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Abstract 
 
 
 

The problem of determining the time-dependent heat flux imposed on the 

boundary of a solid slab from the temperature distribution at the final time is 

solved by the conjugate gradient (CG) and the truncated singular value 

decomposition (TSVD) methods. The Tikhonov regularization is used to regularize 

the solution when the given data contain random errors. The recovering of the 

exact boundary condition is shown to depend on the total time of the 

heating/cooling process. It is found that the exact boundary heat flux can be 

recovered for about one tenth of the diffusion time, beyond which we obtain only 

the time-averaged heat flux. However, by using a modified conjugate gradient 

method, we may reconstruct the boundary heat flux for much larger times if its 

initial value is known. We also show that these methods can be effectively used to 

solve the control problem. 
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Introduction 
 

The classic inverse heat conduction problems (IHCP), i.e., to determine the 

boundary conditions, initial conditions, heat sources, and thermo-physical 

properties from the temperature measurements at all times, have been extensively 

investigated. One of the most well-known methods is proposed by Tikhonov [1] 

based on the concept of conditionally-well-posed problems. Alifanov [2] developed 

a self regularization technique by conjugate gradient method. Beck [3] introduced 

the so-called method of future times where the solution corresponding to the 

current time is determined by the measured data at several future times. Murio [4] 

developed the so-called mollification method based on data smoothing techniques 

while the boundary element method was often used to deal with complex 

geometries [5]. A practical review of these methods can be found in Woodbury [6]. 

A much less studied IHCP is to estimate the boundary or initial conditions 

from the temperature distribution at the final time. This problem may be referred 

to as IHCP of second kind while the above mentioned problems may be called IHCP 

of first kind. For example, a retrospective convection problem was solved by 

Nguyen and Zhang [7] to trace back the initial temperature field. Recently, control 

problems have been considered within the framework of inverse problems [8, 9, 

10]. For example, in order to obtain a high quality steel production, it is necessary 

to reduce the temperature uniformly during the cooling process. The semi-solid 

forming technology also requires a uniform temperature of the heated material at 

the final time to obtain a desired globular microstructure. To achieve a uniform 

final temperature field under a Stefan-Boltzmann boundary condition, Kelley and 

Sachs [11] developed a Steihaug trust-region-conjugate-gradient method with a 

smoothing step at each iteration. It appears that the Steihaug trust-region-

conjugate-gradient method has stronger convergence properties than the non-

linear conjugate gradient method, especially for constrained problems. The 

numerical tests show that the error functional is about 10-3 after only one iteration. 

Huang [12] solved a similar 1-D control problem by the conjugate gradient method 

to obtain a targeted temperature at the final time. Two values of final times were 

considered. The numerical results showed that the estimated boundary heat fluxes 



 3

change steeply near the final time. The author concluded that the standard CGM 

can be successfully applied to solve the nonlinear control problem but the 

estimated solution is difficult to realize in practice. More recently, the same control 

problem was extended to 3-D geometries by Huang and Li [13]. Numerical tests 

were performed for rectangular and irregular domains. It was found that, as in the 

1-D problem, the estimated boundary heat flux tends to a constant value and 

drastically change just before the final time.  

While many authors have solved this control problem, the reconstruction of 

boundary heat fluxes from the temperature measurements at the final time has not 

been published in the open literature. Although they may be treated by the same 

methods, the control and reconstruction problems are basically different: There 

may be no exact solution to a control problem, while an exact solution must de 

facto exist in a reconstruction problem. 

In this paper we solve both the reconstruction and control problems, using 

the conjugate gradient method (CGM) and the truncated singular value 

decomposition (TSVD) method, respectively.  

 

Problem Definition and Formulation 
 

            Let us consider a metal bar that is heated 

(or cooled) from the right side, while its left side 

is adiabatic. The initial temperature, )x(f)0,x(T = ,  is 

known. An internal heat source which is a function 

of space and time may exist within the system. 

The geometry and boundary conditions are 

summarized in Fig.1.  Our objective is to 

determine the heat flux q(t) at the right boundary during the period ftt0 ≤≤ from 

the measured temperature distribution )x(T)t,x(T Ef = at the final  time tf.   

 

The Direct Problem 
 

            This 1-D heat conduction problem is governed by 

 

Heating or Cooling 

x 0 L 

???)( ==
∂
∂ tq

x
T  0=

∂
∂

x
T  

Insulation 

 
FIG. 1 

Geometry and boundary conditions 
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                                                  S
x
Tk

t
Tc 2

2

+
∂
∂

=
∂
∂

ρ                                               (1) 

where )t,x(SS = denotes the internal heat source. The dimensionless temperature, 
length, time and heat source can be defined as follows: 

                            0T TT
T

∗ −
=

∆
, 

L
xx =∗ , 2cL

ktt
ρ

=∗ , 
Tk

SLS
2

∆
=∗                                      (2) 

with 
k

LQT ref=∆  and T0 being a reference temperature.  Omitting the superscript “*” 

from now, and substituting Eq. (2) into Eq. (1), we obtain the non-dimensional 

equation 

                                              S
x
T

t
T

2

2

+
∂
∂

=
∂
∂                                                       (3) 

The boundary and initial conditions are  

                               0
x
T

0x

=
∂
∂

=

, )t(q
x
T

1x

=
∂
∂

=

, )x(f)0,x(T =                                        (4) 

 
Conjugate Gradient Method 

 
The Inverse Problem 
 

             The inverse problem of finding a boundary heat flux q(t) such that 

)x(T)t,x(T Ef =  may be solved by minimizing an error functional defined  by 

                                  [ ] ∫∫
ξ

+−=
ft

0

22
Ef

1

0

dt)t(q
2

dx)x(T)t,x(T
2
1)q(E                                (5) 

where ξ is the so-called Tikhonov regularization parameter. Among the various 

minimization algorithms, the conjugate gradient method is frequently used because 

of its efficiency and self-regularization.  In this iterative algorithm, the searching 

direction is obtained by solving an adjoint problem, while step size is determined 

by solving the sensitivity problem.  

