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Abstract: This paper presents a comparative study of two motor control theories that have put forward 

mathematical expressions to describe the stereotypical velocity profiles of rapid movements: the Kinematic 

Theory and the Minimization Theory. Among the various forms of the latter, the Minimum Square-

Derivatives (MSD) principle and the Minimum-Time model are analyzed. It is shown that their concepts 

are linked and describe, with different arguments, a paradigm similar to the one used in the Kinematic 

Theory to model a velocity profile with a Delta-Lognormal equation. This unifying paradigm represents the 

functioning of a neuromuscular system by the convolution product of an infinite number of subsystem 

impulse responses. A second finding emerging from the present study is that the analytical models of 

velocity profiles, as described by the minimum principles under study correspond, with more or less 

accuracy, to an approximation of the Delta-Lognormal equation. Overall, the Kinematic Theory can be seen 

as relying on a general optimization principle and the use of the Minimization Theory in motor control gets 

new insights.     

 

Keywords Delta-Lognormal model, Kinematic Theory, Minimum-Jerk, Minimum 

Principles, Minimum-Time, Motor Control.   

 

1. Introduction  

Over the years, several psychophysical studies have highlighted the fact that the velocity 

profile of a rapid aimed movement is strongly stereotypical. Under various experimental 

conditions, it has been reported that the tangential velocity had a bell-shaped profile 

(Lacquaniti et al. 1983), which was considered as symmetrical in the first studies 

(Morasso et al. 1981;1983), with slight variability between subjects (Miall & 

Haggard.1995), and decrease in variability with practice (Georgopoulos et al.1981). Since 

1993, precise curve fitting results have confirmed the basic asymmetry of the velocity 

profiles (Plamondon et al. 1993).  

Thus, when a healthy human subject produces a point-to-point rapid movement with his 

dominant hand from a restful posture, the corresponding trajectory is characterized by 
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several properties (Gielen et al. 1985; Latash 1998; Morasso 1981; Plamondon 2003; 

Plamondon & Djioua 2006; Zatsiorsky 1998): 

• The trajectory is nearly straight. 

• There might be up to two reversals in the direction of motion at the end of the 

trajectory (or one at the beginning and one at the end). 

• The velocity profile might have up to three peaks, the dominant one being slightly 

asymmetric. 

• The asymmetry of the main velocity peak might be reversed at very high speed. 

• The acceleration profile might have up to four peaks. 

Moreover, when a subject repeats the same rapid movement many times, some variability 

is observed, but each individual trajectory possesses the above-mentioned properties, as 

long as the movements are fast and there is no trembling or hesitation (Plamondon & 

Djioua, 2006). 

Several computational models have been proposed, among many other approaches, to 

tentatively explain how the central nervous system generates and controls rapid human 

movements characterized by such asymmetric bell-shaped velocity profiles. Some models 

describe the movement kinematics with analytical expressions (Alimi 2003; Engelbrecht 

2001; Hogan 1984; Nelson 1983; Plamondon 1995a) and others proceed through the 

numerical resolution of a system of differential equations (Bullock & Grossberg 1988; 

Harris & Wolpert 1998; Neilson 1993; Neilson & Neilson 2005; Tanaka et al. 2006; Uno 

et al. 1986).  

4/34 



Since all these models depict, using different mathematical descriptions, the same 

physical phenomenon, it make sense to investigate the potential existence of possible 

relationships between some of these and to study the approximations and hypotheses that 

lead to their various mathematical expressions.  

Previous curve fitting experiments have shown that the Delta-Lognormal model was 

producing smaller reconstruction errors as compared to the Minimum-Jerk (Feng et al. 

2002) as well as to twenty six other models (Alimi 1995; Alimi & Plamondon 1996). In 

this paper, a theoretical comparison tool is developed, which exploits the concepts of the 

diverse models to bring to the fore their different assumptions and approximations.  

Since, to be relevant, a comparison must be made in a normalized space, this study deals 

only with models that make use of analytical expressions for their description of velocity 

profiles.  Precisely, we analyze models based on the Minimization Theory and compare 

them with the Delta-Lognormal model. We investigate both theories throughout their 

basic concepts and provide new insights about the use of minimum criteria in motor 

control. We also highlight some elements that most likely explain the greater 

performance obtained in curve fitting experiments by the Delta-Lognormal model.  

In section 2, the Kinematic Theory concepts are summarized through the Delta- 

Lognormal model, while the minimum principles methods are presented in section 3. In 

this latter section, we are proposing some changes of variables in the analytical 

expressions of the minimum models to make these comparable with the Delta-Lognormal 

model. The comparison between models, as reported in section 4, takes advantage of the 

Central Limit Theorem as a classification platform to rank hierarchically each model 

according to a convergence criterion. In section 5, we briefly discuss the interest of using 
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a Minimization Theory in motor control and its relationship to a Kinematic Theory. We 

also point out how the basic representation scheme provided by the Kinematic Theory 

can be exploited in a minimization context. 

