
Titre:
Title: A Google-inspired error-correcting graph matching algorithm

Auteurs:
Authors: Segla Kpodjedo, Philippe Galinier et Giuliano Antoniol

Date: 2008

Type: Rapport / Report

Référence:
Citation:

Kpodjedo, S., Galinier, P. & Antoniol, G. (2008). A Google-inspired error-
correcting graph matching algorithm (Rapport technique n° EPM-RT-2008-06).

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/3166/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: Les Éditions de l’École Polytechnique

URL officiel:
Official URL: https://publications.polymtl.ca/3166/

Mention légale:
Legal notice:

Tous droits réservés / All rights reserved

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyPublie

https://core.ac.uk/display/213622188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://publications.polymtl.ca/3166/
https://publications.polymtl.ca/3166/
http://publications.polymtl.ca/

EPM–RT–2008-06

A GOOGLE-INSPIRED ERROR-CORRECTING GRAPH

MATCHING ALGORITHM

Segla Kpodjedo, Philippe Galinier, Giuliano Antoniol
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Juillet 2008

EMP-RT-2008-06

A Google-inspired
error-correcting

graph matching algorithm

Segla Kpodjedo, Philippe Galinier,
Giuliano Antoniol

Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Juilet 2008

A Google-inspired
error-correcting graph matching algorithm

Segla Kpodjedo, Philippe Galinier and Giuliano Antoniol
{segla.kpodjedo, philippe.galinier}@polymtl.ca, antoniol@ieee.org

Department of Génie Informatique
École Polytechnique de Montréal — Canada

Abstract. Graphs and graph algorithms are applied in many different areas in-
cluding civil engineering, telecommunications, bio-informatics and software en-
gineering. While exact graph matching is grounded on a consolidated theory and
has well known results, approximate graph matching is still an open research
subject.
This paper presents an error tolerant approximated graph matching algorithm
based on tabu search using the Google-like PageRank algorithm. We report pre-
liminary results obtained on 2 graph data benchmarks. The f rst one is the TC-15
database [14], a graph data base at the University of Naples, Italy. These graphs
are limited to exact matching. The second one is a novel data set of large graphs
generated by randomly mutating TC-15 graphs in order to evaluate the perfor-
mance of our algorithm. Such a mutation approach allows us to gain insight not
only about time but also about matching accuracy.

1 Introduction

Graph representations are well suited to modeling all kinds of real life objects or prob-
lems. When one represents two given objects or problems as graphs, one legitimate
question is to determine how similar (quantitatively and qualitatively) those two objects
are. Do they share common parts and if so, to what extent and at what level of detail?
Given two graphs, an intuitive way to answer these questions is to match, with respect
to some constraints, the nodes and edges of the f rst graph to the nodes and edges of
the second graph. In many areas, the generated or observed graphs are subject to all
kinds of deformations or modif cations. Exact matching, which requires a strict cor-
respondence among the two objects being matched or their subparts, often fails then
to provide exploitable results. In this paper, we focus on approximate graph matching
since real-life applications often fall into this category. Applications in different areas
such as bioinformatics [8, 15], document processing [9] and video analysis [20] among
others can be modeled as error tolerant graph matching problems.

Brief y, approximate graph matching algorithms allow matching two nodes that vio-
late constraints such as the edge-preservation constraint - exact correspondence of edges
- or any other characteristic such as node/edge labels, weights etc. Instead, a penalty is
assigned to those constraint violations, depending on the specif c problem and desired
results. In most cases, the best matching is considered to be the one that minimizes the

overall penalty cost. The problem is known to be NP-hard, and optimal algorithms suf-
fer from prohibitive computation times on medium and large graphs. In this paper, we
propose a tabu algorithm to address the approximate graph matching problem. Given
penalty costs, our algorithm will try to f nd the optimal matching between two graphs.
A similarity measure between two nodes of two different graphs can be def ned by ”how
closely” those nodes are likely to match in the optimal matching. In graph matching,
similarity measures prevent random matching by providing the probability of any given
match. Our local search procedure uses a similarity measure combining local informa-
tion on nodes, such as the number of edges (incoming and outgoing), with “global”
information on nodes provided by what we call “structural metrics” computed via the
Google-inspired PageRank algorithm [3]. PageRank [3], one of the main components
behind the f rst versions of Google, basically measures the relative importance of each
element of a hyperlinked set and assigns it a numerical weighting. In essence, the more
references (incoming arcs) an element (vertex) gets from other elements (preferably
important), the more importance it deserves. PageRank is linked to random walks on
Markov chains. Its main advantage is its outstanding eff ciency in terms of computa-
tion speed on sparse matrices, which is very convenient as real-world graphs are often
sparse.

Furthermore, the literature on error-correcting graph matching benchmarks is very
limited; to overcome this we propose a mutation algorithm to generate a mutated version
of a given graph. We def ne as a mutation path, the set of edit operations applied to the
original graph to obtain the mutated version. The computed cost of this mutation path
from a graph to its mutated offspring provides us with an expected cost which is useful
to evaluate the performances of approximate graph matching algorithms.

In this paper, we formalize the graph matching problem as an Error-Correcting
Graph Matching (ECGM) problem [4]; then we introduce a mutation mechanism to
produce approximate graph matching benchmarks and propose an enhanced tabu search
algorithm for ECGMs.

The rest of the paper is organized as follows. Section 2 introduces the background
notions of this paper. Then, the section 3 brief y reviews some of the most important
related works. The fourth section gives more insights about our algorithm. Section 5
presents the case studies and the results of our algorithm. The paper concludes with
discussion and indications of future work.