 
The Sensitivity Equation 
 
 
            The sensitivity temperature T~  is defined as the directional derivative of T  

at q  in the direction q∆ :    
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ε

−∆ε+
=

→ε

)q(T)qq(TlimT~
0

                                       (6) 

From Eq. (3), we  have 









ε
−∆ε+
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ε
−∆ε+

∂
∂
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ε
−∆ε+

∂
∂

→ε→ε→ε

)q(S)qq(Slim)q(T)qq(T
x

lim)q(T)qq(T
t

lim
02

2

00  

The heat source is given, so 0)q(S)qq(Slim
0

=







ε
−∆ε+

→ε
.  

According to the definition of the sensitivity, we readily obtain the sensitivity 

equation 

                                    2

2

x
T~

t
T~

∂
∂

=
∂
∂                                                      (7) 

subject to the initial condition and boundary conditions  

                                 0)0,x(T~ = , 0
x
T~

0x

=
∂
∂

=

,  )t(q
x
T~

1x ∆=
∂
∂

=                                      (8) 

 

The Adjoint Equation 
 

The main task in CGM is the determination of the gradient of the objective 

functional E∇ , which is related to the directional derivative of E in the direction ∆q. 

According to the definition of the object functional and the sensitivity, we have 

[ ] [ ]

[ ]{ } ( )

( )dtqE

dtqqdxT)t,x(T)t,x(T~

dtqdxT)q(Tdt)qq(dxT)qq(T
lim

2
1

)q(E)qq(Elim)q(ED

f

f

ff

t

0

t

0

1

0
Eff

t

0

2
1

0

2
E

t

0

2
1

0

2
E

0

0q

∫

∫∫

∫∫∫∫

∆⋅∇=

∆⋅ξ+−⋅=

ε

ξ−−−∆ε+ξ+−∆ε+

=

ε
−∆ε+

=

→ε

→ε∆

                         (9) 

Using the Lagrange multiplier method we may rewrite Eq. (9) as 

            [ ]{ } ( ) ∫ ∫∫∫ ⋅








∂
∂

−
∂
∂

+∆⋅ξ+⋅−=∆

ff t

0

1

0
2

2t

0

1

0
fEfq dtdx

x
T~

t
T~Tdtqqdx)t,x(T~T)t,x(T)q(ED                   (10) 

Considering the initial and boundary conditions of the sensitivity problem, we have  
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[ ]{ }
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dxdt
x
T
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TT~dxT~T)TT()q(ED

fff
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f

t

0

t

0

t

0

1

0

t

0

1

0
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21

0
ttEq

∫∫∫ ∫
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∆⋅ξ+∆⋅−⋅










∂
∂

∂
∂
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⋅










∂
∂

+
∂
∂

−+−=
=

∆

                            (11) 

If the adjoint temperature satisfies the following equation and “initial” and 

boundary conditions: 

                                0
x
T

t
T

2

2

=
∂
∂

+
∂
∂   or  2

2

x
TT

∂
∂

=
τ∂

∂ , ttf −=τ                                    (12)  

                                        0
x
T

0x

=
∂
∂

=

, 0
x
T

1x

=
∂
∂

=

                                               (13) 

                                   ))x(T)tt,x(T()0,x(T Ef −=−==τ                                          (14) 

then the first, second and third terms of the right hand side of Eq. (11) vanish and 

Eq. (11) becomes 

                                     [ ]{ }dtq)t,1(Tq)q(ED
ft

0
q ∫ ∆⋅−ξ=∆                                           (15) 

Comparing Eq. (15) and Eq. (9), we obtain the gradient of the object functional 

                                             )t,1(TqE −ξ=∇                                                   (16) 

 

The Conjugate Gradient Algorithm  
 
            For CGM of Polak-Ribiere type, the iterative process may be expressed as 

                                            kkk1k Pqq α+=+                                                   (17) 

                                              
1kT1k

kT1kk
k

1kkkk

g)g(
g)gg(

PgP

−−

−

−

−
=β

β+−=
                                              (18) 

where g stands for the gradient of the objective functional. On the other hand, the 

step size should make the first order derivative of E in the direction kα  vanish: 
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[ ]
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( )

0

dtPqdxT~TTdt)P(dx)T~(

dt)P(dtPqdxT~TT~T
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ff

ff
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0
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1

0
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E

k
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0

2k
1

0

2kk

t

0

2kk
t

0

kk
1

0

k
E

kkk

t

0

kkkk
1

0
E

kkk
k

=

ξ+−+











ξ+α=

αξ+ξ+−α+≈

α+ξ+−α+=
α∂
∂

∫∫∫∫

∫∫∫

∫∫

                   (19) 

                                
( )

∫∫

∫∫

ξ+

ξ+−

−=α⇒
f

f

t

0

2k
1

0

2k

t

0

kk
1

0

k
E

k

k

dt)P(dx)T~(

dtPqdxT~TT
                                         (20) 

Note that the temperature is here assumed to vary linearly with the heat flux q.  

