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RÉSUMÉ

La capacité de produire des micro- ou nanostructures complexes dans des matériaux mous est 

importante pour diverses applications telles que l'ingénierie tissulaire, les capteurs, l'administration 

de médicaments et les dispositifs médicaux. Dans les tissus vivants, les micro-environnements 

peuvent affecter l'alignement et l'organisation des cellules, conduisant à la complexité structurelle 

et fonctionnelle des tissus natifs. Les hydrogels d'origine naturelle sont une classe de matières

molles qui sont exceptionnellement attrayantes pour les applications biomédicales, car ils simulent 

l'environnement aqueux des matrices extracellulaires. Cependant, des structures d’hydrogel 

d’origine naturelle contrôlées avec précision sont difficiles à obtenir par la plupart des méthodes 

de fabrication classiques, et même avec la fabrication additive. Malgré les progrès récents dans le 

domaine de la fabrication additive, des défis importants persistent pour fabriquer des hydrogels 

avec des structures ordonnées et des propriétés mécaniques et biologiques adéquates pour imiter 

les tissus natifs.

En outre, les déchets électroniques et la pollution environnementale constituent un problème 

sérieux en raison de la demande constante d'appareils électroniques plus récents et plus puissants. 

De nombreux polymères et composants toxiques non biodégradables sont présents dans 

l'électronique traditionnelle (tels que les condensateurs et les circuits intégrés), et des solvants 

toxiques (tels que l'isopropanol, l'acétone et le trichloréthylène) sont parfois utilisés dans leur 

fabrication. Avec l'importance croissante du développement durable, il est de la plus haute priorité 

pour les entreprises de l'industrie électronique de développer et de fabriquer une électronique 

respectueuse de l'environnement. Les nano-composites à base de polymères naturels sont 

d'excellents candidats pour développer la nouvelle génération d'électronique responsable grâce à 

leur légèreté, durabilité et leur bas coûts. Ainsi, dans ce travail, nous développons un procédé 

d'impression 3D pour fabriquer des microstructures complexes de polymère naturel, le chitosane,

(CS) et de ses nanocomposites.

Ce travail propose des encres à base de CS qui peuvent être fabriquées par impression 3D à 

température ambiante. La configuration de l'impression 3D est composée d'une étape de translation 

contrôlée par ordinateur et d'une plate-forme de positionnement à trois axes. L'encre est chargée

dans une seringue, qui peut être extrudée à travers une microbuse. Les filaments d'encre sont 
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déposés sur la plaque pour former une structure couche par couche, où elle subit la solidification 

du filament par évaporation du solvant aqueux. 

Nous démontrons une caractérisation complète des propriétés des encres CS pour l'impression 3D 

à température ambiante. Les propriétés rhéologiques des encres CS sont analysées par rhéométrie 

rotationnelle à taux de cisaillement faible et modéré et la viscosité apparente et le comportement 

en écoulement sont caractérisés par une analyse en rhéométrie capillaire, afin de concevoir une 

encre aux propriétés rhéofluidifiante pour une impression 3D réussie. Des tests d'évaporation de 

solvant de différentes compositions d'encre sont menés en observant la réduction de poids des 

filaments CS extrudés au cours du temps. Puisque différentes structures fabriquées par impression 

3D nécessitent des paramètres de traitement particuliers, une cartographie de procédé est créée en 

prenant en compte des paramètres tels que le diamètre de la microbuse et la concentration d'encre, 

pour la fabrication réussie de structures CS unidimensionnelles (1D), bidimensionnelles (2D) et 

tridimensionnelles (3D). Les résultats de la diffraction aux rayons X (XRD) et des propriétés en 

traction des filaments CS sont également étudiés, montrant différentes propriétés du matériau 

obtenues après différentes étapes de traitement.

Les échafaudages imprimés en 3D montrent des formes de pores contrôlables (tels que des pores 

en forme de gradient, carrés et en forme de losange) et une haute résolution de 30 µm. Des 

échafaudages d'hydrogel microstructurés à surface ridée sont obtenus par une étape de gélification 

par neutralisation dans l'hydroxyde de sodium. Les échafaudages imprimés et neutralisés montrent 

des comportements très flexibles et extensibles. La déformation à la rupture des filaments 

d'hydrogel CS atteint jusqu'à ~ 400% et la résistance maximale est de ~ 7.5 MPa. Les hydrogels 

microstructurés peuvent guider la croissance des cellules fibroblastiques et induire l'alignement des 

cellules.

De plus, des nanocomposites constitués de CS en tant que matrice polymère, de nanotubes de 

carbone à parois multiples (CNT) en tant que nano-renfort et d'un mélange de solvants sont 

préparés en utilisant un procédé de mélange par broyeur à billes. Les encres nanocomposites 

CS/CNT sont développées pour présenter une auto-réparation à température ambiante. Les 

propriétés curatives peuvent être traitées par l'exposition à la vapeur d'eau et le nanocomposite peut 

restaurer la conductivité électrique et les propriétés mécaniques. L'auto-réparation est rapide, se 

produisant en quelques secondes après l'endommagement du nanocomposite. L'impression 3D 
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nous permet de fabriquer des nanocomposites CS/CNT très conducteurs (~ 1450 S/m). 

L'impression 3D assistée par instabilité est aussi développée pour fabriquer des fibres CS/CNT 

microstructurées hautement acdaptables, en raison de l'instabilité de l'enroulement de la corde 

liquide. Des fibres CS/CNT microstructurées présentant des liaisons sacrificielles et une longueur 

cachée permettent aux nanocomposites d'être très extensibles (déformation à la rupture de ~ 180%). 

L'extensibilité et la conductivité électrique élevées des fibres CS/CNT permettent de concevoir des 

capteurs portables. Les capteurs de contrainte personnalisés sont fabriqués par impression 3D 

assistée par instabilité et ont démontré leur capacité à détecter les mouvements du coude humain. 

Le nanocomposite CS/CNT peut également être utilisé pour détecter l'humidité due au gonflement 

du polymère sous une humidité différente de l'environnement.

La nouvelle méthode d'impression 3D d'hydrogels CS et de nanocomposites CS/CNT présentée ici 

ouvre de nouvelles portes pour concevoir et produire des structures tissulaires 3D à compatibilité 

topographique, biologique et mécanique ainsi que pour des applications de capteurs de 

déformations ou d’humidité.
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ABSTRACT

The ability to produce complex micro- or nano-structures in soft materials is significant for various 

applications such as tissue engineering, sensors, drug delivery and medical devices. In tissues or 

organs, surrounding micro-environments can affect cell alignment and organization that lead to the 

biological and functional complexity of native tissues. Naturally derived hydrogels are an 

important class of soft materials, which are exceptionally attractive for biomedical applications 

since they simulate the aqueous environment of extracellular matrices. However, precisely 

controlled architectures of naturally derived hydrogels are difficult to obtain through most 

conventional fabrication methods, and even with three-dimensional (3D) printing. Despite recent 

progress in the field of additive manufacturing, significant challenges persist to fabricate hydrogels 

with ordered structures and adequate mechanical and biological properties for mimicking native 

tissues. 

Besides, electronic waste and environmental pollution is a serious issue due to constant demand 

for newer and more powerful electronics. Many non-biodegradable polymers and toxic 

components are found in traditional electronics (such as capacitors and integrated circuits), and 

toxic solvents (such as isopropanol, acetone and trichloroethylene) are on occasion used in their 

fabrication. With the growing importance of sustainable development, it is of the upmost priority 

for companies in the electronic industry to develop and fabricate eco-friendly electronics. Natural 

polymer-based nanocomposites are excellent candidates for developing the next-generation of bio-

sustainable electronics due to their lightweight, low-cost, and sustainable properties. Thus, in this 

work, we develop a 3D printing process to fabricate 3D microstructures of a natural polymer -

namely chitosan (CS) - and its nanocomposites.

This work proposes CS-based inks that can be fabricated by 3D printing at room temperature. The 

setup of 3D printing is composed of a computer-controlled translation stage and a three-axis 

positioning platform. The ink is loaded into a syringe, which can be extruded through a 

micronozzle. The ink filaments are deposited on the plate to form a structure in a layer-by-layer 

manner, where it undergoes filament solidification through solvent evaporation. 

We demonstrate a comprehensive characterization of the properties of CS inks for 3D printing at 

room temperature. The rheological properties of CS inks are analyzed by rotational rheometry at 

low to moderate shear rate and the process-related viscosity and flow behavior are characterized 
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by capillary flow analysis, in order to formulate inks with shear thinning behavior for successful 

3D printing. Solvent evaporation tests of different ink compositions are investigated by observing 

the weight reduction of extruded CS filaments with time. Since different structures fabricated by 

3D printing require different processing parameters, a processing map is generated by considering 

parameters such as micronozzle diameter and ink concentration for the successful fabrication of 

one-dimensional (1D), two-dimensional (2D) and 3D CS structures. The results of X-ray 

diffraction (XRD) and tensile properties of CS filaments are also investigated, showing different 

material properties obtained after different processing steps.

The 3D-printed scaffolds show controllable pore shapes (such as gradient, square- and diamond-

shaped pores) and a high resolution of 30 µm. Microstructured hydrogel scaffolds with wrinkled 

surface are obtained through a gelation step of neutralization in sodium hydroxide. The as-printed 

and neutralized scaffolds show highly flexible and stretchable behaviors. The strain at break of CS 

hydrogel filaments reaches up to ~ 400% and maximum strength is ~ 7.5 MPa. The microstructured 

hydrogels can guide fibroblast cell growth and induce cell alignment.

Further, CS-based nanocomposites made of CS as a polymer matrix, multi-walled carbon nanotube 

(CNT) as a nanofiller and a solvent mixture are prepared using a ball mill mixing method. The 

CS/CNT nanocomposite inks are developed to exhibit self-healing at room temperature. The 

healing properties can be processed via exposure to water vapor and the nanocomposite can restore 

electrical conductivity and mechanical properties. The self-healing is rapid, occurring within 

seconds after the damage of the nanocomposite. 3D printing enables us to fabricate highly 

conductive (~ 1450 S/m) CS/CNT nanocomposites. Instability-assisted 3D printing is developed 

to fabricate high tunable microstructured CS/CNT fibers, due to the liquid rope coiling instability. 

Microstructured CS/CNT fibers featuring sacrificial bonds and hidden length allow the 

nanocomposites with high stretchability (strain at break of ~ 180%). The high stretchability and

conductivity of CS/CNT fibers enable the nanocomposite to be designed as wearable sensors. The 

customized strain sensors are fabricated by instability-assisted 3D printing and demonstrate their 

ability to detect human elbow motions. The CS/CNT nanocomposite can be also used to sense the 

humidity owing to polymer swelling under different environment humidity. 

The novel 3D printing method of tailoring CS hydrogels and CS/CNT nanocomposites 

demonstrated here opens new doors to design and produce 3D tissue constructs with topographical, 
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biological, and mechanical compatibility as well as wearable sensor exhibiting strain and humidity 

sensing ability.



xi

TABLE OF CONTENTS

DEDICATION .............................................................................................................................. III

ACKNOWLEDGEMENTS ..........................................................................................................IV

RÉSUMÉ........................................................................................................................................ V

ABSTRACT............................................................................................................................... VIII

TABLE OF CONTENTS ..............................................................................................................XI

LIST OF TABLES .....................................................................................................................XIV

LIST OF FIGURES..................................................................................................................... XV

LIST OF SYMBOLS AND ABBREVIATIONS........................................................................ XX

CHAPTER 1 INTRODUCTION............................................................................................... 1

CHAPTER 2 LITERATURE REVIEW.................................................................................... 3

2.1 Chitosan............................................................................................................................3

2.1.1 Chitosan hydrogels .......................................................................................................4

2.1.2 Physical chitosan networks ..........................................................................................4

2.1.3 Chemically cross-linked chitosan hydrogels................................................................5

2.2 Electrically conductive nanocomposites ..........................................................................5

2.2.1 Fundamentals of electrically conductive nanocomposites ...........................................5

2.2.1 Effect of polymers ........................................................................................................7

2.2.2 Effect of processing methods .......................................................................................8

2.2.3 Properties of CNT ........................................................................................................9

2.3 Self-healing materials.....................................................................................................10

2.4 Fabrication techniques used for 3D chitosan structures.................................................13

2.5 3D printing .....................................................................................................................16



xii

2.6 3D printing of natural polymers .....................................................................................18

2.6.1 Inkjet printing.............................................................................................................20

2.6.2 Robotic dispensing .....................................................................................................21

2.7 3D printing of nanocomposites ......................................................................................23

2.8 Applications of natural polymers and their nanocomposites .........................................25

2.8.1 Tissue engineering......................................................................................................25

2.9 Summary of literature review.........................................................................................29

CHAPTER 3 RESEARCH OBJECTIVES AND COHERENCE OF ARTICLES................. 31

3.1 Research objectives ........................................................................................................31

3.1.1 Specific objectives of the research .............................................................................31

3.1.2 Presentation of articles and coherence with research objectives................................31

CHAPTER 4 ARTICLE 1: PROCESSING AND PROPERTIES OF CHITOSAN INKS FOR 

3D PRINTING OF HYDROGEL MICROSTRUCTURES.......................................................... 33

4.1 Abstract ..........................................................................................................................33

4.2 Introduction ....................................................................................................................34

4.3 Materials and methods ...................................................................................................36

4.4 Results and discussion....................................................................................................38

4.5 Conclusion......................................................................................................................53

4.6 Acknowledgements ........................................................................................................54

4.7 Supporting information ..................................................................................................54

CHAPTER 5 ARTICLE 2: 3D PRINTING OF MICROSTRUCTURED AND 

STRETCHABLE CHITOSAN HYDROGEL FOR GUIDED CELL GROWTH........................ 60

5.1 Abstract ..........................................................................................................................60

5.2 Main text ........................................................................................................................61

5.3 Experimental Section .....................................................................................................69



xiii

5.4 Acknowledgements ........................................................................................................70

5.5 Supporting information ..................................................................................................70

CHAPTER 6 ARTICLE 3: 3D PRINTING OF SELF-HEALING AND STRETCHABLE

NANOCOMPOSITES SENSORS................................................................................................ 76

6.1 Abstract ..........................................................................................................................76

6.2 Main text ........................................................................................................................77

6.3 Experimental section ......................................................................................................87

6.4 Acknowledgements ........................................................................................................90

6.5 Supporting information ..................................................................................................90

CHAPTER 7 GENERAL DISCUSSION................................................................................ 96

7.1 3D printing of chitosan...................................................................................................96

7.2 3D printing of chitosan-based conductive nanocomposites ...........................................97

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS.............................................. 99

8.1 Conclusion......................................................................................................................99

8.2 Recommendations ........................................................................................................100

BIBLIOGRAPHY ....................................................................................................................... 102



xiv

LIST OF TABLES

Table 2.1: Electrically conductive nanocomposites prepared by different processing methods .....6

Table 2.2: Physical properties of different carbon materials [74]..................................................10

Table 2.3: Various examples of self-healing materials ..................................................................12

Table 2.4: Summary of natural polymers fabricated by 3D printing .............................................19

Table 2.5: Examples of wearable sensors based on nanocomposites ............................................28

Table 4.1 Parameters of the Carreau−Yasuda Model for the various chitosan solutions.....41



xv

LIST OF FIGURES

Figure 2.1: Structures of CS and chitin. a) CS, b) chitin [36]. .........................................................3

Figure 2.2: Structures of SWCNT (a-d) and MWCNT (e-f). (a) Schematic of an individual helical 

SWCNT. (b) TEM image showing the cross-section of a bundle of SWCNTs. (c) TEM image of a 

1.5 nm diameter SWCNT. (d) A top view of a bundle of SWCNTs. (e) Schematic of an individual 

MWCNT, showing layers of the tube. (f) TEM image showing the distance between each layer of 

the tube (0.34 nm) [71].....................................................................................................................9

Figure 2.3: Demonstration of self-healing methods including (a) capsule-based, (b) vascular-based 

and (c) intrinsic-based approaches. (d) performance maps of different self-healing materials on the 

healing of different volumes and healing rate [78]. .......................................................................11

Figure 2.4: Typical CS constructs fabricated using various scaffolding techniques (a) scanning 

electron microscope (SEM) image of CS scaffold by solvent-casting. (b) SEM image of CS scaffold 

produced by gas forming [86]. (c) SEM image of CS scaffold by freeze drying [9]. (d) CS scaffold 

fabricated by freeze drying [87]. (e) electrospun CS nanofibrous membrane [10]. (f) core-shell 

structured PEO-CS nanofibers by coaxial electrospinning [88]. ...................................................14

Figure 2.5: 3D printing methods classified into light- and ink-based printing methods. (a) Light-

based printing: SLA of liquid resin. (b) Light-based printing: selective laser sintering of polymeric 

or metallic powders. (c) Light-and ink-based inkjet printing. (d) Ink-based fused deposition 

modelling. (d) Robot dispensing using viscoelastic inks [97]. ......................................................17

Figure 2.6: CS scaffolds fabricated by 3D printing. (a) CS micropattern generated by inkjet printing 

[104]. (b) CS scaffold fabricated by robotic dispensing [27]. (c) CS scaffold by robotic dispensing 

[28]. (d) CS scaffold fabricated by cryogenic 3D plotting system [102]. ......................................21

Figure 2.7: Schematic illustration of solvent-cast 3D printing with a thermoplastic solution. (a) 

Deposition of the polymer solution through a nozzle. (b) Rapid solvent evaporation post extrusion. 

(c) Example of a 3D square spiral produced by solvent-cast 3D printing [25]..............................23

Figure 2.8: 3D nanocomposite macro- and micro-structures fabricated using different 3D printing 

methods [20]...................................................................................................................................24

Figure 2.9: Applications of self-healing materials for different wearable devices [17]. ...............27



xvi

Figure 4.1: Volumetric flow rate as a function of applied pressure for (a) various chitosan inks (6, 

8 and 10 wt %) deposited using a 200 µm nozzle, and (b) a 8 wt % chitosan ink extruded using 

different micronozzle diameters (100, 200 and 330 µm). All inks were prepared using an acidic 

mixture (40 vol% acetic acid, 20 vol% lactic acid, and 3 wt % citric acid)...................................39

Figure 4.2: Viscosity with respect to shear rate for different chitosan inks prepared using the acidic 

mixture: 40 vol% acetic acid, 20 vol% lactic acid, and 3 wt % citric acid (open symbols: data 

obtained using a cone and plate flow geometry in steady shear; solid symbols: data obtained by 

extruding chitosan filaments and capillary flow analysis). The dashed curves are fits from the 

Carreau-Yasuda model where the parameters used are listed in Table 4.1....................................40

Figure 4.3: Average velocity of ink flow as a function of applied pressure for (a) chitosan solutions 

(6, 8 and 10 wt %) and (b) a 8 wt % chitosan solution extruded through different micronozzles 

(diameters: 100, 200, and 330 µm). All the inks were prepared using acidic mixture (40 vol% acetic 

acid, 20 vol% lactic acid, and 3 wt % citric acid). .........................................................................42

Figure 4.4: Solvent content as a function of time for 8 wt % chitosan solutions dissolved in two 

different solutions (i.e., acetic acid solution: 40 vol% acetic acid; acidic mixture: 40 vol% acetic 

acid, 20 vol% lactic acid, and 3 wt % citric acid). .........................................................................44

Figure 4.5: Process map illustrating the ranges of chitosan contents and nozzle diameters 

compatible for the fabrication of various types of microstructures. I: zone for 1D filament, II: zone 

for 2D filament array or 3D structure, III: zone where chitosan solutions lose shape fidelity, IV: 

zone where chitosan solutions are too dilute for the process, V: zone where chitosan solutions are 

too viscous to be printed. The letters a-d represent the fabrication parameters of different structures 

shown in Figure 4.6. Solvent used is the acidic mixture................................................................45

Figure 4.6: (a) close-up SEM image of a chitosan filament, (b) fluorescent microscopy image of a 

2D chitosan network, (c) SEM image of a 3D chitosan scaffold with square pore size with top and 

side views, (d) fluorescent microscopy image of a 3D printed starfish, (e) fluorescent microscopy 

image of a 3D printed leaf. Inset images in b, c, d and e show CAD models of the 2D network, 

scaffold, starfish and leaf structures. ..............................................................................................47

Figure 4.7: (a) and (f) CAD models of a shaped-like spider structure. (b-e) Fluorescent microscopy 

images of “spiders” fabricated using a 10 wt % ink with an acetic acid solution and (g-j) a 10 wt % 

ink with the acidic mixture after printing 0, 1, 4, and 28 h. (k) CAD model of the scaffold. (l) An 

file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687585
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687585
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687585
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687585
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687586
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687586
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687586
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687586
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687586
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687587
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687587
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687587
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687587
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687588
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687588
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687588
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687589
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687589
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687589
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687589
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687589
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687589
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687590
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687590
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687590
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687590
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687590
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591


xvii

as-printed 30-layer chitosan scaffold fabricated using a 10 wt % ink with the acetic acid solution 

using 200 µm nozzle and (m) a scaffold fabricated using a 10 wt % ink with the acidic mixture 

under the same fabrication conditions. (n) The width and thickness reductions of the scaffolds 

fabricated using chitosan inks (10 wt %) with the acetic acid solution and acidic mixture in Figures 

l and m over a period of 28 h. ........................................................................................................49

Figure 4.8: (a) SEM images of a 3D printed chitosan scaffold 12 h after printing, and a close-up 

view of the surface of the filament in the red frame area. (b) SEM images of a neutralized scaffold 

in the dry state, and a close-up view of the filament featuring longitudinal wrinkles in the red frame 

area. (c) Confocal images of a neutralized scaffold in the wet state, and fluorescent confocal image 

of the filament texture in the red frame area. .................................................................................50

Figure 4.9: X-ray diffraction patterns. Comparison of chitosan powder, dried chitosan filaments 

printed using the acidic mixture (40 vol% acetic acid, 20 vol% lactic acid, and 3 wt % citric acid), 

and dried chitosan filaments prepared using the same acidic mixture after neutralization............51

Figure 4.10: (a) Typical stress-strain curves for chitosan filaments after different processing steps 

(3P: as-printed chitosan, 3P-D: printed chitosan 72 h after drying, N-W: neutralized chitosan in the 

wet state, N-D: neutralized chitosan in the dry state). (b) Tensile strength at break, (c) strain at 

break, and (d) Young’s modulus of chitosan filaments, compared with the chitosan fabricated by 

other methods including solvent-cast chitosan in wet state (Sc-W) and in dry state (Sc-D), 

electrospun chitosan in dry state (Es-D), and cryogenically 3D plotted chitosan (Cp-D). A 8 wt % 

chitosan ink prepared using the acidic mixture was used to fabricate the chitosan filaments. ......53

Figure 5.1: a) Schematic representation of 3D printing of a chitosan ink prepared using an acidic 

mixture and partially hardened via solvent evaporation. b, i) Optical image of the printing of a 30-

layer 3D chitosan scaffold through a 100 µm micronozzle, and ii) optical image of a 10-layer 

chitosan scaffold fabricated with a 100 µm micronozzle and folded using a tweezer. c) Schematic 

illustration of the neutralization step for yielding physical gelation with hydrophobic interaction 

and hydrogen bonds to form a chitosan hydrogel scaffold. ...........................................................63

Figure 5.2: (a-f) Optical and SEM images of chitosan dried scaffolds with various architectures 

fabricated through a 100 µm micronozzle: (a-c) Square pattern (Ps = 220 μm × 220 μm, D = 70 

μm, L = 30) and (d-f) diamond pattern (S = 300 μm, D = 70 μm, αmin = 45°, L = 30) with top, 

inclined, and side views. g) 3D reconstruction of a neutralized scaffold (Ps = 200 μm × 200 μm, D 

file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687591
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687592
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687592
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687592
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687592
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687592
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687593
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687593
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687593
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687594
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687594
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687594
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687594
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687594
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687594
file:///C:/Users/qinghua/Desktop/thesis/thesis.docx%23_Toc519687594


xviii

= 100 μm, L = 10) in water imaged using laser scanning confocal microscopy. h) Surface rendering 

of the hydrated filament in a neutralized scaffold, showing a wrinkled surface using confocal 

fluorescence imaging after staining with Rhodamine B. i) Surface rendering of the hydrated 

chitosan film after neutralization (t = 1 mm, L = 10), presenting a smooth surface using confocal 

imaging...........................................................................................................................................65

Figure 5.3: a) Typical stress-strain curve for as-printed chitosan (surface area = 0.15 mm2) and 

neutralized chitosan filaments (surface area = 0.22 mm2) in wet state. b) An as-printed chitosan 

scaffold (Ps = 220 μm × 220 μm, D = 90 μm, L = 10) and a neutralized chitosan scaffold (Ps = 200 

μm × 200 μm, D = 130 μm, L = 10) are uniaxially stretched to almost two times its initial width 

and experiences full recovery after stretching to return to its original shape. ...............................66

Figure 5.4: a) Fluorescence images of L929 fibroblasts plated on neutralized chitosan scaffolds (Ps

= 200 μm × 200 μm, D = 100 μm, L = 10) after 7 days. b) SEM image of L929 fibroblasts adhered 

on neutralized chitosan scaffolds after 7 days. c) Cell viability on surface of scaffolds and films (t 

= 1 mm, L = 10) by Alamar Blue assay at 1, 3 and 7 days. d) and e) SEM images of L929 fibroblasts 

plated on chitosan scaffolds under a higher magnification view of figure b) in the red frame areas. 

f) Schematic diagram illustrating the procedure used to characterize the alignment angle θ between 

the orientation of fibroblasts and the main direction of filaments in scaffolds or horizontal line in 

films. g and h) Fluorescence and SEM images of L929 fibroblasts plated on chitosan films after 7 

days. i) Quantification of the orientation of fibroblasts on hydrated chitosan scaffolds and films.

