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RÉSUMÉ

Ce mémoire s’intéresse à la programmation par contraintes, un paradigme pour résoudre des
problèmes combinatoires. Pour la plupart des problèmes, trouver une solution n’est pas
possible si on se limite à des mécanismes d’inférence logique; l’exploration d’un espace des
solutions à l’aide d’heuristiques de recherche est nécessaire. Des nombreuses heuristiques
existantes, les heuristiques de branchement basées sur le dénombrement seront au centre de
ce mémoire. Cette approche repose sur l’utilisation d’algorithmes pour estimer le nombre de
solutions des contraintes individuelles d’un problème de satisfaction de contraintes.

Notre contribution se résume principalement à l’amélioration de deux algorithmes de dénom-
brement pour les contraintes alldifferent et spanningTree; ces contraintes peuvent exprimer
de nombreux problèmes de satisfaction, et sont par le fait même essentielles à nos heuristiques
de branchement.

Notre travail fait également l’objet d’une contribution à un solveur de programmation par
contraintes open-source. Ainsi, l’ensemble de ce mémoire est motivé par cette considération
pratique; nos algorithmes doivent être accessibles et performants.

Finalement, nous explorons deux techniques applicables à l’ensemble de nos heuristiques: une
technique qui réutilise des calculs précédemment faits dans l’arbre de recherche ainsi qu’une
manière d’apprendre de nouvelles heuristiques de branchement pour un problème.
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ABSTRACT

This thesis concerns constraint programming, a paradigm for solving combinatorial problems.
The focus is on the mechanism involved in making hypotheses and exploring the solution
space towards satisfying solutions: search heuristics. Of interest to us is a specific family
called counting-based search, an approach that uses algorithms to estimate the number of
solutions of individual constraints in constraint satisfaction problems to guide search.

The improvements of two existing counting algorithms and the integration of counting-based
search in a constraint programming solver are the two main contributions of this thesis. The
first counting algorithm concerns the alldifferent constraint; the second one, the spanningTree
constraint. Both constraints are useful for expressing many constraint satisfaction problems
and thus are essential for counting-based search.

Practical matters are also central to this work; we integrated counting-based search in an
open-source constraint programming solver called Gecode. In doing so, we bring this family of
search heuristics to a wider audience; everything in this thesis is built upon this contribution.

Lastly, we also look at more general improvements to counting-based search with a method
for trading computation time for accuracy, and a method for learning new counting-based
search heuristics from past experiments.
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CHAPTER 1 INTRODUCTION

Constraint programming (CP) is a declarative paradigm that has proven useful for solving
large combinatorial problems, particularly in the areas of scheduling and planning. Appearing
in the eighties, this approach was influenced by various fields such as Artificial Intelligence,
Programming Languages, Symbolic Computing and Computational Logic [Barták (2018)].
Constraint programming can be seen as a competitor to other mathematical programming
approaches such as linear programming (LP) or integer programming (IP). As constraint
programming is more niche, one could ask why it is worth using instead of other paradigms.

One of the biggest selling points of CP is that the formulation of a problem is simple and
straightforward; models in constraint programming are described by high level concepts that
are close to the original problem formulation. With the Constraint Satisfaction Problem
(CSP) as one of the main abstractions, modeling is done by expressing constraints on vari-
ables. This is in contrast with other mathematical programming approaches where con-
straints are translated to mathematical equations. Reasoning about the model and designing
search heuristics is much simpler as a result.

Constraint programming solvers offer a catalog that goes from binary inequalities to complex
constraints like bin packing and Hamiltonian path. Typically, these global constraints can be
reformulated with several simpler constraints (like we would do in LP/IP). However, global
constraints are able to solve problems faster because they encapsulate the semantic of bigger
pieces in the problem; thus enabling models to be very precise [van Hoeve and Katriel].

In a constraint programming solver, a CSP is solved by giving a model of the problem and a
search strategy, thus offering a declarative programming framework: the user describes the
structure of the problem without specifying how to solve it. Behind the scenes, the solver
combines various algorithms to solve the problem according to the specifications — its model
and the search strategy.

In the next sections, basic notions in constraint programming will be introduced by looking
at an example: the Magic Square Problem.

1.1 CSP Formulation of the Magic Square Problem

A CSP is formally described by the following tuple:

P = 〈X,D,C〉 (1.1)
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where

• X = {x1, . . . , xn} is a finite set of variables.

• D = {D1, . . . , Dn} is a finite set of domains such that xi ∈ Di.

• C = {C1, . . . , Ct} is a finite set of constraints. A constraint Ci on variables x1, . . . , xk

is a relation that restricts the Cartesian product of its variables to a subset Ci ⊆
D1 × · · · ×Dk.

A solution to P is an assignment that satisfies all constraints. As previously said, the first
step in CP is to give a description of the problem.

16 . . .

. 10 . .

. . 7 .

. . . .

Figure 1.1 Partially filled magic square instance

Let’s take the example of the magic square instance shown in Fig. 1.1. An order n magic
square is a n by n matrix containing the numbers 1 to n2, with each row, column and main
diagonal equal to n(n2 + 1)/2 (#19 in CSPLib [Walsh (2018)]). The magic square in Fig. 1.1
is defined by the following CSP:
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P = 〈X,D,C〉

X = {x1, . . . , x16}

D = {D1, . . . , D16 | Di = {1, . . . , 16}}

C = {

x1 = 16, x6 = 10, x11 = 7,

xi 6= xj, ∀1 ≤ i < j ≤ 16,

x4i+1 + x4i+2 + x4i+3 + x4i+4 = 34, ∀i ∈ {0, . . . , 3},

xi + xi+4 + xi+8 + xi+12 = 34, ∀i ∈ {1, . . . , 4},

x1 + x6 + x11 + x16 = 34,

x4 + x7 + x10 + x13 = 34,

}

Figure 1.2 Model for magic square in Fig 1.1

1.1.1 Inference

Given the previous CSP, the next task is to do constraint propagation on the given problem
to obtain local consistency for all constraints (thus obtaining what we call a stable state). In
other words, we deduce everything we can from the CSP formulation of our problem. For
example, we can deduce that x16 = 1 because the sum of the diagonals must be equal to 34.
For a constraint, propagation is the process of filtering incoherent values from the domain of
its variables.

Obtaining a stable state is done by scheduling all constraints for propagation. Each time a
constraint propagates, it may reschedule another one by modifying a variable in its scope.
Eventually, we obtain a stable state when this process finishes and all constraints have lo-
cal consistency. In a finite domain constraint programming solver, this process will always
terminate because each new iteration has to prune variable domains.

In our example, constraint propagation brings us to the following stable state:
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16
2 3 4 5
6 8 9 11

12 13

2 3 4 5
6 8 9 11

12 13

2 3 4 5
6 8 9 11

12 13

2 3 4 5
6 8 9 11

12 13
10

2 3 4 5
6 8 9 11

12 13
14 15

4 5 6 8
9 11 12
13 14 15

2 3 4 5
6 8 9 11

12 13

2 3 4 5
6 8 9 11

12 13
14 15

7
4 5 6 8
9 11 12
13 14 15

3 4 5 6
8 9 11

12 13 14

4 5 6 8
9 11 12
13 14 15

4 5 6 8
9 11 12
13 14 15

1

Figure 1.3 P

Here, we could ask why 14 ∈ D13: there is no valid assignment satisfying 16+x5+x9+14 = 34,
as x5 and x9 should both be equal to 2, thus violating the alldifferent constraint. The
key observation is that both constraints are locally consistent, the alldifferent constraint
is not involved for evaluating supporting solutions of other linear constraints.

1.1.2 Search

Constraint propagation was not sufficient for finding a valid solution to our problem; we still
have to find a valid assignment for 12 variables. To this end, we need the second component
of the solver: a search strategy. The search strategy is used to make hypotheses to prune
the search space when no more constraint propagation is possible. A valid search strategy
for our problem could be as simple as:

• Select the variable xi with the smallest domain

• Select the smallest value v ∈ Di

• Split the solution space as P ∧ (xi = v) ∪ P ∧ (xi 6= v)

This strategy splits P into two valid CSPs (with h1 : xi = v):

P

P ∧ h1 P ∧ h1

Figure 1.4 Solution space splitting
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If we apply this search strategy to our example, we have x5 with a cardinality of 10 and a
minimum value of 2, giving us the hypothesis h1 : x5 = 2. The component of the search
strategy that gives hypotheses is called a branching heuristic. After constraint propagation,
we get the state shown in Fig. 1.5.

16 3 4 5 6
8 9 11

3 4 5 6
8 9 11

4 5 6 8
9 11 12

2 10 8 9 11
12 13 14

8 9 11
12 13 14

3 4 5 6
8 9 11
12 13

3 4 5 6
8 9 11
12 13
14 15

7
8 9 11
12 13
14 15

3 4 5 6
8 9 11
12 13

5 6 8 9
11 12 13

14 15

5 6 8 9
11 12 13

14 15
1

Figure 1.5 P ∧ h1

However, we still haven’t found a solution. If we use our branching heuristic again, we get
a second hypothesis h2 : x7 = 8 that leads, after constraint propagation, to the state in
Fig. 1.7.

P

P ∧ h1 P ∧ h1

P ∧ h1 ∧ h2 P ∧ h1 ∧ h2

Figure 1.6 Solution space split after h2
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16 6 9 4 5 6 4 5 6

2 10 8 14

3 4 5 9 11 7 13 15

11 12 13 5 6 9 13 15 1

Figure 1.7 P ∧ h1 ∧ h2

Finally, a third hypothesis h3 : x2 = 6 will lead us to a failed state. In other words,
finding a solution is now impossible as the maximum sum we can obtain in the first row is
16 + 6 + 5 + 5 = 31, which is lower than 34. This means that our sequence of hypotheses
(shown in red) is incorrect.

