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Abstract

The problem of determining the time-dependent heat flux imposed on the
boundary of a solid slab from the temperature distribution at the final time is
solved by the conjugate gradient (CG) and the truncated singular value
decomposition (TSVD) methods. The Tikhonov regularization is used to regularize
the solution when the given data contain random errors. The recovering of the
exact boundary condition is shown to depend on the total time of the
heating/cooling process. It is found that the exact boundary heat flux can be
recovered for about one tenth of the diffusion time, beyond which we obtain only
the time-averaged heat flux. However, by using a modified conjugate gradient
method, we may reconstruct the boundary heat flux for much larger times if its
initial value is known. We also show that these methods can be effectively used to

solve the control problem.



Introduction

The classic inverse heat conduction problems (IHCP), i.e., to determine the
boundary conditions, initial conditions, heat sources, and thermo-physical
properties from the temperature measurements at all times, have been extensively
investigated. One of the most well-known methods is proposed by Tikhonov [1]
based on the concept of conditionally-well-posed problems. Alifanov [2] developed
a self regularization technique by conjugate gradient method. Beck [3] introduced
the so-called method of future times where the solution corresponding to the
current time is determined by the measured data at several future times. Murio [4]
developed the so-called mollification method based on data smoothing techniques
while the boundary element method was often used to deal with complex
geometries [5]. A practical review of these methods can be found in Woodbury [6].

A much less studied IHCP is to estimate the boundary or initial conditions
from the temperature distribution at the final time. This problem may be referred
to as IHCP of second kind while the above mentioned problems may be called IHCP
of first kind. For example, a retrospective convection problem was solved by
Nguyen and Zhang [7] to trace back the initial temperature field. Recently, control
problems have been considered within the framework of inverse problems [8, 9,
10]. For example, in order to obtain a high quality steel production, it is necessary
to reduce the temperature uniformly during the cooling process. The semi-solid
forming technology also requires a uniform temperature of the heated material at
the final time to obtain a desired globular microstructure. To achieve a uniform
final temperature field under a Stefan-Boltzmann boundary condition, Kelley and
Sachs [11] developed a Steihaug trust-region-conjugate-gradient method with a
smoothing step at each iteration. It appears that the Steihaug trust-region-
conjugate-gradient method has stronger convergence properties than the non-
linear conjugate gradient method, especially for constrained problems. The
numerical tests show that the error functional is about 107 after only one iteration.
Huang [12] solved a similar 1-D control problem by the conjugate gradient method
to obtain a targeted temperature at the final time. Two values of final times were
considered. The numerical results showed that the estimated boundary heat fluxes
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change steeply near the final time. The author concluded that the standard CGM
can be successfully applied to solve the nonlinear control problem but the
estimated solution is difficult to realize in practice. More recently, the same control
problem was extended to 3-D geometries by Huang and Li [13]. Numerical tests
were performed for rectangular and irregular domains. It was found that, as in the
1-D problem, the estimated boundary heat flux tends to a constant value and
drastically change just before the final time.

While many authors have solved this control problem, the reconstruction of
boundary heat fluxes from the temperature measurements at the final time has not
been published in the open literature. Although they may be treated by the same
methods, the control and reconstruction problems are basically different: There
may be no exact solution to a control problem, while an exact solution must de
facto exist in a reconstruction problem.

In this paper we solve both the reconstruction and control problems, using
the conjugate gradient method (CGM) and the truncated singular value

decomposition (TSVD) method, respectively.

Problem Definition and Formulation

Let us consider a metal bar that is heated

ar _, 8_T:q(t):rm (or cooled) from the right side, while its left side
- -
Inzulation Hea;ng or Cooling is adiabatic. The initial temperature, T(x, 0)=f(x), is
[SSSSSSSTTORGle | known. An internal heat source which is a function
0 L X

FIG. 1 of space and time may exist within the system.

Geometry and boundary conditions The geometry and boundary conditions are

summarized in Fig.1. Our objective is to

determine the heat flux q(t) at the right boundary during the period 0<t<t.from

the measured temperature distribution T(x, t;) =T, (x) at the final time t.

The Direct Problem

This 1-D heat conduction problem is governed by



pc—=k—+S (1)

where S=S(x,t) denotes the internal heat source. The dimensionless temperature,

length, time and heat source can be defined as follows:
T* = T_TO ) X* =

X tk . SI?
AT L

= — S =
pcl? ! kAT

p v

(2)

with ATz% and To being a reference temperature. Omitting the superscript “*”

from now, and substituting Eq. (2) into Eq. (1), we obtain the non-dimensional
equation

oT _0°'T

E_erS (3)

The boundary and initial conditions are

Ly,
X0 OX

ar

x =q(t), T(x,0)=f(x) (4)

x=1

Conjugate Gradient Method

The Inverse Problem

The inverse problem of finding a boundary heat flux q(t) such that

T(x,t;) = Te(x) may be solved by minimizing an error functional defined by
1 1 2 &tf 2
E@)=7 j [Teete) = Te P dx + > j 9’ (t)dt (5)

where ¢ is the so-called Tikhonov regularization parameter. Among the various

minimization algorithms, the conjugate gradient method is frequently used because
of its efficiency and self-regularization. In this iterative algorithm, the searching
direction is obtained by solving an adjoint problem, while step size is determined

by solving the sensitivity problem.