2 Background Notions

In this section, we present the def nitions for an error correcting graph matching prob-
lem as formulated in [4] and the basic principles of the PageRank algorithm.

2.1 Problem Statement

The following def nitions, mostly adapted from [4], contextualize the error correcting
graph matching in a theoretical framework.

Def nition 1. Given two f nite alphabets of symbols,
∑

V and
∑

E , we def ne a
graph as a triple (V, LV , LE) where V is the f nite set of elements, called nodes or

vertices; LV : V →
∑

V is the node labeling function; LE : V × V →
∑

E is the
edge labeling function.

To simplify problem formulation it is assumed graphs are fully connected; the spe-
cial label null is assigned to non-edges. The set of edges E is then implicitly given by
considering only edges with a label different from null. In the following, we will refer
to non-edges as edges assigned the null label and effective edges as edges assigned with
a label other than null

Def nition 2. Let g1 = (V1, LV 1, LE1) and g2 = (V2, LV 2, LE2) be two graphs.
An error-correcting graph matching (ECGM) from g1 to g2 is a bijective function
f : V̂1 → V̂2 where V̂1 ⊆ V1, V̂2 ⊆ V2. We say x ∈ V̂1 is substituted by node y ∈ V̂2 if
f(x) = y. Furthermore, any node from V1 − V̂1 is deleted from g1, and any node from
V2 − V̂2 is inserted in g2 under f. We will use ĝ1 and ĝ2 to denote the subgraphs of g1

and g2 that are induced by the sets V̂1 and V̂2, respectively.
The mapping f indirectly implies edit operations on the edges of g1 and g2. If

f(x1) = x2 and f(y1) = y2, then the edge (x1, y1) is substituted by edge (x2, y2). If
a node x1 is deleted from g1, then any edge incident to x1 is deleted, too. Obviously,
any ECGM can be understood as a set of edit operations (substitutions, deletions, and
insertions of both nodes and edges) that transform a given graph g1 into another graph
g2).

Def nition 3. The cost of an ECGM f : V̂1 → V̂2 from a graph g1 = (V1, LV 1, LE1)
to a graph g2 = (V2, LV 2, LE2) is given by

c(f) =
∑

x1∈V̂1

cns(LV 1(x1), LV 2(f(x1))) +
∑

x1∈V1−V̂1

cnd(LV 1(x1)) +

∑

x2∈V2−V̂2

cni(LV 2(x2)) +
∑

(x1,y1)∈Ê1

ces(LE1((x1, y1)), LE2((f(x1), f(y1)))) +

∑

(x1,y1)∈E1−Ê1

ced(LE1((x1, y1))) +
∑

(x2,y2)∈E2−Ê2

cei(LE2((x2, y2)))

(1)

where cns(LV 1(x1), LV 2(f(x1))) is the cost of substituting a node x1 ∈ V̂1 by the
label of f(x1) ∈ V̂2; cnd(LV 1(x1)) is the cost of deleting a node x1 ∈ V1 − V̂1 from
g1; cni(LV 2(x2)) is the cost of inserting a node x2 ∈ V2− V̂2 in g2; ces(LE1((x1, y1)),
LE2((f(x1), f(y1)))) is the cost of substituting an edge e = (x, y) ∈ Ê1 by e′ =
(f(x), f(y)) ∈ Ê2; ced(LE1((x1, y1))) is the cost of deleting an edge e ∈ E1 − Ê1

from g1 and cei(LE2((x2, y2))) is the cost of inserting an edge e ∈ E2 − Ê2 in g2.
The shorthand notations E1, Ê1, E2, Ê2 are used for V1×V1, V̂1×V̂1, V2×V2, V̂1×

V̂1, respectively. Formula 1 present our cost function which is actually the sum of the
cost of edit operations. As presented, those costs are def ned using nodes/edges labels.
For instance, Ces(l1, l2) is the cost of substituing an edge labeled l1 by an edge labeled
l2, while Ced(l1) is the cost for deletingan edge labeled l1 from the f rst graph .

For simplif cation purposes, one can use single values for specif c edit operations
such as a constant value for all node addition operations. Nevertheless, our approach
can accomodate a higher level of detail if required. The term “edge substitution” in

Fig. 1. Examples of graphs to be matched

the previous def nition is related to different operations one might want to distinguish.
Thus, we identify

– cesi Identical edge label substitution
– cess Structural error : edge substitution involving an effective edge and a non-edge
– cesl Label error : edge substitution involving two effective edges with different

labels

Let cns be the cost for substituing any node assigned a label l1 by another assigned l2,
with l1 6= l2; cnd the cost of deleting any node from g1; cni the cost of inserting any
node in g1; ced the cost of deleting any effective edge from g1; cei the cost of inserting
any effective edge in g2. Any ECGM cost function could then be represented by the
octuple (cns, cnd, cni, ced, cei, cesi, cess, cesl). The cost of an identical edge label sub-
stitution should be 0. Furthermore, if symmetry is wanted or irrelevant, one can use the
same value for deletions/insertions. From the initial octuple, one can keep the quintu-
ple (cns, cno, ceo, cess, cesl) to def ne any ECGM cost function; cno (respectively ceo)
being the cost of adding/removing any node (respectively any edge). For instance, (cns,
cno, ceo, cess, cesl) = (∞, 1, 0, ∞, ∞) corresponds to the maximum common subgraph
problem. The values of those costs could be related to the probability of occurrence of
the associated distortions. Therefore, one may want the cost of a structural error to be
inferior to that of a label error, if changing the type of relation between two nodes is
less likely than simply dropping / losing that relation.