 The CGM algorithm may be summarized as follows: 

1. Set the initial guess )t(qq 0
0 =  and iteration counter k = 0. 

2. Solve the direct problem with kq to obtain kT . 

3. Evaluate the difference Ef
k T)t,x(T − . 

4. Solve the adjoint problem backward in time for k
T . 

5. Evaluate the gradient according to Eq.(16). 

6. Calculate the search direction kP : 

                                   




>β+∇−
=∇−

=
− 0kifPE

0kifEP 1kkk

k
k                                            (21) 

                                   

∫

∫
−

−

∇

∇∇−∇

=β
f

f

t

0

21k

t

0

k1kk

k

dt)E(

dtE)EE(
                                                (22) 

7. Solve the sensitivity problem with kPq =∆ at x = 1 to obtain kT~ . 

8. Calculate the step size kα  with Eq. (20). 

9. Update  kkk1k Pqq α+=+ . 

10. Set k = k + 1, go back to step 2, repeat until the convergence criterion ε<kE  is 

satisfied. 

            The direct, sensitivity and adjoint equations are solved by the finite 

differences method with an implicit time scheme.   
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Fredholm Equation and SVD 
 

If the source term S(x, t) = 0, we may express the solution of Eq. (3) and (4) as 

                       

∑ ∫

∑ ∫∫∫
∞

=

τ−π−

∞

=

π−

π









ττ−+

π









π+ττ+=

1n

n
t

0

)t(n

1n

tn
1

0

t

0

1

0

)xncos(d)(q)1(e2

)xncos(edx)xncos()x(f2d)(qdx)x(f)t,x(T

22

22

                 (23) 

The derivation can be found in [14]. If we set the initial temperature field T(x, 

0)=f(x)=0, the temperature distribution at final time is  

                                               )t,x(Tdt)t(q)t,x(G f

t

0

f

=∫                                            (24) 

                                     ∑
∞

=

−π ππ+=
1n

)tt(n )xncos()ncos(e21)t,x(G f
22

                               (25) 

Eq.(24) is known as Fredholm equation of first kind. q(t) is the unknown function to 

be solved with T(x, tf) being a known “right-hand-side”. G(x, t) is called the kernel. 

Eq.(24) may be cast into a matrix equation: 

                                                     }T{}q{]G[ =⋅                                                 (26) 

whose solution is TGq 1 ⋅= − , where 1]G[ −  is the inverse of  [G]. Matrix [G] and vector 

{T} can be obtained by various numerical techniques. In this paper the trapezoidal 

method is chosen. Theoretically speaking, we can thus directly determine the 

solution of the inverse problem. Unfortunately, in this problem, it appears that 

0Gdet ≈  and the condition number ∞→CN , so [G] is a singular matrix and classic 

techniques such as the Gaussian elimination and LU decomposition can not give a 

correct inverse of [G]. We then have to adopt the singular value decomposition 

(SVD) technique according to which the kernel [G] can be expressed in the 

following form: 

                                          ]V[

w00
00

0w0
00w

]U[]G[

n

2

1



















=                                       (27) 
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where iw  are  the singular values of [G] and  iu  and iv  are called the left and right 

singular vectors of [G]. The solution of Fredholm equation then is 

( )}T{]U[
w
1diag]V[}q{ T

i 


















=  . 

                                       

As the too small singular values will result in the oscillation of the solution due to 

the amplification effect of 
iw

1 , we may adopt a simple but effective regularization 

technique called truncated singular value decomposition: if τ≤iw  ( τ  is an arbitrary 

small number), let 0
w
1

i
= . Suppose wk is the first singular value reaching τ , the 

integer k is called truncation parameter. The choice of the truncation index is very 

important: if k is too large, the solution will be too corrupted with noise; if it is too 

small, too much information about the solution will be lost. Alternatively, Tikhonov 

regularization may be used to replace  
iw

1  by 
i

22
i

2
i

w
1

w
w

ξ+
 for all the singular values. 

The regularization parameters  τ  and ξ  may be determined by the Picard condition, 

the L-Curve, and the discrepancy principle or the generalized cross validation 

(GCV).  

 

It should be noted that the Fredholm equation can also be solved by the conjugate 

gradient method to minimize  the error function E  

                                ( ) ( ) }q{}q{
2

}T{}T{}T{}T{
2
1E T

E
T

E
ξ

+−−=                                      (29) 

{TE} is the temperature distribution at t=tf , and }q{]G[}T{ ⋅= . It appears that E is a 

quadratic function of q: 

                                ( ) ( ) }q{}q{
2

}T{}q{]G[}T{}q{]G[
2
1E T

E
T

E
ξ

+−⋅−⋅=                             (30) 

Let ]G[]G[]H[ T ⋅= , the gradient of E in the direction of q is 

                            ( ) }q{}T{]G[}q{]H[}q{}T{}q{]G[]G[}E{ E
T

E
T ξ+−⋅=ξ+−⋅=∇                     (31) 

The boundary heat flux is then determined iteratively by 

                                             }P{}q{}q{ kkk1k α+=+                                                (32) 
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with α  being the step size and P the conjugate search direction.  

