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ABSTRACT  

The MSDPu criterion has been developed to represent transitional states associated with particular types of 

mechanical response such as yielding, failure, and residual strength. This multiaxial criterion can be applied to a 

wide variety of geomaterials and loading conditions. To date, its use has been limited to applications relying on 

relatively simple analytical solutions. In this report, the authors present the method that has been used to 

introduce the criterion into a well-known, commercially available finite difference code using an elasto-plastic 

framework. The report starts with a brief review of the MSDPu formulation, followed by an additional 

development which includes a hardening component into the original equations. Then, the authors describe the 

approach that has been used to introduce its main components into the code. Illustrative modelling results 

obtained with this new elasto-plastic model are shown, and compared to representative laboratory test and 

analytical results on a circular underground opening. Finally, the main advantages, capabilities, and limitations 

of the model are briefly discussed, together with ongoing work aimed at analyzing the behavior of underground 

openings in rock mass. 

 

Key words: Numerical modelling; Elasto-plasticity; Hardening; Thick wall cylinder; Finite difference. 

 

 

RÉSUMÉ 
Le critère MSDPu a été développé pour représenter les états de transition associés avec certains types de réponse 

mécanique tels que l'écoulement inélastique, la rupture, et résistance résiduelle. Ce critère multiaxial peut être 

appliqué à une grande variété de géomatériaux et de conditions de chargements. Jusqu'à présent, son utilisation a 

été limitée aux applications basées sur des solutions analytiques relativement simples. Dans ce rapport, on 

montre la méthode utilisée pour introduire ce critère dans un code commercial bien connu, en utilisant un cadre 

élasto-plastique. Le rapport commence avec une brève revue de la formulation de MSDPu, suivie d�un 

développement additionnel pour inclure une composante d�écrouissage dans les équations originales. Par la 

suite, on décrit l'approche utilisée pour implanter les composantes principales dans le code. Des résultats de 

modélisation obtenus avec ce nouveau modèle élasto-plastique sont montrés et comparés avec des résultats 

d'essais de laboratoire représentatifs et des résultats analytiques développés pour une ouverture cylindrique. 

Finalement, les avantages, les capacités, et les limitations du modèle sont brièvement discutés. On résume enfin 

certains autres travaux en cours destinés à analyser le comportement des ouvertures souterraines dans des 

massifs rocheux. 

 

Mots clés: Modélisation numérique, Élasto-plasticité, Écrouissage, Cylindre à paroi épaisse, Différence finie. 
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1. INTRODUCTION 

A wide variety of constitutive models exist to describe the mechanical behaviour of geomaterials. Some of 

these, such as linear elastic models, can be quite simple but they usually cannot capture many of the important 

responses under realistic loading conditions. The framework of elasto-plastic modelling is more representative in 

many cases, and it can be used to simulate various facets of the observed behaviour of geological media (such as 

soils, rocks, tailings, and backfill). Elasto-plastic theory, often used in geotechnique, is generally considered to 

be the most convenient framework to formulate constitutive models for the practical simulation of geomaterials 

behaviour (e.g., Potts and Zdravkovic 1999). 

The elasto-plastic approach typically involves the concepts of yield function and plastic potential (and flow 

rule), with or without hardening (softening) rules. Numerous models have been developed in this context, which 

have been reviewed in monographs and text books including Desai and Siriwardane (1984), Chen and Baladi 

(1985), Lade (1997, 2005a, 2005b) and Potts and Zdravkovic (1999). Since viscous (rheological) effects related 

to the porous medium behaviour are not considered, there is no time dependency, so the plastic (stress-strain) 

response occurs instantaneously. The equations are nevertheless expressed in incremental form so the loading 

chronology can be taken into account (e.g., Coussy 2000). 

Elasto-plastic models have been applied to study a wide range of problems related to stress analysis, ground 

control, and stability of underground openings. Recent examples include the work of Lee and Rowe (1989, 

1991), Anagnostou and Kovari (1993), Eberhardt (2001), Meguid et al. (2003), Callari (2004), Ng and Lee 