Example: Given the cost function (cns, cno, ceo, cess, cesl) = (0, 2, 1, 12, 7) and the
two labeled graphs on Figure 1, one may be interested in f nding the optimal matching.
Notice here that we assumed a cost of modifying an edge with label modif cation (i.e.,
Cesl) substantially higher than the cost of inserting/deleting a node (i.e., Cno).

2.2 PageRank

PageRank allow us to assign a metric representative of global structure for each vertex
of a given graph. This global metric is the outcome of a Random Walk (RW) on the
graph which is a probabilistic model used to compute the probability uv(t) of being lo-
cated in a given vertex v at time t. A random walker on a graph proceeds iteratively by
moving from a vertex v1 to a vertex v2 following the arc (v1, v2) or by jumping directly

(with respect to a f xed low probability) to v2. The probability distribution on all the ver-
tices of a given graph G = (V,E) is represented by a vector u(t) = [u1(t); ...; u|V |(t)].
The vector of probabilities is updated at each step and is proven to converge to a stable
solution. Further details can be found in [19] which proposes a very eff cient algorithm
to compute u(t). The point here is the use of an eff cient algorithm providing a global
metric for each vertex of a graph. For instance, given a jump probability of 0.1, we ob-
tain u(t) = [0.014; 0.014; 0.14; 0.16; 0.057; 0.046; 0.175], for the f rst graph on Figure
1. In that graph, the nodes G, D, C have the highest values.

3 Related Works

Conte et al. [10] in their review of graph matching algorithms classify the existing
methods into three main categories: techniques based on tree search, techniques based
on continuous optimization, spectral methods. This classif cation is completed by “other
techniques” such as genetic algorithms etc.

In techniques based on tree search, the search - with backtracking - is directed by
the cost of the partial solution obtained so far and various heuristics are used to prune
paths which are estimated as unfruitful or, on the contrary, prioritize the most promis-
ing paths. The range and power of prediction of those proposed heuristics [1] are es-
sential for reasonable computation times. Some authors investigated approaches aimed
at redef ning or simplifying the graph matching problem. For example, decomposition
techniques are presented in [13], while transformation models are the focus in [11].

Some tree-search based techniques lead to the def nition of optimal algorithms [12];
however, the major drawback of this category of techniques is the often prohibitive
computation times required when the size of the graphs increases.

The literature is rich in fast and eff cient, if not optimal, algorithms designed to
resolve continuous optimization problems. This explains the popularity of this family of
techniques, even if it means, as in this case, casting an inherently discrete problem into
a continuous, non linear problem, solving it with a continuous optimization technique,
and eventually converting the - often non-optimal - obtained solution back into the
initial discrete problem. Different methods are available from “simple” probabilistic
relaxation framework [16] to the def nition of a Bayesian graph edit distance [18], or
reformulation as Weighted Graph Matching [2, 26].

Considering two isomorphic graphs, their node-to-node adjacency matrices will
have the same eigenvalues and eigenvectors. The converse may not be true and infor-
mation gained may be only structural, thus lacking all kinds of other useful information
about a graph, but this is still an interesting starting point for a graph matching prob-
lem and, among some others, Umeyama [24] pioneered the above idea. Of course, as
far as approximate matching is concerned, the obtained results will gain in accuracy as
the considered graphs are nearly isomorphic. In such cases, spectral techniques [6] ro-
bust to the distortions can be successfully applied. In the literature, spectral features are
combined with other methods like continuous optimization techniques [17], clustering
techniques [7, 6, 21] or are simply used to guide a greedy search procedure [22].

Closer to the algorithm presented in this work is [21], in which random [16]walks
provide topological features further used with clustering techniques.

Among the ”other techniques” previously mentioned, we can underline the use of
meta-heuristics such as genetic algorithms [5, 23], simulated annealing [13] and tabu
search [25].

Overall, our review of the literature supports the opinion that most algorithms and
results are application-driven; furthermore ECGM benchmarks are not publicly avail-
able. This prevents simple and clear comparisons between the different approaches and
algorithms. Finally, most often, the graphs considered are usually quite small (less than
100 nodes).

4 The Algorithm

In the following, we consider an ECGM problem instance def ned by a triple (G1, G2, C)
with G1 being the f rst graph, G2 the second graph and C the cost parameters as def ned
in Section II. The choice of the cost parameters steers the type of matching found.

4.1 Overview of the tabu search

Our algorithm is a Tabu Search (TS) algorithm guided by global information on the
nodes from the PageRank algorithm and local node features such as the number of
edges. In the following paragraph, we summarize the key ideas behind a tabu algorithm.

Given a function f (cost function) to be minimized (or maximized) over some set
S (the Search Space), a local search technique starts from some initial feasible point
(solution) in the search space and proceeds iteratively (moves) from one point in S
to another (a neighbor) until some termination criterion is met. There is no guarantee
of obtaining an optimal solution as the search may get trapped in local optima, but
some techniques are proven very helpful in avoiding local optima and f nding good
solutions. For instance, to prevent cycles in the search, TS introduces one or several
tabu lists (short term memory) used to exclude moves which would tend to make the
search process go back to a previously visited solution. Other lists for intermediate and
long-term memory may be used to intensify the search in a promising area of the search
space or diversify the search to previously unexplored areas.

Given two graphs G1 = (V1, LV 1, LE1) and G2 = (V2, LV 2, LE2), we def ne as a
match any pair (n1i, n2j) ∈ (V1 × V2). We def ne a solution S as a subset of V1 × V2 :
S ⊂ V1 × V2 and (a, b), (c, d) ∈ S, (a, b) 6= (c, d) ⇒ a 6= c and b 6= d.