16 6 4 5 4 5

2 10 8 14

3 4 5 9 11 7 13 15

11 12 13 5 9 13 15 1

Figure 1.8 P ∧ h1 ∧ h2 ∧ h3

If we continue the exploration of this implicit tree in a depth-first search fashion, we will
eventually find a solution for this particular instance.

1.1.3 Consistency Levels for Constraints

When a constraint propagates to achieve local consistency, it may use different algorithms to
do so. One way to classify those algorithms is by the consistency level they enforce. Applying
different levels of consistency may yield different stable states.
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In Fig. 1.5, constraint propagation is done by applying bounds consistency for all constraints
after making hypothesis h1. Doing so ensures that all variables have a supporting solution
for the minimum and maximum value in their domain. In other words, for a given constraint
and bound value, if it is impossible to assign other variables while satisfying the constraint,
we can remove it.

If we instead apply domain consistency after making h1, we get an alternative stable state
to Fig. 1.5:

16 3 4 5 6
8 9 11

3 4 5 6
8 9 11

4 5 6 8
9 11 12

2 10 8 9 11
13 14

8 9 11
13 14

3 4 5 8
11 12 13

3 4 5 6
8 9 11
12 13
14 15

7
8 9 11
12 13
14 15

3 4 5 8
11 12 13

5 6 8 9
11 12 13

14 15

5 6 8 9
11 12 13

14 15
1

Figure 1.9 P ∧ h1

Domain consistency is stronger than bounds consistency; instead of only looking at bounds
for incoherent values, we look at the whole domain. It takes more time, but more incoherent
values are filtered as a result, as Fig. 1.9 shows with x7, x8, x9, and x13. Let’s take the
linear constraint of the first column: 16 + 2 + x9 + x13 = 34. If we assign x9 = 6, there’s
no possible solution for x13 as 34 − 16 − 2 − 6 = 10 /∈ D13. This incoherent value was not
removed by the bounds consistency algorithm before.

1.2 Problem Under Study

In the previous example, a different search strategy may have led to a solution without
a single backtrack; another one, to a solution after more backtracks. Making an incorrect
hypothesis in the first node of the search tree can be very costly if we explore the search space
in a regular backtracking fashion. Choosing a good search strategy is of great importance.

One problem in constraint programming is the lack of good generic search heuristics as
opposed to linear or integer programming; when modeling a new problem, users are often
required to make custom heuristics to obtain good performance. This thesis is interested
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in counting-based search (CBS) [Zanarini and Pesant (2007)], a family of generic search
heuristics in CP that uses solution counting. This approach exploits the expressiveness of
CP while being easy to use for new problems. However, in its current state, it is mainly
limited to academia. In this thesis, the following issues are addressed:

• Depending on the types of constraints present in the model computing a branching
choice can be prohibitively slow compared to other branching heuristics.

• Counting-based search lacks visibility; it is not available in popular constraint program-
ming library.

• Selecting the correct branching heuristic involves trial and error.

We propose the following contributions, with the first two published in a paper to be presented
on the 15th International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research under the name Accelerating Counting-Based Search:

• Computational improvements to counting algorithms for two constraints, namely all-
different (Section 3.1) and spanningTree (Section 3.2).

• A generic method to avoid calling counting algorithms at every node of the search tree
(Section 3.3).

• Support for CBS in open-source solver that is popular both with academia and industry
(Section 4).

• An experiment for learning new branching heuristics based on previous observations
(Section 6).
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CHAPTER 2 LITERATURE REVIEW

2.1 Survey of Generic Branching Heuristics

Constraint programming builds concise models from high-level constraints that reveal much
of the combinatorial structure of a problem. That structure is used to prune the search space
through domain filtering algorithms, to guide its exploration through branching heuristics,
and to learn from previous attempts at finding a solution.

Having good models in constraint programming often requires crafting custom branching
heuristics. Other paradigms like Mixed Integer Programming (MIP) and SAT solvers are
easier to use in this regard; they perform really well with default search strategies (Michel
and Van Hentenryck (2012)). This success prompted the constraint programming community
to design new generic heuristics in recent years. Having powerful generic heuristics lowers
the complexity of modeling a problem in CP; one can focus on defining the CSP rather than
describing how to search the solution space.

All presented branching heuristics follow a dynamic ordering, meaning they choose their next
variable during search as opposed to a static ordering, which determines the order of variables
for branching before starting search; dynamic ordering performs usually much better because
it is more informed.

2.1.1 Fail First Principle

One of the first guiding principles for designing search strategies is given in [Haralick and
Elliott (1980)] and is known as the fail first principle: the variable xi involved in the next
branching decision should be the one that is the most likely to lead to failure. While it may
seem counter-intuitive, applying this strategy is the fastest way to prove that a sub-tree in
the current search space has no solutions — if every possible value in Di leads to failure, it
is a proof that the current problem has no solution, and we can backtrack immediately. The
fail first principle can be used to design various strategies for selecting variables in branching
heuristics. As an example, we can select the variable that has the smallest domain (it is
more constrained than other variables) or the variable involved in the most constraints; this
principle has inspired a variety of variable selection strategies in branching heuristics.
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2.1.2 Impact-Based Search

Impact-based search (IBS) is inspired by ideas originating from MIP solvers [Refalo (2004)].
Like its name implies, it defines the notion of impact for variables; a variable has a big impact
if its assignment greatly reduces the search space by doing a lot of constraint propagation.
Thus, exploring solutions by looking at variables with big impact leads to smaller search
trees.

This strategy is generic because it looks at the reduction of the search space for the given
instance. The size of the search space is approximated by:

P = |D1| × · · · × |Dn| (2.1)

As a consequence, the impact of an assignment, with Pbefore and Pafter denoting P before
and after the variable assignment and the resulting constraint propagation, is defined as:

I(xi = a) = 1− Pafter

Pbefore

(2.2)

Equation 2.2 can then be used to define the impact of a variable. Impact branching heuristics
are generic; they do not use special knowledge about the problem at hand and can readily
be applied to all models.

2.1.3 The Weighted-Degree Heuristic

WDEG [Boussemart et al. (2004)] uses information about the previous nodes seen in the
search tree: each time a constraint is violated during search, an associated weight is increased.
This allows to give a weighted-degree to each variable by doing a weighted sum of every
constraint it is part of. By focusing on variables with big weighted-degrees, one can design a
branching heuristic following the fail-first principle.

2.1.4 Activity-Based Search

Like IBS, the activity-based seach (ABS) [Michel and Van Hentenryck (2012)] is influenced
by a heuristic from a solver with a different paradigm: the SAT heuristic VSIDS [Moskewicz
et al. (2001)].

ABS, like WDEG, associates a counter to each variable. However, the counter instead keeps
track of every time the domain of a variable is pruned, thus giving a measure of activity for
each variable. This counter decays during search, hence slowly forgetting about past activity.
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This information can be used to select variables with the highest activity.

2.1.5 Counting-Based Search

Counting-based search (CBS) [Zanarini and Pesant (2007)] represents a family of branching
heuristics that guides the search for solutions by identifying likely variable-value assignments
in each constraint. Given a constraint c(x1, . . . , xn), its number of solutions #c(x1, . . . , xn),
respective finite domains Di 1≤i≤n, a variable xi in the scope of c, and a value v ∈ Di, we call

σ(xi, v, c) = #c(x1, . . . , xi−1, v, xi+1, . . . , xn)
#c(x1, . . . , xn) (2.3)

the solution density of pair (xi, v) in c, i.e. how often a certain assignment is part of a solution
to c.

Let’s suppose we have the constraint ci =alldifferent(x1, x2, x3) with D1 = {1, 2}, D2 =
{2, 3} and D3 = {1, 2, 3}. We can verify by hand that this constraint admits 3 solutions. If
we fix x1 = 1, we are left with D2 = {2, 3}, D3 = {2, 3}, and 2 possible solutions. Thus, we
say that the solution density of the assignment x1 = 1 is 2

3 ; it reduces the search space by
33% for this constraint.

CBS was originally inspired by IBS [Pesant (2005)]. The idea was to count solutions for indi-
vidual constraints, thus refining the notion of impact in IBS; given a constraint c(x1, . . . , xn),
we know that #c(x1, . . . , xn) ≤ |D1| × · · · × |Dn|. However, this approach relies on having
specialized counting algorithms for constraints. To this effect, the original paper also gave
an idea of how solution counts could be computed for several constraints.

One of the core ideas of counting-based search is to exploit the constraints of the model
when branching. While other heuristics like IBS and ABS consider constraint propagation,
they do not take into account constraint types, thus missing on the expressivity of constraint
programming.

Generic Counting-Based Search Heuristic Framework

In [Zanarini and Pesant (2007)], a first framework for designing branching heuristics with
solution counts was given. While it does not exactly correspond to the notation in the article,
the general principle is given in Alg. 1. For each constraint, we compute the solution density
of every 〈variable, value〉 pair and put it in SD. Afterwards, a procedure — here called
CBS_HEUR — can aggregate solution densities and propose an integrated branching choice
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(i.e. the procedure returns both the variable and the value instead of just the variable).