Let 0E
k

=
α∂
∂

α=α

, we must have 

                                          0}P{}E{ kT1k =∇ +                                                 (33) 

Substituting Eq.(31) and (32) into Eq.(33),  

                     
( )( )

( ) 0}P{})P{}q({}P]{G[}T{}P{]G[}q{]G[

}P{}q{}T{}q{]G[]G[
kTkkkkT

E
kkk

kT1k
E

1kT

=α+ξ+−α+⋅=

ξ+−⋅ ++

                   (34) 

As α is a scalar, let }P]{G[}Q{ kk = , we have 

     
( )

( ) 2k2kkkTkkTkkkTkkT
E

k

kTkkkkT
E

kkk

PQ(}P{}P{}Q{}Q({}P{}q{}Q{}T{}q]{G[

0}P{})P{}q({}Q{}T{}Q{}q]{G[

ξ+α−=ξ+α−=ξ+−⇒

=α+ξ+−α+
          (35) 

Then we obtain the step size 

                                  ( )
2k2k

kTkkT
E

k
k

PQ

}P{}q{}Q{}T{}q]{G[

ξ+

ξ+−
−=α                                    (36) 

On the other hand, the searching direction may be expressed as 

                                    }P{}E{}P{ 1kkkk −β+∇−=                                                   (37) 

For the conjugate search direction, we must have 

                                       0}P]{H[}P{ 1kTk =−                                                       (38) 

Substituting Eq.(37) into Eq.(38), we get 

                            0}P]{H[}P{}P]{H[}E{ 1kT1kk1kTk =β+∇− −−−                                     (39) 

Since                      

                           ( ) }P]{H[}q{}q{]H[}E{}E{ 1k1k1kk1kk −−−− α=−=∇−∇                               (40) 

Then                     ( ) ( )}E{}E{}P{}E{}E{}E{ 1kkT1kk1kkTk −−− ∇−∇β=∇−∇∇   

or 

                                ( ) ( ) }P{}E{}E{}E{}E{}E{ 1kT1kkkkT1kk −−− ∇−∇β=∇∇−∇                       (41) 

Because of Eq.(33), we have 

        
( ) ( )

21kk1kT1kk

2k1k1kT1kk1kT1kkkT1kk

E}E{}E{

}P{}E{}E{}P{}E{}E{}E{}E{
−−−

−−−−−−−

∇β=∇∇β=

β+∇−∇β−=∇β−=∇∇−∇
             (42) 

so 
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                           ( )
21k

kT1kk
k

E

}E{}E{}E{
−

−

∇

∇∇−∇
=β                                                    (43) 

 

The  iterative process may be described as follows: 

1. Set initial  guess )t(qq 0
0 = , iteration counter k = 0. 

2. Calculate kT  with kq according to Eq.(26). 

3. Evaluate the gradient of error function according to Eq.(31). 

4. Calculate the search direction kP  with Eq.(21), kβ is obtained with Eq.(43). 
5. Calculate the step size kα  with Eq. (36). 

6. Update  kkk1k Pqq α+=+ . 

7. Set k = k + 1, go back to step 2, repeat until the convergence criterion ε<kE  is 

satisfied. 

 
In summary, we have presented three methods to solve the IHCP of second kind: 

1. CGM with adjoint equation; 2. TSVD with Fredholm equation; 3. CGM with 

Fredholm equation. Algorithm 1 and algorithm 3 are both based on the CG; we will 

not therefore discuss algorithm 3.  However, it must be noted that the latter is 

much simpler since the step size and conjugate search direction can be obtained 

directly, i.e. the adjoint and sensitivity equations are not needed.  

 

Existence and Uniqueness of Solution 
 

The possibility of solving a reconstruction problem depends on the existence and 

uniqueness of its solution. In fact, it can be proved that the inverse heat 

conduction problem of second kind possesses a unique solution. On the other hand, 

exact solutions of control problems may not exist. These problems may be treated 

as an optimization problem and we may obtain a solution to make 2
ETT −  as small 

as possible, but it may be not unique.  
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Recovering the Exact Heat Fluxes 
 

Now let us first consider the possibility of reconstructing the exact boundary 

conditions.  

 

Inverse Solution By CGM 
 
Let us set the initial guess q0=0 and the regularization parameter 0=ξ , we then 

have )t,1(TE −=∇  which can be obtained by solving the adjoint problem (12), (13), 

(14): 

                                        )xncos(eCC)t,x(T
1n

tn
n0

k 22
π⋅+= ∑

∞

=

π                                    (44) 

                                        

( ))x(T)t,x(T)t,x(T)x(

e

dx)xncos()x(2
C

dx)x(C

Ef
k

f
k

tn

1

0
n

1

0
0

f
22

−−==ψ

πψ

=

ψ=

π

∫

∫

                            

The gradient of the error function can be expressed by a series of exponential 

function: 

                                   

∫∫

∑

πψ−=ψ−=

+=∇

+

∞

=

−π

1

0

1n
n

1

0
0

1n

)tt(n
n0

k

dx)xncos()x(2)1(b,dx)x(b

ebbE f
22

                         (45)  