 

2. Overview of the Delta-Lognormal model  

 

The Delta-Lognormal model is considered as the basic kernel of the Kinematic Theory. It 

describes the velocity profile ( )v t of a rapid movement by the difference of two 

lognormal components which represent the impulse responses of an agonist and an 

antagonist neuromuscular systems, weighted by their respective input commands  

and , activated at time   (Plamondon 1995a; 1995b). The resulting Delta-Lognormal 

equation is expressed as: 

1D

2D 0t

( ) ( ) ( )2
1 0 1 1 2 0 2 2; , , ; , ,v t D t t D t t 2μ σ μ= Λ − Λ σ                                     (1) 

with   

( ) ( )
( ) 2

0 022
00

1 1exp ln for
22; , ,

0 e

t t t t
t tt t

μ
σσ πμ σ

⎧ ⎧ ⎫⎡ ⎤

lsewhere

− − − >⎨ ⎬⎪ ⎣ ⎦−Λ = ⎩ ⎭⎨
⎪
⎩

                (2) 

and    

1 2,D D : The respective amplitudes of the input commands. Their effects 

correspond to the distances covered by the individual agonist and the antagonist 

velocity components.      
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 : The time occurrence of the input commands, a time-shift parameter. 0t

1 2,μ μ : The logtime delays, the respective time delay of the agonist (1) and 

antagonist (2) neuromuscular systems expressed on a logarithmic time scale. 

Explicitly, eμ  represents the median of a lognormal profile.  

1 2,σ σ : The logresponse times, the respective response time of the agonist (1) and 

antagonist (2) neuromuscular systems expressed on a logarithmic time scale. 

Explicitly, it represents a proportional coefficient that links the response time  

to the time delay  of a lognormal profile

rT

dT ( )tΛ : ( rT Tdσ≈  with 

and ).  ( )t d= ΛdT t∫ t dt

2

( ) ( )22
r dT tΛT t= −∫

Thus, the generation of velocity profiles according to equation (1) requires seven 

parameters, three acting as the motor commands ( ) and four, characterizing the 

timing properties of the neuromuscular systems (

0 1 2, ,t D D

1 1, , 2 ,μ σ μ σ ) that respond to these 

commands. 

This representation does not emanate from a curve fitting process but it is prompted from 

the structure of a neuromuscular system (NMS), which can be considered as a network 

made up of an infinite number of linear subsystems linked in hierarchical and parallel 

groupings. According to this scheme, one can distinguish two main processes involved in 

the generation of rapid aimed movements: the movement activation from an action plan 

and the movement execution. The distance to be covered, the direction of the movement, 

and the time occurrence of the NMS activation are provided by the central nervous 

system (CNS), while the execution of the resulting motor task is done by the NMS within 
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the context of its own timing constraints. The triggering of a neuromuscular system 

(agonist or antagonist) is represented by a Dirac-Impulse ( )0 0U t t− occurring at   and 

weighted by a distance parameter

0t

, 1, 2iD i = , while the execution process itself is 

modeled by the convolution product of a large number of linear subsystem responses. 

Thus, the bell-shaped pattern of the velocity profile emerges from the synergetic coupling 

of numerous neuromuscular subsystems. Furthermore, to explain the asymmetric shape of 

each velocity component, the theory assumes that the cumulative time delays of a 

sequence of dependent subsystems are governed by a proportionality relationship 

(Plamondon 1995a). Under this latter hypothesis, it has been proved, using the Central 

Limit Theorem, that a neuromuscular system can be globally described as a linear system 

having a lognormal impulse response (Feng 2005; Djioua 2007; Plamondon et al. 2003).   

According to this global paradigm, to execute the motor tasks leading to a rapid 

movement, various subsystems are recruited and configured by the CNS in two main 

neuromuscular systems acting in opposite directions. The resulting effect, as observed at 

the end-effector (for example a hand) is a movement produced by the agonist and the 

antagonist components working in synergy (see Figure1). 
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Figure 1. The generation of a rapid movement is modeled by two agonist and antagonist neuromuscular 

systems working in synergy.  The velocity profile of a rapid movement corresponds to the difference of the 

weighted impulse responses of these coupled systems.  

 

According to Figure 1, the output ( )0iv t t−  of each coupled system converges towards a 

lognormal profile when the number  of subsystems tends towards infinity. When  is 

finite, this limit profile is not reached and the impulse response is equal to the difference 

between an ideal lognormal profile 

N N

( );...tΛ  and a convergence error ( ;...conv )E t , given by 

(Feng 2005; Djioua 2007; Plamondon et al. 2007):  

( )
( )

( ) ( )2
0 02

0

1exp ln ,... ; 1, 2
22i

i
iN i conv

iNiN

Dv t t t t D E t i
t t

μ
σσ π

⎧ ⎫
− = − − − − =⎡ ⎤⎨ ⎬⎣ ⎦− ⎩ ⎭

  (3) 

and,  

( ) ( ) ( ) (
3

0 02
0 3

ln ln
; , , 3 ;...

6
iN iNiN

conv iN iN
iN iN iN

t t t t
E t t t

μ μχμ σ
σ σ σ

⎡ ⎤− − − −⎛ ⎞ ⎛ ⎞
⎢ ⎥− Λ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

)                 (4) 
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where 2, and
iNiN iNμ σ χ are the first moment, the second and the third centered moments 

of a lognormal function respectively.  