........................................................................................................................................................68

Figure 6.1: (a) CS/CNT ink preparation: CS polymer dilute solution (solvent: acetic acid, citric 

acid and lactic acid) and CNT were mixed via a ball mixing method. (b) Electrical conductivity of 

CS/CNT nanocomposites with different CNT contents. The zone at the left of the vertical dashed 

line represents 3D printable CS/CNT inks with CNT content lower than 30 wt %. (c) A 20-layer 

scaffold, spider and starfish shaped structures fabricated by the 3D printing method, which undergo 

solvent evaporation to solidify the structures. (d) Schematic of instability-assisted 3D printing 

(IA3DP): a CS/CNT fiber with fiber diameter D and contour length L was fabricated with a 

depositing height H, robot speed Vp and material speed Vt. Photographs of different patterned 

CS/CNT fibers fabricated from IA3DP under the same condition of H/D = 10, from right to left: 

straight, meandering, alternating, coiling and overlapping patterns. .............................................80



xix

Figure 6.2: (a) Optical microscopy images of a CS/CNT fiber at original, damaged and healed 

states to turn on or off a LED light bulb, and images at a higher magnification showing the damaged 

and healed regions on the fiber. (b) Schematic illustration of the healing process of a CS/CNT fiber 

exposed to water vapor: water vapor increases the swelling of the CS polymer and thus favors the 

chain movement and electrostatic interactions between CA- and CS+. (c) Repeated healing and 

recovery of electrical properties for five cuts on the fiber. ............................................................81

Figure 6.3: (a) Representative tensile curves of straight and coiling pattern fibers with photographs 

on the top to show sacrificial bond breakage and hidden length extension of bond α. (b) SEM 

images of a coiling pattern CS/CNT fiber (30 wt % CNT) with three bonds. (c) Top: high 

magnification of an original sacrificial bond in c, middle: sacrificial bond in broken and healed 

(bottom) states. (d) Typical tensile curves of a coiling pattern fiber for original loading with 

breaking of first bond and healing of the bond. (e) Typical tensile curves of a coiling pattern fiber 

for original loading with breaking of second bond and healing of the bond. (f) Typical tensile curves 

of a coiling pattern fiber with breaking and healing of all three bonds. ........................................83

Figure 6.4: (a) Relationship between RH and electrical resistance for a CS/CNT fiber (10 wt % 

CNT) as a humidity sensor. (b) Current change for a strain sensor attached to the outside of an 

elbow to monitor the bending motion of an arm with fully stretched arm (relaxed state) and fully 

bended arm (bended state). (c) Schematic showing the strain sensor attached on an elbow under 

relaxed and bended states, and the shape change of the coiling fiber on a CS film under the force 

of bending the arm. The black curves show the different electronic pathways between original fiber 

and the fiber under tension. (d) A spider-web-like sensor formed by a coiling pattern CS/CNT fiber 

(30 wt % CNT) in spiral thread that was deposited on a CS network (dyed in pink) with straight 

fibers in radical thread. The CS fibers divided the CS/CNT fiber into pieces. This sensor was 

attached to a transparent PDMS film. (e) Current signals of the whole CS/CNT fiber web in 

response to breaking four bonds. The inset images show top views of an initial loop and the loop 

after breaking its sacrificial bond and the black curve shows their different electronic pathways. (f) 

Current signals of the fiber where one sacrificial bond was broken. .............................................86



xx

LIST OF SYMBOLS AND ABBREVIATIONS

3D three-dimensional

CS                   chitosan 

TE                   tissue engineering

CNTs              carbon nanotubes

DDA              degree of N-deacetylation 

PVA              poly(vinly alcohol) 

HPN              hybrid polymer networks 

IPN                interpenetrating networks

MWCNT multi-walled carbon nanotubes

SWCNT          single-walled carbon nanotubes

PLA             polylactic acid

CA                  classifications 

HM                 healing mechanism

HC                 healing conditions  

CD                  conductivity

RM                   recovery of mechanical property

RE                   recovery of electrical property

CO2                         carbon dioxide 

PCL                  polycaprolactone 

2D                    two-dimensional

SEM                 scanning electron microscope 

PEO                  poly(ethylene oxide)

SLA                 stereolithography  



xxi

SLS                 selective laser sintering

FDM               fused deposition modelling

M                     polymer matrix

NF                  nanofillers 

PM                  processing methods 

F                    flexibility

SB                     stretchability

SF                   self-healing

CPN                conductive polymer-based nanocomposites 



1

CHAPTER 1 INTRODUCTION

Background and problematic

The shortage of transplantable organs has become a national crisis and has the disadvantages of 

high costs, risks of infections from donor pathogens, and graft rejection by the immune system [1, 

2]. To overcome these issues, tissue engineering (TE) is emerging as a revolutionary strategy which 

seeks to restore degenerated or damaged tissues. A particularly appealing strategy in TE is to 

combine the host’s own cells with polymer based scaffolds [3]. Tissue-engineered scaffolds should 

be biodegradable, biocompatible, and have temporary mechanical support as well as customized 

structure [10], to mimic a certain degree of the complexity of native tissues or organs [4]. Natural 

polymers such as chitosan (CS) are attractive materials to engineer scaffolds, owing to their high 

cell compatibility [5]. However, CS normally presents weak mechanical properties, especially for 

its hydrated conditions [5, 6]. Porous CS scaffolds have been fabricated by techniques such as 

freeze drying and electrospinning, typically based on a random distribution of cells, matrix, and 

bioactive molecules [7-10]. Controllable cell-organization in scaffold is fascinating for TE to 

mimic the hierarchical structure of real tissues and organs such as muscles and bones [11-13].

Furthermore, natural polymers are also excellent candidates for developing next-generation of 

sustainable electronics owing to their lightweight, low-cost, non-toxic, biodegradability and 

renewable properties [14, 15]. Conductive fillers such as carbon nanotubes (CNTs) can be loaded 

into natural polymers to form conductive nanocomposites. Self-healing is also a desirable feature 

for designing electronic materials with the ability to heal damages and extend their lifetime. Self-

healing nanocomposites could be used for a wide range of applications such as wearable devices 

[16, 17], biosensors, electronics [18] and soft robotics [19]. Nanocomposites used in wearable 

sensors such as strain sensors are mainly used as a thin film [20]. Nanocomposite sensors in a form 

of film are however not capable of demonstrating very high sensitivity [21]. 

3D printing, consisting of a computer-controlled translation stage, might address these issues. 

Recent advances in 3D printing have been developed to fabricate various materials such as 

ceramics [22], polylactic acid (PLA) fugitive inks [23], concentrated silk fibroin [24], colloidal 

suspensions, thermoplastic polymers [25] and hydrogels [26]. Natural polymers composed of 

polysaccharides and proteins are still challenging for 3D printing, since they may deform or 
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collapse during the printing process. Prior strategies used in situ gelling or low temperature to 

solidify the ink filament during the printing process [27-29]. However, they always involve a 

complicated fabrication process (using a bath or reservoir) and some crosslinkers used during 

fabrication may be cytotoxic. Several conductive nanocomposite inks have been developed so far 

[30-33]. However, these inks usually contain toxic organic solvents (e.g., dichloromethane) and/or 

toxic components. Thus, novel ink design and processing technologies with the dominance of 

simplicity and “green” processes should be developed for fabricating natural polymers such as CS

and based nanocomposites for TE and electronic applications.

Organization of the thesis

This thesis is based on three articles submitted to scientific journals and consists of the following 

sections: 

Chapter 2 provides a literature review on chitosan, its physiochemical properties and applications, 

on electrically conductive nanocomposites, various fabrication techniques used for CS, 3D printing 

methods used for natural polymers and nanocomposites and the applications of natural polymers 

and nanocomposites including TE and wearable devices. Chapter 3 states the research objectives

and the coherence between the objectives and articles. The core results of this thesis, in the form 

of three peer reviewed scientific articles, are presented in the following three chapters. Chapter 4

includes a comprehensive study on the effect of fabrication parameters (applied pressure, robot 

velocity and nozzle diameter) and CS-related parameters (ink composition, solvent evaporation 

rate and rheological properties) on the printability and CS filament properties. Chapter 5 focuses 

on the development of CS inks used to fabricate CS scaffold by 3D printing. Microstructrured CS 

hydrogels are obtained and can guide cell growth and cell alignment. Chapter 6 shows the 

development of CS/CNT nanocomposites and investigates their electrical conductivy, along with 

self-healing and mechanical properties. The nanocomposite inks were used to fabricate 

microstructured fibers by instability-assisted 3D printing. Microstructured fibers were further 

developed as humidity and strain sensors. In Chapter 7, a general discussion of the entire thesis is 

presented. Finally Chapter 8 summarizes the conclusions and the recommendations for future work.
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CHAPTER 2 LITERATURE REVIEW

2.1 Chitosan 

Chitosan, a natural polymer, can be obtained from crustacean shells (chitin) and fungi [34]. As 

shown in Figure 2.1(a), it is semi-crystalline polysaccharide and composed of β(1→4) linked D-

glucosamine residues with (1→4)-2-acetamido-2-deoxy-β-D-glucan (N-acetyl D-glucosamine) 

and (1→4) -2-amino-2-deoxy-β-D-glucan (D-glucosamine) units [35]. CS is more generally 

derived from chitin, which is the second most abundant natural amino polysaccharide, through N-

deacetylation [14]. Chitin consists of β-(1→4)-N-acetyl-D-glucosamine units (Figure 2.1(b)). The 

degree of N-deacetylation (DDA) gives the number of amino groups on the skeleton of the CS

chain, and the DDA should reach at least 60% for CS [36]. The physical characteristics of CS rely 

on some main factors: i.e. DDA, molecular weight (average and distribution), the purity, sequence 

of the acetamido and amino groups and so forth [37]. 

Figure 2.1: Structures of CS and chitin. a) CS, b) chitin [36].

Much of the potential of CS as a natural compound derives from its physiochemical characteristics. 

Firstly, the solubility of CS in aqueous solutions is poor due to its stable and crystalline structure, 

while it is soluble in acidic aqueous solutions below a pH of ~6 (pKa) as the free amino groups of 

CS can be protonated [38]. The pH-dependent solubility of CS allows the manufacturing process 

to fabricate products such as fibers and scaffolds [39]. 

Secondly, CS is the only positively-charged natural polymer with high charge density because of 

protonation, allowing it to form insoluble ionic complexes with a wide variety of water-soluble 

natural or synthetic anionic materials [40]. CS can combine with negatively charged drugs for drug 

delivery [41]. Additionally, the amino groups of CS can make it covalently cross-linked with other 

(a)
(b)
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materials [36], and functional groups on CS can be chemically or enzymatically modified to change 

its physical properties. 

Finally, CS exhibits a wide variety of intrinsic properties. Briefly, CS is biodegradable: it can be 

degraded into non-toxic compounds and be metabolized by enzymes in human body like lysozyme 

[42], which makes it highly suitable to be implanted or injected in the body. CS is biocompatible 

providing affinity with cells and biomolecules. CS is also mucoadhesive and acts as an antibacterial 

agent [43], which makes it possible to use in wound healing [44]. All the interesting intrinsic 

properties mentioned above allow CS to be an outstanding candidate for biomedical applications.

2.1.1 Chitosan hydrogels

Hydrogels are three-dimensional hydrophilic polymeric networks swollen in water or biological 

fluids and contain chemical or physical cross-links [45]. Hydrogels can be formed from synthetic 

and natural polymers including hydrophilic homopolymers and copolymers [46]. CS, as a natural 

polymer, can form biological hydrogels with high water content that are bendable and soft, and 

they are capable of reducing the damage to the surrounding living organs or tissues for implantation 

[5].

2.1.2 Physical chitosan networks 

Physically associated CS hydrogels present reversible gelation based on electrostatic interactions, 

hydrophobic interactions or hydrogen bonding instead of covalent interactions [6]. Protonated CS

as a polycation can form physical networks with anionic components by ionic interactions and the 

formation can be affected by DDA, charge density, concentration and the size of negatively charged 

molecules [47]. Water-soluble non-ionic polymers are also capable of blending with CS to form 

hydrogels such as poly(vinly alcohol) (PVA) [48]. CS is capable of being gelled by itself without 

using any additives by neutralizing the amino groups [49]. Physical gelation of CS solutions was 

performed and explained by hydrophobic interactions and reduced solubility by adding β -

glycerophosphate while heating at neutral pH [50]. CS can also be gelled by dissolving in certain 

types of acid solutions such as sulfuric acid, oxalic acid and phosphoric acid [51]. Physical CS

hydrogels are more compatible without using toxic additives, but the mechanical properties are 

quite limited and it is difficult to precisely control the hydrogel pore sizes, dissolution and chemical 

functionalization [5].



5

2.1.3 Chemically cross-linked chitosan hydrogels

Chemically cross-linked CS networks can be classified into three categories: CS cross-linked alone, 

hybrid polymer networks (HPN) as well as full- or semi-interpenetrating networks (IPN) [42]. CS

can be cross-linked by itself with cross-linkers, such as glutaraldehyde and genipin. The gelation 

reaction of chemical CS hydrogels is mainly dominated by cross-linkers [52]. Materials involved 

in HPN are mostly biomaterials that need to be biodegradable, biocompatible and bioadhesive. 

Semi-IPN contains a non-reacting polymer before cross-linking and is entrapped in CS networks, 

while full-IPN hydrogels are formed by a sequential strategy including the formation of semi-IPN 

[53]. Irreversible chemical hydrogels are more stable than physical hydrogels. However, toxic 

agents or catalyst involved may result in contamination.

2.2 Electrically conductive nanocomposites

2.2.1 Fundamentals of electrically conductive nanocomposites

Nanocomposites (at least one dimension in nanoscale from 1 to 100 nm) featuring electrical 

conductivity are attractive materials for wide applications such as energy storage [54], sensors and 

biomedical applications [55]. Electrically conductive nanofillers such as single-walled carbon 

nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), graphene, metallic nanorods, have 

been used to fabricate nanocomposites with large surface area, electrical conductivity and 

nanostructures. As described by percolation theory [56], the nanofiller loading plays a significant 

role in the conductivity of nanocomposites. The conductivity of nanocomposites is very low (close 

to the insulative state) at a low nanofiller loading, since the distance of nanofillers in the 

nanocomposite is larger than the size of nanofillers [57]. A “percolation” pathway is formed by 

connected nanofillers to suddenly increase the conductivity by several orders of magnitude, when 

the nanofiller concentration reaches to a critical concentration (called percolation threshold). 

Table 2.1 shows a collection of conductive nanocomposites prepared by different processing 

methods. The properties of nanocomposites can be affected by polymer matrix (M), the type of 

nanofillers (NF) and the processing methods (PM). 
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Table 2.1: Electrically conductive nanocomposites prepared by different processing methods 

MA NF Solvent PM CD 

(S/m)@C 

(wt %)

Structures Applications Ref.

SI AgNP DCM Planetary 

centrifugal 

mixing

0.01@68 Hybrid 

scaffold

Tactile 

sensors

[58]

EP MWCNT No solvent centrifugal 

vacuum 

mixing

148@0.66 Sponge EMI 

shielding

[59]

EP GNP Acetone CO2-assisted 

mixing

10-5@12 - - [60]

PLA MWCNT DCM Mechanical 

mixing and 

sonication 

23@5 Freeform 

3D helix

Liquid sensor [31]

PLA MWCNT DCM Ball mill 

mixing

3800@40 3D scaffold Liquid sensor [32]

PN AgNW Hydrogen 

chloride

Solution 

mixing

1.03 ×

106

Film - [61]

CE rGO Methanol, 

acid 

hydrolysis

Solution 

mixing

1800@49.4

,

5000@56.8

Membrane - [62]

EC GR Cyclohexano

ne/terpineol

Solution 

mixing

sonication

25600@50 Film Flexible 

electronics

[63]
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AF rGO water Mechanical 

stirring 

510@66.7 Film Enzyme 

sensing

[64]

GEL rGO Deionized 

water

Solution 

mixing

3.78@10 - - [65]

CS MWCNT Acetic acid, 

glycerol, 

ionic liquid

Solution 

mixing

sonication

239@40, 

3425@80,

Membrane Actuator [66]

CS SWCNT Acetic acid Solution 

mixing

500@40 Membrane Actuator [67]

CS rGO Acetic acid Ultrasonicati

on 

6.7 Lamellar 

structure

- [68]

Our 

work

MWCNT Acetic acid, 

lactic acid, 

citric acid 

Ball mill 

mixing 

1450@40 Microstruct

ured fiber, 

scaffold

Sensors 

A: SI: silicone, EP: epoxy, PLA: polylactic acid, PN: polyaniline, CE: cellulose, EC: ethyl cellulose, 

GEL: gelatin, AF: amyloid fibril, GEL: gelatin, CS: chitosan, AgNP: silver nanoparticle, MWCNT: 

multi-wall carbon nanotube, AgNW: silver nanowire, GNP: graphene nanoplatelet, rGO: reduced 

graphene oxide, GR: graphene, SWCNT: single-wall carbon nanotube, DCM: dichloromethane

2.2.1 Effect of polymers

The type of polymers plays an important role on the electrical properties of nanocomposites. Some 

polymers show intrinsic conductivity such as polyaniline (PN) [61]. Therefore, nanocomposites 

prepared by conducting polymer can achieve excellent conductivity. As shown in Table 2-1,

maximum conductivity of 1.03 × 106 S/m has been demonstrated in PN/AgNW nanocomposite 

film (thickness of ~ 2.5 μm for the AgNW layer and thickness of ~ 10 μm for the PN layer) at a 

AgNW areal density of 0.84 mg/cm2. The PN/AgNW nanocomposite was prepared by solution

mixing [61]. The polymer may also affect the percolation threshold, since polymer physical 

properties such as polarity, surface tension and crystallinity have an obvious effect on the 
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percolation threshold. For example, Nassira et al. demonstrated gelatin/graphene nanocomposite 

that present an ultralow percolation threshold 3.3 × 10−2 vol% [65], due to polymer properties and 

the processing method.

2.2.2 Effect of processing methods

The processing methods have an important effect on the dispersion, orientation, distribution and 

aspect ratio of nanofillers. Well-dispersed nanofillers in a polymer matrix is important for 

achieving excellent mechanical properties [63]. Optimized processing method is also necessary for 

obtaining low percolation threshold [65]. However, for the electrical conductivity, high 

concentrations of nanofiller play a significant role in obtaining high conductivity [69]. As shown 

in Table 2.1, solution mixing is the most popular method to prepare nanocomposites based on 

natural polymers.

Solution mixing allows preparing nanocomposites in three steps: dispersing nanofillers in a solvent, 

mixing the polymer and casting the nanocomposite as a film. This method always need sonication 

[67], ultrasonication [68] or mechanical stirring [64] to mix the solution. The selection of solvent is 

important to obtain well-dispersed nanocomposites. Lu et al. reported that well-dispersed 

CS/MWCNT nanocomposite was achieved by adding ionic liquid [66]. Toxic solvents such as 

methanol [62], cyclohexanone and terpineol [63] may be involved in the formation of 

nanocomposites, which is not compatible for industries since large amount of solvent needs to be 

evaporated during the process. Also, this processing method usually results in the structures of 

nanocomposites including a thin film or a fiber that is limited for potential applications. This

method is great to mix polymer and nanofillers at low concentration, but it is not very suitable for 

processing the solution with high content of nanofillers.

Ball mill mixing is a class of grinding method, which use ceramic balls to mix the materials. The 

high shear stress generated between the rigid balls helps to disperse the nanofiller in the polymer 

matrix. It has been developed to produce nanocomposite with high content of nanofillers. For 

example, Chizari et al. reported PLA/MWCNT nanocomposites with high contents of MWCNTs 

(up to 40 wt %) formed by ball mill mixing for the application of liquid sensor [32]. 
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2.2.3 Properties of CNT

Carbon nanotubes (CNTs), discovered by Sumio Iijima in 1991, are promising materials due to 

their superior electrical and mechanical properties [70]. They can be classified into two types: 

single-walled nanotube (SWCNT) that is made of a single graphite sheet enfolded into a tube 

(Figure 2.2 a-d); Multi-walled nanotube (MWCNT) that consists of concentrically arranged 

nanotubes (Figure 2.2 e-f) [71].

Figure 2.2: Structures of SWCNT (a-d) and MWCNT (e-f). (a) Schematic of an individual helical 

SWCNT. (b) TEM image showing the cross-section of a bundle of SWCNTs. (c) TEM image of 

a 1.5 nm diameter SWCNT. (d) A top view of a bundle of SWCNTs. (e) Schematic of an 

individual MWCNT, showing layers of the tube. (f) TEM image showing the distance between 

each layer of the tube (0.34 nm) [71].