The Sensitivity Equation

The sensitivity temperature T is defined as the directional derivative of T

at q in the directionAq:



7o 1imT(q+«sAq)—T(q) (6)

e—0 Fes

From Eqg. (3), we have

(T(q +8Aq) - T(q)) i O (T(q +8Aq) - T(q))

Iimg

+ lim
=0 Ot €

€ £—>0 6X2 € £—>0

. (S(q +eAq) — S(q)j

The heat source is given, so 1in3(s(q+8Aq)_S(q)J=0_

€

According to the definition of the sensitivity, we readily obtain the sensitivity

equation
T o°T
_9- 7
ot ox’ (7)
subject to the initial condition and boundary conditions
~ oT aT
T(x,00=0, —| =0, —|_=Aq(t 8
(X’ ) aX 8x x=1 q() ( )

x=0

The Adjoint Equation

The main task in CGM is the determination of the gradient of the objective
functional VE, which is related to the directional derivative of E in the direction Aqg.
According to the definition of the object functional and the sensitivity, we have
E(q+¢Aq) —E(q)

€

D, E(@) =lim

1 te 1 te
[[T(@+eaa) - ToFdx+ £ [ (a+eaq)’dt - [[T(a) - Ty Fdx £ [ gt
0 0

0 0

2 e—0 € (9)

1

- o t) [T(xty) — T, Jldx + éj(q -Ag)dt
0

Using the Lagrange multiplier method we may rewrite Eq. (9) as

1 ~ r YL 0T
D, E(q) = J.{[T(X’tf) - TE]' T(X,tf)}dx + éj‘(q : AQ)dt + J.J-T(E - y} - dxdt (10)
0 0 00

Considering the initial and boundary conditions of the sensitivity problem, we have



DAqE(q)zj{[(T—TE)ﬁH dx tjj [a—T+iJ dxdt
0

tro(~oT )
~0T [—
—| T— |-dxdt — | |T(L,t)-A -Aq)d
T2 {72 e [0 safeoflasaha
If the adjoint temperature satisfies the following equation and “initial” and
boundary conditions:
2
a_T+6_T_0 or T_OT - (12)
ot ox’ ot 0x
oT oT
== =0, = =0 13
[5).4 _ 8XX:1 ( )
T(x,1=0)=—(T(x,t=t;) - Ty(x)) (14)

then the first, second and third terms of the right hand side of Eq. (11) vanish and
Eqg. (11) becomes

D,E@ = [{fta~T(.0] aqfat (15)
0
Comparing Eq. (15) and Eq. (9), we obtain the gradient of the object functional

VE =£q - T(1,t) (16)

The Conjugate Gradient Algorithm

For CGM of Polak-Ribiere type, the iterative process may be expressed as

qk+1 :qk + akPk (17)
Pk = _gk 4 pkpk!

e (g -gihTg" (18)
B )Tgk -

where g stands for the gradient of the objective functional. On the other hand, the

step size should make the first order derivative of E in the direction o* vanish:



OE

tr
P [T(qk +oP*) - T, ]de + Z;J.(qk +a*P*)Pkdt
0

Q

O ey — O — —

(T + o T* - T, JFdx + équPkdt ; &:f X (P*)2dt
0 0

(19)
_ ak[j(fk)zdx . E,,T(Pk)zdt} . j(Tk T, fitdx + é}qukdt
=0 0 0 0 0
j(Tk T, Jidx + F;jqukdt
N o (20)

1 ty
j(fk)zd“gj(l)k)zdt
0 0

Note that the temperature is here assumed to vary linearly with the heat flux g.

The CGM algorithm may be summarized as follows:

. Set the initial guess q° =q,(t) and iteration counter k = 0.
. Solve the direct problem with q*to obtainT*.

. Evaluate the difference T*(x,t,) - T; .

. Solve the adjoint problem backward in time forT" .

5. Evaluate the gradient according to Eq.(16).

7.

8.
9.

. Calculate the search direction p*:

. - VE* if k=0
{— VE* +B*P*"' if k>0 (21)
te
j(VEk _ VE*")WVEKdt
B =2 (22)

j(VEk-l)Zdt
0
Solve the sensitivity problem with Aq=P*at x = 1 to obtain T*.

Calculate the step size o* with Eq. (20).

Update ¢ =q"* +a*P".

10. Set k = k + 1, go back to step 2, repeat until the convergence criterion E*<¢ is

satisfied.

The direct, sensitivity and adjoint equations are solved by the finite

differences method with an implicit time scheme.



