
enterprise applications,” in Proceedings of the 6th International Conference on Auto-
nomic Computing, 2009, pp. 169–178.

202

[153] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using symbolic evaluation
to understand behavior in configurable software systems,” in Proceedings of the 32nd
International Conference on Software Engineering (ICSE’10), vol. 1, 2010, pp. 445–454.

[154] B. Robinson and L. White, “Testing of user-configurable software systems using fire-
walls,” in Proceedings of the 19th International Symposium on Software Reliability En-
gineering, 2008, pp. 177–186.

[155] G. Rugg and P. McGeorge, “The sorting techniques: a tutorial paper on card sorts,
picture sorts and item sorts,” Expert Systems, vol. 22, no. 3, pp. 94–107, 2008.

[156] A. Sarkar, G. Jianmei, N. Siegmund, S. Apel, and K. Czarnecki, “Cost-efficient sam-
pling for performance prediction of configurable systems (t),” in Proceedings of the 30th
International Conference on Automated Software Engineering, 2015, pp. 342–352.

[157] A. Sarma, G. Bortis, and A. van der Hoek, “Towards supporting awareness of indirect
conflicts across software configuration management workspaces,” in Proceedings of the
22 International Conference on Automated Software Engineering, ser. ASE’07, 2007,
pp. 94–103.

[158] M. Sayagh and B. Adams, “Backslicer: A lightweight backward slicer,”
Ecole Polytechnique, Montreal, QC, Canada, Tech. Rep. 1, August 2016,
http://mcis.polymtl.ca/~msayagh/TechnicalReports/MCIS-TR-2016-1.pdf.

[159] ——, “Phpslicer: Slicing dynamically typed programming languages - case study on
php web apps,” Ecole Polytechnique, Montreal, QC, Canada, Tech. Rep. 2, August
2016, http://mcis.polymtl.ca/~msayagh/TechnicalReports/MCIS-TR-2016-2.pdf.

[160] ——, “Data set of empirical evaluation,” http://mcis.polymtl.ca/~msayagh/icse2017
/DataSet/index.html.

[161] ——, “Videos,” http://mcis.polymtl.ca/ msayagh/userStudy/Config2Code/.

[162] ——, “Multi-layer software configuration: Empirical study on wordpress,” in Proceed-
ings of the 15th International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM’15), 2015, pp. 31–40.

[163] M. Sayagh, Z. Dong, A. Andrzejak, and B. Adams, “Does the choice of configuration
framework matter for developers? empirical study on 11 java configuration frame-
works,” in Proceedings of the 17th International Working Conference on Source Code
Analysis and Manipulation (SCAM’17), 2017, pp. 41–50.

203

[164] M. Sayagh, N. Kerzazi, and B. Adams, “On cross-stack configuration errors,” in Pro-
ceedings of the 39th International Conference on Software Engineering (ICSE’17), 2017,
pp. 255–265.

[165] “SharedPreferences,” https://developer.android.com/reference/android/ con-
tent/SharedPreferences.html.

[166] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration code smell?” in
Proceedings of the 13th International Conference on Mining Software Repositories, ser.
MSR’16, 2016, pp. 189–200.

[167] H. Sheng, X. Yanghua, L. Yiqi, W. Wei, and W. Yu, “Xmlsnippet: A coding assistant
for xml configuration snippet recommendation,” in Proceedings of the 36th Annual
Computer Software and Applications Conference, 2012, pp. 312–321.

[168] E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan, “Is lines of code a good measure of
effort in effort-aware models?” Information and Software Technology, vol. 55, no. 11,
pp. 1981–1993, 2013.

[169] N. Siegmund, A. Grebhahn, S. Apel, and C. Kastner, “Performance-influence models
for highly configurable systems,” in Proceedings of the 10th Joint Meeting of the Eu-
ropean Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’15), 2015, pp. 284–294.

