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Abstract—In this report, we present a new analytical method to estimate the parameters of 

Delta-lognormal functions. According to the Kinematic Theory of rapid human movements, 

these parameters contain information both on the motor commands and on the timing properties 

of a neuromuscular system. The new algorithm, called XZERO, exploits relationships between 

the zero crossings of the first and the second time-derivatives of a lognormal function and its 

four basic parameters. The methodology is described and evaluated in various testing 

conditions. Furthermore, for the first time, the extraction accuracy is quantified empirically, 

taking advantage of the exponential relationships that link the disperssion of the extraction 

errors with its signal to noise ratio. A new extraction system, which uses a benchmark of three 

estimation methods, is also proposed and evaluated in the mid-term perspective of developing 

machine intelligence applications that rely on lognormal functions. 

Index Terms— Pattern recognition, Kinematic Theory, rapid movement, Delta-Lognormal 

model, lognormal function, parameter extraction, motor control, nonlinear regression, 

optimization, curve fitting.  

——————————      —————————— 

1 INTRODUCTION

IN  pattern analysis and recognition of on-line handwriting, various methods use a disconti-

nuous representation scheme to  represent  a complex pattern, like a graph, a letter, a 

word, a signature, etc., with the superimposition of handwriting strokes, considered as a 

specific class of rapid human movements [1],[2],[3],[4],[5]. In motor control, these 

strokes are considered as primitives from which, complex movements are build 



  

[6],[7],[8],[9],[10], [11],[12]. Thus, handwriting strokes have been intensively used and 

studied in many fields of research.  

For example, in the forensic sciences, a detailed study of individual stroke patterns, fo-

cusing on tiny variations, often constitutes the grounds for a decision about the authen-

ticity of a signature or a document [13],[14]. In education, various interactive teaching 

methods have been developed to reproduce letters and words from the concatenation of 

neat strokes [15], [16]. In the neurosciences, strokes are analyzed to both characterize neuro-

degenerative processes like Parkinson’s and Alzheimer’s diseases [17],[18] and, to  eva-

luate the recovery processes in the rehabilitation of patients from cerebrovascular acci-

dents [19]. In anthropomorphic robotics, the superimposition of handwriting strokes is used 

to explore the biomechanical principles employed by humans to produce movements and 

later to apply them in the control of a robot arm [20].  

Many of these examples suggest that for a realistic analysis and understanding of how the 

motor control system performs complex movements, one should study the basic properties of 

single strokes. Running such a study for a specific application, one could then use a segmen-

tation/superimposition strategy to construct an efficient machine intelligent system, which 

could globally processes complex movements to design for example an online handwriting 

recognition system [1]. The cornerstone of this whole methodology is then to understand, in 

the first place, the stroke genesis, since it reflects some fundamental properties of the neu-

romuscular system of a writer, as well as some basic features of the motor control strat-

egies that are used to produce a simple movement. In this perspective, many studies have 

been conducted to understand the emergence of a basic pattern: the stereotyped bell-

shaped velocity profile of these basic primitives [21],[22],[23],[24]. Among the various 
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computational models and theories developed to model this phenomenon, the Kinematic 

Theory [25] exploits an analytical expression,  a Delta-Lognormal function, which takes into 

account the behavior of agonist and antagonist lognormal neuromuscular systems, specified 

by four system parameters, and describes the effective motor control of a movement by three 

command parameters. So far, many applications based on this theory have been developed 

[26],[27],[28],[35]. However, in term of fully automatic pattern analysis, the quest for an effi-

cient software tool (an extraction system), which accurately estimates the seven parameters 

such that a velocity profile can be fitted with a Delta-Lognormal equation with a minimum 

reconstruction error remains an open problem. Consequently, various methods have been 

proposed to track this task, leading to three main categories of approaches: statistical, deter-

ministic and evolutionary. Statistical methods rely on parameter estimation algorithms that 

deal with lognormal random variable densities [29], [30]. Deterministic methods focus on 

specific points on the velocity curve to first estimate the parameters and then use optimization 

algorithms to converge on optimal solutions [31],[32]. Evolutionary methods, using for ex-

ample breeder genetic algorithms, have also been implemented [33], [34], [35]. 

Moreover, comparative studies have shown that the deterministic methods were more effi-

cient than the statistical [27] and the evolutionary ones [33],[34]. So far, two deterministic 

approaches have lead to successful applications dealing with the analysis-by-synthesis of 

handwriting and  signature verification [26],[27],[28],[31],[35], as well as the quantification 

of  the performances of the Delta-Lognormal model with more than 26 other kinematic mod-

els [36],[37],[38],[39]. However, some studies have shown that these deterministic algo-

rithms fail especially when the antagonist component is preponderant before the agonist 

component and when important noise is present in the signal [32],[40]. 
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In this paper, we propose a new analytical algorithm developed to compensate for these vari-

ous failures, to improve the performances of the existing extraction system, and to enlarge the 

range of Delta-Lognormal profiles that can be processed automatically. In summary, the new 

algorithm exploits analytical expressions that link the zero crossing of the first and the second 

time-derivatives of a lognormal function to its parameters. Furthermore, this study includes a 

methodology to quantify the accuracy of the extraction results under noise constraints by 

constructing a confidence interval for each extracted parameter value.  