In other words, when  is infinite, N ( );...convE t  tends towards zero and the limit profile is 

reached. Taking into account the synergetic action of two systems, the Delta-Lognormal 

model expresses the theoretical limit towards which the velocity profile of a rapid 

movement converges.  

In short: to depict the motor control of a simple rapid aimed movement, the Kinematic 

Theory symbolizes the command signal by a Dirac-Impulse and the output of the 

neuromuscular system by the convolution product of an infinite number of subsystems 

such that the global response corresponds to a lognormal velocity component. By 

considering a neuromuscular synergy made up of an agonist and antagonist systems, the 

velocity profile of rapid movement is then modeled by a Delta-Lognormal equation.  

The Kinematic Theory has been used over the years to describe and explain a large body 

of experimental data dealing with human movements such as speed-accuracy trade-offs 

(Plamondon and Alimi 1997) primitive definition (Woch & Plamondon 2004; Woch 

2006); stroke variability (Djioua 2007; Plamondon & Djioua 2005; 2006),  handwriting 

segmentation and generation (Guerfali 1996; Plamondon & Guerfali, 1998) and signature 

representation (Leclerc 1996)   

 

3. Minimization Theory as applied in motor control  

Since Bernstein drew attention on the ill-defined motor tasks of skilled point-to-point 

movements in motor control, a basic challenge in modeling has been to explain how the 
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central nervous system chooses one trajectory among an infinite number of possibilities. 

According to early thinking in this field, the smooth stereotypical trajectories made by the 

motor system are specially chosen to optimize a cost function or a performance index 

under physical constraints, like minimizing jerkiness ( Hogan, 1984),  minimizing torque 

(Uno et al. 1989),  maximizing efficiency (Nelson 1983) or, as an alternative, maximizing 

a movement precision (Harris & Wolpert 1998). One possible answer to Bernstein 

question is thus based on minimization theories, adapted from minimization principles 

largely used in sciences including physics, chemistry, biology, economics, and 

engineering (for a review see Engelbrecht 2001).  For example, it is shown in physics that 

the trajectory described by an object  moving between two different potential energy 

levels, corresponds to the one that minimizes the lost of energy when  transforming the 

potential to kinetic energy  and vice versa. Two important minimization principles are 

used in motor control: the minimization of energy and of movement time (Engelbrecht 

2001). Concerning the first principle, Hogan (1984) postulated that hand trajectories are 

chosen by the central nervous system (CNS) such that the time integral (or the mean) of 

the squared magnitude of hand jerk is minimal, which is equivalent to maximizing the 

smoothness of the trajectory. Starting from dynamical equations dealing with torques, he 

proposed to model the trajectory of a point-to-point rapid movement with analytical 

equations. He claimed that the motor control was done in a kinematic space, an 

assumption supported through experimental results (Flash and Hogan 1985; Wolpert et 

al. 1995).  

In the context of the second principle, a movement between two equilibrium positions is 

produced by minimizing the time duration, leading to a “bang-bang” control (Hermes & 
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Lasalle 1969). In this case, the velocity profile is generally symmetric (Nelson 1983). 

Thus, the neural control signal has to be instantaneously switched between its maximum 

positive and negative values to accelerate and decelerate the movement.  In a strict sense, 

it is thus assumed that a shifted Heaviside control signal aims at executing movements 

with null movement time. The filtering effect of the biological neuromuscular system that 

opposes to these instantaneous changes leads to a minimum movement time instead 

(Partridge 1966; 1973).  

Most of the resulting models were primarily built using a mechanical representation of 

the musculoskeletal system by a second order equation where the state-variable was the 

position and the input command represented the neural signal observed in the alpha 

motoneurons (Bizzi et al. 1978; Harris & Wolpert, 1998; Hogan 1984). The main 

differences between all these models were relying both on the optimization criterion 

adopted and on the optimization techniques used to plan the selected trajectory. In this 

context, we have limited our study to the following family of kinematic models: (1) the 

Minimum Square-Derivatives models (particularly the Minimum-Jerk and the Minimum-

Snap) and (2) the Minimum-Time model as presented by Engelbrecht (2001) from the 

“bang-bang” model proposed by Hermes and Lasalle (1969) and by Endle and Wolf 

(1987). These models propose analytical solutions to the optimal trajectory and then, can 

be directly analyzed and compared with the Delta-Lognormal model.  

 

3.1. Overview of the Minimum Square Derivative Approaches 

Minimizing the square derivatives of a position is an easy and popular interpretation of 

the minimization principle. This principle emerged by considering that the execution of a 
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skilled movement is done to reach an objective under constraints, such as optimizing the 

movement time or the distance to be covered. The performance regarding the realization 

of such an objective is expressed in terms of minimizing some physical cost (Nelson 

1983). Let assume that the nth derivative of the position profile ( )tθ  of an end-effector 

trajectory exists. Then the cost function, considered as energy1, is given by:  

( )
2

0

min
MT n

n n

dC t dt
dt

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∫ →                              (5)          

 

where MT represents the movement time (or movement duration). As a constraint, this 

principle deals with particular point-to-point rapid movements described in a compact 

time interval [ ]0, MT  which covers the total distance . The trajectory that minimizes 

the cost function can be found from Euler equation of variation calculus. From this 

minimization process, three main models have been proposed, depending on the order of 

the derivatives. For n=2, n=3 and n=4, equation 5 leads respectively to the Minimum 

acceleration (Neilson 1993; Neilson & Neilson 2005; Nelson 1983), the Minimum-Jerk 

and the Minimum-Snap (Flash & Hogan 1985; Hogan 1984) models. In the following 

section, we restrain our detailed study to the Minimum-Jerk model.  