Fredholm Equation and SVD

If the source term S(x, t) = 0, we may express the solution of Eq. (3) and (4) as

T(x,t) = jf(x)dx + J’ q(t)dt + 2i U £(x) cos(nnx)dx}e“znzt cos(nmx)
0 0 n=I\ 0 ( 23 )

+ 22[] e—nznza—r)(—l)n q(T)dTJ cos(nmx)
n=1\ o

The derivation can be found in [14]. If we set the initial temperature field T(x,

0)=f(x)=0, the temperature distribution at final time is

jG(X,t)q(t)dtz T(x,t;) (24)
0

G(x,t)=1+ 2ie“2“2(H” cos(nm)cos(nmx) (25)

n=l

Eq.(24) is known as Fredholm equation of first kind. q(t) is the unknown function to
be solved with T(x, tf) being a known “right-hand-side”. G(x, t) is called the kernel.
Eq.(24) may be cast into a matrix equation:

[G]-{q} ={T} (26)
whose solution is q=G™-T, where [G]" is the inverse of [G]. Matrix [G] and vector

{T} can be obtained by various numerical techniques. In this paper the trapezoidal
method is chosen. Theoretically speaking, we can thus directly determine the
solution of the inverse problem. Unfortunately, in this problem, it appears that

detG~0 and the condition number N. >, so [G] is a singular matrix and classic

techniques such as the Gaussian elimination and LU decomposition can not give a
correct inverse of [G]. We then have to adopt the singular value decomposition
(SVD) technique according to which the kernel [G] can be expressed in the
following form:

w, 0 - 0

0 e 0
G=[v] ;o |V (27)



where w, are the singular values of [G] and u, and v, are called the left and right

singular vectors of [G]. The solution of Fredholm equation then s

@) = [V]{diag[%ﬂ([U]T{T}) :

1

As the too small singular values will result in the oscillation of the solution due to

the amplification effect of l, we may adopt a simple but effective regularization

i

technique called truncated singular value decomposition: if w, <t (< is an arbitrary

small number), let L=0. Suppose wg is the first singular value reaching t, the
W.

1

integer k is called truncation parameter. The choice of the truncation index is very
important: if k is too large, the solution will be too corrupted with noise; if it is too
small, too much information about the solution will be lost. Alternatively, Tikhonov

L | > .
regularization may be used to replace — by ZW—E)Z— for all the singular values.
e w2+ w,

1

The regularization parameters  and ¢ may be determined by the Picard condition,

the L-Curve, and the discrepancy principle or the generalized cross validation
(GCV).

It should be noted that the Fredholm equation can also be solved by the conjugate

gradient method to minimize the error function E

B= (T~ T ) (T - 1)+ S ) o) (29)
{Te} is the temperature distribution at t=t; , and{T}=[G]-{q} . It appears that E is a

quadratic function of q:

%{q}T{q} (30)

B=(G]{a)~ T} (6] o) — (T, )+

Let [H]=[G]" -[G], the gradient of E in the direction of q is
{VE}=[G]"((G]-{a} - {T;:}) + &{a} =[H]- {q} —[G]" {T.} + &{a} (31)

The boundary heat flux is then determined iteratively by
@1y ={q"} + o {P"} (32)

9



with a being the step size and P the conjugate search direction.

Let °E

=0, we must have
oo

k
=0

(VEM!}T(PH) =0 (33)
Substituting Eq.(31) and (32) into Eq.(33),
(GTT([G1- 0"} - (T} )+ £ty ) 1Py

(34)
= ([G] 9"} +[Gla {P*} — {TE})T[G] P} +E({q"} + (P )" {P*} =0
As ¢ is a scalar, let{Q*}=[G]{P*}, we have
([G]{qk}+ak{Qk}—{TE})T{Qk}+<§({qk}+ak{Pk})T{Pk}=0 (35)
= [G1a") T3] 1Q") + £} PH) =~ (1Q“ Q" + &P} 1Py = o Q| + gl
Then we obtain the step size
oo lonay - m) Q4+ eay TP (36)
]+ ¢l
On the other hand, the searching direction may be expressed as
{P}=—{VE"} +B*{P*} (37)
For the conjugate search direction, we must have
{PHI{P =0 (38)
Substituting Eq.(37) into EqQ.(38), we get
—{VE'} [H]{P* '} + B* (P} ' [H]{(P* '} =0 (39)
Since
(VE ) —(VE} =[H]((*} — {a" '} )= o [H] (P} (40)
Then (VEX)T((VE*} - (VE* 1} )= p* (P* T ((VE*} — (VE* )
or
((VE*) — v ) (VR =B ((vEH ) — VB oy (41)
Because of Eq.(33), we have
((VE*} — (VS (VE =B (VEX )T (P51 =S (VER (- (VER )+ g (P2 (42)

— BX(VE*VT(VEK ) = BkHVEk—luz

SO

10



(VB VB ) ey (43)
[ve|

The iterative process may be described as follows:
1. Set initial guess q° =q,(t), iteration counter k = 0.
Calculate T with ¢"according to Eq.(26).

Evaluate the gradient of error function according to Eq.(31).

Calculate the search directionpP* with Eq.(21), p*is obtained with Eq.(43).
Calculate the step size o* with Eq. (36).

Update ¢ =q* +a*P".

N o us W N

. Set k = k + 1, go back to step 2, repeat until the convergence criterion E*<¢ is

satisfied.

In summary, we have presented three methods to solve the IHCP of second kind:
1. CGM with adjoint equation; 2. TSVD with Fredholm equation; 3. CGM with
Fredholm equation. Algorithm 1 and algorithm 3 are both based on the CG; we will
not therefore discuss algorithm 3. However, it must be noted that the latter is
much simpler since the step size and conjugate search direction can be obtained

directly, i.e. the adjoint and sensitivity equations are not needed.