The remaining of the paper is organized as follows: In section 2, an overview of the Kinemat-

ic Theory and its Delta-Lognormal model is presented, while the architecture of the extrac-

tion system is depicted in Section 3. The new XZERO algorithm is described in details in 

Section 4. The performance results obtained in ideal and noisy conditions are presented and 

discussed in Section 5. In Section 6, a complete extraction system is proposed and the metho-

dology used to quantify its accuracy is developed. Typical examples involving real data are 

presented in section 7 to highlight the power of the upgraded Delta-Lognormal extraction 

system.  

2 OVERVIEW OF THE DELTA-LOGNORMAL MODEL 

Among the various models used to study rapid movements, the Delta-Lognormal model has 

been found over the years to be one of the most powerful in its capability to reconstruct, with 

a minimum of errors, the velocity profile of handwritten strokes [25],[26],[41],[42]. This 

model is the kernel of the Kinematic Theory of Rapid Human Movements, initially proposed 

in the context of handwriting [25], [41] and later extended to  process other bio-signals 

[2],[40]. This Theory describes the velocity profile of an end-effector by a Delta-Lognormal 

equation: 
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( ) ( ) ( )2
1 0 1 1 2 0 2 2; , , ; , ,v t D t t D t t 2μ σ μ= Λ − Λ σ                                                                     (1) 

where, 

( ) ( )
( ) 2

022
00

1 1exp ln for
22; , ,

0 e

t t t t
t tt t

μ
σσ πμ σ

⎧ ⎧ ⎫⎡ ⎤ 0

lsewhere

− − − >⎨ ⎬⎪ ⎣ ⎦−Λ = ⎩ ⎭⎨
⎪
⎩

 (2)                                

and, 

1 2,D D : the amplitudes of the input commands. Their effects correspond to the distances cov-

ered by the individual agonist (1) and antagonist (2) components.      

0t : the time occurrence of the input commands, a time-shift parameter. 

1 2,μ μ : the logtime delays, the time delays of the neuromuscular systems expressed on a 

logarithmic time scale. Explicitly, eμ represents the median of a lognormal profile.  

1 2,σ σ : the logresponse times, the response times of the neuromuscular systems expressed on 

a logarithmic time scale. 

  According to this representation, a rapid movement, produced by an end-effector, is the 

result of a synergy made up of an agonist and an antagonist neuromuscular systems.  Each 

neuromuscular system is modeled by the convolution product of an infinite number of 

coupled subsystems and its corresponding impulse response converges toward a lognormal 

function. These impulse responses, once convolved with the input commands, represent re-

spectively the agonist and the antagonist components of the velocity profile, which can be 

described synthetically by the seven parameters ( )0 1 1 1 2 2 2, , , , , ,t D Dμ σ μ σ of the Delta-

Lognormal pattern. 
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3 OUTLINES OF THE DELTA-LOGNORMAL EXTRACTOR 

The functioning of the Delta-Lognormal extractor is schematised in Figure 1. Given a 

typical velocity profile , the algorithm first estimates the agonist lognormal parame-

ters by considering  as a single lognormal profile. Then, the antagonist lognormal 

profile is deduct by subtracting the agonist lognormal profile from the velocity. The 

second step consists in the estimation of the antagonist lognormal parameters. Then, the 

estimated values of the seven parameters serve as a starting solution for an optimizing 

algorithm. Indeed, these initial estimated values may represent only a coarse solution de-

pending on the experimental conditions under which handwriting data was collected. 

Starting from these coarse solutions, the extractor seeks for optimized values using a 

mean square nonlinear regression technique that minimizes the distance between experi-

mental data and the predicted Delta-Lognormal model [43]. 

( )v t

( )v t

 At the end of the process, one can obtain both the optimal values of the seven parameters 

and the mean square reconstruction error (MSE) between the original and the recon-

structed velocity profiles.  
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Fig 1: General architecture of the Delta-Lognormal extraction system  

 

4. THE XZERO ALGORITHM  

The previous architecture has been exploited by other algorithms in the past [31],[32] and 

it has been shown that its critical path was the initial estimation process: the better the 

starting solutions, the better the optimization results. Our new algorithm proposes an 

original solution to this estimation process; it exploits the analytical relationships that ex-

ist between three specific time-indexes of a lognormal profile ( )tΛ  (a maximum and two 

inflexion points) and its four parameters. As illustrated in Figure 2, the time occurrence 

of the maximum corresponds to the solution of  ( ) 0d t dtΛ =  and the time occurrences 

of the inflexion points correspond respectively to the solutions of   ( )2 2 0d t dtΛ = .  For 

this reason, the new algorithm has been named XZERO, referring to these zero crossings. 