Since we are interested in one-to-one matching, a legal solution excludes multiple
matches, i.e. if S contains the pair (n1i, n2j), n1i and n2j cannot be in any other match
of S. The search space is the set of all legal solutions. Given a current solution, the
only moves permitted are match insertion + and match removal - i.e. one can only
insert a match of nodes missing from any match of the current solution. Considering,
as described in Section II, that each solution S def nes V̂1, the set of matched nodes of
V1 and V̂2, the set of matched nodes of V2, the neighborhood N(S) of a solution S is
def ned by the following moves

S

ր +(n1i, n2j) ∈ ((V1 − V̂1) × (V2 − V̂2)) ց
or

ց -(n1, n2) ∈ S ր
N(S)

We use two tabu lists in our algorithm : one for a match just inserted (TABUOUT)
and one for a match just deleted (TABUIN). The TABUOUT list prohibits for a
certain period the removal of a just inserted match, while the TABUIN list prevents a
just deleted match to be reinserted before a certain number of moves.

4.2 Similarity Measure and moves

Given a solution S and a move m: S → S′, we def ne delta cost δm = f(S′) − f(S) as
the differential of cost brought by the move m.

Generally, in a local search algorithm, given a solution S, the choice of a move m
is essentially guided by its δm. However, in our problem, a choice based solely on this
local information, on the search space, may lead to poor performance, both in terms of
computation and matching accuracy.

At the beginning of the search, when the f rst matching is chosen, there is typically a
very large number of possible choices with the same best possible performance. There-
fore, erroneous choices are very likely to occur at the beginning of the search. and they
may compromise the f nal solution. Our empirical results conf rm that assumption, as
very poor results were obtained.

To make a search eff cient, our idea is to use available information for each of the
two graphs. Local features of a node, such as its degree, are natural candidates for the
implementation of this idea. In our algorithm, local information of a vertex v is a feature
vector loc(v) = (vin, vout) with vin being the number of incoming edges and vout the
number of outgoing edges. This is a f rst valuable information one can use to weight
the match of two nodes v1 ∈ V1 and v2 ∈ V2. Given a node n1 of a graph G1 and a
node n2 of a graph G2, their respective number of incoming edges ei1, ei2 and number
of outgoing edges eo1, eo2, the local similarity metric l(n1,n2) is computed as follows

l(n1,n2) = 1 −

√

(ei,1 − ei,2)2 + (eo,1 − eo,2)2

max(
√

e2
i,1 + eo,12,

√

e2
i,2 + e2

o,2)
∈ [0, 1]

We then resort to global information about a node and select a very fast algorithm
: the PageRank algorithm [19]. Note that we generate the metrics on nodes without
taking into account the edge labels. Thus, the obtained metrics are purely structural.
The nodes are sorted in a descending order of that metric. Given a node n1 of a graph
G1 and a node n2 of a graph G2, their respective ranks rank(n1) and rank(n2), the
global similarity metric g(n1,n2) is computed as follows

g(n1,n2) = 1 −

∣

∣

∣

∣

rank(n1)

|V1|
−

rank(n2)

|V2|

∣

∣

∣

∣

∈ [0, 1]

Note that the global similarity metric of a given node may change dramatically due
to the insertion or removal of a single incoming edge. The local similarity metric will be
particularly useful in those extreme situations. For each possible match m = (n1i, n2j),
with n1i ∈ V1 and n2j ∈ V2, we compute as follows a weight wij designed to be a
measure of the likelihood of this match. In order to combine the two metrics (local and
global), we weight them with coeff cients. We assume that the higher the degree of a

node, the fewer are its possible matches in the other graph; this makes the similarity
measure more trustable as high values of similarity will be observed for a restricted
number of matches. Similarly, the higher the rank of a node, the more relevant its global
similarity values; coeff cients are def ned as follows:

gcoeff(n1,n2) = 1 − 1
2 × (rank(n1)

|V1|
+ rank(n2)

|V2|
) ∈ [0, 1]

lcoeff(n1,n2) = 1
2 × (deg(n1)

degmax(V1)
+ deg(n1)

degmax(V1)) ∈ [0, 1]

degmax(V1) (resp. degmax(V2)) is the highest degree of a node found in V1 (resp. V2).
gcoeff (n1,n2) and lcoeff(n1,n2) are the respective weights of the global and local sim-
ilarity measures in the computation of the f nal similarity measure:

wij = 1 −
lcoeff (n1n2)×l(n1n2)+gcoeff (n1n2)×g(n1,n2)

2 ∈ [0, 1]

Given a move mv = operation((n1, n2)), with n1 ∈ V1 and n2 ∈ V2 and its
cost δm, we recompute the delta brought by a movement as follows. If mv is a match
insertion, we grant mv a bonus to encourage the insertion of the match (n1, n2):

δmv
= δm − (wij × MAXincentives)

Else, i.e. mv is a match removal, we grant mv a malus to discourage the removal of
(n1, n2).

δmv
= δm + (wij × MAXincentives)

MAXincentives represents the maximum of incentives given to a match. The weights
wij are def nitively computed at the initialization of the algorithm. They are used to bias
the δm of the moves.

Application to the example Given the cost function (cns, cno ceo, cess, cesl) =
(0, 2, 1, 12, 7), we want to f nd the best matching for the two graphs in Figure 1. Initially,
we have an empty solution, no matching, whose cost is 40. In this empty solution, we
have to pay for all the nodes and edges deleted (7*2 + 7*1 = 21), and At Step 0, in our
example, all moves have the same delta cost δm = cns − (cni + cnd) = −4. When we
apply the bonus of the computed similarity metrics, we obtain, with MAXincentives =
4, Table 4.2. (D,2) having the least cost is selected, and the δm are recomputed, if
required. In this way, our similarity measure guides our local search. The process is
iterated and, for that example, the best solution is S = {(D,2) (G,5) (C,1) (F,3) (B,6)}
with cost(S) = 17 as shown in Figure 2.