Since )x(ψ  may be an arbitrary continuous function, then b0 and bn must be 

arbitrary real numbers. We may rewrite (45) as 

                      ( ) ( ) ))tt(nexp(b)tt(4expb)tt(expbbE f
22

nf
2

2f
2

10
k −π++−π+−π+=∇            (46) 

Noting that the coefficient kβ that determines the conjugate direction is a 

constant in each iteration, it follows that the inverse solution obtained by CGM is 

also a series of exponential functions 

                      ( ) ( ) ))tt(nexp(a)tt(4expa)tt(expaa)t(q f
22

nf
2

2f
2

10 −π++−π+−π+=             (47) 

Here a0 and an are real constants depending on TE.  
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         If the exact solution q(t) is known, the coefficients a0 and an  may be 

obtained numericall. Table 1-3 and FIG 2.1-2.3 present the results of sine profiles 

for tf=0.1, tf=0.2 and tf=1.0, respectively. It appears that series like Eq.(47) do not 

express well an arbitrary boundary heat flux if the final time is greater than 0.1.  

 

Table 1: Fitting Coefficients of Least Square, Exact )t10sin()t(q π= , ]1.0,0[t∈  
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

-0.0004 0.0013 -0.0020 0.0039 -0.0112 0.0392 -0.1354 0.4146 -1.0541 2.1268 
a10 a11 a12 a13 a14      

-3.2697 3.6541 -2.7738 1.2686 -0.2618      
 
 

Table 2: Fitting Coefficients of Least Square, Exact )t5sin()t(q π= , ]2.0,0[t ∈  
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 

0.0000 0.0000 0.0000 0.0002 -0.0010 0.0062 -0.0331 0.1464 -0.5196 1.4288 
a10 a11 a12 a13 a14      

-2.9180 4.1903 -3.9174 2.1011 -0.4839      
 
 

Table 3: Fitting Coefficients of Least Square, Exact )tsin()t(q π= , ]1,0[t∈   
a0 a1 a2 a3 a4 a5 a6 a7 

0.0007 -0.0008 -0.0033 0.0380 -0.2626 1.1110 -2.2427 1.3598 
 
 
 
 

 
FIG. 2.1 Fitting Curve of LS, tf=0.1 
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FIG. 2.2 Fitting Curve of LS, tf=0.2 

 
FIG. 2.3 Fitting Curve of LS, tf=1 

 

Note that the exact heat fluxes )tt( f
2

e5.0)t(q −π+= (tf=1) and )t10sin()t(q π=  (tf=0.1) are 

recovered with a very good accuracy. For a flux with sine profile (tf=1), the 

reconstruction solution differs considerably from the exact data, increasing the 

number of iteration does not improve the results. However this inaccurate solution 

can make ETT −  very small, with a relative error of about 0.01%.  
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FIG.2.4 Inverse Solution by CGM, Exact heat flux )tt( f
2

e5.0)t(q −π+=  tf = 1, 0=ξ , S(x,t)=0 

 
FIG.2.5 Inverse Solution by CGM, Exact heat flux )t10sin()t(q π= , tf = 0.1, 0=ξ , S(x,t)=0 
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FIG.2.6 Inverse Solution by CGM, Exact heat flux )tsin()t(q π= , tf = 1.0, 0=ξ , S(x,t)=0 

 

Degree of Ill-Posedness 
 

The degree of ill-posedness is one of the most important character of inverse 

problems. It influences the stability and accuracy of the inverse (reconstruction) 

solution. Let us look at the Fredholm integral equation where the decay rate of the 

singular values wi is an important factor: if it is very fast, the problem is severely 

ill-posed and vice versa. We may study the ill-posedness of the inverse problem 

through its kernel [G]. Although the solution is unique, the kernel G strongly 

depends on the upper limit of the integral, i.e. the final time tf. If the kernel [G] is 

too “smooth”, the decay rate of its singular values is very fast. FIG.2.7 shows the 

decay of singular values for different final times. According to the definition of 

Hofmann [15], a decrease of the final time will decrease the decay rate of singular 

values. In other words, if the final time is shorter, the inverse problem becomes 

less ill-posed. This is in agreement with the discrete Picard condition (DPC). The 

DPC requires that the Fourier coefficients TuT
i  decay to zero faster than the 

singular values wi, otherwise the DPC is not satisfied and the lack of stability of 
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solution will make the problem ill-posed. From FIG.2.8 and FIG.2.9, we can see 

that if tf=1, DPC is satisfied only for i<12, and SVD should be truncated at k=11; 

but if tf=0.1, the truncation parameter k reaches 20. More tests indicate that if tf is 

longer, k should be smaller, and the problem becomes more ill-posed since a too 

small truncation parameter will result in the loss of accuracy of solution. Results of 

a numerical test are presented in FIG.2.10a and b. 

 

If k is chosen by DPC, i.e. k=11, the solution obtained by TSVD is very similar to 

the one obtained by CGM (see FIG.2.6). However, if k is larger, for example k=13, 

the DPC will not be satisfied, and the oscillation of solution cannot be avoided.  