.  
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Fig 2. Illustration of a lognormal function and its first and second time-derivatives to 
highlight the time-indexes of the maximum and the inflexion points.   

 

4.1. Estimation of  lognormal parameters  

The estimation of single lognormal parameters consists in linking the experimental val-

ues of these zero crossings to their corresponding analytical expressions.  

Let consider ( )2
0; , ,v t t μ σ   be a lognormal function weighted by  and shifted by : D 0t

( ) ( ) ( )

( ) 2
0

2

ln

2
2 2 0

0 0 0

,; , , ; , , 2
0 elsewere

t t
D e tv t t D t t t t

μ

σ
μ σ μ σ σ π

⎡ − − ⎤⎣ ⎦−⎧
⎪ >⎪= Λ = ⎨ −
⎪
⎪⎩

t

                                (3) 

                             

( ) ( )
( )

2

2 2
0

0

; , , ,
2

kDv t t v t k e
t t

μ σ
σ π

−
= =

−                                                   (4) 

 

where  ( )
( )

0

0

ln 1t t dkk
dt t t

μ
σ σ
− −

= → =
−
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The first lognormal derivative is given by:  

 

( ) ( )
( )

( )
( ) ( )

2

2

00

; ;
;

2

kdv t k v t kd Dv t k e k
dt dt t tt t

σ
σσ π

−⎡ ⎤
= = = −⎢ ⎥

−−⎢ ⎥⎣ ⎦
& +

           (5) 

 

where   and are respectively the first and the second time-derivative of a function 

. The non-trivial zeros of this function occur when  

v& v&&

( )v t 0kσ + = v.g.: 

( ) 20
0

ln
0 m

t t
k k t t eμ σμ

σ σ
σ

−− −
+ = → = = − → = +

 

The time occurrence of the maximum that corresponds to this zero crossing is given by:  

2

0mt t eμ σ−= +
                                     (6) 

 

Similarly, the second time-derivative of the shifted and weighted lognormal function is:  

 

( )( ) ( ) ( ) ( )
( )
( )

( )

2

2
0

2 2
22

0

; ; ;

;
3 2 1

d dv t k v t k v t k
dt dt t t

v t k
k k

t t

σ
σ

σ σ
σ

⎛ ⎞+
= = −⎜ ⎟⎜ ⎟−⎝ ⎠

k

= + + −
−

&&

                 (7) 

 

 

The zeros of this function are calculated by solving the following equation:   

 

2 23 2 1k kσ σ+ + − = 0                                                                       (8) 
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Let   
2

1,2
3

2
k σ σ− ± +

=
4  be the two solutions 

Then, the roots are given by:  

 

2
2

inf 1 0 0 1
3 4exp

2
t t t eμ σσ σμ σ α −

⎧ ⎫⎛ ⎞+ +⎪ ⎪= + − = +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭                                                      (9.a) 

2
2

inf 2 0 0 2
3 4exp

2
t t t eμ σσ σμ σ α −

⎧ ⎫⎛ ⎞− +⎪ ⎪= + − = +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭                                                        (9.b) 

with  

1

2

1 1
4 0

2
aa σ σσ α −

⎧ ⎫+ +⎪ ⎪= > → =⎨ ⎬
⎪ ⎪⎩ ⎭

1e <                                                        (10.a)                              

           
2

2

2 2
4 0

2
aa σ σσ α −

⎧ ⎫− +⎪ ⎪= < → =⎨ ⎬
⎪ ⎪⎩ ⎭

1e >
                                                        (10.b) 

and   

inf 1 inf 2mt t t< <                                                                         (11) 

In practice, these three time indexes are calculated from sampled velocity profiles  by 

considering the time occurrences of the maximum velocity to estimate  and the time 

occurrences of the maximum and the minimum of  the acceleration to estimate  and 

respectively.    

mt

inf 1t

inf 2
t

Thus, by using (6), (9.a) and (9.b) one can express 0 , ,t D μ andσ as a function of 

and .   inf 1,mt t inf 2t
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4.1.1 Estimation of σ  

The parameter  σ   is estimated by solving a non-linear equation.  Indeed, let consider 

the interval I , which covers 99.97% of the surface under a lognormal curve: 

[ ]3 3
min max, ,I e e t tμ σ μ σ− +⎡ ⎤= =⎣ ⎦                                    (12) 

 

where  and are the extreme bounds of the interval, as estimated from the log-

normal profile using empirical thresholds (v.g. the times when the velocity reaches 1% of 

its maximum). Then:  

mint maxt

 