5 Case Studies

To the best of our knowledge, only a few works have addressed the ECGM problem
and no reference or standard database of large graphs for such problem exists. The ex-
isting literature does not report or mention benchmarks for ECGM algorithms. Most
of the past contributions are application-driven and results on presented algorithms are

1 2 3 4 5 6
A -4 -4 -4 -4 -4 -5
B -5 -5 -4 -4 -4 -4
C -5 -6 -5 -5 -5 -4
D -4 -7 -5 -5 -5 -4
E -4 -5 -5 -5 -5 -4
F -4 -4 -5 -5 -4 -4
G -4 -5 -5 -5 -6 -4

Table 1. Modif ed δm of the moves at step 0

Fig. 2. Example of approximated graph matching.

reported on their own specif c datasets. Moreover, the graphs are rarely publicly avail-
able. To overcome such a limitation we apply a twofold strategy. First, given that no
specif c dataset was found, we f rst applied our algorithm to a subsets of graph taken
from the TC-15 Graph Database [14]. Then we applied a mutation strategy outlined in
the following mutation subsection to generate a set of graph pairs with known distor-
tion. In essence, by deleting, adding or modifying graph elements we generate graph
pairs where a near optimal matching is known.

5.1 The Graph Database

The Graph Database of [14], also called TC-15 Database, is a large benchmark for ex-
act graph matching problems such as graph isomorphism, subgraph isomorphism and
maximum common subgraph. TC-15 contains three different kind of graphs: randomly
connected, bound valence and mesh. We selected the f rst two categories as most rel-
evant for our problem. In these two categories (i.e., randomly connected and bound
valence graphs) TC-15 contains several subcategories. For each available subcategory
we selected a large (about 1000 nodes) and a medium (about 100 nodes) graph. In par-
ticular we selected the categories of randomly connected graphs (iso r***) and mod-
if ed bound valence graphs (iso b**m). For each of their subcategories, we chose the
f rst graphs (.A00) of order 100 and 1000. Table 2 presents our selection. In essence,
we selected in TC-15 the subsets of large graphs likely to represent most encountered
matching problems.

TC-15 Labeled graphs
#01 iso r001 s100.A00
#02 iso r001 m1000.A00 #13 iso r001 m1000.L00
#03 iso r005 s100.A00
#04 iso r005 m1000.A00 #14 iso r005 m1000.L00
#05 iso r01 s100.A00
#06 iso r01 m1000.A00 #15 iso r01 m1000.L00
#07 iso b03m s100.A00
#08 iso b03m m1000.A00 #16 iso b03m m1000.L00
#09 iso b06m s100.A00
#10 iso b06m m1000.A00 #17 iso b06m m1000.L00
#11 iso b06m s100.A00
#12 iso b06m m1000.A00 #18 iso b06m m1000.L00

Table 2. Selected graphs from TC-15 and labeled graphs.

It is worth mentioning that all these graphs are unlabeled, while our algorithm is
able to deal with labeled graphs. We annotated, with labels, edges of TC-15 graphs
to obtain labeled graphs. Labels were drawn randomly from uniform distribution with
labels in an alphabet of 4 letters LE = {1, 2, 3, 4}. The graphs obtained are presented
in Table 2.

5.2 Mutation

To obtain a set of ECGM specif c problems with controlled distortion we applied mu-
tation to transform a given graph G1 into another graph G2.

The advantage is substantial since we keep track of the edit operations our mutation
algorithm performs; these operations correspond to a path from G1 to G2. That means,
knowing which node has been deleted, inserted, substituted from G1 to G2, we have,
de facto, for our two graphs a very good known matching which we call MM(G1, G2)
for Mutation Matching with a known Exact Mutation Matching Cost (EMMC).

In essence, since G2 is the result of a mutation algorithm we know the exact trans-
formation applied and thus we know a nearly ideal matching and the expected cost
against which results obtained by ECGM algorithms can be compared. EMMC is then
a very good upper bound for our matching problem, especially when the original graph
is lowly distorted. For highly distorted graph pairs where the original graph structure is
severely disrupted, we cannot guarantee that there does not exist a matching cost lower
than EMMC. This is not a surprise since as we introduce more and more edit opera-
tions, it is more likely that good alternatives to MM(G1, G2) can be found. Overall,
the lower the distortion and the noise introduced, the closer the EMMC value will be to
the optimal cost. A theoretical study of relation between distributions of edit operations
and relations with upper and lower bounds are beyond the scope of this paper and will
be the subject of future works.

In this work we consider simple distortions such as : node/edge deletions, node/edge
insertions and node/edge substitutions. The edit operations were assigned probabilities
of occurrence and applied based on algorithms described below.

The mutation algorithm has a two steps beginning with what we called node noise,
followed by edge noise. Note that all the edges inserted or modif ed are assigned labels
with respect to the edge label distribution in G1. Our mutation algorithm takes three

parameters, pnd (probability of node deletion), pna (probability of node addition) and
pedge (noise on edges). First it performs a shuff e of nodes with labels randomly as-
signed, then nodes are deleted, and in the subsequent steps, nodes are added before we
f nally apply noise on edges.