[170] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, and
G. Saake, “Predicting performance via automated feature-interaction detection,” in
Proceedings of the 34th International Conference on Software Engineering (ICSE’12),
2012, pp. 167–177.

[171] R. Singh, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Optimizing the performance-
related configurations of object-relational mapping frameworks using a multi-objective
genetic algorithm,” in Proceedings of the 7th International Conference on Performance
Engineering, 2016, pp. 309–320.

[172] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley Publishing Com-
pany, 2010.

[173] C. Song, A. Porter, and J. S. Foster, “itree: Efficiently discovering high-coverage con-
figurations using interaction trees,” in Proceedings of the 34th International Conference
on Software Engineering (ICSE’12), 2012, pp. 903–913.

204

[174] ——, “Itree: Efficiently discovering high-coverage configurations using interaction
trees,” IEEE Transactions on Software Engineering, vol. 40, no. 3, pp. 251–265, 2014.

[175] S. Souto and M. d’Amorim, “Time-space efficient regression testing for configurable
systems,” 2017.

[176] S. Souto, M. D’Amorim, and R. Gheyi, “Balancing soundness and efficiency for practi-
cal testing of configurable systems,” in Proceedings of the 39th International Conference
on Software Engineering, ICSE’17, 2017, 2017, pp. 632–642.

[177] “Spring framework,” https://projects.spring.io/spring-framework/.

[178] Y.-Y. Su, M. Attariyan, and J. Flinn, “Autobash: improving configuration management
with operating system causality analysis,” in ACM SIGOPS Operating Systems Review,
vol. 41. ACM, 2007, pp. 237–250.

[179] L. Sun, G. Huang, Y. Sun, H. Song, and H. Mei, “An approach for generation of j2ee
access control configurations from requirements specification,” in Proceedings of the
8th International Conference on Quality Software, ser. - International Conference on
Quality Software. Inst. of Elec. and Elec. Eng. Computer Society, pp. 87–96.

[180] “Developer’s survey via google forms,” https://goo.gl/kXCQ7Q.

[181] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Firestone, “Beyond the
rainbow: Self-adaptive failure avoidance in configurable systems,” in Proceedings of the
22nd International Symposium on the Foundations of Software Engineering (FSE’14),
2014, pp. 377–388.

[182] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Feature consistency
in compile-time-configurable system software: Facing the linux 10,000 feature
problem,” in Proceedings of the Sixth Conference on Computer Systems, ser.
EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 47–60. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966451

[183] R. Thonangi, V. Thummala, and S. Babu, “Finding good configurations in high-
dimensional spaces: Doing more with less,” in Proceedings of the International Sym-
posium on Modeling, Analysis and Simulation of Computers and Telecommunication
Systems, 2008, pp. 1–10.

[184] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification and survey
of analysis strategies for software product lines,” ACM Comput. Surv., vol. 47, no. 1,
pp. 6:1–6:45, Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/2580950

http://doi.acm.org/10.1145/1966445.1966451
http://doi.acm.org/10.1145/2580950

205

[185] X. Tianyin and Z. Yuanyuan, “Systems approaches to tackling configuration errors: a
survey,” ACM Computing Surveys, vol. 47, no. 4, pp. 1–41, 2015.

[186] J. Toman and D. Grossman, “Staccato: A bug finder for dynamic configuration up-
dates,” in LIPIcs-Leibniz International Proceedings in Informatics, vol. 56. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[187] A. Tresch, “Java configuration,” http://javaeeconfig.blogspot.de/2014/08/overview-of-
existing-configuration.html.

[188] “Typesafe,” https://github.com/typesafehub/config.

[189] S. Urli, M. Blay-Fornarino, and P. Collet, “Handling complex configurations in software
product lines: A tooled approach,” in Proceedings of the 18th International Software
Product Line, 2014, pp. 112–121.