1 SD = {}
2 foreach constraint c(x1, . . . , xn) do
3 foreach unbound variable xi ∈ {x1, . . . , xn} do
4 foreach value d ∈ Di do
5 SD[c][xi][d] = σ(xi, d, c)
6 return CBS_HEUR(SD) . Return a branching decision using SD
Algorithm 1: Generic counting-based search generic decision flow, adapted from [Za-
narini and Pesant (2007)]

CBS_HEUR can be a variety of branching heuristics, as shown by [Zanarini (2010)]. One simple
combination that works well in practice, called maxSD, branches on x?

i = v? where

(x?
i , v

?, c?) = argmax
c(x1,...,xn)∈C, i∈{1,...,n}, v∈Di

σ(xi, v, c) (2.4)

Another one, called aAvgSD, also branches on x?
i = v?:

(x?
i , v

?) = argmax
i∈{1,...,n}, v∈Di

∑
c∈Γ(xi) σ(xi, v, c)
|Γ(xi)|

(2.5)

where Γ(xi) is the set of constraints in which xi is included. Both heuristics branch on x?
i 6= v?

upon backtracking.

Counting Algorithms

Between 2005 and 2012, various papers were published to propose counting algorithms for
different constraints:

• regular constraint (as in regular language) [Pesant and Quimper (2008)];

• knapsack constraint [Pesant and Quimper (2008)];

• alldifferent constraint [Zanarini and Pesant (2010)];

• element constraint [Pesant and Zanarini (2011)];

• gcc or global cardinality constraint [Pesant et al. (2012)].



13

In [Pesant and Quimper (2008)], the authors benchmark with good results different counting-
based search heuristics against other generic methods such as IBS and WDEG on the follow-
ing problems:

• Quasigroup Completion Problem with Holes (QCP)

• Magic Square Completion Problem

• Nonograms

• Multi Dimensional Knapsack Problem

• Market Split Problem

• Rostering Problem

• Cost-Constrained Rostering Problem

• Traveling Tournament Problem with Predefined Venues (TTPPV)

The previous list shows that only a handful of constraints can already be used to model a
lot of problems. In later research, the following counting algorithms were also introduced:

• spanningTree constraint [Brockbank et al. (2013)];

• spread/deviation constraints [Pesant (2015)];

• minimum weighted adaptation for the spanningTree constraint [Delaite and Pesant
(2017)].

2.2 Effort for Reducing Computation in the Search Tree

Given we have a search heuristic that performs well, constraint propagation is going to be the
next decisive factor for the performance of the model. It will mainly depend on the constraints
used for modeling — a problem may admit different models — and their consistency levels.

Choosing the right constraints and consistency levels for a problem is a difficult task. While
important for propagation, it will also influence how CBS performs; counting heuristics are
specialized for each constraint and counting for a given constraint may be harder than for
another one. Moreover, the same constraint can have different counting algorithms depending
on the consistency level. As an example, knapsack has a different algorithm for domain
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consistency and bounds consistency, with the latter version being easier to compute [Pesant
et al. (2012)].

The task of automating the choice of consistency has received some attention in the constraint
programming community in recent years.

Static analysis on finite domain constraint logic programs has been used to decide when a
constraint with domain consistency could be replaced with another with bounds consistency,
while keeping the search space identical [Schulte and Stuckey (2001)]. In [Schulte and
Stuckey (2008)], a dynamic version with the same guarantee was designed and tested in a
CP solver.

Heuristic approaches were also tried for tackling the similar problem of dynamically switching
between weak and strong local consistencies for binary CSPs [Stergiou (2008)], and for non-
binary CSPs in [Paparrizou and Stergiou (2012)] and [Woodward et al. (2014)]. The latter
approach counts support for variable-value pairs, meaning they use information similar to
CBS.

2.3 Adaptive Branching Heuristics

In constraint programming, computing branching choices is usually very fast (with counting-
based search and IBS being notable exceptions). As a result, excluding the design of new
branching heuristics (both generic or specialized), techniques for automating the choice or
design of branching heuristics are a big research topic. In [Burke et al. (2013)], such techniques
are described as hyper-heuristics. Broadly speaking, hyper-heuristics can be classified in two
categories: heuristics for selecting other heuristics or heuristics for generating heuristics.

[Terashima-Marín et al. (2008)] and [Ortiz-Bayliss et al. (2012)] both proposed a high level
heuristic that learns to choose low-level heuristics depending on the problem state. [Ortiz-
Bayliss et al. (2010)] also investigated how two different variable ordering heuristics performed
depending on constraint density and tightness, and this information was used in making a
hyper-heuristic using both variable ordering strategies. All these techniques were used on
constraint satisfaction problems, but did not use CP.

There are also other approaches that do not characterize themselves as hyper-heuristics.
In [Epstein et al. (2002)], an architecture for combining the expertise of different competing
heuristics, here called Advisors, was adapted from an old framework called FORR [Epstein
(1994)]. Later, [Soto et al. (2012)] also explored the problem of choosing the right combination
of heuristics for a given problem.
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CHAPTER 3 ACCELERATING COUNTING-BASED SEARCH

The cost of computing solution densities depends on the constraint: for some it is only
marginally more expensive than its existing filtering algorithm (e.g. regular) while for
others exact computation is intractable (e.g. alldifferent). As stated in the introduction,
the extra work done by counting algorithms is often a bottleneck when solving a model,
leading to slower execution time.

This chapter presents several contributions to accelerate counting-based search. We first dis-
cuss specific improvements for the alldifferent and spanningTree counting algorithms in
Section 3.1 and 3.2. Then a generic method for accelerating search is presented in Section 3.3.
All discussed algorithms are implemented using Gecode [Gecode Team (2017)] and available
in [Gagnon (2017)].

3.1 Alldifferent Constraints

An instance of an alldifferent(x1, . . . , xn) constraint is equivalently represented by an in-
cidence matrix A = (aiv) with aiv = 1 whenever v ∈ Di and aiv = 0 otherwise. For notational
convenience and without loss of generality, we identify domain values with consecutive natu-
ral numbers. Because we will want A to be square (with m = |⋃xi∈X Di| rows and columns),
if there are fewer variables than values we add enough rows, say p, filled with 1s. It is known
that counting the number of solutions to the alldifferent constraint is equivalent to com-
puting the permanent of that square matrix (dividing the result by p! to account for the extra
rows) [Zanarini and Pesant (2010)]:

perm(A) =
m∑

v=1
a1v perm(A1v) (3.1)

where Aij denotes the sub-matrix obtained from A by removing row i and column j.

A =


v = 1 v = 2 v = 3

x1 1 1 0
x2 0 1 1
x3 1 0 1


Figure 3.1 Incidence matrix for alldifferent(x1, x2, x3) with D1 = {1, 2}, D2 = {2, 3} and
D3 = {1, 3}
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Since computing the permanent is #P-complete [Valiant (1979)], Zanarini and Pesant pro-
posed approximate counting algorithms for the alldifferent constraint based on sam-
pling [Zanarini and Pesant (2007)] and upper bounds [Pesant et al. (2012)]. Algorithm 2
reproduces the latter using notation adapted for this article. As each assignment xi = v

in the alldifferent constraint induces a different incidence matrix, a naive approach to
compute solution densities is to recompute the permanent upper bound for each assignment.
However, our upper bounds are a product of factors F for each variable xi which depend only
on the size of its domain di = |Di| (line 1). Hence if we account for the domain reduction of
the assigned variable (line 5) and of each variable which could have taken that value (line 6)
— simulating forward checking — we can compute the solution density of each assignment
(line 10) by updating the upper bound UBA calculated for the whole constraint (line 1).
Reusing UBA avoids recomputing upper bounds from scratch. Let cv denote the number of
1s in column v of A. Given that we can precompute the factors, the total computational
effort is dominated by line 6 where we do a total of Θ(∑m

v=1 c
2
v) operations: for a given value

v, uv is computed cv times by multiplying cv − 1 terms.

1 UBA = ∏
xi
F [di] . Constraint upper bound

2 foreach xi ∈ X do
3 total = 0 . Normalization factor
4 foreach v ∈ Di do
5 uxi

= F [1]
F [di] . Variable assignment update

6 uv = ∏
k 6=i : v∈Dk

F [dk−1]
F [dk] . Value assignment update

7 UBxi=v = UBA · uxi
· uv . Assignment upper bound

8 total += UBxi=v

9 foreach v ∈ Di do
10 SD[i][v] = UBxi=v / total
11 return SD

Algorithm 2: Solution densities for alldifferent, adapted from [Pesant et al. (2012)]

3.1.1 Improved Algorithm

The product at line 6 of Algorithm 2 can be rewritten to depend only on v:

uv = F [di]
F [di−1]

∏
k : v∈Dk

F [dk−1]
F [dk] . (3.2)

This allows us, as shown in Algorithm 3, to precompute this product for every value (line 1-4)
as it does not depend on i anymore, leading to each UBxi=v being computed in constant time
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(line 8). We also avoid computing UBA since that factor cancels out during normalization.
Algorithm 3 runs in Θ(∑m

v=1 cv) time, which is asymptotically optimal if we need to compute
every solution density (since ∑m

v=1 cv = ∑n
i=1 di).

1 UBv = 1, ∀v ∈ {1, 2, . . . ,m}
2 foreach xi ∈ X do
3 foreach v ∈ Di do
4 UBv *= F [di−1]

F [di]

5 foreach xi ∈ X do
6 total = 0
7 foreach v ∈ Di do
8 UBxi=v = F [1]

F [di−1] ·UBv

9 total += UBxi=v

10 foreach v ∈ Di do
11 SD[i][v] = UBxi=v / total
12 return SD

Algorithm 3: Improved version of Algorithm 2.

3.1.2 Computing Maximum Solution Densities Only

Some search heuristics, such as maxSD, only really need the highest solution density from
each constraint in order to make a branching decision. In such a case it may be possi-
ble to accelerate the counting algorithm further. We present such an acceleration for the
alldifferent constraint.