Existence and Unigueness of Solution

The possibility of solving a reconstruction problem depends on the existence and
uniqueness of its solution. In fact, it can be proved that the inverse heat
conduction problem of second kind possesses a unique solution. On the other hand,

exact solutions of control problems may not exist. These problems may be treated
as an optimization problem and we may obtain a solution to make ||T—TE||2 as small

as possible, but it may be not unique.

11



Recovering the Exact Heat Fluxes

Now let us first consider the possibility of reconstructing the exact boundary

conditions.

Inverse Solution By CGM

Let us set the initial guess q°=0 and the regularization parameteré=0, we then
haveVE=-T(,t) which can be obtained by solving the adjoint problem (12), (13),
(14):

T (x,t)=C, + i:Cne”Z’th -cos(nmx) (44)

n=1

1
C, = j w(x)dx
0

1
2]\4/()() cos(nmx)dx
C = 0

n

enznztr
- )

Ve =T (x.tp) =—(T*(x.1) - Ty ()
The gradient of the error function can be expressed by a series of exponential

function:

VE*=b, + D b,e" ™ ()
n=1
| 1 (45)
b, = —jw(x)dx, b, = (—1)“+lzjw(x)cos(nnx)dx
0 0

Since y(x) may be an arbitrary continuous function, then by and b, must be
arbitrary real numbers. We may rewrite (45) as

VE* = by + b, exp(n? (t —t;))+ b, expl4n (t - t;))}+ -+ b, exp(n®z*(t ;) (46)

Noting that the coefficient p*that determines the conjugate direction is a

constant in each iteration, it follows that the inverse solution obtained by CGM is

also a series of exponential functions
q(t)y=a, +a, exp(nz(t - tf))+ a, exp(4n2(t — tf))+ o +a_exp(n’n(t—t,)) (47)

Here ap and a, are real constants depending on Te.

12



If the exact solution q(t) is known, the coefficients ap and a, may be
obtained numericall. Table 1-3 and FIG 2.1-2.3 present the results of sine profiles
for t;=0.1, t+=0.2 and t=1.0, respectively. It appears that series like Eq.(47) do not

express well an arbitrary boundary heat flux if the final time is greater than 0.1.

Table 1: Fitting Coefficients of Least Square, Exactq(t) = sin(10xt) ,t €[0, 0.1]

ap aj dy az ay as dg az ag dg
-0.0004 | 0.0013 | -0.0020 | 0.0039 | -0.0112 | 0.0392 | -0.1354 | 0.4146 | -1.0541 | 2.1268
a0 ayg a2 a13 a4
-3.2697 | 3.6541 | -2.7738 | 1.2686 | -0.2618

Table 2: Fitting Coefficients of Least Square, Exactq(t) = sin(5nt),t € [0, 0.2]

ap ay a) az Ay as ae az ag Ag
0.0000 | 0.0000 | 0.0000 | 0.0002 | -0.0010 | 0.0062 | -0.0331 | 0.1464 | -0.5196 | 1.4288
aio ar an a3 adig
-2.9180 | 4.1903 | -3.9174 | 2.1011 | -0.4839

Table 3: Fitting Coefficients of Least Square, Exactq(t) = sin(nt) ,t € [0, 1]

ap a ay aj ay as ae ay

0.0007 -0.0008 -0.0033 0.0380 -0.2626 1.1110 -2.2427 1.3598

0ar

IR=R3

0.7

06

0.4F giti=sin(10n t) B

03F

-- Fitting Curve
—— Exact Curve

02F

01r

D 1 1 1 1 1 1 1 1 1
0 0o1 o002 003 004 005 006 007 008 009 049
t

FIG. 2.1 Fitting Curve of LS, t=0.1
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1.2
1 L 4

08+ B

06+ B
q

04F B

5 — Fitting Curve
02p7 s ---- Exact git)=sin(5m) Y-
nE
_Dz 1 1 1 1 1 1 1 1 1
0 002 004 006 008 01 012 014 016 018 02
t
FIG. 2.2 Fitting Curve of LS, t=0.2

1
09k B
08F R
oFp T .
06+ B

q
0af -- Fitting Curve b
—— Ewxact Curve

04k
o3t git)=sin(nt)

02r

01r

FIG. 2.3 Fitting Curve of LS, t=1

Note that the exact heat fluxes q(t)=0.5+¢* " (t;=1) and q(t)=sin(10nt) (tr=0.1) are

recovered with a very good accuracy. For a flux with sine profile (tr=1), the
reconstruction solution differs considerably from the exact data, increasing the
number of iteration does not improve the results. However this inaccurate solution

can make |T-Ty| very small, with a relative error of about 0.01%.
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18 T T T T T T T T T
— Inverse Solution
16k ---- Exact Data -
dt=0.01
1.4+ dx=0.01
= 1.2+
=
=
k]
= 1 o
0ar
0E
I:I-I'l 1 1 1 1 1 1 1 1 1
1] 0.1 0.2 0.3 0.4 0.5 06 0.7 0s 0s 1

tirme

FIG.2.4 Inverse Solution by CGM, Exact heat flux q(t)=0.5+e" ‘") ;= 1, £=0, S(x,t)=0