CNTs have chemical bonding of sp2 carbon-carbon bonds that provide CNTs with exceptional 

mechanical properties (i.e., tensile strength of 55-150 GPa [72], Young’s modulus of 1.7-3.6 TPa 

[73]). Table 2.2 shows the physical properties of several carbon materials. CNT (density of 0.8-1.8 

g/cm3) are lighter than other carbon materials such as graphite (density of 1.9-2.3 g/cm3). CNTs 

also possess remarkable thermal and electrical properties as compared with other carbon materials, 

as shown in Table 2.2. These properties allow CNTs a wide range of applications such as 

electronics, sensors, energy storage and aerospace applications. 
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Table 2.2: Physical properties of different carbon materials [74]

Property Graphite Diamond Fullerene SWCNT MWCNT

Specific gravity (g/cm3) 1.9–2.3 3.5 1.7 0.8 1.8

Electrical conductivity 

(S/cm)

4000p, 3.3c 10−2–10−15 10−5 102–106 103–105

Electron mobility (cm2/ 

(V s))

2.0 ×104 1800 0.5–6 ∼105 104–105

Thermal conductivity 

(W/(m K))

298p, 2.2c 900–2320 0.4 6000 2000

Coefficient of thermal 

expansion (K−1)

−1 ×10−6p

2.9 ×10−5c

(1∼3)×10−6 6.2 ×10−5 Negligible Negligible

Thermal stability in air 

(°C)

450–650 <600 ∼600 >600 >600

p: in-plane; c: c-axis.

2.3 Self-healing materials

Self-healing materials have attracted great attention due to their ability to heal damage for 

prolonging the lifetime of materials. The materials involve autonomic or nonautonomic healing, 

relying on whether an external stimulation (e.g., temperature [75] or light [76, 77]) is needed or not. 

There are three main methods to produce self-healing materials: capsule-, vascular- and intrinsic-

based strategies [78]. The first two methods rely on the release of monomers and a catalyst that are 

loaded into microcapsules (Figure 2.3(a)) or stored inside vessels (Figure 2.3(b)) to heal the matrix 

damage. White group in 2001 firstly reported a self-healing system that can spontaneously heal a 

crack in the material by releasing the microcapsulated healing monomer to polymerize the material 

[79]. They allow self-healing of large material volume (Figure 2.3(d)). However, these two 

methods have disadvantages of complicated fabrication processes and a depletion of the local 

healing agent. Figure 2.3(c) shows intrinsic-based self-healing methods that depend on the 

molecular interactions in the polymer such as host-guest interactions, hydrogen bonds, electrostatic 
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interactions and metal-ligand coordination. For example, Miyamae et al. reported a supramolecular 

hydrogel that can be healed via host–guest interactions under wet conditions [80]. Intrinsic self-

healing polymers with relatively fast self-healing processes (Figure 2.3(e)) could be achieved by 

designing the polymer compositions. However, it may be unable to obtain large-volume self-

healing (Figure 2.3(d)). 

Figure 2.3: Demonstration of self-healing methods including (a) capsule-based, (b) vascular-

based and (c) intrinsic-based approaches. (d) performance maps of different self-healing 

materials on the healing of different volumes and healing rate [78].

Table 2.3 shows a list of studies on self-healing materials with different classification (CA), healing 

mechanism (HM), healing condition (HC), conductivity (CD) and recovery of mechanical (RM) 

and electrical (RE) properties. Intensive research has currently been taken into self-healing

materials that are capable of recovering mechanical properties. For example, Diba et al.

demonstrated self-healing composite colloidal gels by carefully controlling the assembly of gelatin 

(a)Capsule based (b)Vascular (c) Intrinsic

(d) (e)
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and silica nanoparticles [81]. Zhao et al. demonstrated CS-based hydrogels that can spontaneously

heal the damage within 6 h at 25 °C [82]. Despite their great self-healing designs, a lack of electrical 

conductivity limits their electronic applications. Odom et al. also provided an example of using 

solvent-filled microcapsules from a conductive silver ink to heal damage, allowing excellent 

restoration of conductivity [83]. Cao et al. investigated a polar polymer network combined with a 

ionic salt to obtain a ionic conductor with autonomous self-healing capability by harnessing ion-

dipole interactions [84], but a low conductivity of 0.01 S/m was presented. A rGO-based 

nanocomposite (conductivity of 90 S/m) was developed with autonomic self-healing to restore 

mechanical and electrical properties. However, the fabrication method (freeze-casting) is difficult 

to fabricate precisely controlled 3D structures. 

Table 2.3: Various examples of self-healing materials

MaterialA CAB HM HCC CD (S/m) RM RE Ref.

EP Non Temperature 120 ºC, 24 h - 57% in 

fracture load, 

- [75]

TEG Non Light Visible light, 

24 h

- 87% in strain - [76]

SE Non Supramolecula

r interaction

Laser, 60-80 

ºC, 20-60 

min

- Full recovery - [77]

EP Auto Microcapsule RT, several 

min

- 75% in 

toughness

[79]

PAm, 

NIPAm

Non Host-guest 

interaction

3 h, wet 

condition 

- 68% in 

strength, 72 h

- [80]

GN, SN Auto Electrostatic 

interaction

RT, 30 min - Similar stress 

and strain at 

break

- [81]
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CEC, OSA Auto Imine bond, 

acylhydrazone 

bond

25 ºC, 12 h 90% in strain 

at break, 12 h

- [82]

AgP, PUE Auto Microcapsule RT, 10 min Resistance 

of 0.95 Ω

80% in 

voltage

[83]

PVDF-co-

HFP

Auto Ion–dipole 

interaction

5 min 0.01 100% - [84]

PBS/rGO Auto Dynamic 

dative bond

Several min 90 Complete, 

24 h

90% in 

CD

[85]

Our work Non Electrostatic 

interaction

Water 

vapor,

5-60 s

1450 90% in 

toughness

95% in 

CD

A: EP: epoxy, TEG: tetra(ethylene glycol), SE: supramolecular elastomers, AgP: silver particle, PUE: 

polyurethane elastomer, PAm: poly(acrylamide), NIPAm: poly(N-isopropylacrylamide), GN: 

gelatin nanoparticle, SN: silica nanoparticle, CEC: N-carboxyethyl CS (CEC), OSA: oxidized sodium 

alginate, PVDF-co-HFP: poly(vinylidene fluoride-co-hexafluoropropylene, PBS: polyborosiloxane, rGO: 

reduced graphene oxide, B: Auto: autonomic, Non: nonautonomic; C: RT: room temperature.

2.4 Fabrication techniques used for 3D chitosan structures

Conventional fabrication techniques, including solvent casting, phase separation, freeze drying, 

and electrospinning, have been extensively used to produce 3D CS scaffolds.
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Figure 2.4: Typical CS constructs fabricated using various scaffolding techniques (a) scanning 

electron microscope (SEM) image of CS scaffold by solvent-casting. (b) SEM image of CS 

scaffold produced by gas forming [86]. (c) SEM image of CS scaffold by freeze drying [9]. (d) 

CS scaffold fabricated by freeze drying [87]. (e) electrospun CS nanofibrous membrane [10]. (f) 

core-shell structured PEO-CS nanofibers by coaxial electrospinning [88].

Solvent casting 

Solvent casting technique offers an easy and inexpensive way to fabricate scaffolds. Specifically, 

the polymer/salt composite is cast into a mold and water-soluble porogens, e.g. wax, salts or sugars, 

are used to create pores or channels [7, 89]. Sponge-like scaffolds are obtained by evaporating the 

solvent and removing the porogen [7, 8]. Figure 2.4(a) shows the CS-calcium phosphate scaffolds 

prepared by solvent casting with different macroporosity (i.e., 17.6 %-65.5 %) and pore size of 165 

µm to 271µm. The scaffolds strength range from 0.3 to 8 MPa as the macroporosity is decreased 

[90]. The limitations of CS scaffolds fabricated by this approach are that they may retain some of 

the toxicity from the solvent and it is difficult to obtain high porosity of scaffolds.
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Gas foaming

Gas foaming has the advantages of requiring neither toxic solvents nor high temperature [89]. 

Compression-molded polymer disks are exposed to carbon dioxide (CO2) gas under high pressure 

to generate highly porous scaffolds. The solubility of carbon dioxide in the polymer declines as 

pressure is released, as phase separation occurs between the polymer and carbon dioxide gas, which 

allows the formation of a porous structure [2]. Figure 2.4(b) shows the CS scaffolds fabricated by 

using dense gas CO2 and cross-linkers. Highly porous, wet, and rigid structures were obtained and 

the average pore diameter of the scaffolds was around 40 µm [86]. The CS scaffolds produced by 

this technique however lead to low pore interconnectivity, especially on the surface of the structure.

Freeze drying

After dissolving in a solvent (acetic acid, water, or benzene), the polymer solution is poured into a 

mold, frozen and freeze-dried to acquire highly porous scaffolds under high vacuum [8, 89]. Cross-

linked CS scaffolds (Figure 2.4(c)) produced for skin regeneration had pore size of roughly 150 

µm and porosities from 79% to 85% [9]. The scaffolds achieved maximum tensile strength of 81 

kPa; much lower than the ultimate tensile strength (7.7 MPa) of human skin [91]. Despite the 

advantages of the low temperature maintaining the original properties of scaffolds and not 

necessarily using toxic solvents, freeze drying has the limitation of obtaining scaffolds with small 

and inhomogeneous pore size [89]. Choi et al. developed CS scaffolds (Figure 2.4(d)) by using 

polycaprolactone (PCL) microspheres with freeze drying before removing the PCL with DCM to 

form uniform pore structures. The final CS scaffolds were formed without using cross-linkers based 

on pH dependence of CS solubility [87]. However, the process is still time-consuming and 

complicated.

Electrospinning

Electrospinning can produce fibers with diameters ranging from nanoscale to microscale [92]. This 
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procedure involves creating a high intensity electric field between a nozzle and a collector with 

electric opposite charges [92, 93]. The polymer solution in the nozzle overcomes the liquid surface 

tension and then is ejected to form fibers which are deposited in the collector [92]. Figure 2.4(e) 

illustrates two-dimensional (2D) nanofibrous CS membranes produced by electrospinning 

combined with solvent-cast, with fiber diameters of 126 ± 20 nm and membrane thickness of 72 ± 

5µm [10]. CS was mixed with poly(ethylene oxide) for achieving electrospinability in 

electrospinning [94]. Core-shell constructed CS nanofibers (Figure 2.4(f)) have been fabricated by 

coaxial electrospinning [88]. The CS scaffolds produced by electrospinning exhibit properties of 

high porosity, a wide range of pore distribution, and high surface area. However, it is difficult to 

obtain 3D structures and the obtained 3D scaffolds have the drawbacks of inhomogeneous pore 

distribution, tortuous pores, and small pore size [95, 96].

2.5 3D printing

3D printing consists of a computer-controlled translation stage, allowing the fabrication of 

materials via transforming the digital design into 3D objects. Unlike traditional manufacturing 

techniques that need molds or lithographic masks to fabricate 3D structures, 3D printing can 

fabricate complex 3D structures via rapid prototyping. 3D printing has numerous advantages such 

as low-cost, reliability, mass customization and design flexibility. It can be divided into light-based 

printing such as stereolithography (SLA), and ink-based printing such as robotic dispensing, as 

shown in Figure 2.5 [97]. 
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Figure 2.5: 3D printing methods classified into light- and ink-based printing methods. (a) Light-

based printing: SLA of liquid resin. (b) Light-based printing: selective laser sintering of

polymeric or metallic powders. (c) Light-and ink-based inkjet printing. (d) Ink-based fused 

deposition modelling. (d) Robot dispensing using viscoelastic inks [97].

Light-based 3D printing methods use light sources such as laser and photon to form structures, 

such as SLA and selective laser sintering (SLS). In the fabrication process of SLA, a liquid resin is 

continuously photopolymerized by a laser, and the structure is built by the solidification of a new 

layer resin via the photopolymerization (Figure 2.5(a)). SLA requires the inks with low to moderate 

viscosity. In SLS, the polymeric powders such as ceramic are locally fused by a laser to form 3D 

structures in a powder bed (Figure 2.5(b)). Other light-based methods such as two-photo 

polymerization (2PP), digital projection lithography (DLP) are also used to fabricate various 

structures. 

(a) (b) (c)

(d) (e)
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Ink-based 3D printing methods can pattern materials by using 3D-printable inks through either 

droplet- or filament-based 3D printing. Droplet-based printing methods such as inkjet printing, hot-

melt printing use low-viscosity soft materials to fabricate structures. Inkjet printing can incorporate 

light-based printing. For example, some inkjet printers involve an ultraviolet (UV) light source that 

can photopolymerize a liquid resin during the printing process (Figure 2.5(c)). Filament-based 3D 

printing employs an applied pressure, mechanical force or heating to extrude materials as a 

continuous filament. For example, fused deposition modelling (FDM) can fabricate thermoplastic 

polymers into different structures in a layer-by-layer manner. A heating extrusion head is used to 

melt the thermoplastic filaments and the filaments solidify as they cool in air (Figure 2.5(d)). An 

alternative technique to FDM is robotic dispensing (Figure 2.5(e)). For this method, a 3D-printable 

ink is loaded into a syringe and extruded either by pneumatic, piston- or screw-driven force on a 

platform. It offers a wide range of ink designs such as fugitive inks [23], collagen [29], 

poly(dimethyl siloxane) (PDMS) [98], nanocomposites [99, 100], and polylactic acid (PLA) [25]. 

Solidification of these materials to yield desired structures is either through concentrated inks, 

supported bath or reservoir, tailoring desired rheological properties (e.g., shear thinning behavior, 

viscoelastic properties), or solvent evaporation. In some cases, additional processing steps are also 

performed to solidify the ink during the fabrication process, such as UV-assisted polymerization 

used to form self-supporting and freeform structures [101] and low-temperature (−20 °C) applied 

to solidify the ink filament on a cryogenic plate [102]. 

2.6 3D printing of natural polymers

Biomaterials commonly used for 3D printing are ceramics, metals (e.g., using SLS based on 

polymeric or metallic powders) and synthetic polymers such as PLA (e.g., using FDM based on 

thermoplastic polymers) and photosensitive polymers (e.g., SLA based on photopolymerizable 

resins), and metals. However, these 3D printing have limitations to fabricate very soft materials 
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such as naturally derived hydrogels. Natural polymers including polysaccharides and proteins still 

remains challenging to 3D print, since they are too soft to support themselves and thus may collapse 

or deform during the printing process [29]. Current approaches for 3D printing of natural polymers 

have obtained significant advances. Table 2.4 shows a collection of natural polymers that can be 

fabricated by 3D printing. Inkjet printing and robotic dispensing are normally used to generate 

various structures using natural polymers. 

Table 2.4: Summary of natural polymers fabricated by 3D printing

Natural 

polymer

3D printing 

technique

Concentration 

(%)

Structure Resolution

(µm)

Printing 

strategy

Ref.

Inkjet printing

SF Piezoelectric 6 Fiber, web-

like structure

10 - [103]

CS Piezoelectric 0.2 Micropattern

ed- thin-film

50 - [104]

AG Thermal 2 Fiber 30 - [105]

Robotic dispensing

CS/HP Pneumatic 3 Scaffold 300 Coagulation in 

reservoir

[27]

CS Pneumatic 3 Scaffold 100 Coagulation in 

reservoir 

[28]

CS Pneumatic 4 Scaffold 290 Temperature 

assisted 

(-20 ºC plate)

[102]

GEL pneumatic 10 Scaffold 200 Temperature 

assisted 

[106]
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(10 ºC plate)

GEL Pneumatic 5 Scaffold 350 Adding 

crosslinker to 

tailor ink 

rheology

[107]

CNC Pneumatic 20 Scaffold 410 Concentrated 

ink

[108]

SF Pneumatic 28–30 Scaffold 5 Concentrated 

ink

[24]

SF - 10-16 Hierarchical 

scaffold

＞ 500 Adding 

sacrificial 

organic 

microparticles

[109]

SF Piston 10 Complex 

structures

200 Thermoreversibl

e support bath

[29]

HA Piston 5-20 wt Scaffold 100 UV assisted [110]

AG, 

CAI

Piston 4, 10, 8.94-

9.64

Complex 

biological

structures 

200 Thermoreversibl

e support bath

[29]

Our 

work

Pneumatic 8 Scaffold, 

complex 

structures

30 Directly printing 

in air

[111]

SF: silk fibroin, AG: alginate, HP: hydroxyapatite, CNC: cellulose nanocrystals, Ad–HA and CD–

HA: HA modified with either adamantane (Ad) or β-cyclodextrin (β-CD), HA: hyaluronic acid, 

CAI: collagen type I

2.6.1 Inkjet printing

Inkjet printing allows fabricating structures in a very small volume with a high resolution; it can 
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be divided into thermal and piezoelectric inkjet printing [112]. Thin structures of silk fibroin (SF), 

chitosan (CS) and alginate (AG) were produced by inkjet printing (Table 2.4). For example, CS 

micro-pattern (Figure 2.6(a)) was generated on glass by inkjet printing to enhance cell mobility, 

spreading, and phagocytosis [104]. However, the process always used an ink with low viscosity 

[113] and was difficult to obtain a 3D structure with high aspect ratio (i.e., vertical direction).

Figure 2.6: CS scaffolds fabricated by 3D printing. (a) CS micropattern generated by inkjet 

printing [104]. (b) CS scaffold fabricated by robotic dispensing [27]. (c) CS scaffold by robotic 

dispensing [28]. (d) CS scaffold fabricated by cryogenic 3D plotting system [102].

2.6.2 Robotic dispensing

Rather than single droplet, robotic dispensing can continuously extrude fibers and offers more 

direct control of the flow of the ink [114]. The fabrication process of natural polymers usually 

involved in situ gelling during the printing process to support the structure by using a bath or 

reservoir (Table 2.4) [27-29]. Out of this strategy, temperature- or UV-assisted step was applied to 

solidify the structures during the printing process [102, 106, 110]. Also, concentrated inks were 
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normally used to avoid the shape deformation due to drying-induced shrinkage [24, 108]. There are 

a few cases of 3D printing CS, either using a reservoir to conjugate the ink or using a temperature-

assisted step during the printing process. Figure 2.6(b) shows 3D CS scaffolds fabricated by a CS 

solution (3% w/v) deposited into a bath with a mixture of NaOH-ethanol solution [27]. The scaffold 

had a fully interconnected channel structure with a maximum of 21 layers and the surface of 

scaffolds was rough. Macrospore diameters were observed from 400 to 1000 µm [27]. Figure 2.6(c) 

illustrates CS scaffolds produced by dispensing CS and NaOH at the same time. Four-layered 

scaffolds with pore diameters of 200-500 µm were produced by using nozzles with diameters of 

100 and 200 μm. Both of the methods use the pH dependence of CS solubility. Lee et al. fabricated 

CS scaffolds by robotic deposition with a cryogenic refrigeration system. CS solution was 

solidified to form a structure on a temperature controlled plate (-20 ℃) and the final porous 

scaffolds were generated by post-treatment of freeze-drying and cross-linking [102]. Figure 2.6(d) 

shows a CS scaffold exhibiting homogeneous pore size and high interconnectivity as well as rough 

surface. The filament diameters of CS scaffolds ranged from 290 to 310 μm and the pore sizes was 

around 400 μm. The CS scaffolds with dimensions of 10 ×18 ×1.8 mm3 had a maximum tensile 

strength of 0.16 MPa and maximum Young’s modulus of 1.2 MPa [102].

2.6.2.1 Solvent-cast 3D printing

Solvent-cast 3D printing is typically based on a robotic dispensing system. Solvent-cast 3D printing 

can produce 3D structures at room temperature including a syringe inserted the ink and the ink is 

extruded on a plate to create filament, combined with rapid solvent evaporation (Figure 2.7) [25].
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Figure 2.7: Schematic illustration of solvent-cast 3D printing with a thermoplastic solution. (a) 

Deposition of the polymer solution through a nozzle. (b) Rapid solvent evaporation post 

extrusion. (c) Example of a 3D square spiral produced by solvent-cast 3D printing [25].

Figure 4 shows the process of fabricating a 3D square spiral with a thermoplastic solution of high 

concentration. The 3D structure was generated by decreasing the diameter of the filament and 

increasing its rigidity after rapidly evaporating the solvent [25]. The technique is capable of 

creating different multifunctional microsystems with complex geometries, which might be a good 

option to fabricate natural polymers. 

2.7 3D printing of nanocomposites

The combination of 3D printing and nanotechnology open new perspectives to engineer functional 

materials. Nanocomposite inks have been developed to fabricate various structures by different 3D 

printing methods for a wide range of applications such as sensors, photonics, biomedical 

applications, micro-antennas, electrodes and electronics, as shown in Figure 2.8. For exmaple, 

Lebel et al. reported UV-assisted 3D printing to fabricate 3D freeform structure of photocurable 

PU/CNT nanocomposites [101]. Guo et al. demonstrated solvent-cast 3D printing to fabricate a 

helical liquid senor by using PLA/ MWCNT nanocomposites [31]. Chizari et al. reported solvent-

cast 3D printing of highly conductive PLA/CNT nanocomposites highly conductive 

nanocomposite materials (up to 5000 S/m) for semi-transparent electromagnetic interference (EMI) 

shielding application [115]. 3D-printed nanocomposites have also been employed for biomedical 

applications, such as graphene-based nanocomposite scaffolds used for supporting cell growth [33]

and hydrogel nanocomposites used for detoxification devices [116]. 
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Figure 2.8: 3D nanocomposite macro- and micro-structures fabricated using different 3D printing 

methods [20].

It is worth noting that 3D printing can also tailor nanocomposite properties (such as mechanical 

and electrical properties). For example, Compton et al. demonstrated lightweight cellular 

nanocomposites made of epoxy resin, nanoclay and carbon fibers that were fabricated by 3D 

printing. The carbon fiber alignment due to the shear stress during the ink extrusion can reinforce 

the nanocomposites [100]. Chung et al. developed functionally graded nanocomposites fabricated 

by SLS. Material composition gradient (using non-uniform loading of silica nanoparticles) was 

exhibited along the build direction of the structure, which helps to obtain varying mechanical 

properties of the nanocomposites [117]. Secor et al. developed graphene-based nanocomposite film 

that was fabricated by inkjet printing to achieve an excellent conductivity of 25600 S/m for flexible 

electronics [63]. Nanocomposite electronics or sensors are usually made in a form of film [20]. 

Some researchers optimized nanocomposite sensors or electronics with 3D structures for achieving 

more efficient sensing ability [99, 118].
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2.8 Applications of natural polymers and their nanocomposites

Natural polymers have gained great attention for various potential applications such as tissue 

engineering, drug delivery, and biomedical devices, due to their intrinsic properties such as 

biocompatibility, biodegradability and bioactivity. Compared with hydrogels based on synthetic 

polymers (e.g., pluronics, polylactic acid), naturally derived hydrogels show highly hydrated nature 

and abundant chemical signals that benefit cell growth. Natural polymers are also excellent 

candidate for developing next-generation of sustainable electronics owing to their lightweight, low-

cost, non-toxic, biodegradability and renewable properties [14, 15]. Nanocomposites involving 

natural polymers and nanofillers have also been considered as a strategy for electronic applications.