The factors F in our upper bounds are strictly increasing functions, meaning that for a given
value v, the highest solution density will occur for the variable with the smallest domain.
Algorithm 4 identifies that peak for each value, knowing that the highest one will be included
in this subset. Note however that because we don’t compute a solution density for each value
in the domain of a given variable, we cannot normalize them as before (though we at least
adjust for the p extra rows). So we may lose some accuracy but what we were computing
was already an estimate, not the exact density. The asymptotic complexity of this algorithm
remains the same as the previous one, but makes fewer computations: we iterate on each
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variable and value once instead of three times.

1 UBv = (F [n−1]
F [n] )p, minv = 1, ∀v ∈ {1, 2, . . . ,m}

2 foreach xi ∈ X do
3 foreach v ∈ Di do
4 UBv *= F [di−1]

F [di]

5 if di < dminv then
6 minv = i

7 maxSD = {var = 0, val = 0, dens = 0}
8 foreach v ∈ {1, 2, . . . ,m} do
9 SD[minv][v] = F [1]

F [dminv−1] ·UBv

10 if SD[minv][v] > maxSD.dens then
11 maxSD = {minv, v, SD[minv][v]}
12 return maxSD

Algorithm 4: Maximum solution density for alldifferent

An evaluation of improvements of Algorithm 2, 3 and 4 is given in Section 5.1.1.

3.2 Spanning Tree Constraints

Brockbank, Pesant and Rousseau introduced an algorithm to compute solution densities for
the spanningTree constraint in [Brockbank et al. (2013)]. The graph is represented as a
Laplacian matrix L (vertex degrees on the diagonal and edges indicated by -1 entries) and
Kirchhoff’s Matrix-Tree Theorem [Chaiken and Kleitman (1978)] is used to compute solution
densities for every edge (u, v) using the following formula:

σ((u, v), 1, spanningTree(G, T )) = mu
v′v′ (3.3)

with Mu = (mu
ij) defined as the inverse of the sub-matrix Lu obtained by removing row and

column u from L and v′ equal to v if v < u and to v − 1 otherwise. Given a vertex cover of
size γ on a graph over n nodes, computing all solution densities takes O(γn3) time. Figure
3.2 shows an example graph and its Laplacian matrix.
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1

2 3

4
L =


3 -1 -1 -1
-1 2 -1 0
-1 -1 3 -1
-1 0 -1 2

 M1 =


5/8 2/8 1/8
2/8 4/8 2/8
1/8 2/8 5/8



Figure 3.2 Graph and its Laplacian matrix with γ = 2, meaning we can get every edge density
by inverting two submatrices, e.g. L1 (with inverse M1 shown) and L3

With this formula counting-based search heuristics can be used on problems such as de-
gree constrained spanning trees (and Hamiltonian paths in particular) with very good re-
sults [Brockbank et al. (2013)]. However, they become impractical for large instances because
of repeated matrix inversion. The following sections address this problem by proposing two
improvements. Note that these improvements remain valid for the recent generalization to
weighted spanning trees [Delaite and Pesant (2017)].

3.2.1 Faster Specialized Matrix Inversion

By construction, the sub-matrix Lu we invert has a special form that enables us to use a
specialized algorithm. It is Hermitian (more precisely, integer symmetric). Since the row and
column removed from L have the same index u, it is diagonally dominant: |`u

ii| ≥
∑

j 6=i |`ij|,∀i.
Its diagonal entries are positive. Therefore it is positive semidefinite or, equivalently, has non-
negative eigenvalues. The Matrix-Tree Theorem states that the number of spanning trees is
equal to the determinant of Lu, itself equal to the product of its eigenvalues. Therefore each
eigenvalue is strictly positive and Lu is positive definite.

A Hermitian positive definite matrix can be inverted via Cholesky factorization instead of
the standard LU factorization. Inverting a positive definite matrix requires approximately
1
3n

3 (Cholesky factorization) + 2
3n

3 floating-point operations whereas inverting a general
matrix requires approximately 2

3n
3 (LU factorization) + 4

3n
3 floating-point operations [Choi

et al. (1996)]. We therefore expect a two-fold improvement in runtime.

3.2.2 Inverting Smaller Matrices Through Graph Contraction

When branching, if an edge (u, v) is fixed, the Laplacian matrix must be updated to reflect
this change. The technique described by Brockbank, Pesant and Rousseau is the following:
if it is forbidden, we set luv = 0; if it is required, we must contract it in the graph, meaning
we transfer the edges of vertices u and v to a representative vertex in the same connected
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component while keeping a 1 on the diagonal of these vertices to keep the matrix invertible.
Figure 3.3 shows an example.

1

2 3

4
L =


3 0 -3 0
0 1 0 0
-3 0 3 0
0 0 0 1



Figure 3.3 Contraction follow-
ing assignments e(1, 2) = 1 and
e(1, 4) = 1, with 1 as the rep-
resentative vertex in connected
component {1, 2, 4}

124

3

L =
 3 -3

-3 3



Figure 3.4 Connected compo-
nent {1, 2, 4} as a single vertex

This way of updating L works but still requires that we invert (n − 1) × (n − 1) matrices
to compute solution densities throughout the search. However, as shown in Fig. 3.4, we can
view each connected component as a single vertex, leading to smaller Laplacian matrices,
and thus smaller matrices to invert as we fix edges.

An evaluation of improvements of Section 3.2.1 and 3.2.2 is given in Section 5.1.2.

3.3 Avoiding Systematic Recomputation

The improvements we presented so far are specific to the alldifferent and spanningTree
constraints. In this section we present an additional technique applicable to any constraint
in order to avoid recomputation but at the expense of accuracy. Usually at every node of
the search tree, before branching, we systematically call the counting algorithm for each con-
straint. Suppose we have a spanningTree constraint on a graph with hundreds of vertices
and thousands of edges: we may have fixed a single edge with very few changes propagated
since the last call to its counting algorithm but the whole computation, involving the expen-
sive inversion of large matrices, will be undertaken again even though the resulting solution
densities are likely to be very similar. To avoid this we propose a simple dynamic technique:
while the variable domains involved remain about the same, we do not recompute solution
densities for a constraint but use the latest ones as an estimate instead. For any given node
k in the search tree and constraint c, let Sk

c = ∑
xi∈c di. We recompute only if Sk

c ≤ ρSj
c ,

with 0 < ρ ≤ 1 some appropriate ratio and j the last node above k but on the same path
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from the root for which we computed solution densities for c. Note that as opposed to a
static criterion such as calling the counting algorithm of every constraint at fixed intervals of
depth in the search tree, our approach adapts dynamically to individual constraints and to
how quickly the domains of the variables in their scope shrink.

An evaluation of this method is given in Section 5.1.3.
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CHAPTER 4 PRACTICAL IMPLEMENTATION OF COUNTING-BASED
SEARCH IN GECODE

At the start of this Master’s degree, counting-based search heuristics were only available in
a private fork of ILOG Solver [IBM (2018)], a commercial constraint programming solver.
This made it difficult for other researchers to test our heuristics, hence leading the slower
adoption among academia.

Therefore, introducing counting-based search heuristics in a more readily available solver was
the first logical step to undertake. For this task, we chose Gecode for the following reasons:

• State-of-the-art performance

• Feature-rich

• Good documentation

• Free and open-source

Furthermore, from the perspective of a graduate student, modifying Gecode led to a better
understanding of constraint programming — both in theory and practice, and made it easier
to implement ideas that were central to the other half of this work.

Section 4.1 introduces a basic vocabulary and theoretical setting for understanding Gecode
and the following subsections. Section 4.2 explains the required changes to Gecode to support
counting-based search. In Section 4.3 we give a quick overview of the counting algorithm
we implemented, thus making it possible to design a brancher using counting-based search
(Section 4.4).

4.1 Basic Notions in Gecode

This section is not a full introduction to the real inner working of the solver; with close to
2 000 classes and 300 000 lines of C++, Gecode is very complex and such an introduction
would not be useful for our purpose.

Instead, we will work under various simplifying assumptions to make it easier to introduce
just enough Gecode terminology for understanding the next sections.

All the material in this section will be introduced alongside the same practical problem as in
the introduction: solving the partially filled magic square in Fig. 1.1.
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4.1.1 Main Loop in Gecode

Under the (naïve) assumption that we must return all solutions, that we always copy the
problem state, that we only make binary branching choices (more on that later), and that
we explore the search space in a depth-first search fashion, Alg. 5 is a good representation of
Gecode’s main loop.

1 Function SOLVE(space)
2 space’ ← PROPAGATE(space)
3 if space’ is invalid then
4 return ∅
5 if space’ is valid then
6 return solution
7 s1, s2 ← BRANCH(space’)
8 return SOLVE(s1) ∪ SOLVE(s2)
Algorithm 5: Solving a constraint programming problem in Gecode, adapted from [Tack
(2009)]

According to this algorithm, the first step for solving our magic square is to create a space
and pass it to this function. In Gecode, a space is any class inheriting the base class Space
and it encapsulates the model and the search component of the problem. Before talking
about this function, we will show how we create a space that follows the mathematical model
given in Fig. 1.2.