[190] F. van der Linden, K. Schmid, and E. Rommes, Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer Berlin Heidelberg,
2007. [Online]. Available: https://books.google.ca/books?id=PC4LyoSNNAkC

[191] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social Q&A sites are
changing knowledge sharing in open source software communities,” in Proceedings of
the 17th ACM Conference on Computer Supported Cooperative Work & Social
Computing, ser. CSCW ’14, 2014, pp. 342–354.

[192] B. Wang, L. Passos, Y. Xiong, K. Czarnecki, H. Zhao, and W. Zhang, “Smartfixer:
Fixing software configurations based on dynamic priorities,” in Proceedings of the 17th
International Software Product Line Conference. ACM, Conference Proceedings, pp.
82–90.

[193] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic misconfig-
uration troubleshooting with peerpressure,” in OSDI, vol. 4, 2004, pp. 245–257.

[194] R. Wang, X. Wang, K. Zhang, and Z. Li, “Towards automatic reverse engineering of
software security configurations,” in Proceedings of the 15th Conference on Computer
and Communications Security, 2008, pp. 245–255.

[195] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan, and Z. Zhang,
“Strider: A black-box, state-based approach to change and configuration management
and support,” Science of Computer Programming, vol. 53, no. 2 SPEC. ISS., pp. 143–
164, 2004.

https://books.google.ca/books?id=PC4LyoSNNAkC

206

[196] C. Wei, W. Heng, W. Jun, Z. Hua, and H. Tao, “Determine configuration entry cor-
relations for web application systems,” in Proceedings of the 40th Annual Computer
Software and Applications Conference, 2016, pp. 42–52.

[197] C. Wei, Q. Xiaoqiang, W. Jun, Z. Hua, and H. Xiang, “Detecting inter-component
configuration errors in proactive: a relation-aware method,” in Proceedings of the 14th
International Conference on Quality Software, 2014, pp. 184–199.

[198] M. Weiser, “Program slicing,” in Proc. of the 5th ICSE, 1981, pp. 439–449.

[199] M. Welsh, “What i wish systems researchers would work on,” May 2013, http://matt-
welsh.blogspot.ca/2013/05/what-i-wish-systems-researchers-would.html.

[200] W. Wen, T. Yu, and J. H. Hayes, “Colua: Automatically predicting configuration bug
reports and extracting configuration options,” in Proceedings of the 27th International
Symposium on Software Reliability Engineering, 2016, pp. 150–161.

[201] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: a controlled exper-
iment,” in 2011 33rd International Conference on Software Engineering (ICSE), May
2011, pp. 551–560.

[202] ——, “Software systems as cities: A controlled experiment,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11, New York, NY, USA,
2011, pp. 551–560.

[203] D. A. Wheeler, “Sloc count user’s guide,” 2004.

[204] A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration debugging as search: find-
ing the needle in the haystack,” in Proceedings of the Sixth Symposium on Operating
Systems Design and Implementation, 2004, pp. 77–90.

[205] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Exper-
imentation in Software Engineering: An Introduction. Norwell, MA, USA: Kluwer
Academic Publishers, 2000.

[206] H. Wu, L. Shi, C. Chen, Q. Wang, and B. W. Boehm, “Maintenance effort
estimation for open source software: A systematic literature review,” in 2016
IEEE International Conference on Software Maintenance and Evolution, ICSME
2016, Raleigh, NC, USA, October 2-7, 2016, 2016, pp. 32–43. [Online]. Available:
https://doi.org/10.1109/ICSME.2016.87

http://matt-welsh.blogspot.ca/2013/05/what-i-wish-systems-researchers-would.html
http://matt-welsh.blogspot.ca/2013/05/what-i-wish-systems-researchers-would.html
https://doi.org/10.1109/ICSME.2016.87

207

[207] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang, “A smart hill-climbing
algorithm for application server configuration,” in Proceedings of the Thirteenth Inter-
national World Wide Web Conference, 2004, pp. 287–296.

[208] X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou, “Automated configuration bug re-
port prediction using text mining,” in Proceedings of the 38th Annual IEEE Computer
Software and Applications Conference, 2014, pp. 107–116.