(2005) and Meguid and Rowe (2006). The inelastic criterion used in these and other similar studies are typically 

based on conventional expressions such as the Mohr-Coloumb and Drucker-Prager yield surfaces, which are 

available as built-in constitutive models in many commercial codes. However, such commonly used constitutive 

models are known to have significant limitations as they typically cannot account for many aspects of the actual 

response of geomaterials subjected to different stress states (e.g., Aubertin et al. 2000). As a result, the numerical 

calculations may not properly address the multiaxial response of geomaterials, even when the model domain is 

three-dimensional. Furthermore, these inelastic surfaces, which remain open along the positive mean stress axis 

cannot account for the inelastic response of geomaterials (i.e. with volumetric straining) under relatively high 
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mean pressures. For this purpose, the model should include a �cap� component associated with the initiation and 

evolution of plastic volumetric strains (e.g., Lade 1997, 2005a, 2005b). Also, many conventional built-in models 

consider the response of geomaterials as elastic-perfectly plastic (no hardening or softening), which is not 

realistic in most cases. Some hardening laws may be available in numerical models (e.g., CamClay type of 

formulation), but these can be difficult to use as the required parameters for the model may not be readily 

available. Furthermore, hardening models implemented in many codes are essentially based on formulations 

applicable to clayey soils, which can make them less relevant for other types of geomaterials (such as rock and 

backfill).  

The MSDPu inelastic criterion (Aubertin et al. 1999a, 2000; Aubertin and Li 2004) can provide a practical 

and user-friendly framework to account for the inelastic response of different types of geomaterials. A 

comparative assessment of existing inelastic loci, including the multiaxial MSDPu criterion, has been presented 

recently by Li et al. (2005b). Previous publications on MSDPu have shown that this 3D inelastic criterion is 

applicable to different materials and stress states. Its application to date, however, has been limited to simple 

problems, based on idealized analytical solutions that use a perfectly plastic response (e.g., Aubertin et al. 

1999a; Aubertin and Li 2004). This seriously limits the practical use of the MSDPu criterion to model the 

inelastic response of geomaterials, excluding problems with complex geometries and loading conditions.  

This report presents the approach that has been adopted for the numerical implementation of the multiaxial 

MSDPu function into a numerical code. The model formulation is modified here to include a hardening 

component to better reflect the observed behaviour of the materials of interest. The ensuing elasto-plastic model, 

in which MSDPu serves as a yield surface and plastic potential, is used for stress analysis of engineering works. 

The proposed computational scheme is described in detail, and incorporated into the numerical code FLAC 4.0 

(Fast Lagrangian Analysis of Continua) developed by Itasca (2002). This code was selected because of its 

relatively wide use in geomechanics, and because it includes a subroutine (and language) that allows the 

implementation of new or modified constitutive equations. Through the given explanations, the authors also 

point out the simplifications that have been adopted to implement the new elasto-plastic model at this stage. To 

illustrate the model capabilities, and to partly validate its application, the computational scheme is employed to 
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model a typical experimental test result obtained on sandstone. The numerical solution is then applied to the case 

of a circular opening, and the results are compared to a recently proposed analytical solution. The effect of 

including hardening in the constitutive equations is also illustrated. A brief discussion follows.  

 

2. FORMULATION OF THE MSDPu CRITERION 

The yield function used in the proposed constitutive model follows the multiaxial MSDPu criterion, which is 

expressed in terms of commonly used stress invariants (see Aubertin et al. 2000): 

[1] ( ){ } 02 π

1/22
c13

2
211

2
1

2
2 =−−+−−= FIIaaIaIJF

 

α  

where I1 = tr(σij) represents the first invariant of σij; J2 = (Sij Sji)/2 is the second invariant of the deviatoric stress 

tensor Sij [= σij � (I1/3) δij; δij = 0 if i ≠ j and δij = 1 if i = j]. Their explicit form can be written as: 
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The MacCauley brackets are defined as 〈x〉 = (x + |x|)/2 (x is a variable). The criterion parameters α, a1, a2, a3 and 

Ic are obtained from basic material properties. Parameter α (adapted from the well-known Drucker-Prager 

criterion) is related to the friction angle φ: 
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where σt and σc are uniaxial strengths in tension (negative) and in compression respectively; b is a shape 

parameter. On the other hand, parameters a3 and Ic are related to the material behaviour under relatively high 
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hydrostatic compression. When the locus closes down toward the mean stress axis, Ic represents the I1 value 

where the locus departs from the "low porosity" condition (see Fig. 1). Coefficient a3 is linked to I1n (also shown 

in Fig. 1) which corresponds to the intersection of the inelastic locus with the positive I1 axis. The relationship 

between a3, I1n and Ic is expressed as follows: 

[7] 
( )

( )2
c1

2
211

2
1

2

3
2

II
aIaIa

n

nn

−

+−α
=  

The value of Ic and I1n may be obtained experimentally. For dense materials such as hard rocks, the value of Ic or 

I1n can become very large, so the cap portion of the locus can be neglected (see Fig. 1a). 