4.1.2 Creation of the Model

Our new class will be called MagicSquare and the model has to be defined inside its con-
structor:



24

class MagicSquare : public Space {
protected :

// Var iab l e s o f the model
IntVarArray x ;

public :
MagicSquare (void ) {

// 1 . I n i t i a l i z a t i o n o f v a r i a b l e s
// 2 . I n i t i a l i z a t i o n o f propaga tors
// 3 . I n i t i a l i z a t i o n o f branchers

}
/∗ . . .
∗ . . .
∗/

} ;

Figure 4.1 Gecode model for the magic square problem in Fig. 1.2

Variables. First, we provide a set of variables for which we must find an assignment satisfy-
ing all the constraints in our problem. We declare 16 variables of domains {1, . . . , 16}, thus
already enforcing that all numbers must be between 1 and n ∗ n. By doing so, the first two
members of the constraint satisfaction problem P = 〈X,D,C〉 are defined:

// 1 . I n i t i a l i z a t i o n o f v a r i a b l e s
const int n = 4 ;
x = IntVarArray (∗ this , n∗n , 1 , n∗n ) ;

Figure 4.2 Variables for model in Fig. 4.1

Propagators. The last member of the CSP model corresponds to the constraints. In
Gecode, implementation of constraints are called propagators. These objects are not created
directly in the space’s constructor; this responsibility is delegated to post functions that
create the right propagators depending on parameters such as the arity or the consistency
level of constraints. The constraints of our magic square problem are defined like this:
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// 2 . I n i t i a l i z a t i o n o f propaga tors

// Matrix−wrapper f o r v a r i a b l e s
Matrix<IntVarArray> m(x , n , n ) ;

// We cons t ra in v a r i a b l e s a l r eady as s i gned
r e l (∗ this , m(0 , 0 ) == 16 ) ;
r e l (∗ this , m(1 , 1 ) == 10 ) ;
r e l (∗ this , m(2 , 2 ) == 7 ) ;

// A l l numbers must be d i f f e r e n t
d i s t i n c t (∗ this , x )

// Sum fo r each row/column/ d iagona l
const int S = n∗(n^2+1)/2

// Rows and columns must be equa l to S
for ( int i = 0 ; i < n ; i++) {

l i n e a r (∗ this , m. row ( i ) == S ) ;
l i n e a r (∗ this , m. c o l ( i ) == S ) ;

}

// Diagonals must a l s o be equa l to 34
l i n e a r (∗ this , m(0 ,0)+m(1 ,1)+m(2 ,2)+m(3 ,3 ) == S ) ;
l i n e a r (∗ this , m(0 ,3)+m(1 ,2)+m(2 ,1)+m(3 ,0 ) == S ) ;

Figure 4.3 Constraints for model in Fig. 4.1

4.1.3 Creation of the Search Strategy

The second component — the search strategy — is also defined inside the space constructor
and created by post functions.

Branchers. The search strategy is represented by branchers. A brancher is responsible
for giving a branching choice when the propagators are no longer able to do constraint
propagation. The following function will create a brancher that will select the variable with
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the smallest domain and branch on the smallest value.

// 3 . I n i t i a l i z a t i o n o f branchers
branch (∗ this , x , INT_VAR_SIZE_MIN( ) , INT_VAL_MIN( ) ) ;

Figure 4.4 Brancher for model in Fig. 4.1

4.1.4 Solving the Problem

The previous components in the constructor are enough for describing our magic square.
Aside from some small details, we now have a Space subclass for our problem named
MagicSquare. Finding a solution is done by creating a MagicSquare object and passing
it to a search engine such as depth-first search. As stated in Section 4.1.1, this corresponds
to passing our object to the function SOLVE of Alg. 5. When doing so, the following will
happen at each line:

2 Constraint propagation is done on the MagicSquare space; all instantiated propagators
are going to filter variable domains according to their consistency levels until no more
pruning can be done. At this point, the space will be at a fixpoint and will correspond
to Fig. 1.5.

3-6 If any constraint is violated or any variable domain becomes empty while doing con-
straint propagation, the space will be invalid causing the function to return ∅ as no
solution is possible. Otherwise, if all variables are fixed, we return the solution. Neither
is the case in our example, so we go to line 7.

7 Here, we must make an hypothesis. Our brancher will give the branching choice x5 = 2.

8 We split the space in two parts, like in Fig. 1.4. We will first call SOLVE(s1) and redo
the whole process given we have a new space modified by the branching choice.

Eventually, Gecode will find a solution using our model after 8 failures.

4.2 Basic Structure for Supporting Counting-Based Search in Gecode

The magic square can now be solved using the previous model. Our next step is to replace
the brancher posted in Fig. 4.4 with a custom brancher using counting-based search.
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Gecode is modular and extensible. A user is not limited to constructing a space that uses
only available branchers and constraints in Gecode; it is possible to create custom branchers
and propagators by inheriting from the base classes Brancher and Propagator respectively.

However, the abstractions provided were not sufficient to implement a brancher using counting-
based search heuristics and this section describes the changes required to Gecode for this task.
This was accomplished with one primary goal: make as few modifications to Gecode as pos-
sible. As we can see in Fig. 4.5, MagicSquare and our brancher can be created in the user
model (a program that uses Gecode as a library). Our goal is to replace the function in
Fig. 4.4 with a function posting a brancher of our own that uses counting-based search and
Alg. 1 to make branching decisions.

Before doing so, we need a method for triggering solution density computation in propagators
for generating 〈propagator, variable, value, density〉 tuples (i.e. a virtual method that we can
overload to specify counting algorithms for different propagators).

Afterwards, even if we are able to call this method in a brancher and retrieve all tuples, we still
won’t be able make a CBS branching heuristic; making those heuristics require aggregating
solution densities on propagators, variables and values. In Gecode, this is impossible as
there’s no unique id for variables and accessing them from different propagators can lead to
different views of the same domain — an injective function may or may not be applied before
access.

Addressing those concerns requires modifying multiple classes in the Gecode kernel and Int
module, resulting in a small patch that can be divided in three parts, each of them described
in the following subsections. After these modifications, we will be able to make our counting-
based search branching heuristic.
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Figure 4.5 Modeling the magic square with a custom brancher using Gecode

Our goal — making as few modifications to Gecode as possible — may seem odd at first
sight. The design we are presenting is actually our second iteration. In our first design, we
did not pay attention to this factor and ended up with a patch of approximately 1500 lines.
While it worked, its complexity made it very difficult to collaborate with the developers of
Gecode. This is why we did a complete redesign, keeping only what is essential, to facilitate
the integration of our patch.

4.2.1 Unique IDs for Variables

As implied in Alg. 1, we need a unique id for each constraint and variable in the model
to compute a branching decision. Gecode did provide an id for propagators, but not for
variables.

In Gecode, there are two possible abstractions over variable implementations (the object
encoding the actual domains of variables): variables and views.

Variables are simply a read-only interface for variable implementations and they are used
for modeling (see the protected member in Fig. 4.1). This makes sense because the model is
declarative; we don’t interact directly with domains.

On the other hand, views act as interfaces to variable implementations for propagators and
branchers. They offer the ability to prune values from variable domains, and for this reason,
must not be used for modeling.

For doing density aggregation, we need a unique id for variable implementation that is ac-
cessible from views. When creating a new variable implementation, its constructor has a
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reference to the current space. Therefore, a global counter in Space that we increment in
the constructor of VarImp can be used as a unique id. Accessing this new member amounts
to adding a new method id() to the following classes:

• VarImp. Base-class for variable implementations.

• VarImpView. Base-class for variable implementation views. Gives a direct access to
the domain.

• DerivedView. Base-class for derived views, for which an injective function may be
applied before accessing the domain.

• ConstView. Base-class for constant views — views that mimic an assigned variable.

Those changes correspond to commit d4aa3 in https://github.com/Gecode/gecode.

4.2.2 Methods for Mapping Domains to their Original Values

Like previously said, propagators access variables via views. A view can remap every value of
its domain. For example, accessing a variable with domain D = {1, 4, 8} from a MinusView
will yield D′ = {−1,−4,−8}. Two propagators may use different views to the same variable,
meaning we can’t group densities by domain values.

To fix this, we added the following method to all views:

/// Return r e v e r s e t rans format ion o f va lue accord ing to view
int baseva l ( int va l ) const ;

Given that propagators already have unique ids, it is now possible to do aggregation of
densities in CBS_HEUR() and Alg. 1 becomes:

1 SD = {}
2 foreach constraint c(x1, . . . , xn) do
3 foreach unbound variable xi ∈ {x1, . . . , xn} do
4 foreach value d ∈ Di do
5 SD[id(c)][id(xi)][xi.baseval(d)] = σ(xi, d, c)
6 return CBS_HEUR(SD) . Return a branching decision using SD
Algorithm 6: Modified version of Alg. 1 that uses unique ids for propagators and vari-
ables and take into account view transformations.
Those changes correspond to commit c39e3 in https://github.com/Gecode/gecode.

https://github.com/Gecode/gecode/commit/d4aa3c998af97b31c1f6c6c09c441a774b4ffb87
https://github.com/Gecode/gecode/commit/c39e3b005d16d819fc250cf9ba83fe7e3b99d020
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4.2.3 Computing Solution Distributions for Propagators

In Gecode, we can iterate over active propagators of the current space inside a brancher, but
we do not have access to the internal state of propagators and their variables. To compute
solution densities in propagators, a method must be added to the base class Propagator:

typedef std : : funct ion<void (unsigned int prop_id ,
unsigned int var_id ,
int val , double dens)> SendMarginal ;

virtual void s o l n d i s t r i b ( Space& home , SendMarginal send ) const ;

SendMarginal is a function that inserts solution densities in SD. Given we create a custom
brancher with a method named sendmarginal and a private member named SD, making
choices in our brancher will look like the following algorithm:

1 SD = {}
2 foreach constraint c do
3 c.solndistrib(space, sendmarginal)
4 return CBS_HEUR(SD) . Return a branching decision using SD
Algorithm 7:Modified version of Alg. 6 closer to how Gecode interacts with propagators.

Those changes correspond to commit 6957b in https://github.com/Gecode/gecode. With
these three commits, it is possible to create a counting-based search brancher given we im-
plement specialized counting algorithms for constraints by overloading solndistrib in the
correct propagators.