D

  

                                                 

1 Here, by analogy, the energy refers to the mean square of the kinematic quantity ( ) ( )
n

n

dq t t
dt

θ=  i.e. to 

the cost function    ( )2

t

q t dt∫
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3.1.1. Overview of the Minimum-Jerk model   

 

The Minimum-Jerk is a mathematical model which can be used to interpret single- and 

multi-joint classes of voluntary movements. Taking into account the starting position  0θ   

(occurring at ) and the ending position 0t = fθ    (occurring at t MT= )  as boundary 

constraints  where both the angular velocity and acceleration are equal to zero, the 

corresponding trajectory vs time, given by resolving equation (5), is then described by a 

fifth-order polynomial (Hogan 1984): 

( ) ( )
3 4 5

0 0 10 15 6 0f
t t tt t

MT MT MT
θ θ θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − − + ≤ ≤⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

MT                    (6) 

 

3.1.2. Analyzing the Minimum-Jerk model and its extensions  

Later on, studies carried out with the Minimum-Jerk model have shown that the 

analytical expression minimizing the Snap (time derivative of the jerk) gave better 

reconstruction of the trajectory when applied to experimental data (Wiegner & 

Wierzbicka 1992). In a similar perspective, another interesting result dealing with a 

generalized expression for the velocity profile was suggested by Richardson and Flash 

(2002) and given by: 

( ) ( ) ( ) 1

2

2 1 !
1

( 1)!
n

n

n
t

n
ω ω τ τ

−−
= −⎡ ⎤⎣ ⎦−                                    (7)       

where is the angular velocity, ( )n tω ( )0f MTω θ θ= −  the average velocity and 

t MTτ = ,  a normalized time parameter. For the Minimum-Jerk (n=3), one can calculate 

the following analytical expression for the velocity from equation (6) or equation (7):  
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( ) ( ) 2
30 1tω ω τ τ= −⎡ ⎤⎣ ⎦                                    (8) 

Taking into account the expression for the angular position only, one gets a fifth-order 

polynomial (equation 6) which does not provide any information about the movement 

organization or the motor control. However, if we consider the time derivative of this 

position, i.e. the movement velocity, the resulting analytical expression is more 

significant. Indeed equation (7) can then be seen as an incomplete generalization and by 

expanding the rearrangement of the coefficients, we obtain a Beta function.  

 

( ) ( ) ( ) 111 1 , if 0
,

0 elsewere
B

βαω τ τ τ
α βω τ

−−⎧ 1− < <⎪= ⎨
⎪
⎩

                (9) 

with   ( ) ( ) ( )
( )

,B
α β

α β
α β

Γ Γ
=

Γ +
 and  ( ).Γ  a Gamma function.   

In this context, the Minimum-Jerk model corresponds to the case where α  and β  are 

integers and equal to 3. Indeed:  

 ( ) ( )
( )

2

,
2
n

n B
n

α β α β
Γ

= = → =
Γ

                                (10.a) 

( ) ( )integer 1 !n n→Γ = −n                                    (10.b) 

( ) ( )
( )

( )( ) ( )
( ) ( )( )1 1

2 2

2 2 1 !
1

1 !
n n

n

n n
nn

ω τ ω τ τ ω τ τ1
− −Γ −

= − = −
−Γ

               (10.c) 

                       ( ) ( )( 3 1
3 2

5!Minimum-Jerk 3 1
2!

n ω τ ω τ τ
−

→ = → = − )                 (10.d) 

( ) ( )( )2
3 30 1ω τ ω τ τ= −                                   (10.e) 

 

From equation (9), fixing n=4, we can get in the same way the analytical expressions for 

the Minimum-Snap and similarly n=2 leads to the minimum acceleration model. 
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Noting that from equation (7) or (9), the corresponding velocity profile can be expressed 

by Bernstein polynomials, currently used in the construction of Bezier, B-Splines and 

NURB curves (Faraway et al. 2007; Piegl & Tiller 1997), the velocity profile can be 

rewritten as:  

 

( ) ( ) ( ) ( )2 1
12 1 n

n t n Bω ω −
−= − n t

)

                                        (11) 

where   and ( ) ( )1 n mm m
n

n
B t t t

m
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠ (

!
! !

n n
m m n m
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
 a polynomial coefficient.    

Consequently, the maximization of smoothness to control a movement leads to velocity 

profiles that correspond to a particular class of Beta functions and, since the parameter α  

and β  are even integers and equal, this results in the stereotypical symmetric velocity 

profiles generated by the Minimum Square-Derivatives family of  models.  