The node noise is applied using pnd and pna. More precisely, the node deletion
algorithm parses all the nodes of the graphs and decides, according to pnd, to delete
or not the considered node. Similarly, the node addition algorithm parses all the nodes
of the graphs and decides, according to pna, to add or not a new node. When a node
is deleted, its edges are deleted as well. After all nodes have been added, edges are
added in an attempt to preserve the graph density. Given the number of new nodes
nodesnew and the density do of the original graph, we compute the number edgesnew

of edges which should be linked to the set of new nodes edgesnew = nodesnew ×do =
insertiontrials. For insertiontrials iterations, we randomly choose two nodes of the
mutated graph and effectively insert an edge if at least one of the chosen nodes is a
new one. When an edge is inserted, we assign it a label with respect to the edge label
distribution in the original graph.

Once the node deletion and addition phases are completed, we apply the edge noise
algorithm with the parameter pedge which represents the probability of modifying an
effective edge. An edge substitution can result in a simple edge label substitution or an
edge deletion. After the effective edge substitution stops, we proceed to edge insertions.
In order to preserve the overall density of the graph, we recompute the probability to
insert a new edge as follows : pei =

deletededges

mnull
, with deletededges the number of

deleted effective edges in the previous step and mnull the number of non-edges (i.e.,
null edges) in the mutated graph. For each non-edge, an effective edge is inserted or not
according to pei. Whenever we modify/insert/delete an edge we do it by using a biased
wheel where the weight of each label is its percentage of occurences in the original
graph.

Applying the above described graph mutation strategy, we generate a mutated graph
G2 from G1 with a known set of applied transformation. The EMMC value is then
computed by applying Formula 1 (Def nition 3).

5.3 ECGM results

We apply our mutation algorithm to the selected graphs in the TC-15 dataset with dif-
ferent parameters. Considering the triple (pnd, pna, pedges) it is possible to generate
graph tailored for different kinds of graph matching problems.

1. (0, 0, 0) : graph isomorphism
2. (0, pna, 0) : subgraph isomorphism
3. (pnd, pna, 0) : maximum common subgraph
4. (pnd, pna, pedges) : ECGM

Provided that the values of the parameters are kept small, the f rst three categories of
mutation conf gurations can be used to obtain good approximations for optima values in
corresponding exact matching problems while the last category is specif c to ECGMs.

In this f rst set of experiments, we empirically selected the following weights for
our cost function (cns, cno, ceo, cess, cesl) = (0, 2, 1, 12, 7). We applied our tabu algo-
rithm to each of the pairs (G, Gmutated) with different noise parameters; we empirically
f xed the length of the tabu lists as follows : TABUIN(10) and TABUOUT (20); the
value MAXincentives is set to the highest edit cost : cesl = 12; each experiment was
replicated ten times. Results collected and summarized in Tables 3 and 4.

Tables are organized as follows. The Mutation column shows the three probability
values, as percentages, applied to mutate the graph identif ed in column one. Thus the
sequence “5 5 1” mean 5 % probability of deleting or adding a node and 1 % probability
of adding noise to one edge. For each mutated graph, ECGM algorithm was run ten
times and data was collected; columns min, max and mean cost report respectively
the minimum, maximum and average cost in the ten trials. We indicate how far the
best result of the algorithm is from the EMMC in the brackets of column min Cost,
reporting this distance in terms of percentage. To obtain evidence of the dispersion of
the matching cost, we computed the cost’s standard deviation as reported in the f fth
column Std Cost. The Matched nodes column is one of the key f gures to judge the
algorithm performance in that it represents the percentage of correctly matched nodes
with respect to the MM(G1, G2) transformation. The average time in the ten runs
required to obtain a match is shown in column “Mean Time”.

ECGM algorithms f nd optimal or near optimal solutions by minimizing some cost
functions. Column PEMMC (percentage of EMMC) reports the percentage of times in
the ten trials in which the exact value EMMC was attained. A naive approach would be
to discard all nodes from the f rst graph and add nodes and edges to an empty graph so
that the second graph is obtained; the cost of such a solution is reported in the penulti-
mate column labeled empty solution. Finally the last column contains the EMMC value.

Results reported in the tables refer to different possible conf gurations: unlabeled
versus labeled graphs. We report results for mutated unlabeled graphs in Table 3 and
mutated labeled graphs in Table 4.

We report the percentage of nodes matched to their distorted versions (column
Matched Nodes) and the number of times we reached the upper bound cost (PEMMC)
as relevant accuracy indices.

On unlabeled graphs, we have an average of about 68 % of correctly matched nodes
(see Table 3) attaining about 48 % of the time the value of EMMC. Labels on edges
help the algorithm as shown in Table 4, indeed, the authors believe that a value of
76 % of correct matching with an average PEMMC of 36 % can be considered very
good. In fact, more than two thirds of the distorted nodes are correctly retrieved. Also,
those results are just an average of ten trials and a detailed analysis of Tables 3 and 4
showed that within the ten runs, our algorithm failed to reach the upper bound for only
7 of the 24 ECGM unlabeled datasets and 3 of the 10 ECGM labeled datasets. We be-
lieve that although the average PEMMC is not very high, we can f nd good perspectives
in the high percentage of ”correctly” matched nodes. This proves we generally hit the
good search areas despite the empiric values of our cost function. Notice that differ-
ent penalty costs may provide better or worse results for this performance indice. As
shown in Table 3, some graphs like iso r01 s100.A00 mutated with parameters (5 5 1)
or iso b03m m1000.A00 mutated with (10 10 2) gave very poor results. This can be

explained by considering the graph density. We have found that given a graph with
low density, adding and deleting edges can easily result in a drastic and deep structure
change. For instance, graphs low both in density and in order can mutate in various sets
of disconnected graphs with various f oating islands. These are isolated mini-graphs
which are very hard to map back into the original structure. Computation time is gen-
erally low and acceptable for applications where the algorithm is run off-line, which is
what we are considering, .