4.2.4 Accessing Variable Cardinalities Sum in Propagators

Lastly, a final method is required in Propagator if we want to make counting-based search
efficient.

If all variable domains in a propagator stay identical after branching and propagating, we
can reuse previous calculated densities when making the next branching choice. However, as
shown in Alg. 7, we recompute every solution distributions from scratch each time we make
a choice. We can fix this by adding the following method in Propagator:

typedef std : : funct ion<bool (unsigned int var_id)> InDec i s i on ;
virtual void domainsizesum ( InDec i s i on in , unsigned int& s i z e ,

unsigned int& size_b ) const ;

https://github.com/Gecode/gecode/commit/6957bd0b5eaaec9ec82e7d9d3dcad27cdccaadd1
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As we can only remove values from domains during propagation, a variable with equal cardi-
nality before and after propagation has the same domain. This logic holds true for an entire
propagator: if the sum of its variable domain cardinalities is equal before and after propaga-
tion, all the variables in the propagator are unchanged, meaning we don’t have to recompute
densities. Those changes also correspond to commit 6957b in https://github.com/Gecode/
gecode.

This method will be used in our brancher to avoid unnecessary recomputation of solution
densities.

4.3 Counting Algorithms

Section 4.2 gave the basic structure for creating a custom brancher that uses counting-based
search. However, we still need counting algorithms for propagators created when specifying
a model to get solution densities and make branching choices.

Let’s take the example of our Magic Square Problem again. When instantiating the model
of Fig. 4.1, the following propagators are created (using their default consistency):

• A single Int::Distinct::Val propagator for the distinct constraint.

• Several Int::Linear::Bnd propagators for the linear constraints.

Thus, we need to overload Int::Distinct::Val::solndistrib and Int::Linear::Bnd::
solndistrib to specify counting algorithms (alongside domainsizesum for both classes).
Without this, our brancher will not be able to give branching choices; the more propagators
we support, the more problems we can solve.

In this thesis, we implemented counting algorithms for distinct, linear, and extensional
(regular expression) constraints [Pesant and Quimper (2008)][Zanarini and Pesant (2010)].
Annex A gives implementation details about each counting algorithm alongside a generic
template for implementing them.

4.4 Creating a Brancher Using Counting-Based Search

We now have everything for creating our custom brancher as shown in Fig. 4.6.

https://github.com/Gecode/gecode/commit/6957bd0b5eaaec9ec82e7d9d3dcad27cdccaadd1
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Figure 4.6 Principal components in relation with CBSBrancher

The logic for making branching choices — described in Alg. 7 — is located in the method
choice. This method stores solution densities in a map called logProp and uses domainsize-
sum to evaluate if densities for a given propagator need to be recalculated between propaga-
tions.

As counting-based search is a family of branching heuristics, the concrete brancher is cre-
ated by inheriting from CBSBrancher and overloading getChoice for specifying how we make
choices from all 〈propagator, variable, value, density〉 tuples. In this case, we use the branch-
ing heuristic maxSD, but other heuristics are possible such as aAvgSD, maxRelSD, etc. (as
explained in [Zanarini and Pesant (2007)]).

In Section 5.2, we benchmark maxSD against other generic branching heuristics for three
different problems.
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CHAPTER 5 EMPIRICAL EVALUATION

In this chapter, an empirical evaluation of all work discussed in Chapter 3 and Chapter 4
is given. Section 5.1 evaluates the improvements to the alldifferent and spanningTree
constraints. Section 5.1.3 evaluates the generic method proposed in Section 3.3 to avoid
calling counting algorithms at all nodes. Finally, Section 5.2 compares our implementation
of CBS with other generic branching heuristics in Gecode.

All graphs in this chapter are interpreted the same way across all benchmarks, with each
benchmark accompanied by two graphs. The first one gives the percentage of instances
solved with respect to the number of failures — if we have 100 instances of a particular
problem and a cutoff of 1000 failures when backtracking, f(1000) = 40 means that we are
able to solve 40 instances. The second graph is similar except time is used as the cutoff.

5.1 Impact of our Contributions

5.1.1 Acceleration of alldifferent

The Quasigroup Completion Problem consists in filling a m×m grid with numbers such that
each row and column contains every number from 1 to m (#67 in CSPLib [Pesant (2018)]).
It is very similar to Sudokus with the only difference being that the grid is not separated in
sub-grids where all numbers must be different. Surprisingly, this makes the problem a lot
harder.

This problem can be described using an alldifferent constraint on each row and column,
making it ideal for testing our improvements to its counting algorithms. Gecode’s distribution
already includes a model with branching heuristics afc (weighted degree) and size (smallest
domain), both with lexicographic value selection. The focus of this experiment is to compare
the performance of maxSD using Algorithm 2, 3 and 4, but we also tried the other generic
heuristics for comparison.

We use 20 instances of sizes 90 to 110 with 25% of entries filled, generated as in [Gomes and
Shmoys (2002)]. That ratio of filled entries may not yield the hardest instances for that size
but our goal here is to have a lot of shared values between variables in order to emphasize
the improvement of Algorithm 3 over 2.
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Figure 5.1 Percentage of Quasigroup Completion instances solved w.r.t. time and number of
failures

First we observe that maxSD guides search more effectively by solving all instances in several
orders of magnitude fewer failures than afc and size. As expected, because of the lack of
normalization, Algorithm 4 is less accurate than the other two (which share the same number
of failures), but still about one order of magnitude faster.

Even with around 3 orders of magnitude fewer failures, afc is faster than Algorithm 4 until
around 60% of instances solved. This is because making a branching choice using afc is
near-instantaneous when compared to maxSD. Before our improvements, maxSD was slower
than both afc and size.

5.1.2 Acceleration of spanningTree

To test improvements introduced in Section 3.2.1 and 3.2.2, we designed a simple model to
find Hamiltonian paths with Gecode’s path constraint and a redundant spanningTree con-
straint that computes solution densities according to our spanningTree counting algorithm.
The spanningTree constraint is expressed on binary edge variables as opposed to vertex
successor variables for the path constraint — the two variable representations are channeled.

In Fig. 5.2 improvements to the spanningTree counting algorithm are tested on this model
with maxSD branching on binary edge variables — for comparison we also tried heuristics afc
and size branching on vertex successor variables (and trying values in lexicographic order).
We use 30 graphs over 60 to 234 vertices taken from the FHCP Challenge Set [Haythorpe
(2015)].
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Figure 5.2 Percentage of Hamiltonian Path instances solved w.r.t. time and number of failures
with a 5 minute cutoff

Again we observe that maxSD (with the curves of its three algorithms coinciding in the
first graph) guides search much more effectively by solving the instances in several orders of
magnitude fewer failures than afc and size. At one second of computation time, all three
heuristics solve about the same number; at ten seconds, maxSD solves almost all of them
whereas afc and size solve about half.

5.1.3 Avoiding Systematic Recomputation

In this section, we test the generic method that we proposed for avoiding systematic recom-
putation of solution densities in Section 3.3, first on the Quasigroup Completion Problem
with Algorithm 4 (Fig. 5.3), and then on the Hamiltonian Path Problem with Algorithm
chol+contraction (Fig. 5.4), using the same model and instances as in Section 5.1.1 and 5.1.2.
The variable ρ represents the recomputation ratio, with ρ = 1 meaning we always recompute.

While ρ = 0.95 is indeed faster than full recomputation in Fig. 5.3, a lot of accuracy is lost for
the small speed advantage we gain. It’s possible this tradeoff may not be worth it for harder
instances. It is also interesting to see that ρ = 0.8 performs about the same as ρ = 0.95.
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Figure 5.3 The effect of different recomputation ratios for the Quasigroup Completion Prob-
lem, using the same instances as in Section 5.1.1

However, as shown in Fig. 5.4, the acceleration brought by a recomputation ratio of 0.8 for the
spanningTree constraint is more pronounced than both of our improvements for its counting
algorithms. Indeed, computing solution densities for this constraint is very expensive; the
tradeoff between precision and speed is worthwhile for this problem.
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Figure 5.4 The effect of different recomputation ratios for Hamiltonian Path Problem, using
same instances as in Section 5.1.2

5.2 Benchmarking our Implementation in Gecode

In this section, we show additional benchmarks comparing maxSD to other generic heuristics.
As Gecode already includes a set of models in its distribution alongside a choice of branching
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heuristics for each model, those benchmarks are easy to make. Using maxSD in a model is
as simple as adding an #include for our brancher and calling its post function cbsbranch.

Moreover, these benchmarks support our efforts in showing that counting-based search is a
worthwhile addition to Gecode. All presented models do not use our technique for avoiding
systematic recomputation.

5.2.1 Magic Square

Gecode has a model for the Magic Square Problem but doesn’t have partial instances, so we
created a set of 40 instances of size 9x9. Gecode provides two branching strategies for this
model:

• size. Choose the variable xi with the smallest domain and branch on xi ≤ mean(Di).
This is a direct application of the fail-first principle seen in Section 2.1.1 with the
domain size as the constraining criteria.

• afc-size. Select variable xi with largest accumulated failure count (AFC) divided
by domain size and branch on xi ≤ mean(Di). AFC is an adapation from WDEG
(Section 2.1.3).