According to equation (5), minimizing the jerk or the snap corresponds to minimizing the 

energy associated with a particular physical quantity and this process leads to a smooth 

Beta velocity profile2. 

 

3.2. Overview of the Minimum-Time model 

 A second approach that could be used by the CNS to control a movement is to 

minimize its duration instead of other physical cost, as described above. According to the 

Minimum-Time principle highlighted by Engelbrecht from the popular bang-bang model 
                                                 
2 Beta functions have been used to perform curve fitting in handwriting analysis (Alimi 2003; Bezine et al. 

2005; 2007; Do-Hoon and Hwan-Gue 1998).  
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(Endle & Wolf 1987; Harris 1998; Hermes & Lasalle 1969; Nelson 1983; Partridge 1966; 

1973) the command signal is modeled by a binary signal switching between its maximum 

and its minimum values and the neuromuscular system is modeled by a linear system3. 

For a rapid movement, the neuronal input signal to a neuromuscular system is modeled 

by a shifted Heaviside step function when dealing with the trajectory, and the interneuron 

and neuromuscular synapses of the NMS are schematized by low-pass filters (Partridge 

1973). The trajectory position is then considered as the step response of a serial network 

of low-pass filters. Theoretically, the step command aims at executing movements with 

null duration: the command commutes instantaneously between two extreme values. In 

practice, the low-pass filtering of the NMS avoids such an unrealistic prediction and leads 

to rapid movements with minimum duration instead of null duration. Mathematically, we 

can interpret the effect of a low-pass filter synapse as a spread of the movement time, 

generally described by a convolution product: 

( ) ( ) ( )1
0

t

n n nt h t dϕ τ ϕ τ τ−= −∫                                           (12) 

with nϕ  a postsynaptic signal, 1nϕ −  a pre-synaptic signal and ( )nh t the impulse response 

of a synapse, a response that decreases exponentially with time. The convolution integral, 

described by the operator *, becomes:  

( ) ( ) ( ) ( )1 1
0

* ln ,
t

n n n nt t h t t d eτ λϕ ϕ α α ϕ τ τ α −
− −= = − −∫ ≡

                                                

                     (13) 

 
3 Another interpretation of the Minimum-Time principle (Tanaka et al. 2006), not studied in this paper, was 

developed in the context of the speed-accuracy tradeoffs and presented as an alternative for the Minimum-

Variance model (Harris & Wolpert, 1998). The optimal trajectory is obtained by resolving numerically a 

system of linear differential equations.  
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The end-response  that corresponds to the trajectory position can thus be 

interpreted as the result of the propagation of the command signal  through a large 

number of n synapses. This successive filtering leads to continuous trajectory, even if  

 is discontinuous. The step response of such a system is then given by (Engelbrecht 

2001):  

( )n tϕ

( )0 tϕ

( )0 tϕ

( ) ( )
1

0

ˆ 1 ,
!

kn
t k

n
k

t U t e t
k

λ λ lnϕ λ
−

−

=

⎛ ⎞
= − ≡ −⎜ ⎟

⎝ ⎠
∑ α                        (14) 

where  is the Heaviside step function. The corresponding impulse response ( )U t ( )h t  is 

then given by:  

( ) ( ) ( ) ( ) ( )
1

1 2* *...*
1 !

n
n

nh t h t h t h t t e
n

tωω − −= =
−

                                           (15) 

  

 

 

3.2.1. Analyzing the Minimum-Time model  

In the Minimum-Time model, the general architecture of the neuromuscular system is 

represented by the convolution product of n first order low-pass filters. The motoneuron 

command is modeled by a Heaviside function profile and the step response of such a 

system is assimilated to the position vs time trajectory. As it has been done for the 

Minimum-Jerk model, we are interested in the velocity profile rather than the position. 

Consequently, if the step response ( )n tϕ  describes the position, then the impulse 
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response  represents the velocity profile, as described by equation (15). Rewriting 

this equation:  

( )h t

( ) ( )
/

1

1
1

th t t eα β
αβ α

−
+=
Γ +

                                        (16) 

with ( )11,n , 1 !α β α α
ϖ

= Γ + == − , its Laplace transform can be computed by:   

( )
( ) ( ) ( ) 1

1 1
1 / 1

n

n nH s
s s s α

ϖ
ϖ ϖ β += = =

+ + +
                         (17) 

These two results reflect the properties of a Gamma function both in time-based and in 

Laplace-based representations. Indeed, as ( ) , 1,...,ih t i n=   decreases exponentially 

(Poisson-like profile), it is shown in probability theory that when n is large, the 

convolution product of Poisson-like densities tends towards a Gamma function (Feller 

1966; Papoulis 1962). As a result, the analytical expression of the velocity profile as 

described in the Minimum-Time model can be seen as a special case of a Gamma model, 

with integer values ofα .  