( )3 3 3 3
max mine e e e e t tμ σ μ σ μ σ σ+ − −− = − −             (13) 

( )
max min

2sinh 3
t teμ

σ
−                                         (14) 

2 3
minmt t e e eμ σ σ− −⎡ ⎤− −⎣ ⎦                                  (15)                      

                                                     

and  finally,  σ is evaluated by solving the following nonlinear relationship:  

 

( ) ( ) ( )2 3max min
min 0

2sinh 3 m
t tF e e tσ σσ

σ
− − t− ⎡ ⎤= − − − =⎣ ⎦

                 (16) 

 

4.1.2. Estimation of the other parameters  

Using the estimated value σ̂  ofσ , the estimated value   μ̂  of  μ   can be computed by:  
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( ) ( )2 2
2 1ˆ ˆˆ ˆ ˆ ˆ

inf 2 inf 1 2 1ˆ ˆa at t e e e eμ σ μα α− −− −− = − = − σ           (17) 

                                                   2 inf 2 inf 1

2 1

ˆ ˆ ln
ˆ ˆ

t tμ σ
α α

⎛ ⎞−
= + ⎜ −⎝ ⎠

⎟                     (18) 

 

with 1α̂  et 2α̂  the estimated values of  1α  and 2α .Then one can estimate :  0t

 

        
2ˆ ˆ

0̂ mt t eμ σ−= −                              (19)  

and  D, using: 

                          ( ) ( )
( )( )202

1 ˆ ˆln
ˆ2

m
0̂ˆ 2

mt t

m
m

Dv t v e
t t

μ
σ

σ π

− − −
= =

−
              (20) 

                  
( )

222
2

2

1 ˆˆ ˆ ˆ ˆ
ˆ2 2

m ˆ ˆ ˆˆ 22
D Dv e

e
e

σμ σ μ μ
σ

μ σ σ πσ π

− − − − +

−
= =           (21) 

2ˆˆ
2

m
ˆ ˆ 2D v e

σμ
σ π

−
=                                (22) 

where   is the maximum velocity. mv

 

4.2. Estimation of the Delta-Lognormal parameters   

The estimation of the agonist lognormal parameters is performed by exploiting directly 

the above method since a Delta-Lognormal profile is given by:  

 

 ( ) ( ) ( )1 2v t v t v t= −                                 (23) 
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where and  are respectively the agonist and the antagonist components. Us-

ing (16) to (22), the agonist parameters are estimated by considering the main peak of the 

velocity profile as a single lognormal function (

( )1v t ( )2v t

( ) ( )1 inf 1 inf 2,v t v t t t t≈ < < ). 

 The antagonist parameters are then evaluated after subtracting the agonist 

component . From the total velocity profile( )1v t ( )v t .  The time indexes of the resulting 

lognormal function  are given by:    ( )2v t

 

2
2 2

2 0mt t eμ σ−= +                                        (24) 

2
2 2 1

inf 12 0
at t e eμ σ− −= +                                (25) 

2
2 2 2

inf 22 0
at t e eμ σ− −= +                                (26) 

 

The following expressions are then used to estimate  2σ  :  

2
2 2 2

1 2
2

2 2 1

inf 22 0

inf 12 0

a
a a

a

t t e e e
t t e e

μ σ

μ σ

− −
−

− −

−
= =

−
                       (27) 

Considering   inf 22 0
1 2

inf 12 0

ln t tB a a
t t

⎛ ⎞−
= − = ⎜ −⎝ ⎠

⎟ , a positive constant: 

inf 22 0 inf 22 0
inf 12 inf 22

inf 12 0 inf 12 0

1 0 lnt t t tt t B
t t t t

⎛−
< → < → < = ⎜− −⎝ ⎠

⎞−
⎟                   (28) 

                  ( ) ( )2 22 2
1 2 2 2 2 24 4

2 2
a a B B 0σ σσ σ σ σ− − = + + − − + − =              (29) 

then 

 ( )2 2
2 2 4 2Bσ σ + =                                 (30) 
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 Using 2
2l σ= , equation (30) becomes a second order polynomial: 

                                                        2 24l l B 0+ − =                                   (31) 

The parameter 2σ  is calculated from the positive solution of (31):  

 

2
2ˆ 4 2Bσ = + −                                  (32) 

The estimated value 2μ̂  of the parameter 2μ is computed by the following expression:  

 

                                                 
2

inf 22 inf 12
22 ln t t

A
μ σ −⎡ ⎤= + ⎢ ⎥⎣ ⎦

                      (33) 

with                          

$ $22 12a aA e e− −= −                                 (34) 

and finally, the estimated value  of   is given by:  2D̂ 2D

                
2
22 0.5

2 22max 2D v eμ σσ π −=                       (35) 

where is the maximum value of 2maxv ( )2v t . 