 

 
FIG.2.7 Decay Rate of Singular Values, L=1.0, imax=100 
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FIG.2.8 Discrete Picard Condition, Exact solution )tsin()t(q π= ,tf=1, imax=100 

 

 
FIG.2.9 Discrete Picard Condition, Exact solution )t10sin()t(q π= ,tf=0.1, imax=100 
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FIG.2.10a Solution of Inverse Problem, Exact heat flux )tsin()t(q π= , k=11, imax=100 

 
FIG.2.10b Solution of Inverse Problem, Exact heat flux )tsin()t(q π= , k=13, imax=100 

 

If the final time is short, for example 1.0tf ≤ , the problem is moderately or mildly ill-

posed. At 1.0tf = , we successfully reconstruct the heat flux with a sine profile. If 

q(t) may be expressed with Eq. (47), the correct solution can be obtained for any 

final time. For 0.1te5.05.0)t(q −+=  and 1tf = , it is found that the DPC is satisfied for 10i ≤  

(imax=100), i.e. k should be set les than 10 in order to stabilize the solution. 
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FIG.2.11 shows that the inverse solution agrees perfectly with the exact data. It 

can be concluded that the IHCP of second kind can be regularized successfully for 

any final time if q(t) has a profile of Eq.(47). 

 

FIG. 2.11 Inverse Solution by TSVD, Exact heat flux 0.1te5.05.0)t(q −+= , tf=1.0, k=10, imax=100 
 

 

Modified CGM 
 

 The above results show that the inverse solution is very difficult to 

converge to the exact value if the final time is greater than 0.1. On other hand, the 

global minimum (namely the heat flux q that makes the error functional E(q) 

exactly equal to zero) is unique. A proper search direction we may lead to the 

global minimum. In fact, a modification of the conjugate direction is found to 

improve the reconstruction results. This modified CG method [16-19] is based on 

the assumption that q(t) is a continuously differentiable function defined as  

                                     td
td

)t(qd)t(q,td
td

)t(dq)t(q
t

0

t

0

′
′
′∆

=∆′
′
′

= ∫∫                                  (48) 

which requires 
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                                            0)0t(q)0t(q ==∆==                                          (48) 

Applying the rule of differentiation under the integral sign, we have the identity 

)t,1(Ttd)t,1(T
dt
d t

tf

=′′∫                                           (49) 

Introducing Eq.(53) into Eq.(15), we obtain 

dtqtd)t,1(T
dt
d)q(ED

dt
dqED

f ft

0

t

t
qq ∫ ∫ 











∆⋅











′′=≡








∆∆                     (50) 

Integrating the first term of the right hand side of Eq. (50) by parts and rewriting 

the second term, we get 
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Then 
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By comparing Eq.(9) with Eq.(52), we have   

∫

∫

′∇=

′′−=





∇

f

f

t

t

t

t

tEd

td)t,1(T
dt
dqE

                                             (53) 

The modified search direction is related to the derivative of the direction of decent 

Rk by the relation 

                                                ∫ ′=
t

0

kk tdRp                                                    (54) 

where                                    1kkk R
dt
dqER −γ+






−∇=                                         (55) 

and the conjugate coefficient kγ  is given by Eq. (18) and the gradient of the error 

function is  





 ∆

∇
dt

qdE : 
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If we make a modification according to Eq.(54), the search direction becomes 
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which contains linear and second order components and is thus more adaptable to 

an arbitrary heat flux than the regular search direction. However, its shortcoming is 

guessinitial)0t(pk
mod == , i.e. the inverse solution is  equal to the initial guess at t=0. 

Our strategy is therefore:  

1) set initial guess=0, solve the minimization problem using the modified method 

firstly;  

2) set the solution of 1) as initial guess, solve the minimization problem using 

regular method and obtain the final inverse solution. 

 

Numerical Solutions by CGM and TSVD 
 

Typical Profiles 
 
In this section, we reconstruct some typical profiles during the time interval 

1.0t0 ≤≤ . Linear and sine curves are well recovered by CGM and TSVD (see FIG.2.5, 

FIG.3.1). However, the iterative CGM may need hundreds of iterations to arrive at 

an accurate solution. The process of convergence is slow, and computation time is 

long. TSVD is a direct regularization method and its total calculation time is much 

shorter. The inverse solutions for the triangular profile are acceptable. Comparing 

the solutions obtained by TSVD with the solutions obtained by CGM, we remark 

that the former are better than the latter. It may be due to the fact that the 

accumulation of numerical errors in the iteration process may affect the accuracy of 

solutions. As for long pulse heating which is often used in industries, the result is 

reasonable but its accuracy is not satisfactory as a smooth heat flux q(t) is easier 

to recover than a discontinuous one. 
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FIG.3.1a Inverse Solution by CGM, Exact heat flux t10)t(q = , tf = 0.1, 0=ξ , S(x,t)=0 

 
FIG.3.1b Inverse Solution by TSVD, Exact heat flux t10)t(q = , tf = 0.1, 20k = , S(x,t)=0 

 

FIG.3.2a Inverse Solution by CGM, Triangular exact heat flux profile, tf = 0.1, 710−=ξ , S(x,t)=0 
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FIG.3.2b Inverse Solution by TSVD, Triangular exact heat flux profile, tf =0.1, 20k = , S(x,t)=0 

 

FIG.3.3a Inverse Solution by CGM, Long pulse type of exact heat flux, tf = 0.1, 710−=ξ , S(x,t)=0 

 
FIG.3.3a Inverse Solution by TSVD, Long pulse type of exact heat flux , tf = 0.1, 20k = , S(x,t)=0 