12 T T T T T T T T T

— Expected Data
- Inverse Solution

0.8

0B

heat flux

0.4

Expected Heat Flux g(ti=sin{10%pi™t)
[teration Mo.=500

0z

0.2

1 1 1 1 1 1 1 1 1
0 ool o002 003 004 005 006 0OF 008 009 041
time

FIG.2.5 Inverse Solution by CGM, Exact heat flux q(t) =sin(10nt), t;=0.1, £=0, S(x,t)=0
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12 T T T T T T T T T
— Inverse Solution
1 - Exact Data
dt=0.01
dx=0.01
0aer -
=
=
06t —
(113
k]
o
0.4r -
02r -
0 ; ] ] ] ] ] ] ] ]

1
0 0.1 0z 0.3 0.4 0.5 0.6 07 0.8 0. 1
time

FIG.2.6 Inverse Solution by CGM, Exact heat flux q(t) = sin(nt), t;= 1.0, £=0, S(x,t)=0

Degree of IllI-Posedness

The degree of ill-posedness is one of the most important character of inverse
problems. It influences the stability and accuracy of the inverse (reconstruction)
solution. Let us look at the Fredholm integral equation where the decay rate of the
singular values w; is an important factor: if it is very fast, the problem is severely
ill-posed and vice versa. We may study the ill-posedness of the inverse problem
through its kernel [G]. Although the solution is unique, the kernel G strongly
depends on the upper limit of the integral, i.e. the final time t;. If the kernel [G] is
too “smooth”, the decay rate of its singular values is very fast. FIG.2.7 shows the
decay of singular values for different final times. According to the definition of
Hofmann [15], a decrease of the final time will decrease the decay rate of singular
values. In other words, if the final time is shorter, the inverse problem becomes

less ill-posed. This is in agreement with the discrete Picard condition (DPC). The

DPC requires that the Fourier coefficients ‘uiTT‘ decay to zero faster than the

singular values w;, otherwise the DPC is not satisfied and the lack of stability of
16



solution will make the problem ill-posed. From FIG.2.8 and FIG.2.9, we can see
that if tr=1, DPC is satisfied only for i<12, and SVD should be truncated at k=11;
but if tr=0.1, the truncation parameter k reaches 20. More tests indicate that if t¢ is
longer, k should be smaller, and the problem becomes more ill-posed since a too
small truncation parameter will result in the loss of accuracy of solution. Results of

a numerical test are presented in FIG.2.10a and b.

If k is chosen by DPC, i.e. k=11, the solution obtained by TSVD is very similar to
the one obtained by CGM (see FIG.2.6). However, if k is larger, for example k=13,

the DPC will not be satisfied, and the oscillation of solution cannot be avoided.
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FIG.2.7 Decay Rate of Singular Values, L=1.0, imax=100
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FIG.2.10a Solution of Inverse Problem, Exact heat flux q(t) =sin(mnt) , k=11, i3,,,=100
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FIG.2.10b Solution of Inverse Problem, Exact heat flux q(t) =sin(nt) , k=13, i,x=100

If the final time is short, for example t;, <0.1, the problem is moderately or mildly ill-
posed. At t,=0.1, we successfully reconstruct the heat flux with a sine profile. If

q(t) may be expressed with Eq. (47), the correct solution can be obtained for any

final time. For q(t)=0.5+0.5¢""" and t, =1, it is found that the DPC is satisfied for i<10

(imax=100), i.e. k should be set les than 10 in order to stabilize the solution.
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FIG.2.11 shows that the inverse solution agrees perfectly with the exact data. It
can be concluded that the IHCP of second kind can be regularized successfully for
any final time if q(t) has a profile of Eq.(47).

Solution of Inverse Problem

1 T T T T T T T T T

— Solution of Inverse
- Exact Solution
09t
k=10
08t
=
=
L
E 07k
0B}
0.4a

0 0.1 0.2 0.3 0.4 0.5 06 07 0.a8 0.9 1
time

FIG. 2.11 Inverse Solution by TSVD, Exact heat flux q(t)=0.5+0.5¢""°, t=1.0, k=10, ima=100

Modified CGM

The above results show that the inverse solution is very difficult to
converge to the exact value if the final time is greater than 0.1. On other hand, the
global minimum (namely the heat flux q that makes the error functional E(q)
exactly equal to zero) is unique. A proper search direction we may lead to the
global minimum. In fact, a modification of the conjugate direction is found to
improve the reconstruction results. This modified CG method [16-19] is based on

the assumption that q(t) is a continuously differentiable function defined as

q(t) = j&dt Aq(t) = Imdt (48)

which requires
20



q(t=0)=Aq(t=0)=0 (48)

Applying the rule of differentiation under the integral sign, we have the identity
d = =
— | T(,t"Hdt" = T(,t 49
” j (1L, t)dt =T(1,1) (49)
Introducing Eq.(53) into Eq.(15), we obtain
dq d = ' '
D, E(d j WE@ = jﬂa!m,t)dt :I-Aq}dt (50)