In eq. [1], function Fπ defines the shape of the surface in the π plane (shown in Fig. 1b). It can be expressed 

as: 

[8] 
[ ]

ν
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





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)1.5(45)sin(1
1/2

222
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In this equation, θ is the Lode angle used to define the stress state in the octahedral (π) plane:  

[9] 
3
2

1

2

33
sin

3
1

J

J 3−=θ , (-30° ≤ θ ≤ 30°) 

Here, J3 = (Sij Sjk Ski)/3 is the third invariant of the deviatoric stress tensor Sij. The exponent ν is a mean stress 

dependent parameter; ν=1 is used here. Parameter b (≤1) reflects the ratio of the locus size at θ = �30° (i.e. 

reduced triaxial extension) in the π plane when compared to that at θ = 30°. With eq. [8], the value of b, which is 

equal to °=θ°−=θ 30
2/1

230
2/1

2 )()( JJ  (for ν = 1), can range from 1 (circular shape) to about 0.7 (rounded triangle) 

(see Fig. 1b). The Fπ function can be formulated in a different manner to accommodate cases where b < 0.7 (see 

Li et al. 2005b), but this form is not presented here. The MSDPu parameters can also be made porosity dependent 

(Li et al. 2005b); this aspect is not considered in this presentation. More details on the formulation of the MSDPu 

criterion and some basic applications can be found in the above mentioned papers from the authors� group. 
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Fig. 1 Schematical representation of the MSDPu criterion for dense and porous materials under CTC conditions 

(θ = 30°) (a); view in the π plane (b) (adapted from Aubertin and Li 2004 and Li et al. 2005b). 

 

3. ELASTO-PLASTIC CONSTITUTIVE EQUATIONS 

3.1 Core formulation 

The computational scheme developed here for the numerical implementation of MSDPu uses an elasto-plastic 

(EP) constitutive model based on the multiaxial criterion. In order to simplify the equations, following equations 

will be used: 
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[10] 1II =  

and 

[11] 2JJ = .  

The shear strain increment γ∆  and volumetric strain increment ε∆  associated with J and I can be expressed 

by  

[12] ( ) ( ) ( )[ ]
2/1

2
23

2
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2
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2
3322

2
3311

2
22116

12






 ε∆+ε∆+ε∆+ε∆−ε∆+ε∆−ε∆+ε∆−ε∆=γ∆  

and  

[13] 332211 ε∆+ε∆+ε∆=ε∆  

where ijε∆  is the strain increments (i = 1 to 3, j = 1 to 3). 

A decomposition of the strain increments assuming small-strain plasticity can be obtained in the following 

simple incremental form : 

[14] pe γ∆+γ∆=γ∆  

[15] pe ε∆+ε∆=ε∆  

where the superscripts �e� and �p� refer to the elastic and plastic components of the strain increments. The 

plastic strain components are non-zero only for the stress states that result in plastic deformations. The 

assumption of small-strain plasticity neglects higher orders or multiplication terms of the deviatoric components 

of strain increments. The simple form of decomposition used in eqs. [14] and [15] is convenient and considered 

acceptable for the initial stage of the numerical implementation of the inelastic locus. The validity of this 

assumption is partly confirmed later through the numerical results presented below. 

The incremental formulation of the Hookean elasticity in terms of the strain increments ( ee  , ε∆γ∆ ) takes the 

form of: 

[16] eγ∆=∆ GJ  

[17] eε∆=∆ KI  
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The procedure to evaluate the stress state from an elasto-plastic constitutive model includes an elastic 

predictor, with a plastic corrector to maintain the admissible stress states to be located on the yield surface. A 

review of the various aspects of this method to obtain the admissible stress states for an elasto-plastic 

constitutive model was given by Ortiz and Popov (1985). The authors apply here a similar procedure to 

determine the stress using the MSDPu criterion. Other more elaborate approaches could also be used for the 

numerical treatment (e.g., Simo and Hughes 1997; Simo 1998), but these are not deemed necessary at this stage 

of the model development.  