[209] Q. Xiao, M. Acharya, and B. Robinson, “Configuration selection using code change
impact analysis for regression testing,” in Proceedings of the International Conference
on Software Maintenance, 2012, pp. 129–138.

[210] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range fixes for software
configuration,” in 2012 34th International Conference on Software Engineering (ICSE),
2012, pp. 58–68.

[211] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki, “Range fixes:
Interactive error resolution for software configuration,” IEEE Transactions on Software
Engineering, vol. 41, no. 6, pp. 603–619, 2015.

[212] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey, you have given
me too many knobs! : Understanding and dealing with over-designed configuration in
system software,” in Proceedings of the 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering(ESEC/FSE’15), 2015, pp. 307–319.

[213] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and S. Pasupathy,
“Do not blame users for misconfigurations,” in Proceedings of the 24th Symposium on
Operating Systems Principles, 2013, pp. 244–259.

[214] X. Xu, S. Li, Y. Guo, W. Dong, W. Li, and X. Liao, “Automatic type inference for
proactive misconfiguration prevention,” in Proceedings of the 29th International Con-
ference on Software Engineering and Knowledge Engineering, 2017, pp. 295–300.

[215] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasupathy, “An
empirical study on configuration errors in commercial and open source systems,” in
Proceedings of the 23rd ACM Symposium on Operating Systems Principles, 2011, pp.
159–172.

208

[216] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar, “Context-based
online configuration-error detection,” in Proceedings of the 2011 USENIX conference
on USENIX annual technical conference. USENIX Association, 2011, pp. 28–28.

[217] S. Zhang, “Confdiagnoser: An automated configuration error diagnosis tool for java
software,” in Proceedings of the 35th International Conference on Software Engineering
(ICSE’13), 2013, pp. 1438–1440.

[218] S. Zhang and M. D. Ernst, “Automated diagnosis of software configuration errors,” in
Proceedings of the 35th International Conference on Software Engineering (ICSE’13),
2013, pp. 312–321.

[219] ——, “Which configuration option should i change?” in Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE’14), 2014, pp. 152–163.

[220] ——, “Which Configuration Option Should I Change?” in Proceedings
of the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 152–163. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568251

[221] ——, “Proactive detection of inadequate diagnostic messages for software configuration
errors,” in Proceedings of the 24th International Symposium on Software Testing and
Analysis, 2015, pp. 12–23.

[222] Y. Zhang, J. M. Guo, E. Blais, and K. Czarnecki, Performance Prediction of Config-
urable Software Systems by Fourier Learning, 2015, pp. 365–373.

[223] W. Zheng, R. Bianchini, and T. D. Nguyen, “Massconf: automatic configuration tun-
ing by leveraging user community information,” in Proceedings of the International
Conference of Software Engineering Notes, 2011, pp. 283–288.

[224] S. Zhou, X. Liu, S. Li, W. Dong, X. Liao, and Y. Xiong, “Confmapper: Automated
variable finding for configuration items in source code,” in Proceedings of the 2nd In-
ternational Conference on Software Quality, Reliability and Security-Companion, 2016,
pp. 228–235.

http://doi.acm.org/10.1145/2568225.2568251

209

SURVEY QUESTIONNAIRE

Understanding Application Configuration
Application configuration allows to customize, tweak or select - without recompilation ! - the
features and general behaviour (e.g., performance and security) of an application and the
libraries it uses. This covers configuration of *application-specific* options as well as options
of the *3rd party libraries/frameworks* used by this application (e.g., Log4J or JDBC), but
excludes configuration of an application's infrastructure (e.g., Docker, Chef or Puppet).

Context: This survey is within the context of a PhD project at Polytechnic Montreal - Canada.
Its goal is to understand how do you deal, create, and maintain configuration options in your
application, and what are the best and bad practices that exist for the development of
configuration options.

Note: All responses will be treated anonymously and confidentially, and will be aggregated to
avoid singling out individuals.