Integrating the first term of the right hand side of Eq. (50) by parts and rewriting

the second term, we get

DAqE(i(tlj { [Tt } Aq}

D,, (dtj ]d—q[ tjff(l,t')dt}dt (52)

By comparing Eq.(9) with Eq.(52), we have

dq -
VE —| T(,t"Hdt’
(§0)-f7an

te

—jquDT(l t)dt} (51)

0 0

Then

. (53)
= IVEdt’

The modified search direction is related to the derivative of the direction of decent

R* by the relation

p* :Jdet' (54)
0

where R* =—VE(%j+ykR“ (55)
and the conjugate coefficient y* is given by Eqg. (18) and the gradient of the error

function is VE(d q]
dt
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}{VE" (‘;‘3] —-VE*! (i‘gﬂ -VE* (fﬁ -dx
yh=2 (56)

HVE“ (i‘gﬂz -dx

If we make a modification according to Eq.(54), the search direction becomes

= C 1 n2n? (t— _n2z?
pE (1) =cyt+cg,t? +Z - [t— — (e ) et )} (57)

n=1 ' TC nrm
which contains linear and second order components and is thus more adaptable to
an arbitrary heat flux than the regular search direction. However, its shortcoming is

p¥..(t=0) =initialguess , i.e. the inverse solution is equal to the initial guess at t=0.

Our strategy is therefore:

1) set initial guess=0, solve the minimization problem using the modified method
firstly;

2) set the solution of 1) as initial guess, solve the minimization problem using

regular method and obtain the final inverse solution.

Numerical Solutions by CGM and TSVD

Typical Profiles

In this section, we reconstruct some typical profiles during the time interval
0<t<0.1. Linear and sine curves are well recovered by CGM and TSVD (see FIG.2.5,
FIG.3.1). However, the iterative CGM may need hundreds of iterations to arrive at
an accurate solution. The process of convergence is slow, and computation time is
long. TSVD is a direct regularization method and its total calculation time is much
shorter. The inverse solutions for the triangular profile are acceptable. Comparing
the solutions obtained by TSVD with the solutions obtained by CGM, we remark
that the former are better than the latter. It may be due to the fact that the
accumulation of numerical errors in the iteration process may affect the accuracy of
solutions. As for long pulse heating which is often used in industries, the result is
reasonable but its accuracy is not satisfactory as a smooth heat flux q(t) is easier

to recover than a discontinuous one.
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FIG.3.1b Inverse Solution by TSVD, Exact heat flux q(t)=10t, t;=0.1, k=20, S(x,t)=0
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FIG.3.2a Inverse Solution by CGM, Triangular exact heat flux profile, tr= 0.1, &= 1077, S(x,t)=0
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Inverse Solutions with Noisy Data

In practice, the errors of measurements cannot be avoided. In order to

simulate the actual measurements, the noisy data T,(1+cX) are used instead of the
exact data T;, where [g|<1 is a uniformly distributed random real number. In ill-

posed problems, a small error in input data may result in a big error in the
solution. FIG.3.4 shows that a small error (c=0.001) can affect the Picard condition
significantly. Tikhonov method can be used in both CGM and SVD methods to
regularize the solution. Determining the regularization parameter is the most
important task in Tikhonov method. A well-known method of choosing the
regularization parameter is the L-curve criterion [20]. This method proposes that
the optimal regularization parameter that balances the regularization errors and
perturbation errors occurs at the “corner” of a plot of solution norm vs. residual

norm.

— Singular Yalue
— Singular Value b ---- Fourier Coefficient |4
---- Fourier Coefiient

5 0 15 2n 25 an 10 \ . . . .
i 5 10 5 m 25 n
I

FIG.3.4a Discrete Picard Condition
Exact solution q(t) = exp[n*(t —t;)]
t=1.0, 6 =0, im=100

FIG.3.4b Discrete Picard Condition
Exact solution q(t) = exp[n’(t — te)]
t=1.0, 6 =0.001, i,=100

In this report we only determine ¢ for SVD method, because the whole process is

the same for CGM, it should be only remarked that the optimal regularization
parameters for CGM and for SVD may be different. Normally, the latter is greater
than the former because CGM has a stronger regularization ability. FIG.3.5 gives

an example of L-curve for SVD algorithm, for an exact heat flux q(t) =10t, with a
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final time t=0.1 and a noise level c=0.01. The vertical axis denotes the residual
norm ||Gq—Tg[, ; the horizontal axis denotes the norm of the regularized solution |q, .
For each ¢, we get a point. For a set of ¢, we get an L-shaped curve. The “corner”
point £=0.001 is the optimal regularization parameter. The corresponding
regularized solution shown in FIG.3.6 is very close to the exact solution. If ¢ is
more or less than this value, the reconstructed solution will oscillate or bias the
true heat flux. The results of another test (see FIG.3.7 and FIG.3.8) suggest that if
the heat flux is of the form given by Eq. (47), the inverse solution is not
significantly affected by random noises even with s as large as 10%. SVD and CGM

provide similar solutions even though their regularization parameters are different.
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FIG.3.5 L-Curve for SVD, Exact solution q(t)=10t, Noise level ¢=0.01
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FIG.3.10 Inverse Solution for Constrained Problem