The plastic components of the strain increments (plastic correctors) are determined as follows: 

[18] 
J
g

∂
∂

λ=γ∆ p  

[19] 
I
g

∂
∂

λ=ε∆ p  

where g is the plastic strain potential function, and λ a plastic multiplier. In this first example of implementing 

the model, the authors are assuming the normality of the strain increment vector to the yield surface; such an 

associated flow rule (with g equal to the yield function F) admittedly induces some restrictions, particularly 

when applied to some cohesionless and/or highly frictional materials, but this is considered an acceptable and 

convenient simplification for this initial application. As a result, the plastic strain increments take the form: 

[20] λ=γ∆ p  
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with 〈I-Ic〉 = 0 for I ≤ Ic. 

In eqs. [20] and [21], it is assumed that the Lode angle ( θ ), included in the function Fπ, remains constant 

during plastic straining. This results in a very useful simplification in the plasticity formulations for the MSDPu 

yield criterion. The study conducted by Li et al. (2005b) indicates that this assumption is realistic as the change 

in θ  within the medium is normally less than 10%. Therefore, the use of a constant Lode angle ( θ ) can be 
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considered acceptable with only marginal effects on the determination of the plastic strain increments. It is also 

appropriate for comparing the numerical results with the analytical solution developed for a circular opening (see 

below). 

From eqs. [14] to [17], the incremental formulation for the elastic response takes the form: 

[22] pγ∆−γ∆=∆ GGJ  

[23] pγ∆−ε∆=∆ KKI  

Introducing eqs. [20] and [21] into eqs. [22] and [23], one obtains: 

[24] ( )λ−γ∆=∆ GJ  
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Noting ( NN  J,I ) and ( OO  J,I ) as the new and old (previous) stress states, before and after strain increment 

respectively, one can then write: 

[26] JJJ ∆+= ON  

[27] III ∆+= ON  

Substituting eqs. [24] and [25] into eqs. [26] and [27], the following relationships are obtained: 

[28] λ−= GJJ IN  

[29] λ+= HII IN  

where H is an intermediate variable expressed as: 

[30] 
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In these equations, II  and IJ  correspond to the elastic estimates obtained by adding the elastic increments as 

follows, 

[31] γ∆+= GJJ OI  
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[32] ε∆+= KII OI  

The scalar factor of proportionality λ  used as the plastic corrector must be defined so the new stress state 

remains on the yield surface. This means that: 

[33] ( ) 0NN =J,IF  

where F is defined by the MSDPu criterion. 

Substituting eqs. [28] and [29] into eq. [33] one obtains the following equation:  

[34] 02 =+λ+λ CBA  
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The scalar factor of proportionality λ  is the root of eq. [34] (i.e. smallest absolute value); it equals zero if its 

value is negative. 

Once the scalar factor λ  is obtained, the new stress state ( NN  J,I ) can be determined using eqs. [28] to [32]. 

It should be noted again that the proposed procedure maintains the new stress states ( NN  J,I ) on the yield 

surface defined by the MSDPu criterion. 

The new deviatoric stress components can be directly obtained by multiplying the corresponding deviatoric 

elastic estimate with the ratio IN J/J . Therefore, the new stress components can be expressed as: 

[38] ( ) ijijijij I
J
JI δ+δ−σ=σ N

I

N
IIN  

where ijδ  is the Kronecker delta function. 

 

3.2. Hardening behaviour 
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The numerical formulation presented above is based on a perfectly plastic response upon yielding.  However, 

porous geomaterials often show a hardening behaviour when loaded beyond their elastic domain (e.g., Prevost 

1978; Casey and Naghdi 1981; Grgic et al. 2003). As part of the implementation of the MSDPu EP-model into a 

computational scheme, the authors have introduced a simple hardening component. For this purpose, the MSDPu 

criterion (eq. [1]) was modified as follows: 

[39] ( ){ } 02 hπ

1/22
c13
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211

2
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2
2 =−−+−α−= FFIIaaIaIJF

 

 

The added function Fh depends on the plastic strain. It is is expressed as (Desai and Siriwardane 1984; Grgic et 

al. 2003): 

[40] ph 1 εω+=F  

where |εp| is the norm of the accumulated volumetric plastic strain ( ∫ ε=ε pp d ; only the hardening behaviour of 

contractive materials is considered in this first series of application) and ω is a material parameter that controls 

the hardening rate. Figure 2 illustrates the effect of the isotropic hardening coefficient ω on the stress-strain 

curve. 