2.8.1 Tissue engineering

As tissue engineering (TE) emerged in the late 1980s, it was aimed at fabricating man-made organs 

for the full regeneration of degenerated tissue or organs [4]. There are three TE strategies for 

regenerating issues: 1) implantation of cells or cell-extracellular matrix (ECM) grafts [119, 120]; 

2) implantation of biomaterials [121]; 3) transplantation of cell-scaffold constructs [122]. 

Specifically, cells such as bone-marrow-derived stem cells can be directly injected into the infarct 

region for improving tissue function [123]. The scalability is still a main limitation of cell-based 

approaches [124], and most of the cells are lost in blood circulation, and successfully injected cells 

easily die within several days after transplantation [125, 126]. An alternative approach to cell 

injection is the use of scaffolds engineered by using biomaterials to offer protective and biomimetic 

environments for cell growth. It is difficult to grow and remodel in tissue repair by using not-

cellularized grafts [121]. A combination of cells and polymer scaffolds is an appealing method in 

TE [3]. 

2.8.1.1 Scaffold requirements for tissue engineering

Tissue-engineered scaffolds should mimic a certain degree of biological and functional complexity 

of tissue or organ. Firstly, the scaffolds should be biodegradable and biocompatible. Both synthetic 

and natural polymers have been studied for the fabrication of 3D scaffolds. Even though synthetic 

biomaterials (such as PLA and ceramics) have good mechanical and physical properties, these 

polymers lack bioactive binding sites [127], and provide an environment that may inhibit cell 

adhesion, proliferation, and differentiation [128]. Natural polymers are capable of simulating 
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aqueous natural extracellular matrices and having abundant chemical signals, as well as providing 

high affinity with cells [129]. Among them, CS has been applied in tissue engineering due to its 

excellent biodegradable, biocompatible, and non-toxic properties [130, 131]. The structural 

similarity of CS and glycosaminoglycans and the hydrophilicity of CS improve the interaction with 

growth factors and cellular receptors [132, 133]. For instance, CS can enhance cardiac function 

through inducing the formation of neo-vasculature [134]. Secondly, the scaffolds for TE have to 

offer a temporary and suitable mechanical support [89]. For example, the scaffold engineered for 

cardiac tissue should have similar values of mechanical properties to that of real cardiac tissue. The 

Young’s modulus of myocardium is about 10-20 kPa at initial stage of diastole, and goes up to 

200-500 kPa at the end of diastole [135], and the maximum elongation of it is 22-90% [136]. 

Finally, the geometry of the scaffolds should mimic the structure of extracellular matrix (ECM): 

high degree of porosity, interconnectivity, well-controlled geometry and high surface-volume 

ratios [2, 137]. The porosity is not uniform and the pore size differs from the core to the skin in 

various microstructures of tissue or organs including cardiac muscles and bones [11-13]. Scaffolds 

with oriented pores for cardiac TE have resulted in high cell density [138], most probably because 

of favoring cell migration and differentiation and efficient nutrient diffusion [13, 139]. Anisotropic 

CS nanofibers have been produced by electrospinning with randomly oriented fibers and bulk 

mechanical properties [11]. Recent advances in TE have demonstrated scaffolds with hierarchical 

structures to have the control of topographical features for exploring the effect of surrounding 

environment on cells. For example, Kang et al. reported microfluidic spinning of thin collagen 

fibers (thickness < 10 μm) with groove patterns (width of 5 μm) that can guide cell alignment [140]. 

Chen et al. reported Pre-stressed polyethylene film with wrinkled surface generated by treating 

oxygen plasma, which can guide stem cell alignment [141]. However, those structures with 

micro/nanopatterned surfaces have limited thickness (<100 μm) and thus cannot cultivate cells in 

real 3D. Their fabrication methods are also difficult to fabricate 3D scaffolds for cell growth. 

2.8.1.2 Wearable devices

The recent progresses have been developed a range of self-healing materials for wearable devices

such as solar cells, batteries, electronic skin, supercapacitor and batteries (Figure 2.9). 
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Figure 2.9: Applications of self-healing materials for different wearable devices [17]. 

Self-healing materials are designed to restore material properties and shapes, which are particularly 

appealing for wearable devices.For example, supramolecular multiple hydrogen bonding elastomer was 

capable of restoring its mechanical and electrical properties and it was used to design a human-machine 

interaction system [142]. Self-healing material can also be used as a coating layer on electrical wires 

or circuits (building sandwich structure) for wearable devices. For example, He et al. demonstrated that 

a self-healing supramolecular polymer (fatty polybasic acid reacted with diethylenediamine) can load 

a thermal-sensitive ionic liquid to heal the damage of liquid channel and avoid the leakage of the liquid 

for electronic sensor application [143].

Wearable devices are favorably equipped with lightweight, flexible, stretchable, easy-to-make and 

versatile sensing systems. Nanocomposites are excellent candidates to develop various structures 

for wearable devices. Table 2.5 shows some examples of nanocomposites used as wearable sensors 

including detect human motions, humidity or gas in the environment. The properties of 

nanocomposites such as flexibility (F), stretchability (SB) and self-healing (Sf) directly decide the 

sensing ability of wearable sensors. For example, Amjadi et al. reported PDMS/AgNW 

nanocomposites show repeatable sensing ability at a strain (SR) of 70 % [144]. Zhou et al. 

demonstrated PI/rGO nanocomposite that can detect the humidity. Their strain sensors can detect 

the bending of different fingers. The electrical resistance of the nanocomposite fiber responded in 
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a short time of 40 s. Yang et al. demonstrated MT/CCTO nanocomposite that heal itself by Diels–

Alder and retro-Diels-Alder reactions. Sandwich structure was built by spraying SWCNT on both 

surface of MT/CCTO nanocomposite. It can be used as a strain sensor to detect the finger bending. 

The sensor was capable of recovering its resistance by self-healing after 30 min and continued to 

detect the bending motion. As shown in Table 2.5, most nanocomposites have no self-healing 

properties and they show a limited elastic strain range. There is a need to develop self-healing 

nanocomposites to combine self-healing, conductivity, lightweight, easy-to-make, flexible and 

stretchable properties for a wide range of applications including wearable sensors.

Table 2.5: Examples of wearable sensors based on nanocomposites

NanocompositeA F SB; SR 

(%)

Sf Structures Sensing 

applications

Ref.

PDMS/AgNW F 70 - Film Strain sensor on 

finger bending

[144]

PI/rGO F 5 - Fiber Pressure, bending, 

stretching 

[145]

PVA/SWCNT - 150; - - Film Humidity sensors [146]

SF/SWCNT F 23; - - Coatings on 

SF fibers

Humidity sensor, 

temperature senor, 

finger touching 

[147]

PANI/MWCNT - - - Film Gas sensor [148]

GelMA/MWCNT

/SWCNT

F 115; 20 - Fiber on a 

cellulose 

paper

Substrate bending [118]

MT/CCTO, 

SWMNT

F - Sf by DA and 

r-DA reaction

Sandwich Finger bending [149]

PLG/GR F 375; - - Fiber on a 

substrate

Substrate bending [33]
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Our work F 230 Sf by water 

vapor

Microstructu

red fiber 

Strain and 

humidity sensor

A: PDMS: Polydimethylsiloxane, AgNW: silver nanowire, PI: polyimide, PVA: Poly(vinyl 

alcohol), SF: silk fibroin, PANI: polyaniline, GelMA: gelatin methacryloyl MT: Diels–Alder 

cycloaddition polymer, CCTO: CaCu3Ti4O12,

B: DA: Diels–Alder, r-DvA: retro-Diels-Alder PLG: polylactide-co-glycolide, GR: graphene

2.9 Summary of literature review

Chitosan, a natural polysaccharide, has interesting and unique intrinsic properties such as

biodegradability, biocompatibility, renewability and bioactivity, which make it an excellent 

candidate for tissue engineering and electronic applications. However, CS generally exhibits weak 

mechanical properties, especially in hydrated state, and there is consequently a need for improving 

its properties. 

Simple 3D structures such as freeze-dried sponges, solvent-cast scaffold and electrospun matrices 

have been produced from natural polymers. However, they usually have disordered structures, 

without a precise control of their architectures (such as the control of pore shape, porosity, 

interconnectivity and surface pattern). When these structures are used for tissue engineering, they 

always lead to randomly distributed cells. Cell alignments have been widely shown in tissues and 

organs at different scales. Therefore, the formation of 3D scaffolds that can guide spatial and 

oriented organization of cells is extremely important for mimicking the structural complexity of 

real tissue or organs. 3D printing might address these issues due to its ability to produce complex 

3D geometries. However, it is still challenging to fabricate from natural polymers such as CS 

because the natural polymer inks are too soft to support themselves.

Currently, there is few research works on nanocomposites made of natural polymers as a matrix. It 

is a great interest to develop “green” nanocomposites for electronic applications. In addition, self-

healing behavior is very desirable since it can prolong the material lifetime. However, most self-

healing materials are insulating. Conductive nanocomposites may solve this problem with the 

addition of conductive nanofillers in self-healing materials. The nanocomposites used in electronic 

applications such as wearable sensors are usually in a form of thin films. This form of 
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nanocomposites does not present high sensing ability. There is a need to translate 2D structures to 

more complex 3D structures for application efficiency. 3D printing has been developed to fabricate 

conductive nanocomposites with 3D structures. Novel nanocomposites combined with functional 

properties (such as self-healing, stretchability and conductivity) and a high level of printability (the 

fabrication of tunable 3D structures along with ink flow without nozzle clogging) are needed to 

overcome those limitations and achieve a further progress in electronic applications.

This thesis aims at addressing these various issues, and the objectives are presented in the next 

chapter.  
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CHAPTER 3 RESEARCH OBJECTIVES AND COHERENCE OF 

ARTICLES

3.1 Research objectives

The principal objective of this research is to develop novel CS and CS/CNT inks for the fabrication 

of complex 3D structures. This fabrication process should allow the materials to feature 

multifunctional properties for tissue engineering and electronic applications.

3.1.1 Specific objectives of the research

1) Develop CS inks for water-based solvent cast 3D printing. Establish a comprehensive 

characterization of the effect of fabrication parameters and CS-related parameters on the 

printability and material properties.

2) Fabricate CS-based complex 3D scaffolds that can be used for guide cell growth.

3) Develop CS/CNT conductive nanocomposites featuring self-healing properties. 

4) Adapt instability-assisted 3D printing to CS/CNT nanocomposites for fabricating 

microstructured fibers and demonstrate the feasibility of CS/CNT nanocomposites as 

humidity and strain sensors.

3.1.2 Presentation of articles and coherence with research objectives

Chapter 4, 5 and 6 present the core results of the thesis with three articles in the form of accepted 

(Chapter 4), published (Chapter 5) and submitted (Chapter 6) states. These articles cover all the 

research objectives and are described in the following section:

Chapter 4 presents the first article “Processing and Properties of Chitosan Inks for 3D Printing of 

Hydrogel Microstructures”, accepted in ACS Biomaterials Science & Engineering (Manuscript ID: 

ab-2018-00415w.R1). This journal was chosen because it focuses on new biomaterials, bioinspired 

and biomimetic approaches to biomaterials. This paper was submitted on Jan 1, 2018 and accepted 

on May 24, 2018. In this work, a comprehensive study of the properties of CS inks for 3D printing 

is carried out (Specific Objective 1). The rheological properties of CS inks with different 

concentration are analyzed by rotational rheometry and capillary flow. Solvent evaporation rate of 
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the various inks is also investigated. A processing map is generated by considering fabrication and 

materials parameters such as micronozzle diameter and ink concentration for successful 3D 

printing. The material properties of CS filament after different processing steps are also studied. 

Chapter 5 shows the content of the second article, “3D Printing of Microstructured and Stretchable 

Chitosan Hydrogel for Guided Cell Growth”, published in Advanced Biosystems (DOI: 

10.1002/adbi.201700058). This journal was chosen because it is in the field of life sciences and 

focuses on innovative biological systems and advanced biotechnology. This paper was submitted 

on April 11, 2017 and published on May 15, 2017. In this work, CS inks are printed at room 

temperature in the form of complex 3D scaffolds (Specific Objective 2). The ink filament is 

extruded to form a 3D structure in a layer–by-layer manner and the filament solidification occurs

through solvent evaporation. The resultant 3D structures show a high resolution of 30 µm. A 

physical gelation of the printed scaffold is processed by neutralization in sodium hydroxide. The 

mechanical properties of as-printed and neutralized filaments are measured, showing high 

stretchability and tensile strength. Guided fibroblast cell growth is also demonstrated.

Chapter 6 shows the third article “3D Printing of Self-healing and Stretchable Nanocomposite

Sensors”, submitted on May 31, 2018 to Materials Horizons. This journal was chosen because it 

focused on materials science with chemistry, physics, biology and engineering. In this work, we 

develop CS/CNT nanocomposite inks that are prepared using a ball mill mixing method (Specific 

Objectives 3 and 4). The CS/CNT nanocomposite present healing properties under exposure to 

water vapor and electrical conductivity and mechanical properties can be restored. The self-healing 

is rapid, occurring within seconds after the damage of the nanocomposite. Instability-assisted 3D 

printing is also adapted to fabricate CS/CNT microstructured fibers featuring sacrificial bonds and 

hidden length that can achieve a high stretchability (strain at break of ~ 180%). The multifunctional 

nature of this CS-based nanocomposite enables it to be designed as wearable sensors. 
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CHAPTER 4 ARTICLE 1: PROCESSING AND PROPERTIES OF 

CHITOSAN INKS FOR 3D PRINTING OF HYDROGEL 

MICROSTRUCTURES 
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4.1 Abstract 

The ability to precisely control the properties of natural polymers and fabricate three-dimensional 

(3D) structures is critical for biomedical applications. In this work, we report the printing of 

complex 3D structures made of soft polysaccharide (chitosan) inks directly in air and at room 

temperature. We perform a comprehensive characterization of the 3D printing process by analyzing 

the effect of ink properties (i.e., rheological properties and solvent evaporation) and process-related 

printing parameters (i.e., nozzle diameter, robot velocity, and applied pressure). The effects of the 

neutralization step on the hydrogel formation and their mechanical properties are also investigated. 

Solvent evaporation tests show that the chitosan ink prepared using an acidic mixture contains 

residual acids after printing, helping reducing shrink-induced shape deformation. A processing map 

presents the appropriate ranges of process-related parameters for different structures including 

filaments, 30-layer scaffolds, starfish, leaf, and spider shapes, showing the versatility of the 

fabrication approaches. After neutralization, 3D scaffolds still maintain their shape while 

neutralized filaments show high tensile properties such as a maximum tensile strength of ~ 97 MPa

in the dry state and high strain at break ~ 360 % in the wet state. Our fabrication approach provides 

guidelines to optimize the design and fabrication of aqueous-based inks and opens a new door for 

mailto:marie-claude.heuzey@polymtl.ca
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fabricating complex structures from natural polymers and achieving tunable material properties for 

biomedical applications such as tissue engineering and drug delivery.

4.2 Introduction 

Natural polymers are attractive biomaterials for biomedical applications due to their intrinsic 

properties such as biocompatibility, biodegradability and bioactivity.1-2 The ability to precisely 

control their material properties and shapes is important for applications such as tissue 

engineering.3 3D printing methods are promising avenues to fabricate complex biomedical devices

such as cardiac microphysiological devices4,  vascular networks5 and 3D cancer tissue model.6  

However, the 3D printing of natural polymers is still in its early stages, but a few recent studies 

have achieved significant advances.7  Usually, 3D printing approaches used for natural polymers 

require in situ crosslinking during the printing process because these water-soluble polymers are 

generally too soft to self-support their structures.8-9 For example, structures made of various natural 

polymers (e.g., gelatin,10 alginate,8 chitosan-based polymer11-13 and hyaluronic acid14-15) have been

fabricated via partial crosslinking, reservoir-induced cross-linking, or chemical modification. 

However, these fabrication methods show limited control of the structure resolution (>200 µm). 

Low temperature manufacturing is developed to solidify the structures during printing.16 For 

example, Lee et al reported the fabrication of highly porous chitosan scaffolds through 

solidification of the structure on a cryogenic plate held at −20 ˚C during the printing process, 

followed by a freeze-drying process to maintain the 3D structures. A porous structure within the 

filaments was obtained due to the low temperature and freeze-drying process, which resulted in 

weak mechanical properties (i.e., Young’s modulus of 1.2 MPa and maximum tensile strength of 

0.16 MPa for a dried scaffold). So far, the printability of natural polymer inks is still challenging. 

For example, dilute inks (e.g., 4 wt%)17 experience significant drying-induced shrinkage during 

the printing, resulting in the loss of shape fidelity in printed structures.18 It was demonstrated that 

the increase of ink concentrations (e.g., 28 wt %)19-20 or the crosslink density21 can improve the 

printability via higher viscosity and minimization drying-induced shape deformation. These 

viscous inks are not ideal for biomedical applications due to their lower biocompatibility.22-23

Therefore, developing novel printable natural materials and fabrication approaches for 3D printing 

is highly attractive and promising for both academic and industrial fields. 
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Chitosan, a naturally-derived polysaccharide, is non-toxic, biodegradable, biocompatible, bio-

adhesive and renewable.24 For pH below its pKa (pH < 6.2), the amino group (NH2) on the chitosan 

chains are protonated into positively charged group (NH3
+) giving it solubility. Soluble chitosan 

allows a vast range of applications such as tissue engineering,25 water treatment,26 biosensors and 

drug delivery.27 Physical chitosan hydrogels can be obtained by the neutralization of chitosan 

amino groups.28 However, the mechanical strength of chitosan  is weak, especially under hydrated 

conditions.29 We first reported the 3D printing of a chitosan physical hydrogel that involve directly 

depositing the ink in air to form the structure on a three-axis positioning platform30 as shown in 

Scheme 4.1. A 3D-printable chitosan ink with low concentration (8 wt %) was formulated by 

dissolving chitosan in an acidic mixture. This ink was extruded through micronozzles and directly 

formed into 3D scaffolds in a layer-by-layer manner via solvent evaporation. Rheological 

properties of the inks play an important role in the extrusion-based 3D printing methods. For 

instance, Rutz et al. studied the viscous and elastic modulus of gelatin-based inks to acquire the 

desired degree of crosslinking for 3D printing.10 Guo et al. investigated the process-related 

apparent viscosity to determine suitable polymer concentration for solvent-assisted 3D printing.31

The rheological properties of chitosan-based solutions have been widely studied, such as chitosan 

blends,32 thermosensitive chitosan-glycerol-phosphate solutions33 and physical chitosan 

hydrogel.34 However, to the best of our knowledge, only a few studies have investigated those in

the scope of printability optimization of the inks for 3D printing.

Scheme 4.1: Schematic of the 3D printing process and main process parameters.

Applied pressure

Robotic velocity

Solvent evaporation

Flow rate
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In this work, we present a comprehensive study of the properties of chitosan inks for 3D printing 

at ambient temperature. The rheological properties and flow behavior of the chitosan inks are 

analyzed to guide the successful 3D printing. The process-related viscosity and flow behavior are 

characterized by capillary flow analysis. Solvent evaporation kinetics are investigated by observing 

the weight change of extruded chitosan filaments over time. A processing map is derived by 

considering parameters for the successful fabrication of one-dimensional (1D), two-dimensional 

(2D) and 3D chitosan structures. Finally, the tensile properties and XRD patterns of chitosan 

filaments are investigated.

4.3 Materials and methods

Preparation of Chitosan Inks. Chitosan inks were prepared by dissolving chitosan (90% 

deacetylated, weight-average molecular weight = 207 kDa, from BioLog Heppe GmbH, Germany) 

in acidic mixture (40 vol% acetic acid, 20 vol% lactic acid, 40 vol% distilled water). In addition, 3 

wt % (based on the total weight of the solution) total citric acid was also added to the mixture. All 

chemicals were purchased from Sigma-Aldrich, Canada, and used as received. The amount of 

chitosan and acid solutions were adjusted to obtain different chitosan concentrations (i.e., 6, 8 and 

10 wt %). Chitosan solutions were mechanically stirred for 2 h (150 rpm) after resting 12 h. After 

centrifuging (3000 rpm, 1 h) to eliminate air bubbles, the solutions were stored in sealed bottles in 

a refrigerator until processing. All solutions were freshly prepared immediately before the 3D 

printing experiments. The densities of chitosan solutions (i.e., 6, 8 and 10 wt %) were calculated 

by measuring the mass of 1 mL cubes filled with the solutions. The three solution densities 

measured are 1.04, 1.1, and 1.2 g/m3, respectively.

3D Printing. The chitosan ink was inserted in a syringe (3 mL, Nordson EFD). The syringe was 

then fixed to a high-pressure adaptor (Nordson EFD). The chitosan solution was deposited using a 

three-axis positioning platform through a micronozzle at room temperature. The ink was extruded 

under an applied pressure controlled by an air-powered dispensing system (HP-7X, Nordson EFD) 

and a velocity controlled by a computer assisted robot head (I&J2200-4, I&JFisnar). 

Rheological Measurements. Shear viscosities of chitosan solutions were determined using a 

rotational rheometer (MCR-502, Anton Paar) fitted with a cone and plate flow geometry at shear 
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rates between 0.1 and 100 s-1 at room temperature. The edge of the cone and plate flow geometry 

was covered with mineral oil to prevent solvent evaporation and it was shown not to affect the 

tests. Also, process-related viscosity measurements were conducted by capillary flow analysis35. 

Different concentrations of chitosan solutions (6, 8 and 10 wt %) loaded into a syringe (3 mL, 

Nordson EFD) were extruded through a micronozzle (inner nozzle diameter D = 200 µm, capillary 

length l = 12.25 mm, Nordson EFD) under different applied pressures ranging from 0.4 MPa to 3 

MPa at a velocity of 0.5 mm s-1. Other micronozzles (D = 100 and 330 μm, l = 12.75 and 12.25 

mm) were also used to extrude the 8 wt % chitosan ink. Chitosan filaments (60 mm long) were 

dried in vacuum at 55 °C for 72 h and weighed using a high-precision balance (GH-202, A&D 

Engineering Inc.). Their weight was used to acquire the volumetric flow rates for calculating the 

process-related apparent viscosity. 

Determination of Solvent Evaporation Rate. Chitosan solutions (8 wt %) were prepared by 

dissolution in different acid solutions (i.e., 40 vol% acetic acid aqueous solution and the acidic 

mixture described above) and used to investigate solvent evaporation rates. Chitosan filaments (50 

mm long) were extruded through a micronozzle (D = 250 µm, Nordson EFD) under an applied 

pressure of ~ 1.3 MPa for 5 s. The weight reduction of the filament was monitored using a high-

precision balance (GH-202, A&D Engineering) for 5 h at room temperature. The samples were 

weighed again after drying under vacuum at 55 °C for 72 h. The solvent evaporation rates were 

calculated from real-time weight variations (between as-printed filaments and dried filaments), 

divided by the initial weight of as-printed filaments.

Fabrication of Chitosan Microstructures. 1D, 2D and 3D chitosan microstructures were 3D 

printed by depositing chitosan filaments in a layer-by-layer manner, where filament solidification 

was achieved through solvent evaporation. A 8 wt % chitosan ink was used for the fabrication of 

chitosan scaffolds using a 150 µm micronozzle under an applied pressure of ~1.3 MPa and a 

velocity of 0.5 mm s-1. The microstructures shaped like a starfish and a leaf were fabricated using 

a 9 wt % chitosan ink with applied pressures of 1.5 - 2.1 MPa and the velocities of 1 - 2 mm s-1. 