Constrained and Unconstrained Control Problems

Let us consider the following control problem: the temperature is zero at t=0,
determine the heat flux at active boundary to obtain a temperature as uniform as
possible at t;=1, e.g. T(x,1)=1. The exact solution for this problem does not exist
and the ‘optimum’ solution is not unique. In engineering practice, the heating
process may be limited by several conditions, and we have to deal with a
constrained control problem. For example, the constraints on the boundary heat

flux may be g, (t)=0,q,,(t)=0.1+4t . The solutions for the unconstrained and

constrained problems are illustrated in Fig.3.9 and Fig.3.10. For the former, the

relative error E, =|T-T;|/|T;| is about 1% after 9 iterations while for the latter,

E, =2.04% after 100 iterations. The constrained problem is thus harder to solve.
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Numerical Solutions by Modified CGM

Some Typical Profiles

In this section, we reconstruct of some typical profiles. Linear and sine curves are
well recovered by a combination of the modified and regular CGM (see FIG.4.1-
FIG.4.3). We start the iteration process with the modified CGM until a reasonable
profile of heat flux is attained. Afterwards, the regular CGM is employed to
accelerate the convergence. The estimation by the modified CGM is treated as the
initial guess values. Comparing FIG4.1 with FIG.4.2, we may conclude that the
accuracy of the solution is not affected by the final time. The inverse solutions
shown in FIG.4.4 and FIG.4.5 with the triangular and trapezoidal profiles are
acceptable. As for rectangular or stair-shaped profiles which are often used in
industries, the results (FIG.4.6) are reasonable but their accuracies are not

satisfactory.

Inverse Solutions with Noisy Data

In order to simulate the errors in actual measurements, data with relative errors

T:(1+cX) or with absolute errors T, +T, o2 are used instead of the exact value T,

max

where |5/ <1 is a uniformly distributed random real number and T, is the maximum

range of the measurement device. Although Tikhonov regularization may stabilize
the solution effectively, the CGM itself also has a regularization power, and
Tikhonov regularization is not always necessary in CGM. In this section, the

Tikhonov parameter is set to zero.

The numerical tests indicate that a maximum relative error of 5% and a maximum

absolute error of 0.05-T__ (class 5 accuracy) do not affect the accuracy of the

max

inverse solution significantly (FIG.4.7, FIG.4.8 and FIG.4.9).
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Modified CGM is based on the assumption q(t) = Aq(t = 0) = 0 which makes the search
direction P*(t=0)=0. If the exact q(t=0) is not equal to this initial guess value, the

additional iterations executed by using regular CGM does not help (FIG.4.10.1)
because this method cannot find the correct solutions near the initial time.
However, if q(t=0) is known, this difficulty may be alleviated by setting it as the
initial guess (FIG.4.10.2). In engineering practice, the exact heat flux at t=0 is not
known, but a possible range may be given. FIG.4.10.3 and FIG.4.10.4 show that an

acceptable solution can be obtained even with an error of £20% in the initial guess.

Optimal Control Problem

Let us determine the heat flux at the active boundary to obtain a
temperature as uniform as possible at ti=1, e.g. T(x,1)=1. The solutions obtained
by the regular and modified CGM are respectively illustrated in Fig.4.11 and

Fig.4.12. For the former, the relative error E =|T-T;|/|T| is about 0.91% after 9
iterations; for the latter, E. =0.51%.This suggests that the modified method gives a

better solution. To achieve a uniform temperature at the final time, the heat flux at
the beginning of heating process should be as high as possible. Suppose the
maximum possible heat flux gmax=1.75, and set it as the initial guess, the modified

CGM may give a solution with a relative error of 0.28% as shown in FIG.4.13.
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Alternating Searching Direction

We note that the convergence may be very difficult after 9 iterations if the
final time is equal to 1.0. The relative error will not decrease as the iteration
number is increased. If we alternate the search directions, e.g. gradient direction
(steepest descent method) and conjugate gradient direction, we may obtain a
better solution as shown in FIG.4.14. As the solution of this optimization problem is
not unique, the alternating search direction technique may avoid some “bad” points

to reach a better one.
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Optimal Heating Time

If the heating process is longer, the final temperature distribution is more
uniform. If the final time is infinite, the temperature distribution may be absolutely
uniform! Industrial heating requires however a heating time as short as possible to
achieve a high production rate. FIG.4.15 presents the relationship between the
final time and the relative error. The corner of the L-shaped curve is the optimum
point. For regular CGM or modified CGM, the optimum final time is 0.5. The heating
strategies for t=0.5 are shown in FIG.4.16 and FIG.4.17. The evolutions of the
temperature distributions for t=0.5 and t=1.0 are illustrated in FIG.4.18 and

FIG.4.19. Unfortunately, such an optimal heating yields |(T,,, —T.)/T.| over 55% if

t=0.51

A Real Industrial Example

Let us consider the heating process of an aluminum billet with a diameter
of 76mm from 20 to 580 °C in 300 seconds, such that the final temperature should
be as uniform as possible. The dimensionless time corresponding to 5 minutes is
10. Both regular CGM and modified CGM may lead to an optimal heating strategy
(FIG.4.20 and FIG.4.21). However, the latter scheme is easier realize than the

former because it is smoother and requires no cooling period.