 

Fig. 2 Effect of ω on the stress-strain curve. 
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With this addition, the constitutive formulation and numerical implementation remain exactly the same as for 

the elasto-perfectly plasticity model described previously, with function F (eq. [1]) replaced by eq. [39]. Thus, 

the mathematical formulation and numerical implementation procedures are not repeated here. 

 

4. NUMERICAL IMPLEMENTATION 

4.1 Selected code 

FLAC (Fast Lagrangian Analysis of Continua; Itasca 2002) is a commercial code widely used in 

geomechanics and geotechnical engineering. Examples of its use are presented in a number of publications, 

including Detournay and Hart (1999), Billaux et al. (2001) and Brummer et al. (2003). This code is based on an 

explicit, finite difference method. Its main advantages and disadvantages (compared to the finite element 

method, for example) are given in the FLAC 4.0 Manual. A review of the application of the numerical technique 

used in FLAC to plasticity was given by Marti and Cundall (1982) (see also Chen et al. 1999; Chatti et al. 2001; 

Purwodihardjo and Cambou 2005).  

FLAC calculations are based on the dynamic equations of motion. The code can also obtain static solutions 

by incorporating the appropriate damping variables into the dynamic equations. As a result, time steps must be 

included as input for the numerical explicit scheme (even though the problem is considered static). As a 

criterion, the speed of the calculation front should be greater than the maximum speed at which information 

propagates, to maintain the stability of the explicit scheme existing in FLAC 4.0 (see Cundall 1976 and the 

user�s manual for FLAC 4.0 by Itasca 2002). A time step must therefore be chosen which is smaller than a 

critical time step related to the stability of the numerical explicit scheme. This can be imposed in FLAC either 

automatically by the code or by the user.  

One of the main advantages of the explicit scheme used in FLAC is that it does not require the convergence 

of the all equations at each calculation cycle. No iteration process is required, and the numerical scheme 

converges to the solution explicitly; convergence can be monitored during the calculation cycles through a 

parameter called the �unbalanced force�. A detailed description of the unbalanced force can be found in the 

user�s manual by Itasca (2002).  
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On the other hand, the explicit time scheme existing in the code can be less efficient than the implicit 

schemes often used with the finite element techniques (e.g., Bardet and Choucair 1991; Crisfield 1991; Aubertin 

1993; Simo 1998). This may result in a longer time to converge, particularly for problems with different zones of 

soft and stiff materials or with mixed boundary conditions. With FLAC, smaller time steps may be required and 

consequently the calculation time may be increased; however, most simulations can be conducted fairly rapidly 

with modern computers. 

 

4.2 Equations programming 

The previously described elasto-plastic constitutive model (herein called the MSDPu EP-model), has been 

incorporated using the programming language �FISH� available in FLAC 4.0. The computational scheme 

developed in this report to incorporate the elasto-plastic model into the numerical code for stress analysis is 

summarized as follows: 

I. Obtain II  , JI  (elastic estimates) for the nodal points of each element using OO  , JI  from the 

previous time step: 

ε∆+= KII OI  

γ∆+= GJJ OI  

II. Define the yield equation with MSDPu: 

πFFJF 0−=  

If 0<F  (no inelastic response), IN JJ = ; IN II = , go to (VI); else (inelastic response), go to (III). 

III. Calculate λ  (the scalar proportionality factor for plastic strain corrector) from eq. [34]. 

IV. Calculate plastic strain: 
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J
FP

∂
∂

λ=γ∆  

I
Fp

∂
∂

λ=ε∆  

V. Correct the elastic stress ( II  , JI ) to obtain the new stress states ( NN  , JI ) with eqs. [28] to [30] located 

on the yield surface. 

VI. Go to the next time step. 

The model implemented into FLAC is currently being used to solve a variety of practical geotechnical problems. 

Simple examples are shown below. 

 

5. PRELIMINARY VALIDATION OF THE MSDPu EP-MODEL 

Conventional triaxial compression tests are often performed on cylindrical samples to obtain constitutive 

model parameters. The results of conventional triaxial compression can be used to validate the computational 

scheme and the hardening component, incorporated in the MSDPu inelastic criterion. For this purpose, a triaxial 

test reported by Elliott and Brown (1985) on Berea sandstone is simulated.  

The first calculation is made with the assumption of an elastic-perfectly plastic response of a geomaterial 

(without hardening). The numerical simulation is applied to simulate loading and unloading, in order to predict 

the complete stress-strain characteristics of Berea sandstone. 