 25

 

Inverse Solutions with Noisy Data 
 

In practice, the errors of measurements cannot be avoided. In order to 

simulate the actual measurements, the noisy data )1(TE ∑σ+  are used instead of the 

exact data ET , where 1<Σ  is a uniformly distributed random real number. In ill-

posed problems, a small error in input data may result in a big error in the 

solution. FIG.3.4 shows that a small error ( 001.0=σ ) can affect the Picard condition 

significantly. Tikhonov method can be used in both CGM and SVD methods to 

regularize the solution. Determining the regularization parameter is the most 

important task in Tikhonov method. A well-known method of choosing the 

regularization parameter is the L-curve criterion [20]. This method proposes that 

the optimal regularization parameter that balances the regularization errors and 

perturbation errors occurs at the “corner” of a plot of solution norm vs. residual 

norm. 

 

 
FIG.3.4a Discrete Picard Condition 

Exact solution )]tt(exp[)t(q f
2 −π=  

tf=1.0, 0=σ , imax=100 

 
FIG.3.4b Discrete Picard Condition 

Exact solution )]tt(exp[)t(q f
2 −π=  

tf=1.0, 001.0=σ , imax=100 
 

In this report we only determine ξ  for SVD method, because the whole process is 

the same for CGM, it should be only remarked that the optimal regularization 

parameters for CGM and for SVD may be different. Normally, the latter is greater 

than the former because CGM has a stronger regularization ability. FIG.3.5 gives 

an example of L-curve for SVD algorithm, for an exact heat flux t10)t(q = , with a 
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final time tf=0.1 and a noise level 01.0=σ . The vertical axis denotes the residual 

norm 2ETGq − ; the horizontal axis denotes the norm of the regularized solution 2q . 

For each ξ , we get a point. For a set of ξ , we get an L-shaped curve. The “corner” 

point 001.0=ξ  is the optimal regularization parameter. The corresponding 

regularized solution shown in FIG.3.6 is very close to the exact solution. If ξ  is 

more or less than this value, the reconstructed solution will oscillate or bias the 

true heat flux. The results of another test (see FIG.3.7 and FIG.3.8) suggest that if 

the heat flux is of the form given by Eq. (47), the inverse solution is not 

significantly affected by random noises even with σ  as large as 10%. SVD and CGM 

provide similar solutions even though their regularization parameters are different. 

 
FIG.3.5 L-Curve for SVD, Exact solution t10)t(q = , Noise level 01.0=σ  
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FIG.3.6 Inverse Solution by SVD, Exact solution t10)t(q = , Noise level 01.0=σ , 001.0=ξ  

 

 

 
FIG. 3.7 Inverse Solution by CGM                           FIG.3.8 Inverse Solution by SVD 

    Exact heat flux )]tt(exp[)t(q f
2 −π=                        Exact heat flux )]tt(exp[)t(q f

2 −π=  
1.0=σ , 001.0=ξ                                                 1.0=σ , 01.0=ξ  
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FIG.3.9 Inverse Solution for Unconstrained Problem 

 

  
FIG.3.10 Inverse Solution for Constrained Problem 

 

Constrained and Unconstrained Control Problems 
 
Let us consider the following control problem: the temperature is zero at t=0, 

determine the heat flux at active boundary to obtain a temperature as uniform as 

possible at tf=1, e.g. T(x,1)=1. The exact solution for this problem does not exist 

and the ‘optimum’ solution is not unique. In engineering practice, the heating 

process may be limited by several conditions, and we  have to deal with   a 

constrained control problem. For example, the constraints on the boundary heat 

flux may be t41.0)t(q,0)t(q maxmin +== . The solutions for the unconstrained and 

constrained problems are illustrated in Fig.3.9 and Fig.3.10. For the former, the 

relative error  EEr T/TTE −=  is about 1% after 9 iterations while for the latter, 

%04.2Er =  after 100 iterations. The constrained problem is thus harder to solve.  
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Numerical Solutions by Modified CGM 
 

Some Typical Profiles 
 

In this section, we reconstruct of some typical profiles. Linear and sine curves are 

well recovered by a combination of the modified and regular CGM (see FIG.4.1-

FIG.4.3). We start the iteration process with the modified CGM until a reasonable 

profile of heat flux is attained. Afterwards, the regular CGM is employed to 

accelerate the convergence. The estimation by the modified CGM is treated as the 

initial guess values. Comparing FIG4.1 with FIG.4.2, we may conclude that the 

accuracy of the solution is not affected by the final time. The inverse solutions 

shown in FIG.4.4 and FIG.4.5 with the triangular and trapezoidal profiles are 

acceptable. As for rectangular or stair-shaped profiles which are often used in 

industries, the results (FIG.4.6) are reasonable but their accuracies are not 

satisfactory. 

 

Inverse Solutions with Noisy Data 
 

In order to simulate the errors in actual measurements, data with relative errors 

)1(TE ∑σ+  or with absolute errors ∑σ+ maxE TT are used instead of the exact value ET , 

where 1<Σ  is a uniformly distributed random real number and maxT is the maximum 

range of the measurement device. Although Tikhonov regularization may stabilize 

the solution effectively, the CGM itself also has a regularization power, and 

Tikhonov regularization is not always necessary in CGM. In this section, the 

Tikhonov parameter is set to zero. 