Any comments or questions can be sent to: mohammed.sayagh@polymtl.ca
For more information about my work: mcis.polymtl.ca/~msayagh/

*Required

Demographical Questions

How many years of software engineering
experience do you have? *

1.

What is your current role ? *

Mark only one oval.

Architect

Developer

Manager

Tester

Sysadmin

Other:

2.

Your Experiences with Configuration Options

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

1 of 10 2018-04-18, 5:23 p.m.

210

On average, how many configuration options does your typical application have
(application-specific) or use (3rd party library)? *

Mark only one oval.

No options

<10

10<#<100

100<#<1,000

1,000<#<10,000

3.

Do you have personal experience with creating new configuration options? *

Mark only one oval.

Yes

No

4.

The Creation of Configuration Options

Configuration Mechanisms

Where do you store your configuration options? *

Tick all that apply.

.properties file

.xml file

.json file

.ini files

In a table within the database used for the application

In a table within a database dedicated to configuration

Environment variables (e.g., Bash)

LDAP or another directory service (e.g., Zookeeper)

Application main arguments

Other:

5.

Configuration Options in the Source Code

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

2 of 10 2018-04-18, 5:23 p.m.

211

How do you access this configuration storage in the code? *

Tick all that apply.

Via an IO library to read the configuration storage.

Via a 3rd party framework dedicated to configuration

Via dedicated classes/functions that we developed for configuration access

Other:

6.

How are the values of application-specific configuration options available in the
code? *

Tick all that apply.

As attributes/variables with the same name of its associated configuration option

From tables and/or maps containing configuration options and values

Via method/function accessors (for example getMyOption)

There is no clear mapping between options and code

Other:

7.

From where do you read your configuration options? *

Mark only one oval.

We read configuration options from a specific class/module

We read configuration options in different places in the code

Other:

8.

Creation of new Configuration Options

What is the most frequent profile of people adding new configuration options? *

Mark only one oval.

Certain expert developers

Any developer

Only architects

Architects and developers

Other:

9.

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

3 of 10 2018-04-18, 5:23 p.m.

212

Why? *10.

Is the creation of configuration options planned beforehand? *

Tick all that apply.

Yes, they are defined in the client specifications

Yes, they are defined in the architecture specifications

No, they are juste extracted from hardcoded constants

No planning, options are added ad hoc

Other:

11.

How do you decide configuration default values? *

Tick all that apply.

Client requirements.

Architectural specifications.

Discussion between developers and architects.

Making tests until finding the optimal value for a parameter.

Ad hoc choices. It is up to the developer to decide.

Other:

12.

How do you communicate newly created options and their possible values to the
team ? *

Tick all that apply.

Orally

Chat support (like Slack or Hangout)

By mail

Via Wiki or a web platform

Textual documentation

Pull Request

Other:

13.

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

4 of 10 2018-04-18, 5:23 p.m.

213

Do you use any naming conventions to ensure a coherence between configuration
option names? *

Mark only one oval.

Yes. We do have a naming convention, and all the developers respect it.

Yes. We do have a naming convention, but not all the developers respect it.

No. We do not have any configuration options naming convention.

14.

Comprehension, Maintenance, and Debugging
Configuration Errors

Debugging Configuration Errors

The following questions aim at understanding how you debug configuration errors, and what
makes such debugging hard/easy. They are focusing on errors for both configuration types of
this survey, i.e., application-specific and 3rd party configuration errors.

How often do you face configuration errors? *

Mark only one oval.

Every day

Often

Sometimes

Never

15.

How difficult is it to debug an error which is due to a misconfigured option? *

Mark only one oval.

1 2 3 4 5

Very easy (One could
identify the

misconfigured option
immediately)

Very hard (It could
take the whole day to
identify the
misconfigured option)

16.

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

5 of 10 2018-04-18, 5:23 p.m.

214

What artefacts do you use to fix a configuration error? *

Tick all that apply.