The discretization of the domain and the prescribed boundary conditions are shown in Fig. 3. The material 

properties have been estimated based on the experimental results published by Elliott and Brown (1985); these 

are: 

MPa 1200=G , MPa 1600=K  (elasticity parameters) 
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on the available experimental results). Figure 5 shows that the agreement between the numerical modelling and 

experimental results is significantly improved, compared to Fig. 4, especially near the onset of inelasticity. The 

simulated behaviour shown in this case is in good agreement with the physical behaviour of various porous 

geomaterials, which usually involves a hardening phase when subjected to a CTC test (see Brinkgreve 2005; 

Carter and Liu 2005; Desai 2005; Lade 2005a, b; Nova, 2005). Nonetheless, the model does not aim at capturing 

all aspects of the mechanical response (neglecting phenomena such as progressive decreasing of the unloading 

modulus due to damage and softening, and associated hysteresis effect), as it is intentionally kept relatively 

simple to limit the number of parameters required for its practical use. 
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Fig. 4 Numerical results and comparison with the result of a triaxial test conducted by Elliott and Brown (1985) 

on Berea sandstone. 

 

6. SAMPLE APPLICATIONS 

The stress distribution around a circular opening subjected to a far field hydrostatic pressure is examined 

using the MSDPu EP-model implemented in the numerical code. This problem is used to further validate the 

proposed numerical model. The results also provide a basic estimation for the stress distribution around a 

circular underground opening in a rock mass. The numerical simulation is then used to conduct a short 
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parametric study to determine the influence of hardening on the response of the surrounding inelastic rock, 

which cannot be addressed by the conventional yield criterion (such as Mohr-Coloumb and Drucker-Prager) 

available in most stress analysis codes. 
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Fig. 5 Comparion between triaxial test results conducted by Elliott and Brown (1985) on Berea sandstone and 

numerical simulations conducted with the MSDPu EP-model (hardening parameter ω = 50). 

 

The numerical results are first compared to an analytical solution given by Li et al. (2005b) for the stress 

distribution around a circular opening located in an elasto-plastic medium, subjected to a far field hydrostatic 

pressure σh (of 40 MPa in this case; see Fig. 6). The analytical solution developed with the MSDPu inelastic 

criterion is not presented here (see detailed equations in Li et al. 2005b). In Fig. 6, r0 is the initial radius of the 

opening, p0 is an internal pressure in the circular opening (p0=0 in this example), R is the radius of the interface 

between yielding (plastic) and unyielding (elastic) regions, r and ψ are the cylindrical co-ordinates of the 

calculation point, and σr and σψ are the radial and tangential stresses, respectively. 
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Fig. 6 Circular opening located in an elasto-plastic medium subjected to a far field hydrostatic pressure (σv = 
σh). 

 

Figure 7 illustrates the discretization over one quarter of the domain (using symmetry). In order to have a 

good representation of the infinite region, the discretized domain is extended to 40 times the initial radius (r0 = 3 

m) of the circular opening. 

The medium is elasto-plastic, and governed by the MSDPu inelastic criterion. The elastic parameters, 

corresponding to those of a rock mass, are: G = 137.5MPa, K = 187.5MPa. The material parameters for the 

MSDPu criterion are: σc = 45MPa, σt = 1MPa, Ic = 44MPa, a3 = 0.75, b = 0.75, φ = 30°. 

Figure 8 shows a comparison between the FLAC simulation and the analytical results given by Li et al. 

(2005b) for the radial and tangential stress distribution around the circular opening. It can be seen that the 

agreement between the numerical and the analytical results is excellent. Other comparisons between the 

computational results and existing solutions (not shown here) have also confirmed the validity of the numerical 

implementation of the MSDPu EP-model. 
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Fig. 7 Discretization of the problem domain using the symmetry axes (plane strain conditions). 
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Fig. 8 Comparison bewteen numerical results and the analytical solution given by Li et al. (2005b) for the 

normalized radial and tangential stresses around the circular opening. 
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Figure 9 illustrates some of the results of a parametric study using the MSDPu EP-model with hardening. This 

figure shows the tangential stress distribution around the cylindrical opening, using the same geometry and 

initial conditions as shown in Fig. 6. It can be seen that the stress distribution tends toward the elastic solution 

given by the Hiramatsu and Oka (1962, 1968) analytical formulation when the hardening parameter ω increases 

from 0 (perfectly plastic) to a relatively large value (of 140 in this case).  