5. TESTING UNDER IDEAL CONDITIONS  

After implementing XZERO on a software benchmark, a testing phase under ideal con-

ditions has been performed. It consisted in building an ideal database of Delta-Lognormal 

functions, and comparing the performances of our new algorithm with two previously 

developed deterministic algorithms: INFLEX [31] and INITRI [32]. INFLEX uses a 

graphical method for the initial estimation, based on the characteristics of the tangents of 

the inflexion points of the main velocity peak, while INITRI uses analytical relationships 
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between the parameters and the time occurrence of the maximum velocity and two other 

arbitrary points located in the rising phase of the velocity curve. 

 

5.1. Construction of the database  

Theoretically, one can generate an infinite number of velocity profiles from the super-

position of two agonist and antagonist lognormal components. The construction of our 

database aimed at grouping this large variety into a few classes. To reach this goal, two 

main features were considered to classify the ideal profiles into seven classes (i) the 

number of zero crossings  appearing in the velocity profile, and (ii) the  position of the 

antagonist component with respect to the agonist one [40]. Figure 3 depicts typical exam-

ples for each class Cuw, where the subscript u indicates where the dominance of the anta-

gonist component occurs with respect to the antagonist one (b : before, a: after or s: si-

multaneous) and the subscript w represents the number of zero crossings 0, 1 or 2. The 

label i (imaginary) is used when there is no real roots to the zero crossing equation 

[32],[41]. As one can see in these plots, the different timings of the antagonist versus the 

agonist curves generate a large variety of primitive patterns. 
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Fig 3. The seven classes of Delta-Lognormal velocity profiles as generated by a synergy of an artificial agonist and 
antagonist neuromuscular systems.  

 

This wide variability is obtained by randomly selecting the Delta-Lognormal parameter 

values within specific intervals, these intervals being fixed according to typical features 

of rapid movements. In this data base, we assumed that the movement time was typically 

between 100 ms and 500 ms, and the minimum time occurrence of the maximum about 

100 ms, as measured from . The lower bound of this latter parameter was fixed consi-

dering the fact that a human being does not respond without anticipation to a stimulus 

faster than 50 ms. The upper bound was arbitrary fixed at one second.  The parameters 

 and  were empirically deduct  by taking into account both the dimension of the 

digitizer used to acquire real data (31cmx23 cm) and the assumption that the distance 

covered by the antagonist movement was smaller than  the one covered by the agonist. 

0t

1D 2D
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The corresponding ratio was fixed to 2max 1max0.1D D≈ to emulate worst-case testing con-

ditions [34] (see Table 1).  

 

TABLE 1. VARIATION RANGES OF THE DELTA-
LOGNORMAL PARAMETERS [34] 

Parameters Min Max 

0 (s)t  0.05 1.0 

5 70 

2 (cm)D  0.5 7 

1 2,μ μ  -2.2 -1.6 

1 2,σ σ  0.1 0.45 

5.2. Performance evaluation  

To test our algorithm, each ideal Delta-Lognormal curve was sampled at 200Hz to si-

mulate the data collected from a digitizer. The seven parameter values extracted by the 

XZERO, INFLEX and INITRI algorithms were compared with the original ones (Truth 

Table). The results are summarized in Table 2 [32],[40].  In this test, the extracted para-

meters were considered as matching the original ones if the signal to noise ration (SNR)  

between the original and the reconstructed curve was greater than 100 dB (equivalent to a 

Mean Square Error (MSE) of less than 10-9 cm2.s-2).  

As one can see from Table 2, for the Ca classes (antagonist dominance after the agonist 

peak activity), XZERO performs better than INFLEX and INITRI, both of which have 

also serious problems with the Cb classes, where the antagonist activity is dominant be-

fore the agonist activity. If we remove the results from these two classes, we can see, in 

the penultimate column, that there are 6% and 12% differences between XZERO and the 

other two algorithms respectively. These differences grow up to 30% and 32% respec-

tively (last column) when all the specimens are taken into account. 
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 However, a vertical comparison of the results in Table 2 emphasizes the complemen-

tarities of the three algorithms. This is mainly due to the fact that INFLEX encounters 

some difficulties when the main peak of the velocity profile is almost symmetric, while 

INITRI has some troubles with profiles that are deeply asymmetric. Moreover, XZERO 

has a stable performance with a minimum of 92 % of perfect reconstruction for ideal Del-

ta-Lognormal curves.  