Log file

Error message

Documentation

Debug the code

Google the error

Stack Trace

Automatic tool to find misconfigured options

Other:

17.

Where do you document configuration-related errors and their solutions? *

Tick all that apply.

In the commit message

In a Wiki

In a Bug report (like Bugzilla)

In text document

In the configuration file

Nowhere

Other:

18.

Comprehension of Configuration Options

Are you always aware of the impact of changing one of the application-specific
configuration options? *

Mark only one oval.

Yes, I know the impact of all the configuration options.

Yes, I know the impact of the majority of configuration options.

Yes, I know the impact of few configuration options.

Yes, I know the impact of only configuration used in the code I worked on.

No, I'm not aware of the impact of changing options.

19.

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

6 of 10 2018-04-18, 5:23 p.m.

215

Which artefacts do you use to understand application-specific configuration
parameters? *

Tick all that apply.

Documentation.

Ask a colleague

Configuration option comments.

Configuration name is clear enough to be understood.

I understand configuration options from the source code

I Google configuration names.

Other:

20.

Maintenance of Configuration Options

Do the names or the default values of your application-specific configuration
options change across time? *

Mark only one oval.

Yes. They change frequently

Yes, they change but not frequently

No, they are almost stable

No, they never change. Once, they are created, they do not change anymore.

21.

What do you do with dead configuration options that are no longer useful? *

Mark only one oval.

We do not remove them, we keep them in the configuration files.

Remove them from the configuration files, and store them in a databse.

Remove them from the configuration files, and do not store them anywhere.

Just Comment them in the configuration file.

Other:

22.

Quality Assurance of Configuration Options

Documentation of Options

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

7 of 10 2018-04-18, 5:23 p.m.

216

How would you rate the quality of the documentation (text documents or online
documentation) of application-specific configuration options in the systems you
participated in their developments ? *

Mark only one oval.

1 2 3 4 5

Doesn't exist Excellent

23.

How would you rate the quality of the comments of configuration options (used
within configuration files to explain the meaning and possible values of options)? *

Mark only one oval.

1 2 3 4 5

Doesn't exist Excellent

24.

Please explain the factors that lead to that quality (your previous two answers) of
comments and documentation *

25.

Code Review

Do you consider configuration options during code review? *

Mark only one oval.

Yes, but we review only functional configuration options

Yes, but we review only technical configuration options.

Yes, we review both functional and technical configuration options.

We do not review configuration options at all. We only review code.

We do not review configuration options nor source code.

26.

Approaches to Ensure the Quality of a System
Configuration

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

8 of 10 2018-04-18, 5:23 p.m.

217

Which techniques do you use to assure the quality of configuration options? *

Tick all that apply.

We have tools to check correctness of the values

We have a static analysis tool inspired by checkstyle to enforce configuration

conventions.

Default values are backed-up in a database to easily roll back.

Security implications of configuration options are tested

Test different configuration values

Using containers (like Docker) to limit the impact of configuration options.

Other:

27.

What could reduce the most the complexity of the configuration of a software
project? *

Tick all that apply.

Reduce the number of configuration files.

Allow only few people to modify configuration files.

Allow only experienced people to modify configuration files.

Reduce the configuration option dependencies

Comment and document configuration options.

Reduce the number of configuration options.

Planning ahead the creation of options.

Make every option responsibility of one specific person.

Use a separate software to manage configuration options.

Other:

28.

Open and General Questions about Configuration

Could you describe some important problems related to configuration (in terms of
creation/management/maintenance or any other theme) that you faced during your
current and/or previous experiences and how did you fix them ? *

29.

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

9 of 10 2018-04-18, 5:23 p.m.

218

Powered by

What could you suggest as 3 good practices and 3 bad practices to a new
development team in order to have a good configuration quality and to avoid
configuration problems? *

30.

Understanding Application Configuration https://docs.google.com/forms/d/1ynZhPYl2M-TF...