The files for digital 3D models of starfish and leaf were obtained from Thingiverse 

(http://www.thingiverse.com/), and a software (Simplify3D) was used to generate codes for 3D 

printing. The morphological structures of chitosan filaments and 3D-printed scaffolds were 

observed by scanning electron microscopy (SEM, JSM-840, JEOL). The optical images of 2D and 

3D structures were performed using an optical microscope (BX-61, Olympus) and analyzed with 

http://www.thingiverse.com/
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software (Image Pro Plus 6.0, Media Cybernetics). The chitosan structures are dried under vacuum 

at 55 °C for 72 h for the subsequent neutralization step.

Gelation by Neutralization. After drying, the chitosan scaffolds and the structures shaped-like 

spiders were immersed in a 1M sodium hydroxide (NaOH) solution for 2 h. After neutralization, 

samples were washed with distilled water to remove the excess NaOH solution. For analyzing 

sample surface, the neutralized chitosan scaffold in the dry state was observed by a scanning 

electron microscope (SEM, JSM-7600, JEOL) and the neutralized scaffold in the wet state was 

stained using Rhodamine B for 30 min and imaged with a confocal laser scanning microscopy 

(CLSM) Nikon C2. Rhodamine B stained neutralized scaffolds were observed under a 561 nm laser 

(Em 561LP).

X-ray Diffraction (XRD). To investigate the crystallinity of samples based on different processing 

histories, XRD patterns of chitosan powder, as-printed and neutralized filaments in dry state were 

obtained using a Philips X’Pert X-ray diffractometer equipped with a Cu−Kα radiation, and 

operated at 50 kV and 40 mA. The diffraction was measured in a range from 5° to 35° with a step 

width of 0.02° and a scan speed of 0.02° min-1. 

Tensile Tests of Chitosan Filaments. Tensile tests on chitosan filaments in different states (i.e., 

as-printed filaments, filaments after drying for 72 h and neutralized filaments in dry and wet states) 

were performed using an electromechanical machine (Insight MTS 50kN) with a 100 N load cell. 

Tests were repeated seven times using the standard of ASTM D3822 / D3822M.

4.4 Results and discussion

Flow Properties. The chitosan inks must exhibit appropriate rheological properties to enable 

efficient flow through micronozzles for successful 3D printing. The flow behavior of different 

chitosan inks prepared using acidic mixture during their extrusion through a 200 µm micronozzle 

was examined by capillary flow analysis35-36. Figure 4.1 presents the volumetric flow rate 

(converted from mass flow rate) of different chitosan solutions (i.e., 6, 8, and 10 wt %) and different 

nozzles (i.e., 100, 200 and 330 µm) with respect to the applied pressure. Figure 4.1a shows that the 

volumetric flow rates for all chitosan solutions increased with applied pressure. For a given flow 

rate, higher pressures were required to allow flow of higher concentrated inks in the micronozzle. 

Figure 4.1b shows the variation of the ink flow rate when using micronozzles of different 
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diameters. We observe that for a given pressure the flow rates also increased with nozzle diameter, 

as expected.

Figure 4.2 shows the viscoelastic properties of the chitosan solutions at different 

concentration (6, 8, and 10 wt %). The process-related apparent viscosities of different 

chitosan inks (i.e., 6, 8, 10 wt %) were calculated from the capillary flow data with respect 

to the applied pressure and are presented by solid symbols in Figure 4.2a. All solutions 

exhibited a pronounced shear thinning response as evidenced by an important decrease in 

viscosity. For example, the apparent viscosity of the 8 wt % ink at a shear rate of ~800 s-1

is ~8 Pa·s and nearly three orders of magnitude smaller than the viscosity of ~1500 Pa·s 

measured by rotational rheometer in low shear conditions. The shear-thinning behavior can 

benefit the flow through the deposition micronozzle.37 After exiting the micronozzle, the 

shear stress is relieved and the ink viscosity increases again, which helps to keep its 

filamentary shape. The open symbols in Figure 4.2 present the viscosity of different 

Figure 4.1: Volumetric flow rate as a function of applied pressure for (a) various chitosan inks (6, 

8 and 10 wt %) deposited using a 200 µm nozzle, and (b) a 8 wt % chitosan ink extruded using 

different micronozzle diameters (100, 200 and 330 µm). All inks were prepared using an acidic 

mixture (40 vol% acetic acid, 20 vol% lactic acid, and 3 wt % citric acid).



40

chitosan concentrations (i.e., 6, 8, 10 wt %) obtained through rotational rheometry with 

respect to the shear rate. These viscosity measurements were also obtained at room 

temperature and under steady simple shear. The 6 and 8 wt % chitosan solutions presented 

a Newtonian behavior at low shear rate (≤ 0.5 s-1) while the viscosity of the 10 wt % chitosan 

solution did not show a Newtonian plateau in this investigated range of shear rates. Under 

the same shear rate, the viscosity of the inks increased with ink concentration, as expected, 

which will affect 3D printability.

The dashed curves in Figure 4.2 represent the fitted values for shear rates obtained from the 

Carreau-Yasuda model described as

where η0 is the zero-shear-rate viscosity, η∞ is the infinite-shear-rate viscosity, t1 is a 

characteristic time constant, n is the power law exponent, and a is dimensionless parameter 

Figure 4.2: Viscosity with respect to shear rate for different chitosan inks prepared using the 

acidic mixture: 40 vol% acetic acid, 20 vol% lactic acid, and 3 wt % citric acid (open symbols: 

data obtained using a cone and plate flow geometry in steady shear; solid symbols: data obtained 

by extruding chitosan filaments and capillary flow analysis). The dashed curves are fits from the 

Carreau-Yasuda model where the parameters used are listed in Table 4.1.
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that controls the width of the transition between the zero-shear-rate and power-law regions. 

The fitting parameters of the equation are reported in Table 4.1. 

Table 4.1 Parameters of the Carreau−Yasuda Model for the various chitosan solutions

The curves in Figure 4.2 show an accurate fit of the Carreau-Yasuda model, with reasonable 

agreement between the viscosities obtained from both the rotational rheometry and the 

capillary flow analysis. According to the values listed in Table 4.1, η0 of higher concentrated 

chitosan solutions is larger. Thus, the shear thinning behavior increases with chitosan 

concentration and the transition from Newtonian to shear-thinning occurs at lower shear 

rates. In addition, our data shows that chitosan solutions obey Cox-Merz rule (Figure S4.1, 

Supporting Information) on a large range of frequencies. Therefore, the linear viscoelastic data can 

be used to infer the level of elasticity at various apparent processing shear rates. Figure S4.2 

(Supporting Information) compares the behavior of viscoelastic properties to extrudate die swell 

and filament sizes. Figure S4.2a shows the elastic (G′) and viscous (G″) moduli of chitosan 

solutions at different concentrations. G″ is higher than G′ in all solutions at low frequencies, 

followed by G″ < G′ after the cross-over point, which is typical of viscoelastic liquids. The 10 wt

% chitosan solution exhibits a cross-over point at a relatively lower frequency (1.8 rad/s) as 

compared to the chitosan solutions of 6 and 8 wt % (24 rad/s and 6.6 rad/s, respectively), which 

represents a longer relaxation time and hence a more elastic character. The effects of polymer 

concentration on die swell and filament size were investigated when the solutions were extruded 

under the same applied pressure (530 kPa) (Figure S4.2 b-d, Supporting Information). It can be 

seen that higher chitosan concentration leads to an increase in die swell ratio due to higher level of 

molecular entanglement, which in turn results in larger filament size. Figure S4.2 e-f (Supporting 

Information) shows the effect of the extrusion pressure on die swell and filament size when an 8 

wt % chitosan solution is extruded under different applied pressures (390, 530 and 670 kPa). The 

Chitosan 

(wt %)

η0 (Pa·s) t1 (s) a n R2

6 452 0.52 0.72 0.17 0.97

8 1997 1.88 0.81 0.16 0.95

10 5807 5.33 1.35 0.13 0.96
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die swell ratios and filament sizes increase with extrusion pressure, since the chitosan molecules 

are more aligned under higher pressure, and once extruded out of the nozzle to a low stress 

environment, tend to relax to a greater extent. Figure S4.2d shows that a filament fabricated from 

a 10 wt % chitosan solution under 530 kPa exhibits strong elasticity, as manifested by flow 

instability. To avoid process instability, moderate chitosan concentration and pressure (e.g., 8 wt 

%, 1.2 MPa) were used to avoid flow- and elasticity-driven instabilities. Proper adjustment of 

platform movement (filament pulling) can also compensate for swelling and result in reasonable 

diameter of chitosan filaments.

Accurate printing requires adequate rheological properties, and the precise control of the applied 

pressure with respect to the robotic velocity for the different ink and micronozzle combinations. 

Figure 4.3a shows the average velocity of the ink flow as a function of the applied pressure for 

different chitosan solutions (i.e., 6, 8, 10 wt %) deposited using a 200 µm micronozzle. The velocity 

was calculated by dividing the volumetric flow rate by the area of the micronozzle cross-section. 

As the concentration of chitosan solutions increased, higher pressures were necessary to generate 

the flow due to higher viscosity of the inks. Figure 4.3b shows the average velocity with respect to 

the applied pressure for the same chitosan solution (i.e., 8 wt %) extruded through different nozzles 

(i.e., 100, 200, and 330 μm). For the same velocity, the applied pressure for the 100 μm nozzle was 

approximately 5 times larger than that of the 330 μm. In addition, the inks started flowing through 

Figure 4.3: Average velocity of ink flow as a function of applied pressure for (a) chitosan 

solutions (6, 8 and 10 wt %) and (b) a 8 wt % chitosan solution extruded through different 

micronozzles (diameters: 100, 200, and 330 µm). All the inks were prepared using acidic mixture 

(40 vol% acetic acid, 20 vol% lactic acid, and 3 wt % citric acid).

a b
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the micronozzle only once a minimum pressure was applied, indicating the existence of an apparent 

yield stress.

Solvent Evaporation. During the 3D printing process used in this work, extruded chitosan 

filaments gradually solidify after extrusion due to solvent evaporation. To evaluate the effect of 

solvent evaporation during fabrication, two inks composed of 8 wt % chitosan prepared using the 

acidic mixture and an acetic acid solution (40 vol% acetic acid) were printed. The solvent 

evaporation rates were measured by monitoring the weight change of chitosan filaments (50 mm 

long, extruded using a 250 µm micronozzle) for 5 h using a high-precision balance at room 

temperature. Figure 4.4 shows the percentage of solvent content as a function of time. The acetic 

acid solution (slope |k| of 0.018 s-1) evaporated slightly faster than the acidic mixture (|k| of 0.01 s-

1) in the first half hour, then both inks slowly evaporated after ~1 h. The filaments retained a lower 

content (~ 20 wt %) of solvent after 5 h of evaporation when using the acetic acid solution, as 

opposed to the one prepared with the acidic mixture (~ 45 wt %). Acetic acid is more prone to 

evaporation into air, because it has a much higher vapor pressure (i.e., 15.7 mm Hg at 25 °C) than 

lactic acid and citric acid (i.e., 0.0813 mm Hg and 1.7 ×10-8 mm Hg at 25 °C, respectively). The 

acidic mixture containing low vapor-pressure solvent (i.e., lactic acid) and non-volatile citric acid 

is unable to completely evaporate over time, which results in more residual solvent (~45 wt % after 

5 h) in the filaments. The acidic mixture exhibits appropriate solvent evaporation rate for 3D 

printing and the residual solvent in the filament can minimize the drying-induced shrinkage. Due 
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to the drying induced shrinkage of the ink using the acetic acid solution, the ink prepared using the 

acidic mixture was used preferentially for the fabrication of different structures.

3D Printing of Microstructures. Figure 4.5 shows the process map of chitosan inks based on the 

acidic mixture for 3D printing. This map illustrates the range of nozzle diameters and chitosan 

contents appropriate for the fabrication of different types of patterns: 1D filament, 2D network, or 

3D microstructures. High shape fidelity of those structures also requires the appropriate adjustment 

between evaporation rate and printing parameters. Chitosan solutions with different concentrations 

(from 4 to 12 wt %) and six nozzles (D = 100, 150, 200, 250, 330, and 510 μm) were used in this

processing map. The applied pressure (from 0 to 4.1 MPa) and robot velocity (from 0.1 to 500 mm 

s-1) were investigated for printing. Successful printing was demonstrated through observing 3D-

printed structures (e.g., smooth and continuous 1D filament, filament diameter is close to nozzle 

diameter in 2D arrays, self-support features without sagging in 3D structures). Zone I in Figure 4.5 

reveals that chitosan inks (approximately from 5 to 11 wt %) can readily flow through micronozzles 

(D= 30 ~ 500 µm) to form 1D filaments. Zone II represents the ability to fabricate 2D filament 

arrays and 3D chitosan layer-by-layer structures at high resolution (30 µm). For nozzle sizes that 

exceed 330 µm, we observed that the structures collapsed. Zone III shows the range of larger nozzle 

diameters for which the imposed shape was difficult to maintain after fabrication for all the chitosan 

content investigated. It was also difficult to fabricate structures using both too dilute (Zone VI, the 

Figure 4.4: 
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concentration of chitosan ink < 4 wt %) or too viscous chitosan solutions (Zone V, the 

concentration of chitosan ink ˃ 11 wt %). The optimal viscosity for the chitosan solution for 3D 

printing is low enough to be extruded through the micronozzle and also high enough to maintain 

its shape after printing.

Different chitosan microstructures were fabricated using the parameters corresponding to letters a-

e illustrated in Figure 4.6. Figure 4.6a shows a SEM image of a 1D filament with a diameter (d) of 

~ 90 µm featuring a very smooth surface which was extruded through a 100 µm nozzle with a 6 wt 

% chitosan solution. The final dimension of the filament is determined by a combination of ink 

concentration, nozzle diameter, applied pressure (P), robotic velocity (V) and solvent evaporation. 

Figure 4.6b presents a fluorescent microscopy image of a 2D filament array in a top view, which 

was fabricated using a 8 wt % chitosan solution with fluorescent dye (D = 30 µm, V = 1 mm s-1, P

= 1.1 MPa). Figure 4.6c shows a top and side view of a 3D chitosan scaffold with a circular 

morphology of the filaments between interconnected layers, featuring a pore size (Ps) of ~220 µm 

and 30 layers (L), fabricated using a 8 wt % chitosan solution (D = 150 µm, V = 0.5 mm s-1, P = 

Figure 4.5: 

fabrication
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1.3 MPa). After drying under vacuum at 55 °C for 72 h, the filament diameter in the scaffold shrank 

to ~ 60 % of that of an as-printed scaffold, indicating that solvent occupied ~ 40 % of the filament 

volume in the as-printed filament. A 9 wt % chitosan ink was used to fabricate a starfish shaped-

like structure (D = 200 µm, V = 1 mm s-1, P = 1.5 MPa). As shown in Figure 4.6d, the top and side 

view of the starfish (L = 17) presented a high shape fidelity with surface patterns. Figure 4.6e shows 

a 3D printed leaf with detailed main and branch lines and a thickness of ~ 300 µm, which was 

fabricated using a 9 wt % chitosan ink (D = 150 µm V = 2 mm s-1, P = 2.1 MPa). The insets in 

Figure 4.6b-e show computer-aided design (CAD) images of each 3D-printed structures. 

Comparison between the optical or SEM images in Figure 4.6b-e and the CAD images shows the 

dimensional fidelity of the 3D printing process. Those images demonstrate the versatility and 

flexibility of the 3D printing method to fabricate different structures from an aqueous-based 

chitosan solution and map the adequate selection of process and material parameters.
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Figure 4.6: (a) close-up SEM image of a chitosan filament, (b) fluorescent microscopy image of a 

2D chitosan network, (c) SEM image of a 3D chitosan scaffold with square pore size with top and 

side views, (d) fluorescent microscopy image of a 3D printed starfish, (e) fluorescent microscopy 

image of a 3D printed leaf. Inset images in b, c, d and e show CAD models of the 2D network, 

scaffold, starfish and leaf structures.
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Dimensional Stability of 3D-printed Structures. To exhibit the successful printing of the ink 

prepared using the acidic mixture, the dimensional stability of different 3D structures after printing 

was investigated. A 10 wt % chitosan ink prepared using the acetic acid solution was used for 

comparison, considering the difficulty of printing 3D structures from this ink with a chitosan 

concentration lower than 10 wt %. Figure 4.7 shows the effect of the shrinkage after printing on 

the dimension of complex 3D chitosan structures at room temperature over time. Figure 4.7a and f 

shows CAD images of a shape-like spider structure. Figure 4.7 b-e shows fluorescent microscopy 

images of “spiders” fabricated using a 10 wt % ink with an acetic acid solution after printing for 0, 

1, 4, and 28 h. Obvious shrinkage was observed after 1 h printing of the structure. Figure 4.7 g-j 

shows “spiders” fabricated using a 10 wt % ink with an acidic mixture, exhibiting a high shape 

retention with a slight shrinkage after printing for 28 h. To quantitatively study the shrinkage 

behavior post printing, 30-layer scaffolds were fabricated using the two different inks. Comparison 

between a CAD scaffold model (Figure 4.7k) and a 3D-printed scaffold (width and length: 8 mm 

× 8 mm, T = 3 mm) fabricated using an ink (10 wt %) based on the acetic acid solution (Figure 

4.7l) demonstrate that the 3D-printed scaffold loses its shape. The shrinkage of the scaffolds was 

quantified using an optical microscope to monitor the relative width and thickness reduction of the 

scaffolds over 28h. Figure 4.7n shows the normalized dimension change of the scaffolds fabricated 

using the two inks. The thickness and width of the scaffolds prepared using the acetic acid solution 

reduced fast, with both values at ~65% after 28 h. In contrast, the scaffolds obtained with the acidic 

mixture were gradually reduced to 90% and 82% after 28 h. These shrinkage percentages 

demonstrate that the structures fabricated with the ink prepared from the acidic mixture can 

maintain higher shape fidelity compared to the ink using acidic acid only. The dimensional stability 

of 3D-printed structures is especially important for the fabrication of larger structures with longer 

fabrication time. 
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Gelation by Neutralization. After the 3D printing of chitosan microstructures, the chitosan 

constructs are dried under vacuum at 55 °C for 72 h. A neutralization step was used to remove the 

residual acid in the structures and obtain a stable hydrogel. The modulus of neutralized chitosan 

films was measured using DMA, showing that a hydrogel was formed after neutralization (Figure 

S4.3, Supporting Information). Figure 4.8 shows the variation of the morphology of chitosan 

scaffolds during the different processing steps. Figure 4.8a shows an as-printed scaffold 24 h after 

printing made of fine and smooth filaments (d = 90 µm, Ps = 350 µm). After the neutralization in 

a NaOH solution (1M) and drying for 4 h in vacuum, an important shrinkage in the neutralized 

scaffold (d = 60 µm, Ps = 180 µm) with wrinkled surface is observed in Figure 4.8b. When the 

neutralized scaffold re-absorbs water, the interconnected structure is still maintained, as shown in 

Figure 4.7: (a) and (f) CAD models of a shaped-like spider structure. (b-e) Fluorescent 

microscopy images of “spiders” fabricated using a 10 wt % ink with an acetic acid solution and 

(g-j) a 10 wt % ink with the acidic mixture after printing 0, 1, 4, and 28 h. (k) CAD model of the 

scaffold. (l) An as-printed 30-layer chitosan scaffold fabricated using a 10 wt % ink with the 

acetic acid solution using 200 µm nozzle and (m) a scaffold fabricated using a 10 wt % ink with 

the acidic mixture under the same fabrication conditions. (n) The width and thickness reductions 

of the scaffolds fabricated using chitosan inks (10 wt %) with the acetic acid solution and acidic 

mixture in Figures l and m over a period of 28 h.
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Figure 4.8c with 3D reconstruction of confocal images. A close up view of the filament surface in 

Figure 4.8c shows oriented wrinkles that were almost perpendicular to the cross section of the 

filament. The shrinkage of the neutralization step and drying process is the main cause for the 

wrinkles on the surface. During the neutralization step, NH3
+ groups are deprotonated to NH2

Figure 4.8: (a) SEM images of a 3D printed chitosan scaffold 12 h after printing, and a close-up 

view of the surface of the filament in the red frame area. (b) SEM images of a neutralized 

scaffold in the dry state, and a close-up view of the filament featuring longitudinal wrinkles in 

the red frame area. (c) Confocal images of a neutralized scaffold in the wet state, and fluorescent 

confocal image of the filament texture in the red frame area.
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groups due to the sudden change in pH, yielding the disappearance of ionic repulsion between 

chitosan chains and favouring chain packing and gel shrinkage.28

Physical Characterization of Different Processing. To investigate the effect of different 

processing on material properties, the microstructure and mechanical properties of chitosan were 

observed by XRD and tensile testing. Figure 4.9 shows the XRD patterns of chitosan powder and 

chitosan filaments after different processing steps. Two characteristic diffraction peaks at 2θ = 10° 

and 19.9° were observed for the chitosan powder, representing the 020 and 100 planes in hydrated 

chitosan crystals.38 Compared with native chitosan, chitosan filaments prepared using an acidic 

mixture are more amorphous because there is no diffraction peak at 2θ = 10° and generated a 

broader diffraction peak at 2θ = 21°. This result implies that the lactic acid and citric acid molecules 

remained after drying in the filaments, incompletely disrupting the crystalline domains in chitosan, 

due to possible interactions between the amino groups on chitosan and the carboxyl groups in citric 

acid and lactic acid.39 After neutralizing and drying the filament fabricated using the ink with the 

acidic mixture, two characteristic diffraction peaks at 2θ = 9.9° and 19.7° were exhibited again 

from the chitosan filaments, which were similar to that of chitosan powder. These peaks reveal that 

the crystalline degree increased after neutralization. Neutralized filaments with similar 

configuration as native chitosan has stronger molecular forces than amorphous chitosan40-41, and 

stronger molecular forces can help to obtain higher mechanical properties.  

Figure 4.9: X-ray diffraction patterns. Comparison of chitosan powder, dried chitosan filaments 

printed using the acidic mixture (40 vol% acetic acid, 20 vol% lactic acid, and 3 wt % citric acid), 

and dried chitosan filaments prepared using the same acidic mixture after neutralization.
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The tensile properties of chitosan filaments were investigated with specimens fabricated by 3D 

printing with a 8 wt % chitosan ink prepared using the acidic mixture. Figure 4.10a shows 

representative stress-strain curves of chitosan filaments after different processing steps. The as-

printed chitosan filaments (3P) present a strength at break of ~ 1.6 MPa and the value of the printed 

filaments after drying (3P-D) to allow evaporation of most solvent for 48 h increase to ~ 12 MPa. 