Those two heuristics were tested against maxSD in Fig. 5.5 using Algorithm 3 for the
alldifferent constraint. At around 1000 failures maxSD solves more instances than afc-size
and size. However, even if maxSD is always equal or better in terms of failures, it solves fewer
instances below 1 second. Our extra accuracy comes at a cost: we take additional time to
call our counting algorithms when branching. This can lower greatly the node/sec explored
when compared with a branching heuristic like size, where a single pass on all variables is
enough to make a choice.
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Figure 5.5 Percentage of magic square instances solved w.r.t. time and number of failures

5.2.2 Quasigroup Completion with Holes Problem

Gecode has a set of 75 partial Latin Square instances with sizes ranging from 10x10 to 70x70.
Again, Gecode’s model gives the choice of two branching strategies. They are identical to
the two previous branching heuristics in the magic square model except for the choice value;
they branch on xi = min(Di) instead of xi ≤ mean(Di). Even if this model was already
benchmarked in Section 5.1.1, it shows how maxSD performs on Gecode’s instances; our
previous instances were not created to be hard, they were created to have a lot of holes. We
also use Algorithm 4 for the alldifferent constraints.

We can see in Fig. 5.6 that our branching strategy greatly outperform the two other alter-
natives, both in the number of failures and solving time.
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Figure 5.6 Percentage of latin square instances solved w.r.t. time and number of failures

5.2.3 Langford Number Problem

The Langford Number is a problem where we have 2n numbers from 1 to n, with two copies
of each number:

{1, 1, 2, 2, . . . , i, i, . . . , n, n} (5.1)

The goal is to find a sequence where each pair of numbers i are i + 1 positions apart. The
sequence {4, 1, 3, 1, 2, 4, 3, 2} is a solution for n = 4.

This problem can be modeled using only regular constraints, for which we have a counting
algorithm. Fig. 5.7 compares maxSD with two other default branching strategies provided
with Gecode. The afc strategy selects the variable in the same manner as previously dis-
cussed, while the none strategy selects the first unassigned variable. Both strategies branch
on xi ≤ mean(Di).
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Figure 5.7 Percentage of langford instances solved w.r.t. time and number of failures

It is interesting to see that afc and none gives almost the same results, as opposed to maxSD
which directs the search much more effectively.
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CHAPTER 6 BRANCHING HEURISTIC CREATION USING A
LOGISTIC REGRESSION

Counting-based search relies on specialized counting algorithms to compute solution densities
in each constraint; this information can be used in many ways to design branching heuristics.
Choosing the right one among all possible choices requires experimentation when solving a
new problem. Even then, the best performing heuristic may vary between different instances.

In Section 2.3, we briefly reviewed different studies tackling this problem with hyper-heuristics
or adaptations of older methods like FORR. However, this chapter is better described as
exploratory; we did not try to improve the state of the art for learning or selecting heuristics.
Rather, we wanted to see how far we could go by using a simple method before looking at
more complex algorithms; simpler methods are easier to reason about, and in this sense may
provide more insights than their complex alternatives.

6.1 Problem Definition

Normally a branching heuristic will select a variable according to various information. The
next list gives some examples:

• Variable cardinality

• Degree or number of constraints on the variable

• Weighted-degree (Section 2.1.3)

• Activity (Section 2.1.4)

• Variable domain

Afterwards, the branching heuristic will modify the domain of the variable by splitting it or
selecting a single value. Such a process is in two steps: variable selection, and value selection.
In this regard, counting-based search branching heuristics are different; they select both the
variable and the value at the same time. This is due to the fact that a density is computed
for every variable-value pair.

This density is an additional feature for making a branching choice. Each CBS branching
heuristic is characterized by the way it handles this new information. In addition to examples
already introduced in Section 2.1.5 — maxSD and aAvgSD —we also have: maxRelSD, which
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selects the maximum of the solution densities after subtracting the average density in the
corresponding variable; or maxRelRatio, which divides by the average density of the variable.
Both of these examples are taken from [Pesant et al. (2012)], but there are many more
in [Zanarini (2010)].

Each of these branching heuristics will give a different score to each variable-value pair, and
will branch on the variable-value with the highest score in a given node. Therefore, when
solving a satisfaction problem, a heuristic that gives high scores to variable-value pairs that
belong to solutions is going to find a solution faster; the score of a branching heuristic can be
seen as predicting if a variable-value pair will segment the solution space towards a solution.

We can take this a step further and classify each variable-value pair as good —it leads to a
solution— or bad —it doesn’t lead to a solution. However, this is hard if there are multiple
solutions for an instance; a particular choice may be part of a solution in a given sub-tree but
not in another one. This problem can be lifted by only considering instances of a problem
for which the solution is unique. While this is restricting, this allows us to gather data in an
offline database like the following in table:

Table 6.1 Offline database with densities for multiple single solution instances of the same
problem.

dens maxSD aAvgSD ... in_sol
exec_id node_id prop_id var_idx val ...

2 0.3 0.6 0.45 ... 0
3 0.4 0.4 0.4 ... 13
8 0.3 0.5 0.48 ... 0
2 0.8 0.8 0.5 ... 1

3 12 6

8
9 0.2 0.4 0.22 ... 0

For a given problem with unique solutions, we can gather the score of all CBS branching
heuristics, and label each variable-value, in each propagator, in each satisfiable node, as
a good or bad branching choice for a given instance. We only gather nodes that lead to a
solution in the search tree (satisfiable nodes), because we don’t want to learn from incoherent
states.

This gives us a classification problem: given the score of all heuristics, predict if an assignment
is in the final solution or not. For our purpose, the logistic regression was a good choice:
it is simple and easy to understand, all our attributes are numerical, and it is fast to train.
Moreover, it is also a starting point for more complex techniques.
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6.2 Experiment

In this section, two experiments on the same training and testing set are described. As shown
in Figure 6.1, we train a logistic function and use it as a new branching heuristic in both
experiments. Each experiment differs in the subset of features — CBS heuristics — it uses
for the logistic regression. But why not choosing all 9 features at once?

Figure B.1 shows, in the training set, how the scores of each branching heuristic separate
values leading to a solution from those who aren’t. As we can see, many features are redun-
dant: their distribution gives the same separation. A logistic regression may not be optimal
if such features are used together.

Figure 6.1 Logistic function as a new branching heuristic

6.2.1 First Logistic Function

For the first experiment, we chose two different features — h2: aAvgSD and h5: wSCAvg —
that seemed to be redundant according to Figure B.1. We wanted to see how the logistic
function would perform on unseen instances in the testing set. The logistic regression gave
the following function:

(1 + exp(−(9.2h2 − 2.4h5 − 2.9))−1 (6.1)

When used as a new branching heuristic in the testing set, this logistic function is worse than
both of its branching heuristic taken separately:
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Table 6.2 Logistic function combining h2 ∧ h5 against both branching heuristic.

heur
avg. failures for
solved instances

nb. instances solved w/
100 000 failures cutoff

h2 22945 29
h5 26230 30
logReg 26284 23

This experiment supports the claim that combining redundant features is not a good idea.

6.2.2 Second Logistic Function

In the second experiment, we chose to combine two branching heuristics with different dis-
tributions according to Figure B.1. When using h2: aAvgSD and h3: maxRelSD, we obtain
the following logistic function:

(1 + exp(−(4.7h2 + 6.5h3 − 2.6))−1 (6.2)

This times, it outperforms each of its individual heuristics:

Table 6.3 Logistic function combining h2 ∧ h3 against both branching heuristic.

heur
avg. failures for
solved instances

nb. instances solved w/
100 000 failures cutoff

h2 22945 29
h3 19298 26
logReg 17156 34

However, one could ask if we simply got lucky. In other words, maybe a slight change to this
logistic function is enough to make it perform worse than its heuristics. To find out, we did
another experiment that we describe in the next paragraphs.

A logistic regression returns a linear function with specific weights that combine every feature.
It can then be used inside a logistic function to give scores between 0 and 1. In our case, we
learned to following linear function:

t(h2, h5) = 4.7h2 + 6.5h3 − 2.6 (6.3)
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This equation corresponds to a plane in 3 dimensions. If we want to change its coefficients
slightly, we can simply rotate the plane around the mean value of both heuristics, like shown
in Figure 6.2. If we rotate t clockwise, we will eventually get a plane where h3 = 0, meaning
it will perform identically to h2 when put inside the logistic function. We can get the same
result for h3 if we rotate counterclockwise.

t = 8.0h2 − 3.2 t = 7.4h2 + 3.0h3 − 3.1 t = 5.7h2 + 5.6h3 − 2.8

t = 3.1h2 + 7.4h3 − 2.2 t = 8.0h3 − 1.6

Figure 6.2 Rotation of t(h2, h3) around the mean value of h2 and h3

Between those two extremes, there are 90 degrees, each corresponding to a different logistic
function. Furthermore, according to Murphy’s law, if you give a student access to a computer
cluster, he will eventually do something stupid. Jokes aside, Figure 6.3 plots how many
instances of our test set were solved under 100 000 failures for each of those 90 logistic
functions.
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Figure 6.3 Landscape of performance for 90 logistic functions

We can see that combining h2 and h3 generally yields better performing heuristics than both
h2 (far left) or h3 (far right) alone. Also, our logistic regression found a linear combination
that was among the best ones.
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CHAPTER 7 CONCLUSION

This thesis was concerned with counting-based search, a paradigm for designing branching
heuristics in constraint programming. The main narrative underlying this work can be stated
as follows: bring CBS to a new constraint programming solver and showcase it as a solid
choice when considering other generic alternatives.

In the next sections, I will summarize our work while giving a more personal narrative. I
think a summary where I give the driving events and motivations behind each effort is more
interesting and meaningful; it breaks the false perception that everything was all figured out
from the beginning.

7.1 Discussion of Contributions

In Chapter 4, a minimal patch for supporting counting-based search in Gecode is presented.
Finding a way to make CBS work in Gecode was our first goal in this Master’s degree; all
work done in other chapters depends on this implementation. It would have been possible
to use our existing framework in ILOG Solver. However, as CBS is not officially included
in ILOG solver, this would have been detrimental to one of our main objectives: make CBS
more accessible.