10 of 10 2018-04-18, 5:23 p.m.

219

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ANNEXES
	1 INTRODUCTION
	1.1 Thesis Hypothesis
	1.2 Thesis Contributions
	1.2.1 Qualitative Study to Understand the Configuration Engineering Process, Challenges, and Recommendations
	1.2.2 Using Mining Software Repositories to Understand the Usage of Software Configuration Frameworks
	1.2.3 Four Principles to Improve Software Configuration Engineering Quality
	1.2.4 Cross-stack Configuration Errors

	2 LITERATURE REVIEW
	2.1 Empirical Studies on Software Configuration
	2.2 Debugging Configuration Errors
	2.3 Testing Software Configuration
	2.4 Finding Optimal Configuration Values
	2.5 Software Product Lines and Non Run-time Configuration

	3 RESEARCH PROCESS AND ORGANIZATION OF THE THESIS
	3.1 Software Configuration Engineering Process
	3.1.1 Investigating the Process of Configuration Engineering, its Challenges, and Expert Recommendations
	3.1.2 Investigating the Usage of Frameworks Dedicated to Software Configuration

	3.2 Analyzing the Impact of Best Practices on the Quality of Software Configuration
	3.3 Cross-stack Configuration Errors
	3.3.1 Understanding the Impact of an Option on other Layers
	3.3.2 Understanding Real Cases of Cross-stack Configuration Errors, and Proposing an Approach to Debug such Errors

	4 ARTICLE 1: SOFTWARE CONFIGURATION ENGINEERING IN PRACTICE INTERVIEWS, SURVEY, AND SYSTEMATIC LITERATURE REVIEW
	4.1 Introduction
	4.2 Background on Software Configuration
	4.2.1 Software Configuration Options
	4.2.2 Roles Involved in Software Configuration
	4.2.3 Configuration vs. Binding Time
	4.2.4 Run-time Configuration Options
	4.2.5 Configuration Failures and Faults
	4.2.6 Software Configuration Engineering

	4.3 Study Methodology
	4.3.1 Semi-structured Interviews
	4.3.2 Card Sort Analysis of Interview Data
	4.3.3 Survey
	4.3.4 Card Sort Analysis of Survey Data
	4.3.5 Systematic Literature Review
	4.3.6 Card Sort Analysis of the Systematic Literature Review Data

	4.4 Configuration Engineering Process
	4.5 Configuration Challenges
	4.5.1 Creation of Configuration Options
	4.5.2 Managing Storage Medium
	4.5.3 Managing Option Data Format
	4.5.4 Configuration Access in Source Code
	4.5.5 Comprehension of Options
	4.5.6 Maintenance of Options
	4.5.7 Resolving Configuration Failures
	4.5.8 Configuration Knowledge Sharing
	4.5.9 Quality Assurance

	4.6 Expert Recommendations
	4.6.1 Creation of Configuration Options
	4.6.2 Managing Storage Medium
	4.6.3 Managing Option Data Format
	4.6.4 Configuration Access in Source Code
	4.6.5 Comprehension of Options
	4.6.6 Maintenance of Options
	4.6.7 Resolving Configuration Failures
	4.6.8 Configuration Knowledge Sharing
	4.6.9 Quality Assurance

	4.7 Implications
	4.7.1 Implications for Practitioners
	4.7.2 Implications for Researchers

	4.8 Threats to Validity
	4.9 Conclusion

	5 ARTICLE 2: DOES THE CHOICE OF CONFIGURATION FRAMEWORK MATTER FOR DEVELOPERS?
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Software Configuration Frameworks
	5.2.2 Related Work

	5.3 Taxonomy of Configuration Frameworks
	5.3.1 Configuration Frameworks
	5.3.2 Taxonomy

	5.4 Collected Data
	5.4.1 Data Set 1: Popularity
	5.4.2 Data Set 2: Maintenance Overhead

	5.5 Popularity of Configuration Frameworks
	5.6 Maintenance Overhead of Frameworks
	5.6.1 Case Study Setup
	5.6.2 Discussion