 

4. Comparison results 

4.1. Comparison of the Minimum-Square-Derivatives with the Minimum-
Time models  

Let us consider a particular case described in equation (15) when the time t is bounded 

between 0 and 1 (after normalization). Neglecting the Taylor coefficients of rank greater 

than one, the following relationship is obtained:  
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( ) ( ) ( ) (1 1 1
1 ! 1 !

n n
n t nh t t e t t

n n
ϖϖ ϖ )ϖ− − −= −

− −
                              (18) 

with   ( ) 1, 2,3,...
!

nt
n

n
ϖ

=  

Moreover, if we consider non-zero integer values of ϖ  such that:  

[ ]
( ) ( )( )( ) ( )

*0,1 ; ,

1 1 1 1 ... 1 1

t

t t t t tϖ

ϖ

ϖ

tϖ

∀ ∈ ∃ ∈

− = − − − − ≈ −
14444244443

                             (19) 

then 

( ) ( ) ( ) ( ) ( ) ( ) 11 1 11 1
1 ! 1 !

n n
n nh t t t t t t t

n n
1ϖ βαϖ ϖϖ −− − −− − ∝

− −
−                             (20) 

 

with , and 1nα β ϖ= = +  

In the light of these successive approximations, the Beta profile can be seen as a special 

case of a Gamma profile. In other words, the Minimum-Square-Derivatives (MSD) 

models, which are a particular case of a Beta model, can be seen as an approximation of 

the Minimum-Time model. The fundamental representation used in the MSD models can 

thus be interpreted as indirectly built on the assumption that a neuromuscular system 

output can be described by the convolution product of a large number of bounded 

impulse response functions . This deduction has already been pointed by Papoulis 

(1962) when approximating a convolution product of bounded transient functions by a 

Beta function.    

( )ih t

In this global perspective, the minimum models analyzed in this paper deal with the same 

basic paradigm, initially proposed in the context of the Kinematic Theory: representing 
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the neuromuscular impulse response by the convolution product of a large number of 

subsystem impulse responses, which correspond here to synapse impulse responses ( )ih t .  

This point of view becomes the common denominator upon which we can compare the 

models of the Kinematic and the Minimization Theories. According to the analytical 

expression of the velocity profile proposed by the two minimum models, the motoneuron 

command can then be modeled by an impulse. The differences observed in the resulting 

mathematical expressions describing their outputs rely on the different assumptions taken 

up both to represent the profile of ( )ih t  and to fix the number of corresponding 

subsystems.  Indeed, as we have seen for the MSD models, the impulse response ( )ih t of 

each subsystem is defined inside a bounded interval [ ],i ia b  and, when the number N of 

subsystems is large, the convolution product tends toward a symmetrical Beta profile in 

this bounded interval[ ],a b , such that
1 1

N N

i
i i

b
= =

anda a= = ib∑ ∑  (Papoulis 1962). For the 

Minimum-Time model, the half-bounded ( )h ti  functions decrease exponentially with 

time and when N is large, the convolution product tends towards an asymmetric Gamma 

profile. Since the velocity profiles of simple rapid movements are intrinsically 

asymmetric, the analytical expression proposed by the Minimum-Time model seems 

more general and accurate than the profile proposed by the Minimum-Square-

Derivatives, including the Minimum-Jerk model.  

 However, neither of these minimum models explicitly takes into account the antagonist 

activity observed in the physiological behavior of the neuromuscular components 

(muscles). This is equivalent to neglecting these opposite effects, especially the 

corresponding antagonist velocity component.   
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4.2. Comparison of the two theories   

After establishing a common ground between the Minimization and the Kinematic 

Theories, one can use the Central Limit Theorem (CLT), as a comparison platform, to 

determine the position of each model relative to the others, using two criteria:  (i) the 

convergence limit and (ii) the dependency of the subsystems.  

Concerning the convergence of independent subsystems, it has been shown in probability 

theory that the convolution product of large number of N Poisson-like densities 

converges towards a Gamma profile and that the convolution product of large number of 

N Gamma densities converges towards a lognormal profile (Thorin 1977). When N tends 

toward infinity, the CLT states that all these convolution products will converge towards 

a Gaussian profile (Feller 1966; Papoulis 1962). These results remain valid if they are 

transposed from a probabilistic space to linear system space where the densities represent 

the impulse responses of the constituting subsystems (Luce 1986; Papoulis 1962). 

As one can see, a symmetric Gaussian function becomes the theoretical limit profile for 

the Minimum-Square-Derivatives and the Minimum-Time models. Indeed, according to 

the CLT, both the Beta and the Gamma profiles will tend toward a Gaussian function 

when N tends towards infinity and the convergence errors that emerge when N is finite 

will be expressed by the Jacobi polynomials ( ); , 1NJ t α α β+ −  and by the Laguerre 

polynomials ( ) ( )NL tα  respectively (Papoulis 1962).  

With respect to our second comparison criterion: the dependent behavior of the 

subsystems, if these were independent, the convolution product would tend towards a 
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symmetric Gaussian function. However, in real life, neuromuscular subsystems are 

physically connected to each others and the system dependency cannot be neglected, as it 

is done in the two minimum models studied here. The Kinematic Theory takes that 

dependency into account by assuming a proportionality relationship between the 

cumulative time delays of adjacent subsystems (Plamondon 1995a).                  