After neutralization, the neutralized chitosan filaments in the wet state (N-W) show a strength at 

break of ~ 6 MPa and the neutralized chitosan filaments in the dry state (N-D) present a strength at 

break of ~ 95 MPa. The N-D filaments show much higher maximum strength than chitosan films 

fabricated by the reference methods such as solvent casting (Sc-D, ~ 33 MPa)42-44 and cryogenically 

3D plotted chitosan (Cp-D,  ~ 0.2 MPa),17 as shown in Figure 4.10b. Figure 4.10c shows 3P

filaments have a high strain at break (~ 170%), while the strain at break of 3P-D filaments decrease 

to ~ 5%, due to the residual solvent in 3P filament that make it more flexible. After neutralization, 

the strain at break of N-D filaments is higher than 3P-D. 3P-W filaments shows a very high 

stretchability of ~ 360%, which is also much higher than the values in the references.42, 45 Figure 

4.10d shows that Young’s modulus of N-D filaments (~ 2310 Pa) is higher than that of 3P-D (~ 

102 MPa), while both 3P and N-W are soft with a Young’s modulus of ~ 2 MPa. Therefore, N-D

filaments have higher tensile properties compared to 3P-D filaments, due to a stable hydrogel and

crystallite formation after neutralization, as observed with the XRD results shown in Figure 4.9. 

The comparison of the tensile properties of chitosan fabricated using our approach and other 

techniques including solvent casting,42-44 cryogenically 3D plotting,17 and electrospinning45-46

reveals that 3D-printed chitosan filaments produced in this work exhibit improved tensile 

properties, due to optimized formulations of chitosan inks and the fabrication method.
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4.5 Conclusion 

In this work, we investigated the 3D printing process of chitosan inks that were directly printed in 

air at room temperature. Ink characteristics including rheological properties (e.g. shear-thinning 

behavior) and solvent evaporation as well as operating conditions (e.g. applied pressure, robot 

velocity) were examined for successful fabrication. 3D chitosan scaffolds and complex shapes such 

Figure 4.10: (a) Typical stress-strain curves for chitosan filaments after different processing steps 

(3P: as-printed chitosan, 3P-D: printed chitosan 72 h after drying, N-W: neutralized chitosan in 

the wet state, N-D: neutralized chitosan in the dry state). (b) Tensile strength at break, (c) strain at 

break, and (d) Young’s modulus of chitosan filaments, compared with the chitosan fabricated by 

other methods including solvent-cast chitosan in wet state (Sc-W) and in dry state (Sc-D), 

electrospun chitosan in dry state (Es-D), and cryogenically 3D plotted chitosan (Cp-D). A 8 wt % 

chitosan ink prepared using the acidic mixture was used to fabricate the chitosan filaments.
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as starfish and leaf with high shape fidelity were fabricated using a natural polymer directly in air 

and at room temperature for the first time. Chitosan hydrogel microstructures with wrinkled 

surfaces were obtained through a neutralization step. Excellent mechanical properties of physical 

chitosan hydrogel (e.g., high maximum strength at break ~ 97 MPa of a neutralized filament in dry 

state and high strain at break ~ 360% of a neutralized filament in wet state) were obtained. 

Additional experiments would be required to fully investigate the relationship between residence 

time of the various inks in the micronozzles, their relaxation characteristics and the shape fidelity 

of the printed structures. The novel approach presented here provides new opportunities to pattern 

other soft naturally-derived polymer and nanocomposite inks with complex structures, using a 

clean fabrication process (i.e., without using toxic chemicals), with high resolution (~ 30 µm), high 

shape fidelity, easy operational mode (i.e., direct printing at room temperature), and high strength 

for bioengineering, industrial and biomedical applications.
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4.7 Supporting information

Rheological measurements. Dynamic rheological properties of the chitosan solutions (6, 8 and 10 

wt %) were measured using a rotational rheometer (MCR-502, Anton Paar) fitted with a cone and 

plate flow geometry at frequencies ranging from 0.1 to 120 rad/s in the linear viscoelastic regime 

at room temperature, under a strain of 0.2 %. Complex viscosity is compared to shear viscosity in 

Figure S4.1. Cox-Merz rule applies well for the three solutions in the low to moderate frequency 

range. Deviations appear in the frequency range that corresponds to the operational process-related 

apparent shear rate. The dynamic data is nevertheless used to infer the effect of elasticity (G′) on 

the inks printability. It is compared to die swell in Figure S4.2, where die swell of the chitosan 
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solution extrudates (6, 8 and 10 wt %) was observed using an optical microscope (BX-61, 

Olympus).

Figure S4.1: Shear viscosity and complex viscosity of chitosan solutions (the viscosity values of 

the 6 wt % chitosan solution are reduced tenfold and the values of the 10 wt % chitosan solution 

are increased tenfold for readability). The zone to the right of the vertical dashed line represents 

the operational process-related apparent shear rates used.

Figure S4.2: (a) Elastic (G′) and viscous (G″) shear moduli of chitosan solutions (6, 8 and 10 wt 

%). The green circles represent G′ and G″ of the 8 wt % ink extruded under an applied pressure of 

530 kPa (corresponding to a process-related apparent shear rate of 55.2 s-1). The shear rate is 

calculated by capillary flow analysis.28 (b-d) Microscope images of extrudates of chitosan 

solutions (6, 8 and 10 wt %) under an applied pressure of 530 kPa, and (e-g) 8 wt % chitosan ink 

extruded under different pressures. Die swell ratio (DR) = filament diameter/nozzle diameter, 

filament size ratio (FR) = filament/nozzle diameter.
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Dynamic mechanical analysis. The storage and loss moduli of neutralized chitosan films were 

measured at room temperature by a dynamic mechanical analyzer (DMA, Q800, TA Instruments) 

using compression clamps. Samples were fabricated by 3D printing into small circular films using 

a 8 wt % chitosan ink prepared using the acidic mixture. After neutralization, films (D = 15 mm, T

= 1.5 mm) were tested at a strain of 1% and frequency sweep from 1 to 30 Hz. The results show 

that a chitosan physical hydrogel is obtained after neutralization.
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5.1 Abstract

The ability to produce complex micro- or nanostructures from naturally derived hydrogels is 

significant for biomedical applications. However, precisely controlled architectures of soft 

hydrogels are difficult to be achieved due to their limited mechanical properties. Despite intensive 

research, significant challenges persist to fabricate hydrogels with ordered structures and adequate 

mechanical and biological properties for mimicking native tissues. In this work, a 3D printing 

technique is proposed to fabricate chitosan hydrogel with highly flexible and organized microfiber 

networks. The microstructured hydrogel scaffolds are obtained through a neutralization step. The 

strain at failure of hydrogel filaments can reach up to ~ 400% and maximum strength is ~ 7.5 MPa. 

The hydrogel scaffolds feature surface textures that can guide and align cell growth. This approach 

of tailoring hydrogels opens doors to design and produce 3D tissue constructs with topographical, 

biological, and mechanical compatibility.
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5.2 Main text

Biomacromolecules, including polysaccharides and proteins, regularly form hierarchical 

architectures in the natural extracellular matrix (ECM) to regulate cellular behaviors (e.g., 

orientation, adhesion, and differentiation).[1] The precise control over the fabrication of highly 

ordered three-dimensional (3D) structures made of biomaterials is extremely desirable for tissue 

engineering and regenerative medicine.[2] Naturally derived hydrogels (e.g., chitosan, collagen, 

fibrin, gelatin) are appealing for biomedical application due to their similarities to natural tissues

with their high affinity to cells and highly hydrated nature.[3] Simple 3D constructions (e.g., gel 

beads,[4] freeze-dried scaffolds,[5] and electrospun matrices[6]) have been fabricated from naturally 

derived hydrogels, yielding disordered structures, since their fabrication methods provided weak 

control of their architectures. These structures when used for guided cell growth will result in 

randomly distributed cells. The interactions between cells and the surface topography of 

biomaterials have a significant impact on cell growth.[7] Accordingly, techniques such as 

microfluidic spinning[8] and molecular self-assembly[9] have been proposed to fabricate ordered 

structures of naturally derived hydrogels. However, those structures with micro/nano-patterned 

surfaces have limited thickness (< 100 µm), while cells usually require a real 3D microenvironment. 

In addition, the requisite mechanical properties of biomedical scaffold include stretchability, 

flexibility and tensile strength.[10] However, hydrogels exhibit weak mechanical properties[11] such 

as an alginate hydrogel with a 20% strain at failure, or a chitosan hydrogel with a ~100 kPa tensile 

strength,[12, 13] respectively. It remains challenging to produce the ideal 3D growth-directing 

structures with the adequate mechanical and biological properties in order to mimic native tissues. 

3D printing methods, consisting of the precise layer-by-layer material deposition, might be able to 

address this challenge. Naturally derived polymers pose problems when used in 3D printing 

because they are too soft to support themselves as they significantly deform or collapse under their 

own weight.[14] Prior methods generally involving in situ gelling, including reservoir-induced,[15]

photopolymerized[16] or temperature assisted[17] sol-to-gel transition allow hydrogels to retain their 

shape during the printing process. However, the conditions of in situ gelling, such as chemicals 

reacted with a pre-polymer or cross-linkers, can be cytotoxic. Herein, we report a novel and simple 

strategy to fabricate chitosan (natural-based polysaccharide) hydrogel featuring precise structural 

patterns and strong mechanical properties. The chitosan-based ink can be printed directly in air, 
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where it undergoes partial hardening via solvent evaporation. Subsequent refinement of chitosan 

scaffolds is obtained through physical gelation in a neutralization step. We demonstrated that such 

a 3D structural chitosan hydrogel can guide cell growth. 

Figure 5.1a shows the 3D printing method. Carefully tailoring the composition and rheology of the 

ink has resulted in a formulation of 8% (w/v) chitosan dissolved in a mixed solvent (acetic 

acid/lactic acid/citric acid). The acidic solution can protonate amino groups (NH2) in chitosan, 

promoting chain expansion into a semi-rigid rod conformation due to the ionic repulsion between 

the charged groups (NH3
+).[18, 19] The chitosan solution was loaded in a syringe and extruded 

through a micronozzle under a given applied pressure, hence subjected to extensive shear flow. 

The chitosan ink exhibits a pronounced shear thinning behaviour (Figure S5.1a, Supporting 

Information), which benefits the ink flow through the deposition micronozzle at room temperature.

Once the ink exits the micronozzle, the rigidity of the chitosan filament increases by solvent

evaporation (Figure S5.1b, Supporting Information) and thus offers the sufficient structural support 

for the layer-by-layer of patterning the scaffold.[20] Dilute inks normally go through significant 

shrinkage upon drying and result in highly flattened filaments.[21] In our case, some residual solvent 

(i.e., ~45 wt.% after printing 1h, Figure S5.1b, Supporting Information) can reduce drying-induced 

volume shrinkage to maintain the desired lattice morphology. The chitosan filament was deposited 

on a three-axis, computer-controlled positioning platform in a layer-by-layer manner to generate 

the self-supporting 3D scaffold (Figure 5.1bi). The as-printed scaffold (10-layer) can be easily 

manipulated and deformed using a tweezer without breakage (Figure 5.1bii). Chitosan thick films 

were also printed for comparison purposes, using the same process of 10-layer stacking but without 

leaving gaps between filaments. After drying under vacuum for 72h, the chitosan scaffolds (Figure 

5.1c) and films were immersed in a sodium hydroxide (NaOH) solution for 2h to neutralize the 

residual acids. The neutralized scaffolds were subsequently rinsed in water. Upon a sudden change 

in pH, ionized NH3
+ groups are deprotonated into NH2 groups, which leads to the disappearance of 

ionic repulsion and favours physical crosslinking (i.e., hydrophobic interactions and hydrogen 

bonds).[19, 22, 23] This soluble-insoluble transition allows the physical gelation of the chitosan 

hydrogel in the scaffold.[22, 24]
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Figure 5.1: a) Schematic representation of 3D printing of a chitosan ink prepared using an acidic 

mixture and partially hardened via solvent evaporation. b, i) Optical image of the printing of a 

30-layer 3D chitosan scaffold through a 100 µm micronozzle, and ii) optical image of a 10-layer 

chitosan scaffold fabricated with a 100 µm micronozzle and folded using a tweezer. c) Schematic 

illustration of the neutralization step for yielding physical gelation with hydrophobic interaction 

and hydrogen bonds to form a chitosan hydrogel scaffold.

To demonstrate the versatility of our 3D printing method, the ink was patterned into different 

scaffold architectures using a 100 µm micronozzle. After drying under vacuum, the diameter of 

chitosan filament in those scaffolds shrank to ~70% of its original value, indicating that almost 30% 

of the filament volume in the as-printed scaffolds was from solvent. These 30-layer (L) 

representative structures had a thickness (t) of ~2 mm with a total area of ~10 mm2. Figure 5.2a-c 

show a dried chitosan scaffold featured with ~70 µm diameter (D) of orthogonally aligned 

filaments and ~220 µm pore size (Ps). The cross-section of the scaffold demonstrates the high 

fidelity of the printing process (Figure 5.2b), with homogeneous pores in the in-plane directions 
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and the circularity of the filaments (Figure 5.2c). A minimum pore size of ~ 150 µm in CS scaffold 

was obtained. Figure 2d-f show a dried scaffold containing inclined filaments at a minimum angle 

(αmin) of 45°and 300 µm center-to-center spacing (S) between adjacent filaments. This scaffold 

features layers and diamond-shaped pores. Additional images in Figure S5.2 (Supporting 

Information) of chitosan scaffolds fabricated with a 30 µm micronozzle show printing at higher 

resolution. Movie S5.1 (Supporting Information) display the printing of 3D scaffolds with square 

patterns. Structural features of the hydrated scaffold after neutralization (Ps = 200 μm × 200 μm, 

D = 100 μm, L = 10) were characterized using confocal laser scanning microscopy (CLSM). 3D 

reconstruction of the morphology using confocal imaging illustrates the scaffold rough surface 

(Figure 5.2g). Figure 2h shows a close up view of the wrinkles (microscale peaks and valleys) 

inherently present on the surface of the scaffold and oriented along the longitudinal direction of the 

filament. The wrinkling phenomenon could be attributed to the volume change[25, 26] induced by 

the neutralization. During the neutralization step, the scaffold filaments initially swell due to water 

absorption, followed by shrinkage due to intermolecular hydrogen-bonds that modify chain 

conformation.[22] As a comparison, the thick hydrated film (t = 1 mm, L = 10) after neutralization 

presented a relatively smooth surface (Figure 5.2i). This can be explained by the fact that surface 

wrinkling is often observed on thin structures,[26, 27] such as wrinkles on thin chitosan films 

(thickness of ~380 nm) after neutralization.[28]
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Figure 5.2: (a-f) Optical and SEM images of chitosan dried scaffolds with various architectures 

fabricated through a 100 µm micronozzle: (a-c) Square pattern (Ps = 220 μm × 220 μm, D = 70 

μm, L = 30) and (d-f) diamond pattern (S = 300 μm, D = 70 μm, αmin = 45°, L = 30) with top, 

inclined, and side views. g) 3D reconstruction of a neutralized scaffold (Ps = 200 μm × 200 μm, 

D = 100 μm, L = 10) in water imaged using laser scanning confocal microscopy. h) Surface 

rendering of the hydrated filament in a neutralized scaffold, showing a wrinkled surface using 

confocal fluorescence imaging after staining with Rhodamine B. i) Surface rendering of the 

hydrated chitosan film after neutralization (t = 1 mm, L = 10), presenting a smooth surface using 

confocal imaging.

Figure 5.3a shows typical stress-strain curves of as-printed chitosan filaments and neutralized 

filaments (in wet state). The as-printed filaments show a high strain at failure of ~180% mainly 

because of the residual acid solution that could maintain the elasticity under deformation.[29] The 

neutralized filaments present an even higher strain at failure (~400 %) and ultimate strength (~7.5 

MPa) than that of the as-printed filament (~3 MPa). The tensile properties of chitosan filaments 

after neutralization are improved as compared to as-printed due to the formation of a complex inter-
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and intra-molecular hydrogen-bond network.[19, 22, 23] To demonstrate the materials robust and 

flexible behavior, an as-printed chitosan scaffold (Ps = 220 μm × 220 μm, D = 90 μm, L = 10) was 

stretched using tweezers to almost two times its original width, held for one minute and released, 

upon which a rapid full recovery was observed (Figure 3b). After neutralization, the neutralized 

chitosan scaffold (in wet state, Ps = 200 μm × 200 μm, D = 130 μm, L = 10) is also flexible and 

stretchable but it requires significantly higher forces to be stretched (Figure 5.3a). The 

Supplementary Movie S6.2 illustrates the stretchable behaviour of both scaffolds. Our ink design 

and fabrication method lead to superior stretchability, strength and flexibility of the obtained 

hydrogel as compared to reported behavior of chitosan-based constructions fabricated using more 

traditional techniques.[30]

Figure 5.3: a) Typical stress-strain curve for as-printed chitosan (surface area = 0.15 mm2) and 

neutralized chitosan filaments (surface area = 0.22 mm2) in wet state. b) An as-printed chitosan 

scaffold (Ps = 220 μm × 220 μm, D = 90 μm, L = 10) and a neutralized chitosan scaffold (Ps = 

200 μm × 200 μm, D = 130 μm, L = 10) are uniaxially stretched to almost two times its initial 

width and experiences full recovery after stretching to return to its original shape.



67

As a first assessment of biocompatibility, L929 fibroblasts were cultivated in extracts of neutralized 

chitosan films (t = 1 mm, L = 10) and scaffolds (Ps = 200 μm × 200 μm, D = 100 μm, t = 1 mm, L 

= 10) for indirect cytotoxicity tests. Excellent cell survival (around 100%, Figure S5.3, Supporting 

Information) was observed in hydrogel scaffold and film extracts. Furthermore, hydrated chitosan 

films and scaffolds after neutralization were evaluated for their ability to support cell adhesion, 

spreading and proliferation over one week through the culture of fibroblasts. Figure 5.4a shows the 

Live-Dead staining results after 7 days of cell culture. The image shows that live cells (in green) 

fully cover the chitosan scaffolds, with only very few or no dead cells (in red). Scanning electron 

microscopy (SEM) imaging of fibroblasts adhered on the scaffolds shows that they generally 

display flattened elongated morphology (Figure 5.4b). Alamar Blue measurements after 1, 3 and 7 

days demonstrated excellent cell growth on both 3D scaffolds and films, as shown by fluorescence 

values increasing 25- and 36-fold from day 1 to 7, respectively (Figure 5.4c). Figure 5.4d and e 

illustrate that L929 fibroblasts cultivated on the scaffold mostly orient along the printed direction 

of chitosan filaments. By contrast, cells plated on chitosan films show a random distribution in 

response to the relatively smooth surface of the films (Figure 5.4g and h). The alignment of the 

cultured cells was quantified from SEM images by defining the alignment angle θ between the 

fibroblasts and the direction of the patterned filaments in scaffolds, or an reference line in films 

(Figure 5.4f). Approximatively 400 cells were analysed to plot the curves of Figure 5.4i. More than 

90% of the cells were oriented almost parallel to each of the orthogonal directions (θ = 0 ± 30°) in 

the scaffolds, whereas the alignment angle distribution on the chitosan films was wide, 

demonstrating mostly random cellular alignment. These images and angle distributions indicate 

that the wrinkles on the surface and/or the architecture of the scaffold itself act as topographical 

cues that can induce fibroblasts alignment.
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Figure 5.4: a) Fluorescence images of L929 fibroblasts plated on neutralized chitosan scaffolds 

(Ps = 200 μm × 200 μm, D = 100 μm, L = 10) after 7 days. b) SEM image of L929 fibroblasts 

adhered on neutralized chitosan scaffolds after 7 days. c) Cell viability on surface of scaffolds 

and films (t = 1 mm, L = 10) by Alamar Blue assay at 1, 3 and 7 days. d) and e) SEM images of 

L929 fibroblasts plated on chitosan scaffolds under a higher magnification view of figure b) in 

the red frame areas. f) Schematic diagram illustrating the procedure used to characterize the

alignment angle θ between the orientation of fibroblasts and the main direction of filaments in 

scaffolds or horizontal line in films. g and h) Fluorescence and SEM images of L929 fibroblasts 

plated on chitosan films after 7 days. i) Quantification of the orientation of fibroblasts on 

hydrated chitosan scaffolds and films.

Our current work presents topographically, mechanically and biologically tailored 3D scaffolds 

from a chitosan hydrogel via a novel 3D printing strategy. The high flexibility of the printed 

materials with precise porous architectures opens doors to impart topographical complexity with 

high resolution into soft natural materials. To the best of our knowledge, this is the first report of 

programmable periodical patterns with wrinkled surface in naturally derived hydrogel used to guide

100 µm

10 µm

200 µm

10 µm

20 µm200 µm

hg

a

e

b

d

i

f

c

θ

90˚

-90˚

0˚

Direction of the 

filaments in scaffold or 

reference line in film



69

and orient cell growth. Further study of the mechanisms of the wrinkle formation and its impact on 

cells growth is underway, along with monitoring mechanical properties of chitosan scaffolds as 

functions of time during biodegradation. Looking forward, this approach may be leveraged to 

generate complex topologies for different soft materials, with tunable mechanical and biological 

properties for tissue or organ repair.

5.3 Experimental Section 

Ink Preparation: The chitosan inks were prepared by dissolving 8% (w/v) chitosan (90% 

deacetylated, weight average molecular weight = 207 kDa, from Biolog in Germany) in solutions 

(acidic mixture: 40 vol% acetic acid, 10 vol% lactic acid and 3 wt.% citric acid). The acids were all

purchased from Sigma-Aldrich and used as received. After resting for 12 h, the solutions were 

mechanically stirred for 2 h (150 rpm) and centrifuged at 3000 rpm for 1 h to remove air bubbles. 

3D Printing of Chitosan Hydrogel Scaffolds and Films: 3D printing was performed using a 

deposition system consisting of a computer controlled robot (I&J2200-4, I&J Fisnar) with a 3-axis 

positioning stage and a dispensing apparatus (HP-7X, Nordson EFD). The inks were loaded into a 

syringe (3 mL, Nordson EFD) mounted in the dispensing adaptor and extruded through a nozzle of 

100 µm (5132-0.25-B, Nordson EFD) under applied pressures of ~2 MPa with a velocity of 0.5 

mm s-1. Chitosan thick films (~1 mm) were fabricated from orthogonally aligned filaments without 

pore space. After printing, the scaffolds and films were dried under vacuum at 50 °C for 24 h, 

neutralized in a 1M NaOH solution for 2 h and rinsed in distilled water to remove residual acids.

Morphological characterization: Chitosan scaffolds were observed with an optical microscope 

(BX-61, Olympus) and a SEM (JSM-840A, JEOL). For the 3D surface analysis, neutralized 

chitosan films and scaffolds were stained using Rhodamine B for 30 min, and then imaged with a 

CLSM Nikon C2. Rhodamine B stained samples were observed under a 561 nm laser (Em 561LP). 

Surface rendering was applied on a 1 µm to 15 µm spacing z-stacks by using Imaris 8.2 analysis 

software (BitPlane, Switzerland).

Tensile properties of Chitosan Filaments: Chitosan filaments were produced by 3D printing. They 

were treated with different processes (neutralization and subsequent washing, or non-

neutralization). Filaments were tested using an electromechanical machine (Insight MTS 50KN) 
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with a 100 N load cell. The tests were repeated seven times using the standard of ASTM D3822 / 

D3822M.