In an attempt to improve these capabilities, we have thus designed a combined system, 

called INFLEX+INITRI+XZERO or (IIX) which integrates the three algorithms in paral-

lel. For each test curve, the solution, chosen among the solutions given by the three algo-

rithms, corresponds to the one that leads to a minimum mean square error. As one can see 

from Table 2, the IIX system is better than XZERO, INFLEX and INITRI, considered 

individually. The IIX system can recover 100% of the original parameters for the Ca 

classes and 99.3% when all the database profiles are analyzed. Considering the improve-

ments resulting from the parallel use of the three algorithms, we have adopted this archi-

tecture as an upgrade of our extractor system and used it in the next study.  

 

TABLE 2:  RESULTS OF THE TESTS UNDER IDEAL TESTING CONDITIONS  

(PERFORMANCE CRITERION: ) 100 dBSNR ≥

          Performances     

                      Class   

Cbi 

[%] 

Cb1 

[%] 

Ca0 

[%] 

Cai 

[%] 

Ca1 Ca2 

[%] 

Cs2 

[%] 

Downstream 

only  [%] 

Method 

All  

INFLEX 0 9 90.1 94.6 91.9 94.6 92.8 92.8 66.41 

INITRI 3 37.1 74.7 92.1 80.7 100 65.8 86.87 64.38 

XZERO 98.1 97.9 95.2 100 96.6 100 92 98.2 97.1 

IIX 98.1 98.5 99.7 100 99.5 100 99.6 100 99.3 
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6. PERFORMANCES UNDER NOISY CONDITIONS  

In real situations, the strokes acquired from a digitizer usually contain noise and distor-

tion. Moreover, there is no prior information about the original values of the seven para-

meters. Therefore, the extracted data are corrupted by error sources and the resulting ex-

traction errors must be circumscribed to quantify the accuracy of the extractor under 

noise constraints. To do so, another database has been constructed by adding to the ideal 

data sets an artificial noise with zero mean and various levels of signal to ratio, using a 

Gaussian random noise generator [32],[40]. 

Figure 4 shows a pair of such noisy profiles (with SNR = 20 dB), as constructed from two 

of the profiles presented in Figure 3. 

A first evaluation of performance based on the percentages of successful extractions, 

using corrupted profiles with SNR of 20 dB has been run. In this experiment, a solution 

was accepted if the signal to noise ratio (SNR) of the reconstructed profile was greater 

than an arbitrary threshold of 10 dB. As one can see in Table 3, XZERO performed better 

than INFLEX and INITRI under these noisy conditions, and the combined system IIX 

converged in more than 98% of the cases.  
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(b) 
Fig 4. Two noisy Delta-Lognormal profiles that correspond to two of the ideal profiles depicted in Figure 3  
(classes Ca2 and Ca0, respectively), upon which a 20dB noise has been superimposed.  

 

Since we knew the original parameter values of each noisy curve in this simulation, we 

could evaluate the performance of the extractor according to its capability to recover, un-

der various SNR, the real parameter values within specific confidence intervals.  

For example, Figure 5 depicts the extracted values of the parameter 1σ  vs. the original 

ones, for SNR equal to 20, 30, 40 and 50 dB respectively.  Each plot represents the best 

extraction result as obtained by the IIX system. For ideal curves, all dots in a plot would 

be located on the 45o oblique line and, in noisy conditions, the extraction errors result in a 

dispersion of the values around this oblique line.  As can be observed from these plots, 

there is a relationship between the dispersion error and the SNR.  Indeed, Figure 6a de-

picts the extraction error of the parameter 1σ  for a SNR equal to 20 dB; these fluctuations 

look like a random signal. Its histogram (Figure 6b) shows that the error roughly follows 

a Gaussian process. According to a Kolmogorov-Smirnov test, this histogram can be con-

sidered as a normal distribution (h=0, p=0.03), and we can thus evaluate, for each para-

meter, the dispersion of the corresponding extraction error through its confidence inter-

val. This result suggests that a part of the synthetic Gaussian noise added to the ideal ve-

locity profile is transformed into an extraction error that keeps the same distribution.  In 
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other words, the IIX extractor can be considered as a system that does not generate any 

additional distortion or noise to the Delta-Lognormal parameters but that translates the 

noise existing in the original data into extraction errors. In these conditions, confidence 

intervals can be estimated for the optimal extracted values of the seven parameters. 

 

 TABLE 3 RESULTS OF THE TESTS UNDER NOISY CONDITIONS IN THE CASE OF SNR = 20 dB  

(CONVERGENCE CRITERION: ) 10 dBSNR ≥
 NOISY DATA 

Algorithms   % of convergence   

( from 7000 curves) 

MSEmean   

[cm2/s2] 

MSEstd  

[cm2/s2] 

SNRmean 

[dB] 

SNRstd 

[dB] 

INFLEX 63.24 32.90 62.44 21.76 2.13 

INITRI 82.90 31.98 60.91 21.62 2.28 

XZERO 95.69 30.28 59.32 21.32 2.05 

IIX   98.81 28.62 60.20 21.63 2.26 
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Fig 6. a) Typical result of the extraction error profile of the parameter 1σ as obtained for SNR =20 dB  and for 
the  Ca0  class b) Its corresponding histogram assimilated to a Gaussian density, the continuous curve 
represents a Gaussian density as calculated by a Kolmogorov-Smirnov test with h=0 and p=0.03. 
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Fig 5. A typical result of the extracted error dispersion according to SNR values. Representation of the extracted values 
versus the original ones for the parameter 1σ ,at different noise levels. 