We chose an open-source constraint programming solver — Gecode — because it would be
easier to test ideas without restrictions. This has proven a good choice because the small
design presented in this thesis is the aftermath of a lot of experimentation and competing
ideas; getting a working implementation was a first step towards a clean one. We think our
efforts in making this patch small is one of the main reasons — alongside our experimental
results — that CBS was accepted in the solver. As a result, our implementation will be
available in the next release of Gecode for practitioners.

Although Chapter 3 is introduced in this thesis before our Gecode implementation, the work
described in this chapter came after introducing CBS in Gecode. With alldifferent the
first constraint for which we had a working counting algorithm, our first benchmarks were
on the Quasigroup Completion with Holes Problem. We quickly realized that, even if CBS
led to solutions with fewer backtracks, it was still an order of magnitude slower than other
generic alternatives because of all the extra work we do in computing solution densities. The
algorithms proposed in Section 3.1 are the result of all our efforts in makingmaxSD faster than
generic alternatives for Gecode’s QCP instances in Fig. 5.6. Altough our main motivation
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was the QCP problem, alldifferent is a central constraint in CP, and accelerating its
counting algorithms leads to CBS performing better in every model that uses it.

Next, the idea of improving the spanningTree counting algorithm in Section 3.2 is the result
of a competition we gave in the undergraduate course INF4705 for finding Hamiltonian paths.
We had a very hard instance of 558 nodes and 837 vertices from the same dataset evaluated
in Section 3.2. Out of 50 teams, only 3 were able to find a valid solution for this instance
under 3 minutes. Out of curiosity, we tried a CP model using CBS, and to our surprise, it
was able to find a solution with 2 failures. However, this solution was found in 25 minutes.
Thus, with the goal of breaking 3 minutes, we were able to go as low as 20 seconds for this
instance — inverting matrices of size 558x558 during the whole search wasn’t very effective.

Lastly, the experiment in Chapter 6 came from a desire to try out new techniques in machine
learning. However, we quickly realized that complex methods like neural networks were less
interesting as they don’t offer a lot of insights about what has been learned in opposition to
simpler methods like decision trees or logistic regressions; with simple methods, we can look
at the learned models and understand various things. While limited, we indeed learned a
new heuristic that is outperforming its low-level heuristics.

7.2 Limits and Constraints

It would be strange to say that our improvements of counting algorithms in Section 3 have
limitations. We proposed better algorithms in both theory and practice; they have better
asymptotic complexities and are faster in our benchmarks when choosing hard instances.
One could argue that our approach for avoiding systematic recomputation has the limitation
that it has lower precision, but we see it more as a trade off between speed and precision.
In my opinion, limitations arise when considering practical matters, which comes from the
choice of a paradigm — counting-based search — and its actual implementation in Gecode.

While generic and powerful, using counting-based search indeed limits the constraints we
can use for modeling in practice. In other words, the problems we can solve are limited by
the constraints we support (using CBS with some uninstrumented constraints is possible,
but it is less effective because we miss solution densities). Furthermore, supporting a new
constraint is difficult: we have to design a new counting algorithm and provide an efficient
implementation. As CP solvers support a lot of different constraints, designing counting
algorithms is a long-term project. This is a price we must pay for having a family of generic
branching heuristics that performs well and adapts to the problem formulation.

Next, the fact that our patch is small also comes at a cost. In Section 4.4, great emphasis is
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put on Fig. 4.6 and the fact that our brancher can be created outside of Gecode, thus making
our patch smaller. While anyone can use our work in Gecode to make a CBS brancher,
making an efficient one is difficult in practice. Until we propose another patch for adding our
brancher in Gecode, we will have to distribute it by separate means to our potential users.

Finally, like we said earlier, our experiment in Chapter 6 is rather limited. We only tried
one problem — Quasigroup Completion — and trained on instances with unique solutions;
we are not yet sure how this would transfer to problems with multiple solutions. Moreover,
accumulating all these densities in an offline database and keeping reasonable performance
is not trivial.

7.3 Future Research

Hopefully, most of the issues mentioned in the previous section can be fixed. Even if designing
counting algorithms is hard, each new one improves the scope of counting-based search.
Moreover, our design makes it easy to add them to Gecode. Afterwards, submitting a patch
for including our brancher in Gecode is also in our projects.

Of course, the work in this thesis can be improved in several ways. Aside from the obvious
suggestion of further improving counting algorithms, and in the same spirit as our proposed
technique for avoiding systematic recomputation of solution densities in Section 3.3, the
amount of work we do could be more adaptive. As triggering counting algorithms is expensive,
finding clever ways to avoid calling them with minimal impact on the precision of the search
is a worthwhile study path. Here are some ideas:

• If we knew which constraints are the most susceptible of returning variable-value pairs
with high densities, we could avoid computation when using a branching heuristic such
as maxSD.

• In Section 3.3, we use the sum of all variable domain cardinalities as a metric for judging
if we can reuse densities from the previous node. Other metric could be investigated.

Besides, we could also benefit from using techniques for intelligently adapting consistency
levels of propagators (as discussed in Section 2.2); weaker consistency levels also mean faster
counting algorithms in some cases.

Finally, adaptive branching heuristics, analog to the experiment discussed in Section 6, could
further improve the performance of CBS.
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ANNEX A NOTES ABOUT COUNTING ALGORITHMS
IMPLEMENTATION

Distinct

In Gecode, there are three different propagators for the distinct constraint:

• Gecode::Int::Distinct::Val

• Gecode::Int::Distinct::Bnd

• Gecode::Int::Distinct::Dom

Each propagator corresponds to a different consistency level. All three propagators are
defined in gecode/int/distinct.hh, with the implementations in the following files:

• gecode/int/distinct/val.hpp

• gecode/int/distinct/bnd.hpp

• gecode/int/distinct/dom.hpp

All three overloads of solndistrib and domainsizesum call the same two functions defined
in gecode/int/distinct/cbs.hpp. When adding a new file in Gecode, it is important to modify
Makefile.in accordingly, run configure and maybe make depend.

Regular

The regular constraint — instantiated by calling extensional in the user model — cor-
responds to the propagator LayeredGraph defined in gecode/int/extensional.hh and imple-
mented in gecode/int/extensional.hpp. Unlike the previous propagators for the distinct con-
straint, the variables are located in the member variable Layer* layers, where LayeredGraph
::Layer is a subclass that encapsulate a variable.

Linear

In Gecode, there are multiple propagators for the linear constraint. We overloaded:
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• Gecode::Int::Linear::Eq

• Gecode::Int::Linear::Lq

The definitions of those propagators are in gecode/int/linear.hh, with both implementations
in gecode/int/linear/int-nary.hpp. Both overloads of solndistrib and domainsizesum call
the same two functions defined in gecode/int/linear/cbs.hpp.

Generic Counting Algorithm Template for a New Constraint

First, we have to find the corresponding propagators for a constraint. It won’t necessarily
be a one-to-one correspondence; different propagators may be instantiated depending on the
consistency level or the cardinality of the constraint.

The next step is to overload both methods introduced in Section 4.2.3 and 4.2.4. A generic
template is given in Fig. A.1 and A.2.
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/∗∗
∗ Let ’ s suppose Prop conta ins i t s v a r i a b l e s in :
∗ − ViewArray<View> x ;
∗
∗ And l e t ’ s suppose we a l r eady computed s o l u t i o n d e n s i t i e s f o r our
∗ h y p o t h e t i c a l propagator "Prop " wi th a s p e c i a l i z e d a l gor i thm
∗ and t ha t we can acces s them with dens [ var_id ] [ v a l ] .
∗/

template<class View>
void Prop<View>: : s o l n d i s t r i b ( Space& home , Propagator : : SendMarginal send )
{

// For each v a r i a b l e in the propagator ’ s view array
for ( int i = 0 ; i < x . s i z e ( ) ; i++) {

// I f the v a r i a b l e i s s t i l l not f i x e d
i f ( viewArray [ i ] . a s s i gned ( ) ) continue ;
// For each va lue in the v a r i a b l e
for ( ViewValues<View> val ( x [ i ] ) ; va l ( ) ; ++val ) {

send ( id ( ) , // Propagator ID
x [ i ] . id ( ) , // Var iab l e ID
x [ i ] . baseva l ( va l . va l ( ) ) , // Base va lue
dens [ x [ i ] . id ( ) ] [ va l . va l ( ) ] // Densi ty

) ;
}

}
}

Figure A.1 Generic template for a counting algorithm in solndistrib
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/∗∗
∗ Let ’ s suppose Prop conta ins i t s v a r i a b l e s in :
∗ − ViewArray<View> x ;
∗/

template<class View>
void c b s s i z e ( const ViewArray<View>& x , Propagator : : InDec i s i on in ,

unsigned int& s i z e , unsigned int& size_b )
{

s i z e = 0 ;
s ize_b = 0 ;
// For each v a r i a b l e in the propagator ’ s view array
for ( int i = 0 ; i < x . s i z e ( ) ; i++) {

// I f the v a r i a b l e i s not f i x e d
i f ( ! x [ i ] . a s s i gned ( ) ) {

// We add the s i z e o f i t s domain to " s i z e "
s i z e += x [ i ] . s i z e ( ) ;
// I f i t i s inc luded in the c a l l i n g brancher , we
// a l s o add the s i z e o f i t s domain to " s i ze_b "
i f ( in (x [ i ] . id ( ) ) ) s ize_b += x [ i ] . s i z e ( ) ;

}
}

}

Figure A.2 Generic template for domainsizesum



59

ANNEX B FEATURES ANALYSIS FOR LOGISTIC REGRESSION
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Figure B.1 Good and bad branching choices according to each branching heuristic
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