Cell Culture and Imaging: L929 fibroblasts (15000 per circular sample, placed in 48-well culture 

plates) were seeded on scaffolds and films. After 4h of adhesion, samples were rinsed with PBS 

and cells were left to grow in 500 µl of CM for an additional 20h, 3 days and 7 days. Cellular 

activity was evaluated with Alamar Blue, after transferring the samples to a new well plate to avoid 

signal from cells that had possibly adhered to the bottom of the wells during culture. The same 

samples were used for Live/Dead assay (2 µM calcein and 5.5 µM ethidium homodimer diluted in 

serum free DMEM F12, 45 min incubation at 37 °C). After 7 days of culture other samples were 

fixed, dehydrated and gold coated for observation by SEM (JSM-840A, JEOL).
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5.5 Supporting information

Ink characterization

Ink Rheology: A rotational rheometer (MCR-502, Anton Paar) fitted with a cone and plate flow 

geometry was used to characterize the chitosan inks (prepared using the acidic mixture). Shear 

viscosity measurements were conducted at shear rates of 0.1 to 100 s -1 at room temperature and 

under ambient pressure. Mineral oil covered the edge of the sample in the cone and plate flow 

geometry to prevent solvent evaporation and was shown not to affect the measurements. Process-

related viscosity of the inks was also measured by capillary flow analysis[1, 2]. Chitosan solutions 

(8w/v%) housed in a syringe barrel (3mL, Nordson EFD) were extruded through a micronozzle 

(inner diameter D = 200 µm, capillary length l = 12.25 mm, Nordson EFD) under different applied 

pressures ranging from 530 kPa to 2000 kPa (HP-7X, Nordson EFD) at a velocity of 0.5 mm s-1. 

Patterned microfibers (60 mm) were dried in vacuum at 50 °C for 24 h and weighed by a high-
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precision balance (GH-202, A&D Engineering Inc.) to calculate the apparent viscosity using the 

method by Bruneaux et.al [1]
       

Determination of Solvent Evaporation Rate: The solvent evaporation of chitosan inks (mixture: 40 

vol% acetic acid solution, 10 vol% lactic acid, 3wt.% citric acid) was analyzed for process 

optimization purposes. Once chitosan filaments (50 mm) were deposited on a glass substrate for 5 

s through a micronozzle (D =250 µm, Nordson EFD) under an applied pressure of 1.3 MPa, the 

weight change was monitored with a high-precision balance (GH-202, A&D Engineering) at room 

temperature. The weight reduction of samples was recorded for 6 h, and subsequently the samples 

were weighed again after complete drying under vacuum at 55 ℃ for 72h. The solvent percentage 

was calculated by the weight change between the as-printed filaments and dried filaments.

3D Printing of Chitosan scaffolds

The chitosan inks were loaded into a syringe (3 mL, Nordson EFD) mounted in the dispensing 

adaptor and extruded through a nozzle of 30 µm (World Precision Instruments) under applied 

pressures of 0.4-1 MPa with linear velocities of 0.5-2 mm s-1. The scaffolds were defined by 

geometry, spacing between filaments, and number of layers. They were produced with orthogonally 

or obliquely aligned filaments, with 160-360 µm homogenous or gradient spacing over 1 cm2 area 

with 12-20 layers. 

Indirect Cytotoxicity Tests 

L929 (mouse fibroblasts, ATCC, USA) were cultured in CM composed of DMEM F12 

(Dulbecco’s modified Eagle Medium/Nutrient Mixture F-12 Ham’sMedium, Gibco, Invitrogen, 

USA) containing 10% foetal bovine serum (FBS). Indirect cytotoxicity tests on gel extracts were 

performed following the ISO 10993-5: 2009 standard. Hydrogel extracts were obtained by 

immersing samples in CM containing 1% penicillin – streptomycin. Every 24 h, the supernatant 

was collected and replaced with fresh medium. Cells were grown until 80-90% of confluency and 

exposed to gel extracts for 24 h before evaluating cell viability by Alamar Blue assay (resazurin, 

Cedarlane Corp, Canada, 10% v/v in CM). After 4 h incubation at 37 °C, 5% CO2, the supernatant 

was collected and placed in a 96 well plate in triplicate. The plate was read with a 

spectrophotometer (λexcitation = 560 nm and λemission = 590 nm, BioTek Instruments Inc., Synergy 4, 

USA).  Cells in culture media without extract and with DMSO 10% were used positive and negative 

controls.
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Figure S5.1: Ink characterization. a) Viscosity of the 8% (w/v) chitosan solution prepared using 

the acidic mixture as a function of shear rate (open symbols: data obtained using a rheometer 

with a cone and plate flow geometry; solid symbols: data obtained by extrusion of the chitosan 

solution with a 200 μm nozzle in capillary flow analysis[31]). b) Solvent evaporation rate as a 

function of time for the chitosan ink using the following printing parameters of an applied 

pressure = 1.3 MPa, robot velocity = 0.5 mm/s.

Figure S5.2: Optical images of chitosan hydrogel scaffolds with different patterns produced 

through a 30 μm micronozzle. a) Rectangular pattern (Ps=160 μm×360 μm, D=45 μm, 20 L), b) 

Diamond pattern (Ls=270 μm, D=30 μm, 10 L, Ma=45°), c) Diamond pattern with gradient 

pores (Ls=270 μm, 410 μm, 530 μm, D=30 μm, 12 L, Ma=45°). d-f) Higher-magnification view 
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of scaffolds corresponding to a, b, c. (Ps=pore size, D=fiber diameter, L=layers, Ma=Minimum 

angle, Ls=side length).

Movie S5.1: 3D printing of 30-layer chitosan hydrogel scaffolds using a 100 µm nozzle and a 30 

µm nozzle at a velocity of 0.5 mm s-1.

Movie S5.2: An as-printed chitosan and a neutralized scaffold stretched by tweezers.

Figure S5.3: Results on the toxicity of extracts from neutralized chitosan films and scaffolds.  

L929 fibroblasts show around 100% cell viability in the extract medium of chitosan films and 

scaffolds after immersion 1, 2 and 3 days.
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6.1 Abstract

The design of self-healable and stretchable devices from sustainable materials is increasingly 

attractive for various applications such as soft robotics, wearable sensors, and biomedical devices. 

In this work, we report a novel multifunctional material with self-healing ability 

and electrical conductivity based on chitosan (CS) and multiwall carbon nanotubes (CNT) (30 wt 

%). The self-healing of the nanocomposites can be achieved with the assistance of water vapor. 

The self-healing process is rapid, occurring within seconds to heal the damage. Upon drying, the 

conductivity can be restored. The nanocomposite is processed by instability-assisted 3D printing 

at room temperature for producing highly tunable microstructured fibers. The microstructured 

fibers featuring sacrificial bonds and hidden lengths endow the nanocomposite with high 

stretchability (strain at break of 180%). Exposure the CS/CNT microstructured fibers to water 

vapor can restore their mechanical properties (e.g., flexibility, strength and toughness) after healing 

their broken sacrificial bonds. Granted with properties such as self-healing, stretchability and 

conductivity, CS/CNT nanocomposite strain sensor are developed to detect human elbow motion 

and local deformation. This work opens new doors for incorporating self-healing ability and high 

stretchability into sensor design, as well as highlighting the utilization of a biodegradable polymer 

that leads to a class of electronic materials for excellent performance and functionality of electronic 

devices.
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6.2 Main text

Electronic waste containing toxic or non-biodegradable materials is a serious issue due to growing 

demand for newer and more powerful electronics.1, 2 Natural polymers are excellent candidates for 

developing next-generation of sustainable electronics owing to their lightweight, low-cost, non-

toxic, biodegradable and renewable properties.3, 4 Self-healing is a very desirable feature to 

engineer electronic materials for various applications such as portable and wearable sensors,5, 6

electronics,7 and soft robotics,8 due to its ability to heal the damaged sites and restore the material 

shape and properties. Recent researches on the design of self-healing materials based on autonomic 

healing (e.g., polymeric materials with noncovalent bonds9, 10), or nonautonomic systems (e.g., 

epoxy polymers11 and supramolecular polymers12) via an external stimuli (e.g., temperature,13 or 

light14) have been successfully employed to restore mechanical properties after material damage. 

However, lack of electrical conductivity limits their applications in electronics. White et al.

provided the first example of healing electrodes using solvent-filled microcapsules from a 

conductive silver ink to heal damage, allowing excellent restoration of conductivity.15 Guo et al.

reported a self-healing nanocomposite of poly(2-hydroxyethyl methacrylate) and single-walled 

carbon nanotubes (10 wt %) through host-guest-interactions with a conductivity of 7.76 S/m.16

Water-healable conducting polyethylenedioxythiophene films,17 conductive coatings on a self-

healing film,18 or electrical wire embedded in self-healing sandwich architecture19 have also been 

reported. However, most of these materials involved complicate preparation methods or their 

fabrication methods were difficult to fabricate complex structures for electronic applications. Most 

stretchable electronic devices are produced by tailoring the material structures such as serpentine 

stripes and wavy patterns20, 21, elastomer-based stretchable textiles,22 or using intrinsic materials 

stretchability (e.g., stretchable polyelectrolyte).23 However, they require complex microfabrication 

technologies or exhibit low conductivity (e.g., up to 0.75 S/m). It remains a challenge to combine 

eco-friendly material, easy processing, fast and repeatable healing properties, high stretchability 

and complex structures into material design for electronic applications.

3D printing has drawn important attention for the fabrication of electronic devices due to its low-

cost, reliability and ability to accurately fabricate complex 3D structures. 24 Conductive polymer-

based nanocomposites (CPN) can be used as strain-sensing materials owning to their conductivity, 

lightweight, easy processability and corrosion resistance.25 High loading of carbon nanotubes 
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(CNT) (e.g., 20 wt %) is necessary to obtain a highly conductive nanocomposite.26 However, high 

CNT concentration into the polymer binder enhances the stiffness of the resulting nanocomposite 

but reduces its stretchability, with limited elastic strain range (≤ 15%).27-29 Passieux et al. reported 

instability-assisted 3D printing (IA3DP) of poly(lactic acid) (PLA) fibers with sacrificial bond to 

improve polymer stretchability.30 Incorporation of structural design into the nanocomposite 

materials (e.g., featuring sacrificial bond and hidden length to improve the stretchability) might 

address the challenge of obtaining high conductivity and stretchability in CPN. Although several 

CPN inks have been developed so far,31-34 these inks usually contain toxic organic solvents (e.g., 

dichloromethane) and/or toxic components (e.g., sodium dodecyl sulfate surfactant).

Here, we report a self-healing chitosan (CS)/carbon nanotubes (CNT) nanocomposite that is able 

to heal damage under exposure to water vapor at room temperature. The nanocomposite can be 

fabricated with microstructured fibers featuring sacrificial bond and hidden length by instability-

assisted 3D printing (IA3DP). The resultant as-printed CS/CNT structure retains its hierarchical 

architecture and exhibits excellent mechanical properties. A conductivity as high as ~ 1450 S/m 

was measured, which is higher than previously reported chitosan-based CNT nanocomposites (e.g., 

~ 500 S/m).35-37 The microstructure of completely or partially broken CS/CNT fibers (e.g., cut 

straight fibers or broken sacrificial bonds in microstructured fibers) can be restored, as well as their 

electrical and mechanical properties after exposing to water vapor. This water-vapor triggered 

nanocomposite allows processing multidimensional architectures and develop functional sensors 

that are capable of sensing humidity and strain. 

Figure 6.1 shows the overall development of the novel CS/CNT ink to produce complex 3D 

structures and microstructured fibers by a solvent-cast 3D printing (SC3DP) and instability-assisted 

3D printing (IA3DP).30, 38 The inks consisted of a blend of CS as polymer binder, CNTs, and 

dispersing solution (i.e., a mixture of acetic acid, lactic acid, citric acid and distilled water) (Figure 

6.1a). In addition to all being protonating agents of NH2 groups in chitosan, these acids also play 

specific roles. For example, lactic acid is a plasticizer39 while citric acid (CA, 5 wt %, non-volatile) 

facilitates electrostatic interaction between negatively charged citrate ions (CA
－
) with positively 

charged amino groups (NH3
+) on chitosan chains (CS+).38 An ink with well-dispersed nanoparticles 

in the polymer matrix is critical for ensuring smooth flow through fine nozzles and avoiding 

clogging during the printing process. CS/CNT nanocomposites with high CNT concentration (i.e., 

up to 40 wt % based on the total weight of CS + CNT) were prepared using a ball mixing method.33
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The conductivity of CS/CNT fibers with different CNT contents (i.e., 5, 10, 20, 30 and 40 wt %) 

inks is shown in Figure 6.1b. The conductivity of the fibers increased significantly with CNT 

concentration up to 30 wt %, and then increased slightly from ~1240 S/m (30 wt % CNT) to ~1450 

S/m (40 wt % CNT). This high conductive performance was attributed to percolation pathways that 

were formed from CNTs interconnected in the matrix of CS but increasing the filler concentration 

(CNT > 30 wt %) had limited effect on the increase in conductivity of the nanocomposite since 

many percolation pathways were already formed. Figure S6.1 (Supporting Information) shows well 

dispersed CNTs in the CS/CNT nanocomposite (30 wt % CNT). CS/CNT inks (CNT ≤ 30 wt %) 

were 3D printable and allowed the generation of 3D complex structures. A 20-layer scaffold (30 

wt % CNT), starfish- and spider-shape-like (10 wt % CNT) 3D structures as shown in Figure 6.1c 

were fabricated by SC3DP in a layer-by-layer manner, with solvent evaporation to solidify the 

CS/CNT structures. Microstructred CS/CNT fibers can also be produced by instability-assisted 3D 

printing (IA3DP) in ambient air. The instability occurs by locating the robot head slightly above a 

computer-controlled platform and adjusting the speed ratios between the material flow rate and the 

platform (schematic in Figure 6.1d). A CS/CNT ink loaded in a syringe was extruded at a material 

speed Vt through a micronozzle located at a distance H above the platform which moves at a robot 

speed Vp. By simply tailoring the speed ratio Vt/Vp, different periodic patterns can be obtained (i.e., 

straight, meandering, coiling, alternating and overlapping fibers), as shown in Figure 6.1d. The 

different speed ratios corresponding to different patterns is shown in Table S6.1 (Supporting 

Information). Movie S6.1 (Supporting Information) shows the fabrication of microstructured fibers 

by IA3DP under different speed ratios. These microstructured fibers have different contour lengths 

L, wavelengths λ and diameters D. The nanocomposite with 30 wt % CNT was mainly investigated 

due to its high conductivity and facile printability. The versatility of our fabrication method and 

ink design exhibited high flexibility in producing various CS/CNT structures (e.g., 3D scaffold and 

spider-like 3D structure in Figure 1c and microstructured fibers in Figure 6.1d).
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Figure 6.1: (a) CS/CNT ink preparation: CS polymer dilute solution (solvent: acetic acid, citric 

acid and lactic acid) and CNT were mixed via a ball mixing method. (b) Electrical conductivity 

of CS/CNT nanocomposites with different CNT contents. The zone at the left of the vertical 

dashed line represents 3D printable CS/CNT inks with CNT content lower than 30 wt %. (c) A 

20-layer scaffold, spider and starfish shaped structures fabricated by the 3D printing method, 

which undergo solvent evaporation to solidify the structures. (d) Schematic of instability-assisted 

3D printing (IA3DP): a CS/CNT fiber with fiber diameter D and contour length L was fabricated 

with a depositing height H, robot speed Vp and material speed Vt. Photographs of different 

patterned CS/CNT fibers fabricated from IA3DP under the same condition of H/D = 10, from 

right to left: straight, meandering, alternating, coiling and overlapping patterns.

The healing behavior and corresponding electrical conductivity of CS/CNT nanocomposites are 

shown in Figure 6.2. A 30 wt % CS/CNT fiber was cut into two halves and then was healed under 

exposure to water vapor for only ~10 s (Figure 6.2a). Optical microscopy images of the damaged 

fiber before (with a ~50 µm gap) and after the healing demonstrate the ability of water vapor to 

enable the healing of the conductive nanocomposite. The schematic of self-healing mechanism is 

shown in Figure 6.2b. Under water vapor, the CS/CNT fiber swells due to the polymer water-
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uptake. The CS swelling enhanced the polymer chains movement and the electrostatic interactions 

between citrate ions CA
－

in the dispersing fluid and NH3
+ on CS chains, which most probably 

contributed to the healing effect and leaded to an increase of fiber softness. Figure 6.2c shows the 

current of the fiber recovered after healing five successive cuts on the fiber. The nanocomposite 

fiber was healed after exposure to water vapor for ~ 10 s. The electrical current in the fiber was 

restored to its original value upon drying to evaporate the adsorbed water in the fiber. This result 

indicates a repeatable restoration of electrical conductivity in the CS/CNT nanocomposite. 

Figure 6.2: (a) Optical microscopy images of a CS/CNT fiber at original, damaged and healed 

states to turn on or off a LED light bulb, and images at a higher magnification showing the 
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damaged and healed regions on the fiber. (b) Schematic illustration of the healing process of a 

CS/CNT fiber exposed to water vapor: water vapor increases the swelling of the CS polymer and 

thus favors the chain movement and electrostatic interactions between CA- and CS+. (c) Repeated 

healing and recovery of electrical properties for five cuts on the fiber.

Mechanical tensile tests were also performed to measure the tensile properties of the CS/CNT 

straight and coiled fibers (30 wt % CNT, fiber diameter D = 250 µm) with sacrificial bonds. Figure 

6.3a shows a typical stress-strain curves of straight and coiling patterned fibers with three loops. 

Sacrificial bonds (i.e., α, β, γ) on the coiling fibers lead to the saw-tooth shaped curve. The process 

of stretching bond α is illustrated at the top of Figure 6.3a with a sequence of photographs (showing 

neighboring α and β bonds). Similar to what Passieux et al. found,30 the bond (taking bond α as an 

example) can transmit the force to the fiber at apparent strain ε = 20 % and break when reaching 

the maximum stress of 0.52 MPa at ε = 50 %. The breakage of the bond released the hidden length 

and a significant drop of the stress was observed due to the unfolding of the bond. After the 

breakage of the last bond, γ, the apparent stress σ increased and reached a local maximum value of 

0.37 MPa at ε = 180 %, due to the tensioning and breakage of the backbone. By contrast, the straight 

fiber is less stretchable (strain at break of 70 %) but is stiffer (maximum σ = 0.87 MPa). There are 

differences between our study and the report of Passieux et al.30 Our nanocomposite fibers are more 

stretchable than their thermoplastic (PLA) fibers, and the hidden length can be stretched straight 

after the bond breakage while their fibers still maintained a curved shape after breaking one bond. 

The full straightness in our nanocomposite fibers was most probably due to softness of our 

nanocomposite material, with lactic acid being used as a plasticizer. The maximum σ of the first 

bond α in our samples was higher than that of β (smallest) and γ (intermediate), while Passieux et 

al. observed a gradual decrease from the first to the last bond. This is probably due to the strength 

of the sacrificial bond, which is influenced by the repeated stretching and relaxation of the bond. 

The tensile properties of the microstructured fibers can be affected by relative material moisture 

(RM) (Figure S6.2, Supporting Information). Higher water uptake of the fibers with high RM 

caused a loss of rigidity and an increase of stretchability.
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Figure 6.3: (a) Representative tensile curves of straight and coiling pattern fibers with 

photographs on the top to show sacrificial bond breakage and hidden length extension of bond α. 

(b) SEM images of a coiling pattern CS/CNT fiber (30 wt % CNT) with three bonds. (c) Top: 

high magnification of an original sacrificial bond in c, middle: sacrificial bond in broken and

healed (bottom) states. (d) Typical tensile curves of a coiling pattern fiber for original loading 

with breaking of first bond and healing of the bond. (e) Typical tensile curves of a coiling pattern 

fiber for original loading with breaking of second bond and healing of the bond. (f) Typical 

tensile curves of a coiling pattern fiber with breaking and healing of all three bonds.
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Figure 6.3b shows the SEM image of a coiling patterned CS/CNT fiber (30 wt % CNT, D = 250 

µm) with three loops. Close-ups of one sacrificial bond of original, damaged and healed fibers in 

the magnified views are presented in Figure 6.3c. The sacrificial bond of the original fiber is clearly 

shown in Figure 6.3c (top). A broken sacrificial bond with a gap of a maximum width of 100 µm

caused by stretching of the fiber is shown in Figure 6.3c (middle). After applying water vapor, the 

gap on the site of the broken sacrificial bond was re-closed (Figure 6.3c, bottom), resulting in the 

healing of its microstructure. To demonstrate the healing of the sacrificial bonds, mechanical 

tensile tests were conducted to compare the tensile properties of original and healed fibers with 

different RM level. Figure 6.3d shows representative tensile curves of an original fiber (medium 

RM = 18 %) with the first bonds broken, and the healed fiber with the bond restored. After breaking 

the second bond, the tensile properties of the second bond can also be recovered after healing the 

second bond (Figure 6.3e). Due to enhanced chain mobility in fibers at higher RM, healing of three 

consecutive bonds is achievable, as shown in typical tensile curves of these coiling patterned in 

Figure 6.3f. After healing all three bonds, the curve of the healed fiber was almost perfectly 

overlapped with that of the original fiber. The healed fiber achieved ~ 90% toughness recovery 

after healing all three bonds. Movie S6.2 (Supporting Information) shows the tensile tests and 

healing processing of original and healed coiling fibers. The comparison between healed fiber and 

original fiber demonstrates nearly perfect healing effect and the restoration of mechanical 

properties (i.e., strength, stretchability and toughness).

For further potential applications, the humidity-sensing capability of the CS/CNT fiber (10 wt % 

CNT) is examined under different relative humidity (RH) levels using a humidity chamber. Figure 

6.4a shows the relationship between RH and electrical resistance. The resistance of the CS/CNT 

fiber (black curve) increased as the RH increased from 35% to 85%. Similar resistance values under 

the same RH (within the error bars) was measured when the RH decreased to 35%, indicating the 

reversibility of the sensing process. When the CS/CNT fiber was placed in a humidified 

environment, it can gradually swell and thus the distance between CNTs widened. Once the RH 

went back to the original value, the fiber dimension and CNT distance returned to its initial states, 

resulting in a reversible sensing process.