 

The numerical tests indicate that a maximum relative error of 5% and a maximum 

absolute error of maxT05.0 ⋅  (class 5 accuracy) do not affect the accuracy of the 

inverse solution significantly (FIG.4.7, FIG.4.8 and FIG.4.9).  
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FIG. 4.1 

 
FIG. 4.3 

 
FIG.4.5 

 
FIG. 4.2 

 
FIG. 4.4 

 
FIG. 4.6 
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Modified CGM is based on the assumption 0)0t(q)t(q ==∆= which makes the search 

direction 0)0t(Pk == . If the exact q(t=0) is not equal to this initial guess value, the 

additional iterations executed by using regular CGM does not help (FIG.4.10.1) 

because this method  cannot find the correct solutions near the initial time. 

However, if q(t=0) is known, this difficulty may be  alleviated by setting it as the 

initial guess (FIG.4.10.2). In engineering practice, the exact heat flux at t=0 is not 

known, but a possible range may be given. FIG.4.10.3 and FIG.4.10.4 show that an 

acceptable solution can be obtained even with an error of %20±  in the initial guess. 

 

Optimal Control Problem 
 

Let us determine the heat flux at the active boundary to obtain a 

temperature as uniform as possible at tf=1, e.g. T(x,1)=1. The solutions obtained 

by the regular and modified CGM are respectively illustrated in Fig.4.11 and 

Fig.4.12. For the former, the relative error EEr T/TTE −=  is about 0.91% after 9 

iterations; for the latter, %51.0E r = .This suggests that the modified method gives a 

better solution. To achieve a uniform temperature at the final time, the heat flux at 

the beginning of heating process should be as high as possible. Suppose the 

maximum possible heat flux qmax=1.75, and set it as the initial guess, the modified 

CGM may give a solution with a relative error of 0.28% as shown in FIG.4.13. 
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FIG.4.7.1: Inverse Solution 

 
FIG.4.8.1: Inverse Solution 

 
FIG.4.9.1: Inverse Solution 

 
FIG.4.7.2: Relative Error %5=σ  

 
FIG.4.8.2: Relative Error %5=σ  

 
FIG.4.9.2: Absolute Error  

05.0=σ , Tmax=1.2
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FIG.4.10.1 

 
FIG.4.10.3 

 
FIG.4.10.2 

 
FIG.4.10.4 

 

 

  
FIG. 4.11 
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FIG. 4.12 

  
FIG. 4.13 

 

 

 

 

Alternating Searching Direction 

We note that the convergence may be very difficult after 9 iterations if the 

final time is equal to 1.0. The relative error will not decrease as the iteration 

number is increased. If we alternate the search directions, e.g. gradient direction 

(steepest descent method) and conjugate gradient direction, we may obtain a 

better solution as shown in FIG.4.14. As the solution of this optimization problem is 

not unique, the alternating search direction technique may avoid some “bad” points 

to reach a better one. 
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Optimal Heating Time 

If the heating process is longer, the final temperature distribution is more 

uniform. If the final time is infinite, the temperature distribution may be absolutely 

uniform! Industrial heating requires however a heating time as short as possible to 

achieve a high production rate. FIG.4.15 presents the relationship between the 

final time and the relative error. The corner of the L-shaped curve is the optimum 

point. For regular CGM or modified CGM, the optimum final time is 0.5. The heating 

strategies for tf=0.5 are shown in FIG.4.16 and FIG.4.17. The evolutions of the 

temperature distributions for tf=0.5 and tf=1.0 are illustrated in FIG.4.18 and 

FIG.4.19. Unfortunately, such an optimal heating yields  ( ) EEmax T/TT −  over 55% if 

tf=0.5 ! 

 

A Real Industrial Example  

Let us consider the heating process of an aluminum billet with a diameter 

of 76mm from 20 to 580 oC in 300 seconds, such that the final temperature should 

be as uniform as possible. The dimensionless time corresponding to 5 minutes is 

10. Both regular CGM and modified CGM may lead to an optimal heating strategy 

(FIG.4.20 and FIG.4.21). However, the latter scheme is easier realize than the 

former because it is smoother and requires no cooling period.  

 

 

 

 
FIG. 4.14.1 

 
FIG. 4.14.3 
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FIG.4.16 

 
FIG. 4.14.2 
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FIG. 4.15 

 
FIG. 4.17 

 

 

 
FIG.4.18.1 

 
FIG.4.19.1 
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FIG.4.18.2 

 
FIG.4.19.2 

 
FIG.4.20.1 

 
FIG.4.21.1 

 
FIG.4.20.2 

 
FIG.4.21.2 

 
 
 
 
 
 
 
 
 



 38

Conclusion 
 

Singular value decomposition and iterative conjugate gradient methods are used to 

solve the IHCP of second kind. It is found that this inverse problem is severely ill-

posed. In general, it is possible to recover a boundary heat flux only for a non-

dimensional final time of the order of 0.1. On the other hand, for control problems, 

either constrained or unconstrained, we can obtain a satisfactory solution with a 

very small discrepancy between the target and the actual temperatures at the final 

time. 

  

A modified conjugate gradient method may be used to reconstruct a heat flux with 

satisfactory accuracy for any final time if its value at t=0 is known. For boundary 

control problems, the modified algorithm may give a better solution than the CGM.  
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