 

6.1. Evaluation of the extraction accuracy  

The second performance evaluation relied on the circumscription and the quantification 

of the extractor accuracy by constructing these confidence intervals (CI) for each parame-

ter. This has been computed using the optimal parameter values, the MSE and the SNR. 
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To do so, the extracted value of a parameter was considered  as the center of a confidence 

interval with extremities calculated from the standard deviation of the correspond-

ing extraction error.  For example, the CI of the parameter 

STD

1σ  was computed by:  

 

1 11 1* , *CI k STD k STDσ σσ σ⎡= − +⎣ 1σ
⎤⎦                                                 (36)  

 

where 1σ  is the extracted value, 
1

STDσ the standard deviation of the extraction error 

and k the dispersion range (k=1, 2 or 3).  Let us recall that for k=2, the original value is 

inside the CI with a confidence level of 95%.  

Since the dispersion  decreases when the SNR increases (see Figure 5), one can 

construct empirical relationships between these quantities and build the confidence inter-

vals CI from the SNR values. 

STD

These empirical relationships were calculated as follows: for each Delta-Lognormal pa-

rameter, a dispersion parameter  of the extraction error was calculated (assuming 

that the mean value of the error was nearly zero) by considering the 7000 curves of the 

seven classes, for a given SNR value. The  versus SNR curve was then plotted as , 

for examples, in Figures 7.An exponential relationship emerges from these plots, which 

can be expressed as: 

pSTD

pSTD

SNR
pSTD e βα −=                                                                                (37) 

where  is the standard deviation of the extraction error for a given parameter p, 

and  

pSTD

α  and β  are the regression coefficients, as summarized in Table 4 for the seven 

parameters. According to the definition of the SNR ( [ ]1010log s nSNR P P= where sP is the 
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power of the signal and   is the power of the Gaussian noise), equation (37) can 

be rewritten as follows:  

2
nP STD= n

 p
s

nSTD
P
α

=STD                                                                   (38) 

            

TABLE 4: EXPONENTIAL REGRESSION RESULTS WITH  

THE CORRESPONDING CORRELATION COEFFICIENTS . 2r
Parameters α  β 2r  

0t 0.13 0.129 0.97 

1D 6.8 0.117 0.99 

1μ 1.37 0.103 0.98 

1σ 0.3 0.117 0.99 

2D 7.63 0.113 0.99 

2μ 2.45 0.104 0.97 

2σ 0.31 0.113 0.99 

Equation (38) clearly reflects the fact that the power of the extraction error (its standard 

deviation) corresponds to a proportion of the noise added to the velocity profiles. As pre-

viously anticipated, this also suggests that the IIX extractor does not add any supplemen-

tary noise but “transforms” the existing fluctuations into extraction errors with different 

proportions.  
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                    (g)   
Fig 7. Typical results depicting exponential regressions between the standard deviation of the extraction    
           errors and the SNR of the noisy Delta-Lognormal profiles 
 
This characterization process permits the quantification of the extractor accuracy and 

the determination of confidence intervals for each extracted parameter value.      

7. TESTING WITH REAL DATA  

To evaluate the performance of the IIX extraction system in real applications, we have 

conducted a third experiment using real handwritten strokes sampled at 200 Hz with a 

Wacom Intuos II digitizer. Figure 8a depicts a typical x-y trajectory of a stroke produced 

by a human subject. The corresponding velocity profile, as illustrated in Figure 8b, was 

computed using numerical filters (a Chebychev II low-pass filter with order n= 10,  cutoff 

frequency Fc= 16 Hz, sampling frequency Fs = 200 Hz, and Attenuation Att= -81 dB, and 

a FIR derivative filter with  n = 10, Fc = 50 Hz and Fs = 200 Hz) applied to the two posi-
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tion components x(t) and y(t) for each stroke. Representative results of the analysis-by-

synthesis process are presented in Figures 9a-d. For each trial, the velocity profile, as re-

constructed from the seven extracted parameters, is very close to the original profile with 

SNR greater than 20 dB. Details of the corresponding parameters with their confidence 

intervals are summarized in Table 5. 