  In this general context, the asymmetric shape of the velocity profile could be 

explained using two scenarios: either (i) the subsystems are represented by independent 

Poisson-like impulse responses, in which case the velocity profile converges towards a 

lognormal asymmetric function when N is large but finite; or (ii) the subsystems are 

dependent and linked with a proportionality relationship, in which case the velocity 

converges towards a lognormal asymmetric function whatever the form of the individual 

impulse responses as long as N is infinite. In both cases, the lognormal function is 

considered as the upper limit of the asymmetric profile to be used for the description of a 

neuromuscular system response. According to physiological observations where the 

subsystems, made up of neuronal and muscular units are dependent in the sense that they 

form a network where one unit is directly or indirectly connected to a huge number of 

other units, the second scenario is privileged in this study. Moreover simulations studies 

(Djioua & Plamondon 2003; 2004; Plamondon and Alimi 1997) using a network of 

second order subsystems have shown that the error of convergence towards a lognormal 

was negligible when the number of dependent subsystems exceeded 12, quite a small 

number. Finally, when the antagonist action is explicitly taken into account, as it is the 

case in the Kinematic theory, a Delta-Lognormal profile becomes the limit profile upon 

which the velocity profile of rapid movements converges. This profile accounts for all the 
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main observations reported in the introduction. For example, it can have up to three peaks 

while all other models generate a single peak (Plamondon & Djioua 2006; Woch & 

Plamondon 2004)  

We have summarized all these comparisons in Figure 2 where the analytical expressions 

proposed by the various models are positioned in the global context of various successive 

approximations of a Delta-Lognormal function. For example, to get a Minimum-Time 

model from a Delta-lognormal, one must neglect the antagonist component; assume a 

finite number of N independent subsystems and, constraint the impulse response of such 

subsystem to decrease exponentially in time (Poisson-like profile). Similarly, to get a 

Minimum-Jerk model, one must also assume the approximations described in equations 

(18) to (20). 
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Figure 2: Classification of some kinematic models according to the Central Limit Theorem: The arrows 

highlight the convergence from a model to another. Notice that the Gaussian and the Lognormal models 

result from the same limit model except that the lognormal description generally takes into account the 

subsystem dependence. Each up-pointing arrow indicates the passage from a less to a more precise velocity 

description, which converges towards a lognormal limit, as described by the Central Limit Theorem. The 

Delta-Lognormal model is an extension of a lognormal model: it also considers the neuromuscular synergy 

that describes a multiple peaks observed on a velocity profile of rapid movement.  

 5. Discussion 

In the Minimum-Jerk model, one is not interested in the command profile sent by the 

CNS. It is directly assumed that the alpha motoneuron signals, observed at the muscle 

level, correspond to a movement trajectory, which suggests that the neuromuscular 

network is just a system that converts a virtual trajectory to a real one with the same 

profile by transforming metabolic energy to mechanical movement. This representation 
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does not take into account the movement genesis, i.e. the instant when the command is 

sent to the end-effector, neither the time required by the CNS to build and send the 

appropriate signals to the motor cortex neurons nor the moment when the muscle starts to 

contract. Furthermore, this model refers to movement organization without offering any 

insights about the structure of the neuromuscular system. 

Concerning the Minimum-Time model, the command signal is explicitly modeled by a 

set of step functions when the observable variable is the position and by Dirac impulses 

when one is dealing with the velocity profile. In this paradigm, the neuromuscular system 

is explicitly represented by a serial network of interneuron and neuromuscular synapses, 

where the sequence of Dirac impulse commands propagates to produce an end-effector 

movement with a Gamma velocity profile.  

As previously derived, the Beta velocity profile, proposed as a generalization of the 

Minimum-Jerk, is itself a particular case of the Gamma model. Thus, implicitly and 

explicitly, both of these models express the velocity profile as the impulse response of a 

convolution product, made up of a large number of subsystem impulse responses.  The 

subsystem represents the functioning of a set of neuronal or neuromuscular populations 

which are recruited to contribute in the movement generation.        

As a consequence, the Minimization Theory can be analyzed within the same framework 

than the Kinematic Theory, except that it exploits different assumptions and approaches 

to describe the functioning of the motor control. Indeed, it considers the subsystems as 

independent and assumes specific forms for their impulse responses. To generate a rapid 

movement, the NMS requires a relatively small number (for example 3 for a Minimum-

Jerk) of these subsystems and then the response time of each subsystem must be 
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represented at the same time-scale as the movement response. This latter assumption is 

difficult to support biologically: the duration of the synapse responses is generally 

expressed in milliseconds (Kandel et al. 2001), while the rapid movement duration is 

expressed in hundred of milliseconds i.e. typical values of 200 ms to 500 ms (Harris & 

Wolpert 1998; Haruno & Wolpert 2005; Tanaka et al. 2006). In other words, the 

subsystems and the global system responses are described at different time-scales and a 

large number of subsystems (more than one hundred) are thus required in a convolution 

product to move from a lower to an upper time level.   

In this perspective, the Kinematic Theory seems more realistic. First, the subsystems are 

not considered as independent and no special constraints are put on the form of the 

individual impulse responses. The production of a rapid movement requires a large 

number of subsystems (the number depends on a characteristic of subsystem impulse 

response and 12 seems realistic when considering those described within the same time 

scale than the velocity) and two neuromuscular systems (agonist and antagonist) work in 

synergy. These latter assumptions seem fundamental and probably explain why the Delta-

Lognormal model leads to a most accurate expression for a velocity profile (Plamondon 

et al. 1993; Feng et al. 2002).  