Dataset Min Max Mean Std Matched Mean PEMMC Empty EMMC
Cost Cost Cost Cost Nodes% Time (s) solution

iso r001 s100.A00 262 (+274%) 378 332 47.50 18.2 0.06 0 682 70
iso r001 m1000.A00 4523 (-0.1%) 22743 8369.40 7190.04 74.80 11.65s 60 23795 4527
iso r005 s100.A00 189 (-5%) 189 189 0 100 0.08 100 1449 199
iso r005 m1000.A00 19414 (0%) 104142 70290 41450.30 48.40 146.29 60 104572 19414
iso r01 s100.A00 507 (0%) 507 507 0 100 0.13 100 2335 507
iso r01 m1000.A00 35098 (0%) 35098 35098 0 100 609.67 100 205728 35098
iso b03m s100.A00 71 (-8%) 155 114.6 29.59 81.2 0.05 40 701 77
iso b03m m1000.A00 2338 (+151%) 3362 2655.6 379.43 48.8 12.01 0 6978 932
iso b06m s100.A00 189 (-1%) 343 225 59.85 86.6 0.05 70 991 191
iso b06m m1000.A00 1454 (+0.4%) 2948 2296.8 521.74 87.3 8.81 0 9978 1448
iso b09m s100.A00 113 (0%) 203 131 36 98.2 0.06 80 1349 113
iso b09m m1000.A00 2104 (-0.1%) 2560 2199.6 180.24 96.6 7.95s 90 12948 2108
iso r001 s100.A00 333 (+92%) 357 345.4 8.14 8.4 0.05 0 653 173
iso r001 m1000.A00 7299 (-0.2%) 23283 13697.4 7813.56 54.6 14.43 10 24197 7315
iso r005 s100.A00 1001 (+168%) 1197 1137.8 70.43 12.4 0.1 0 1331 373
iso r005 m1000.A00 36119 (0%) 102851 62810.2 32689.9 53.6 131.86 60 103279 36119
iso r01 s100.A00 609 (0%) 2235 934.2 650.4 73.6 0.15 80 2365 609
iso r01 m1000.A00 70667 (0%) 70667 70667 0 100 649.37 100 205689 70667
iso b03m s100.A00 201 (+51%) 305 267 48.13 50.4 0.05 0 713 133
iso b03m m1000.A00 3191 (+101%) 3633 3478.6 155.123 16.9 13.51 0 6921 1591
iso b06m s100.A00 209 (-2%) 209 209 0 88.4 0.06 100 977 215
iso b06m m1000.A00 2715 (0%) 3345 3041 243.95 83.1 9.61 20 10007 2715
iso b09m s100.A00 309 (0%) 327 316.2 8.82 83.8 0.06 60 1253 309
iso b09m m1000.A00 3419 (-2%) 11489 5823 2887.47 69.2 10.37 20 13065 3475
iso * *.A00 68.10 47.92

Table 3. Detailed results of selected graphs of TC-15 (ECGM) - Upper part mutation parameters
5 5 1; lower part 10 10 2.

6 Conclusion

We have presented an algorithm inspired by Google PageRank to f nd optimal or near
optimal solutions to the class of problems of approximate, error tolerant graph matching
where it is acceptable to match two nodes that violate constraints such as the edge-
preservation constraint or any other characteristic such as node/edge labels or weights.

Inspired by the work of previous authors [3, 4, 21] we represented the approxi-
mate graph matching problem as an optimization problem modeled by cost matrices
accounting for the cost of various edit operations (e.g., node insertion and deletion).
Our algorithm relies on a tabu search; our search procedure combines local informa-
tion on nodes (e.g., the number of incoming edges) with “global” information on nodes
provided by “structural metrics” computed via the PageRank algorithm [3].

Dataset Min Max Mean Std Matched Mean PEMMC Empty EMMC
Cost Cost Cost Cost Nodes% Time (s) solution

iso r001 m1000.L00 4330 (0%) 4354 4346 7.15 97.4 9.1628 20 24127 4330
iso r005 m1000.L00 20841 (0%) 102948 53740.4 40173.3 66.2 128.29 60 103216 20841
iso b03m m1000.L00 1340 (+20%) 2068 1664 245.78 77.6 10.57 0 6972 1118
iso b06m m1000.L00 1279 (-2%) 7162 3392.4 2521.44 74.4 10.86 20 10015 1307
iso b09m m1000.L00 2541 (+29%) 3407 3094.6 331.137 92.5 8.35 0 13157 1975
iso r001 m1000.L00 7742 (-0.6%) 23353 10871 6241 82.8 12.09 80 24271 7792
iso r005 m1000.L00 36034 (0%) 101869 75528.2 32246.9 42.6 138.95 40 102188 36034
iso b03m m1000.L00 2133 (+48%) 2559 2348.8 150.85 67.2 11.55 0 7091 1443
iso b06m m1000.L00 2358 (-6%) 2496 2438.4 64.91 86.6 8.63 80 9998 2522
iso b09m m1000.L00 3822 (-4%) 11515 5701 2973.69 68.4 10.24 60 12850 3966
iso * *.A00 75.57 36

Table 4. Detailed results of labeled graphs (ECGM) - Upper part mutation parameters 5 5 1;
lower part 10 10 2

To quantify performance of our algorithm we selected a subset of medium and large
graphs from the TC-15 benchmark, which is designed for exact graph matching prob-
lems, and generated mutated graph versions with different level of distortions. These
graphs are available for downloading at the SOftware Cost-effective Change and Evo-
lution Research (SOCCER) laboratory1.