 As one can deduct from this Table, the agonist parameters were extracted with more 

accuracy (extraction uncertainty less than 9 %) than the antagonist ones. This was proba-

bly caused by both the architecture of the extractor and the fact that the antagonist para-

meter values were small.  Indeed, since the antagonist component is isolated after sub-

tracting the estimated agonist component, this creates more distortions in the antagonist 

profile and leads to a poorer estimation of its parameters.  
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Fig 8. Typical example of real data. a) stroke trajectory; b) velocity profile (cross: original profile; solid line: reconstructed 
profile, dashed lines: agonist and antagonist components respectively). 

Moreover, since the magnitude of  is generally smaller than  and becomes often 

comparable to the magnitude of the noise, it is difficult to get an acceptable precision in 

some cases.  For example, in the velocity profiles depicted in Figure 9-a, the uncertainty 

grows up to 32% when  is small even if the SNR is about 31 dB. However, as depicted 

in Figures 9-b and 9-d, when the antagonist component is more significant, the corres-

ponding uncertainty of its parameters decreases, to less than 20% in these specific results.  

2D 1D

2D
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Figure 9: typical extraction results from different velocity patterns. The corresponding parameter values are summa-
rized in Table 5.    

 

 

 

 

 

 

 



  

 

 

 

TABLE 5. SUMMARY OF EXTRACTED PARAMETER VALUES WITH CONFIDENCE INTERVALS EXPRESSED IN TERMS OF PERCENTAGES.     
 Parame-
ter 
 

2μ  2σ  MSE  SNR  

(dB) 

0t  

(s) 

1D  1μ  1σ  2D  

(cm2.s-2) (cm) (cm) 
Trial # 

a 0.567 

+/- 1.3% 

24.733   +/-  

1.56% 

-1.651   

+/-4.72% 

0.212   

+/-8.04% 

1.32    

+/-  32.86% 

-1.3    

+/-10.71% 

0.091   

 +/-19.37% 

4.86 31.79 

b 0.302   

 +/- 3.8% 

38.214   +/-  

1.31% 

-1.867   

+/-5.42% 

0.338   

+/-6.56% 

10.876    

+/- 5.18% 

-1.418    

+/-18.76% 

0.15    

+/-   15.26% 

20.66 29.45 

c 0.603    

+/-  0.94% 

29.762   +/-  

0.99% 

-1.556   

+/-3.85% 

0.199   

+/-6.58% 

4.204    

+/-7.93% 

-1.421    

+/-7.53% 

0.099    

+/- 13.62% 

4.15 34.14 

d 0.3   

 +/- 5.79% 

61.22    

+/-  1.48% 

-2.046   

+/-8.95% 

0.471   

+/-8.52% 

27.703    

+/-   3.68% 

-1.626  

+/-20.15% 

0.209    

+/-   19.84% 

92.58 24.15 
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8. CONCLUSION  

In this paper, we have focused on the analysis-by-synthesis of individual strokes, i.e. 

the study of motor control primitives. Using the Kinematic Theory, which completely 

describes the velocity profile of rapid movement with seven Delta-Lognormal parame-

ters, we have developed an efficient parameter extractor system that relies on a new algo-

rithm (XZERO). This algorithm exploits the properties of the first and the second time-

derivatives of a lognormal function. We have highlighted the performance improvements 

that are observed by this new estimation method in comparison with two existing ones 

(INFLEX and INITRI). For ideal curves, XZERO finds the true values of Delta-

Lognormal parameters in 97% of the cases, for a database of 7000 curves representing a 

huge variety of patterns. Moreover, the complementarities that exist between the three 

algorithms (INFLEX, INITRI and XZERO) have leaded us to combine them in a new ar-

chitecture, the IIX system, to improve the global performances.   

We have also circumscribed and quantified the confidence intervals of the extracted 

values, exploiting the empirical exponential regressions that link the standard deviation 

(STD) of the extraction error with the SNR. Thus, the optimal values of the parameters 

used to reconstruct the velocity profiles of rapid movements by a Delta-Lognormal equa-

tion are, for the first time, accompanied with precision estimates, which quantify their 

relative validity. 

One useful application of this new information is for the calibration of Delta-

Lognormal measurement systems. Although more works will be necessary to apply this 

technology to the study of complex movements like handwriting, the present tool already 

offers the possibility of analyzing the behavior of neuromuscular and motor control sys-
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tems under various experimental and psychophysical conditions, through the variations in 

the parameter values.   

 With this robust extractor, the Kinematic Theory will become more attractive for the 

study of movement primitives. Current experiments are going on in our laboratory, 

where, for example, our algorithms are applied to analyze the intrinsic properties of 

strokes produced by different group of participants ( young and aged subjects, male and 

female, etc) [6,44], and to provide a better understanding of these  primitives and their 

use as building blocks for the automatic processing of handwriting in various fields of 

computer science [2],[3]. In its present form, the IIX system is not limited to human 

movement applications. It could be employed to analyze any lognormal processes. Its ge-

neralization and adaptation to the study of more complex patterns is under way.   
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