Moreover, we can also propose another interpretation to the Minimum-Square-

Derivatives criteria. Indeed, for the case of independent subsystems and single peak 

velocity, it has been shown that when the number of subsystems is finite, the limit profile 

is not reached and the resulting convergence error is proportional to the third time-

derivative of a Gaussian function (see equation 4). This convergence error distorts the 

smooth theoretical profile, leading to the emergence of very small ripples. To maximize 
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the smoothness and reduce these ripples, one can minimize the lost energy, described 

previously as a cost function and now associated to the convergence error function. In 

this context, the minimization criteria introduced by Hogan (1984) and other authors, can 

be given another interpretation: they are special cases of a more general minimization 

process in the context of the existence of a theoretical limit profile, given by the Central 

Limit Theorem. 

To illustrate this point, let consider the case of the Minimum-Snap. To get a smoothest 

trajectory one can use the following minimization criterion:  

( ) ( )
2 24 3

4 4 3
0 0

mind dC t dt t dt
dt dt

θ ω
∞ ∞⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∫ ∫ →                                           (21) 

where  is the corresponding velocity of the smoothest trajectory.   ( )tω

Under the same condition of independent subsystems, and according to the Kinematic 

Theory,  would then converge towards a Gaussian profile ( )tω ( );...N t  as the energy 

associated to the convergence error ( );...convE t  tends towards zero. 

( ) ( ) ( )
3 3

2
3 ; ,

6
N

conv N N
dt t
dt dt

χ μ σ ωΕ Ν ∝ 3

d t                               (22) 

In other words, the smoothest limit velocity profile will be reached when the energy 

associated with the convergence error ( );...convE t  will be minimal.    

( ) ( )
23

2
3

0 0

;... 0conv

N

dE t dt t dt
dt

ω
∞ ∞

→∞

⎡ ⎤
≈ →⎢ ⎥

⎣ ⎦
∫ ∫                          (23) 

This is the condition exploited in the Kinematic Theory. Combined with the hypothesis of 

dependent neuromuscular subsystems, it results in an optimal descriptor of the velocity 

profiles.  
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On that account, two improvements have been provided in this paper. On the one hand, 

we have provided a new perspective on the minimization models studied here. Although 

these processes could not be analyzed so far in term of motor control, in a sense that the 

motoneuron command was not explicitly defined, we have shown that these processes 

could be related to the convergence process of the convolution product of a large number 

of subsystem impulse responses and that in this perspective, they could be considered as 

the result of a motor control or at least as the execution process of motor tasks by the 

neuromuscular system. Following the approach of the Kinematic Theory, we have added 

supplementary knowledge to the Minimization Theory by modeling its control signal by a 

weighted Dirac-impulse. 

On the other hand, the Kinematic Theory had not been studied through the point of view 

of ill-defined motor control as depicted by Bernstein (1967). In the light of this study, this 

theory can now be considered as an optimization process. In other words, it can be seen 

as the ultimate minimization theory and the process of trajectory selection can thus be 

described as the process of recruiting a sufficient number of neuromuscular units to 

produce the most perfect Delta-Lognormal profile under the required circumstances. 

Indeed, this theory explains and models the functioning of the neuromuscular system and 

the control signal by explicitly highlighting the motor control through the parameter  

and  where  controls the movement distance and 

1D

2D 1D D− 2 1 2D D  controls the 

movement time (Plamondon 1995b; Plamondon & Alimi 1997). In the context of the 

present study, such a prediction will be more or less exact depending on the error of 

convergence associated with the process. The larger the number of neuromuscular 

subsystems, the smaller the convergence error: and the smaller the convergence error, the 
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better the Delta-Lognormal approximation, and the better the selection of a specific 

trajectory from the input commands.  

 

6. Conclusion  

In this study, we have reviewed and compared the Minimization and the Kinematic 

Theories through their basic concepts and their different analytical expressions to model 

stereotypical velocity profiles. We have postulated that some relationships between these 

models should exist. To highlight these similarities, we have studied the approximations 

and methods used by these models to represent rapid aimed movements.  It has been 

shown that the two theories can be seen as being built on the same concepts: from a 

functional point of view, the neuromuscular system can be represented by the 

convolution product of a large number of subsystem impulse responses while the 

command signal can be modeled by a Dirac impulse weighted by a movement distance. 

Moreover, relying on the hypothesis that minimization principles express the fact that the 

CNS seems to recruit the motor units that either minimize the lost energy, represented by 

a cost function or that minimize the movement duration, we have expressed these same 

criteria within the context of the convergence of a convolution product toward a limit 

velocity profile. This has leaded us to a way of ranking the various models, based on the 

hidden approximations and assumptions used by these models to construct their 

analytical expression of a velocity profile. In this perspective, the Minimum-Jerk, the 

Minimum-Time, the Beta and the Gamma models can be considered as resulting from 

successive approximations of the Delta-Lognormal model and, the Kinematic Theory can 

be seen as an ultimate minimization theory.   
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