We report accuracy and performance of our algorithm on the above mentioned set
as well on the original TC-15 dataset. On an ECGM problem and labeled graphs, on
average, we attain an average about 76 % of accurate node matching for graphs of about
1000 nodes. Computation time is in the order of a couple of minutes which we believe
is acceptable for the off-line type of applications we foresee for our algorithm.

Future work will be devoted to assessing algorithm accuracy for larger graphs (e.g.,
8,000 nodes and 80,000 edged). Also we believe it is important to better investigate
more thoroughly the impact of different cost schema in the cost function as well as the
inf uence of various kinds of distortions on algorithm performance.

References

1. M. Y. A. K. C. Wong and S. C. Chan. An algorithm for graph optimal monomorphism. IEEE
Trans. Syst. Man Cybern., 20:628–638, 1990.

2. H. A. Almohamad and S. O. Duffuaa. A linear programming approach for the weighted
graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell., 15(5):522–525, 1993.

3. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Comput.
Netw. ISDN Syst., 30(1-7):107–117, 1998.

4. H. Bunke. On a relation between graph edit distance and maximum common subgraph.
Pattern Recogn. Lett., 18(9):689–694, 1997.

5. J. T. H. C. W. Liu, K. C. Fan and Y. K. Wang. Solving weighted graph matching problem
by modif ed microgenetic algorithm. In IEEE Int. Conf. Syst. Man Cybern., pages 638–643,
1995.

6. T. Caelli and S. Kosinov. An eigenspace projection clustering method for inexact graph
matching. IEEE Trans. Pattern Anal. Mach. Intell., 26(4):515–519, 2004.

1 http://web.soccerlab.polymtl.ca/

7. M. Carcassoni and E. R. Hancock. Weighted graph-matching using modal clusters. In CAIP
’01: Proceedings of the 9th International Conference on Computer Analysis of Images and
Patterns, pages 142–151, London, UK, 2001. Springer-Verlag.

8. Cheng, Saigo, and Baldi. Large-scale prediction of disulphide bridges using kernel meth-
ods, two-dimensional recursive neural networks, and weighted graph matching. In Proteins:
Structure, Function, and Bioinformatics, volume 62, pages 617 – 629, 2006.

9. D. Conte, P. Foggia, , C. Sansone, and M. Vento. Graph matching applications in pattern
recognition and image processing. In ICIP03, pages II: 21–24, 2003.

10. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern
recognition. International Journal of Pattern Recognition and Artif cial Intelligence, 18:265–
294, 2004.

11. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An eff cient algorithm for the inexact
matching of arg graphs using a contextual transformational model. In ICPR ’96: Proceedings
of the International Conference on Pattern Recognition (ICPR ’96) Volume III-Volume 7276,
pages 180–184, Washington, DC, USA, 1996. IEEE Computer Society.

12. A. C. M. Dumay, R. J. van der Geest, J. J. Gerbrands, E. Jansen, and J. H. C. Reiber. Consis-
tent inexact graph matching applied to labeling coronary segments in arteriograms. In Proc.
Int. Conf. Pattern Recognition, Conf. C (1992), pages 439–442, 1992.

13. A. A. Eshera and K. S. Fu. A similarity measure between attributed relational graphs for
image analysis. In Proc. 7th Int. Conf. Pattern Recognition, pages 75–77, 1984.

14. P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomorphism and subgraph
isomorphism benchmarking. In Proc.Third IAPR TC-15 Intl Workshop Graph-Based Repre-
sentations in Pattern Recognition, pages 176–187, 2001.

15. I. Jonassen. Eff cient discovery of conserved patterns using a pattern graph. 13(5):509–522,
1997.

16. J. Kittler and E. R. Hancock. Combining evidence in probabilistic relaxation. Int. J. of Patt.
Recogn. Artif. Intell, 3:29–51, 1989.

17. B. Luo and E. Hancock. Structural graph matching using the em algorithm and singular
value decomposition. IEEE Trans. Pattern Anal. Mach. Intell., 23(10):1120–1136, 2001.

18. R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian graph edit distance. IEEE Trans.
Pattern Anal. Mach. Intell., 22(6):628–635, 2000.

19. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford Digital Library Technologies Project, 1998.

20. M. Salotti. Topographic graph matching for shift estimation. In Proceedings of the 3rd
Conference on Graph Based Representations in computer vision (GBR 2001), pages 54–63,
2001.

21. L. Sarti. Exact and approximate graph matching using random walks. IEEE Trans. Pattern
Anal. Mach. Intell., 27(7):1100–1111, 2005.

22. A. Shokoufandeh and S. J. Dickinson. A unif ed framework for indexing and matching
hierarchical shape structures. In IWVF-4: Proceedings of the 4th International Workshop on
Visual Form, pages 67–84, London, UK, 2001. Springer-Verlag.

23. M. D. Th. Brecke. Memetic algorithms for inexact graph matching. In CEC: IEEE Congress
on Evolutionary Computation,, 2007.

24. S. Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE
Trans. Pattern Anal. Mach. Intell., 10(5):695–703, 1988.

25. M. L. Williams, R. C. Wilson, and E. R. Hancock. Deterministic search stragtegies for rela-
tional graph matching. In EMMCVPR ’97: Proceedings of the First International Workshop
on Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 261–
275, London, UK, 1997. Springer-Verlag.

26. M. M. Zavlanos and G. J. Pappas. A dynamical systems approach to weighted graph match-
ing. In 45th IEEE Conference on Decision and Control, pages 3492–3497, 2006.

	EPM-RT-2008-06_Kpodjedo