0s5r

Regular CGh
lteration Mo =1, 3, -, 39: Gradient Method

lteration No.=2, 4, 40: Conjugate Gradient Method [ B lterations: Modified CGM

80 lterations: Regular CGM

heat flux
heat flux
]
(]

ok
Eror=0.2% Iteration Mao.=0dd Number: Gradient Method

lteration Mo.=Even Murnber Conjugate Gradient Method

05t Initial Guess o t)=1.75

Error=0.05%

L L L L L L L L L L L L L L L L L L
0 01 02 03 04 05 06 07 08 08 1 0 01 0z 03 04 05 06 07 08 09 1
time time

FIG. 4.14.1 FIG. 4.14.3

35



heat flux

Regular CGM
195 Iterations

f
=
2 op
KNS
2t
k]3
) . . . . . . . . .
1) 0os 01 015 02 025 03 035 04 045 05
time
2 T T T T T T T T T
151
1 b
05 & lterations: Modified CGM
32 Iterations: Regular CGM
0 lteration Mo.=0dd Nurnber: Gradient Method
lteration Mo.=Even Number: Conjugate Gradient Method
Initial Guess ¢*(t=0
ast Eit; |
Errar=0.15%
R 1 I 1 1 1 I 1 1 I
1] 0.1 0z 03 04 05 06 07 068 09 1
time
Temperature Distribution
16 T T T T T T T T T
| [ rom®: =
' —- ELAD e RegularcGM
— t=0.45 1 o
T4r | — =050 e 1
130 J
12+ Tl g
= ~
1AF N
N
[ —— - i = i
=L . .
nap-—-" - ~ J
~
08 T ~1
07 . . . . . . . . .
1) 0.1 02 03 0.4 05 08 07 0s 09 1
X
FIG.4.18.1

Relative Error (%)
=

—&— Regular CGM

—&— Modified CGM+Regular CGM

Time

FIG. 4.15

B T T T T T T T T T
L3 _
4 1
3 _
=g ]
= 35 lterations: Maodified CGM
i 45 lterations: Regular CGMW
21 1
Initial Guess qu(t):D
i}
E
2
3 L L L . I L I . L
005 01 015 02 02 03 03 04 045 05
time:
Temperature Distribution
1.4 T T T T T T T T T
N N al
—- t=08 1,=1.0  Regular CGM e
— t=038
132 — t=10 i
- e -
1.1 o ——— A
e
1 = = .
= B B
—_ -~ -
 — — - Ry
03 o e i
08 e 1
07 L L L L L L L L L
0 01 02 03 04 05 068 07 08 09 1
X

36



heat flux

heat flux

Temperature Distribution

— 12F

C R | =05 Modifed+Reguiar COM

— FA5 ) niial Guess oPif=0
= BN

0ar

0.6
o

0.16

0.1 02 03 04 05 06 0OF 068 09 1
*

FIG.4.18.2

0.14

0.1z

01f

0.08 -

0.06

0.04

0o

Modified CGM
5 Iterations

Initial Guess q”[1)=0.15

Relative Eror=0.006%

002
1]

012

1 2 3 4 5 6 7 B l 1
time

F1G.4.20.1

01fF

008

0.08

0.04

0.0z

-0.02

0.04

0.08

-0.08

Regular CGM
20 Iterations

Relative Error=0.02%

82 B4 86 88 g 92 B84 86 98 10
time

FIG.4.21.1

ngr i q
7L s L . . I L L L
0 01 02 03 04 05 0B 0OF 0B 03 1
kS
FIG.4.19.2
Temperature Distribution
1.01 T T T T T T T T T
1 — =
noat T 1
aRal =80 =100 1
— —- t=810 Modified CGM
a7l — 4 It.eratmns . ]
— Initial Guess g-(t)=0.15
0%} Rt 1
095+ e :
0.94 L L L L L L L L L
0 01 02 03 04 05 06 07 08 08 1
¥
F1G.4.20.2
Ternperature Distribution
1.08 T T T T T T T T T
e
1 —
o —
nesl PET
F - -
0gr- q
=100
Regular CGM .
nes - 20 lterations ]
e | T S S S S S S
0 o1 02 03 04 05 06 07 08 089 1

Temperature Distribution

t=1.0  Modified+Regular CGM . 4

Initial Guess qU(t):D e

FIG.4.21.2

37



Conclusion

Singular value decomposition and iterative conjugate gradient methods are used to
solve the IHCP of second kind. It is found that this inverse problem is severely ill-
posed. In general, it is possible to recover a boundary heat flux only for a non-
dimensional final time of the order of 0.1. On the other hand, for control problems,
either constrained or unconstrained, we can obtain a satisfactory solution with a
very small discrepancy between the target and the actual temperatures at the final

time.

A modified conjugate gradient method may be used to reconstruct a heat flux with
satisfactory accuracy for any final time if its value at t=0 is known. For boundary

control problems, the modified algorithm may give a better solution than the CGM.
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