	5.7 Threats to Validity
	5.8 Conclusions

	6 ARTICLE 3: RUN-TIME CONFIGURATION AS CODE
	6.1 Introduction
	6.2 Background and Related Work
	6.2.1 Software Configuration
	6.2.2 Related Work

	6.3 What is Problematic with Run-time Software Configuration?
	6.4 Run-time Configuration-as-Code
	6.4.1 Configuration-as-Code
	6.4.2 Encapsulation of Configuration Access
	6.4.3 Generation of Configuration Media
	6.4.4 Automatic Validation

	6.5 Design of User Study
	6.5.1 Research Questions
	6.5.2 Config2Code
	6.5.3 Study Object
	6.5.4 Task Design
	6.5.5 Participants
	6.5.6 Experimental Protocol

	6.6 Quantitative Results
	6.7 Qualitative Discussion
	6.8 Threats to Validity
	6.9 Conclusion

	7 ARTICLE 4: MULTI-LAYER SOFTWARE CONFIGURATION: EMPIRICAL STUDY ON WORDPRESS
	7.1 Introduction
	7.2 Background and Related Work
	7.2.1 Software Configuration
	7.2.2 WP Ecosystem
	7.2.3 WP Configuration Mechanisms

	7.3 Approach
	7.3.1 Data Selection
	7.3.2 Identification of Configuration Options and Their Usage
	7.3.3 Measuring The Proportion of Usage of Each Configuration Mechanism (RQ1/RQ2)
	7.3.4 Measuring Direct Usage of Configuration Options (RQ3/RQ4)
	7.3.5 Measuring Indirect Usage of Configuration Options (RQ3/RQ4)
	7.3.6 Measuring Configuration Options' Occurrences in Discussion Fora (RQ3/ RQ4)

	7.4 Results
	7.5 Threats to Validity
	7.6 Conclusion

	8 ARTICLE 5: ON CROSS-STACK CONFIGURATION ERRORS
	8.1 Introduction
	8.2 Background and Related Work
	8.2.1 Software Stacks
	8.2.2 Single-layer Configuration Errors
	8.2.3 Cross-stack Configuration Errors

	8.3 Qualitative Analysis
	8.3.1 Methodology
	8.3.2 Impact of Cross-stack Configuration Errors
	8.3.3 Effort to Solve Cross-stack Configuration Errors
	8.3.4 Complexity of Cross-Stack Configuration Resolution

	8.4 Methodology for Identifying Cause of CsCE
	8.4.1 Backward Slicing
	8.4.2 Cross-stack Slice Dependency Graph
	8.4.3 CsCE Root Cause Recommendation

	8.5 Empirical Evaluation
	8.5.1 Setup of Empirical Evaluation

	8.6 Threats to Validity
	8.6.1 Qualitative Analysis
	8.6.2 Empirical Evaluation

	8.7 Conclusion

	9 GENERAL DISCUSSION
	9.1 Software Configuration Challenges
	9.1.1 Need for Approaches to Help Developers in Configuration Engineering Activities
	9.1.2 Usage and Popularity of Configuration Frameworks

	9.2 Development of Best Practices to Improve the Quality of Software Configuration Engineering
	9.3 Cross-stack Configuration Errors

	10 CONCLUSION
	10.1 Configuration Challenges and Recommendations
	10.2 Usage of Configuration Frameworks
	10.3 Principles to Address Configuration Challenges
	10.4 Potential of Cross-stack Configuration Errors
	10.5 Relevance and Debugging of Cross-stack Configuration Errors
	10.6 Future Work
	10.6.1 Considering other Types of Software Configuration
	10.6.2 Resolving Additional Practical Configuration Challenges
	10.6.3 Evaluating other Best Practices on Configuration Quality
	10.6.4 Extending our Work on Debugging Cross-stack Configuration Errors

	REFERENCES
	ANNEXES