The authors have also performed a number of other calculations aimed at evaluating the response of 

underground openings, with an emphasis on the case of backfilled stopes (to extend the work of Aubertin et al. 

2003a and Li et al. 2003, which was based on the classical models described above). These results will appear 

elsewhere. 
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Fig. 9 Calculated values of the tangential stress distribution around a circular opening evaluated with the 

MSDPu EP-model and the elastic solution. 

 

7. DISCUSSION 

The results presented above are part of an ongoing investigation into the geomechanical response of porous 

materials (soils and fills) when placed in a confined volume, such as the case with backfill placed in mine stopes 
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or in narrow trenches (see Li et al. 2003, 2005a, 2006). For such situations, analytical solutions have been 

developed for simplified conditions, but as mentioned previously these bear serious limitations in terms of the 

type of constitutive equations that can be used, the geometry that can be considered, and the initial and boundary 

conditions that can be applied. 

In view of these very restrictive attributes of analytical solutions, it is clear that numerical tools offer much 

more flexibility. Nonetheless, commonly used codes also have limitations, in part because the nature of the 

models already implemented, which are not readily representative of the variety of geomaterials that need to be 

analyzed, i.e. from hard rock, to fractured rock mass, to cemented fill, to very soft porous media. The MSDPu 

criterion used in this report has been developed with this broad range of material behaviour in mind. Since its 

initial formulation and application to brittle materials (Aubertin and Simon 1996, 1998; Aubertin et al. 1999a), it 

has been extended to deal with a variety of physical processes, including time and scale effects (Aubertin et al. 

2000, 2001), strength anisotropy (Li and Aubertin 2000), the effect of low to high cohesion with different 

pressure (mean stress) dependencies (Aubertin and Li 2004), and influence of initial porosity for different 

materials (rock, concrete, soils, etc; see Li et al. 2005b). The above mentioned publications from the authors 

summarize the main features, with the advantages (and limitations) of this inelastic criterion. Its modular nature 

allows the MSDPu formulation to be adapted to suit different needs. Work is still in progress to include other 

phenomena such as the influence of saturated and unsaturated conditions (with pore pressure; see Fredlund and 

Rahardjo 1993, Wheeler and Sivakumar 1995, Aubertin et al. 2003b, and Alonso and Olivella 2006), progressive 

damage (with an evolution law and softening) on the elastic moduli and on inelastic behaviour (see Aubertin et 

al. 1998, 1999b), and the possible use of mixed (isotropic and kinematic) hardening for semi-brittle materials 

based on internal state variables (Yahya et al. 2000; Aubertin et al. 1999b). Other issues that are considered 

include the use of a non-associated flow law (i.e. F ≠ g), calculations with a varying Lode angle θ  (when 

needed), and also the evaluation of more elaborate numerical integration schemes to benefit from recent 

developments in this field (e.g., Cristfield 1991; Aubertin 1993; Simo 1998). These aspects have not however 

been included in this presentation, which rather aims at proposing a simple but practical means to include the 

key features of the MSDPu locus into numerical analyses.  
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For the types of problems most often encountered in geotechnical engineering, it is very useful to have a 

flexible but still relatively simple model that can represent a range of material behaviour, and which can be used 

in different numerical modelling situations. 

The results shown in this report illustrate some of the steps that have been taken to help resolve these types of 

problems. The MSDPu EP-model, as implemented here into a commercial code, provides a practical approach to 

tackle many of the most critical issues in geomechanics. This work will continue to further advance with the 

development of constitutive equations, numerical code, and solution strategies for practical engineering 

problems. 

 

8. CONCLUSION 

In this report, an elasto-plastic constitutive model has been developed using the general multiaxial MSDPu 

criterion. The proposed model includes an isotropic hardening component that was added to better represent the 

behaviour of porous media. The ensuing MSDPu EP-model has been implemented into a commercial code 

commonly used in geomechanics and geotechnical engineering. The proposed model and numerical 

implementation are described with the adopted simplifications, and sample calculation results are shown and 

validated through a comparison of the stress distribution around a circular opening in an inelastic mass submitted 

to hydrostatic pressure, as obtained from existing analytical solutions previously developed by the authors. It has 

also been shown that the proposed model can describe fairly well the experimental results of triaxial 

compression tests. The proposed model is presented as a new practical tool among the available models to solve 

geomechanical problems.  
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