Due to the lightweight and flexibility of microstructured CS/CNT fibers, the fibers can be 

noninvasively adapted on the surface of various materials with any shape and rigidity for a wide 

range of applications such as strain sensors, position sensors and wearable devices. A strain sensor 
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was developed by depositing a CS/CNT coiling fiber on a CS film, which can be used to detect 

human motion. A 3D hybrid structure consisted of a coiling pattern fiber (30 wt % CNT) deposited 

on a flexible CS film (10 wt % CS)38. The sensor was attached on the outside of an elbow and was 

used to detect the bending motion of an arm. Figure 6.4b shows the response of the sensor to the 

dynamic test of bending an arm. The current signals exhibited repeatable response to the cycling 

activity of fully stretched arm (relaxed state) and fully bended arm (bended state). Since CS/CNT 

fibers adhered to the CS film, all sacrificial bonds in the sensor were disconnected once the bending 

force was applied (Figure 6.4c). Therefore, there was an increase of the electronic pathways (black 

curve in Figure 6.4c) in the sensor under tension and thus the current of the sensor decreased. The 

strain sensor was successful to detect the elbow movement by using a flexible supportive substrate 

(CS film). This strain sensor can recover the bended sensor structure to the original shape once the 

arm was in relaxed state, instead of using self-healing property of the nanocomposite. After the 

detection of large-scale motion, a spider-web-like sensor deposited on a polydimethylsiloxane 

(PDMS) film was investigated for detecting local deformation. Self-healing property of the 

nanocomposite was used for recovering the sensor structure and electrical signals. Figure 4d shows 

a spider-web-like sensor which consisted of coiling CS/CNT fiber in spiral thread onto straight CS 

fibers (10 wt %, dyed by Rhodamin B) in radical thread. The CS straight fibers separated the 

CS/CNT fiber into pieces with a same angle of θ (45º). Through monitoring the current of the 

whole CS/CNT fiber (schematic in Figure S6.3a, Supporting Information), a constant current 

decrease (0.002 mA) of the whole CS/CNT fiber was observed for breaking each bond by a tweezer 

(Figure 6.4e). The current decrease (an increase of the fiber resistance under a voltage of 5V) was 

due to the longer length of the fiber after bond breakage. The electronic pathway in the loop with 

a breakage of bond was longer than the pathway in the original loop (black curve to show the 

electronic pathway in the inset image of Figure 6.4e). By checking the current of each fiber piece 

(schematic in Figure S6.3b, Supporting Information), it is possible to know the specific position 

where the bond was broken. Figure 6.4f shows the current of one fiber piece where one sacrificial 

bond is broken in the sensor. A current decrease was measured due to one bond breakage and the 

current of the fiber piece can return to its initial value after healing the bond. The current change 

of fiber piece showed the location where one bond was broken (red curve in the inset image of 

Figure 6.4f). No current change was observed in the fiber piece where there was no bond breakage. 

This spider-web-like sensor was capable of sensing the structure change of the CS/CNT web and 
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showing the deformation location through observing the current signals change, which 

demonstrated accurate sensing performance. This sensor with a large surface area can be largely 

expanded at a low strain level. The combination of complex geometries and excellent sensing 

ability offers a proof-of-concept approach for various applications such as position sensors, 

wearable devices and soft robotics. 

Figure 6.4: (a) Relationship between RH and electrical resistance for a CS/CNT fiber (10 wt % 

CNT) as a humidity sensor. (b) Current change for a strain sensor attached to the outside of an 

elbow to monitor the bending motion of an arm with fully stretched arm (relaxed state) and fully 

bended arm (bended state). (c) Schematic showing the strain sensor attached on an elbow under 

relaxed and bended states, and the shape change of the coiling fiber on a CS film under the force 

of bending the arm. The black curves show the different electronic pathways between original 

fiber and the fiber under tension. (d) A spider-web-like sensor formed by a coiling pattern 

CS/CNT fiber (30 wt % CNT) in spiral thread that was deposited on a CS network (dyed in pink) 

with straight fibers in radical thread. The CS fibers divided the CS/CNT fiber into pieces. This 

sensor was attached to a transparent PDMS film. (e) Current signals of the whole CS/CNT fiber 

web in response to breaking four bonds. The inset images show top views of an initial loop and 

the loop after breaking its sacrificial bond and the black curve shows their different electronic 

pathways. (f) Current signals of the fiber where one sacrificial bond was broken.
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In summary, we report novel CS/CNT inks to fabricate complex 3D structures featuring self-

healing, stretchable and high electrical conductivity. Various microstructured fibers and 3D 

structures were fabricated by facile 3D printing approaches at room temperature. By applying 

structural hierarchy, microstructured fiber with sacrificial bond and hidden length endow a high 

stretchability (maximum strain of 180 %) of the CS/CNT nanocomposite with a high CNT content 

(30 wt %). This room-temperature processed, fast and repeatable self-healing electronic 

nanocomposite material can restore its outstanding mechanical properties (i.e., stretchability, 

strength and toughness) and high electrical conductivity by simply applying water vapor. These 

CS/CNT nanocomposite instability-assisted 3D printed structures can be designed as 

multifunctional devices including humidity and strain sensors. The humidity sensor presents a 

reversible sensing ability and strain sensors are capable of sensing human motion and local 

deformation. The restoration of nanocomposite shape and electrical properties can be achieved 

either through structure design (e.g., using flexible supportive substrate) or the healing properties 

of nanocomposites. This work not only develops a simple strategy to design CS/CNT 

nanocomposites with self-healing properties, but also demonstrates the 3D printing of 

multidimensional structures as well as the development of strain sensor applications. We foresee 

that our strategy of ink design with carefully selected natural polymer, nano-fillers and non-toxic 

solvent with fascinating self-healing, electronic and mechanical properties enables a future class 

of multifunctional electronic devices and electroactive sensors.

6.3 Experimental section

Preparation of Nanocomposite Inks. CS solutions were prepared by dissolving CS (90% 

deacetylated, weight-average molecular weight = 207 kDa, from BioLog Heppe GmbH, Germany) 

in an acidic mixture (40 wt % acetic acid, 10 wt % lactic acid, 50 wt % distilled water). Citric acid 

5 wt % (based on the total weight of CS + CNT) was added to the inks. Multi-walled carbon 

nanotubes (CNT, Nanocyl NC7000) were mixed with the CS solution via ball mixing (SPEX 

SamplePrep 8000M Mixer/Mill). Specifically, a 2.5 wt% (based on the total weight of the solution) 

chitosan solution was placed inside a ball miller with the required content of CNT (for a given 

CNT/chitosan ratio) and ball milled for 30 minutes. After mixing, nanocomposites with CNT 

concentrations of 5, 10, 20, 30, and 40 wt% (based on the total weight of CS + CNT) were obtained. 

After ball milling, the CS/CNT inks with different CNT concentrations were partially dried at room 
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temperature with simple mixing every 15 minutes. The different CNT/chitosan inks were adjusted 

to their total CS + CNT concentration to 25-30 wt% (based on the total weight of the ink) for 3D 

printing. All chemicals were purchased from Sigma-Aldrich, Canada, and used as received. 

3D Printing of Microstructures. The CS/CNT inks were loaded into a syringe (3 mL, Nordson 

EFD) placed into the printhead which was mounted on a three-axis positioning stage and connected 

to a dispensing robot (Fisnar I&J2200-4). A 20-layer scaffold was fabricated using a CS/CNT ink 

with 30 wt% CNT and under an applied pressure of 2.2 MPa and a robot velocity of 5 mm s-1, 

while the shape-like spider and starfish were produced using a CS/CNT ink with 10 wt% CNT 

under an applied pressure of 1.9 MPa and a robot velocity of 2 mm s-1. The inks were extruded 

through a micronozzle (Nordson EFD) under an applied pressure that was controlled by a 

dispensing apparatus (HP-7X, Nordson EFD). The CS/CNT structures were fabricated by 

depositing CS/CNT filaments in a layer–by-layer manner, which was followed by the filament 

solidification through solvent evaporation. The files for digital 3D model of those microstructures 

were acquired by Thingiverse (http://www.thingiverse.com/). A software (Simplify3D) was used 

to generate codes from those files for 3D printing. CS/CNT fibers featuring sacrificial bonds were 

fabricated by instability-assisted 3D printing (IA3DP). A CS/CNT ink (30 wt % of CNT) was 

extruded at a speed Vt through a 410 µm nozzle (Nordson EFD). CS/CNT fibers with different 

patterns were fabricated by changing the applied pressure to control the speed ratio (Vt/Vp) (Table 

S6.1, Supporting Information) at a robot velocity of 2 mm s-1 under a distance ratio (H/D) of 10. 

The morphology of those microstructures was observed by an optical microscope (BX-61, 

Olympus).

Conductivity Measurements. The electrical conductivity tests were performed on fibers of 

CS/CNT nanocomposites. CS/CNT inks with different CNT concentrations (5, 10, 20, 30 and 40 

wt %) were extruded through a 410 µm nozzle to prepare the samples. The resistance of the fiber 

samples was measured by a Keithley 6517A electrometer connected to a Keithley 8009 test fixture 

(Keithley Instruments, USA). The diameters of the fibers were observed by an optical microscope 

(BX-61, Olympus) and the lengths of the fibers were measured by a digital caliper (Lyman 

electronic digital caliper). The volume conductivity was calculated from the resistance values 

considering the length and cross-section area of the fiber samples.



89

Self-Healing Behavior. CS/CNT fibers were cut with a standard razor blade. Water vapor 

(deionized water) was sprayed for 10 s onto the samples using a humidifier to heal the samples. 

The healed fibers were dried by a hair dryer until the current back to the initial values. Electrical 

measurements were performed on original and healed fibers using a Keithley 6517A electrometer 

connected to data collecting software. 

Mechanical Testing. Mechanical tests were performed on straight and coiling patterned fibers 

using an electromechanical machine (Insight MTS 50kN) with a 5 N load cell. The coiling pattern 

fibers with different relative moistures (14, 18 and 21 %) were also tested. The fiber moisture was 

determined through thermogravimetric analysis (TGA, TA Instruments Q500, USA) by performing 

an isothermal test at a temperature of 100 °C maintained for 30 min, using a heating rate of 50 

°C/min to reach the set temperature and under a nitrogen atmosphere. The tensile properties of 

original and healed fibers with RM of 18 and 21 % were also determined. Water vapor (deionized 

water) was sprayed for 10 ~ 60 s (depending on different RM of samples) onto the samples using 

a humidifier to heal the fibers for restoring tensile properties. Tests were repeated seven times using 

the standard of ASTM D3822 / D3822M for each set of parameters. SEM images were performed 

with a JEOL JSM-7600TFE Field Emission Scanning Electron Microscope.

Fabrication and Characterization of the Sensors. To record the resistance of CS/CNT fibers at 

different RH, a conductive CS/CNT fiber (10 wt %) was incubated at different RH levels in a Cole-

Parmer humidity-controlled chamber (03323-14). Electrical measurements were performed to 

measure the resistance change using a Keithley 6517A electrometer connected to a data collecting 

software. A flexible CS film (8 wt % CS) was fabricated by SC3DP at a robot velocity of 3 mm s-

1 and a pressure of 1.1 MPa, and a coiling pattern fiber (30 wt %, RM of 18 %) fabricated by IA3DP 

at a robot velocity of 2 mm s-1 was deposited on the CS film. This structure was used as a strain 

sensor and the sensing ability was observed by bending an arm. A spider-web-like sensor was used 

to observe local motion through bond breaking and healing. Pink CS (10 wt %, dyed by Rhodamine 

B) straight fibers were fabricated by 3DP on a PDMS film. A coiling pattern fiber (30 wt % CNT) 

generated in a spiral path was deposited by IA3DP onto the pink CS network. The bond was broken 

by a tweezer and the bonds were healed under water vapor (~10 s) and were dried by a hair dryer 

for restoring electrical conductivity. The electrical conductivity tests were performed on the strain 

and web sensors under a voltage of 5 V by using Keithley 6517A electrometer.
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6.5 Supporting information

Figure S6.1: (a) SEM images of CS/CNT nanocomposite (30 wt % CNT) morphology in the 

cross-section of a CS/CNT fiber. (b), (c) and (d) show CNT homogeneous distribution in the 

nanocomposite at higher magnification SEM images of the nanocomposite morphology at 

different positions (i, ii, and iii) in (a).
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Table S6.1: Different patterned CS/CNT fibers were generated by IA3DP (instability assisted 3D 

printing) through changing speed ratio (Vt/Vp) under the same distance ratio of distance/nozzle 

diameter (H/D) = 10

Speed ratio (Vt/Vp) Fiber patterns

< 1 Break or thin straight fiber

= 1 Straight fiber

Slightly larger than 1 Meandering pattern

1.6 ~ 2.5 Alternating or coiling pattern

2.5 ~ 3.5 Coiling pattern 

> 3.5 Overlapping pattern

Movie S6.1: Instability-assisted 3D printing of microstructured CS/CNT fibers.



92

Figure S6.2: Typical tensile curves of coiling pattern fibers with different RM level of (low RM = 

14 %, medium RM = 18 %, high RM = 21 %, H/D = 10).

Figure S6.3: (a) Wiring schematic for measuring the current of one fiber piece in the spider-web-

like sensor. (b) Wiring schematic for measuring the current of the whole fiber in the sensor.
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CHAPTER 7 GENERAL DISCUSSION

7.1 3D printing of chitosan

3D printing with various light- and ink- based printing methods allows the digital design of a wide 

range of materials. Despite great progress made in recent decades, 3D printing is still mainly based 

on the fabrication of rigid architectures by using materials such as thermoplastic polymers in fused 

deposition modelling (FDM), polymeric or metallic powders in selective laser sintering (SLS), and 

photopolymerizable resins in stereolithography (SLA). Those materials are adequate for fabricating 

complex 3D structures, but they are not ideal for tailoring multifunctional materials. Although soft 

materials such as hydrogels, colloidal suspensions and natural polymers have been developed to 

fabricate different structures for potential applications, their fabrication processes always need 

external support for the structure during the printing process, such as using coagulation in reservoir 

or low-temperature plate to solidify the ink filament. Unlike rigid materials, they are too soft to 

support themselves. Currently, the level of manufacturing of soft structures is relatively simplistic 

[97]. For 3D printing used in tissue engineering (TE), the main problem is that the manufacturing 

of complex and tissue-mimicking structures with high resolution gives restricted conditions for the 

properties of the ink. As shown in our processing map, the area for the fabrication of 3D scaffold 

is narrower than that for the fabrication of 1D and 2D structures. In order to fabricate a structure 

with high shape fidelity, polymers with high concentration or high crosslinking density are used to 

improve the printability. Since cells show higher affinity in an aqueous environment, concentrated 

hydrogels are not ideal for TE. Therefore, there is a conflict between obtaining high shape fidelity 

and cell viability. 

In this work, we developed a natural polymer-based ink that can be directly printed in air at room 

temperature by 3D printing. The successful 3D printing was achieved by tailoring the solvent 

evaporation and ink rheological properties through ink composition, without the use of external 

supports such as bath or low-temperature assisted steps. Fabrication parameters like applied 

pressure, nozzle diameter and robot velocity were shown to affect the printed 3D structures. 

Various 1D filaments, 2D arrays and 3D self-supporting structures with a high resolution of 30 µm 

were fabricated, demonstrating a high fidelity of the printing process. However, due to a relatively 

low solvent evaporation rate used in our fabrication, it may need a longer time to fabricate a 

relatively large object. Fast solvent evaporation rate can help shape solidification after printing in 
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a short time, but it may easily cause clogging in the nozzle during printing. After printing, a gelation 

step was used to obtain a physical CS hydrogel by neutralization of CS scaffolds in a sodium 

hydroxide solution. There were micro-wrinkles formed on the surface of the scaffolds due to a 

volume change in the gelation step. For the first time, 3D CS scaffold fabricated by 3D printing 

with a wrinkled surface that can guide cell growth and induce cell alignment were obtained. There 

is a need for more detailed work on the control of wrinkle formation (such as using different 

concentrations of NaOH solutions, etc.). We could also investigate other natural polymers such as 

collagen and alginate to see whether they have similar performance to chitosan.

7.2 3D printing of chitosan-based conductive nanocomposites

Conductive polymer-based nanocomposites (CPN) are attractive materials for fabrication of 

multifunctional electronic devices. So far, traditional methods such as solvent casting [66] and wet 

spinning [150] have been developed to fabricate CPN. However, they allow limited control on the 

manufacturing of complex and precise structures for the targeted applications. 3D printing has 

drawn important attention for the fabrication of conductive inks due to its ability to fabricate 

customized 3D structures. Currently, the conductive materials used in 3D printing are usually 

metals that can be produced by printing techniques such as selective laser melting (SLM) [151]. 

Some 3D printing techniques such as fused deposition modeling (FDM) have limitations to 

fabricate CPN since the inks can easily undergo clogging during extrusion through a micronozzle 

under high melting temperature. Therefore, there is a need to design novel nanocomposite inks for 

3D printing with a high printability and structure fidelity. 

We firstly reported CS/CNT inks with a high nanofiller content (≤ 30 wt %) that can be fabricated 

by 3D printing to obtain various 3D structures at room temperature. The preparation of CNT-based 

nanocomposites with well-dispersed nanofillers in the polymer matrix is important for 3D printing 

(avoid clogging). Mixing methods such as extrusion and solution mixing have limitations for 

mixing CNT/polymer at high CNT concentrations (> 10 wt %). In order to achieve high 

conductivity, a high content of CNTs (up to 40 wt %) was used in the nanocomposites by a ball 

mill mixing method. This method can achieve high content of nanofillers with good dispersion. 

Normally, a high loading of nanofillers results in stiffer and less stretchable nanocomposite 

materials. But the stretchability is favorable for electronic applications. Thus, we fabricated 
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microstructured CS/CNT fibers by instability-assisted 3D printing. The fibers featured sacrificial 

bonds and hidden length that allow achieving high stretchability. 

Self-healing materials have been developed for electronic applications, due to their ability to heal 

damage for restoring the material properties and prolonging the material lifetime. Most self-healing 

materials are insulating and usually involve complicated preparation steps (e.g., chemical 

modification and polymer synthesis). Harsh processing conditions (e.g., toxic solvents and high 

temperature) are also commonly used in the self-healing process. The integration of self-healing 

polymers with conductive nanofillers such as CNTs and graphene may address these limitations. 

We developed self-healing CS/CNT nanocomposites that can restore mechanical and electrical 

properties under exposure to water vapor at room temperature. Non-toxic solvents (acetic acid and 

lactic acid) were involved in this process. The self-healing of nanocomposite was attributed to 

electrostatic interactions between negative citrate ions in the healing agent (citric acid) and 

positively charged amino groups, as well as polymer swelling under the application of water vapor. 

However, this method used acidic solvents for chitosan, which may limit the extension of this 

method to other natural polymers. Furthermore, self-healing materials are normally fabricated into 

films and sometimes they have rigid morphology and definite structures [152], which limit their 

potential applications in multidimensional spaces. 3D printing was used in this work to fabricate 

self-healing CS/CNT nanocomposites into various complex structures (e.g., 3D scaffold and 

microstructured fibers) at room temperature. Water-triggered self-healing nanocomposites were 

also developed to fabricate humidity and strain sensors with hybrid structures (microstructured 

fibers attached on a film). Although the strain sensors were capable of sensing humidity change, 

human elbow motion and local deformation, more versatile smart devices accompanied with self-

healing property and complex or hybrid 3D structures should be developed for more advanced 

applications. 
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion 

In this thesis, the 3D printing technique was applied to fabricate various structures using natural 

polymer (CS) and its nanocomposite inks. The effects of ink properties (concentration, viscosity, 

nanofiller content and solvent evaporation rate) and printing parameters (nozzle diameter, applied 

pressure and robot velocity) on printability were characterized. Applications for guiding cell 

growth and sensors for detecting human motion and humidity were presented. The conclusions 

drawn from this work are presented below: 

CS solutions (4-12 wt %) in an acidic mixture of acetic acid, lactic acid and citric acid were 

investigated for their printability. These acids were selected, since they are “green” solvents and

non-toxic. CS solutions (6, 8, 10 wt %) exhibited shear-thinning behavior, which was observed 

from the viscosity measured by rotational rheometer and process-related apparent viscosity 

obtained from capillary flow analysis. The shear-thinning behavior benefited the solution flow 

from a micronozzle for 3D printing at room temperature. Once the solution was extruded from the 

micronozzle, the rigidity of CS filament increased due to the solvent evaporation. The solvent 

evaporation rate could be tailored by solvent content and composition. Acetic acid (volatile solvent) 

can evaporate during the printing process. Lactic acid and citric acid (non-volatile solvent) can 

remain in the filament to avoid drying-induced shrinkage of deposited filaments. 

The 8 and 10 wt % CS solutions were successfully employed to fabricate 3D scaffold, while the 6 

wt % CS solution can be used to fabricate 2D arrays. It was difficult to fabricate continuous 

filament to form structures using both too dilute (the concentration of CS solution ˂ 4 wt %) or too 

viscous CS solutions (the concentration of CS solution ˃ 11 wt %). The area of processing map for 

fabricating 3D scaffold was narrower than that for fabricating 1D filament and 2D arrays, showing 

more restricted conditions for the fabrication of 3D scaffold. After 3D printing, a neutralization 

step was used to form CS hydrogel. 3D hydrogel scaffold with wrinkled surface was obtained after 

neutralization. The wrinkled surface and/or the architecture of the scaffold itself worked as 

topographical cues that could guide cell growth and induce cell alignment.

CS/CNT nanocomposites were prepared to achieve conductivity and self-healing for different 

applications. The nanocomposites with different nanofiller loadings (5, 10, 20, 30, 40 wt %) were 
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prepared to examine their electrical conductivity. The conductivity of the deposited CS/CNT 

filaments presented a nonlinear increase with an increase of CNT loading. A maximum 

conductivity of about 1450 S/m was obtained using a 40 wt % CNT loading.

The self-healing of CS/CNT nanocomposites composed of CS as polymer binder, CNTs, and a 

dispersing solution (a mixture of acetic acid, lactic acid, citric acid and distilled water) was 

investigated. The nanocomposite could heal itself by exposure to water vapor. A CS/CNT fiber (30 

wt % CNT) was used to demonstrate the healing process. Optical microscopy images of the 

damaged fiber (with a ~50 µm gap) and healed fiber showed the use of water vapor to enable the 

healing of the nanocomposite. The healing was rapid, with a response time of ~10 s. Under water 

vapor, the CS/CNT fiber swelled due to higher water-uptake of the polymer in a moisture 

atmosphere. The swelling of CS improved the polymer chains movement and the electrostatic 

interactions between citrate ions in the nanocomposite and NH3
+ on CS chains, which contributed 

to the healing of the damaged fiber. 

High CNT loadings were used to achieve high conductivity, but high loading of CNTs can 

significantly affect the nanocomposite stiffness and reduce its stretchability. Microstructured 

CS/CNT fibers featuring sacrificial bond and hidden length were fabricated by instability-assisted 

3D printing, which significantly increase their stretchability (strain at break of 230% in 

microstructured fiber, 70% in straight fiber). The nanocomposite can be used as a sensor to detect 

humidity due to CS polymer swelling under a moisture environment. The feasibility of forming 

strain sensors was investigated by fabricating microstructured fiber/CS film hybrid structure to 

detect large human motion such as elbow motions. A spider-web-like sensor was used to detect 

local deformation by applying self-healing behavior of nanocomposites. 

The novel 3D-printing technique demonstrated here allows fabricating various structures using CS 

and CS/CNT nanocomposite, showing a versatile, easy-to-use and reliable printing process. We 

foresee that our strategy of ink design with carefully selected natural polymers, nano-fillers and 

non-toxic solvents with fascinating self-healing, electronic and mechanical properties will enable 

a future class of multifunctional electronic devices and electroactive sensors.

8.2 Recommendations 

Recommendations for future work are as follows:
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1) Other natural polymers such as alginate and silk fibroin may be employed as new inks for our 

3D printing method.

2) Mechanical properties of CS scaffolds should be studied as functions of time during 

biodegradation for further application of cell growth. 

3) The effect of fiber patterns, fiber hidden length, CNT loading and bending angle degree on the 

strain sensor ability should be further investigated.

4) Modeling and simulation should be carried out to compare with the experimental data of the 

resistance changes of microstructured fibers under stretching.

5) Sensors developed in this work are mainly used to detect strain change. They may be developed 

to more versatile sensors such as detecting temperature, due to their resistance difference in 

different water content.

6) Other conductive nanofillers such as graphene and silver nanoparticles should also be 

investigated to compare the conductivity and mechanical properties of CS-based 

nanocomposites.
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